
Predicting Software Performance
in Symmetric Multi-core
and Multiprocessor Environments

Jens Happe

The Karlsruhe Series on
Software Design

and Quality

3

Jens Happe

Predicting Software Performance in Symmetric
Multi-core and Multiprocessor Environments

The Karlsruhe Series on Software Design and Quality

Volume 3

Chair Software Design and Quality
Faculty of Computer Science
Universität Karlsruhe (TH)

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Predicting Software Performance
in Symmetric Multi-core
and Multiprocessor Environments

by
Jens Happe

Universitätsverlag Karlsruhe 2009
Print on Demand

ISSN: 1867-0067
ISBN: 978-3-86644-381-5

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Dissertation, University of Oldenburg,
Department of Computer Science, 2008

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/3.0/de

Contents I

Contents

1. Introduction 1

1.1. Research Questions . 2

1.2. Existing Solutions . 4

1.3. Contributions . 5

1.4. Overview . 8

1.5. Executive Summary . 10

2. Foundations 11

2.1. Software Performance Engineering . 11

2.1.1. Performance Models . 12

2.1.2. Open and Closed Workloads . 12

2.1.3. Model-driven Performance Engineering 14

2.1.4. Performance Completions . 15

2.2. Scheduling in Software Performance Evaluation 16

2.2.1. Scheduling Policies . 17

2.2.2. Task Routing in Multi-Server Systems 18

2.2.3. The Performance Influence of Workload Types and Scheduling Policies 19

2.3. General Purpose Operating System Schedulers 22

2.3.1. Basic Concepts and Terms . 22

2.3.2. Processes and Threads . 24

2.3.3. Multilevel Feedback Queues . 26

2.3.4. Windows . 27

2.3.5. Linux . 32

2.4. Summary . 40

3. Basics of the Performance Modelling Framework for Operating System Sched-

ulers 41

3.1. Experiment-based Derivation of Software Performance-Models 42

3.1.1. Motivation . 42

3.1.2. A Method for Experiment-based Performance Model Derivation . . . 44

II Contents

3.1.3. The Goal/Question/Metric-Approach for Experiment-based Performance

Model Design . 49

3.1.4. Parametrisation of Performance Models 52

3.2. Overview of the Performance Modelling Framework 55

3.2.1. Performance-related Questions for GPOS Schedulers 55

3.2.2. Categorisation of Performance-relevant Factors of GPOS Schedulers . 56

3.2.3. MOSS – Overview of the Prediction Model 64

3.3. Summary . 69

4. Single Processor Scheduling 71

4.1. Time Sharing . 71

4.1.1. Experiments – Overview and Motivation 71

4.1.2. Answering the Questions – Scenarios, Metrics, Hypotheses, and Results 76

4.1.3. The MOSS Prediction Model for Scheduler Time Sharing 86

4.1.4. Validation of MOSS’ Prediction Accuracy 92

4.2. Interactivity . 96

4.2.1. Experiments – Overview and Motivation 97

4.2.2. Experiment Design . 98

4.2.3. Answering the Questions – Scenarios, Metrics, Hypotheses, and Results102

4.2.4. Extending MOSS’ Prediction Model for GPOS Schedulers by Interac-

tivity Policies . 113

4.2.5. Validation of MOSS’ Prediction Accuracy 123

4.3. Case Study . 129

4.3.1. Evaluated Use Cases . 129

4.3.2. Architecture of HQ’s Application . 132

4.3.3. Performance Questions . 135

4.3.4. Experimental Settings . 135

4.3.5. Results . 137

4.4. Discussion of Assumptions and Limitations 142

4.5. Summary . 144

5. Multiprocessor Scheduling 145

5.1. Multiprocessor Load Balancing . 145

5.1.1. Experiments – Overview and Motivation 145

5.1.2. Experiment Design . 147

5.1.3. Answering the Questions – Scenarios, Metrics, Hypotheses, and Results148

5.1.4. Extending MOSS to Symmetric Multiprocessor Systems 164

5.1.5. Validation of MOSS’ Prediction Accuracy 178

Contents III

5.2. Case Study . 187

5.2.1. Performance Questions . 187

5.2.2. Results . 188

5.3. Discussion of Assumptions and Limitations 192

5.4. Summary . 194

6. Message-based Communication 195

6.1. Performance Evaluation of Messaging Patterns 196

6.2. The Performance Influence of Messaging Patterns 198

6.3. PCM Completion Models . 204

6.3.1. Messaging Completion Components 205

6.3.2. Transformation . 209

6.4. Case Study . 209

6.5. Discussion of Assumptions and Limitations 214

6.6. Summary . 216

7. Related Work 217

7.1. Performance Evaluation of Scheduling Policies in Queueing Theory 217

7.1.1. Performance Properties of Scheduling Policies in Single-Server Queues 217

7.1.2. Performance Properties of Scheduling and Routing Policies for Multi-

Server Queues . 221

7.2. Performance Evaluation of Operating System Schedulers 224

7.2.1. Multiprocessor Load Balancing of General Purpose Operating Systems 224

7.2.2. Interactivity and Processor Reservation in GPOS Schedulers 225

7.2.3. Real Time Operating Systems . 226

7.2.4. High Performance Computing . 226

7.3. Infrastructure Performance Models . 227

7.4. Summary . 230

8. Conclusions 231

8.1. Summary . 231

8.2. Benefits . 234

8.3. Lessons Learned . 235

8.4. Future Work . 236

A. The Palladio Component Model 243

A.1. CBSE Development Process . 243

A.2. Component Specification (Component Developers) 244

A.3. Architecture Model (Software Architect) . 246

IV Contents

A.4. Resource Model (System Deployer) . 247

A.5. Usage Model (Domain Expert) . 247

B. Timed Coloured Petri Nets 249

B.1. Overview of the Structure of CPNs . 249

B.2. Dynamic Behaviour . 251

B.3. Hierarchical Models . 253

B.4. Time . 255

B.5. Data Collection . 256

B.6. CPN Modelling Patterns . 257

C. Technological Background 261

C.1. Benchmark Application . 261

C.1.1. Determining the Input Value for a Specific Resource Demand 262

C.1.2. Resource Demand Break Down . 264

C.1.3. Discussion . 265

C.2. Workload Generation . 265

C.3. Resource Demand Generation . 266

C.4. Experimental Setting . 266

List of Figures 269

List of Tables 273

Bibliography 275

1

1. Introduction

Nowadays multi-core processor systems are becoming ubiquitous in the desktop market and

in common server systems [Cre05]. Most of the main processor vendors, such as Intel and

AMD, are adapting their product lines to the new technology. To exploit the available pro-

cessor cores, software developers must design and implement applications with a high degree

of concurrency. While the development of such applications is error prone and time con-

suming [Lee06], the possible benefit in software performance may be limited due to software

bottlenecks or inherently sequential parts of the application (Amdahl’s Law [Rod85]). Soft-

ware architects and developers are thus confronted with the question of when the additional

effort for introducing concurrency into their application pays off.

Performance predictions can support software architects in answering such questions early

in the design phase. Predicted performance metrics like response time, throughput, and

resource utilisation help to plan hard- and software capacities as well as to avoid design faults.

Due to the counter-intuitive behaviour of concurrent software systems, such estimates are

essential for their development [GPB+06]. Using performance prediction methods, software

architects and developers can create software systems that confidently fulfil their performance

requirements, such as being highly scalable and being able to serve several thousands of users

simultaneously. In a business case for a medium sized project, Williams and Smith [WS03]

estimate the possible financial benefit of software performance prediction to be several million

US-dollars.

However, in order to be meaningful, prediction methods have to consider the in-

fluence of the underlying middleware, the operating system, and hardware on perfor-

mance [LFG05, DPE04, Apa]. Especially for highly concurrent systems, like typical enter-

prise applications, the operating system and middleware have a major impact on performance

(see, for example [CMZ02]). Some researchers even consider them to be the determining fac-

tors for the performance of enterprise applications (e.g., [LFG05, DPE04]). The influence

of the infrastructure as well as the mutual dependencies between hardware, operating sys-

tem, middleware, and software application pose new challenges for software performance

prediction.

In this thesis, we address the problem of software performance prediction in symmetric

multiprocessing (SMP) environments. Our work is focussed on the influence of General

2 1. Introduction

Purpose Operating Systems (GPOS) schedulers, as implemented in the Windows and Linux

operating system series. To capture their influence for software performance prediction,

we introduce a performance modelling framework for GPOS schedulers. Furthermore, we

propose a performance modelling technique for message-oriented middleware in order to

analyse concurrent software systems in distributed settings. We validated the proposed

models and methods by conducting a number of case studies based on real world applications.

In the considered scenarios, our method increases the prediction accuracy up to several orders

of magnitude compared to common methods.

1.1. Research Questions

In the scope of this thesis, we address research questions from the areas of (i) operating sys-

tem schedulers, (ii) message-oriented middleware, and (iii) performance modelling methods

which are discussed in the following.

General Purpose Operating System Schedulers Operating system schedulers manage

the concurrent access of multiple tasks to limited resources (e.g., processors). The cho-

sen scheduling algorithm can affect software performance by several orders of magni-

tude [BSUK07]. In software performance engineering, common abstractions for operating

system schedulers are processor sharing and first-come, first-served scheduling. However,

real operating system schedulers are much more complex. They have to fulfil a broad range

of different requirements for real-time, batch, and interactive systems.

When selecting tasks for execution, GPOS schedulers may take into account the previous

behaviour of each task, e.g., the periods when it used different resources (e.g., network and

hard drive). Other schedulers may prefer tasks which have just been granted access to some

critical resource (e.g., protected by a semaphore). Such policies are meant to keep the overall

utilisation of resources high while minimising response times [Tan01]. They lead to a strong

mutual dependency between the behaviour of tasks and the GPOS scheduler which is usually

not considered in performance prediction.

In multi-core and multiprocessor systems, schedulers must decide how the load is to be

balanced among the available cores or processors. Balancing policies implemented in to-

day’s operating systems determine when load balancing is initiated, whether it dynamically

intervenes with the system, and if it is adapted to different load conditions. During load

balancing, schedulers have to identify processors that need to be balanced as well as tasks

to be moved. In doing so, various constraints, such as processor and cache affinities of tasks,

have to be considered.

1.1. Research Questions 3

Current operating systems employ a broad range of strategies for task scheduling and

multiprocessor load balancing. For example, Windows keeps interference with the program

execution as low as possible. By contrast, Linux constantly ensures a fair distribution of

processing time among all competing tasks. Even though such behaviour is difficult to

capture, performance prediction methods have to include its influences on software perfor-

mance. Common scheduler abstractions can lead to prediction errors of several orders of

magnitude for task response times and throughput (cf. Section 5.2). Therefore, modelling

and prediction of GPOS schedulers require to answer the following questions:

1. What are the most relevant features of the behaviour of operating system schedulers

with respect to software performance?

2. What are the important aspects for symmetric multiprocessing environments?

3. How can these aspects be identified?

4. How do task behaviour, scheduling policy, and workload influence software perfor-

mance?

5. How can mutual influences task behaviour, scheduling policy, and workload on software

performance be captured?

6. What level of abstraction of schedulers is adequate to provide good predictions?

7. What models and model solution techniques (analytical, simulation based, combined)

are appropriate for modelling GPOS schedulers?

8. Is there a general method for modelling GPOS schedulers?

9. What prediction accuracy can be achieved using performance models for GPOS sched-

ulers?

Message-oriented Middleware Enterprise applications mostly employ message-based

communication (using, for example, Java Message Service, JMS [HBS+08, MHC02]) to pro-

cess jobs asynchronously or to communicate in distributed systems. Hence, message passing

is a major technology for implementing concurrent behaviour in enterprise applications. The

performance of message passing depends on the vendor implementation and the execution

environment. Furthermore, the usage of the message-oriented middleware (MOM) influences

its resource demands. For example, the message size and the number of messages in a trans-

action significantly affect the delivery time of a message. Therefore, the following questions

need to be answered before commencing performance model design:

1. How can message-oriented middleware be modelled independent of the vendor imple-

mentation?

2. What performance models are appropriate for MOM?

3. How can such performance models be integrated into existing software architecture

models?

4 1. Introduction

Derivation of Performance Models The major challenge in the design of performance

models for complex software systems is the right level of abstraction. Performance models

need to include all relevant aspects of the system under study and, at the same time, pro-

vide an abstraction from its complexity in order to remain solvable. Hence, performance

analysts are confronted with the question of what must be included into a performance

model and what parts of the system under study can be simplified. Unfortunately, these

questions cannot be answered from specifications, documentation, or source code, since, es-

pecially for concurrent systems, performance properties are often counter-intuitive even for

experts [GPB+06]. In order to support performance analysts to find proper performance

abstractions, we address the following questions in the scope of this thesis:

1. How can performance-relevant and -irrelevant features be distinguished?

2. How can degrees of freedom of the specification be fitted in?

3. How can performance models for accurate predictions be designed efficiently?

1.2. Existing Solutions

As discussed in the previous section, software architects and developers have to consider the

influence of scheduling policies in order to accurately predict software performance. Several

existing approaches address this problem. They (i) measure or model specific features of

GPOS schedulers, simulate scheduling algorithms for (ii) high performance computing and

(iii) real-time applications or stem from the area of (iv) queueing theory. In the following,

we give a brief overview of the state-of-the-art for these areas.

Several experimental evaluations of the Linux scheduler [TCM06, KN07] give interesting

insights into its interactivity and multiprocessor load-balancing properties. However, the re-

sults are not sufficient for the definition of scheduler performance models. Other authors use

formal prediction methods (such as stochastic automata networks or continuous time Markov

chains) to predict the influence of changes in the Linux scheduler on software performance

(e.g., [CCF+06, CZS06, KGC+06]). The proposed performance models focus on one specific

scheduler properties and, hence, employ strong simplifications. For this reason, the authors

neglect most of the performance-relevant features of the Linux scheduler. Furthermore, they

do not validate their predictions, i.e., they do not compare predictions with measurements.

In high performance computing, simulation models are used to evaluate the influ-

ence of different scheduling algorithms on the performance of highly concurrent applica-

tions [MEB88, LV90, GTU91, Maj92, AD96, RSSS98]. Interestingly, the authors come to

different and often contradicting conclusions regarding the best and worst scheduling algo-

rithms. Apart from different foci of the approaches, the varying assumptions of the simula-

1.3. Contributions 5

tion models are a major factor that leads to the diverging results. The considered scheduling

policies are very specific to high performance computing and are usually not applied for en-

terprise applications.

Simulators for real-time operating systems are already widely used to assess the schedu-

lability and timing behaviour of embedded software systems with soft and hard dead-

lines [SG06, MPC04, JLT85]. These simulators are very specific to the domain of real-time

systems and reflect schedulers on a very detailed level. For example, the model includes

the time for saving and restoring a task’s context [MPC04]. While such aspects can be

important for real-time systems, they are negligible for general-purpose operating systems.

Furthermore, the scheduling algorithms which are modelled (e.g., round robin and earliest

deadline first) as well as the performance metrics which are considered (e.g., the number of

missed deadlines) are specific to real-time systems.

In queueing theory [Bos02], the implications of scheduling policies in single- and multi-

server queueing systems are investigated from a more formal perspective (e.g., [BSUK07,

SHB02, Oso05, HBOSWW05]). Several authors have demonstrated (and proven) that

scheduling can have a major impact on software performance (e.g., [BSUK07, SHB02]).

Furthermore, they have shown how load balancing (also called cycle stealing [Oso05]) and

different routing policies for multi-server systems (e.g., [HBOSWW05]) influence mean re-

sponse times. While these works give interesting insights into the nature of scheduling, they

impose too strong abstractions for GPOS schedulers in most cases.

1.3. Contributions

In the scope of this work, we proposed a systematic method for the experiment-based deriva-

tion of performance models, conducted several experimental analyses of operating system

schedulers, developed a performance modelling framework for GPOS schedulers, and de-

signed a performance model for message-based communication. In the following, we discuss

the contributions of this work in more detail.

A Method for the Experiment-Based Derivation of Performance Models Our novel

method for the experiment-based derivation of performance models tightly couples perfor-

mance model design with systematic experiments. The method is meant to identify features

that are important for system performance and to quantify their effect. The modelling ef-

fort is focussed on the most crucial features and performance analysts are guided in finding

appropriate performance abstractions. We extend the well known Goal-Question-Metrics ap-

proach [BCR94] for experiment design to fulfil the needs of software performance evaluation.

For each experiment, performance analysts define specific questions about the performance

6 1. Introduction

properties of the system based on specification and documentation. The results of the exper-

iments allow performance analysts to answer these questions as well as to fill in remaining

degrees of freedom. With this information, they can design prediction models that capture

the performance-relevant features of the system under study. Once a performance model is

defined, its prediction accuracy is validated to ensure that the model is representative. In

the scope of this thesis, we apply this method for the design of performance models of GPOS

schedulers and of message-oriented middleware.

Experimental Analysis and Identification of Performance-relevant Features of Operat-

ing System Schedulers In the scope of this thesis, we conducted a series of experiments to

identify the performance-relevant features of GPOS schedulers. Each feature was evaluated

extensively in order to quantify its effect on the performance of concurrently executing tasks.

Furthermore, we classified the features considering the following dimensions: time sharing

(e.g., priorities and timeslices); treatment of interactive and I/O-bound tasks; and different

policies for multiprocessor load balancing. All features mentioned here exhibited significant

influence on the performance of the considered experimental scenarios.

We structured the identified performance-relevant properties using feature diagrams and,

additionally, used them for developing performance models of GPOS schedulers. The feature

diagrams enable software architects to customise the performance model of GPOS schedulers

to their execution environments.

Performance Modelling Framework for General Purpose Operating System Schedulers

The main contribution of this thesis is a novel performance Model for general purpose

Operating System Schedulers called MOSS. The model reflects the influence of time sharing,

interactivity, and multiprocessor load balancing policies of GPOS schedulers on software

performance. Software architects can provide their own configurations of the model based on

feature diagrams [CE00] or choose among a set of standard configurations. MOSS supports

the schedulers of the Linux 2.5 and 2.6 Kernel series (up to 2.6.22), Windows 2000, Windows

XP, Windows Server 2003, and Windows Vista operating systems.

We use timed coloured Petri nets (CPNs) to model the behaviour of schedulers. The

CPN models designed in the scope of this thesis can be customised using the configurations

mentioned in the paragraph above. MOSS is structured hierarchically, so that different

aspects of a scheduler can be modelled independently of one another. For performance

evaluation, the CPNs are simulated in order to obtain the performance metrics of interest.

For this purpose, existing simulation tools for CPNs can be used [JKW07]. Furthermore, as

part part of this thesis, we implemented a discrete event simulation technique [LMV02,

LB05] which is specialised for MOSS and was integrated with the Palladio Component

Model (PCM [RBH+07, BKR08]). The PCM is an architectural modelling language that

supports early design time performance predictions. The integration with the PCM hides the

1.3. Contributions 7

complexity of MOSS from software architects and performance analysts and enables them

to consider realistic scheduling policies in their performance predictions without additional

modelling effort.

MOSS was designed and validated applying the method for experiment-based model

derivation introduced above. We conducted detailed experiments to identify the

performance-relevant properties for each major scheduling feature (time sharing, interac-

tivity, multiprocessor load balancing). We validated models iteratively to ensure a high

prediction accuracy of MOSS.

Furthermore, we conducted a case study, demonstrating that MOSS can predict the influ-

ence of the Linux and Windows schedulers on software performance with an error less than

5% to 10% in most cases. Existing performance prediction techniques based on queueing

models yield errors up to several orders of magnitude. The case study models a typical

scenario for business intelligence reporting.

Performance Model for Message-based Communication Due to the importance of

message-based communication for enterprise applications, we developed a performance model

for message-oriented middleware (called messaging completion). The model is based on de-

sign patterns for message-based communication [HW03]. In combination with measurements,

it allows a straightforward integration of enterprise messaging systems (like Java Message

Service [MHC02]) into software performance models. To customise the model to new ex-

ecution environments, software architects execute an automated test driver that collects

the necessary performance data. A prediction model for a new execution environment is

constructed by the injection of measurement results into the performance model.

Similarly to MOSS, we integrated the messaging completion with the PCM. Software ar-

chitects can annotate connections between software components with configurations for mes-

saging. The configuration reflects performance-relevant messaging patterns of the sender,

receiver, and message channel, e.g., guaranteed delivery or transactional messages. A trans-

formation generates the corresponding performance model. We defined the messaging com-

pletion in terms of the PCM, e.g., components, behavioural specifications of services, and

connections.

To evaluate the prediction quality of the messaging completion, we conducted a case

study using the SPECjms2007 Benchmark [SPE]. The benchmark models a typical supply

chain management scenario of a supermarket. The scenario involves multiple parties, like

supermarkets selling goods and headquarters responsible for administration and accounting.

In the case study, we evaluated three design alternatives with varying pattern selections

for message-based communication as well as with varying message sizes. The resulting

predictions and measurements differ by less than 20%.

8 1. Introduction

1.4. Overview

• Chapter 2 describes the foundations necessary for this thesis. We introduce the basic

terms and concepts of software performance engineering. We provide an overview of

well established formal methods for performance prediction as well as of model-driven

performance evaluation. A description of scheduling algorithms currently used in the

operating systems Linux and Windows concludes the chapter.

• In Chapter 3, we introduce an iterative method for the experiment-based derivation

of software performance models. We apply the method in Chapters 4, 5, and 6 to define

customisable performance models of GPOS schedulers for single- and multiprocessor

environments as well as for message-oriented middleware. The methodology provides

a systematic approach to measurement, performance modelling and model evaluation.

Additionally, Chapter 3 provides an overview of the hierarchical structure of MOSS. We

demonstrate how different feature configurations can be realised in terms of CPNs and

how MOSS is integrated with the Palladio Component Model. Finally, we summarise

the performance-relevant features of GPOS schedulers that are evaluated in Chapters 4

and 5.

• In Chapter 4, we apply the method introduced in Chapter 3 to derive a performance

model for GPOS schedulers in single processor systems. We systematically evaluate

influences of different time sharing and interactivity policies on software performance.

In addition to the extensive validation during model design, we evaluate the applica-

bility and prediction accuracy of MOSS by means of a real world case study. The case

study demonstrates that MOSS can increase prediction accuracy by several orders of

magnitude.

• Chapter 5 continues the evaluation and modelling of GPOS schedulers for symmetric

multiprocessing environments. We evaluate the influence of different load balancing

policies on software performance and include their performance-relevant behaviour into

MOSS. Moreover, we extend the case study from Chapter 4 and demonstrate that the

significant performance increase of multi-core processors for software performance can

be accurately predicted by MOSS.

• In Chapter 6, we introduce a performance modelling technique for message-oriented

middleware. The technique allows software architects to define relevant features of

message-based communication. The available features were selected based on messag-

ing patterns. Therefore, the technique is a general solution for a wide range of message-

oriented middleware platforms. We validate the performance model by a comparison

between measurements and predictions for the SPECjms2007 benchmark [SPE].

1.4. Overview 9

• In Chapter 7, we discuss the current state-of-the-art in software performance engi-

neering with respect to modelling scheduling policies. The discussion includes work

from the areas of queueing theory, operating systems research, real-time operating sys-

tems, and high performance computing. In addition, we summarise approaches that

integrate details of the middleware platforms into performance prediction models.

• Chapter 8 concludes this thesis. We summarise the most important scientific contri-

butions of our work and discuss open questions. Finally, we discuss future directions

of our research.

10 1. Introduction

1.5. Executive Summary

Software performance engineering [Smi02] enables the reliable construction of software sys-

tems with high performance requirements. With today’s rise of multi-core and multiprocessor

systems, operating system schedulers can become a determining factor for software perfor-

mance and, thus, must be considered in software performance prediction. In this thesis, we

design and evaluate a performance model for General Purpose Operating Systems (GPOS)

schedulers, such as implemented in the Windows and Linux operating system series.

In order to reach this aim, we propose a method that tightly couples systematic mea-

surements with performance model design (Chapter 3). The method is inspired by the

work of Jain [Jai91] and extends the Goal/Question/Metric approach of Basili, Caldiera,

and Rombach [BCR94]. The tight coupling of measurements and performance model design

is essential for the development of performance models of complex and highly concurrent

systems, such as operating system schedulers and message-oriented middleware.

In Chapters 4 and 5, we apply the method to design a performance Model for general

purpose Operating System Schedulers (MOSS). We describe a series of detailed performance

evaluations of operating system schedulers. Based on the results, we construct a customisable

performance model for operating system schedulers. Feature diagrams [CE00] enable the

customisation of MOSS and specify its degrees of freedom. MOSS covers various features

of run queues, of strategies to prefer I/O-bound and interactive tasks, and of static and

dynamic multiprocessor load balancing. A case study demonstrates that MOSS can increase

the prediction accuracy by several orders of magnitude.

In addition to MOSS, we develop a performance model for message-oriented middleware

(Chapter 6) based on design patterns for message-based communication (called messaging

completion). Messaging completions are an abstraction of details specific to vendor im-

plementations. For this purpose, software architects inject measurements from the target

platform into the messaging completion, adjusting the model to new execution environments.

We use concepts and technologies of model-based (or model-driven) performance engineer-

ing [BMIS04] to hide the complexity of the messaging completion from software architects.

In a case study based on the SPECjms2007 Benchmark [SPE], we predicted the influence of

message-based communication with an error of less than 20%.

11

2. Foundations

In this chapter, we introduce the concepts and terms from the area of software performance

engineering and operating system research relevant for this thesis. Section 2.1 describes

the basic concepts of software performance engineering. It provides an overview of well-

established prediction models and newly emerging approaches in model-driven performance

engineering. In Section 2.2, we summarise the currently used scheduling policies in per-

formance evaluation. Furthermore, we point out important aspects for the performance

evaluation of scheduling policies. In Section 2.3, we describe the schedulers realised in to-

day’s operating systems: Windows XP, Windows Server 2003, Windows Vista, and Linux

2.5 – 2.6.22.

2.1. Software Performance Engineering

In 1980, Connie Smith introduced Software Performance Engineering (SPE) [Smi80] to pro-

vide a better integration of performance predictions in the software development process.

Her approach was meant to enable performance evaluation of software systems on the basis

of simple models during early development phases [Smi02, Smi90]. The predictions help

software architects to identify and solve potential performance problems. For this purpose,

she used well-established performance modelling techniques (Sections 2.1.1 and 2.1.2) and

made them easily accessible for software architects and developers.

Later, model-based performance prediction approaches (Section 2.1.3) picked up SPE’s

core idea. They provide performance annotations for architecture description languages,

such as UML [(OM04], to close the gap between performance models and domain-specific

languages used by software architects and developers. The annotated software models are

transformed to analytical models such as queueing networks, stochastic Petri nets, or stochas-

tic process algebras.

In addition, newly emerging approaches exploit the capabilities of model-driven technolo-

gies to increase prediction accuracy. They inject low-level details of the target execution

environment into high-level architecture models by means of so-called performance com-

pletions (Section 2.1.4). In the following, we give a brief overview of performance models,

workload characterisation, model-driven performance engineering, and performance comple-

tions.

12 2. Foundations

2.1.1. Performance Models

Numerous models for performance analysis emerged during the past decades (see [BH07] for

an overview). In the following, we briefly discuss queueing network models, stochastic Petri

nets, and stochastic process algebras.

Queueing network models are the central approach to performance evaluation [LZGS84,

BGTdM98, RS95, DB78, Whi83, BCS07]. They provide a resource-centric view of the system

under study. A system is modelled in terms of service centres (see Figure 2.1(a) and (b))

that embody a queue and one or multiple servers. Jobs (also called customers, users, or

tasks) float through the system and request service from the service centre.

Jobs have to wait in the service centre’s queue until the server is available. A server pro-

cesses jobs according to some scheduling policy, e.g., first-come, first-served (cf. Section 2.2).

Once the resource demand of a job has been processed, it leaves the service centre. Jobs

can either circulate infinitely in the system (closed workload) or arrive at the system accord-

ing to some arrival process and leave the system as soon as they finished processing (open

workload).

Stochastic Petri Nets (SPN) [MBB+89, CGL94, MBC+95, BK96, ZFH01] and Stochas-

tic Process Algebras (SPA) [Hil96, BBG97, HHK02, BDC02, BD04] provide a behaviour-

centric view on the system under study. Both model the timing behaviour and interaction

of multiple processes or tokens. Their expressiveness with respect to stochastic processes

ranges from simple continuous-time Markov processes with exponentially distributed delays

(e.g., [Hil96, HHK02]) to generalised semi-Markov processes with generally distributed delays

(e.g., [BD04]). While the first can be solved analytically, the latter have to be simulated.

Queueing network models allow straightforward modelling of resources with different

scheduling policies. However, the description of complex control flow, i.e., software be-

haviour, is challenging [Kou06]. For example, queueing networks cannot model the forking

of new jobs or the synchronisation of multiple jobs in the system. By contrast, SPNs and

SPAs can describe complex (software) behaviour but suffer from missing resource models.

Thus, several combined approaches have been proposed in literature (e.g., [Bau93, Fra99,

KB06, Jen92]). These combined models integrate resource models from queueing theory

with complex behavioural models. In this thesis, timed coloured Petri nets (Appendix B)

are used to model the behaviour of general purpose operating system schedulers.

2.1.2. Open and Closed Workloads

For software performance evaluation, the workload of a system under study specifies the

arrival of new jobs. In a closed system model, new job arrivals are only triggered by job

2.1. Software Performance Engineering 13

completions followed by think time. By contrast, new jobs arrive independently of job

completions in an open system model. In the scope of this thesis, the workload type refers

to the available variants of workloads.

For open and closed systems, jobs request service from a particular service centre (queue

and server) or system (one or more services centres). For a job t, the response time RT(t)

with mean E[RT(t)] is the time from the moment the job submits a request until its request

is processed, i.e., it leaves the service centre. Furthermore, the utilisation of a single server

(denoted by u) is the fraction of time that the server is busy. In the following, we describe

how requests are generated in closed and open systems.

��������
��	
�	

(a) Closed workload model.

�����������

�����	�
�����������������
����

���

(b) Open workload model.

Figure 2.1.: Open and closed workload models.

Closed Systems Figure 2.1(a) depicts a closed system, where a fixed number of jobs uses

the system forever. This number of tasks is typically called the multiprogramming level

(MPL) and denoted by N . Each of these N jobs submits a request, waits for the response,

and, once the response is received, waits (or “thinks” in case of users or customers) for some

amount of time. Thus, a new request is only triggered by the completion of a previous

request.

In a closed system, Nthink denotes the number of jobs, who are currently thinking, and

Nsystem the number of users, who are either running or waiting in the queue. Since the the

total number of jobs is N , both numbers must sum up to N , i.e., Nthink + Nsystem = N .

In closed systems, the utilisation of a single server is the product of its (mean) throughput

(usually denoted by X) and the mean resource demand (E[S]).

Open System Figure 2.1(b) depicts an open system. Jobs arrive at the service centre as

a constant stream with average arrival rate λ for a Poisson arrival process. Each job is

assumed to submit one request to the system, wait to receive the response, and then leave

the system. The number of tasks in the system (queued or running, Nsystem) may range from

14 2. Foundations

zero to infinity (Nsystem ∈ N). Its mean value is denoted by E[Nsystem]. For an open system,

the utilisation u is the product of the mean arrival rate of requests, λ, and the mean resource

demand E[S].

The above modelling formalisms and workload types allow well-trained performance an-

alysts to model and evaluate software performance. For better integration of performance

evaluation into the software development process, model-driven performance engineering

employs transformations of architectural models to performance models. In the following

section, we describe the envisioned approach in more detail.

2.1.3. Model-driven Performance Engineering

Software Model Performance
Model

Prediction
Results

- UML
+ SPT profile
+ MARTE profile

- ...

- Queueing Networks
- Stoch. Petri-Nets
- Stoch. Process Algebra
- ...

- Response Time
- Throughput
- Resource Utilisation
- ...

Transform Solve

Feedback

Infrastructure
Model

- Middleware
- Operating System
- Processor
- …

C
om

pl
et

e

Figure 2.2.: Overview of the model-driven performance engineering process.

Model-driven performance prediction [BMIS04] allows software architects to design per-

formance models in a language specific to their domain. This can be UML models [(OM07c]

annotated with performance-relevant information (using for instance the UML-SPT pro-

file [(OM05] or MARTE [(OM07b]) or architecture description languages specialised for per-

formance evaluation like the Palladio Component Model (PCM, see Section A). To derive

performance metrics from architectural models enriched with performance-relevant informa-

tion, the software model is transformed into a performance model as shown in Figure 2.2.

Typical models for performance analysis are queueing networks [LZGS84, Bos02], stochastic

Petri nets [BK96, CGL94] or stochastic process algebras [HHK02, Hil96]. Thus, model-

driven performance engineering closes the gap between formal performance model and ar-

chitectural description languages. The solution of the performance models by analytical or

simulation-based methods yields various performance metrics for the system under study,

such as response times, throughput, and resource utilisation. Finally, the results are fed back

into the software model. This enables software architects to interpret the effect of different

design and allocation decisions on the system performance and plan capacities of the appli-

2.1. Software Performance Engineering 15

cation’s hard- and software environment. In practice, tools encapsulate the transformation

and solution of the models and hide their complexity.

Often detailed information on the execution environment (middleware, database, operat-

ing system, processor architecture) is required to get meaningful predictions. Model-driven

technologies can be exploited to add such performance-relevant information on the infras-

tructure to high-level architectural specifications.

2.1.4. Performance Completions

For performance predictions during early development phases, software architecture models

have to be kept on a high level of abstraction since implementation details are not yet known.

By contrast, detailed information on the system is necessary to determine the performance

of the modelled architecture correctly [VDGD05, GMS06]. While such information is not

available for the modelled system, the infrastructure of the system, e.g., the middleware

platform used, might be known even during early development stages.

Based on technologies from model-driven software development [VS06], performance com-

pletions [WPS02, WW04] automatically refine design time software models with low-level

infrastructure details to increase prediction accuracy. In the process shown in Figure 2.2, in-

frastructure models are used to complete the transformation from the software to the perfor-

mance model. Performance completions hide the complexity of the underlying infrastructure

from software architects, who only choose among the infrastructure’s performance-relevant

options.

For example, a transformation can insert the influence of Message-oriented Middleware

(MOM) into the application’s performance model (cf. Chapter 6). The result of the trans-

formation reflects the influence of message-based communication (as implemented in the

middleware) on the application’s performance. Software architects can configure message

channels in their software architecture based on a set of performance-relevant options.

Software
Architecture

Annotation
Model

Completion
Library

Extended
Software

Architecture

<<references>>

<<transforms>>

<<parameterises>>

Annotation
Model

Completion
Library

<<references>>

<<transforms>>

<<parameterises>>

Performance
Model

Architectural Level Performance Model Level

Figure 2.3.: Performance completions in the PCM.

16 2. Foundations

Figure 2.3 shows how performance completions can be realised. Elements of a software

architecture model, such as components or connectors, are referenced by elements of an An-

notation Model. Annotations mark elements in the architecture model that are to be refined

and provide configurations that are required. For example, if a connector is to be replaced by

a remote procedure call, the annotation can provide information about the target infrastruc-

ture, e.g., SOAP or Java RMI. A transformation takes the necessary infrastructure models

from a Completion Library, adjusts them according to the configuration, and generates a

performance model that reflects the performance properties of the software model completed

by the infrastructure model.

Performance completions can occur on the architectural level, on the performance model

level, or on some intermediate level (e.g., if the transformation uses some intermediate per-

formance model such as the core scenario model [PW02] or KLAPER [GMS05]). Which level

is best suited for a specific performance completion depends on its modelling requirements

(i.e., can it be expressed in terms of the architectural description language) as well as on the

intended usage.

For example, the performance completion for GPOS schedulers proposed in this thesis

(Chapter 3 to Chapter 5) is specified in terms of CPNs and, thus, placed on the performance

model level. The advantage of an accurate prediction model that exploits the specific features

of CPNs comes at the cost of the commitment to a single analysis formalism.

By contrast, the messaging completion (cf. Chapter 6) is defined on the architectural level.

The result of the transformation is an expanded architectural model whose annotated ele-

ments have been replaced by detailed performance specifications. Keeping the model on the

architectural level allows the use of all analytical and simulation-based solvers implemented

for the architectural specification language. However, this approach has the drawback that

the messaging completion cannot be used in other architectural languages.

In the next section, we describe how scheduling and routing policies are modelled in

software performance prediction.

2.2. Scheduling in Software Performance Evaluation

In software performance evaluation, various policies have been introduced and stud-

ied to model the scheduling and routing in single-server systems and multi-server

systems. In the following, we describe scheduling and routing policies available

in approaches and tools that are commonly used in software performance evalu-

ation, e.g., approaches from queueing theory [HSZT00, BCS06, BCS07, LZGS84,

Bos02], Layered Queueing Networks (LQNs) [Fra99, FMW+07], Queueing Petri

Nets (QPNs) [Bau93, KB06], and the standardised performance modelling notations

2.2. Scheduling in Software Performance Evaluation 17

“UML Profile for Schedulability, Performance and Time” (UML-SPT) [(OM05] and

“UML Profile for Modelling and Analysis of Real-Time and Embedded systems”

(MARTE) [(OM07b].

2.2.1. Scheduling Policies

Scheduling policies determine the execution order of tasks at a single server. The policies

assign the server to competing tasks in a non-preemptive or in a preemptive way. While non-

preemptive policies wait until the currently running task is finished before they schedule a

new task, pre-emptive policies can interrupt a currently running task to allocate the server

to a new task. When a task is pre-empted, its already completed work can either be kept or

neglected. This mainly depends on the analyses method that is used to solve the queueing

network model. For example, mean value analysis is limited to FCFS, LCFS, PS, and IS

scheduling [RL80]. The following list summarises scheduling policies used in queueing theory:

• First Come, First Served (FCFS) serves tasks in the order of their arrival.

• Last Come, First Served (LCFS) serves newly arriving tasks immediately, pre-

empting the running task. The work of the interrupted task is not lost (preemptive-

resume).

• Round-Robin Scheduling (RR) Round-Robin limits the time a task is allowed to

use the processor to a fixed timeslice. When a task’s timeslice expires, the scheduler

preempts the task’s execution and reinserts it at the end of the processor’s queue.

• Priority, Preemptive Resume (PPR) Tasks with priorities higher than the task

currently running on the server will preempt the running task. The work of the in-

terrupted task is not lost. If multiple tasks with equal priorities exist, PPR schedules

them with round-robin.

• Head-of-Line priority (HoL) Tasks with higher priorities will be served by the

processor first. Tasks in the queue will not preempt a task running on the processor

even though the running task may have a lower priority. HoL uses FCFS to schedule

tasks of equal priority.

• Processor Sharing (PS) The processor runs all tasks “simultaneously”. For

performance predictions, PS approximates the behaviour of round-robin scheduling

[LZGS84]. Processor sharing describes a round robin algorithm, whose time slice and

context switch times converge to zero. So, if n tasks are in the system, each task

receives approximately 1/n of the processor’s power.

• Random scheduling (Rand) The processor selects a task at random. The execution

of tasks is not preempted.

18 2. Foundations

• Infinite Server (IS) An infinite number of servers is available so that each task can

be processed within its service time.

• Preemptive Expected Longest Job First (PELJF) The task with the largest

resource demand is given preemptive priority. PELJF is an example of a policy that

performs badly and is included to understand the full range of possible response times.

2.2.2. Task Routing in Multi-Server Systems

If a task can be serviced by any of a set of servers, the system needs to decide on which of the

servers the task is to be executed. Such situations are particularly important in symmetric

multiprocessing environments where multiple processors can execute a single task. The

distribution of tasks among the available processors strongly influences software performance.

Determining the optimal assignment strategy for multiple service centres is one of today’s

major research questions in queueing theory [HBOSWW05]. In the following, we describe the

central queue model and the immediate dispatching model as inherently different concepts

for load distribution in multi-server systems. Furthermore, we summarise some of the most

important routing strategies for the immediate dispatching model.

������
�����

�����	�
�����
(a) Central queue.

��������	
������

����	
�
�����

(b) Immediate dispatching.

Figure 2.4.: Load distribution in multi-server queueing models.

Central Queue and Immediate Dispatching Figure 2.4 illustrates the central queue and

immediate dispatching models for load distribution in multi-server systems. The central

queue model (Figure 2.4(a)) holds all tasks that require service in a central queue. When-

ever a server finishes a task, it fetches the first task waiting in the queue. The immediate

dispatching model (Figure 2.4(b)) distributes tasks among the available servers at the mo-

ment of their arrival. Each server holds a separate queue of tasks and is scheduled according

to the policy of the local server. A routing policy decides how the tasks are distributed

among the available servers. The policy can distribute arriving tasks statically or dynami-

cally. In the first case, the policy does not consider the state the system or properties of the

2.2. Scheduling in Software Performance Evaluation 19

task. In the second case, the policy may take into account the current state of the queues,

the past performance of the server, or the resource demand of the task. The following list

summarises typical routing policies for multi-server systems as depicted in Figure 2.4(b).

• Round Robin (RR) starts at the first service centre and assigns new tasks to suc-

cessive service centres in a cyclic fashion.

• Probabilistic Routing (PR) assigns arriving tasks to a server with a specific prob-

ability (e.g., 1/k where k is the number of service centres).

• Join Shortest Queue (JSQ) assigns arriving tasks to the service centre with the

least number of waiting tasks.

• Join-Shortest-Response-Time (JSRT) routes tasks to the service centre with the

shortest average response time observed so far.

• Join Least Utilisation (JLU) assigns arriving tasks to the service centre with the

smallest observed average utilisation.

• Join Fastest Service (JFS) routes tasks to the server with the shortest average

service time for its class. This method is related to the dedicated policy [SHB04,

HBCM99] which separates tasks according to their size.

2.2.3. The Performance Influence of Workload Types and Scheduling

Policies

Open and closed workloads (cf. Section 2.1.2) are widely employed in all areas of software

performance evaluation, e.g., performance benchmarking [SPE, ZBLG07], simulation-based

evaluations [BCS07, Kou06], and analytical solution methods [BK92, DB78]. While widely

used, the impact of different workload types on the resulting performance metrics has only

been pointed out recently by Schroeder et al. [SWHB06].

In a series of implementation and simulation experiments, Schroeder et al. have observed

vast differences in performance between open and closed workloads in real-world settings.

Their results for both types of workload differ significantly even if resource utilisations and

service time distributions are equal. For example, the mean response time for a system

with an open workload (open system) can exceed that for a system with a closed workload

(closed system) by several orders of magnitude. Furthermore, both workload types respond

fundamentally differently to variance in service demands and of scheduling policies. For

example, the variance in service demands (job sizes) has a huge impact on response times

for open workloads but much less of an effect for closed workloads.

20 2. Foundations

The Effect of Mean Response Times For a fixed utilisation of each server, mean response

times are significantly lower in closed systems than in open systems [SWHB06].

If the utilisation of a server becomes high, the response times for closed systems are orders

of magnitude lower than those for open systems. Schatte [Sch84] has proven that, under

FCFS, the open system will always serve as an upper bound for the response time of the

closed system. The effect is a consequence of the fixed number of tasks, N , in closed systems,

also called the multi-programming level (MPL). The MPL limits the queue length observed

in closed systems even under very high load. By contrast, no such limit exists for an open

system.

Approximating Open with Closed Systems As the MPL grows, closed systems become

open, but convergence is slow for practical purposes [SWHB06].

With an increasing MPL the mean response time of a closed system approaches the mean

response time of a similar open system (equal resource demand and load). Schatte [Sch84]

has proven that as N (i.e., the number of tasks) grows to infinity, a closed FCFS queue

converges to an open FCFS queue. Even though the response times differ significantly

for both systems, an open system can thus be a reasonable approximation for a closed

system with a high MPL. However, the closed and open system models may still behave

significantly differently if the service times are highly variable. Furthermore, convergence of

closed systems is slow in practice [SWHB06].

Service Time Variability While variability has a large effect in open systems, the effect is

much smaller in closed systems [SWHB06].

The variability of service times directly affects the mean response time in open systems. For

example, a service centre with an FCFS scheduling policy and high service time variability

results in larger mean response times for short requests, which get stuck behind long requests.

For closed systems, variability has comparatively little effect on mean response time. The

number of requests in the system (Nsystem) is bounded by the overall number of tasks (N).

Thus, only a limited number of short requests get stuck behind long requests. The influence

of resource demand variability thereby depends on the MPL. With an increasing MPL, the

influence of variability on mean response times can increase as well.

The Effect of Scheduling Policies While open systems benefit significantly from scheduling

with respect to response time, closed systems improve much less. Scheduling only significantly

improves response time in closed systems under very specific parameter settings: Moderate

load (think times) and high MPL [SWHB06].

The choice of scheduling policies yields fundamentally different behaviour of mean response

time in the open and closed systems. In an open system, the discrepancy between the

2.2. Scheduling in Software Performance Evaluation 21

response times of the scheduling policies grows with an increasing utilisation and eventually

differs by orders of magnitude. By contrast, scheduling policies tend to perform similarly

at both high and low resource utilisation in closed systems. Only for moderate resource

utilisation, Schroeder et al. observed larger differences (factor of 2.5) between the considered

policies (FCFS, PS, SRPT, PELJF).

The limited effects of scheduling in closed systems are a consequence of the closed feedback

loop. Especially for closed systems with a think time of zero, the above scheduling policies

yielded similar response times. Schroeder et al. explain this effect as follows.

For a closed system with N tasks, throughput X, and a mean response time E[RT(t)] for

task t, Little‘s Law states that N = X E[RT(t)]. Thus, the mean response time, E[RT(t)], is

constant if X and N are also constant across all work conserving scheduling policies. While

performance analysts specify the number of tasks, N , the throughput is determined by the

number of tasks, the think time, and the service time of the system. For systems with a

think time of zero and a low service time variability, all work conserving scheduling policies

will complete the same number of requests over a long period of time, since a new request is

only created when a request is completed. The constant throughput across work conserving

scheduling policies results in similar mean response times.

The argument above does not hold for open systems because for such systems Little‘s

Law states that E[N] = λ E[RT(u)] and E[N] is not constant across scheduling policies. For

closed systems, scheduling provides small improvement across all loads, but can only result

in substantial improvement when load (think time) is moderate. In contrast, scheduling

always provides substantial improvements for open systems.

However, the argument above does hold for the specific cases of closed workloads with

low resource demand variability, a single class of tasks, and FCFS, PS, SRPT, or PELJF

scheduling policies. If resource demand variability increases or different classes of tasks have

to be considered, closed systems also yield larger differences in response times for different

scheduling policies, as the results in Chapter 3 to Chapter 6 demonstrate.

Variability Reduction of Scheduling Policies Scheduling can limit the effect of variability

in both open and closed systems [SWHB06].

For open and closed systems, scheduling policies such as PS and SRPT reduce the negative

effect of increased variability on mean response times. For such policies, short requests cannot

get stuck behind large ones. For PS, a request immediately gets a share of 1/Nsystem’th of

the server. For SRPT, a request receives service as soon as all shorter requests have been

finished. The overall response time strongly benefits from the preference of short requests.

However, the improvement is smaller for closed systems since variability has less of an effect

in closed systems in general.

22 2. Foundations

2.3. General Purpose Operating System Schedulers

In general purpose operating systems (GPOS), complex scheduling algorithms share the

available processing power among competing tasks. These algorithms are based on multi-

level feedback queues and exhibit a much higher complexity than the scheduling and routing

policies currently used in software performance prediction. They prefer tasks according to

resources used and past behaviour. Furthermore, they redistribute load dynamically during

run time.

In this section, we describe fundamental scheduling concepts necessary to understand the

influence of operating system schedulers on software performance. We introduce basic con-

cepts and terminology (Section 2.3.1) including processes and threads (Section 2.3.2) and

multilevel feedback queues (Section 2.3.3). Based on these concepts, we give a detailed de-

scription of the scheduling algorithms implemented in the operating system series of Windows

(Section 2.3.4) and Linux (Section 2.3.5).

2.3.1. Basic Concepts and Terms

Schedulers manage the access of processes, threads, or tasks to limited resources. For ex-

ample, if only one CPU is available, a scheduler chooses the process to run next according

to a defined scheduling algorithm [Tan01, p.132]. In most cases, the GPOS schedulers use

preemptive scheduling policies. They run a task for the maximum of some fixed time called

timeslice (or quantum) and suspend it afterwards. To implement such a behaviour, a clock

interrupt triggers the operating system scheduler, which can suspend the currently running

task and assign another task to the resource. For the scope of this thesis, we define a

scheduler as follows.

Definition 2.1 (Scheduler [SGG05]). If multiple processes share access to a limited resource,

the scheduler selects one of the processes in the queue that are ready to be executed and

allocates the resource to that process. The algorithm used is called scheduling algorithm or

scheduling policy.

Scheduling policies mainly differ in their extra-functional properties, such as fairness and

efficiency of the scheduler, and software performance. Thus, the choice of a good scheduling

algorithm depends on the system’s functional and performance requirements. The require-

ments can be classified into the three major categories of interactive, batch, and real-time

systems.

Interactive Systems Interactive systems feature many interactions with users and with

different resources in the systems. Therefore, interactive processes are I/O-bound, i.e., they

2.3. General Purpose Operating System Schedulers 23

wait long times for users or for I/O devices, followed by short bursts of computation. To

keep response times short and all resources as busy as possible, schedulers have to process

requests of interactive processes as quickly as possible [SGG05, Tan01]. Furthermore, the

fulfilment of user expectations is especially important in interactive systems. The system

must respond to requests quickly. For example, users are not meant to notice the time

between a keystroke and the character appearing on the screen (key to glass response time).

By contrast, processes with long execution times can be further deferred without beeing

noticed by users. For example, longly running tasks, such as compiling a Kernel, can be

delayed for a few seconds longer without being noticed. The different treatment of interactive

and non-interactive processes requires the scheduler to automatically classify tasks according

to their runtime behaviour.

Batch Systems In batch systems, a series of jobs is processed without human interaction.

The overall aims are to maximise the throughput of jobs while minimising turnaround times

(i.e., the time necessary to process a job including its waiting time). To reach these conflicting

goals, batch systems have to do as much real work (i.e., job processing) as possible. A

reduction of the number of context switches may limit the scheduling overhead and grants

more processing time to tasks. However, a high throughput can only be achieved if all

resources are kept busy. To do so, multiple jobs have to be executed in parallel, leading to

additional context switches.

Real-Time Systems Real-time systems can be considered as mission critical in a given

context. For example, the control system of a car’s air bag has to react within a given time

interval to protect passengers in case of an accident. Thus, the total correctness of real-time

systems not only depends on the functional correctness of the system, but also on the time

upon which an action is performed. To construct systems that meet hard and soft deadlines,

a high predictability of the scheduling algorithm and of the software are required. Research

on performance analysis of real-time systems deals with worst and best case execution times

as well as with schedulability and feasibility analysis for periodic and aperiodic tasks under

different scheduling algorithms [LM99, Hap05a, KH05].

Fairness and Efficiency Furthermore, fairness and efficiency are important properties of

schedulers for all kinds of systems. A fair scheduler assigns comparable service to comparable

processes [Tan01, p.137]. Thus, each process receives a fair share of the resource, depending

on its class. A scheduler is called efficient if it produces as little overhead as possible and

lets the system do as much real work (e.g., execute processes) as possible [Tan01]. The

overhead of a scheduler refers, for example, to the number and the time consumption of

context switches. In order to achieve a high efficiency, schedulers may prefer I/O-bound

24 2. Foundations

processes over compute-bound processes, to keep all resources busy. I/O-bound processes

are limited by the processing power of external resources, while compute-bound processes

are limited by the processing power of the CPU. Each process issues a sequence of I/O bursts

and CPU bursts. Depending on the duration and frequency of the bursts the scheduler can

classify processes.

The different requirements are often contradictory. For example, an interactive scheduler

needs relatively small timeslices, which introduce a lot of scheduling overhead contradicting

the general goal of efficiency. However, widely used operating systems, such as Windows

(2000, XP, Server 2003, and Vista, cf. Section 2.3.4) and Linux (Kernel 2.6 series, cf.

Section 2.3.5), implement multipurpose schedulers which can handle real-time, interactive

and batch processes.

2.3.2. Processes and Threads

In modern operating systems, processes, kernel-level threads, and user-level threads are

different types of active entities. Informally, a process is a program in execution [SGG05,

p.82]. A (heavyweight) process contains all information necessary for executing a program,

including a program counter, code, data, file handlers, registers, and an execution stack.

Threads belong to a process. They share code, data, and file handlers, but own separate

program counters, registers and stack copies. Therefore, context switches between threads

of the same process are faster than switches between separate processes in terms of clock

cycles needed to complete the switch. Switching between threads of one process instead

of switching between processes has further performance benefits. Since the threads of one

process share data, the thread is likely to find its data in the processor cache.

Furthermore, threads are subdivided into kernel-level and user-level threads. While kernel-

level threads are directly managed by the operating system, user-level threads are managed

without direct support of the operating system [SGG05, p.129]. However, the user-level

threads need to be mapped to kernel-level threads for execution. This mapping can yield a

many-to-one, one-to-one, or many-to-many relationship between user-level and kernel-level

threads.

In a many-to-one relationship, a thread library maps many user-level threads to one

kernel-level thread. This will block the whole process if one of its threads issues a blocking

system call. Furthermore, multiple threads cannot run in parallel on multiprocessors, since

the Kernel can only access one kernel-level thread.

A one-to-one mapping of user-level threads to kernel-level threads allows more concur-

rency, but leads to additional overhead. Creating a kernel-level thread for each user-level

thread can put a high load on the operating system. Therefore, operating systems limit

2.3. General Purpose Operating System Schedulers 25

the total number of threads in the system. In general, the Linux and Windows operating

system series implement a one-to-one mapping [SGG05, p.130]. However, the actual type of

mapping depends on the thread library used.

A many-to-many relationship multiplexes many user-level threads to a smaller or equal

number of kernel-level threads. This strategy allows high concurrency and does not require

a limit for the number of user-level threads in the system.

Definition 2.2 (Task). A task is an active and executable entity visible to the operating

system scheduler.

For performance prediction, an explicit distinction between processes, kernel-level, and

user-level threads is not necessary in most cases. Therefore, definition 2.2 introduces the

term task for the general concept of processes, user-level and kernel-level threads, which are

visible to the operating system scheduler. For the remainder of this thesis, we use the term

task as an abstraction from processes or threads and apply the exact terms only if necessary.

new

ready running

terminated

waiting

scheduler dispatch

interrupt

exit

I/O or event waitI/O or event completion

admitted

Figure 2.5.: Task states [SGG05, p.83].

From the scheduler’s perspective, all tasks (no matter whether processes or threads) pass

through different states during their life cycle. Figure 2.5 illustrates the states important to

a scheduling algorithm [SGG05, p.83]. The states printed in dark gray are relevant for the

performance model developed in Chapter 3 to Chapter 5.

The lifecycle of a task starts in state new when it is being created. If the scheduler accepts

a task, it enters state ready where it is waiting to be assigned to a processor. Once the

scheduler dispatches the tasks, it enters state running and can execute instructions on a

processor. From there, the scheduler can either interrupt the task putting it back into state

ready, the task can wait for the completion of an I/O operation or an external event entering

state waiting, or it can finish execution going to state terminated. This overall behaviour

of a task is independent of the actual scheduling algorithm.

26 2. Foundations

2.3.3. Multilevel Feedback Queues

Multilevel Feedback Queues (MLFQ) classify tasks into different groups with similar prop-

erties and schedule each group separately. The tasks which belong to the same class can be

scheduled according to an arbitrary scheduling algorithm, e.g., FCFS or RR. MLFQs create

multimode systems [SGG05]. For example, a MLFQ can distinguish interactive and batch

tasks. Both types have different response time requirements and, thus, different scheduling

needs. Since interactive tasks have to respond quickly to user requests, they have priority

over batch tasks.

To be able to adopt separate scheduling algorithms for each class, MLFQs partition the

queue of tasks that request processing into several separate queues. All tasks are assigned to

a queue based on their properties, such as their memory size, priority, or type. Furthermore,

MLFQs realise scheduling among the queues, in order to decide which class is processed

next, if tasks of multiple classes are available. For example, priority preemptive scheduling

can be used to prefer tasks in the interactive queue over tasks in the batch queue.

In MLFQs, the classification of a task can change according to its behaviour. Thus, tasks

can move between queues. MLFQs usually distinguish tasks with respect to the charac-

teristics of their CPU-bursts. For example, if a task uses too much CPU time, it will be

moved to a lower-priority queue. This scheme leaves I/O-bound and interactive tasks in the

higher-priority queues. Furthermore, if long waiting tasks in low-priority queues are moved

to higher-priority queues, starvation is prevented.

Timeslice = 8 ms (RR)

Timeslice = 16 ms (RR)

FCFS

Figure 2.6.: Simple example of a multilevel feedback queue [SGG05, p.168].

Figure 2.6 shows a simple example of an MLFQ which distinguishes three classes of

tasks [SGG05]. The upper two classes manage foreground tasks while the bottom class

holds batch tasks. When a task arrives, it lines up at the end of the top-level queue. The

scheduler assigns a timeslice of 8 ms to each task in the queue. If a task does not finish

processing within its timeslice, the scheduler moves it to the end of the middle queue. Only if

the top-level queue is empty, the scheduler selects a task of the middle queue for processing.

If the task still requires processing time after 16 ms, the scheduler moves it to the bottom

queue, which processes all tasks with FCFS. This queue holds batch processes and is only

2.3. General Purpose Operating System Schedulers 27

served if both other queues are empty. With this strategy, the scheduler prefers interactive

tasks, which finish in less than 8 ms over tasks which require between 8 and 16 ms and batch

processes.

MLFQ schedulers provide a high flexibility for the design of scheduling algorithms. They

defined by the following parameters [SGG05]:

• The number of queues

• The scheduling algorithm for each queue

• The method to determine when to upgrade or degrade a process to a higher- or lower-

priority queue

• The method used to determine which queue a process will enter, when that process

needs service

In the operating systems Windows and Linux, MLFQ schedulers are implemented (cf.

Sections 2.3.4 and 2.3.5). However, both implementations differ significantly in their concepts

of time sharing, interactivity, and multiprocessor load balancing.

2.3.4. Windows

Today, the Windows operating system is available in many different versions and variants. At

the time of writing Windows XP, Windows 2000, Windows Server 2003, and Windows Vista

are the most relevant ones. For the scope of this thesis, we use the term Windows to refer to

all Windows versions. The full operating system name is only used if the versions differ in

the realisation of the described concepts. In the following, we explain the basic scheduling

concepts of time sharing, interactivity handling, and multiprocessor load-balancing realised

in the Windows operating system series.

Time Sharing

Priorities Windows implements an MLFQ scheduling algorithm. It supports 32 different

priority levels ranging from 0 (lowest priority) to 31 (highest priority) [SR05, p.329]. Each

priority level represents a separate task class with its own run queue. Windows employs

a priority preemptive scheduling algorithm between the queues, i.e. higher priority tasks

preempt lower priority ones. A task on a certain priority level can only be executed if all

queues on higher priority levels are empty. Furthermore, the priority levels are divided into

the classes real-time (16 to 31), interactive (1 to 15), and idle (0). Depending on their

behaviour, tasks can change the priority within their class, but cannot migrate between

classes.

28 2. Foundations

Windows categorises all user and business applications, like word processors, databases,

and application servers, as interactive tasks. Since the scheduler performance model devel-

oped in Chapter 3 to Chapter 5) is targeted at such applications, the following explanation

focusses on Windows’ processing of interactive tasks.

Run Queues Windows uses a separate run queue (also called a ready queue) for each

priority level to hold the tasks ready for execution (i.e., the tasks in the ready state, cf.

Figure 2.5). The tasks in a queue on each priority level are executed using a round robin

scheduling algorithm. The timeslice duration depends on the Windows operating system

version as explained in the next paragraph.

Timeslices Windows defines the duration of a timeslice in terms of scheduling quanta. For

example, on x86 systems, a scheduling quantum is 15.625ms. This value is mainly determined

by the clock interrupt frequency of the underlying hardware. Windows distinguishes short

(2 quanta, 31.5ms) and long (12 quanta, 187.5ms) timeslices. Short timeslices are generally

used on client systems (Windows 2000/XP/Vista), as they lead to a higher responsiveness.

On server systems (Windows Server 2003), long timeslices are preferred, since they reduce

context switching overhead [SR05].

Interactivity and I/O Operations

Windows specifically “boosts” tasks which interact with the user or access I/O devices, in

order to increase the responsiveness of the system. For this purpose, the scheduler increases

a task’s priority and timeslices (more specifically, grants more processing time to the task).

The completion of an I/O operation, the occurrence of events or the access of semaphores

triggers the boosting of a task’s priority. Furthermore, tasks which did not receive any

processing time for a long period get a top level priority for a full timeslice to prevent

starvation (i.e., to not perpetually deny their access to the processor). Table 2.1 shows the

priority boosts for different I/O devices and semaphores.

Resource Boost
semaphore +1

disk +1
network +2

keyboard or mouse +6
sound +8

Table 2.1.: Priority boosts after the acquisition of the named resources [SR05].

2.3. General Purpose Operating System Schedulers 29

To realise changing priorities, Windows distinguishes dynamic and static priorities for each

task. While the latter are explicitly given, for example, by a user or by another task, the

former depend on a task’s behaviour, e.g., its accesses to I/O devices and semaphores. When

a task is boosted, Windows computes its new dynamic priority by adding the corresponding

priority boost (cf. Table 2.1) to the task’s static priority. This strategy prevents tasks from

accumulating priority boosts. Furthermore, the dynamic priority of interactive tasks cannot

exceed the highest priority for interactive tasks (15), no matter how large their boost is.

When a task received a priority boost, Windows decreases its dynamic priority again over

time. Whenever the task’s timeslice expires, its dynamic priority is reduced by 1 until its

static priority is reached. As a consequence, full boosts are only available to tasks until the

end of their timeslices.

In addition to priority boosts, the timeslice of a task can be reset when it finishes a wait

operation, e.g., for user input or an I/O device. Windows only resets the timeslice if the

task’s priority is increased at the same time (i.e., the task is not already boosted) or the

task’s static priority is equal to or above 14. Windows also employs a mechanism to ensure

that task’s timeslice will eventually expire (is used up). Each time a task accesses one of

the resources listed in Table 2.1, Windows reduces its timeslice by one third of a scheduler

quantum. Thus, tasks cannot access critical resources too often without using up their

timeslice.

Multiprocessor Systems

Windows can handle systems with multiple processors and cores, including simultaneous

multithreading (SMT), symmetric multiprocessing (SMP) and non-uniform memory access

(NUMA) architectures. Scheduling tasks in such environments requires strategies to decide

which task should run on which processor. This question can be examined from the per-

spective of a task or from the perspective of a processor. If a task becomes ready, schedulers

for multiprocessing systems have to assign the task to a processor, where it can execute

(”‘task’s perspective”’). By contrast, schedulers have to select the next runnable task for

an idle processor (”‘processor’s perspective”’). Schedulers for multiprocessing systems need

to implement strategies for both perspectives. For the Windows operating system series,

the processor selection from a task’s perspective is similar for all versions, but the task se-

lection from a processor’s perspective differs for Windows 2000/XP and Windows Server

2003/Vista.

While Windows 2000/XP provide a single run queue for all processors, Windows Server

2003/Vista hold a separate run queue for each processor. This difference leads to different

process selection strategies and has a significant influence on scalability and performance

(cf. Section 5.1). The following discussion first explains the processor selection from a task’s

30 2. Foundations

perspective common to all Windows versions [SR05]. Then the processor selection from a

task’s perspective based on a single run queue realised in Windows 2000 and Windows XP is

explained. Finally, the scheduling of run queues for each processor implemented in Windows

Server 2003 and Windows Vista is described.

Windows restricts the selection of processors for a runnable task to a list of processors

called affinity mask. The scheduler can only assign a task to processors listed in its affinity

mask. This strategy allows the explicit distribution of tasks among the available processors

by users of an application or by the applications themselves. Moreover, affinity masks can

prevent undesirable processor switches by forcing a task to remain on one of the available

processors.

To optimise a task’s performance, Windows tries to always assign one task to the same

processor. The assignment to the same processor increases the probability for a task to find

its data in the processor caches, which is likely to improve the task’s computation speed. On

the other hand, Windows needs to keep all processors busy. To deal with these conflicting

requirements, Windows identifies an appropriate processor for a task in multiple steps.

Each task receives an ideal processor during its creation following a simple round robin

schema. Windows always tries to allocate a task to its ideal processor first. This might

require the interruption of a running process or the task’s insertion into the processor’s run

queue. Only if the ideal processor is busy and other processors are idle, Windows looks for

an appropriate new processor. Its first choice is the last processor the task ran on (if not

the same as the ideal processor). Next, it is checked whether the currently active processor

(i.e., the one performing the scheduling operation) is in the list of idle processors. If none

of the above processors is idle, the task is allocated to the first idle processor that is in

the affinity mask of the task and not sleeping. For SMT and NUMA architectures, the

processor selection has to consider various other conditions, e.g., shared internal resources

of a processor and memory access times.

Windows XP and 2000 manage tasks that are ready for execution in a single run queue.

To choose a runnable task for a processor, the scheduler looks at the highest priority non-

empty queue. It chooses the first task fulfilling one of the following conditions in the given

order: The task previously ran on the current processor; the current processor is its ideal

processor; or the task is the first in its queue. The use of a single run queue ensures that

the highest priority tasks always run first. Furthermore, the load is automatically balanced

between different processors, since each processor selects its tasks from the same run queue.

However, the run queue can become a bottleneck of the system, as system-wide locks are

needed to access it. Especially on multiprocessor systems, global locks can be very expensive.

This results in major scalability issues, which led to the development of per-processor run

queues implemented in Windows Server 2003 and Vista.

2.3. General Purpose Operating System Schedulers 31

To improve scalability, Windows Server 2003 and Vista use per-processor run queues. This

limits the use of global locks to special cases, such as load balancing or priority changes of a

task. To select a runnable task for a processor, the scheduler simply looks at the processor’s

run queue. It chooses the head of the highest priority non-empty queue for execution.

The use of per-processor run queues improves the scalability of the scheduler, but requires

additional effort to balance the load among the available processors. If a processor is idle

and its run queue is empty, it looks for another executable task and moves it to its run

queue. This strategy avoids processors from idling while tasks for execution are available.

Furthermore, it prevents additional overhead through intensive balancing attempts in an

overloaded system. However, the system may not achieve a fully balanced state using this

strategy.

Important Details for Performance Prediction

Some details of the Windows scheduler are especially important for performance prediction.

In the following, we describe the most important aspects.

Fairness and Starvation In general, the Windows scheduler is not fair and only guaran-

tees to run the single highest priority task on one of the available processors [SR05]. The

unfairness is a result of the strict preference of high-priority tasks over low-priority ones.

Thus, no statements about other tasks can be made. Especially for Windows versions with

per-processor run queues (Server 2003 and Vista), this policy can lead to major imbalances.

In a system with two processors, for example, multiple high priority tasks might share one

processor, while the other processor is used by a single low priority task.

Windows implements a basic mechanism to prevent starvation. If a task cannot use the

processor for more than 4 seconds, its dynamic priority is set to 15, the highest priority

for interactive tasks. The task receives a timeslice of either 62.5ms (for systems with short

timeslices) or 750ms (for systems with long timeslices). When the task has used up its

timeslice, its dynamic priority is immediately reset to its static priority. This strategy differs

from the usual resetting of timeslices, where the dynamic priority of a task decreases one by

one with each timeslice until the static priority is reached.

Run Queue Management Windows’ management of task interruptions can significantly

influence software performance. When a higher priority task becomes ready, the currently

running task is preempted and returned to the head of its priority queue. Windows stores the

task’s timeslice and priority. So, the task can finish its timeslice when the processor becomes

available again. The keeping of the task’s priority and timeslice needs to be modelled for

performance predictions to be accurate.

32 2. Foundations

Resetting Timeslices When the priority of a task is boosted, Windows might also reset

its timeslice. The amount of time granted to an interactive task can significantly influence

its performance. It depends on the resources used and the task’s remaining timeslice.

Windows manages timeslices as multiples of so-called scheduling quanta, which directly

relate to the intervals of the timer interrupt. Thus, a quantum’s exact duration is determined

by the underlying hardware. For example, a quantum lasts 15.625 ms for x86 architectures.

For internal computations, Windows stores a task’s remaining timeslice as the number of

remaining scheduling quanta multiplied by three. For short timeslices with 2 quanta this

yields 6, for long timeslices with 12 quanta this yields 36.

The scaling of a task’s remaining quanta allows Windows to stepwise degrade its remaining

processing time. Thus, Windows can prevent tasks from blocking the processor without

punishing them too hard. Such preventions become necessary when a task accesses the same

resource multiple times and avoid that a tasks receives infinite processing time [SR05]. For

this purpose, Windows reduces a task’s remaining quanta each time the task accesses a

resource. The reduction affects the reset of timeslices and differs for each type of resource.

Depending on the considered system and its load conditions, this can have a major impact

on software performance (cf. Section 4.2).

2.3.5. Linux

When the Linux 2.6 Kernel was introduced major changes were incorporated in the im-

plementation of the scheduler. These changes were aimed at improving the Kernel’s

support for multiprocessor systems and at enhancing interactivity for desktop applica-

tions [Aas05, BC05, Mau03]. While the former 2.4 Kernel uses a single run queue for all

processors, the 2.6 Kernel maintains a separate run queue for each processor. This separa-

tion increases the scalability of the scheduler for multiprocessors and offers better support

for server systems with an increasing amount of processors. However, the strongly conflicting

goals of scalability and interactivity had led to multiple revisions of the scheduler implemen-

tation. At the moment of writing, a new Completely Fair Scheduler (CFS) has just been

introduced into the Kernel’s main line [Tra]. The following sections describe the implemen-

tation of the Linux 2.6.22 scheduler which is a variant of the initial O(1) scheduler [Aas05].

Time Sharing

Priorities Linux distinguishes 140 different priority levels ranging from 0 (highest) to 139

(lowest) [Aas05, BC05, Mau03]. For each priority level, a separate run queue manages the

tasks with equal priorities. Furthermore, Linux divides the priorities into classes for real-

time (0 – 99) and interactive or batch tasks (100 – 139). The latter directly map to so called

2.3. General Purpose Operating System Schedulers 33

nice levels, which represent the usual priorities of user and business applications. Nice levels

range from the highest priority of -20 (= 100) to the lowest priority of 19 (= 139). The

following description focusses on Linux’ task processing within this range.

... ...

Active Priority Array Expired Priority Array

-20

-19

19
...

Priority

Round Robin

All Active Queues Empty

Task’s Timeslice ExpiredSwitch Arrays
Move Task

Figure 2.7.: Schematic overview of the run queue of Linux’ O(1) scheduler.

Run Queues Linux keeps a separate queue for each priority level in a data structure called

priority array. The tasks within the same priority level are executed using a RR scheduling

algorithm. To ensure fairness between different priority levels and to minimise scheduling

overhead, Linux uses an active and an expired priority array. Figure 2.7 illustrates the main

concepts of Linux’ run queue. The active priority array contains all tasks whose timeslice

is not yet used up, while the expired priority array contains all tasks which have already

finished their timeslice. The scheduler only executes tasks from the active priority array.

It always selects tasks on higher priority levels first. If the timeslice of a task expires, it is

moved from the active to the expired priority array. If the active priority array becomes

empty, both arrays are switched making the expired array active again. This is called an

epoch of the scheduler. The complete arrays are exchanged in this process. For Linux,

different timeslice sizes are used to assign a larger share of processing time to tasks with

higher priorities. The following paragraph explains the concept of timeslices used in Linux

2.6.22 in more detail.

34 2. Foundations

Timeslices Linux assigns different timeslices to tasks depending on their priority. The

higher the priority of a task is, the larger is its timeslice. For example, tasks on the lowest

priority level (nice level 19) receive a timeslice of 5ms, while tasks on the highest priority

level (nice level -20) get 800ms.

Priority -20 -19 -18 -17 -16 -15 -14 -13 -12 -11
Timeslice (ms) 800.0 780.0 760.0 740.0 720.0 700.0 680.0 660.0 640.0 620.0

Priority -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Timeslice (ms) 600.0 580.0 560.0 540.0 520.0 500.0 480.0 460.0 440.0 420.0

Priority 0 1 2 3 4 5 6 7 8 9
Timeslice (ms) 100.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0

Priority 10 11 12 13 14 15 16 17 18 19
Timeslice (ms) 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0

Table 2.2.: Priority-dependent timeslices of the Linux scheduler.

Table 2.2 lists the timeslices in dependency of the process priority. The table is derived

from the following formula implemented in the Linux scheduler [lin]. Let pt be the priority

of the current task, pmin = 19 which is the lowest priority, and

ts =

⎧⎨
⎩

100 ms , if pt ≥ 0

400 ms , if pt < 0

the basic timeslice from which all other timeslices are derived. Then

(|pt − pmin| + 1) ∗ ts

20

yields the exact timeslice assigned to each task by the Linux scheduler. Scaling the timeslices

from 5 ms to 800 ms enables a fair scheduling between all tasks in all queues. During an

epoch, all tasks in the active priority array receive a share of processing time according to

their priority. The higher their priority, the larger is their share of computation time.

Interactivity and I/O Operations

Linux rewards I/O-bound tasks with an increased priority, while compute-bound tasks are

punished with a priority decrease. This improves the interactive behaviour of the system

and efficient use of I/O devices. Analogously to Windows, Linux assigns a dynamic priority

to each task in addition to its static priority. The dynamic priority depends on the task’s

behaviour. Linux keeps track of the time a task is waiting, compared to the time it computes.

This value is called sleep average. A task’s priority bonus ranges from -5 to +5 and depends

on its sleep average.

2.3. General Purpose Operating System Schedulers 35

Furthermore, Linux classifies tasks as interactive and non-interactive. If the timeslice of an

interactive task expires, the task’s timeslice is reset and it is reinserted into the active priority

array. Non-interactive tasks are moved to the expired priority array. This distinction ensures

that interactive tasks remain reactive all the time. The exact realisation of Linux interac-

tivity handling has a major impact on software performance (cf. Section 4.2 and [TCM06]).

Therefore, the following paragraphs explain the sleep average, the computation of dynamic

priorities, and the classification of interactive tasks.

Sleep Average The Linux scheduler uses a so-called sleep average to determine a task’s

dynamic priority. The sleep average keeps track of a task’s waiting and computation times.

It thus monitors the task’s past behaviour as it is relevant from the scheduler’s perspective.

In general, the scheduler assigns a larger priority bonus to tasks with relatively long waiting

times and strongly penalises tasks with long periods of processing and short waiting times.

Therefore, the scheduler adds the waiting time of a task to its sleep average and subtracts

the scaled computation time from its sleep average.

A task can only accumulate samax = 1000 ms of sleeping time, which limits the maximum

bonus. When a task finishes waiting for a resource, its new sleep average san+1 results from

the last value san and the waiting time twait:

san+1 = min(samax, san + twait).

To account for the time a task is allocated to a processor, Linux subtracts its computation

time from the sleep average. Since interactive tasks should not loose their status too quickly,

Linux explicitly scales down the influence of the computation time by the last priority bonus

it received. Let tcomp be a task’s computation time, san its last sleep average and bn its last

bonus (ranging from 0 to 10). Then the computation time accounted to its sleep average

given by

t′comp =

⎧⎨
⎩

tcomp/bn , if bn > 0

tcomp , otherwise

The new sleep average san+1 is further computed by

san+1 = max(0, san − t′comp).

where zero represents the sleep average’s lower limit. The dynamic priority of a task

directly results from its sleep average.

36 2. Foundations

Dynamic Priorities To compute the dynamic priority of a task, Linux linearly scales the

sleep average to a priority bonus from 0 to bmax = 10. The new bonus bn+1 of a task results

from

bn+1 =
san+1

samax

∗ bmax.

The task t’s dynamic priority dyt is then derived by

dyt = pt − (bn+1 − bmax

2
)

where the actual bonus (or penalty) is first shifted into the range from -5 to +5 and then

subtracted from t’s static priority pt. The dynamic priority is not the only determining

factor of Linux’ interactivity handling. The classification of interactive tasks described next

can also have a major impact on software performance.

Interactivity Classification The classification of tasks as interactive and non-interactive

depends on their sleep averages and static priorities. For a maximum sleep average of samax =

1000 ms, Linux computes an interactivity threshold ranging from 290 ms for tasks with a

priority of -20 to more than 1000 ms for tasks with a priority of 8 or less. In other words,

tasks with low priorities never receive the interactivity status. The complex computations

in [lin] for this threshold boil down to the following formula. Let samax = 1000 ms be the

maximum sleep average, bmax = 10 the maximum bonus, and pt the tasks static priority, and

tsched = 10 ms the time of a clock interval, then

int(t) = samax ∗ (
3

bmax

+
20 + pt

40
) − tsched

defines the interactivity threshold for a task t.

Since some interactive tasks might stay in the active priority array for a long period, other

tasks, whose timeslices have expired, might not be able to access the processor for a long

time. To prevent starvation, Linux moves interactive tasks only back into the active priority

array until a task spend more then the maximum sleep average (sa = 1000 ms) in the expired

priority array. Section 4.2 evaluates and predicts the large performance influences of Linux’

dynamic priority bonuses and interactivity handling on software performance.

Multiprocessor Systems

The Linux scheduler balances the system’s load among all available CPUs, in order to max-

imise system performance and to assign fair shares of processing time to each task. However,

balancing the load in large multiprocessor systems can lead to large costs in terms of long

delays. For example, load balancing has to take into account the cost of moving a task

2.3. General Purpose Operating System Schedulers 37

from one processor to another and the effect of different memory access times for different

processors. For good load balancing decisions, Linux maintains a simplified model of the

underlying hardware architecture. Based on this model that consists of hierarchically struc-

tured scheduling domains (more precisely, sched domain [lin]), Linux’ load balancer decides

whether and where to move tasks.

Node 1

Memory

CPU 1 CPU 2

Node 2

Memory

CPU 3 CPU 4

Node 3

Memory

CPU 5 CPU 6

Node 4

Memory

CPU 7 CPU 8

(a) NUMA machine.

CPU Domain 1

CPU: 1 CPU: 2

CPU Domain 2

CPU: 3 CPU: 4

CPU Domain 3

CPU: 5 CPU: 6

CPU Domain 4

CPU: 7 CPU: 8

Node Domain

CPU: 1, 2 CPU: 3, 4 CPU: 5, 6 CPU: 7, 8

(b) Scheduling domains for the NUMA machine.

Figure 2.8.: Example of multiple levels of scheduling domains [CCF+06].

Figure 2.8(a) shows an example for a NUMA machine with multiple nodes and processors

and the hierarchy of scheduling domains maintained by the Linux scheduler [CCF+06]. The

NUMA machine consists of four different nodes, each of which contains a memory unit and

two CPUs. All nodes communicate via a bus. While all nodes can access all memory units,

the access times of a node’s local memory are much faster than the access times of distant

memory. Linux has to take into account such facts when balancing the load among the

available processors.

The structure of the scheduling domains resembles the physical hardware [BDHH04].

CPUs at the bottom of the hierarchy are most closely related in terms of memory access.

For this reason, Linux performs load balancing most often at the lower domains that are

closely related. Each scheduling domain contains one or more CPU groups among which the

domain balances its load. The scheduling domain treats CPU groups as a single unit. So, it

does not care about how the load is distributed within a group. The lower level scheduling

domains balance the load within the CPU-groups.

38 2. Foundations

Figure 2.8(b) shows the scheduling domains and CPU groups for the NUMA machine in

Figure 2.8(a). The processors on each node form a separate scheduling domain called CPU

Domain, which contains two CPU groups with one processor, respectively. The top level

scheduling domain Node Domain balances the load among the four nodes. Each of its four

CPU groups contains the processors of one node.

The balancing of each level involves different costs including, for example, the time needed

to move a task from one processor to another. The scheduling domains thus need to employ

different strategies for load balancing. A strategy determines how often the processors need

to be balanced, how much the load must differ for balancing to be triggered, and how much

time must pass until cache affinity of a task is lost (i.e., the time a task is likely to find valid

data in a processor cache). The Linux scheduler uses different values depending on how the

CPU groups in a domain are related to each other. In SMT systems, for example, processors

share the same caches and moving a task cannot affect its cached data.

In each scheduling domain, load balancing can be triggered by an event (called event

balancing) or periodically at regular intervals (called active balancing). Events are state

changes of a processor’s run queue, such as the creation of a new task, the awakening of a task,

or the removal of the last task from queue (leaving the processor idle). While event balancing

occurs locally, active balancing can affect all scheduling domains. Starting at the highest

level, it is checked whether the CPUs in each domain require balancing. Active balancing

ensures that processors with few events, which execute multiple CPU-intensive tasks, also

participate in load balancing. The balancing interval determines how often balancing efforts

occur. The interval grows if the system stays in balance. The scheduler moves up the domain

hierarchy and checks if balancing is needed. If the load of the domain’s CPU groups differs

too much, it moves processes from the busiest CPU group to the most idle one. Factors such

as cache affinity times, CPU-power, and the last time a domain was last balanced, influence

the scheduler’s load balancing decisions. In general, the scheduler performs less balancing

at higher domains in the hierarchy.

Even though scheduling domains can represent nearly any combination of SMT, SMP,

and NUMA systems, this section mainly focusses on the load balancing decisions for SMP

systems. SMP systems contain a set of similar physical processors that have equal access

times to memory and may also share a common memory bus. Furthermore, each processor

provides its own caches and does not share any internal resources (i.e., parts of its processing

logic) with other processors. The separate caches for each processor compel the scheduler

to consider cache affinities before moving a task. To maximise performance, Linux always

selects tasks with the least cache affinity for moving. Furthermore, it is assumed that caches

do not contain any useful data for a task after a few seconds. Active balancing of SMP

systems occurs in regular intervals, which are curtailed fairly sharply if the system as a

2.3. General Purpose Operating System Schedulers 39

whole is busy. Event balancing is triggered, when the system’s load changes. In general,

balancing attempts should occur only when necessary and useful. Therefore, the balancing

threshold for SMP systems tolerates minor imbalances between the processors.

Important Details for Software Performance Prediction

Linux’ classification of tasks into interactive and non-interactive has to be considered in

software performance prediction. Since interactive tasks remain in the active priority array,

the classification destroys the fundamental concept of differently sized timeslices. Linux’ run

queue (consisting of the active and expired priority arrays) are meant to avoid starvation and

ensure fair scheduling. With the exception of interactive tasks, Linux loses these properties.

The evaluations in Sections 4.1 and 4.2 demonstrate the this effect as well as the influence

of the accuracy and the computation of the sleep average discussed in the following.

Being a part of Linux’ interactivity handling, the computation of the sleep average mainly

influences the performance of systems with interactivity and/or I/O operations. The com-

putation of the sleep average is performed in terms of the number of scheduling interrupts

that occurred (called jiffies). Therefore, its accuracy is limited by the scheduling interval.

With a typical scheduling rate of 100 Hz, this leaves an accuracy of 10 ms for the sleep

average. This inaccuracy can influence a task’s dynamic priority as well as its interactivity

classification.

Furthermore, the accounting of a task’s waiting time affects the sleep average. For the

Linux scheduler, a task is waiting from the moment it is put into the waiting state. The

waiting period is terminated as soon as the task is executed on one of the processors. Thus,

the waiting time that is accounted by the scheduler period includes the time a task is waiting

for a resource as well as the time it is ready and waiting the run queue. The additional time

that is added to the sleep average can influence the task’s dynamic priority and, thus, its

performance.

40 2. Foundations

2.4. Summary

In this chapter, we have introduced fundamental concepts in the areas of (i) software per-

formance engineering and (ii) scheduling theory that are necessary to understand the per-

formance model for general purpose operating system schedulers developed in Chapters 3

to 5. The performance influence of scheduling policies is mainly determined by the following

factors:

• The workload type determines the effect of scheduling policies on software performance

mean response time. While scheduling policies can influence mean response time by

orders of magnitudes for open systems, they have limited influence in closed systems.

• The performance influence of scheduling policies depends on the variance of resource

demand distributions. “Good” scheduling policies help to minimize mean response

times for all requests. For “bad” scheduling policies, mean response times suffer from

disproportionally long delays.

The behaviour of the schedulers of the Linux and Windows operating system series follow

entirely different philosophies. Windows interferes as little as possible with the running

system and, thus, accepts major imbalances for the distribution of processing time among

competing tasks. Linux assigns a “fair” share of processing time to all tasks. These different

philosophies affect all parts of the scheduler behaviour:

• Run queues : Linux assigns timeslices to tasks according to their static priority. Since all

tasks have to be processed before new timeslices are assigned, each task is guaranteed

to receive a minimum share of processing time. Windows assigns equal time slices to

all tasks. Furthermore, the Windows scheduler strictly prefers higher priority tasks

over lower priority ones. Lower priority tasks may thus starve.

• Dynamic priorities : Linux keeps track of a task’s behaviour to determine its dynamic

priorities. By contrast, Windows uses the resources acquired by a task in order to

assign dynamic priorities.

• Load balancing : While Linux constantly tries to keep the load balanced among the

available processors, Windows moves tasks only if a processor becomes idle.

41

3. Basics of the Performance Modelling

Framework for Operating System

Schedulers

In this chapter, we introduce the basic concepts and terms of our novel performance Model

for general purpose Operating System Schedulers called MOSS. This model is based on

validated hypotheses about the performance properties of GPOS schedulers implemented

in the Windows and the Linux operating system series. Using MOSS, software architects

and developers can predict influences of different time sharing strategies, dynamic priorities

for I/O bound and interactive tasks, and different multiprocessor load balancing strategies

on software performance. Furthermore, we integrated MOSS with the Palladio Component

Model (PCM, cf. Appendix A). Software architects can choose between different scheduler

configurations, e.g., Windows Server 2003 and Linux 2.6.

We use feature diagrams [CE00] to capture the performance-relevant configurations for

GPOS schedulers. Based on a specific configuration, transformations generate Coloured Petri

Nets (CPN, cf. Appendix B), which model the behaviour of GPOS schedulers and formally

define their performance-relevant features. The CPNs are hierarchically structured allowing

the combination of different scheduling features. This structure enables a straightforward

integration of new scheduling algorithms into the model.

We validated MOSS in two steps. In the first step, we focussed on specific features of

the scheduler model and evaluated each feature in isolation. This strategy provides a high

control over possible disturbing factors. In the second step, we compared predictions and

measurements in a general scenario. A larger case study evaluates the combined effect of

different scheduling features. The results show a prediction accuracy of 5 – 10% in most

cases. The comparison with classical scheduler models for performance prediction emphasis

the benefit of more detailed models. MOSS increases the prediction accuracy by several

orders of magnitude.

This chapter is structured as follows. In Section 3.1, we present an iterative method for the

experiment-based derivation of performance models. The method is employed in Chapters 4

and 5 to design MOSS. Section 3.2 provides a broader overview of MOSS, its scheduling

features, and hierarchical structure.

42 3. Basics of the Performance Modelling Framework for Operating System Schedulers

3.1. Experiment-based Derivation of Software

Performance-Models

Creating accurate performance models for complex software systems requires a systematic

approach to (i) identify and quantify performance-relevant features of the system under

study (e.g., which configurations of an application server influence software performance?),

(ii) define accurate performance models of the identified features (e.g., model the application

server’s thread pool with CPNs), and (iii) validate the prediction accuracy of the proposed

models (i.e., compare predictions to measurements). In this section, we propose a systematic

approach for the definition of performance models of black box systems where only limited

information on the system’s internals are available. Inspired by the general ideas and rules

proposed by Jain [Jai91], the method combines existing knowledge of the system under

study with iterative, goal-oriented measurements. The measurements support performance

analysts to identify valid assumptions for performance modelling and allow assessing the

prediction accuracy of the model.

3.1.1. Motivation

Jain [Jai91] points out several common mistakes in software performance evaluation, which

motivate the experiment-based derivation of software performance models proposed in this

chapter. In the following, we list some of the most common mistakes in no specific or-

der [Jai91]:

• No goals

• Unsystematic approach

• Analysis without understanding the problem

• Overlooking important parameters

• Ignoring significant factors

• Inappropriate experimental design

• Inappropriate level of detail

In software performance engineering, one of the most common mistakes is the absence of

concrete goals. Performance analysts try to design models that answer all design questions

that may arise. According to Jain [Jai91] such general purpose models do not exist, since

a part of the system design varies from problem to problem. Most factors require different

levels of modelling detail in different contexts.

3.1. Experiment-based Derivation of Software Performance-Models 43

For example, an enterprise application (such as used in the case studies in Sections 5.2

and 6.4) may suffer from very different performance problems. Lock contention in the

database may cause long delays for one company using the application. For another client,

the database works fine, but the communication delay between the involved parties takes too

much time. While both clients use the same business application, their performance prob-

lems are very different (probably caused by customisations or the execution environment)

and, thus, require detailed models of different parts of the system. While a general and de-

tailed model of the complete software application is possible in theory, it cannot be realised

in practice. Thus, performance analysts need to state their modelling goals to adhere to in

advance.

Furthermore, unsystematic approaches and analyses without understanding the problem

can lead to unnecessary high effort and inaccurate performance models. Relying on speci-

fications and knowledge of the system alone does not suffice to design performance models.

Such an approach may lead to overlooking important parameters and factors. The choice

of modelled factors must be driven by the problem and their relevance, not the analyst’s

knowledge.

Moreover, the experimental design must follow certain standards in order to yield reliable

results. Often inappropriate experimental designs can lead to wrong conclusions [Jai91].

Another risk of performance model design lies in the level of detail. Abstractions which are

too strong may lead to erroneous predictions. For example, processor sharing is a common

abstraction for round-robin scheduling in software performance evaluation. While it is a

good abstraction in many cases, it can lead to large prediction errors in many others (cf.

Section 4.1).

Similarly, too many details are likely to distract performance analysts from the important

influences and can lead to overcomplicated models that are difficult to maintain. However,

whether detailed modelling is necessary or not strongly depends on the system under study.

For example, the performance properties of message-oriented middleware can be modelled

with a high level of abstraction. For GPOS schedulers on the other hand, many details

have to be included in the model in order to yield accurate predictions. These modelling

risks as well as the varying level of abstraction emphasise the need for a tight coupling of

experimental evaluation and performance modelling.

According to Jain [Jai91], a performance model has to be validated and verified. For

validation, Jain proposes comparing predictions with expert intuition, real system measure-

ments, or theoretical results. However, expert intuition can be misleading especially for

highly complex and concurrent software systems [GPB+06]. Theoretical results can be as

erroneous as the predictions. Therefore, real system measurements provide the only accept-

44 3. Basics of the Performance Modelling Framework for Operating System Schedulers

able alternative for validation. In the context of this thesis, validation always refers to the

comparison between predictions and measurements, i.e., performance observations.

Verification (in the sense of Jain) is mainly “model debugging”, e.g., continuity tests and

seed independence for simulations. While such tests are necessary, they are not sufficient.

Performance analysts have to ensure that their models include all performance-relevant fac-

tors and lie on an appropriate level of abstraction. Due to the above differences and possible

misunderstandings with formal verification, the following uses the terms assumption valida-

tion and model validation.

During performance model design, analysts must make assumptions about the system un-

der test. To efficiently construct models that accurately reflect the performance properties of

the system, assumption validation helps performance analysts to (i) identify the assumptions

necessary and (ii) assess their validity. The early validation allows performance analysts to

focus their design effort on the most influential factors of the system under study.

Furthermore, performance analysts need to examine the prediction accuracy of their per-

formance models. Even if all assumptions stated by the analysts hold, the models may break

others that have not yet been considered. Moreover, the models may not reflect the model

assumptions correctly (caused by errors or oversimplification) or the assumption validation

did not capture all necessary factors completely.

3.1.2. A Method for Experiment-based Performance Model Derivation

The design of reliable performance models that accurately predict the performance properties

must be tightly coupled with goal-oriented measurements. The measurements narrow down

the design space to the performance-relevant factors and allow a systematic model design

based on validated assumptions. In this section, we introduce a method for experiment-based

performance model derivation which has been employed in the context of this thesis.

The method supports performance analysts and software architect in evaluating the per-

formance of complex software systems. Performance analysts can use the method to design

customisable performance models, such as a performance model for operating system sched-

ulers (MOSS, cf. Chapters 4 and 5) or a messaging completion (cf. Chapter 6).

Furthermore, software architects (who use the performance completions designed by per-

formance analysts) can employ the method to create prediction models for existing parts of

a system. The usage of measurements enables them to keep the model on an abstract level

and to focus on the most relevant factors.

Performance model design is driven by a specific goal that directs the design effort to the

factors of interest. Similar to the GQM-approach (cf. Section 3.1.3), the goal is defined by

a specific purpose, issue, object, and viewpoint. For the proposed method, the purpose sets

3.1. Experiment-based Derivation of Software Performance-Models 45

the general goal, for example, designing a configurable performance model or performance

prediction in general. Furthermore, issues focus the goal on specific characteristics of the

system under test, such as different configurations or a high load. Objects determine the

system under test and direct the effort towards a specific part of the system, e.g., the

messaging service of an application server. Finally, viewpoints define the perspective for

which the performance predictions are to be made. The viewpoint can be a specific user group

or another part of the system, e.g., the performance of the database from the perspective of

the application layer.

Identification

Experiment Design

Experiment Run

Possible Assumptions
and Influences

GQM Plan

Valid Assumptions and
relevant Influences

Documentation Functional
Specification

Performance Model Design

Performance Model
Validation

Valid Performance Model

Performance Model
Missing Assumptions

and Influences

Missing Assumptions
and Influences

Experimental
Setting

Activity

Change of Activity

Flow of Artifact

Automated
Test Driver

Figure 3.1.: Experimental derivation of performance models.

Driven by a concrete goal, performance analysts can design performance models for highly

complex software systems following the process model shown in Figure 3.1. The steps

listed there are executed iteratively. With each iteration, performance analysts and soft-

ware architects successively refine the performance model and add further assumptions and

performance-relevant factors. In the following, we describe the experimental derivation of

software performance models in more detail.

46 3. Basics of the Performance Modelling Framework for Operating System Schedulers

Identification of Performance-relevant Factors and Degrees of Freedom The first step

of the experimental performance model derivation method aims for the identification of an

initial set of possible performance-relevant factors and degrees of freedom of the system

under study. Following the GQM schema, questions address these factors and degrees of

freedom. For example, the configuration of a message channel may influence its performance

(cf. Chapter 6). Thus, performance analysts may ask: “How does guaranteed delivery

(storing messages persistently) influence the performance of a message channel?”. Based

on documentation and (functional) specifications, performance analysts formulate questions

regarding the remaining degrees of freedom (with respect to performance) and performance-

relevant factors. Since documentation and specification focus on the description of functional

features, it may be difficult or even impossible to judge whether a specific factor influences

software performance (e.g., does a selective consumer, i.e., a message filter, affect perfor-

mance?). Moreover, interactions (with respect to performance) of multiple factors are diffi-

cult to assess (e.g., does the message size change affect performance similarly for messages

with and without guaranteed delivery?). In the first step of the experiment-based perfor-

mance model derivation, all possible performance-relevant factors (e.g., all configurations of

a message channel) are listed if they are of interest with respect to the modelling goal. Then,

the following steps systematically identify those features that influence performance.

Experiment Design The experiment designed in this step systematically evaluates the

performance influences of the factors and degrees of freedom, separating relevant ones from

irrelevant ones. Furthermore, they provide information to fill in the degrees of freedom and

the necessary parametrisation of performance models. The Goal-Question-Metric (GQM)

method of Basili, Caldiera, and Rombach [BCR94] supports the definition of questions and

performance metrics. Its extension for software performance evaluation adds specific sce-

narios and hypotheses leading to experiment results. However, the detailed introduction is

deferred to Section 3.1.3.

To answer the question, whether guaranteed delivery influences the performance of a

message channel, a concrete scenario has to be defined first. The scenario includes the

experimental setting, e.g., the workload and execution environment. In the example, sender,

receiver, and MOM are deployed on the same machine. Furthermore, the message size is fixed

to 1000 bytes. Comparing the delivery time of messages (i.e., the time it takes from sending

a message until it reaches its receiver) allows to compare both configurations. Performance

analysts formulate hypotheses that define the expected outcome of the experiment to assess

whether the performance of a messaging channel conforms to their expectation. For example,

they may state that the mean delivery time of a message increases by 50% for a channel with

guranteed delivery compared to a channel without guranteed delivery. After the experiments

have been designed, the next step guides the conduction of experiments.

3.1. Experiment-based Derivation of Software Performance-Models 47

Experiment In this step, the previously defined experiments are executed and the required

performance metrics are measured. The results directly relate to the previously formulated

questions and hypotheses. If the results conform to the hypotheses, performance analysts

may consider the underlying assumptions as valid for the construction of a performance

model until proved otherwise. In case the measurements deviate from the hypotheses, the

causes need to be examined and more detailed evaluations might be necessary.

For the above example, performance analysts need to set up the MOM and deploy a test

driver which measures the delivery time for a message channel with and without guaran-

teed delivery. After the execution of the test driver, they can compare the results to their

hypotheses. If the results show, for example, that guaranteed delivery delays the message

transfer by 25% only, the hypothesis needs to be revised. Futhermore, the results raise the

question if the factor is constant for different message sizes. Performance analysts need to

evaluate such newly arising questions in an additional iteration.

If the experiment successfully validated the hypotheses, performance analysts can build

a prediction model for the system under study. At this point, the model can already be

considered as “assumption valid”.

Performance Model Design Based on the experiments above, performance analysts can

design a prediction model. In combination with the hypotheses, the experiment results

provide the necessary answers to the questions of the GQM-plan. The results provide enough

information to decide whether a specific feature needs to be included in the performance

model or whether it can be neglected. Furthermore, the results should give direct hints on

how degrees of freedom in the specification and documentation can be approximated and/or

modelled. Finally, the experiment results quantify resource demands on a specific platform.

For the example above, performance analysts may decide to model the two messaging

channels by a single resource demand to a processor, where channels with guaranteed delivery

request 25% more processing time. At this stage, the models are strong abstractions of the

system under study, focussing on the factors that have been evaluated. Therefore, the model

may not reflect the system’s performance correctly for all scenarios. For example, it may

not scale correctly, since resources, such as network and hard drive, are not considered. An

additional validation step is necessary to decide under which conditions a prediction model

is a valid abstraction of a system.

Model Validation The model validation ensures that the model predicts the performance

metrics of interest with the expected accuracy and reflects the influences of all performance-

relevant factors. Creating abstract performance models for complex software systems carries

48 3. Basics of the Performance Modelling Framework for Operating System Schedulers

several risks that can be minimised by this step. In the following, we briefly summarise the

most important ones:

• The degrees of freedom of specifications and documentations are not filled in correctly,

i.e., the chosen abstraction or model reflects their influence partially but cannot be

generalised for other scenarios.

Similarly, overfitted models accurately reflect the performance of a specific behaviour

or scenario but cannot be generalised. Thus, such models are only valid for specific

scenarios. However, these performance models can be adequate if they not used in

more general scenarios. For the example above, the model of a message channel with

guaranteed delivery does not issue resource demands to the hard drive and, thus,

incorrectly reflects performance for high loads.

• Not all performance-relevant factors have been identified. There are influences that

may not be directly observable from the measurements but shown by comparing pre-

dictions to measurements.

• Factors that are considered as independed on the first glance may influence each other’s

performance.

• The main cause of an observed effect is not included in the model. Since it is not always

obvious what caused a specific performance observation, the performance model may

not include the actual cause.

• Modelling errors. Model validation identifies modelling errors, which can be easily

introduced in performance models of highly complex software systems.

The outcome of the validation may require the performance analyst to refine or adjust

the model. These refinements can require further experiments to evaluate and quantify

additional properties of the system under study. Similar to the initial experiments, the

model validation employs the scenario-based GQM method to evaluate the prediction quality

of the proposed model in a controlled environment. In this case, the hypotheses do not make

statements about the expected performance of the system under study, but on the expected

prediction accuracy of the model. While it is intuitive to minimise the prediction error of the

model, it may be necessary and desirable to allow a certain degree of inaccuracy in particular

scenarios. Thus, performance analysts (and software architects) can keep the performance

model simple, while still achieving a moderate prediction accuracy. Model validations give

insights into the expected error for such scenarios and may direct future modelling effort.

Prediction models may be used in more general scenarios than evaluated during their de-

sign. However, each model only reflects factors identified in preceding experiments. For all

other scenarios and factors, the validation does not make any statement about the expected

prediction accuracy of the model. The generalisation of the prediction model to other scenar-

3.1. Experiment-based Derivation of Software Performance-Models 49

ios strongly depends on the broadness of the considered scenarios and the sensitivity of the

system to changes. To ensure a good prediction accuracy, experiments must reflect a wide

range of different scenarios and environments to give a higher confidence in the prediction

model.

3.1.3. The Goal/Question/Metric-Approach for Experiment-based

Performance Model Design

In this section, we summarise the Goal/Question/Metric (GQM) approach proposed by

Basili, Caldiera, and Rombach [BCR94] and extend the GQM-approach for the experiment-

based derivation of performance models.

The Goal/Question/Metric Appraoch

GQM is a process model for measurements targeting a particular set of issues (goals) and a

set of rules for the interpretation of the measured data. In order to be meaningful, measure-

ments must be goal-oriented and, thus, are defined in a top-down fashion. Basili, Caldiera,

and Rombach argue that measurements, which are not performed in a goal-oriented way,

are likely to be inefficient. The absence of concrete goals carries the risk of collecting large

amounts of unnecessary data. Large amounts of data and missing goals may complicate

the interpretation of measurements. For the scope of this thesis, GQM provides a struc-

tured approach for the evaluation of operating system schedulers with respect to software

performance.

������ ������

	
���� 	
���� 	
���� 	
����	
����

���� �������� ���� ��������

�
��
�

��

��
�
� �
��

�
�
�

Figure 3.2.: Relations between goals, questions, and metrics [BCR94].

The GQM method starts with the explicit definition of a measurement goal. Several

questions serve to refine the goal and to identify its major components that need to be

answered by the measurements. Questions are further refined by metrics. Figure 3.2 depicts

the relation between goals, questions, and metrics.

50 3. Basics of the Performance Modelling Framework for Operating System Schedulers

When the measurements for each metric have been taken, the resulting data is interpreted

bottom up. Each metric is directed towards specific questions. The collected data answers

the questions with respect to the goal. This evaluation allows deciding whether the goal has

been attained or not. Figure 3.2 further indicates that the same metric can answer different

questions.

Goals, Questions, Metrics, and Hypotheses In GQM, goals are located on a conceptual

level. They strongly depend on the context in which measurements take place. The context

subsumes the objects, the reasons, the points of view, and the environment of the measure-

ments, as well as the considered models of quality. Possible objects of measurements are

products (artefacts, deliverables, or documents), processes (software related activities), or

resources (e.g., personnel, hardware, or software). To correctly embed a goal into a given con-

text, the GQM method requires the explicit definition of the goal’s issue, object or process,

viewpoint, and purpose.

Questions determine the assessment of a specific goal. They characterise the object of

measurement (product, process, resource) with respect to selected quality attributes from

the selected viewpoint.

On a quantitative level, metrics associate a set of data to each question. The data answer

the questions in a quantitative way. In GQM, there exists a distinction between objective

and subjective metrics. While objective metrics depend only on the object under mea-

surement (e.g., lines of code), subjective metrics depend on the viewpoint from which the

measurements are taken (e.g., readability of a text).

When selecting metrics, various factors have to be considered. Basili et al. [BCR94]

summarise the most important ones as follows:

• Amount and quality of existing data: To minimise the effort during data collec-

tion, the use of existing data sources can be maximised.

• Maturity of the objects of measurement: Objective metrics are preferable for

more mature measurement objects, while subjective evaluations are better suited for

informal or unstable objects.

• Learning process: GQM plans need iterative refinement and adaptation. The defined

metrics have to evaluate not only the object of measurement but also the reliability of

the model in use.

Solingen and Berghout [SB99] extend the GQM approach by hypotheses, which define the

expected outcome of the measurements for each question. Hypotheses initiate thinking about

the system under study and stimulate a better understanding of the process and/or product.

After measurement and during data interpretation, these hypotheses can be compared with

3.1. Experiment-based Derivation of Software Performance-Models 51

actual measurements. Solingen and Berghout use hypotheses as (informal) descriptions of

the expected outcome. The comparison between expectation and observation supports the

identification and analysis of the underlying reasons for any possible deviation.

The experiment-based derivation of performance models heavily relies on hypotheses to

define the expected outcome of an experiment and to stepwise evaluate modelling assump-

tions. However, the performance evaluations require the definition of concrete scenarios in

order to be reproducible and in order to allow a clear formulation of hypotheses.

Introducing Scenarios to the GQM Approach

In the following, we extend the GQM approach for the area of software performance evalua-

tion. The extensions add scenarios to the GQM method and make intensive use of hypothe-

ses.

Scenarios A scenario determines the experimental setting for performance evaluation.

The setting includes, for example, the workload (e.g., the arrival rate of messages),

the execution environment, the deployment of the system under test, task behaviour,

and resource demands. Scenarios operationalise the questions defined within a GQM-

plan and fill in the degrees of freedom. For typical applications of the GQM approach

(e.g., [FLM+98, SB99, SB01]), the scenario is fixed by external sources (e.g., the structure

of company) and cannot be changed. In such cases, GQM-plans are designed for a sin-

gle, specific scenario. In the context of software performance evaluation, such constraints

are (usually) not given. Therefore, scenarios have to be defined explicitly. Analysts have

to identify representative scenarios to evaluate the influence of specific factors on software

performance.

For example, the question “How does guaranteed delivery influence the performance of a

message channel?” does not provide enough information for measurement and data collec-

tion. Several degrees of freedom remain even if the performance metrics of interest (e.g.,

delivery time) are known. Without a specific scenario (e.g., an execution environment, the

deployment of senders, receivers, and message-oriented middleware) the experiment is not

reproducible and hypotheses cannot be formulated.

Scenarios fill the gaps and define the experimental setting that should answer the questions

posed in the GQM-plan. The performance influences of a specific factor (e.g., guaranteed

delivery) are likely to depend on the experimental setting (e.g., the message size and the

distribution of senders, receivers, and MOM). Thus, a carelessly chosen scenario can lead to

wrong conclusions from the measurements. Furthermore, the inclusion of scenarios into the

GQM-plan ensures the reproducibility of experiments. The scenarios can be used to quan-

52 3. Basics of the Performance Modelling Framework for Operating System Schedulers

tify platform dependent influences for different execution environments (cf. Section 3.1.4).

In addition, scenarios define the scope of validity for the answers of the experiments. The

assumptions and restrictions of the scenarios must also hold for the target environment.

Therefore, the scenarios must be representative for the overall measurement goal. For ex-

ample, if the delivery time of a message has only been measured on a single machine, then

no statement about message transfer in distributed systems can be made.

Hypotheses Scenarios allow the definition of concrete hypotheses with respect to the ex-

pected outcomes. Based on the available specification and documentation of the system

under study, hypotheses formulate the expected outcome of the experiments for each ques-

tion. Similar to Solingen and Berghout [SB99], the term “hypothesis” is used in a general

sense. Hypotheses help performance analysts to answer questions posed in the GQM-Plan.

For this purpose, hypotheses must be revisable. They must be formulated in such a way

that they can be rejected and/or revised based on the measured data.

For example, a simple hypothesis “Factor X affects performance” does not help in an-

swering any specific question. By contrast, hypothesis “The mean response time without

factor X is at least 30% below the mean response time with factor X. The mean processor

utilisation for both cases deviates less than 5%” is a formulation which enables a comparsion

between expectation and measured data.

3.1.4. Parametrisation of Performance Models

The performance-relevant factors and degrees of freedom that have been identified in the

previous steps may depend on the execution environment of the system under study. For

example, the delivery time of a message (i.e., the time from sending the message until it is

processed) depends not only on the system’s configuration, but also on the underlying hard-

and software of the MOM as well as its implementation. While all available MOM platforms

offer a similar set of features (defined in standards such as Java Message Services [HBS+08]),

their implementation may vary significantly. Performance models should abstract from such

implementation dependencies (if possible) and provide an abstract view on the system under

study. In combination with measurements, the abstraction can be customised automatically

for different vendor implementations and yield accurate predictions for a broad range of

middleware platforms.

Filling in degrees of freedom by measurements allows parametrising over the underlying

software and hardware layers. However, resource demands cannot be accurately determined

in every case. For example, the message delivery time is measurable but the processing

demands for hard drives, network connections, or processors cannot be determined with the

3.1. Experiment-based Derivation of Software Performance-Models 53

accuracy necessary. A mapping of all resource demands to the same (possibly load depended)

resource is a possible solution to this problem. Even though such an abstraction requires

strong assumptions (e.g., no severe resource conflicts with other parts of the system), it can

yield a simple but accurate performance model. For example, Section 6 demonstrates the

applicability of this approach for messaging systems.

In the following, we describe how the scenarios of the GQM-plan can support the

parametrisation of performance models. Furthermore, we introduce the process model for

combining measurements with parametric performance models.

From Performance Model Design to Automated Parametrisation Many performance

models require the specification of resource demands (e.g., processing time on the CPU),

which strongly depend on the underlying hardware, operating system, and middleware. If

the performance model has to be employed for numerous different environments, performance

analysts may want to parametrise the resource demands and keep the general behaviour of

the model constant.

For example, the delivery time of a message changes for different MOM implementations

and different hardware while the general behaviour for each configuration is not affected (cf.

Chapter 6). Thus, it is sufficient to determine the resource demands for a new environment

in order to instantiate the performance model for that environment.

Performance analysts have designed experiments to evaluate the performance of a system

under study and to answer questions related to its performance properties. Therefore, they

have implemented a series of test drivers that collect the necessary data, which also includes

demands to different resources. Thus, it is sufficient to re-execute the relevant test drivers

and determine the new resource demands from the results.

The execution of the test driver and the computation of resource demands can be done in

an automated fashion, transparent to the software architect. Therefore, performance ana-

lysts provide automated test drivers (based on their initial experiments) that collect necessary

measurement data and determine resource demands for the system under study. For exam-

ple, software architects can use such automated test drivers to automatically determine the

resource demands of a MOM platform and, thus, to include the influence of message-based

communication into their prediction model.

Parametrising Performance Models More generally, performance evaluations of a system

under test yield a performance model that fills in several degrees of freedom with measure-

ments. Parametrising over these degrees of freedom allows performance analysts to create

platform independent models that can be refined with measurements of an automated test

driver.

54 3. Basics of the Performance Modelling Framework for Operating System Schedulers

´

Experiment Run

Regression Analysis

Integration

Measurements

Parameteric
Resource Demands

Platform-specific
Performance Model

Valid
Performance Model

Automated
Test Driver

Activity

Change of Activity

Flow of Artifact

Model Parameterisation

Platform-independent
Performance Model

Skeletons

Model Usage Model Design

Figure 3.3.: Process of creating platform-specific completion components.

Figure 3.3 illustrates the process of creating a platform-specific performance model from

a platform-independent performance model. The automated test driver runs on the se-

lected target platform. The driver measures the performance of the infrastructure for all

performance-relevant features identified during the experimentation phase.

For example, a performance analyst constructs a prediction model for MOM based on mes-

saging patterns (cf. Chapter 6). The model without the platform-specific resource demands

is called a performance model skeleton. Software architects then execute the automated test

driver on their specific MOM platform (Experiment Run). The measurements provide the

necessary information to determine the resource demands for the specific platform.

Furthermore, resource demands may depend on input parameters of the system under

study (cf. Section A). Conducting regression analyses of measurement results identifies de-

pendencies between input parameters and the resource demands. For example, the delivery

time of a message may depend on its size. Regression analyses yields an (approximated)

functional dependency between the message size and the corresponding resource demands.

The resulting parametric resource demands are integrated with the performance model skele-

tons to define a platform-specific performance model. For example, executing the automated

test driver for MOM on a system with Sun’s Java System Message Queue 3.6 and an AMD

X2 machine yields a performance model specific to this environment. The combination

of model-based and measurement-based methods allows considering the infrastructure as a

black-box, neglecting details specific to the implementation. In this thesis, we combine this

3.2. Overview of the Performance Modelling Framework 55

concept with performance completions (cf. Section 2.1.4) to integrate performance-relevant

factors of the infrastructure into high-level software performance models.

In the following section, we provide an overview of the performance modelling framework

for GPOS schedulers developed in Chapters 4 and 5. During model design, we intensively

employed the method for experiment-based derivation of performance models. Furthermore,

in Chapter 6, we use the parametrisation of performance models to capture the various

performance influences of MOM on different platforms.

3.2. Overview of the Performance Modelling Framework

In this section, we provide an overview of MOSS, a complex modelling and prediction frame-

work for GPOS schedulers. During its design, we addressed various questions regarding the

influence of GPOS schedulers on software performance (Section 3.2.1). Based on a series of

experiments (cf. Chapters 4 and 5), we identified categories of performance-relevant factors

of GPOS Schedulers (Section 3.2.2). These categories form the basic configuration options

for GPOS schedulers whose performance influence can be evaluated using MOSS. For per-

formance predictions, we defined a set of hierarchically structured CPNs (cf. Appendix B)

that formally model the behaviour of the possible configurations of MOSS (Section 3.2.3.

3.2.1. Performance-related Questions for GPOS Schedulers

The mutual dependencies of task behaviour, underlying symmetric multiprocessing environ-

ments, and GPOS schedulers raise various questions regarding their influence on software

performance. Our aim is to to create a performance model which captures these mutual

influences and accurately predicts the performance from a user’s perspective:

Goal: Purpose Predict

Issue mutual performance influences

Object of of task behaviour, GPOS schedulers

in symmetric multiprocessing environments

Viewpoint from the user’s point of view.

Table 3.1 refines the goal by three questions concerned with the performance modelling of

different features of GPOS schedulers and their interaction with task behaviour and multi-

processing environments. In the following, we describe the rationale of these questions.

GPOS schedulers execute competing tasks pseudo-concurrently on a single processor.

They employ different strategies to share the available processing time among all tasks.

Thus, the first question asks how a performance model needs to reflect the influence of

56 3. Basics of the Performance Modelling Framework for Operating System Schedulers

Question Experiment / Section
How to model the influence of GPOS
schedulers' time sharing features on software
performance?

Time Sharing

How to model the influence of the interaction
of GPOS schedulers with task behaviour on
software performance?

Interactivity

How to model the influence of GPOS
schedulers in symmetric multiprocessing
environments on software performance?

Multiprocessor Load Balancing

Performance Model for Operating System Schedulers

Table 3.1.: How to model different scheduling features influencing software performance.

GPOS scheduler’s time sharing features on software performance. In software performance

evaluation, FCFS, PS, or preemptive priority are common approximations for time sharing

policies of GPOS schedulers. However, these abstractions are not adequate for many sce-

narios. Consequently, we design a more realistic time sharing model for GPOS schedulers in

Chapter 4 (Section 4.1).

For interactive and I/O-bound tasks, the current and past behaviour of tasks (i.e., how long

a task used what resources) influences decisions of GPOS schedulers. Therefore, the second

question asks for a valid performance model of schedulers with respect to task behaviour. In

Chapter 4 (Section 4.2), we refine MOSS by adding the interactivity features necessary.

In (symmetric) multiprocessing environments, GPOS schedulers distribute competing

tasks among the available processors. For accurate predictions, performance models need to

reflect their load balancing and distribution policies. Thus, the third question asks for accu-

rate performance models of GPOS schedulers in symmetric multiprocessing environments.

In Chapter 5, we enhance MOSS by introducing multiprocessor load balancing capabilities.

3.2.2. Categorisation of Performance-relevant Factors of GPOS

Schedulers

In this section, we introduce the categories of performance-relevant features for time sharing,

interactivity, and multiprocessor load balancing. We use feature diagrams [CE00] to model

the performance-relevant factors and variation points of MOSS.

Time Sharing

Time sharing addresses the management of tasks and the selection of the next task for

execution. For this purpose, priority levels and run queues are used. The feature diagram in

Figure 3.4 reflects the available priorities, the type of the run queue, and the timeslices of a

3.2. Overview of the Performance Modelling Framework 57

Time Sharing

Run Queue Timeslice

Priority
Dependent Fixed

DurationPriority-
Duration

Fair Unfair

Priority Duration

Priorities

Lowest Highest

n

Legend
or
exclusive or
mandatory
optional

Legend
or
exclusive or
mandatory
optional

Figure 3.4.: Feature diagram of a scheduler’s time sharing properties.

scheduler. A range from the lowest to the highest priority defines the available interactive

priority levels. For example, the interactive priorities (also called nice-levels) of Linux range

from 19 (lowest) to -20 (highest). Run queues can either be fair (e.g., Linux) or unfair

(e.g., Windows). Fair run queues assign a fair share of processing time to each task. By

contrast, unfair run queues always prefer the task with the highest priority over the tasks

with lower priorities and, thus, accept the risk of starvation for the latter. Finally, timeslices

can be of a fixed (Windows) or priority-dependent duration (Linux). The first option defines

the timeslice’s duration by a single value (duration), while the second specifies a different

timeslice (duration) for each (priority) level.

Interactivity

Legend
or
exclusive or
mandatory
optional

Legend
or
exclusive or
mandatory
optional

Interactivity

Resource
Dependent

History
Dependent

n
Maximum
Penalty

Maximum
Bonus

Resource-
Boost

Resource
Type Bonus

Memory
Duration

Interactivity
Threshold

Priority Threshold

n

Bonus Decay

Per
Timeslice Reset

Decrease Processing
Time

Figure 3.5.: Feature diagram of a scheduler’s interactivity properties.

Interactivity refers to the different strategies used to prefer interactive and I/O-bound

tasks over CPU-bound ones (for details see Section 2.3). Figure 3.5 shows a feature diagram

58 3. Basics of the Performance Modelling Framework for Operating System Schedulers

of the performance-relevant properties of a scheduler’s interactivity handling. The feature

diagram distinguishes between resource-dependent and history-dependent policies. The first

considers the type of resource used by a task to boost its dynamic priority (as implemented

in Windows). The second policy observes a task’s behaviour and determines its dynamic

priority based on its past waiting and processing times (as implemented in Linux). A combi-

nation of both policies is not possible (exclusive or). The resource-dependent policy increases

a task’s priority depending on the resources it holds. Therefore, it contains a list associat-

ing a bonus with each type of resource. By contrast, the history-dependent policy maps

the observed processing and waiting times to a range of dynamic priorities reaching from

maximum bonus (e.g., +5 for Linux) to maximum penalty (e.g., -5 for Linux). Furthermore,

the memory period determines the time, a scheduler remembers a task’s behaviour (e.g., 1

second for Linux). Finally, the interactivity threshold determines how long a task must wait

for a resource in order to be considered as interactive. This value depends on the task’s

static priority (e.g, 790 ms for a task with a nice-level of 0 under Linux on x86 systems).

Multiprocessor Load-Balancing

The multiprocessor load balancing is responsible for distributing the system’s load among

the available processors. In the following, we introduce a classification for multiprocessor

load balancing strategies based on the work of Shivaratri et al. [SKS92], who categorise load

balancing strategies of distributed systems. Even though multiprocessor systems differ in

some important aspects (e.g., the communication is much faster than between distributed

nodes) their classification provides a sound basis for multiprocessor systems. We extend

the general features (Figure 3.6(a)) from Shivarati et al. with concrete characteristics for

multiprocessor systems (Figures 3.6(b) to (e)). The latter directly relates to multiprocessor

load balancing policies realised in GPOS schedulers, such as Windows and Linux. The next

paragraphs systematically introduce the feature diagrams in Figure 3.6.

The first distinguishing feature for load balancing policies is their degree of centralisation.

Load balancing policies can be centralised, hierarchical, fully decentralised, or in any combi-

nation of these. Policies with centralised components suffer from a potential bottleneck and

a single point of failure. These limitations affect their scalability and reliability. Hierarchy

can reduce these risks, but only fully decentralised systems, where all nodes function inde-

pendently, can solve these problems. Centralisation mainly influences the location policy of

the load balancing depicted in Figure 3.6(f).

Furthermore, load balancing policies can be characterised as static, dynamic, adaptive, or

any combination of these. Figure 3.6(a) shows relevant features for multiprocessor systems,

i.e., static and dynamic policies. Static policies use a priori knowledge on the system for

balancing decisions. In Figure 3.6(a), the exclusive choice for static policies offers the features

3.2. Overview of the Performance Modelling Framework 59

Legend
or
exclusive or
mandatory
optional

Load Balancing

Same as
Parent

Cyclic
Splitting

Dynamic

Load
Index

Transfer
Policy

Static

Location
Policy

Information
Policy

Selection
Policy

Threshold Relative

Transfer
Policy

Lower
Bound

Upper
Bound Distance

Information
Policy

Demand-driven periodic State-change-driven

Sender
initiated

Receiver
initiated Interval OnFork OnIdle OnWake

Selection
Policy

Cache
Affinity

Processor
Affinity

Preferred
Priority

Preferred
Waiting Time

Duration HighLow ShortLong

(a) (b)

(c) (d)

Load
Index

CPU
Queue Length Average CPU

Queue Length

Aging CPU
Queue Length

Time Span

Weight

Location
Policy

Centralized Decentralized

Random Memory Nearest
Neighbor Broadcast

(e) (f)

Random

Figure 3.6.: Feature diagrams for classifying load balancing strategies.

cyclic splitting, same as parent, and random. Cyclic splitting assigns tasks to processors in a

round robin fashion independently of the task and the processor’s load. Following a similar

philosophy, the random policy assigns tasks to each processor with a predefined probability.

The probability can be equally distributed or varied for different CPUs, e.g, to consider

the influence of differing processing power. Same as parent is specific to multiprocessor

environments. It allocates a new task to the same processor as its creator. Thus, it leaves

the actual load balancing to the dynamic policies, which use information on the system

state for load balancing decisions. Dynamic load balancing policies consider, for example,

the current load of each processor and assign a new task to the least loaded processor. A

more detailed description of performance-relevant load balancing features follows in the next

paragraphs. Finally, adaptive policies choose between different policies (static and dynamic)

depending on the observed system state. These policies allow, for example, the reduction of

load balancing activity when the load is balanced among all processors. However, adaptivity

is a cross cutting concern with respect to static and dynamic load balancing policies and is

thus not depicted in Figure 3.6.

60 3. Basics of the Performance Modelling Framework for Operating System Schedulers

The mandatory features of dynamic load balancing policies in Figure 3.6(a) determine

when and where load balancing will take place. Load indices estimate the performance of a

task on a particular processor (Figure 3.6(e)). Therefore, load indices reflect a processor’s

load during runtime. Multiple different measures have been proposed for this purpose.

However, Kunz showed that the current CPU queue length represents the best indicator

for a tasks performance on a particular node [Kun91]. For multiprocessor systems, various

derivations of the CPU queue length have been used, such as the average CPU queue length

over a predefined time span or an ageing CPU queue length.

Ageing variables are on-the-fly estimators for continuously changing variables. They take

into account past valuations of the variable and level out brief peak conditions providing

stable estimates of the CPU’s queue length. The weighted sum of the processor’s last and

current load yields the ageing CPU queue length. The weight determines the influence of

the last load on the estimator. To compute the ageing load index Loadn+1(CPU) at time

n+1 for processor CPU, let Loadcurr(CPU) be the processors current load (without ageing),

Loadn(CPU) its previous load index (i.e., its ageing load at time n), and w the weight, then

the new value of the load index is computed by [Tan01, p. 146]:

Loadn+1(CPU) = w Loadcurr(CPU) + (1 − w) Loadn(CPU)

Taking into account a CPU queue’s history levels out disturbances of short peak loads and

idle periods. It avoids unnecessary balancing attempts in systems with strongly fluctuating

loads.

The transfer policy (Figure 3.6(b)) determines whether a processor can participate in a

task transfer as a sender or as a receiver. Threshold -based policies define an upper and

lower bound for a processor’s load index. If a processor’s load falls below the lower bound, it

becomes a (potential) receiver. Otherwise, if a processor’s load rises above the upper bound

it becomes a (potential) sender. The processor does not participate in load balancing as it is

assumed to be ideally loaded between these bounds. Relative policies consider a processor’s

load in relation to loads of other processors. Load balancing is initiated if the load of two

processors differs more than a predefined value.

The location policy (Figure 3.6(f)) is responsible for the identification of a suitable transfer

partner for processors which require load balancing. In a centralised system, this step is

not an issue, as the coordinator can easily assign a transfer partner to a processor. In

decentralised systems, the current processor cannot know the global system state. So, it can

pick a node at random, broadcast its request to all nodes, choose the nearest neighbour, or

use information collected during previous calls to find a transfer partner (memory). The

different policies vary in chance and overhead for finding a transfer partner. However, for

3.2. Overview of the Performance Modelling Framework 61

SMP systems this is in general no issue as all processors and cores have equal access to the

necessary data.

The information policy (Figure 3.6(c)) determines when information about the states of

other processors in the system is to be collected and triggers load balancing. Demand-driven

policies exchange information whenever a processor becomes a sender (sender-initiated) or

receiver (receiver-initiated). If both cases are possible, the policy is called symmetrically

initiated. When collecting data periodically, the interval determines the period length in

which balancing efforts occur. Furthermore, state-change-driven policies pass information

whenever a node’s state changes. The most important events for multiprocessing systems

are OnFork, which is activated whenever a new task is created, OnIdle, which is activated

whenever a processor becomes idle, and OnWake, which signals that a process resumes

execution after waiting.

If a processor becomes a sender, the selection policy (Figure 3.6(d)) chooses tasks for

transfer. The policy can optimise load balancing by minimising transfer overhead. To

achieve a good optimisation, the policy selects tasks which (presumably) have a long live-

span and which have a minimum number of location dependencies. For example, newly

originated tasks are preferable for transfer, since they do not need to be preempted and do

not have any state that needs to be transferred. Moreover, they can be assumed to live

relatively long and do not have any location dependencies. If the selection policy does not

find a suitable task for transfer, it no longer considers the processor as a sender. All selection

criteria in Figure 3.6(d) are optional and can be combined arbitrarily. Selection policies that

take into account cache affinities migrate only tasks that did not run on the processor for at

least duration milliseconds. The selection policy assumes that all other tasks still have useful

data in the cache and, thus, avoids to move them. Additionally, processor affinity limits the

shifting of tasks to a predefined set of processors. This option allows the load balancer to

select only tasks whose affinity list contains the receiving processor. When multiple tasks are

available for migration, the options preferred priority and preferred waiting time determine

which one to select. If the preferred priority is high (low), higher (lower) priority tasks are

migrated first. Furthermore, if the preferred waiting time is short, tasks at the end of a

queue are preferred over tasks in the beginning of the queue and vice versa for long waiting

times.

For multiprocessing systems, the choice of an optimal task for transfer mainly depends on

the underlying hardware architecture. In SMT systems, for example, task transfers are cheap

since the virtual processors share all necessary resources. Task transfers can thus happen

quite often. For NUMA systems, the scheduler has to consider dependencies on the local

memory and high costs for transfer. Task transfers on this level should happen only when

62 3. Basics of the Performance Modelling Framework for Operating System Schedulers

necessary. Consequently, schedulers for multiprocessing systems employ different balancing

policies for different architectural levels.

Feature Configurations for Windows and Linux

The Windows and Linux operating systems differ with respect to time sharing, interactivity,

and multiprocessor load balancing. Table 3.2 summarises the feature configurations for both

operating systems. In the following, we describe the different feature configurations in more

detail.

As time sharing policy, Windows uses an unfair run queue with fixed timeslices. By

contrast, Linux employs a fair run queue and priority-dependent timeslices to allow a fair

distribution of processing time among competing tasks.

The operating systems further differ in their interaction with task behaviour. Linux keeps

track of a task’s history, to determine its bonus or penalty. For this purpose, Linux compares

the time a task spend waiting (or sleeping) to the time it spend processing. Furthermore,

tasks that spend a larger fraction waiting than processing are classified as interactive. In

general, interactive tasks are privileged and, thus, can circumvent the fairness properties of

Linux’ run queue. The amount of waiting time necessary to be classified as interactive de-

pends on a task’s static priority. By contrast, Windows uses static priority boosts. Table 3.2

lists the bonuses for different resources. A task’s bonus decreases slowly with each timeslice

it receives.

For multiprocessor load balancing, both operating systems combine static and dynamic

load balancing policies. While Windows balances as little as possible, Linux keeps the

system’s evenly balanced among the available processors. Windows’ static balancing policy

uses cyclic splitting to assign newly created tasks to processors. Its dynamic balancing policy

realises a threshold-based transfer policy. Windows uses the CPU queue length (including

the running task) as a load index. If the load of a CPU drops below one (the CPU becomes

idle), the CPU becomes a receiver. All CPUs with a load greater than one are potential

senders (threshold-based transfer policy). Once idle, a processor looks for executable tasks

on other processors implementing a demand-driven, receiver initiated information policy.

Windows’ location policy chooses the processor with the highest load as sender. Its selection

policy prefers tasks with high priorities, but also considers their processor and cache affinity.

The latter directly relates to the time a task last ran. When more time elapses, a task’s cache

affinity decreases and it becomes more likely that it will be moved. Additionally, processor

affinities restrict the selection of processors where a task can be moved. Windows employs a

state-change-driven policy. Whenever a task becomes ready (e.g., after blocking or creation)

and an idle CPU (receiver) is available, the scheduler tries to migrate the task to the idle

CPU.

3.2. Overview of the Performance Modelling Framework 63

Linux
2.6

Time Sharing
Highest Priority -20

Lowest Priority 19

Run Queue Fair

Timeslice Priority Dependent
5 - 800 ms

c.f. Table 2.2

Interactivity
Priority Boost Dynamic
Values [-5, +5]

Linearly scaled
depending on the time
waiting compared to
the time computing

Memory: 1 second

Semaphore
Disk

Network
Keyboard

Mouse
Sound

+1
+1
+2
+6
+6
+8

Semaphore
Disk

Network
Keyboard

Mouse
Sound

+1
+1
+2
+6
+6
+8

Priority Updates When timeslice expired

Load Balancing
Initial Processor
Selection

Same as Parent

Load Index Aging CPU Load
Transfer Policy Relative
Information
Policy

Symetrically initiated,
periodic, OnFork,

OnIdle, and OnWake

Selection Policy Cache Affinity,
Processor Affinity,

Prefer High Priority,
Prefer longer Waiting

Times

Windows

Fixed
31,25 ms

Fixed

XP / 2000

After waiting
When timeslice

expired

After waiting
When timeslice

expired

Server 2003

187,5 ms

Static Static

15

0

15

0

UnfairUnfair

-

Cyclic SplittingCyclic Splitting

CPU Load
Threshold

Cache Affinity,
Processor Affinity,

Prefer High Priority,
Prefer longer Waiting

Times

Receiver Initiated

-
-
-

Table 3.2.: Comparison between Linux and Windows schedulers.

64 3. Basics of the Performance Modelling Framework for Operating System Schedulers

In contrast to Windows, Linux uses an ageing CPU queue length as load index. Its

relative transfer policy initiates load balancing only if the distance exceeds a threshold of 2.

Furthermore, Linux uses a state-change-driven as well as periodic information policy. The

state-change-driven policy reacts whenever a new task is created (OnFork), a task is about

to be awakened (OnWake), or a CPU becomes idle (OnIdle). The periodic policy checks

at regular intervals if the CPUs of a scheduling domain need to be balanced. If the load

differs too much, it moves tasks from the busiest processor in the domain to the most idle

one. The selection policy of the Linux scheduler considers factors like cache affinity time and

processor affinities. Moreover, it prefers tasks with a low priority and a long waiting time

for migration.

3.2.3. MOSS – Overview of the Prediction Model

In the following, we give an overview of the definition of MOSS in terms of timed Coloured

Petri Nets (CPNs, cf. Appendix B). The hierarchical structure of CPNs allows the straight-

forward integration of different feature configurations for schedulers. Due to the simulation

and analysis capabilities of CPNs, they are well suited for performance evaluation of complex

systems. The detailed models of MOSS follow in Chapters 4 and 5.

For performance prediction, we integrated MOSS with the Palladio Component Model

(PCM, cf. Appendix A). Software architects can configure schedulers either using the avail-

able scheduler features or selecting from a set of predefined configurations, e.g., for Windows

XP or Linux 2.6. In the following, we explain the basic concepts of the integration of MOSS

and the PCM.

Relation to the PCM The PCM describes the behaviour of a software system in an abstract

fashion. It decomposes the system’s behaviour into hierarchically structured components.

Each component provides and requires a set of services grouped to interfaces. For perfor-

mance prediction, so-called “resource demanding service effect specifications” (RD-SEFFs,

cf. Section A) abstractly describe the behaviour of each service (cf. Figure 3.7). They

model the order and extent of resource usages as well as calls to other components. The

static architecture shown on the left-hand side of Figure 3.7 contains components (basic and

composite) their connections and their deployment. Each (basic) component’s service is as-

sociated with an abstract behavioural specification (RD-SEFF). Components, connections,

RD-SEFFs, and deployment relations provide a full description of the overall system needed

for performance prediction.

While the PCM provides a detailed model of the software system, MOSS describes the

behaviour and performance influences of GPOS schedulers on performance. Figure 3.7 ab-

3.2. Overview of the Performance Modelling Framework 65

������

��������	

������	��

����

������	��

��������	
������

������	
������

��	
������
���������	���

���������	���
���������	���

���������������
��	�

�������������
��	�

���������	��		
������

���������	
������

�������������	��������
�������

����	
��

���������������������������
�����������!"!���	���#$%&''(')*+%,''(')*+-

Figure 3.7.: Integration of the scheduler performance model (MOSS) into the PCM.

stractly illustrates the connection of MOSS to the PCM. For each service provided by a basic

component, the PCM abstractly models the service’s behaviour as an RD-SEFF. RD-SEFF’s

consist of a set of internal an external actions that are structured by control flow elements

(e.g., loops, branches, and forks). For all internal actions that require processing time on

a CPU, MOSS refines the behaviour of that action and decomposes it into multiple steps

(right hand side of Figure 3.7).

When an internal action demands processing time on the CPU, it notifies MOSS by putting

a token on place Request. The scheduler model processes the request (including possible

contention in the system). Once the request has been processed, it notifies the internal

action, whose demand has been processed, by putting a token on place Response. This

token allows to continue the RD-SEFF’s execution. Furthermore, the behavioural model

informs MOSS whenever a task changes its state of processing, e.g., is waiting for a passive

resource or is waking up.

MOSS – Hierarchical Structure In Figure 3.7, substitution transition Scheduler Model

encapsulates MOSS’ behaviour. The transition’s interactions are limited to Requests and

Responses. Figure 3.8 illustrates the hierarchical refinement of MOSS by multiple layers of

substitution transitions. The hierarchical structure of CPNs encapsulates the behaviour of

all feature configurations in separate subnets. The top level scheduler model contains several

fusion places which enable the communication of the scheduler model with behavioural per-

formance models, such as the PCM. Several substitution transitions serve to further refine

the top level net. Figure 3.8 exemplarily shows the subnet for transition Schedule. Its

subnet contains further fusion places and substitution transitions.

66 3. Basics of the Performance Modelling Framework for Operating System Schedulers

�������

��� ���
���	
����

��� �	�

���	������

�������

��� �	�
������ ������
����

�����	��
�����	����������	�����

����	��
����	���������	�����

��� �����

��	
 ����	

��

�	���
��������	�

�������

	�

���
	�

��������	�

��������

���
���������
����������������������

��������	
�����

��������	
�������������	
�����

���������	
���
���������	
���

��� �������
��� �������

���	���	

���	���	

����� �������

����� �������

	������	

	������	

�������

���� ���	�
���� ��	������

�	���

��������������

���

���	���	

���������	
��� ��� ������� ����� �������
	������	

������� ���������

������	������	

����������	�����������	�
���������	�
���������	�

�	���
����

������

�����������

�������

�������

������

���������	��������
���������	�
�����������

�������

�������

����������	�����������	� ���� ���� � ����� ���� � �

��������

 � �

����	
��

�������
��������������������

Figure 3.8.: Hierarchical structure of the scheduler performance model (MOSS).

3.2. Overview of the Performance Modelling Framework 67

MOSS’ hierarchical structure integrates different time sharing, interactivity, and load bal-

ancing features into a single CPN. Each substitution transition resembles a possible variation

point. Transformations select the subnets according to a given feature configuration. Each

feature may be further subdivided into several smaller parts, which represent its indepen-

dent variation points. Figure 3.8 illustrates exemplarily how a run queue’s fairness property

affects the subnet selection of substitution transition RunQueue. For unfair run queues, the

transformation selects a different subnet than for its fair counterpart. While different fea-

tures are defined independently in separate subnets, they strongly interact with each other.

For this purpose, fusion places model interaction points which allow flexible communication

between the separate scheduler features.

���������	
���
���������	
���

���� �������
���� �������

���	���	

���	���	

����� �������

����� �������

	������	

	������	

�������

���� ���	�
���� ��	������

�	���

���������������

�������������	

���

���	���	

������
������
������
������

������ !�"�"

��#"��
���

��#"��
���

��#"��
����$��

�����"%� �
������

���������	
��� ���� ������� ����� �������
	������	

������� &��������

&�����	&�����	

Figure 3.9.: Schematic overview of the scheduler performance model.

An abstract view of MOSS From an abstract point of view, MOSS behaves similarly for

all feature configurations. It accepts requests, i.e., demands of processing time, notifies the

calling behaviour when its request is finished, starts processing new tasks, terminates finished

tasks, and puts tasks to sleep or wakes them up. Figure 3.9 gives a schematic overview of

the CPN model realising this behaviour. The model’s substitution transitions encapsulate

the scheduler’s time sharing, interactivity, and multiprocessor load balancing strategies. The

boldly printed places represent interaction points of MOSS to task behaviour models (such

as the PCM), which require access to scheduled resources. All other places are internal

to MOSS. The communication between all subnets is based on fusion places. However,

68 3. Basics of the Performance Modelling Framework for Operating System Schedulers

for reasons of readability, Figure 3.9 uses input/output places to denote communication.

Figure 3.9 is only an abstract representation of the actual CPN.

All places accept tokens of colours printed in Listing 3.1. MOSS communicates with

behavioural models of tasks based on a unique task identifier (TASK ID). For each identifier,

the scheduler model manages its internal information (e.g., timeslices and priorities) using

colour SCHED TASK.

Listing 3.1: Basic colour sets of the scheduler model.

colset TASK ID = INT ; p
colset DEMAND = INT ;
colset TASKDEMAND = (TASK ID , DEMAND) ;

colset SCHED TASK = product ID ∗ CPU ID ∗ PRIORITY ∗ TIMESLICE timed ;
colset SCHED TASK LIST = l i s t SCHED TASK;
colset CPU RUNQUEUE = product CPU ID ∗ TASKLIST;

When a new task is created, its unique identifier is put on place New to notify the sched-

uler, that a new task requires scheduling. Transition Initialise Task then creates the

initial scheduling information for the task (SCHED TASK), which contains its initial processor,

timeslice, and priority. The transition selects the processor according to the chosen static

load balancing policy (cf. Section 3.2.2). Finally, it inserts the new token at the end of list

SCHED TASK LIST on place Incoming. Whenever, a SCHED TASK is added to this list, transi-

tion Schedule assigns the task to its processor’s run queue. Place Ready holds a separate

run queue (CPU RUNQUEUE) for each processor. It contains those tasks that are ready for

execution on that specific processor. Whenever a processor is idle or the currently running

task’s timeslice expires, transition Schedule removes the currently executing task from place

Running and puts the next executable task of the processor’s run queue there.

When a task requests processing time, it puts a TASK DEMAND token on place Request.

The token contains the task’s unique identifier (TASK ID) as well as the demand which

is required (DEMAND). As soon as the task is running (i.e., its SCHED TASK token lies on

place Running), it can reduce its demand according to the time it spend on place Running.

As soon as a task’s demand reaches zero, transition Schedule puts its TASK ID on place

Response to notify the task behavioural model that its request has been processed and that

it can continue execution. Transition Dynamic Balancing levels the load between multiple

processors according to the specified dynamic load balancing policy.

Furthermore, MOSS reflects the mutual performance influences of passive resources (i.e.,

semaphores) and the GPOS scheduler. It may be necessary to put a task to sleep until the

resources that have been requested by a task become available. As soon as these resources

are available, the scheduler needs to resume processing of that task. To notify the scheduler

3.3. Summary 69

about such state changes, a task’s unique identifier is put on places PutToSleep or WakeUp.

Transition Start Waiting removes the task from the processor it is currently running on

and puts its token on place Waiting. As soon as a passive resource notifies the scheduler

to wake up that task, transition Stop Waiting removes the corresponding token from place

Waiting and inserts it at the end of the SCHED TASK LIST on place Incoming.

Finally, when the execution of a task is finished, the behavioural model notifies MOSS by

putting the task’s unique identifier on place Terminate. Transition Terminate then removes

the internal SCHED TASK token of that task.

3.3. Summary

In this chapter, we have presented an iterative method for the design of performance models

for complex systems. For the experiment-based derivation of performance models, perfor-

mance analysts (i) start from existing documentation and specifications, (ii) systematically

evaluate all candidates of performance-relevant features using the GQM approach, (iii) design

performance models based on the measurements, and (iv) validate the resulting performance

models. These steps are repeated iteratively until the desired degree of accuracy has been

achieved.

Furthermore, we have provided an overview of MOSS’ hierarchical structure which is

defined in terms of CPNs. MOSS consists of multiple subnets that reflect the behaviour of

different parts of operating system schedulers. For performance prediction, different subnets

can be combined in order to consider the influence of different operating system schedulers

on software performance.

In the following chapters, we refine MOSS’ behavioural model systematically with time

sharing and interactivity handling (Chapter 4) as well as multiprocessor load balancing

(Chapter 5).

71

4. Single Processor Scheduling

In this chapter, we systematically evaluate the performance influence of operating system

schedulers in single processor environments. Based on the results, we define a hierarchical

CPN model called MOSS. The model captures the performance influence of different time

sharing policies (Section 4.1) and of different interactivity policies (Section 4.2). In a case

study (Section 4.3), we demonstrate MOSS’ broader applicability using a real-world business

information system. We discuss the benefits and drawbacks of MOSS (Section 4.4) and

summarise our results (Section 4.5) to conclude this chapter.

4.1. Time Sharing

Time sharing can strongly influence the response time and throughput of a software system.

Depending on the chosen policy, different tasks benefit (i.e., shorter response times) or suffer

(i.e., longer response times). In this section, we evaluate and model the influence of time

sharing on software performance. We focus on mutual dependencies of priorities, timeslices,

run queues, and task behaviour (i.e., the type of workload and request sizes).

The structure of this section follows the experiment-based derivation of software perfor-

mance models introduced in Section 3.1. In a series of experiments, we answer questions

regarding the performance influence of different time sharing features (Section 4.1.1). Based

on the results, we design a CPN model for time sharing (Section 4.1.3). The model refines the

abstract CPN model introduced in Section 3.2.3. In a case study, we validate the prediction

accuracy of the model (Section 4.1.4). The model predicts the influence of the time sharing

policies for Windows and Linux with an error of less than 5% in the considered scenarios.

4.1.1. Experiments – Overview and Motivation

The experiments presented in this section were conducted to evaluate time sharing and to

identify valid assumptions for MOSS. Based on documentation (cf. Section 2.3), hypotheses

state preliminary assumptions regarding the influence of time sharing properties on software

performance. For example, fair run queues might be expected to prevent starvation. While

such statements can be found in literature (e.g., [Aas05]), it remains unclear under which

72 4. Single Processor Scheduling

conditions they hold. The combination with other scheduler properties (e.g., interactivity

handling, cf. Section 4.2) might affect the behaviour and performance of fair run queues. In

the following GQM plan, we formulate questions that address such mutual dependencies of

task behaviour, time sharing and other scheduler properties.

The Goal

For the experiments, we applied the scenario-based GQM methodology introduced in Sec-

tion 3.1.3. Like in the original GQM approach, goals are refined by a purpose, an issue,

an object, and a view point. In the following, we describe the goal for the performance

evaluation of different time sharing properties for GPOS schedulers.

Goal: Purpose Identify

Issue (mutual) performance influences

Object of different time sharing properties

Viewpoint from the user’s point of view.

The goal addresses the different performance influences of time sharing properties and their

mutual dependencies. For example, fair run queues profit from priority-dependent timeslices.

With this goal, we specifically target the user’s perspective on software performance, i.e.,

externally observable performance metrics such as response time and throughput. The util-

isation of resources, even though it is interesting for performance analysis, is only slightly

affected by time sharing: The total amount of work a resource processes during a period is

not affected by the time sharing policy.

In the following, we motivate the questions listed in Table 4.1. In Section 4.1.2, we describe

the corresponding scenarios, metrics, hypotheses, and results.

Motivation of the Questions

Timeslices Most GPOS schedulers use timeslices in combination with a variant of round-

robin (RR) to share the available processing time among competing tasks. In software

performance prediction, processor sharing (PS) is used to approximate such behaviour. PS

abstracts from timeslices and cyclic resource assignment. From a theoretical point of view,

it uses timeslices and context switch times that are infinitely close to zero [LZGS84]. As

a result, processing time is equally distributed among competing tasks. However, GPOS

schedulers may use strongly varying timeslice sizes to share processing time among tasks. If

the requested processing times are smaller than a single timeslice, PS may not approximate

task response times accurately. Furthermore, the effect of timeslices on response time distri-

bution needs to be evaluated. Therefore, Question TS.1 (Table 4.1) addresses the influence

of timeslices.

4.1. Time Sharing 73

Performance�influences�of�different�time�sharing�properties�from�the�user's�point�of�view
TS.1 TS.2 TS.3

Questions To�what�extent�do�timeslices�
influence�task�response�
times?

Under�which�conditions�do�
fair/unfair�run�queues�
influence�software�
performance?

How�do�priorities�influence�
the�processing�time�of�tasks�in�
fair�run�queues?

Experiment Simulation Measurement Measurement

Scenarios ContinuousLong
ContinuousShort
ExponentialShort

Closed
Open

Close
Medium
Shifted
Far

Metrics Response�Time�and�Throughput

Hypotheses Timeslices�influence�the�
variance�but�not�the�mean�of�
response�time�distributions.

Fair�run�queues�have�a�major�
influence�for�contiuous�load.�
Otherwise�they�yield�similar�
performance�as�unfair�ones.

For�fair�run�queues,�priorities�
have�a�major�impact�on�
performance.

Table 4.1.: GQM plan – questions and expectations concerning the performance influence of
time sharing policies.

Run Queues GPOS schedulers use different kinds of run queues to manage tasks that are

waiting to be processed. In this section, we focus on the effect of fair and unfair run queues

as implemented in the Linux 2.6 and Windows operating system series. Unfair run queues

assign (almost) all processing time to the tasks with the highest priority. This policy can

lead to starvation of lower priority tasks. By contrast, fair run queues are meant to prevent

starvation and to assign a fair share of processing time to all tasks. In addition, Linux 2.6

scales timeslice sizes according to task priorities. This policy can directly affect task response

time and throughput.

However, the scheduler may prefer I/O-bound and interactive tasks, to ensure a good

overall system utilisation. This behaviour may countervail a run queue’s fairness. Thus,

tasks with lower priorities benefit only under certain conditions from the run queue’s fairness.

Question TS.2 (Table 4.1) addresses the influence of different run queue types.

Priorities Fair scheduling assigns larger timeslices to tasks with higher priorities in order to

grant a larger share of processing time to them. However, the assignment of timeslices is not

linear (cf. Table 2.2 on page 34). The actual share of processing time depends on the task’s

priority as well of the priorities of all concurrently running tasks. Due to the non-linearity,

small changes of task priorities may lead to large differences in the observed performance.

While the (pure) effect of priority-dependent timeslices may be derived from Table 2.2, its

interactions with other scheduler properties require further investigation. Question TS.3

(Table 4.1) addresses the influence of priorities.

74 4. Single Processor Scheduling

Experiment Design

The experiment design is focussed on the type of workload (open/closed), task priorities,

and the performance metrics response time and throughput. The behaviour of a task is

parametrised over the demanded processing time as well as its delay or inter-arrival time.

<<InternalAction>>
Delay

<<InternalAction>>
Process

<<ParametricResourceDemand>>
processingResourceType = DelayResource
Specification = Delay.VALUE ms

<<ParametricResourceDemand>>
processingResourceType = CPU
Specification = CpuDemand.VALUE ms

Experiment
finished?

Yes

No

Task Response Time

(a) Closed workload.

<<InternalAction>>
Arrival

<<InternalAction>>
Process

<<ParametricResourceDemand>>
processingResourceType = DelayResource
Specification = InterArrivalTime.VALUE ms

<<ParametricResourceDemand>>
processingResourceType = CPU
Specification = CpuDemand.VALUE ms

Experiment
finished?

Yes

No

Task Response Time

(b) Open workload.

Figure 4.1.: Task behaviour for closed and open workloads of the experiment.

Open and Closed Workload Figures 4.1(a) and (b) depict the task behaviour for closed

and open workloads in an RD-SEFF-like notation. RD-SEFFs are well-suited for this pur-

pose, since they allow the parametrisation of resource demands (cf. Appendix A). The

behaviour of closed workloads includes two internal actions executed in a loop. The first

action (Delay) loads a delay server (DelayResource) that defers the task’s execution for

Delay.VALUE milliseconds. Internal action Process then requires CpuDemand.VALUE mil-

liseconds of processing time on the processing resource CPU. The experiment is finished when

either enough measurements have been taken, a certain time period has been exceeded, or a

given confidence level has been reached (see [Jai91]) for details).

For open workloads, tasks behave analogously. The control flow is split after internal

action Arrival. The first part executes internal action Process while the second part checks

whether the experiment should be continued. Accordingly, it waits for the next arrival or

4.1. Time Sharing 75

finishes the experiment. The value of input parameter InterArrivalTime determines the

inter-arrival time of the open workload.

For simulation, resource demands are directly linked to requests to the corresponding

resources that defer the execution of the tasks. However, it is necessary to mimic the resource

demands in order to measure the performance on real systems. Therefore, a set of algorithms

typically used for CPU benchmarks, such as SPEC CPU2000 [Cor00, Hen00], generates the

necessary load on the CPU. A detailed description of the resource demand generation can

be found in [BDH08] and Appendix C.3. Furthermore, tasks are put to sleep to model the

specified delays, e.g., by calling the Java function Thread.sleep(). Appendix C.2 describes

the effect of this approach in more detail and discusses how accurate delays can be achieved.

Metrics The scenarios presented above require an exact definition of the performance met-

rics response time and throughput. For response time, the exact measurement points can

strongly influence the results (see [Koz08b] for a discussion of different views on response

time). Figure 4.1 depicts the start- and endpoints of response time measurements for open

and for closed workloads. In the case of closed workloads, response time corresponds to the

time for processing internal action Process. For open workloads, the response time includes

the time passed from issuing a request until its completion. Thus, measurements start at

the branch of the control flow and end at internal action Process. In addition to the pure

(possibly contented) processing time, the measurement includes initial delays caused, for

example, by other tasks occupying the CPU.

Throughput (X) is defined as the number of Process actions (N) completed during the

entire experiment time (T), i.e., X = N/T [LZGS84].

Nice-level
Windows Linux

19 4 139
15 4 135
10 6 130

5 6 125
0 8 120

-5 10 115
-10 10 110
-15 13 105
-20 24 100

Priority

Table 4.2.: Mapping of nice-levels to operating system priorities.

Priorities To evaluate and quantify different time sharing properties, it is necessary to

compare and to relate task priorities independent of the underlying operating system. In

this section, we use nice-levels [BC05] for this purpose. Nice-levels are mapped directly

76 4. Single Processor Scheduling

to priorities and are available for most Unix-like systems. Furthermore, third party tools

implement a mapping of nice-levels to priorities for all variants of the Windows operating

system series [RH]. Table 4.2 shows the mapping of nice-levels to native operating system

priorities. For Windows operating systems, it is necessary to map a set of nice-levels to the

same priority. For the experiments presented here, we refer to nice-levels instead of operating

system priorities and use both terms interchangeably.

4.1.2. Answering the Questions – Scenarios, Metrics, Hypotheses, and

Results

In the following, we define scenarios, metrics, and hypotheses in order to answer the questions

raised in the beginning of this section. The experiment results for the first question (TS.1)

are determined by means of simulation. For the other two questions, measurements of a

Linux 2.6.22 and Windows XP system provide the necessary results.

Question TS.1: To what extent do timeslices influence task response times?

Question TS.1 (cf. Table 4.1) is motivated by the abstraction of PS from RR, which is widely

used in performance prediction. It targets the influence of time slices and round robin on

the response time distribution’s variance. It specifically evaluates the mutual influences of

processing times, timeslice sizes, and the number of requests in the system.

Scenarios The evaluation of Question TS.1 includes two major scenarios. The first scenario

employs a closed workload with zero think time, with varying request sizes, and with different

numbers of concurrent tasks. We focussed on influences of timeslices on response time.

The demands of the tasks are either smaller than a single timeslice or significantly larger.

Timeslices can be expected to have different effects on response time distribution for both

cases. Furthermore, the closed workload keeps the processor’s load constant and avoids

disturbances by an increasing number of tasks in the system.

The second scenario resembles an open workload with short demands and an exponentially

distributed inter-arrival time. We focussed on the influence of a fluctuating number of tasks.

Since the influence of scheduling policies on response time is largest for open workloads and

a high resource utilisation [SWHB06], the scenario is meant to point out differences and

similarities of the scheduling policies with respect to response time.

Table 4.3 summarises the scenario configurations. The values given for the inter-arrival

time and delay determine the valuation of the input parameters InterArrivalTime and

Delay of the RD-SEFFs for open and closed workloads in Figure 4.1. Similarly, column

4.1. Time Sharing 77

Name Workload Delay Number of Tasks CPU Demand
ContinuousLong closed 0 ms 2, 16, and 32 450 ms
ContinuousShort closed 0 ms 2, 16, and 32 20 ms

Inter-Arrival Time
ExponentialShort open ExponentialDist(1 / 21) 20 ms

Table 4.3.: Evaluation scenarios for Question TS.1.

CPU Demand stands for the valuation of input parameter CpuDemand. For the closed

workload scenarios, the number of tasks is 2, 16, or 32. The inter-arrival time of scenario

ExponentialShort is exponentially distributed with a rate of λ = 1/21, i.e., with a mean of

21 ms. Little’s Law states that the utilisation s of a server with a mean service time E[S]

and an arrival rate λ is given by u = λ ∗ E[S], for queueing networks with an open work-

load. Therefore, the inter-arrival time and resource demand given in this scenario lead to a

utilisation of u = 1/21 ∗ 20 = 0.952 for the CPU. The combination of short requests, open

workload, and high resource utilisation emphasises the (possible) differences of scheduling

policies.

Response time is the only metric considered to answer Question TS.1. Special empha-

sis lays on its distribution. Thus, the standard deviation (sdRT[t]) and the coefficient of

variation (covRT[t]) are provided in addition to the mean value (ERT[t]). The coefficient of

variation aggregates the standard deviation and mean into a single value, i.e., the coefficient

of variation is defined as the standard deviation of a data set divided by its mean.

Hypotheses For the scenarios ContinuousLong and ContinuousShort, Hypothesis TS.1.a

expects the mean response time of each task to be the product of the number of concurrent

tasks (N) and the request size. For scenario ContinousLong (ContinousShort), let tl (ts)

be a task and Nl (Ns) the number of tasks, then

ERT[tl] ≈ Nl ∗ 450 ms and ERT[ts] ≈ Ns ∗ 20 ms (TS.1.a)

In other words, PS, which assigns each task 1/Nth of the processor, is assumed to accu-

rately predict the scenarios’ mean response times. However, Hypothesis TS.1.b (see Ta-

ble 4.1) expects the coefficient of variation for ContinuousShort to be much larger than for

ContinuousLong. Let tl (ts) and Nl (Ns) be defined as above, then

covRT[ts] � covRT[tl] for all Ns = Nl. (TS.1.b)

78 4. Single Processor Scheduling

Furthermore, Hypothesis TS.1.c expects the variation of the response time distribution to

increase with the number of concurrently executing tasks for both scenarios. Let tN be a

task for a scenario with N concurrent tasks, then

sdRT tN < sdRT tN+i for all i > 0. (TS.1.c)

As a consequence, TS.1.d considers PS only a good approximation of RR-based time sharing

policies if the coefficient of variation is below 0.2, i.e., the majority of observed response

times deviates at most by 20% from the mean response time:

covRT[ts] < 0.2 and covRT[tl] < 0.2 (TS.1.d)

For scenario ExponentialShort, Hypothesis TS.1.e expects FCFS, PS and RR scheduling

to yield the same mean response time. The results should only differ in terms of variance.

PS is expected to have the smallest standard deviation, followed by RR and then FCFS, i.e.,

let tfcfs, tps, trr be a task of scenario ExponentialShort with FCFS, PS, and RR scheduling

respectively, then:

ERT[tps] ≈ ERT[trr] ≈ ERT[tfcfs]

sdRT(tps) < sdRT(trr) < sdRT(tfcfs) (TS.1.e)

In the following, we present the results of the experiments and evaluate whether the

hypotheses listed above can be considered as valid.

Scenario

Continuous
Short 2 40 8,2 0,21

16 319 101,7 0,32
32 649 203,6 0,33

Continuous
Long 2 900 10,1 0,012

16 7199 125,1 0,017
32 14397 255,3 0,017

Number
of Tasks

Mean
[ms]

Coefficient
of Variation

Standard Deviation
[ms]

Table 4.4.: Characteristics of the measured response times for scenarios ContinuousLong

and ContinuousShort.

Results Table 4.4 summarises the results for scenarios ContinuousLong and

ContinuousShort. In all cases, the response time approximately equals the product

of the number of tasks and the resource demand as expected by Hypothesis TS.1.a. The

measured mean response time differs less than 1% from the expected result. In addition,

4.1. Time Sharing 79

the coefficient of variation is more than 10 times larger in scenario ContinuousShort

compared to ContinuousLong. While the mean scales linearly with the request’s size, the

standard deviation increases only slightly for long requests compared to short ones. The

similar standard deviation leads to large differences for the coefficient of variation and,

thus, supports Hypothesis TS.1.b. Furthermore, the standard deviations listed in Table 4.4

suggest an almost linear increase with the number of concurrent tasks independent of the

request size, which supports Hypothesis TS.1.c. In all cases, the coefficient of variation

is below 0.2 for scenario ContinuousLong and above 0.2 for scenario ContinuousShort.

Following Hypothesis TS.1.d, this suggests that PS sufficiently approximates the response

time distribution of long requests, while smaller requests are stronger affected by timeslices.

For the latter reason, Hypothesis TS.1.d has to be rejected.

100 500 900 1300 1700 2100 2500 2900 3300

Histogram

Time [ms]

D
en

si
ty

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

RR
FCFS
PS

Figure 4.2.: Comparison between the response time distribution of scenario
ExponentialShort for round-robin, first-come-first-served, and processor-
sharing.

Figure 4.2 depicts the simulated response time distribution for scheduling policies RR

(with a timeslice of 31.5 ms), FCFS, and PS. While RR and FCFS appear similar in the

histogram, the response time distribution of PS has a heavier tail. A comparison between the

mean response times of the three scheduling policies confirms this impression (cf. Table 4.5).

Scheduling Policy Mean Response Time Standard Deviation
RR 231.5 ms 208.4 ms

FCFS 254.7 ms 250.0 ms
PS 488.3 ms 491.4 ms

Table 4.5.: Simulation results for scenario ExponentialShort.

80 4. Single Processor Scheduling

The mean response time predicted by PS is about two times larger than the mean response

times predicted by RR and by FCFS. Newly arriving tasks delay the execution of all tasks

currently in the queue under PS scheduling. Thus, tasks currently waiting in the queue

complete their processing later and keep the load high for a longer time. When additional

tasks arrive within this period, the effect is amplified. The newly arriving tasks further

defer the tasks currently being processed. For FCFS (and RR in this case), newly arriving

tasks do not affect the tasks currently waiting in the queue, which can proceed without

disturbances. Thus, short periods of high load only affect the newly arriving tasks instead of

all tasks waiting in the queue. The mean response times of FCFS and RR scheduling differ

approximately 10% (23 ms). In comparison to PS scheduling, FCFS can be considered as a

good approximation of RR.

The results presented above lead to a rejection of Hypothesis TS.1.e, which expected

the means to be similar. Additionally, the ordering of the standard deviation differs from

TS.1.e’s expectation. In the results, RR has the least standard deviation directly followed

by FCFS. The standard deviation of PS is (similarly to the mean) approximately twice

as large. Furthermore, Hypothesis TS.1.e has to be rejected based on the results of sce-

nario ExponentialShort. The results emphasise the effect of scheduling policies on (mean)

response time also observed in [SWHB06].

To answer question TS.1, the relation between processing demands and timeslices of RR

scheduling can have a strong influence on response time. PS can be an appropriate abstrac-

tion for RR based time sharing strategies if the resource demands are several times larger

than the timeslices. For smaller resource demands, PS can lead to a large prediction error for

the mean response time as well as the variation of the predicted response times. The extent

of the error depends on the type of workload and the utilisation of the scheduled resource.

In the following experiments, we use resource demands that take significantly longer than

a single timeslice, to minimise the effect on response times for the succeeding questions.

Question TS.2: Under which conditions do fair/unfair run queues influence software

performance?

Fair run queues share the time between tasks according to their priority. However, operating

systems, such as Linux, implement mechanisms to circumvent a run queue’s fairness for I/O

bound and interactive tasks. Question TS.2 evaluates how the type of workload (open/-

closed) influences the behaviour of a run queue using measurements of the Windows XP and

Linux 2.6.22 operating systems. In the following, we present the scenarios, hypotheses, and

results of this question.

4.1. Time Sharing 81

Scenarios Two scenarios, called Open and Closed, provide the necessary data to answer

Question TS.2. Scenario Open uses a variant of the open workload in Figure 4.1(b) to

mimic the effect of competing interactive tasks. It simultaneously starts two tasks with

different priorities (low priority = -5 and high priority = 5) for each arrival. Both issue

a resource demand of 450 ms (CpuDemand.VALUE = 450) to the processing resource called

CPU. To exclude disturbing effects of an increasing number of tasks, the inter-arrival time

is set to 1 second (InterArrivalTime.VALUE = 1000). This workload generates two tasks

simultaneously and allows both to complete their resource demand before new tasks arrive.

Since both tasks start simultaneously, their response time allows to draw conclusions about

the share of processing time each task receives.

Scenario Closed uses closed workloads to generate a comparable load. It concurrently ex-

ecutes two tasks with different priorities. The higher priority task (th) requests no think time

(Delay.VALUE = 0) while the lower priority task (tl) waits for 450 ms after finishing a request

(Delay.VALUE = 450). Both tasks request a processing time of 450 ms (CpuDemand.VALUE

= 450) on the CPU. The priorities of tasks th and tl are set to −5 and 5, respectively. The

performance metrics, considered for tasks th and tl, are mean response time (ERT[t]) and

throughput (TP(t)).

Hypotheses For scenario Open, Hypothesis TS.2.a (cf. Table 4.1) expects fair and unfair

run queues to behave similar. In both cases, the higher priority task th suppresses the lower

priority task tl. Thus, the expected mean response time of task th is similar to the specified

resource demand of 450 ms. For task tl, the expected mean response time should increase

by 450 ms to 900 ms. Since task th suppresses tl, the latter has to wait for th to finish before

it can start execution.

ERT[th] ≈ 450 ms and ERT[tl] ≈ 900 ms (TS.2.a)

For scenario Closed, Hypothesis TS.2.b expects the lower priority task to starve under

unfair run queues. Due to starvation prevention mechanisms, low priority tasks receive a

small share of processing time so that a few requests may be completed. Due to the overall

preference of th over tl, Hypothesis TS.2.b expects the mean response time of tl to be larger

than 30 seconds and its throughput less than 3 tasks per minute. Task tl is explicitly not

expected to starve completely, since Windows grants a small fraction of processing time to

all tasks that could not run on the processor for more than 4 seconds.

82 4. Single Processor Scheduling

ERT[th] ≈ 450 ms and ERT[tl] ≥ 30 sec

TP(th) > 120 req/min and TP(tl) < 3 req/min (TS.2.b)

For fair run queues, processing time is distributed between competing tasks according to

their priority. Task th (priority −5) receives a timeslice of 500 ms while tl (priority 5) receives

75 ms. Thus, tl should receive approximately 13% and th 87% of the total processing time.

Hypothesis TS.2.c expects the following response time and throughput for th and tl:

ERT[tl] ≈ 1/0.13 ∗ 450 ms = 3450 ms and ERT[th] ≈ 1/0.87 ∗ 450 ms = 517 ms (TS.2.c)

Open Closed Open Closed

High (-5) 435 503 440 451
Low (5) 867 3822 892 50670

High (-5) 60 119 60 133
Low (5) 60 14 60 1

Linux Windows

Response Time [ms]

Throughput [req / min]

Table 4.6.: Mean response time and throughput for high and low priority tasks under open
and closed workload.

Results In the following, we present the results of the experiments for Windows and Linux.

Table 4.6 summarises the measured mean response times and throughput for fair (Linux) and

unfair (Windows) run queues. The resulting response times only exhibit a slight distribution,

making the mean values sufficient for an interpretation of the results.

The results support all hypotheses of TS.2. For open workloads (scenario Open), the

use of fair and unfair run queues does not affect the mean response time or throughput

(Hypothesis TS.2.a). As a consequence of this observation, I/O-bound and interactive tasks

can override the run queue’s fairness property. Section 4.2 evaluates this effect in more

detail. Furthermore, the measured response time of the high and low priority tasks are

slightly below expectation, e.g., 435 ms compared to the defined 450 ms. This effect is a

result of the employed resource demand generator that underestimates the computational

effort necessary to generate a load of 450 ms (see Appendix C.3).

For closed workloads (scenario Closed), unfair run queues suppress lower priority tasks.

The measured mean response time of task tl is (with more than 50 seconds) even longer than

expected in Hypothesis TS.2.b. Similarly, its throughput is close to 1 req/min. Furthermore,

the higher priority task achieves a throughput of 133 req/min and a mean response time

of 451 ms as expected in TS.2.b. In the case of fair run queues, lower priority task tl

4.1. Time Sharing 83

receives a slightly smaller share of processing time than expected (10.5% instead of 13%).

Its mean response time is about 11% larger (3.8 sec compared to 3.4 sec) than expected in

Hypothesis TS.2.c.

In this section, we have evaluated the conditions under which fair run queues can influence

software performance. Based on the observation presented here, the next question addresses

the mutual influences between task priorities and shares of processing time.

Question TS.3: How do priorities influence the processing time of tasks in fair run

queues?

The results of Question TS.2 demonstrate that fair and unfair run queues can affect task

response times and throughput. The scheduler of Linux 2.6.22 combines a fair run queue

with priority-dependent timeslices, where a task’s timeslice increases with its priority. The

results of question TS.2 suggest that the share of processing time received by tasks can be

computed from their timeslice sizes. Question TS.3 targets the validity of this assumption.

It combines tasks that differ with respect to think time and priority to evaluate how these

properties influence task response time and throughput.

Scenarios In the following scenario, we compare the performance of a higher priority task

th and a lower priority task tl for varying priorities under closed workloads, to evaluate the

mutual influences of priorities and fair run queues. Both tasks th and tl demand a processing

time of 500 ms (CpuDemand.VALUE = 500). While task th has a zero think time (Delay.VALUE

= 0), task tl delays its execution for 500 ms once it finishes a request (Delay.VALUE = 500).

Due to the long delay of 500 ms, the Linux scheduler classifies task tl as interactive [TCM06].

The priorities of both tasks vary to determine the mutual influence of priorities, timeslices,

and interactivity on software performance. Let ph be the priority of task th and pl the

priority of task tl. The four scenarios listed in Table 4.7 evaluate the influence of priorities on

performance for fair run queues. Based on these scenarios, we define the following hypotheses.

Name Distance ph pl

Close 5 0 5
Medium 10 0 10
Shifted 10 -5 5
Far 30 -15 15

Table 4.7.: Scenarios for Question TS.3.

84 4. Single Processor Scheduling

Hypotheses Hypothesis TS.3.a expects the high and low priority tasks to receive processing

time according to their timeslice sizes. For example, task tl receives timeslices of 75 ms while

task th receives 100 ms in scenario PrioritySmall. These timeslices lead to 43% and 57%

shares of processing time for tasks tl and th, respectively. To get the exact shares, both tasks

must compute without interruption. Since task tl additonally imposes a delay, the shares can

only be considered as lower and upper bounds. Given these shares, the expected response

time bounds can be estimated:

ERT[th] ≈ 500/0.57 ms ≈ 872 ms and ERT[tl] ≈ 500/0.43 ms ≈ 1163 ms .

Similarly, the throughput of both tasks can be estimated by:

TP(th) ≈ 120 ∗ 0.57 req/min ≈ 68 req/min and TP(tl) ≈ 120 ∗ 0.43 req/min ≈ 52 req/min

where 120 req/min is the maximum throughput for task processing times of 500 ms.

Scenario Throughput [req / min] Mean Response Time [ms]
TP(tl) (<) TP(th) (>) ERT[tl] (>) ERT[th] (<)

Close 52 68 1163 872
Medium 40 80 1500 750
Shifted 17 103 3833 575
Far 4 116 14500 518

Table 4.8.: Expected response times and throughputs of Hypothesis TS.3.a.

Table 4.8 lists the expected outcome of all four scenarios. Due to the omission of tl’s delay

in the computation, they can be considered as upper (<) and lower (>) bounds for both

tasks. Hypothesis TS.3.a expects the actual response times and throughputs to improve for

task th and to degrade for task tl. In the following, we present the measurements of all four

scenarios.

Results Figure 4.3 summarises the measurements for all four combinations of priorities.

The results of scenarios Medium, Shifted, and Far support Hypothesis TS.3.a. However,

Hypothesis TS.3.a does not hold for scenario Close. The mixture of waiting time and pro-

cessing time for task tl leads to the Linux scheduler overriding its run queue’s fairness. After

the waiting period, task tl receives a higher dynamic priority than task th and completely

suppresses th. This increase of tl’s priority leads to a mean response time of 500 ms for tl and

to a mean response time of about 1000 ms for th. In this scenario, tl’s behaviour changes the

order of priorities for both tasks. Executing the same experiments without a delay for task

4.1. Time Sharing 85

1,0 0,7 0,6 0,50,5
1,6

4,2

15,5

Close Medium Shifted Far

Priorities (High, Low)

Response Time [sec]
High Priority Task Low Priority Task

(a)

60

92
107

116

60

29
12 4

Close Medium Shifted Far

Priorities (High, Low)

Throughput [req/min]
High Priority Task Low Priority Task

(b)

Figure 4.3.: Response time and throughput of task th and tl with different priorities for the
fair run queue with priority-dependent timeslices implemented under Linux.

tl yields the expected behaviour. However, the results for scenario Close already point out

the need for a detailed evaluation and modelling of interactivity policies (cf. Section 4.2).

A priority distance 10 suffices for the Linux scheduler to enforce a fair share of processing

time. The measured response time and throughput follow the expected trend. Like expected

in Hypothesis TS.3.a, the throughput and response time of th improve with a larger difference

in priorities while tl’s performance degrades. Additionally, the shift of priorities from scenario

Medium to scenario Shifted affects the response time and throughput of task th and tl.

A comparison between the measurements (and estimates) of all four scenarios shows that

at a certain point th benefits only little from the additional processing time, while tl suffers

heavily. For example, th’s response time decreases by less than 10% from 559 ms to 514.4 ms

from scenario Shifted to scenario Far. Task tl is strongly penalised as its response time

almost quadruples from 4 seconds to more than 15 seconds.

Conducting the same experiments for unfair run queues (Windows XP) yields the expected

results. The actual priorities do not affect task response times and throughput. For all

cases the results are similar to the results of scenario Closed. Due to the suppression of

tl by th, task tl‘s mean response time is approximately 56 seconds. It only receives little

processing time from the starvation prevention mechanism implemented by the Windows

operating system scheduler. By contrast, the mean response time of task th approximates

its uninterrupted processing time (502 ms). The throughput is with 119.6 req/min almost

at the possible maximum throughput of 120 req/min. In the following, we continue the

discussion of the results of questions TS.1 to TS.3.

86 4. Single Processor Scheduling

Discussion

The questions and experiments that have been conducted to answer Questions TS.1 to TS.3

evaluated the mutual influences of timeslices, fair/unfair run queues, priorities and task

behaviour. The results demonstrate that a task’s behaviour can significantly affect the

influence of a run queue’s fairness. Especially the Linux 2.6.22 scheduler does not enforce

fairness as strictly as expected. When a task spends a larger fraction of time waiting, fair

run queues appear similar to their unfair counterpart with respect to task response time and

throughput. However, the performance influence of both run queue types strongly differs if

tasks spend most of their time processing. Fair run queues especially affect the performance

of lower priority tasks, which risk starvation under unfair run queues.

The priority assigned to each task influences the throughput and response time of all

tasks for fair run queues in combination with priority-dependent timeslices. A task’s priority

determines the share of processing time it receives, relative to its competitors. The results

for question TS.3 suggest that priorities have to be chosen carefully. At a certain point,

assigning a higher priority to a task yields only little benefit, while lower priority tasks are

heavily penalised.

A continuous, closed workload where processing time and delay are well-balanced gives

further insights in the interdependencies of task behaviour, run queues and priorities. If the

priorities of the two competing tasks are close, the delayed task preempts the continuous

one. This effect vanishes when the distance of the priorities increases. The Linux scheduler’s

interactivity handling classifies the continuously processing task as compute-bound and,

hence, reduces its dynamic priority. By contrast, the task that is delayed is classified as

I/O-bound and interactive. Therefore, it receives a higher dynamic priority. The increase

leads to a change in the order of task preference if priorities differ only slightly.

The unfair run queues implemented in the Windows scheduler yielded the expected results.

Unfair run queues suppress lower priority tasks for the sake of higher priority ones. To prevent

starvation, Windows assigns a very small fraction of processing time to lower priority tasks.

The main purpose of this behaviour is to prevent priority inversion.

4.1.3. The MOSS Prediction Model for Scheduler Time Sharing

In this section, we introduce MOSS’ CPN model for performance-relevant time sharing prop-

erties which have been identified in the previous section. We enhance the model presented

in Section 3.2.3. For this purpose, we focusse on the subnet of transition Schedule (cf.

Figure 3.9). First, we give an overview of the scheduler’s overall behaviour followed by a

detailed description of the run queue, task processing, and task preemption. The description

includes the modelling alternatives for each variation point (cf. Section 3.2.2).

4.1. Time Sharing 87

Overview

�������
��������	

����	

�	���������	

�	���

����	

�����	��

�������

������

�����������

���������

������������� ������

�	����	

�	����	
��� �

!"

��#��������$���

�		�	

�		�	
��� �

%'��(��%�))
%'��(��*

�	����	
��� �

�������������

����	
 �	���������	

��������	

�		�	
��� �
��#�������

Figure 4.4.: Schematic overview of the scheduler’s behaviour.

Figure 4.4 provides an overview of the scheduler’s behaviour. It depicts the CPN underly-

ing substitution transition Schedule in Figure 3.9. The depicted CPN schematically models

the interactions of subnets Process, RunQueue, and Return. In the following, we describe

the behaviour of the scheduler’s CPN model in an abstract fashion. Details on the behaviour

of each subnet follow in the next subsections.

The scheduler model accepts requests (TASK DEMANDs) that require processing. Whenever

the run queue assigns a task to a processor, its remaining demand is reduced by the time it

spends processing. However, it may be preempted and returned to the run queue during its

execution.

Transition Process communicates with the the task’s behavioural model (i.e., the RD-

SEFF) via places Request and Response. Whenever a task requires processing time on

the scheduled resource it puts a TASK DEMAND token on place Request. Transition Process

tracks the remaining processing time and notifies the behavioural mdoel as soon as its request

is finished by putting the task’s identifier (TASK ID) on place Response. To determine the

processing time received by a task, transition Process continuously monitors place Running.

This place contains the currently executing tasks for each processor. Figure 4.4 shows two

idle tasks (idle 1 and idle 2) running on processors 1 and 2, respectively. The idle tasks

on place Running represent available processors. Whenever a task releases its processor, a

corresponding idle task takes its place.

Furthermore, transition Process manages the passage of time within the scheduler subnet.

Following the modelling of time in CPN’s, it defers the availability of tokens on the places

88 4. Single Processor Scheduling

Response, and Preempted. When a task’s timeslice expires, transition Process puts the

identifier of its processor (CPU ID) on place Preempted and, thus, notifies transition Return

to remove the task from the processor. Transition Return removes the task’s token from place

Running and enqueues it in the list of incoming tasks of the run queue (place Incoming).

The run queue (transition RunQueue) is responsible for assigning tasks to (idle) processors

for execution. The task that has been chosen replaces the idle task’s token on place Running

and starts a new scheduling cycle.

Listing 4.1: Basic data types for time sharing.

colset PRIORITY = INT ;
colset TIMESLICE = INT ;
colset DEMAND = INT ;
colset CPU ID = INT timed ;
colset TASK ID = INT timed ;

colset TASKDEMAND = product TASK ID ∗ DEMAND timed ;
colset SCHED TASK = product CPU ID ∗ TASK ID ∗ PRIORITY ∗ TIMESLICE timed ;
colset SCHED TASK LIST = l i s t SCHED TASK;
colset PRIORITY TIMESLICE = product PRIORITY ∗ TIMESLICE ;

colset RUNQUEUE = l i s t SCHED TASK;
colset CPU RUNQUEUE = product CPU ∗ RUNQUEUE;

fun i d l e cpu = (cpu , IDLE TASK ID , 0 , 0) ;

Processing of Demands

The processing of resource demands requires the scheduler model to keep track of the re-

maining work for each task and its current state from the scheduler’s perspective (e.g., the

remaining timeslice). Tokens represent tasks within the model. MOSS uses the two distinct

colour sets SCHED TASK and TASK DEMAND (cf. Listing 4.1) to represent the information neces-

sary for the scheduler model and, thus, distinguishes the internals of the scheduler behaviour

from the task’s behaviour. A TASK DEMAND and a SCHED TASK token, which refer to the same

task, can be joined by their unique identifier (TASK ID) (identifier matching pattern and

identifier manager pattern, cf. Section B.6). The TASK DEMAND allows MOSS to keep track

of a task’s remaining demand, while SCHED TASKS provides the necessary data for scheduling.

Figure 4.5 depicts the CPN describing substitution transition Process. Incoming demands

arrive on place Request and are moved to the subnet’s internal place Demanding, which

manages all demands and their subsequent processing. The demand processing directly

communicates with the run queue via the places Running and Preempted. Whenever a task

demands processing time (TASK DEMAND token on place Demanding) and receives a processor

4.1. Time Sharing 89

�������	��
���
�����������	���	�

�������	��
�
������

��	�	���	�

�	��	���	�������������

��	��	���	������������

�������	��
���
����������

��	�	���	�

�������	��
���
���������

��	�	���	�

��	�	���	�

������

�	���	�������������

�
����

�	���	������������

���
��
�������

!�"����
#� $%�&'()+%,(

!�������
-�� $%�&'#(

!�����

!����� $��.�

/0�	���/���
/0�	���1

�23)('$%�&

�
�����	
�
�����	�2�4 2�4'#(

(���	��

$%�&'()+%,(

�
�����	�2�4

!����� $��.�

-��

#�

Figure 4.5.: Subnet of transition Process – the processing of resource demands.

(corresponding SCHED TASK token on place Running), the task may either finish processing

its demand within its remaining timeslice (transition Finish is enabled) or it is preempted

(transition Preempt is enabled). In the first case, MOSS puts the task’s identifier (TASK ID)

on place Response and notifies the task’s behavioural model that its demand has been

processed. The availability of the token for firing is deferred until the remaining demand’s

time passed. The task’s timeslice is further reduced by the remaining demand. At this

point, the task still occupies the processor even though its processing demand finished. This

strategy allows the task’s behavioural model to issue new demands without interruption,

resembling the behaviour of real systems. When preemption is necessary, MOSS reduces

the demand of the interrupted task by the remaining timeslice. Furthermore, it initiates

the task’s processor freeing by placing the processor’s identifier on Preempted. The actual

preemption is deferred by the task’s remaining timeslice. Next MOSS needs to return the

preempted task to the run queue and reset its timeslice as described in the following.

Returning Preempted Tasks

Once a task is preempted, transition Return (introduced in Figure 4.4, detailed view in

Figure 4.6) is responsible for returning the task to the run queue and resetting its timeslice.

Its subnet can vary with respect to the assignment of time slices, which can either be fixed or

priority-dependent. In the case of fixed timeslices (Figure 4.6(a)), transition Reset simply

90 4. Single Processor Scheduling

�������	
��������
�����
����
��

�������	
��������������
�
	�
	�����
����
��

����������

	
��
���
������������

�
���� 	
��
���
�
����

	
��
�� �
����

�

���

������

	

��������������

������

��������
��������������������������

�������
������������

���������
��������� ������������ ���

�������	
���	����	�
��	����	�����������

!"��#� ! $$
!"��#� %

��#� ���

&���'��'����'()

������������
���������

&���' ��' ����'
�	
���	����)
**��������

��������

������������������

� �!"#�$##�%%
� �!�&�'$#�%%
� �!�$�'(#�%%
)))
� �!"�**#�%%
� �!��*"#�%%
� �#��##�%%
� ���&+�%%
� �"�&#�%%
)))
� ��$��#�%%
� ��&�+�

���

������ ��������
��������������������������

�������
������������

���������
��������� ������������ ���

��#� ���

&���'��'����'()

&���' ��' ����'

**��������

��������

���������)
!"��#� ! $$
!"��#� %

��������������

������

���������

	

Figure 4.6.: Assignment of fixed and priority-dependent timeslices.

assigns a fixed value (TIMESLICE) to the task’s timeslice. For priority-dependent timeslices

(Figure 4.6(b)), the tokens on place TimesliceForPriority map each task priority to an

individual timeslice. In this case, transition Return selects a task’s new timeslice according to

its priority (prio). When a processor’s identifier token (CPU ID) becomes available for firing

on place Preempted, transition Return replaces the task currently running on the processor

by the idle task. Furthermore, it resets the preempted task’s timeslice (as discussed above)

and inserts it into the list of tasks on place Incoming. These steps return the task to the

run queue and prepares it for further processing.

Run queues

Run queues can either employ a fair (Figure 4.7(a)) or unfair (Figure 4.7(b)) policy to assign

the available processors to competing tasks. Both policies differ mainly in their queueing of

tasks which are ready for execution (places Ready, Active, and Expired), while their overall

behaviour remains similar.

4.1. Time Sharing 91

All tasks arrive at place Incoming of the run queue. They have to be enqueued before any

other activity in the run queue can occur. This constraint guarantees that the run queue

selects the correct task out of all tasks ready for execution. The inhibitor arc pattern (cf.

Appendix B.6) ensures that all transitions (except Enqueue) are only enabled if the list of

incoming tasks is empty.

��

�������	�
�����

�����
�����������������	�

�������

��������
��������������������������

�������

���� !��"����#

����������

���� �$������ �� �!��
�����$���#%%!��"����#

�� ��� � � �� �
�� ��� � � �

���� !��"����#

&'

���� �����!� ����
�� �!�� �����$���#
!��"����#

���� �� �!��
�����$���#%%��������

��������

��$�(���

���� �� �!��
�����$���#
���� �� �!��
�����$���#

������
����������������������

)*��$�) ++
)*��$� ,

��� �����

��	
����	

������������	��
	�	��

���������	��
	�	��

&'

��� ���
	���-������

�������
����!�������

�������

���� ���� �� �!��
�����$���#%%!��"����#

����������	���� ������	�

���� �����!� ����
�� �!�� �����$���#
����!��"����#

����
����!��"����#

�� ���� � �
�� �!�� � �

�� ���� � �
�� �!�� � �

"#��

����������

���$� ��� ���$�$��

���$� �������$�$�� ���$� �������$�$��

���$� ��� ���$�$��

���� !��"����#

��������&'

����������
� %�&'�(��� ���$�$�) *
�&��%�+
%�&'�(�������$�$� , *�

� �

��������
��������������������������

�������	�
�����
���� �� �!��
�����$���#%%��������

��$�(���

���� �� �!��
�����$���
���� �� �!��
�����$���

������
����������������������

)*��$�) ++
)*��$� ,

##
�������

Figure 4.7.: Model for fair and unfair run queues.

While unfair run queues manage waiting tasks in a single queue for each processor (place

Ready), their fair counterpart distinguishes between active (place Active) and expired (place

Expired) tasks. While active tasks still have a remaining timeslice, expired tasks already

received their share of processing time. Thus, transition Execute only selects active tasks

for processing. If the timeslice of a task is finished, the task is inserted into the expired run

queue. Only if no active task remains, all expired tasks are reactivated (i.e., transiton Swap

fires). Incoming tasks (usually the ones that just used up their timeslice) automatically join

the expired queue. This behaviour resembles the fair time sharing of the Linux 2.6 scheduler.

92 4. Single Processor Scheduling

Priorities

The range and meaning of priorities strongly varies for different GPOS schedulers. Therefore,

MOSS models priorities by simple integer numbers. The priority of a task influences its

position in the CPU RUNQUEUE. In combination with function priorityInsert, it realises

the priority queue pattern (cf. Appendix B.6). In priority queues, the head of the queue

always contains the highest priority task. The order of priority values may be ascending

or descending depending on the operating system. These differences are considered by the

priority queues.

Preemption by Higher Priority Tasks

The CPN model presented so far does not reflect preemption of tasks by newly arriving ones

with higher priorities. Whenever a higher priority task arrives at a processor’s run queue, the

scheduler preempts the currently executing task and adds it at the beginning of its previous

run queue. It maintains the task’s current timeslice and resource demand.

To include such a behaviour into MOSS, it is necessary to interrupt the delay of tokens

on places Preempted and Response (see, for example, Figure 4.7). In CPNs, transitions

can override a token’s delay. A transition called Preempt (similar to transition Return in

Figure 4.6) is enabled as soon as the run queue contains a task with a higher priority than

the currently executing one. The transition returns the preempted task to the beginning of

its run queue and determines the new values for the task’s timeslice and processing demand.

So far, we assumed that tasks will not be preempted by higher priority tasks. MOSS ad-

justed timeslices and demands according to this assumption (subnet Process in Figure 4.5).

In order to maintain the correct state of a task after preemption, transition Preempt recom-

putes its remaining timeslice and processing demand for the current simulation time. Finally,

the transition returns the preempted task to the beginning of its previous run queue, so that

it can directly continue execution as soon as the higher priority task releases the processor.

4.1.4. Validation of MOSS’ Prediction Accuracy

In this section, we present a validation of MOSS’ time sharing model introduced in the

previous section. The validation compares the predicted response times and throughput of

MOSS with measurements of the Windows Server 2003 and Linux 2.6 operating systems.

In the validation, we target the prediction quality of fair run queues in combination with

priority-dependent timeslices (Linux 2.6) as well as unfair run queues with different task

behaviour and priorities (Windows operating system series). Therefore, we explicitly exclude

scenarios affected by a scheduler’s interactivity or starvation features.

4.1. Time Sharing 93

Goal: Purpose Assessment

Issue of MOSS’ prediction accuracy

Object for time sharing features

Viewpoint from the software architect’s point of view.

Similar to Section 4.1.1, the validation of MOSS’ prediction accuracy employs the scenario-

based GQM method introduced in Chapter 3.1. The differences between the predicted and

measured response times and throughput indicate the prediction accuracy. Analogously to

the experiments in Section 4.1.1, we focus on the performance metrics response time and

throughput. In the following, we refine the goal by questions specific to time sharing.

The questions target the mutual influences of a run queue’s fairness, the size of timeslices,

and task priorities. Thus, the first question (TS.V1, where “V” stands for validation) asks

whether MOSS accurately models the influence of fair and unfair run queues. The second

question (TS.V2) evaluates MOSS’ prediction accuracy of the mutual influences of priorities

and timeslices for fair run queues. Table 4.9 summarises the scenario-based GQM plan of

the validation introduced in the following.

TS.V1 TS.V2
Questions Does MOSS accurately predict

the effect of fair/unfair run
queues?

Does MOSS accurately predict the
mutual influence of priorities and
timeslices?

Scenarios Medium
Open

Medium
Shifted
Far

Metrics

Hypotheses

Prediction Error for Response Time and Throughput

MOSS predicts the performance
of all tasks with an error less than 5%

MOSS' Prediction Accuracy for Time Sharing Features

Table 4.9.: GQM plan for the validation of time sharing.

Question TS.V1: Does MOSS accurately predict the effect of fair/unfair run queues?

Question TS.V1 targets the influence of fair and unfair run queues in combination with prior-

ities on response time and throughput. To assess MOSS’ prediction accuracy, the predictions

for scenarios Medium and Open (cf. Section 4.1.1) are compared to measurements.

We chose the relative prediction error of the mean values to answer the questions above.

For any performance metric m, the relative prediction error is defined as follows. Let Ep[m]

be the predicted and Em[m] the measured mean, then Error(m) is:

Error(m) =
|Ep[m] − Em[m]|

Em[m]
∗ 100

The prediction error is always given relative to the mean value of the measurements.

94 4. Single Processor Scheduling

Hypotheses

Error(TP) < 5% and Error(RT) < 5% (TS.V1.a)

Error(TP(th)) � 5% and Error(RT(tl)) � 5% (TS.V1.b)

For both scenarios (Medium and Open), Hypothesis TS.V1.a expects a prediction error of

less than 5%. Since MOSS cannot predict the influence of starvaton prevention, Hypothe-

sis TS.V2.b further expects a large prediction error in an exceptive case (scenario Medium,

task tl, unfair run queue).

(a) Unfair run queue (Windows Server 2003).

Scenario Prediction Measurement Error [%] Prediction Measurement Error [%]
Open

th 451 440 2,4 60,0 60,1 0,2

tl 901 892 1,0 60,0 60,1 0,1

Medium
th 500,5 501,5 0,2 107,8 106,6 1,2

tl 360500 56300 540,3 0,2 1,0 83,3

Response Time [ms] Throughput [req / min]

(b) Fair run queue (Linux 2.6).

Scenario Prediction Measurement Error [%] Prediction Measurement Error [%]
Medium

th 0,65 0,65 0,3 92 92 0,3

tl 1,54 1,60 3,8 29 30 2,8

Shifted
th 0,56 0,56 0,1 107 107 0,1

tl 4,07 4,25 4,2 12 13 4,9

Far
th 0,52 0,51 0,4 117 116 0,4

tl 14,69 15,44 4,9 4 4 3,6

Response Time [ms] Throughput [req / min]

Table 4.10.: Comparison between measurements and predictions for fair and unfair run
queues with different priorities and timeslices.

Results The results summarised in Tables 4.10(a) and 4.10(b) do not reject Hypothe-

ses TS.V1.a and TS.V1.b. The prediction error for almost all scenarios is less than 5%. Task

tl in scenario Medium forms the only exception as expected by Hypothesis TS.V1.b for unfair

run queues. Scenario Open evaluates the performance prediction of lower priority tasks by

MOSS for unfair run queues. The differences between measurements and predictions lie

below 3% for throughput and response time of both tasks.

The remaining prediction error stems from caching and memory effects, from deviations

of the defined and actual resource demands of the test application (cf. Appendix C.1), and

4.1. Time Sharing 95

from influences of the Java virtual machine (e.g., garbage collection) not captured by the

prediction model. Section 5.3 further discusses the assumptions and limitations of MOSS.

Discussion The simulation lets higher priority task th fully suppress tl. Thus, tl starves

completely as expected by Hypothesis TS.V1.b, while the measurements suggest that lower

priority task tl still receives a small share of processing time. In the simulation, tl’s processing

time corresponds to the total duration of the experiment. The final cool down phase of the

simulation allows all remaining tasks to finish execution. Thus, tl’s total execution time

includes the experiment duration (360000 ms) plus its processing demand (500 ms). Usually,

the results do not include observations during the cool down phase. In this case, it clearly

demonstrates that tl does not receive any processing time during the experiment run.

The results do not reject Hypotheses TS.V1.a and TS.V1.b. MOSS reflects the behaviour

of fair and unfair run queues with the expected accuracy. The next question addresses the

mutual influences of priorities and timeslices under fair run queues.

Question TS.V2: Does MOSS accurately predict the mutual influence of priorities

and timeslices?

In the following, we focus on scenarios Medium, Shifted, and Far (cf. Section 4.1.2, Question

TS.3) in order to assess MOSS’ prediction accuracy for mutual dependencies of priorities and

timeslices. We explicitly exclude scenario Close, which is strongly affected by the scheduler’s

interactivity handling (Section 4.2 examines the interactivity features of GPOS scheduler).

Hypothesis

Error(TP) < 5% and Error(RT) < 5% (TS.V2.a)

Similar to Hypothesis TS.V1.a, Hypothesis TS.V2.a expects MOSS to predict the response

time and throughput of tasks th and tl with an error of less than 5% in the selected scenarios.

As a consequence of the hypothesis, MOSS should accurately predict the share of processing

time received by each task.

Results Table 4.10(b) summarises the predictions, measurements, and errors for all three

scenarios. MOSS fulfils the expectation of Hypothesis TS.V2.a in all cases. The prediction

accuracy for task th exceeds the expectation with an error of less than 1%. The prediction

error for lower priority task tl ranges from 4 – 5%.

Figure 4.8 depicts the measured and predicted response time (Figure 4.8(a)) and through-

put (Figure 4.8(b)) of lower priority task tl. For higher priority task th, response time and

throughput only change slightly and, thus, are not depicted here (cf. Table 4.10). In both

96 4. Single Processor Scheduling

1,5

4,1

14,7

1,6

4,2

15,5

Medium Shifted Far

Response Time tl[sec]
Prediction Measurement

(a)

29

12

4

30

13

4

Medium Shifted Far

Throughput tl [req/min]
Prediction Measurement

(b)

Figure 4.8.: Comparison between measurements and predictions for unfair run queues
(Linux).

figures, the predictions trace the trend of scenarios Medium, Shifted, and Far. With an

increasing difference in priorities, the response time of tl increases and less requests get

processed. The share of processing time received by each task can be computed from its

throughput. For example, in scenario Medium, higher priority task th receives 75% (predicted

and measured) of processing time while lower priority task tl receives 25% (predicted and

measured). MOSS estimates the share of processing time for all tasks with a deviation of

less than 1%.

4.2. Interactivity

The experiments and predictions of GPOS schedulers (with respect to time sharing fea-

tures) already point out the importance a scheduler’s interactivity features for software

performance. The mutual influences of task behaviour and a scheduler’s interactivity policy

require careful evaluation. In this section, we describe a series of experiments for the influ-

ence of interactivity policies as well as an extension and refinement of MOSS’ CPN model.

Analogously to Section 4.1, we employ the experiment-based derivation of performance mod-

els. First, we present an overview and motivation of the experiments (Section 4.2.1), then we

describe their design (Section 4.2.2) and, finally, we summarise their results (Section 4.2.3).

The proposed extension of MOSS (Section 4.2.4) is validated (Section 4.2.5) demonstrating

the prediction accuracy of MOSS for different interactivity policies of GPOS schedulers.

4.2. Interactivity 97

4.2.1. Experiments – Overview and Motivation

The experiments conducted in the scope of this section evaluate two distinct interactivity

policies realised in the Windows and Linux operating system series. The first policy (Win-

dows) is based on the resources a task uses. Therefore, it is called resource-dependent policy.

The second policy keeps track of a task’s history (Linux). Its decisions are based on the

previous behaviour of a task. Therefore, it is called history-dependent policy. Due to the

inherently different characteristics of both policies, the following evaluation defines separate

questions for both policies.

The Goal

Goal: Purpose Identify

Issue mutual performance influences

Object of interactivity features and task behaviour

Viewpoint from the user’s point of view.

For both interactivity policies, the behaviour of a task determines its dynamic priority and,

thus, its performance. The resources used determine the priority bonus of a task for the

resource-dependent policy. Therefore, the evaluation focuses on resource usage as the most

important factor of a task’s behaviour. For the history-dependent policy, the previous wait-

ing and processing times of a task determine its dynamic priority. Thus, the evaluation is

focussed on the influence of waiting times and of processing times on software performance.

The effect of both policies on externally observable performance metrics is of greatest inter-

est. The goal targets the identification of influences that affect the performance perceivable

by users of a system, e.g., response time. However, it is necessary to measure additional per-

formance characteristics in order to design a performance model that reflects the influence

of different interactivity policies on externally visible performance metrics correctly.

Motivation of the Questions

Resource-dependent Policy The resource-dependent interactivity policy increases the dy-

namic priority of tasks whenever they gain access to a resource. For example, when a task

acquires a semaphore, it receives a priority bonus of one for its remaining timeslice. Whether

the task benefits from the bonus (or not) depends on the other tasks running in parallel as

well as the size of the bonus, which varies with the type of resource (cf. Section 2.3.4).

Question IR.1 addresses the influence of different priority bonuses on software performance.

Whenever a task receives a priority bonus, the resource-dependent policy may reset its

timeslice. The reset enables interactive and I/O-bound tasks to finish short requests of

98 4. Single Processor Scheduling

processing without interruption. They can efficiently utilise external resources and maximise

the overall system utilisation. To prevent tasks from growing timeslices boundlessly (by

infinite series of resets), the resource-dependent policy considers a task’s previous priority

bonus as well as its remaining timeslice. However, the exact behaviour of the policy is not

documented. Question IR.2 addresses the influence of timeslice resets for different resources

on software performance. Furthermore, Question IR.3 evaluates the effect of time penalties

for a set of resource acquisitions on software performance.

History-dependent Policy The history-dependent policy determines the dynamic priority

of tasks based on their waiting time and processing times. It assigns bonuses to tasks with

long waiting times and penalties to tasks with long processing times. Question IH.1 addresses

the dependency of waiting and processing times and the dynamic priority of a task.

Additionally, the history-dependent policy explicitly distinguishes interactive and non-

interactive tasks. Tasks, which are classified as interactive due to their behaviour, are

preferred over non-interactive ones. Under Linux, for example, they circumvent the fair

policy of the run queue and, thus, are guaranteed to quickly receive processing time when

needed. Therefore, Question IH.2 addresses the conditions under which a task is classified

as interactive.

4.2.2. Experiment Design

In this section, we introduce the scenarios and metrics necessary to determine the influences

of a scheduler’s interactivity policy on software performance. For this purpose, it is desirable

to measure the time for which a task receives a priority bonus. However, this metric cannot be

measured directly. It requires specific scenarios for indirect measurement. In the following,

we first describe the scenarios that allow us to determine the influence of priority bonuses on

software performance and then introduce a specific performance metric called high priority

time (HPT) for its measurement.

Scenarios

In order to measure the influence of resource-dependent interactivity policies, the closed

workload scenario introduced in Section 4.1.1 needs to be extended by the acquisition and

release of different resources. Figure 4.9 illustrates the behaviour for the acquisition of

a semaphore. An AcquireAction and ReleaseAction surround internal action Process

and model the acquisition and the release of PassiveResource Semaphore. The measured

response time includes possible contention delays of the resource acquisition.

4.2. Interactivity 99

<<InternalAction>>
Delay

<<InternalAction>>
Process

<<ParametricResourceDemand>>
processingResourceType = DelayResource
Specification = Delay.VALUE ms

<<ParametricResourceDemand>>
processingResourceType = CPU
Specification = CpuDemand.VALUE ms

Experiment
finished?

Yes

No

Task Response Time

<<AcquireAction>> <<ReleaseAction>>

<<PassiveResource>>
Semaphore
Capacity = 1

Figure 4.9.: Closed workload with acquisition and release of a passive resource (Closed
Interactive).

The evaluation of different interactivity policies is focussed on three major scenarios which

only differ in type of resources used. All scenarios subsume two competing tasks ti and tn.

Task ti resembles an interactive or I/O bound task, which uses different resources. Its

behaviour is depicted in Figure 4.9. By contrast, task tn is non-interactive. It behaves

according to the closed workload specified in Figure 4.1(a).

Task Priority Workload
ti 8 Closed Interactive

tn 9 Closed

Table 4.11.: Priority and Workload of interactive task ti and non-interactive task tn.

Table 4.11 lists the workload and priority of both tasks. The priorities here are given

in terms of the target operating system (Windows), since the mapping of nice-levels to

operating system priorities is too coarse grained for this purpose. In the combination with

Windows’ unfair run queues, tn suppresses task ti due to its higher priority. However, if

ti receives a priority bonus, it may interrupt task tn. We use this effect to determine the

metrics of interest as described in the next section.

Name Acquisition Action Bonus Workload of Task ti
No Boost – 0 Closed

Semaphore Acquire semaphore 1 Closed Interactive

Network Read data from network device 2 Closed Interactive

Table 4.12.: Scenarios for the evaluation of different interactivity policies.

Table 4.12 lists the three scenarios considered in the scope of this evaluation, which mainly

differ with respect to the priority bonus and resource used. The scenarios allow a comparison

between the performance of tasks ti and tn in similar settings with different priority bonuses.

Scenario No Boost represents the neutral reference case for the resource-dependent inter-

activity policy. The evaluation of the history-dependent interactivity policy only uses this

100 4. Single Processor Scheduling

scenario, since the type of resource does not affect performance, but only the processing and

waiting times.

High Priority Time - A Performance Metric specific to Interactivity Policies

In the following, we introduces a performance metric specifically defined for the evaluation

of resource-dependent interactivity policies, called High Priority Time (HPT). This metric

refers to the time a task’s priority bonus keeps, i.e., the time its dynamic priority is larger

than its static. Since this value cannot be measured directly, we introduce a heuristic method

to estimate the time a task receives a higher priority in the following.

The scenarios above provide the necessary circumstances to indirectly measure the time

that a task keeps a priority bonus. The non-interactive task tn runs with a higher priority

than interactive task ti, more specifically prio(tn) = prio(ti) + 1. If ti receives no priority

bonus, it is delayed until task tn is finished since Windows uses an unfair run queue (cf.

Section 2.3.4). In other words, ti can only preempt tn if it receives a bonus. Thus, the delay

of tn quantifies the high priority processing time of ti. However, this metric can be very

vague, due to other disturbances of the measurement environment. The measurement of

the time a task computes without interruption as well as the time it waits for the processor

described in the following can yield much more accurate results.

Resource Acquisition

Processing Finishes

run time [ms]

dy
na

m
ic

pr
io

rit
y

10

9

8

7
0 31 62 93 124 155 186 217

Waiting
Interactive Task

Processing Waiting
Non-Interactive Task

Processing

Figure 4.10.: The effect of priority bonuses on processing and waiting times.

Figure 4.10 illustrates the effect of priority bonuses for scenario Network. As soon as

task ti acquires its data from the network device, it receives a priority bonus of 2. This

bonus increases its dynamic priority to 10 preempting task tn. When ti’s next timeslice

finishes (at 93 ms), the resource-dependent policy decreases its dynamic priority by 1. Now

ti and tn compete for the processor on the same priority level. In the depicted case, ti directly

4.2. Interactivity 101

continues execution until its next timeslice is finished and until its dynamic priority decreases

back to 8. Now, tn takes over the processor again. The completion of ti is deferred after

tn is finished. Thus, the high priority time of ti corresponds to the time tn is interrupted

as well as the time ti computes before tn’s execution is finished. The latter is the most

reliable measure for HPT, since the interruption time of tn suffers from similar disturbances

like its response time. In the following, we introduce a heuristic method to measure the

uninterrupted processing time as well as the waiting time of a task for scenarios No Boost,

Semaphore, and Network.

A simple heuristic algorithm estimates the time a task is processing and waiting. It

repeatedly measures the current system time using the most accurate clock (usually with

the resolution of the processor’s clock frequency). The heuristic estimates whether the task

lost the processor between two subsequent measurements or not, based on the time passed

between the measurements.

For this purpose, the heuristic measures the current time in a continuous loop. The

time spend processing between to subsequent measurements is much smaller than 1 ms (�
1 ms). Therefore, the heuristic assumes that the task has only been preempted if the time

passed between two measurements is larger than 1 ms. In all other cases, it is assumed that

the task could proceed without interruption. The heuristic aggregates continuous chunks

of processing time, i.e., processing times not interrupted by waiting periods are summed

up. Whenever a period of processing has been interrupted by a waiting period (i.e., two

subsequent measurements differ more than 1 ms), a new measurement of waiting times and

processing times is started.

Processing Time [ms] 31 31 31 12 4 31 31 31 31
Waiting Time [ms] 31 31 31 5 31 31 31 31

Table 4.13.: Sequence of processing times and waiting times measured.

The continuous measurement of subsequent processing and waiting times can yield a

sequence as shown in Table 4.13. The table contains the measurements for a scenario with

two tasks of equal priority under Windows Server 2003. The periods of processing and

waiting times identified by the heuristic correspond to the timeslice size of 31 ms. The only

disturbance (the sequence 12, 5, 4) is caused by an operating system interrupt. The sum of

the times measured in the disturbed period yields a full timeslice of 31 ms. The interruption

thus falls into the task’s processing time and is not caused by competing tasks.

102 4. Single Processor Scheduling

4.2.3. Answering the Questions – Scenarios, Metrics, Hypotheses, and

Results

In the following, we refine the questions of the GQM-plan using the scenarios and metrics

presented above. Furthermore, we present the results of the experiments that answer the

questions.

o

�policy

l 31 h)

Performance�influences�of�task�behaviour�and�the�resource�dependent�interactivity

IR.1 IR.2 IR.3
Question Do�priority�bonuse

software�perfo
s�influence�

rmance?
How�long�does

priori
�a�task�pro�t�from�a�
ty�bonus?

�Does�a�series�of�resource�
acquisitions�a�ect�performance?

Scenario No Boos
Semaph
Networ

t
re
k

Sem
Ne

aphore
twork

Semaphore

Metric Mean�Response�Time High�Priority�Time�of�ti High�Priority�Time�of�ti

Hypotheses The�response�t
d i h ldecreases�with�a� a

while�the�respo
of�tn�increa

ime�of�ti�

b
Either�ti�profits

31 (Srger�bonus�
nse�time�
ses.

�ms��(S
31�ms�to�6

from�

�between�0�ms�and�
h)

The�more�resouces�aquisitions�
th h t l t th i itemap ore �or�

2�ms�(Network)�
the�bonus.

the�shorter�lasts�the�priority�
bonus.

Table 4.14.: GQM plan for the resource-dependent interactivity policy.

Question IR.1: Do priority bonuses influence software performance?

The resource-dependent policy grants priority bonuses to tasks according to the resources

used. Question IR.1 targets the influence of these bonuses on software performance. In the

following, we describe the scenarios, hypotheses, and result quantifying their effect.

Task CpuDemand.VALUE Delay.VALUE

ti interactive 20 20
tn non-interactive 500 20

Table 4.15.: Parameter characterisations for tasks ti and tn.

Scenarios For all three scenarios (No Boost, Semaphore, and Network), Table 4.15 lists

the resource demands and delays of Question IR.1. All scenarios use similar values in order

to compare the influence of different bonuses on response times. The resource demand of

interactive task ti (20 ms) is smaller than a single timeslice (31 ms). This value should allow

ti to finish its demand within its bonus period. The significantly longer processing time (500

ms) of task tn delays the remaining demand of ti in case its boosted period does not suffice.

4.2. Interactivity 103

The delay of ti is clearly visible, due to the large demand of tn. The following hypotheses

compare the response times of tasks ti and tn for all three scenarios.

Hypotheses In general, Hypotheses IR.1.a and IR.1.b expect task ti to receive a larger

share of processing time with an increasing priority bonus. This effect becomes visible in a

decreasing response time for ti and, thus, an increasing response time for tn. Let tNonei , tSemi ,

tNeti be the interactive tasks of scenarios No Boost, Semaphore, and Network, respectively.

Similarly, tNonen , tSemn , tNetn denote the corresponding non-interactive tasks of those scenarios,

then Hypotheses IR.1.a expects:

ERT[tNonei] > ERT[tSemi] > ERT[tNeti] (IR.1.a)

Analogously, Hypothesis IR.1.b expects an increasing response time for tn:

ERT[tNonen] < ERT[tSemn] < ERT[tNetn] (IR.1.b)

The next paragraph presents the results answering the question.

Results Figure 4.11 shows the mean response times (Figure 4.11(a)) of tasks ti and tn

for all three scenarios as well as their distribution (Figures 4.11(b) – 4.11(e)). The results

conform to the expectation of Hypotheses IR.1.a and IR.1.b. For scenario No Boost, task ti

is always delayed by the full processing demand of tn (500 ms) resulting in a total response

time of approximately 520 ms. The histogram and the cumulative distribution functions

(Figures 4.11(b) and (c)) confirm this observation. Less than 3% of the requests deviate

from the expectation.

In scenario Semaphore, task ti receives a priority bonus of 1 for its remaining timeslice.

Thus, ti either finishes its demand within 20 ms (about 1/3 of all cases in Figure 4.11(b)

and (c)) if its remaining timeslice is larger than 20 ms or it is delayed otherwise (2/3 of all

cases). The bonus of ti only affects the response time of tn slightly. Compared to scenario

No Boost, its mean response time increases by about 10 ms.

In scenario Network, the priority bonus of 2 always allows ti to finish processing without

interruptions caused by tn. In addition to the shorter response time of ti, its throughput

increases from 2 req/sec (scenario No Boost) and 3 req/sec (scenario Semaphore) to about

23 req/sec. The increased load of ti causes a significant delay for tn leading to its mean

response time of 727 ms.

The results suggest that priority bonuses can have a large influence on software perfor-

mance, e.g., response time and throughput. The next question addresses the duration of

priority bonuses.

104 4. Single Processor Scheduling

522,1

345,3

21,85

508,5 517,2

727,1

0

200

400

600

800

No Boost Semaphore Network

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

Interactive Non-Interactive

(a) Mean response times of tasks ti and tn.

25 75 120 220 320 420 520

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

00
5

0.
01

0
0.

01
5

No Boost
Semaphore
Network

(b) Response time of task ti.

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

No Boost
Semaphore
Network

(c) Response time of task ti.

490 530 570 610 650 690 730 770

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

01
0

0.
02

0
0.

03
0

No Boost
Semaphore
Network

(d) Response time of task tn.

500 550 600 650 700 750

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

No Boost
Semaphore
Network

(e) Response time of task tn.

Figure 4.11.: Mean response times and their distribution for tasks ti and tn.

4.2. Interactivity 105

Question IR.2: How long does a task profit from a priority bonus?

Whenever a task receives a priority bonus, the resource-dependent interactivity policy may

reset its timeslice in order to finish its computation without interruption. Therefore, Ques-

tion IR.2 targets the duration of priority bonuses quantifying the effect observed in the

evaluation of Question IR.1.

Task CpuDemand.VALUE Delay.VALUE

ti interactive 100 100
tn non-interactive 500 100

Table 4.16.: Parameter characterisations for tasks ti and tn.

Scenarios The evaluation of Question IR.2 focusses on scenarios Semaphore and Network.

Scenario No Boost is omitted at this point, due to the absence of priority bonuses. Table 4.16

lists the valuations of the resource demand and delay for tasks ti and tn in both scenarios.

The 100 ms of processing time of task ti should capture the maximum possible high priority

time of 62 ms. The high priority time of task ti is the only performance metric relevant

for answering Question IR.2. In the following, we present the hypotheses and results of this

question.

Hypotheses The actual mechanisms for timeslice resets are vaguely documented. However,

existing documentation suggests that a task’s timeslice is always fully reset when acquiring

a resource for the first time during its current timeslice [SR05]. By contrast, the results

for Question IR.1 indicate that this statement may not hold. Therefore, we formulate two

different expectations for the evaluation’s outcome. The Hypothesis IR.2.a expects the

documentation to be valid and, thus, expects a HPT of full timeslices only for ti. Hypoth-

esis IR.2.b is more general and just assumes a certain range for ti’s HPT. More precisely,

IR.2.a expects a mean HPT of one timeslice for scenario Semaphore and a mean HPT of two

timeslices for scenario Network:

EHPT[tSemi] = 31 ms and EHPT[tNeti] = 62 ms (IR.2.a)

Hypothesis IR.2.b weakens the previous expectation. It (only) expects the high priority

time of task ti to increase by a timeslice (31 ms) for an additional bonus of 1. This means

that, for the scenario Semaphore, ti receives a bonus of one timeslice at most. Analogously,

the high priority time is expected to be larger than one (31 ms), but smaller than two

timeslices (62 ms) for the scenario Network:

0 ms < HPT(tSemi) ≤ 31 ms and 31 ms ≤ HPT(tNeti) ≤ 62 ms (IR.2.b)

106 4. Single Processor Scheduling

7.5 12 18 22 28 32 38 42 48 52 58 62

Histogram

Time [ms]

D
en

si
ty

0.
00

0.
02

0.
04

0.
06

0.
08

Semaphore
Network

(a)

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]
F(

t)

Semaphore
Network

(b)

Figure 4.12.: Distribution of the high priority time of task ti.

Results Figure 4.12 depicts the distribution of task ti’s high priority processing time for

scenarios Semaphore and Network. In scenario Semaphore, ti’s HPT is either half a timeslice

(15.5 ms) with a probability of 0.5 or a full one (31 ms) with a probability of 0.5. For scenario

Network, its HPT is approximately equally distributed between 31 ms and 62 ms. Due to this

results, the resetting of timeslices is more complex than suggested by the documentation.

Therefore, Hypothesis IR.2.a has to be rejected. However, the results support the more

general expectation of Hypothesis IR.2.b.

The results for scenario Semaphore suggest that the timeslice is not fully reset in every

case. In fact, the resetting of timeslices occurs on a more fine-grained level. Assuming that

the remaining timeslices are equally distributed between 0 ms and 31 ms at the moment of

resource acquisition, the resource-dependent policy rounds up the remaining timeslice to the

next 15.5 ms.

For scenario Network, the equal distribution of the high priority time between 31 ms and

62 ms suggests that the timeslice is not reset. The high priority time of ti (Figure 4.12) is a

result of the remaining current timeslice and an additional full timeslice. Since ti receives a

priority bonus of 2, the remaining timeslice resembles the equally distributed part.

The next question addresses the effect of resource acquisitions on a task’s high priority

processing time.

4.2. Interactivity 107

Question IR.3: Does a series of resource acquisitions affect performance?

The resource-dependent interactivity policy should decrease the timeslice of a task which

performs a series of resource acquisitions in a row [SR05]. In the following, we present the

necessary scenarios, hypotheses and results.

Scenario To answer Question IR.3, scenario Semaphore requires slight modification. After

a delay of 100 ms (Delay.VALUE = 100), it acquires and releases the same semaphore mul-

tiple times in a loop to measure the influence of a series of resource acquisitions on the high

priority time of task ti. Its total processing time sums up to 100 ms. To measure the HPT

for 1, 10, and 100 acquisitions, the resource demand within the loop (after acquisition) must

be 100 ms, 10 ms, and 1 ms, respectively.

9 11 13 15 17 19 21 23 25 27 29 31

Histogram

Time [ms]

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

1 Acquisition
10 Acquisitions
100 Acquisitions

(a)

10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

1 Acquisition
10 Acquisitions
100 Acquisitions

(b)

Figure 4.13.: High priority time of task ti for an increasing number of semaphore acquisitions.

Hypotheses Following the documentation [SR05], Hypothesis IR.3.a expects the high pri-

ority time of ti to decrease with the number of semaphore acquisitions. Let t1i , t10
i , and t100

i

denote the interactive task of scenario Semaphore with 1, 10, and 100 resource acquisitions

respectively, then Hypothesis IR.3.a expects:

E[HPT (t1i)] > E[HPT (t10
i)] > E[HPT (t100

i)] (IR.3.a)

In the following, we present the results for Question IR.3.

108 4. Single Processor Scheduling

Results Figure 4.13 shows the distribution of ti’s high priority time for an increasing num-

ber of semaphore acquisitions. In the considered scenario, the number of semaphore acqui-

sitions does not affect the high priority time of ti and, thus, contradicts Hypothesis IR.3.a.

This observation refers to Java semaphores only and cannot be (directly) generalised for

other semaphore implementations or resource types.

The next questions target the performance properties of the history-dependent interactiv-

ity policy implemented in the Linux 2.6. operating system.

IH.1 IH.2
Question How do longer waiting times influence a

task's dynamic priority and thus its
performance?

What is the shortest waiting time for a task
to be classified as interactive?

Scenario No Boost No Boost
Metric Dynamic priority

Mean Response Time
Interactivity Threshold

Hypotheses Dynamic priority increases and the mean
response time decreases

 with longer waiting times

The interactivity threshold linearly
increases with the the processing time.

Performance influences of task behaviour and the history-dependent interactivity policy

Table 4.17.: GQM plan for the history-dependent interactivity policy.

Question IH.1: How do longer waiting times influence a task’s dynamic priority and,

thus, its performance?

History-dependent policies determine a task’s dynamic priority based on its previous waiting

and processing times. Question IH.1 addresses the mutual influences of both times on the

response time and dynamic priority of a task.

Task CpuDemand.VALUE Delay.VALUE Priority
ti interactive 80 0 – 20 0
tn non-interactive 80 0 0

Table 4.18.: Parameter characterisations for tasks ti and tn.

Scenarios To evaluate these mutual influences, we use scenario No Boost with a static

priority of 0 (nice-level) for tasks ti and tn. Table 4.18 summarises the parameter valuations

for the experiments. A resource demand of 80 ms prevents irregular disturbances by preemp-

tions due to expired timeslices (100 ms) in measured response times. The waiting time of

task ti varies between 0 ms and 20 ms to evaluate its influence on ti’s dynamic priority. The

performance metrics considered to answer Question IH.1 are ti’s average dynamic priority

4.2. Interactivity 109

during the measurement period (E[prio(ti)]) as well as its mean response time (E[RT(ti)]).

The latter indicates the performance gain of ti for longer waiting times.

Hypothesis Hypothesis IH.1.a expects the priority to increase continuously with longer

waiting times based on the realisation of the history-dependent interactivity policy in the

Linux 2.6 scheduler (cf. Section 2.3.5). Let tdi denote the interactive task with a delay of d

ms, then IH.1.a expects:

E[prio(tdi)] < E[prio(td
′

i)] ∀ d < d′ (IH.1.a)

Since task ti and tn run with the same static priority, the scheduler assigns an equal

amount of processing time to both. Due to ti’s higher dynamic priority, Hypothesis IH.1.b

expects its response time to decrease with an increasing delay:

E[RT(tdi)] > E[RT(td
′

i)] ∀ d < d′ (IH.1.b)

Hypotheses IH.1.a and IH.1.b do not state anything about the response time or dynamic

priority of the non-interactive task tn. However, ti’s increasing delay and dynamic priority

should affect its performance. In the following, we describe the results to answer Question

IH.1.

Results Figure 4.14 depicts the measured dynamic priorities (Figure 4.14(a)) and response

times (Figure 4.14(b)). Both curves show an abrupt change between a delay of 8 ms and 9

ms. Delays of 8 ms or less lead to a penalty of approximately -5 on the dynamic priority of

both tasks. When the delay further increases (≥ 9 ms), task ti’s dynamic priority changes

from a penalty of -5 to a bonus of +5. Similarly, its response time drops from 175 ms to 80

ms while tn’s response time rises from 145 ms to nearly 800 ms. The latter indicates that tn

receives the processor only during ti’s waiting periods. Such a behaviour is only possible if ti

circumvents the fairness properties of Linux’ run queue. In fact, the scheduler classifies task

ti as interactive if their waiting time exceeds a certain threshold (cf. Section 2.3.5). In the

following, the minimum time that a task must wait in order to be classified as interactive is

called interactivity threshold.

Furthermore, ti’s dynamic priority (and consequently its response time) is penalised for

delays smaller than 9 ms. In this case, the scheduler classifies ti as a compute-bound tasks

due to its large processing and small waiting times. For a delay of 0 ms, both tasks receive a

similar share of processing time leading to a response time of approximately 160 ms for both.

With an increasing delay, the response time of ti (first) rises to 175 ms while the response

time of tn lowers to 145 ms. The dynamic priority of ti remains close to -5. Only for delays

110 4. Single Processor Scheduling

-6

-4

-2

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 P
ri

or
ty

 B
oo

st
/P

en
al

ty

Delay [ms]

Interactive Non-Interactive

(a) Dynamic priority.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

Delay [ms]

Interactive Non-Interactive

(b) Response time.

Figure 4.14.: Dynamic priority and response time of tasks ti and tn for an increasing delay
of ti.

of 9 ms and more does the situation change as discussed above. The increase in response

times of ti observed for small delays greater than zero is a consequence of the timeslices used

by the scheduler. When ti starts waiting it releases the processor and, thus, allows tn to

continue processing. However, when its delay is finished, the processor is still occupied by

tn. Since both tasks have the same priority in most cases, ti must wait until tn finished its

timeslice. Thus, ti’s release of the processor leads to the long response times observed here.

To conclude, the dynamic priority of ti does not increase continuously with longer delays

as suggested by the documentation (Section 2.3.5). Thus, Hypotheses IH.1.a and IH.1.b

have to be rejected. The next question addresses the abrupt changes in the dynamic priority

and response time of ti.

4.2. Interactivity 111

Question IH.2: What is the shortest waiting time for a task to be classified as

interactive?

Since the experiment results of the question above require further investigation, Question

IH.2 addresses the threshold of delays necessary to classify a task as interactive. Classifying

a task as interactive refers to the abrupt change in priority and response time visible in

Figure 4.14. In the following, we present the scenarios, hypotheses, and results for Ques-

tion IH.2.

Task CpuDemand.VALUE Delay.VALUE

ti interactive 80, 160, 240, 320, 400, 480, 560 0 – 100
tn non-interactive 80, 160, 240, 320, 400, 480, 560 0

Table 4.19.: Parameter characterisations for tasks ti and tn.

Scenario Similar to Question IH.1, scenario No Boost provides the necessary results to

answer Question IH.2. Therefore, its resource demands and delays are varied as listed in

Table 4.19. The interactivity threshold of the interactive task ti, denoted by IT(ti), is

compared for the different scenarios of the evaluation. IT(ti) resembles the minimum delay

for the abrupt change in priority and response time, e.g., IT(ti) = 9 ms for the scenarios

evaluated in the context of Question IH.1. In the following, we formulate two hypotheses on

the expected outcome of the experiments.

Hypotheses In general, Hypotheses IH.2.a and IH.2.b expect the interactivity threshold of

task ti to increase for longer processing demands, i.e., the longer a task spends processing,

the longer it has to wait to be classified as interactive. Hypothesis IH.2.b further expects

the interactivity threshold to increase linearly (motivated by the results in [TCM06]).

Hypothesis IH.2.a expects the effect observed in Question IH.1 to occur for any task with

any processing time. The interactivity threshold thus increases with ti’s resource demand.

Let tri denote the interactive task ti with a resource demand of r ms, then

IT(tri) < IT(tr
′

i) ∀r < r′ (IH.2.a)

Hypothesis IH.2.a does not quantify the increase of the delay. Yet, Hypothesis IH.2.b does

expect a linearly increasing interactivity threshold.

∃c ∈ R :
IT(tri)

r
= c ∀ r ∈ R>0 (IH.2.b)

112 4. Single Processor Scheduling

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

D
el

ay
 [m

s]

Processing Time [ms]

Interactivity Threshold

Figure 4.15.: Interactivity threshold for an increasing processing time.

Hypotheses IH.2.b assumes the ratio of the interactivity threshold and the resource demand

of ti to be constant. In the following, we present the results that answer Question IH.2.

Results Figure 4.15 illustrates the interactivity threshold of task ti in dependence of its

processing time. For example, a task with an average processing time of 160 ms has to

wait at least 18 ms on average to be classified as interactive. Similarly, a task with an

average processing time of 400 ms hast to wait 45 ms. The interactivity threshold increases

for larger resource demands (as expected by Hypotheses IH.2.a). Furthermore, the increase

is constant leading to linear dependency of processing time and interactivity threshold (as

expected by Hypotheses IH.2.b). In the considered scenarios, the slope of the function in

Hypothesis IH.2.b is c = 0.1125.

In the following, we summarise and discuss the results for different interactivity policies.

Discussion

The experiments conducted within this section have evaluated the influence of resource-

dependent and history-dependent interactivity policies on software performance. The first

three questions have addressed the influence of different priority bonuses for the resource-

dependent policy while the last two questions have targeted the influence of waiting and

processing times for the history-dependent policy.

The results demonstrate that both policies react significantly different. The resource-

dependent policy neglects a task’s history focussing on its currently acquired resources.

By contrast, the used resources play no role for the history-dependent policy, which only

compares the waiting and processing time of a task. However, both policies strongly influence

the response time of the interactive and non-interactive tasks.

4.2. Interactivity 113

For the resource-dependent policy, the priority bonus does not only affect the response

time, but also the resetting of timeslices. This behaviour is of particular importance for

the performance prediction of strong and weak semaphores [Hap07]. The necessary per-

formance metric (high priority time) can only be measured indirectly in combination with

non-interactive task tn.

The results confirm the observation of Section 4.1.2 for the history-dependent policy that

the interactivity policy affects the time sharing policy. The influence of processing and

waiting times on a task’s dynamic priority and performance have been different than its

documentation and implementation suggest in the first place. Instead of a continuous in-

crease in priority and, thus, performance for longer delays, the delay has almost no effect

until it sharply rises the task’s dynamic priority. Further evaluations of this behaviour have

shown a linear dependency of the processing time and the interactivity threshold.

The questions, experiments and results presented above form the basis for the prediction

model described in the next section.

4.2.4. Extending MOSS’ Prediction Model for GPOS Schedulers by

Interactivity Policies

In this section, we introduce MOSS’ CPN model for resource- and history-dependent inter-

activity policies. The model extends the CPNs for time sharing described in Section 4.1.3.

Furthermore, it introduces the acquisition and release of resources such as semaphores, con-

nection pools, or network devices. In the following, we describe the CPNs for both policies.

The CPN model presented here is geared to the implementations of Windows’ resource-

dependent and Linux’ history-dependent interactivity policy.

Run Queue The changes necessary to model interactivity policies affect the scheduler’s

task preemption as well as its run queue. For the latter, the resource-dependent interactivity

policy does not require any adjustments while the history-dependent policy needs to keep

track of the tasks processing and waiting time. Figure 4.16 depicts a fair run queue for

the history-dependent policy. The extensions to the original CPN model of fair run queues

(Figure 4.7 on page 91) are printed in boldface.

Whenever transition Execute puts a task on place Running for execution, it also puts a new

TIMESTAMP token (cf. Listing 4.2) on place StartProcessingTimes. The token contains the

task’s identifier (TASK ID) and the current simulation time (sim time()). It logs the time

the processing started. Fusion place StartProcessingTimes allows other subnets (e.g.,

Figure 4.17 and 4.19) to use the information in order to determine the time a task spends

processing.

114 4. Single Processor Scheduling

&'

����� ���	
�������

��

������������

�����	��
�����	�

�����	� !���������	� !����

"��	#�
"��	#�!����"��	#�!����

$%�� ���	
��

&'�&���''
&'�(���

��)����

���	
��!����

���������

�	
�	��������������
�	
�	�
������������	
�	�
�����������

��������	��
���

�����������

������
����
���
�
�

��������	��
��
�
�
��
��	����	��
��
�
� �!
������"
�
��	��
����
���
�
�#�!$

��������	��
��
�
�

������
�����
�
�

�����������������"�
	��
����
�%%�����
�
�

��������	��
��
�
�

�&���	
���	��
�	��'�
	�
������������
�	�	��'���	��
��
�
�

��
���������	��
��
�
�

�&��"	���	
���	��
�	��'��
	�
������������
�	�	��'�

����
���
�
�

��
�������
����
���
�
�

������

����
���
�
�

�����������"�	��
����
�
%%	��'(��	

�����������"�
	��
����
� ���
����

)*���
�)�++
)*���
�,

����	�
����	� !��������	� !����

./�0�12.3

./�0�12.3�(4.1

)*�)��$�++
)*�,��$�

����	��������������"��	��
����
�5
"�	��	��	��'�5
��	�"����������������	
����"���
������������	��
����
�5

��
��	

Figure 4.16.: CPN modelling a fair run queue with an history-dependent interactivity policy.

Furthermore, transition Enqueue updates a task’s dynamic priority based on the time it

spend waiting and/or processing. Its input/output/action declaration performs the nec-

essary update operation. If a task is interactive (interactive(task) = true), transition

Enqueue directly adds it to the active run queue. Otherwise (function interactive(task)

= false), tasks are assigned to the expired run queue first.

Listing 4.2 shows the necessary colour sets, values and functions for the run queue’s subnet.

The functions listed here directly correspond to the Linux 2.6 scheduler’s behaviour described

in Section 2.3.5. A task’s priority (PRIORITY) embodies three integers (instead of a single

one, as is the case for the time sharing policies). The first resembles the task’s static priority

(static priority), the seconds its dynamic priority (dynamic priority), and the third its

waiting time (waiting time). The waiting time has to be modelled as an integer due to

restrictions of CPNs (cf. Appendix B.4).

Function priorityInsert adds an incoming task into a run queue. It sorts the tasks

according to their dynamic priority. The function is a realisation of the priority queue

pattern (cf. Appendix B.6).

Function update determines the task’s current dynamic priority based on its

waiting time and static priority. It linearly scales the waiting time to the range of

4.2. Interactivity 115

Listing 4.2: Functions and colour sets for the history-dependent interactivity policy.

colset PRIORITY = product INT ∗ INT ∗ INT ;
colset TIMESTAMP = product TASK ID ∗ INT ;

(∗ The parameter va l ue s are de f ined in the f e a t u r e con f i g u ra t i on ∗)
(∗ o f the h i s t o ry−dependent i n t e r a c t i v i t y p o l i c y . ∗)
val MAX PRIORITY = −20;
val MIN PRIORITY = 19 ;
val MAXIMUMBONUS = 10 ;
val MAXIMUM DISTANCE = MIN PRIORITY − MAX PRIORITY + 1 ;
val MAX WAITING TIME = 1000

fun update (s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime) =
let

val bonus = MAXIMUMBONUS ∗ wai t ing t ime div MAX WAITING TIME;
in

(s t a t i c p r i o r i t y , min (MIN PRIORITY, max(MAX PRIORITY, s t a t i c p r i o r i t y
− (bonus − MAXIMUMBONUS div 2))) , wa i t ing t ime)

end

fun de l t a (s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime) =
s t a t i c p r i o r i t y ∗ MAXIMUMBONUS div MAXIMUM DISTANCE + 2

fun i n t e r a c t i v e (cpu , id , (s t a t i c p r i o r i t y , dynamic pr io r i ty ,
wa i t ing t ime) , t im e s l i c e) =

let
val (s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime) =

update ((s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime)) ;
in

(dynamic pr i o r i ty <= s t a t i c p r i o r i t y −
de l t a (s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime))

end

priority bonuses (0 – MAXIMUM BONUS). The upper limit (MAX WAITING TIME) ensures that

the possible priority bonus (or penalty) stays within the predefined bounds. Furthermore,

function update shifts the bonus’s range from 0 – MAXIMUM BONUS to -MAXIMUM BONUS/2 –

MAXIMUM BONUS/2, leading to a penalty for tasks with low waiting times and with high pro-

cessing times. The function finally ensures that the dynamic priority does not exceed the

minimum (MIN PRIO) and maximum priority (MAX PRIO) for interactive tasks.

Furthermore, function interactive compares the current dynamic priority of a task to

its interactivity threshold. If the dynamic priority is large enough, the task is considered as

interactive and may be directly inserted into the active run queue, avoiding the run queues

fairness. To consider the latest changes of the waiting time, the function first updates the

dynamic priority of the considered task (calling function update). Furthermore, it needs

to determine the interactivity threshold of the task, which depends on its static priority.

The individual thresholds can either be explicitly modelled or – like in this case – be ex-

116 4. Single Processor Scheduling

pressed as a function of the task’s static priority. Therefore, function delta determines

the threshold for a given static priority implementing the formula given in Section 2.3.5.

Finally, function interactive compares the dynamic priority to the interactivity threshold

(static priority - delta). A task is considered as interactive if its dynamic priority is

higher (i.e., the value is less or equal) than its interactivity threshold.

Task Preemption The interactivity policies require changes of the scheduler’s preemption

mechanism which returns running tasks to their run queue. Figure 4.17 depicts the behaviour

for the resource-dependent (Figure 4.17(a)) as well as the history-dependent (Figure 4.17(b))

interactivity policies.

Listing 4.3: Functions and colour sets for the resource-dependent interactivity policy.

colset PRIORITY = product INT ∗ INT ;

fun dec rea se ((s t a t i c p r i o , dynamic prio) , t im e s l i c e) =
i f dynamic pr io > s t a t i c p r i o andalso t im e s l i c e = 0

then (s t a t i c p r i o , dynamic pr io − 1)
else (s t a t i c p r i o , dynamic pr io)

fun r e s e t (t ime s l i c e , n ew t ime s l i c e) =
i f t im e s l i c e > 0

then t im e s l i c e
else new t ime s l i c e ;

When returning a preempted task to the run queue, the resource-dependent policy needs

to decrease the task’s dynamic priority (function decrease in Listing 4.3) and reset its times-

lice (function reset in Listing 4.3). Transition Return calls both functions when adding the

task’s token (SCHED TASK) to the list on place Incoming. For the resource-dependent inter-

activity policy, a task’s PRIORITY contains only its static priority and its dynamic priority

omitting the waiting time. If a task’s timeslice is expired and its dynamic priority is larger

than its static, function decrease reduces a its dynamic priority by one. Otherwise, the

function does not change the task’s priorities. This behaviour ensures that whenever a task

finishes its timeslice, its priority bonus (if it exists) is reduced. If a task’s timeslice expired,

function reset assigns a new timeslice to the task. The new timeslice may depend on ex-

ternal factors such as the the task’s static priority and, thus, is given as a parameter to the

function.

The history-dependent preemption (Figure 4.17(b)) continues the measurement of pro-

cessing and waiting times started in the run queue. It uses the time stamps stored on place

StartProcessingTimes (added by transition Execute) to determine the time a task spent

processing. Transition Return selects the start time (TIMESTAMP) for the current task (which

is uniquely identified by its TASK ID) from place StartProcessingTimes and adds it to the

4.2. Interactivity 117

���������
���

�	
����	
	�	��	��

��
����
	�	��	��

�
�������
�	�����

�������
����

�	
����	�
���
�

�	
����	
���	 ����

�	����
�������

���	�����
���
���	
����

�������� ���	
����

�

����
 	���

�	�
���	
���	 �	
	�

	��	�
	 ����	

���
���	

�

��������
��������	
�����������	
���

�

������	�������	

���������
����������	
�������������	
���

������

� �����
� �����	
���� �����	
���

!"��#��!�$$
!"��#��%

������	���

��� ��

��

��#����

&�� '��'����'�����#���(

&�� '���'������������	
��	����	���'
�����	����	��������������(
))�
������

�
������

�������������	�
��	���
����
�����

�����������	�
��	���
����
�����

��

�����	��		
	�
��		
	������		
	����

���������������

�	���
	�
�	���
	�����	���
	��������
�

���

�������

���������
��������������������������

�� ���

����������

!"
����!�##
!"
����$

%���&
�&��
�&�
���
��'

%���&�
�&
��������		
��
�����
��	������
����
��	����
��	�
���������
��	�
����
((����
�

�
����
��)����
��
�*

%���
�%��
�'&
	�+��
���
��'

���,���-���.������

����������		
��
��	
�������������
	��
��������	������		
��
��	

�������

�������	�
����

Figure 4.17.: CPN modelling task preemption.

118 4. Single Processor Scheduling

Listing 4.4: Function addProcessingTime

fun addProcessingTime ((s t a t i c p r i o , dynamic prio , wa i t ing t ime) , s t a r t t ime) =
let

val bonus = max(MAX BONUS ∗ wai t ing t ime div MAX WAITING TIME, 1) ;
val passed t ime = (sim time () − s t a r t t ime) div bonus ;

in
(s t a t i c p r i o , dynamic prio , max(0 , wa i t ing t ime − passed t ime))

end

task’s current waiting time calling function addProcessingTime (cf. Listing 4.4). Param-

eter prio embodies the static and dynamic priority as well as the waiting time of the task

(cf. Listing 4.2). The function determines the current bonus (not shifted) and divides the

passed time (sim time() - start time) by the bonus. This division scales down the effect

of longer processing times for tasks with a large priority bonus and contributes to the sharp

change in priorities and response times observed during the experiments (cf. Section 4.2.3).

As a consequence, a task needs only to spend a small fraction of its time waiting in order

to receive a high priority bonus and in order to be classified as interactive. Finally, func-

tion addProcessingTime subtracts the scaled time value from the task’s waiting time and

ensures that the result is not smaller than 0.

The history-dependent policy resets a task’s timeslice in the same way as the resource-

dependent policy. Only the new timeslice value (new timeslice) depends on the tasks static

priority.

Resource Acquisition The acquisition of resources such as semaphores, connection pools,

or network devices is central to both interactivity policies. Figure 4.18 depicts MOSS’ be-

haviour for the acquisition of a semaphore. Tasks that require access to a semaphore put their

identifier (TASK ID) on input place StartAcquisition. When the acquisition is successfully

completed, the acquisition’s subnet puts the TASK ID on output place AcquisitionFinished.

In the mean time, the task may be put to sleep and wait for the resource to become available.

Listing 4.5: Function available.

fun av a i l a b l e (semaphore , queue) =
(semaphore>0 andalso l ength queue = 0)

Furthermore, transitions Acquire and Wait require the demanding task to be currently

running, i.e., its SCHED TASK token has to lie on place Running. This condition is necessary

since only tasks that are assigned to a processor can acquire passive resources. If the resource

is currently available (available(semaphore, queue) = true), transition Acquire puts

the task’s identifier (TASK ID) on place AcquisitionFinished and decreases the semaphore’s

4.2. Interactivity 119

Figure 4.18.: CPN model for the acquisition of passive resources.

120 4. Single Processor Scheduling

Listing 4.6: Function boost

fun c o n d i t i o n a l r e s e t (t im e s l i c e) = i f t im e s l i c e > 15 then 31 else 15

fun boost ((cpu , id , (s t a t i c p r i o r i t y , dynamic pr i o r i ty) , t im e s l i c e) , bonus) =
i f (dynamic pr i o r i ty >= s t a t i c p r i o r i t y + bonus)

then (cpu , id , (s t a t i c p r i o r i t y , dynamic pr i o r i ty) , t im e s l i c e)
else (cpu , id , (s t a t i c p r i o r i t y , s t a t i c p r i o r i t y + bonus) ,

c o n d i t i o n a l r e s e t (t im e s l i c e))

counter by one. Function available (Listing 4.5) checks whether the semaphore counter is

larger than zero and the queue of waiting tasks is empty.

For the resource-dependent interactivity policy, transition Acquire assigns a bonus to the

task that successfully acquired a resource. Function boost (Listing 4.6) checks the task’s

current dynamic priority. If the dynamic priority is already equal to or larger than the

task’s static priority plus the bonus, then the function does not change the task’s dynamic

priority or timeslice. Otherwise, it sets the task’s dynamic priority to the static one plus

the bonus and conditionally resets the task’s timeslice. The term “conditional” refers to the

type of resource and its behaviour. The experiments in Section 4.2.3 have demonstrated that

the resource-dependent policy treats the timeslice differently for different types of resources.

The function, printed in Listing 4.6, approximates the observed behaviour of semaphores.

However, it is necessary to keep track of the remaining quanta (cf. Section 2.3.5) and

compute the remaining timeslice accordingly, to achieve accurate predictions for the resource-

dependent policy implemented in the Windows scheduler.

If a resource is currently not available (available(semaphore, queue) = false), the

execution of a task that tries to acquire the resource needs to be delayed until the resource

(semaphore in the example) becomes available. The treatment of waiting tasks is of major

importance for the observed performance (see, for example, [Kou06]). To impose a specific

order on the waiting tasks, place Queue stores their identifiers in a list. In Figure 4.18,

the subnet uses a FIFO queue to manage the waiting tasks and, thus, implements a strong

semaphore [Hap07]. However, different queueing policies can be considered here.

When a resource is not available, transition Wait inserts the task’s identifier (TASK ID) at

the end of the list on place Queue and, additionally, puts its identifier on place StartWaiting.

The latter triggers the removal of the task from its current processor and keeps track of the

task’s waiting time. Whenever the semaphore’s value is increased and tasks are waiting in

the queue, transition WakeUp takes the queue’s first task and assigns it to the semaphore. The

transition puts the tasks identifier on places AcquisitionFinished and StopWaiting. The

first allows the task’s behaviour to continue execution while the later notifies the scheduler

that the task is no longer waiting.

4.2. Interactivity 121

Managing Waiting Tasks Figure 4.19 depicts the management of waiting tasks for

the resource- (Figure 4.19(a)) and history-dependent (Figure 4.19(b)) interactivity policy.

Whenever a task begins to wait for a resource, its identifier is put on place StartWaiting

and triggers the necessary operations of the scheduler. Transition PutToSleep removes a

task whose identifier lies on place StartWaiting from its processor (replacing its SCHED TASK

token on place Running by an idle cpu token) and stores its scheduling data (SCHED TASK)

on place Waiting. Once the requested resource(s) become available, the task’s identifier is

placed on StopWaiting. Then transition WakeUp retrieves its SCHED TASK token from place

Waiting and adds it to the list of tasks on place Incoming returning it to the schedulers run

queue. Transition WakeUp boosts the task’s dynamic priority with a bonus specific to the

resource requested.

Listing 4.7: Function addWaitingTime.

fun addWaitingTime ((s t a t i c p r i o , dynamic prio , wa i t ing t ime) , s t a r t t ime) =
let

val passed t ime = sim time () − s t a r t t ime ;
in

(s t a t i c p r i o , dynamic prio , min (MAX WAITING TIME,
wa i t ing t ime + passed t ime))

end

The management of waiting tasks for history-dependent policies (cf. Figure 4.19(b))

needs to keep track of the waiting times and of the processing times. Therefore, transition

PutToSleep retrieves the time a task’s processing started from place StartProcessingTimes

and incorporates the result with the task’s current waiting time (as part of prio) by call-

ing function addProcessingTime. Simultaneously, the transition puts an new TIMESTAMP

for the task on place StartWaitingTimes to measure the time it spends waiting for the

required resource. Tthe time stamp on place StartWaitingTimes is used to determine the

task’s waiting time when the resource becomes available and transition WakeUp is enabled.

Function addWaitingTime (Listing 4.7) computes the passed time span and adds it to the

tasks waiting time while ensuring that the maximum waiting time (MAX WAITING TIME) is

not exceeded.

Releasing Resources Once a task finished its processing with respect to some required

resource, it may return the resource making it available for other tasks. Figure 4.20 de-

picts the subnet to release a semaphore. Whenever a task wants to release the semaphore

it puts its unique identifier on input place StartRelease. If the task is currently running

(i.e., its SCHED TASK token lies on place Running), transition Release simply increases the

semaphores counter by one and places the task’s identifier on FinishRelease allowing the

122 4. Single Processor Scheduling

���	�����
���

�	
����	
	�	��	��

��
����
	�	��	��

�
�������
�	�����

�������
����

�	
����	�
���
�

�	
����	
���	 ����

�	����
�������

���	�����
���
���	
����

�������� ���	
����

�

����
�	���

�	�
���	
���	 �	
	�

	��	�
	 ����	

���
���	

������������
	����
����������	����
����������

	����

�������
�������
�����������
����

�����������
��������

	�����
	�

��� !���
��� !���
������� !���
����

"#

	�����
	��$�	

	����

����$%

��

&�%�'���'�%�� '���!������(

����$���

��

&�%�'���'�%�� '���!������(

������%�

&�%�'��'%�� '��!������(

����$���))"����������	
��	
���	����������	������#

	� %�������
����$%����$%

������������	�
��	����������

*��
 	���%

�������

	�����
	�

���������

	����

����������		
���
�	
�������	������		
���
�	

�������

	�����������
	����
����������	����
����������

���������

����������������

&�%�'���'�����������������
����	
���������'���!������(

"#

	����

����$%

��� !���
��� !���
������� !���
����

	� %�������
����$%����$%

&�%�'��'%�� '��!������(

������%�
	�����
	�

�������	������		
���
�	

�������
�������
�����������
����

���	
���������

��

&�%�'���'�%�� '���!������(

����$���	�����
	�

	�����
	��$�	

�����������	�
��	�����������

����������	
�������
���������	
���������
�����������������������

*��
 	���%

���	�����������

�����������
��������

���	
�����������

Figure 4.19.: CPN managing waiting tasks.

4.2. Interactivity 123

�������	�

�
�

�������	��

�������

����
��
����
�������

�
�
���������
���

���	��������
��

�������	�
���

������

���

����
�������

�
�������
�
�����

�� !"#�$�%

&'��(
�(�	
�(
�
����
'�)

��
�$�%#�"

�$�%#�"

Figure 4.20.: CPN modelling the release or passive resources (e.g., semaphores).

task’s behaviour to proceed. Increasing the semaphores counter automatically enables tran-

sition WakeUp of the acquisition’s subnet (Figure 4.18) if other tasks are waiting for access

to the resource. Transition WakeUp fires before the simulation time progresses.

4.2.5. Validation of MOSS’ Prediction Accuracy

In this section, we present a validation of the prediction accuracy of MOSS’s interactivity

features based on the experiments presented in Section 4.1.1. The validation is focussed on

the major features for resource-dependent and history-dependent interactivity policies. We

compare the predictions of MOSS with measurements of Windows Server 2003 and Linux

2.6. In a complex case study (Section 5.2), we evaluate the mutual influences of different

scheduler features.

Goal: Purpose Assessment

Issue of MOSS’ prediction accuracy

Object for resource- and history-dependent interactivity policies

Viewpoint from the software architect’s point of view.

In the following validation, the assessment of MOSS’ prediction accuracy focusses on

scenarios No Boost, Semaphore, and Network. The prediction error gives insights into the

prediction accuracy of MOSS.

The questions listed in Table 4.20 address the prediction accuracy for different priority

bonuses of the resource-dependent policy (Question IR.V1). Furthermore, the classification

of interactive and non-interactive task (Question IH.V1) as well as the general prediction

accuracy for tasks with different behaviour (Question IH.V2) are of major relevance for the

history-dependent policy.

124 4. Single Processor Scheduling

IR.V1 IH.V1 IH.V2
Questions How accurate does MOSS

predict the influence of different
priority bonuses on a task's

performance?

Does MOSS correctly classify non-
interactive and interactive tasks?

Does MOSS accurately predict
the performance of interactive

and non-interactive tasks?

Scenarios No Boost
Semaphore

Network

No Boost No Boost

Metrics Error(RT)
Error(HPT)

Error(IT) Error(RT)

Hypotheses Yes, the prediction error
is less than 5%

Yes, the prediction error
is less than 5%

Yes, the prediction error
is less than 5%

Evaluation of the Prediction Accuracy for Interactive Tasks

Table 4.20.: GQM plan to evaluate the prediction accuracy of the developed model for in-
teractive schedulers.

Question IR.V1: How accurate does MOSS predict the influence of different priority

bonuses on a task’s performance?

Question IR.V1 targets MOSS’ prediction accuracy with respect to different resources used

by tasks under a resource-dependent interactivity policy. Therefore, it represents the vali-

dation’s counterpart of Questions IR.1 and IR.2. Consequently, it considers the prediction

error (cf. Section 4.1.4) of the response time and high priority time for scenarios No Boost,

Semaphore, and Network.

Hypotheses As a result, Hypothesis IR.V1.a expects no deviation larger than 5% between

the predictions and the measurements. Let ti be the interactive and tn be the non-interactive

task in all three scenarios, then:

Error(E[RT(ti)]) < 5%, Error(E[RT(tn)]) < 5%, and Error(E[HPT(ti)]) < 5%

(IR.V1.a)

for all three scenarios.

Results Figure 4.21 depicts the predicted and measured response times (Figures 4.21(a)

– (d)) and high priority times (Figures 4.21(e) and (f)) for the resource-dependent interac-

tivity policy. The predicted and measured mean response times (Figures 4.21(a) and (b))

deviate only slightly. The corresponding distribution functions (Figures 4.21(c) and (d))

widely overlap. For scenario Semaphore, MOSS accurately predicts the fraction of tasks

than can execute their processing demand without interruption as well as the fraction of

tasks that are disrupted. However, the curve of the simulation shows less disturbances than

the measurement. The peak found in the measurements, at about 450 ms, cannot be found

4.2. Interactivity 125

521

352,3

21,2

530,8

353,2

21,6

No Boost Semaphore Network

Ti
m

e
[m

s]

Prediction Measurement

(a) Mean response times of task ti.

500,5 523,7

723

508,4 517,5

727,8

No Boost Semaphore Network

Ti
m

e
[m

s]

Prediction Measurement

(b) Mean response times of task tn.

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Prediction
Measurement

(c) Response time distribution of task ti for sce-
nario Semaphore.

30 70 130 190 250 310 370 430 490

Histogram

t: Time [ms]

D
en

si
ty

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Prediction
Measurement

(d) Response time distribution of task ti for sce-
nario Semaphore.

15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Prediction
Measurement

(e) High priority time distribution of task ti for
scenario Semaphore.

35 40 45 50 55 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Prediction
Measurement

(f) High priority time distribution of task ti for
scenario Network.

Figure 4.21.: Predictions and measurements for interactive tasks under Windows.

126 4. Single Processor Scheduling

in the predictions. Similarly, the distribution of the predicted and measured high priority

processing times (Figures 4.21(e) and (f)) only deviate slightly. MOSS accurately predicts

the timeslice reset as well as the effect of priority bonuses.

Interactive Non-Interactive
No Boost 1,85 1,55
Semaphore 0,25 1,20
Network 1,85 0,66

Semaphore 2,16 -
Network 1,50 -

Error High Priority Processing Time [%]

Error Response Time [%]

Table 4.21.: Prediction error for interactive tasks under Windows.

Table 4.21 summarises the prediction error for response times and high priority processing

times. For the response times, the prediction deviates less than 2% from the measurements.

A similar result is achieved for the high priority processing time in scenario Network. Only

the prediction error for scenario Semaphore deviates slightly more than 2%. The results

confirm Hypothesis IR.V1.a.

Question IH.V1: Does MOSS correctly classify non-interactive and interactive tasks?

This question addresses MOSS prediction accuracy with respect to the classification of tasks

according to their behaviour. The question is motivated by the underlying question of

whether MOSS models the history-dependent interactivity policy with sufficient detail or

whether it requires further refinements. To answer this question, we consider measured

and predicted interactivity thresholds of scenario No Boost with the valuations given in

Table 4.19.

Hypothesis Similarly to Hypothesis IR.V1.a, Hypothesis IH.V1.a expects a prediction error

of less than 5% for the interactivity threshold:

Error(E[IT(ti)]) < 5% (IH.V1.a)

Results Table 4.22 summarises the predicted and measured interactivity thresholds for

task ti. Interestingly, predictions and measurements do not deviate at this point leading

to a prediction error of 0%. This indicates that the interactivity threshold tolerates minor

disturbances of the tasks execution and behaves exactly as reflected in MOSS. The absence of

any prediction error is a consequence of the fact that the results only represent one decision

after a long measurement or simulation run. The results support Hypothesis IH.V1.a. In

this scenario, MOSS correctly classifies interactive and non-interactive tasks.

4.2. Interactivity 127

Demand [ms] Error [%]
Predicted Measured

80 9 9 0,0
160 18 18 0,0
240 27 27 0,0
320 36 36 0,0
400 45 45 0,0
480 54 54 0,0
560 63 63 0,0

Delay [ms]

Table 4.22.: Prediction and measurement ti’s interactivity threshold.

Question IH.V2: Does MOSS accurately predict the performance of interactive and

non-interactive tasks?

While Question IH.V1 validates MOSS with respect to its prediction accuracy of the interac-

tivity threshold, Question IH.V2 validates the more general prediction accuracy of interactive

tasks (ti) and of non-interactive tasks (tn). We focus on the deviation of the predicted an

measured response time in scenario No Boost with the a processing demand of 80 ms and a

delay between 0 ms and 20 ms (cf. Table 4.18). In the following, we describe the question’s

hypotheses, the predictions, and the actual results.

Hypothesis Similar to the hypotheses of the questions above, Hypothesis IH.V2.a expects

a prediction error of less than 5% for task ti and tn:

Error(E[RT(ti)]) < 5% and Error(E[RT(tn)]) < 5% (IH.V2.a)

Results In the following, we present the predictions and measurements for interactive and

non-interactive tasks with varying processing demands and delays. Figures 4.22(a) and (b)

show the mean response times that have been predicted and measured for a task with 80

ms processing demand and varying delay between 0 ms and 20 ms. The response times

largely overlap for task ti (Figure 4.22(a)) and for task tn (Figure 4.22(b)). The interactivity

threshold of task ti at 9 ms is clearly visible in both figures. The response time of ti is

reduced to 80 ms while the response time of tn is increased to almost 800 ms. The overall

prediction error is below 3%.

Figures 4.22(c) to (f) depict the response time distribution of tasks ti and tn with a

processing demand of 80 ms and a delay of 8 ms. In this case, the history dependent policy

does not (yet) classify task ti as interactive, but rather it receives a higher dynamic priority

than tn. The response time predicted for ti (Figures 4.22(c) and (d)) deviates only sightly

from the measurements. MOSS accurately predicts the response time peaks at 80 ms, 172

ms, and 272 ms. The probability densities correspond to the measurements. However, the

128 4. Single Processor Scheduling

�

��

���

���

���

���

� � �� �� ��

�
��
��
��
�	

�
��
��
�
��
�
��

���������

�	
������ �
���	
�
��

(a) Mean response times of task ti with varying de-
lays.

�

���

���

���

���

���

���

���

���

���

� � �� �� ��

�
��
��
��
�	

�
��
��
�
��
�
��

���������

��	
����� �	����	�	�

(b) Mean response times of task tn with varying
delays.

75 95 120 140 160 180 200 220 240 260 280

Histogram

t: Time [ms]

D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Prediction
Measurement

(c) Response time distribution of task ti (80 ms
demand, 8 ms delay).

100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Prediction
Measurement

(d) Response time distribution of task ti (80 ms
demand, 8 ms delay).

75 95 120 140 160 180 200 220 240

Histogram

t: Time [ms]

D
en

si
ty

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Prediction
Measurement

(e) Response time distribution of task tn (80 ms
demand, 8 ms delay).

100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Prediction
Measurement

(f) Response time distribution of task tn (80 ms
demand, 8 ms delay).

Figure 4.22.: Predictions and measurements for interactive and non-interactive tasks for the
history-dependent interactivity policy.

4.3. Case Study 129

measurements show more disturbances than the predictions. The response time distribution

predicted for task tn (Figures 4.22(e) and (f)) widely overlaps with the measurements. The

distribution captures the three major peaks at 80 ms, 160 ms, and 240 ms as well as the

distribution between the peaks.

Altogether, MOSS predicts the mean response times of tasks ti and tn with an error of less

than 5% in all cases. The predicted response time distribution accurately resembles mea-

surements of the history-dependent interactivity and, hence, supports Hypothesis IH.V2.a.

4.3. Case Study

In this section, we present a case study to evaluate the applicability and prediction accuracy

of MOSS for enterprise applications. Here, we focus on single processor systems. In Sec-

tion 5.2, we continue the case study for multiprocessing environments. While each scheduling

feature modelled in MOSS has already been extensively validated, this case study assesses

the prediction accuracy of MOSS in a more complex setting. The setting contains various

types of request as well as fluctuating workloads. However, the case study still requires some

simplifications as discussed in the following.

The case study is focussed on the influence of different workloads and of different operat-

ing systems on performance. Therefore, we minimise the impact of other components and

services that are typically used in the chosen application scenario. Simplification is necessary

to avoid disturbances of other system components that cannot be modelled accurately with

current performance prediction methods. This approach achieves a high internal validity

of the results at the cost of external validity. However, case studies with a high external

validity require performance models for databases, hard drives, and network connections of

the same accuracy as MOSS. For this reason, we simplify the database used to store business

data and manage the application state, which could easily become the limiting factor in the

case study. Additionally, a load generator emulates the resource demands of the application

(cf. Appendix C.1).

In the following, we describe the scenario of the case study (Section 4.3.1), its software

architecture (Section 4.3.2), the performance questions (Section 4.3.3), the experimental

setting (Section 4.3.4), and the results of the case study (Section 4.3.5).

4.3.1. Evaluated Use Cases

The case study is placed in the scenario of a supply chain management for supermarkets (as

described in [SPE]). The whole scenario models a set of supply chain interactions between

a supermarket company, its stores, its distribution centres, and its suppliers. In this case

130 4. Single Processor Scheduling

study, we focus on a sales statistics scenario (based on [WW04]) that includes business

intelligence reporting to headquarters (HQ). Supermarkets send statistics to HQ that include,

for example, the type and amount of goods purchased by customers visiting the store. HQ

uses this data as a basis for data mining in order to study customer behaviour and to

provide useful information to their marketing department. In this case study, we evaluate

the performance of business intelligence reporting, online monitoring, and requests to static

web pages described in the following.

Business Intelligence Reporting HQ collects the necessary information about sales statis-

tics from supermarkets and distribution centres. To support better business decision making,

the business intelligence reporting integrates, analyses, and presents the supermarkets’ busi-

ness information. Statistical processing of data generates comprehensible overviews for man-

agers and department heads (i.e., heads of the supermarket stores). Different managers and

stores are interested in different information. Thus, business intelligence reporting supports

various kinds of reports.

Online Monitoring Online monitoring allows managers and department heads to track

sales over the day. They can identify peak times or observe whether new marketing strategies

had the expected impact. Department heads can directly react on changes and organise their

personnel accordingly. The online monitoring updates whenever a supermarket sends new

sales data to HQ. It generates static web pages which the supermarket market’s personnel

can access.

Requests to Static Pages Requests to static web pages are an essential part of intranet

applications. The intranet provides department heads, managers, accountants, and other

employees with access to internal information such as marketing strategies, reports on new

goods, or rankings of supermarket stores.

Workload

For the scope of this case study, the workload of the HQ’s server consists of requests to

static web pages, online monitoring, and business reporting. The number of supermarkets,

the amount of products sold per supermarket, and the number of reporting and monitoring

requests determine the workload of the HQ’s server. In the case study, HQ manages 1500

supermarket stores all over the country. Depending on a store’s size, 1 to 5 persons can

access the HQ’s server. Additionally, 50 employees at HQ use the business reporting system

on a regular basis.

4.3. Case Study 131

From observations of the current system, performance analysts expect a strongly fluctu-

ating load of the system, with burst periods of 5 to 10 minutes. They approximate this

behaviour by the curve shown in Figure 4.23. Even though the curve does not reflect the

exact behaviour of the system, it allows the effect of peak loads on software performance to

be determined. The arrival rate ranges from 60 to 180 requests per minute depending on

the time of day, i.e., at noon the load is generally low but several peaks can be observed

during the early afternoon. In most cases, users request static web pages via intra-net (70%

of all requests). Business reports are requested in 10% of all cases. The remaining 20%

of the requests stem from supermarkets, which send new sales reports to HQ. Thus, online

monitoring is updated 12 (= 60 * 0.2) to 36 (= 180 * 0.2) times a minute.

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

A
rr

iv
al

 R
at

e

Time [min]

Burst Period (180 requests / minute)

Released Tension (60 requests / minute)

Figure 4.23.: Function modelling the fluctuating workload of HQ’s business reporting.

To analyse the influence of load peaks on the applications performance, performance an-

alysts must use fluctuating arrival rate of 60 to 180 requests per minute. The modelled

workload continuously fluctuates following a sinus curve with a period length of 20 min-

utes (cf. Figure 4.23). Its low periods reflect the system’s usual workload of 60 requests

per minute, its high periods reflect the burst conditions where the workload triples. This

workload allows performance analysts to estimate the influence of burst periods on system’s

response times, resource utilisation and throughput. Furthermore, the load of HQ’s applica-

tion is expected to double during the next two years. To ensure a good performance of the

application in the long term, performance analysts need to evaluate the system’s scalability

for an increasing load.

The architecture of the HQ’s server application described in the following section efficiently

handles the high load of computation intensive requests.

132 4. Single Processor Scheduling

Head Quarter Client Supermarket Server

Head Quarter Client

Web Browser

Supermarket Server

Web Form

Supermarket Management

Business Intelligence Reporting Data Warehouse

Head Quarter Server

<<Interface>>
IMonitoring

<<Interface>>
HTTP

<<Interface>>
IReporting

<<Interface>>
IBusinessInforamtion

<<Interface>>
IDataWarehouse

<<Interface>>
ISupermarketManagement

Business
Information Manager

<<CompositeComponent>>

<<CompositeComponent>>

... ...

...

... ...

...

<<BasicComponent>>

<<BasicComponent>>

<<BasicComponent>><<BasicComponent>>

Online
Monitoring

<<BasicComponent>>

<<ThreadPool>>
NumberOfWorkers = 32
WorkerQueue = LIFO

RequestQueue = FIFO

Figure 4.24.: Static and deployment view of the HQ’s server application.

4.3.2. Architecture of HQ’s Application

Static Architecture View The hardware environment of the HQ’s server system presented

in Figure 4.24 contains the HQ’s server as well as several supermarket servers and HQ clients.

The software system consists of several components distributed among the hardware nodes.

For the case study, the architecture has been modelled using the PCM (cf. Appendix A).

Supermarket servers are responsible for managing the warehouse inventory, order goods

from distribution centres, and communication with HQ. Figure 4.24 abstracts their software

system into a single composite component called Supermarket Management. Figure 4.24

only shows the interfaces relevant for the HQ’s server application. The provided interface

ISupermarketManagement allows the Business Information Manager to request informa-

tion on the supermarket’s state, update prices, distribute product announcements, or request

sales statistics. Furthermore, supermarkets actively inform HQ on their current state via

the IBusinessInformation interface. The Business Information Manager stores infor-

4.3. Case Study 133

mation about supermarkets in the Data Warehouse and updates the Online Monitoring

of the supermarket stores. When requested, the Online Monitoring provides an overview

of the current state of the supermarket stores. For more detailed information, the Business

Intelligence Reporting generates individually configured business reports.

The application server running the HQ’s application uses a thread pool to limit the number

of concurrent requests in the system. It uses a dynamic pool with a maximum number of

32 worker threads per processor or processor-core. The performance model approximates

the pool’s dynamic behaviour with a thread pool of fixed size. To reduce context switch

overheads, the application server manages worker threads in a Last-In-First-Out (LIFO)

queue. This strategy increases the chance of finding necessary data in the processor’s caches.

Additionally, workers can continue processing requests without context switches if requests

queue up. To treat requests similarly, the application server queues incoming requests in a

First-In-First-Out order.

Dynamic Architecture View RD-SEFFs (cf. Appendix A) specify the dynamic architec-

ture of the HQ’s application (Figure 4.25) relevant for performance evaluation. The RD-

SEFFs include the dispatching of requests by the Web Form (Figure 4.25(a)), the generation

of reports by the Business Intelligence Reporting (Figure 4.25(b)), and the Online

Monitoring (Figure 4.25(c)). The Web Form dispatches incoming HTTP requests to the

Business Intelligence Reporting or serves requests to static web pages. The RD-SEFF

in Figure 4.25(a) models the choice as a guarded branch action. The guards evaluate the

value of input parameter RequestType, which represents a performance abstraction of the

HTTP protocol. It only contains the types Reporting, Monitoring, and StaticPage, for

the considered scenario. The guarded branch action contains an alternative for each possi-

ble value. Its branching probabilities depend on the probability distribution of the values

of parameter RequestType. In the PCM, an EnumPMF specifies the probability distribution

over an enumeration of values. For example, a valuation

EnumPMF[(’Reporting’;0.1) (’Monitoring’;0.2) (’StaticPage’;0.7)]

of the input parameter RequestType leads to branching probabilities of 0.1, 0.2, and 0.7

for reporting, monitoring, and static pages, respectively. To handle reporting and mon-

itoring, the Web Form calls the generateReport and updateMontioring methods on the

IReporting and IMonitoring interface respectively. For requests to static pages, an in-

ternal action models the corresponding resource demand with a normal distribution. Fig-

ure 4.25(a) specifies the distribution’s mean value as 50 CPU units with a variance of 1. In

the PCM, CPU or workload units allow the abstraction from the underlying hardware plat-

134 4. Single Processor Scheduling

<<InternalAction>> <<ExternalCallAction>>
IMonitoring.updateMonitoring()

<<GuardedBranch>>
P(RequestType.VALUE == Monitoring)

<<ParametricResourceDemand>>
1 CPU Unit

<<InternalAction>>

<<ParametricResourceDemand>>
NormalDist(50,1) CPU Units

<<GuardedBranch>>
P(RequestType.VALUE == StaticPage)

<<ExternalCallAction>>
IReporting.generateReport()

<<GuardedBranch>>
P(RequestType.VALUE == Reporting)

<<InputVariableUsage>>
MonitoringItems.NUMBER_OF_ELEMENTS =
RequestSize.VALUE

<<InputVariableUsage>>
ReportItems.NUMBER_OF_ELEMENTS =
RequestSize.VALUE

(a) Service processHttpRequest of component Web Form.

<<InternalAction>>

<<ParametricResourceDemand>>
1 CPU Units

<<InternalAction>>

<<ParametricResourceDemand>>
5 CPU Units

<<LoopAction>>
Iterations = ReportItems.NUMBER_OF_ELEMENTS

<<ExternalCallAction>>
IDataWarehouse.
getReportItem()

(b) Service generateReporte of component Business Intelligence Reporting.

<<InternalAction>>

<<ParametricResourceDemand>>
10 CPU Units

<<LoopAction>>
Iterations = MonitoringItems.NUMBER_OF_ELEMENTS

<<InternalAction>>

<<ParametricResourceDemand>>
NormalDist(50,1) CPU Units

<<InternalAction>>

<<ParametricResourceDemand>>
NormalDist(500,10) CPU Units

(c) Service updateMonitoring of component Online Monitoring

Figure 4.25.: Behaviour (RD-SEFFs) of the HQ’s server components.

form [RBH+07, KB07]. For the sake of simplicity, we assume that 10 CPU units correspond

to 1 ms of processing time for all considered processor types.

In method generateReport of component Business Intelligence Reporting), a loop

action iterates over a set of ReportItems and includes them into the report. The caller (i.e.,

component WebForm in the case study) passes a collection of ReportItems to the method.

The collection contains, for example, references to the supermarkets which are included

into the report. The size (i.e., NUMBER OF ELEMENTS) of collection ReportItems determines

the number of loop iterations (see Figure 4.25(b)). Method generateReport retrieves the

report items from the Data Warehouse. This specification is an abstraction of different

types of report items and contains only a single method call for all possible types. Finally,

generateReport combines the report items into a single web page and returns it to the

caller.

4.3. Case Study 135

To update the current statistics, the Business Information Manager calls the Online

Monitoring whenever new status information arrives from a supermarket. It calls the

method updateMonitoring on the IMonitoring interface to generate new static pages which

summarise the status of the supermarkets. The behaviour of Online Monitoring is similar

to report generation. However, the processing is completely internal. In the next section,

we discuss the performance questions relevant for the HQ’s server application.

4.3.3. Performance Questions

The HQ’s server system has to handle an intensive workload while retaining high respon-

siveness. Thus, it can easily become a bottleneck for management and accounting of the

supermarket company. Performance analysts decide to conduct an initial performance study

before deploying the application. They want to answer the following questions given the

high and strongly fluctuating workload of the HQ’s server system:

1. Can the new software system handle the workload with the given hardware?

2. How does the system react under overload conditions?

3. Which operating system (Linux 2.6 or Windows Server 2003) provides the best perfor-

mance under heavy load?

The questions are motivated by the possible overload conditions that can occur due to

the strongly fluctuating load. Scheduling is one possibility to improve performance without

buying additional hardware [SWHB06]. Thus, performance analysts want to make sure that

the system’s performance meets the requirements for intensive load. Furthermore, they are

mainly interested in the response times for different requests (business intelligence reporting,

online monitoring, and static pages). The acceptable response time bounds strongly depend

on the type of request. For example, requests to static pages must be served immediately

(i.e., with a response time of a few milliseconds) while requests to the business reporting can

be delayed by several seconds.

In the following section, we present the experimental settings of the case study. This

includes a description of the measurement environment as well as the prediction model and

chosen solution method.

4.3.4. Experimental Settings

Measurements For the case study, we implemented the HQ’s application in Java and

instrumented it for measurements. The specified resource demands (cf. Figure 4.25) have

been generated by a resource demand generator (cf. Appendix C.3). The generator loads the

CPU using typical algorithms found in benchmark applications for processors, such as SPEC

136 4. Single Processor Scheduling

CPU2000 [Hen00, Cor00]. A workload generator has simulated the user behaviour, i.e., the

calls to the HQ’s application. The implementation thus ensures that the case study focusses

on effect of scheduling and excludes disturbances of the environment. The confidence level

of the measurements is 90% for requests generateReport and updateMonitoring in Sec-

tion 4.3.5. For the relatively short requests to static pages, the confidence level is 80%, since

small disturbances (of a few milliseconds) already have a large impact. All measurements

were taken on a single machine with the accuracy of the machines clock frequency (i.e., 1.87

GHz in for the measurements on a single core processor).

Predictions For performance prediction, a discrete event simulation technique [LMV02,

LB05] specialised for MOSS has been implemented and integrated with the Palladio Com-

ponent Model. The simulation employs the method of overlapping batch means [Jai91] to

achieve reliable results. The confidence levels for the predictions are 95% for generateReport

and updateMonitoring, and 90% for requests to static pages (same argumentation as above).

A simulation run lasted from 45 to 60 seconds and simulated a run time of approximately 8

hours. The customisations of MOSS used to predict the influences of the Linux and Windows

scheduler are listed in Table 3.2 on page 63.

To allow a better interpretation of the measurements and predictions, the parameters of

the application (resource demands and number of report items) have been adjusted so that

the total resource demands of all request have the following means:

Static Page Requests: 5 ms

Online Monitoring: 250 ms

Generate Report: 3000 ms

Outlier Removal Due to the periods of transient overload in the scenario, measurements

(and predictions) contain strong outliers that heavily contribute to the predicted and mea-

sured mean response times. In order to achieve stable results (for predictions and mea-

surements), we consider only predictions and measurements for which the topmost 5% to

10% of outliers have been removed. Additionally, the confidence intervals for the predictions

and measurements are based on the results after outlier removal. Even though the outlier

removal leaves some room for discussion, it is unavoidable to achieve stable measurements

and predictions for scenarios with transient overload as considered here.

In the next section, we present the results (predictions and measurements) to answer the

questions and to assess the accuracy of the prediction model proposed in this chapter.

4.3. Case Study 137

4.3.5. Results

The results summarised in the following demonstrate the differences and similarities of the

Windows and Linux operating systems with respect to software performance as well as the

prediction accuracy of MOSS. The prediction quality varies strongly for the commonly used

scheduling policies FCFS and PS. In this case study, their prediction errors range from more

than 70% to up to 40000%. By contrast, MOSS predicts the influence of Windows and

Linux schedulers on software performance with an error of less than 5% to 10% in most

cases. The prediction error does not exceed 30%. MOSS represents a significant increase

of the prediction accuracy compared to commonly used scheduling policies in performance

prediction. In the following, we present the experimental setting for the case study and

discuss the prediction accuracy of MOSS with respect to PS and FCFS.

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

Figure 4.26.: Predictions and measurements for static page requests under Linux 2.6.22.

Prediction Accuracy Figure 4.26 shows the cumulative distribution functions predicted

and measured for the response time of static page requests under Linux 2.6.22. The figure

illustrates the role of outliers in the results of this case study. Approximately 90% of all

requests are processed within 5 ms for predictions and measurements. However, processing

of the upper 10% of all requests is delayed for several seconds (up to 15 seconds in the

cumulative distribution function shown). The heavy tail of their response time distribution

significantly influences its mean value. Due to this heavy tail, the mean value of the response

time distribution is rather unstable. Tight confidence bounds are only reached very slowly.

The upper 5% of outliers have been removed from the distribution to reduce the influence of

the response time distribution’s tail. The prediction error is less than 5% for Windows and

Linux (see Table 4.23).

138 4. Single Processor Scheduling

1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(a) Windows Server 2003.

200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(b) Linux 2.6.22.

Figure 4.27.: Predictions and measurements for monitoring requests.

Figure 4.27 shows cumulated distribution functions of the response times for online mon-

itoring. The predictions and measurements widely overlap for the Linux and Windows op-

erating system. Furthermore, the predicted and measured mean values and medians deviate

no more than 15% (Table 4.23).

The response times for monitoring requests differ significantly for both operating systems.

Linux limits the distribution to 250 ms to 1600 ms, while the response time under Windows

ranges from 250 ms to 6000 ms. The differences in response times are visible in the mean

value and median. The response time of monitoring requests under Linux is less than one

third of the response time under Windows (see Table 4.23).

Table 4.23 summarises the predicted and measured mean response times for all request

types and scenarios. The prediction error is approximately 5% – 10% in the most cases and

does not exceed 30%. As discussed above, MOSS accurately predicts the mean and median

of the response time for static page and monitoring requests. Due to the the heavy tail of

the response time distribution for static page requests under Linux, its mean value (50 ms)

is much larger than its counterpart under Windows (5 ms). However, the median is similar

for both operating systems.

Furthermore, the measured response times of the business reporting are comparable for

both operating systems. However, the predicted and measured response times deviate by

32% for the business reporting under Linux. One cause of the deviation lies in the artificial

load driver used in the experiment setting. Under Linux, the load driver cannot maintain

its pace for the arriving requests during peak loads. It freezes several times for a period

of 1 to 10 seconds loosening the system’s tension. The simulator does not suffer from such

4.3. Case Study 139

Measurement Prediction Error [%] Prediction Error [%] Prediction Error [%]
Windows

Static Pages 5,4 5,0 7,2 14,3 163,3 30,9 469,2
Monitoring 814,1 704 13,5 736 9,6 289,6 64,4

Reporting 12100 9546 21,1 8538 29,4 3027 75,0
Linux

Static Pages 5,1 5,5 7,4 14,3 180,8 30,9 507,1
Monitoring 261,4 266,2 1,8 736 181,6 289,6 10,8

Reporting 11480 13720 19,5 8538 25,6 3027 73,6

Measurement Prediction Error [%] Prediction Error [%] Prediction Error [%]
Windows

Static Pages 5,2 4,9 5,0 24,3 372,6 2180,0 42230,1
Monitoring 1398,0 1226,0 12,3 1233,0 11,8 2398,0 71,5

Reporting 19520,0 17480,0 10,5 14630,0 25,1 5075,0 74,0
Linux

Static Pages 48,5 47,9 1,3 24,3 49,8 2180,0 4396,7
Monitoring 438,9 438,9 0,0 1233,0 180,9 2398,0 446,4

Reporting 18520,0 24460,0 32,1 14630,0 21,0 5075,0 72,6

MOSS Processor Sharing FCFS
Mean Value

Median
MOSS Processor Sharing FCFS

Table 4.23.: Prediction accuracy for single-core system running under Linux and Windows.

difficulties, since it can easily maintain the defined pace. Especially long requests suffer

from the additional load due to their decaying priority bonus. This behaviour contributes

to the additional delay of the reporting requests observed in the simulation. Furthermore,

the deviation of the resource demand generator (cf. Appendix C.1) increases for larger

processing demands. The generator uses previously calibrated algorithms to emulate the

necessary computation demand on a processor. While it yields accurate results for short

requests, its error increases for longer resource demands. Both effects together explain the

deviation predictions and measurements observed for the business reporting requests.

A comparison between the medians for both operating systems (Table 4.23) yields the

impression that Linux performs much better than Windows. However, it is important to

notice that Linux suffers from a large number of outliers for static page and monitoring

requests that significantly lower its performance with respect to the overall response time

distribution.

Comparison with Models using Processor Sharing and First-Come-First-Serve MOSS

can accurately predict response times of requests to static web pages, online monitoring, and

business reporting. Figure 4.28 gives an impression how MOSS improves prediction accu-

racy with respect to scheduling policies commonly used in software performance prediction,

namely PS and FCFS. In the following, we compare the measurements for Windows and

Linux with their prediction results.

140 4. Single Processor Scheduling

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Windows Server
Linux 2.6
Processor Sharing

(a) Static Pages.

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Windows Server
Linux 2.6
Processor Sharing

(b) Monitoring.

Figure 4.28.: Differences between Windows, Linux, and processor sharing.

Figure 4.28 depicts the cumulative response time distributions of requests to static pages

(Figure 4.28(a)) and online monitoring (Figure4.28(b)). Both figures show measurements

for Linux and Windows on a single-core system and the corresponding predictions for PS.

PS predicts a strong delay for most of the requests for requests to static web pages (cf.

Table 4.23). The additional delay induced by PS leads to a prediction error factor of up to

5 for mean values and 3 for medians. While the response time distribution and median for

Linux appears similar to the one for Windows, its mean value is nearly 10 times larger due

to the heavy tail of the distribution. This example illustrates the importance of response

time distributions. While a mean response time of 50 ms is acceptable for requests to static

web pages, timeouts for 10% of the requests are not. In the following, we briefly explain the

causes of this effect, which MOSS accurately predicts (see Table 4.23).

The long delays for 10% of the requests result from Linux’ dynamic priority assignment in

combination with the application server’s thread pool. The application server uses an unfair

(also called weak) semaphore [GPB+06] to manage its worker threads. It basically prefers

worker threads which have been running recently over those waiting in the queue. Linux

lowers a thread’s priority according to the time it spent processing. Thus, continuously

processing threads receive a lower priority than threads waiting in the queue. If such a

thread processes a request to a static page, other threads can easily preempt it due to its

lower priority. Additionally, a higher load increases the chance that a lower priority thread

serves static page requests. This behaviour leads to the heavy tail of the response time

distribution.

4.3. Case Study 141

For requests to the online monitoring (Figure 4.28(b)), Linux outperforms Windows by a

factor of 2 to 3. Linux’ slowly decaying priorities ensure that requests to the online moni-

toring are only interrupted by requests which received a similar amount of processing time

(assuming they started at similar priorities). Therefore, it preempts all reporting requests

that received more than (approximately) 250 ms of processing time.

Windows grants a similar priority boosts to all tasks. The boost is independent of their

previous processing time and lasts two timeslices (approximately 60 ms) at most (cf. Sec-

tion 2.3.4). While short requests (smaller than 60 ms) benefit from this policy, longer

requests, which cannot be completed within this period, may be delayed. Thus, requests

to online monitoring (that last approx. 250 ms) compete with each other and the busi-

ness intelligence reporting. For these reasons, the results shown in Figure 4.28(b) suggest

that processor sharing can approximate the response time of the online monitoring under

Windows.

The differences in the response times of both operating systems already suggest that

scheduling policies such as FCFS or PS can predict response times only with limited accuracy.

Especially FCFS shows large deviations between the predicted and the measured response

times (see Table 4.23). In the case of static pages, it predicts a mean response time of more

than two seconds, while the measured mean response time is about 5 ms (Windows) and 50

ms (Linux). The results demonstrate how FCFS prefers long requests. The mean response

time of the business intelligence reporting is only 1/4 of the measured mean response times

for both operating systems.

In the beginning of this section, performance analysts asked whether the system can fulfil

the performance requirements with the existing systems. In the following, we discuss the

results of the case study with respect to the questions.

Answers to the Performance Questions Performance analysts predicted the response

times of the HQ’s application. They come to the following conclusions based on the results

discussed in this section.

The current hardware environment can handle the application’s workload only insuffi-

ciently. Especially during peak load, the response time increases by several orders of mag-

nitude. Under Linux, such heavy load can lead to timeouts for requests to static pages for

more than 10% of all requests. Windows poses a significant delay on the online monitoring

(up to 6 seconds) which is not acceptable. Thus, further performance analysis is necessary

to evaluate the performance of the applciation in multiprocessing environments. The results

of this evaluation are presented in Section 5.2. In the next section, we discuss the limitations

and assumptions of MOSS for single processor systems.

142 4. Single Processor Scheduling

4.4. Discussion of Assumptions and Limitations

Focus on Linux and Windows Operating System Series MOSS is focussed on the Linux

and Windows operating system series. It can predict the performance influence of Windows

XP and Windows Server 2003 as well as the Linux Kernel versions 2.5 to 2.6.22. With the

introduction of Windows Server 2008 and Windows Vista, Microsoft changed the implemen-

tation of their operating system schedulers [Rus07]. The changes require further evaluations

and adjustments of MOSS in order to accurately reflect the new scheduler’s performance

influences. However, the prediction validation in Section 5.1.5 demonstrates that Vista’s

multiprocessor load balancing is not affected with respect to its influence on software per-

formance.

Additionally, the implementation of the Linux has been changed with Kernel version

2.6.23. Linux now uses a so-called Completely Fair Scheduler [Tra] which is based on the

fair queueing [Nag87] scheduling policy. The scheduler approximates the shortest remaining

processing time (SRPT) policy. However, it uses similar heuristics as the O(1) scheduler

modelled by MOSS to identify interactive processes (called sleeper fairness). Extending

MOSS to the new CFS scheduler requires new evaluations. Following the documentation, it

may be sufficient to replace the run queue model by a model for fair scheduling to enable

good performance predictions for the CFS scheduler.

Simulation-based Solution Method We used timed Coloured Petri Nets to model the

performance-relevant features of GPOS schedulers in MOSS. While CPNs provide a high

flexibility and expressiveness, they can only be solved by simulation for performance predic-

tion [Wel02]. Simulation provides an efficient solution for complex systems. However, it car-

ries the risk of inaccurate or of unrepresentative results. Kounev et al. [Kou06, KB06, KB03]

have used simulation-based as well as analytical methods to predict the performance of dis-

tributed component-based software systems. They come to the conclusion that simulation

is the only feasible option for solving large performance models. Due to their computational

complexity, analytical solution techniques require strong simplifications of the system under

study, which may lead to invalid results.

Independent and Identically Distributed Random Variables From a mathematical per-

spective, MOSS assumes that resource demands of different tasks are independent and iden-

tically distributed (iid) random variables. Thus, subsequent resource demands of a task do

not depend on each other. Additionally, the resource demands of two concurrently running

tasks are assumed to be independent. These assumptions do not have to hold in reality. For

example, subsequent resource demands of a task may depend on the same input parameters,

4.4. Discussion of Assumptions and Limitations 143

e.g., a task first sorts an array and then prints it. In this case, both associated resource

demands depend on the size of the array. This assumption is addressed in [Koz08a, Bec08].

The independence of concurrently executing tasks holds for specific cases only. Whenever

two tasks run on separate processors (or cores), they may produce contention on low-level

resources of the processor and execution environment. These contentions include caching

effects and the memory bus (see Section 5.3 for discussion). Furthermore, tasks may access

shared memory on a fine grained level. While MOSS supports coarse-grained synchronisation

mechanisms based on semaphores, it cannot predict the performance influence of atomic

actions, such as test-and-set operations. Therefore, the performance influences of low-level

resource contention requires further investigation.

Limited Synchronisation Methods The performance influences of process synchronisation

and communication are tightly coupled to features of operating system schedulers. MOSS

accurately predicts the effect of strong and weak semaphores on software performance. How-

ever, operating systems and middleware platforms provide a wide range of different synchro-

nisation mechanisms (e.g., reader writer looks and different resource pools). While many

synchronisation mechanisms are based on semaphores and, thus, can be modelled and pre-

dicted with MOSS, others tend to use entirely different operations. It is necessary to evalu-

ate the performance influences of the most relevant synchronisation methods and to extend

MOSS towards them for a general prediction method in multiprocessing environments.

No Real-Time Capabilities MOSS explicitly does not support real-time schedulers. Fur-

thermore, its predictions are only stochastic approximations of the performance met-

rics of the system under test. Thus, MOSS does not guarantee a correctly predicted

upper and lower performance bound as required in real-time environments. Litera-

ture [BMdW+04, BKR95, EE00, FNNS06, HZS01, LM99, MPC04, YW98] reports on nu-

merous approaches that allow performance predictions of real-time system with different

scheduling policies.

Constant Processing Power MOSS assumes that the processing power of the available

cores and processors does not change over time. Most modern processors implement some

power-saving functionality that allows the operating system to throttle the processing power

when the system is lightly loaded. Furthermore, emerging virtualisation technologies share

the available processing power among a set of concurrently running operating systems. In

both cases, MOSS cannot predict the effect of fluctuating processing power on software

performance. Instead, it assumes a constant processing power of all processors and cores of

the system. Since scheduling becomes most important in situations where the processor’s

144 4. Single Processor Scheduling

load is high, power-saving should not effect the relevant cases for performance evaluation.

However, in lightly loaded situations MOSS is likely to overestimate the performance of the

system under study.

4.5. Summary

In this chapter, we have evaluated the performance-relevant factors of time sharing and

interactivity policies implemented in GPOS schedulers. The evaluation has pointed out

major differences in the behaviour of the Windows and Linux schedulers.

• Linux employs a fair policy to distribute the processing time among all tasks. However,

tasks can circumvent this property if they spend a small fraction of their processing time

(≈12%) waiting. In this case, they are classified as interactive and gain a significantly

larger share of processing time as they are entiteled to. The task’s dynamic priority

increases (or decreases) aprubtly when the waiting time crosses a narrow border around

12%.

• Windows strictly prefers higher priority tasks over lower priority ones and, thus, em-

ploys an unfair policy. It only grants brief periods of processing time to low priority

tasks in order to prevent starvation. Furthermore, the resource-dependent interactivity

policy of Windows boosts a task’s dynamic priority and resets its timeslice. Especially

the reset of timeslices follows different strategies for different resources, e.g., to either

15 ms or 31 ms for semaphores and no reset for accesses to network devices.

Furthermore, we have presented a customisable performance model for single processor

systems that is based on the evaluation results. In the case study, we have demonstrated that

both operating systems can yield significantly different response times. MOSS accurately

predicted the performance of both operating systems. In the following chapter, we further

refine MOSS with respect to the influences of symmetric multiprocessor systems on software

performance.

145

5. Multiprocessor Scheduling

In this chapter, we continue the experimental evaluation and the modelling of performance-

relevant features of GPOS schedulers from Chapter 4. We extend the model for time sharing

and interactivity towards symmetric multiprocessing environments like multi-core processors

(Section 5.1). Furthermore, we continue the case study of Section 4.3 and extend it towards

symmetric multiprocessing environments (Section 5.2). A discussion of the model’s benefits

and drawbacks concludes this chapter (Section 5.3).

5.1. Multiprocessor Load Balancing

In this section, we extend MOSS towards symmetric multiprocessing environments. Sec-

tion 5.1.1 accounts for the experiments that are necessary to determine the performance

influences of multiprocessor load balancing policies. The experiments are based on the spec-

ification of the Windows and Linux operating systems (cf. Section 2.3). We systematically

evaluate the different features of both operating system with respect to load balancing.

The experiment design is described in Section 5.1.2. In Section 5.1.3, we refine the goal

by means of question, scenarios, and hypotheses. Furthermore, we present the experiment

results which provide the necessary answers. The results prepare the extension of MOSS

to multiprocessing environments in Section 5.1.4. In a final validation in Section 5.1.5, we

demonstrate the prediction accuracy of MOSS for symmetric multiprocessor systems.

5.1.1. Experiments – Overview and Motivation

In this section, we evaluate two distinct load balancing policies implemented in the Windows

Server 2003 / Vista and the Linux 2.6.0 - 2.6.22 operating systems. Windows Server 2003 and

Vista use a receiver-initiated load balancing policy that is only triggered when a processor

becomes idle (cf. Section 2.3.4). Therefore, it tolerates major imbalances in the system and

is referred to as lazy-balancing. By contrast, Linux 2.6.22 actively balances the system’s load

trying to keep the load imbalances below a certain level. Its load balancing policy is called

active-balancing.

146 5. Multiprocessor Scheduling

The Goal

Goal: Purpose Identify

Issue the relevant performance properties

Object of multiprocessor load balancing policies

Viewpoint from the user’s point of view.

The goal is focussed on the evaluation of different multiprocessor load balancing policies

realised in today’s GPOS schedulers. We are especially interested in the effect of load

balancing on the performance perceived by users. The lazy- and active-balancing policies

are inherently different concepts and lead to different response times and throughputs given

the same workload.

Motivation of the Questions

LB.Lazy.1 LB.Lazy.2 LB.Lazy.3
Questions How does continuous load

influence load balancing?
Do waiting times influence

load distribution and software
performance?

What happens when
system load decreases?

Scenario Heavy Load Moderate Load Decaying Load

Metric RT, Load(CPUi) RT, Load(CPUi),
COV(E[RT(t)])

RT, Load(CPUi)

Hypothesis The scheduler does not
change the initial load

distribution and imbalances
(even a strong ones) remain.

The System stayes balanced. The scheduler moves
one task from the busiest
processor to the idle one.

 Identify the relevant performance properties of multiprocessor load balancing policies

Table 5.1.: GQM plan for the evaluation of lazy-balancing.

Lazy-Balancing Lazy-balancing is a receiver-initiated policy, which is only triggered when

a processor becomes idle. The system’s load characteristics are thus of major importance

for the performance influence of this policy. The heavier the system’s load, the less balanc-

ing attempts occur and the more imbalances remain. Questions LB.Lazy.1 and LB.Lazy.2

(Table 5.1) address the performance influence of different load conditions for lazy-balancing.

Furthermore, load balancing only reacts if the system’s load changes, e.g., tasks arrive or

leave the processor. Therefore, Question LB.W.3 addresses the influence of a decreasing

system load on performance.

Active-Balancing Active-balancing is a symmetrically initiated, active load balancing pol-

icy. The scheduler triggers balancing attempts as soon as differences in the system’s load

5.1. Multiprocessor Load Balancing 147

distribution exceed a predefined threshold (cf. Section 2.3.5). Thus, active-balancing leads

to an equally distributed load. Question LB.Act.1 (Table 5.4) evaluates its achieved bal-

ance under different load conditions. Furthermore, the active-balancing policy adapts its

balancing activities according to the system’s state. For example, the interval length of load

balancing attempts increases with an increasing system load. Question LB.Act.2 addresses

the time necessary to balance heavily loaded systems. Finally, the Linux scheduler prefers

interactive tasks over non-interactive ones (cf. Section 4.2). Question LB.Act.3 targets the

influence of interactive load on software performance in combination with load balancing.

5.1.2. Experiment Design

In this section, we extend the experiment design of Section 4.1 and 4.2 for symmetric multi-

processing environments. We describe the generation of unevenly distributed load as well as

the estimation of a processor’s load based on task response times. The first is necessary to

evaluate the effect of different load balancing policies under controlled conditions. The latter

allows to determine a processor’s load independent of the underlying operating system.

Generating Unevenly Distributed Load To evaluate the influences of different load balanc-

ing policies, it is necessary to intentionally produce situations in which the load is unevenly

distributed among the available processors. The imbalanced situation is used for the sce-

narios throughout the experiments. It assigns all tasks to a single processor while all other

processors stay idle. The scheduler’s load balancing policy then distributes the load among

the available processors.

Name Workload of Task ti CpuDemand.VALUE Delay.VALUE

Heavy Load Closed 250 0
Moderate Load Closed 250 10
Decaying Load Closed 250 0

Table 5.2.: Scenarios for the evaluation of different multiprocessor load balancing policies.

Main Scenarios The evaluation is focussed on three scenarios called Heavy Load, Moderate

Load, and Decaying Load (Table 5.2). In all three scenarios, the tasks are executed in a

closed workload with a processing demand of 250 ms. For scenario Heavy Load, the delays

are set to 0 ms in order to evaluate the influence of load balancing policies for compute-

bound tasks (cf. Section 2.3). The delay of 10 ms of scenario Moderate Load allows the load

balancing policy to redistribute the load among the available processors. Finally, scenario

Decaying Load limits the number of repetitions for each task. Instead of endless processing,

tasks finish execution after a predefined number of iterations, which is equal for all tasks.

148 5. Multiprocessor Scheduling

Since the system is imbalanced, the tasks that can solely execute on a processor without

interruption finish first. When their processor becomes available, the scheduler allocates a

task from the busiest CPU to the now idle processor.

Estimating a Processor’s Load It is necessary to measure or estimate the load of the

processors to answer some of the questions in Table 5.1 and 5.4. In this context, the term

“load” refers to the number of tasks running on a specific processor. Since the measurements

or estimations should not influence the underlying operating system, we propose an heuristic

approximation in the following.

Furthermore, the estimation allows to determine the processor’s load for operating systems,

which do not support the measurement of a single processor’s queue length (such as Windows

Server 2003). The load of a processor is estimated based on the response times of the

currently running tasks. The approximation computes the number of simultaneously running

tasks by dividing the task response times by the uncontented processing time, which is 250

ms for the scenarios defined above. For example, the estimation computes a load of two tasks

for a response time of 500 ms. This approximation is possible, since all tasks are executed

with the same priority and, thus, share the processor equally. However, the execution of

multiple tasks can overlap and a task’s delay can further shift the overlap. Therefore,

the approximation clusters response times around multiples of the processing time. For

example, if the resource demand of a task is 250 ms, then two concurrent tasks without

waiting time yield a response time of 500 ms. We use tolerance bounds of ± 125 ms and,

thus, consider all response times from 375 ms to 625 ms as concurrent execution of two tasks.

This approximation is only a rough estimate of the actual load distribution, but it already

shows the large imbalance of the system’s load.

5.1.3. Answering the Questions – Scenarios, Metrics, Hypotheses, and

Results

In this section, we present the necessary experiments to evaluate and answer the questions of

the GQM plan in Table 5.1 for GPOS schedulers in symmetric multiprocessing environments.

Question LB.Lazy.1: How does continuous load influence load balancing?

Lazy-balancing is only initiated when a processor becomes idle. Question LB.Lazy.1 ad-

dresses its load balancing capabilities under continuous heavy load, which should avoid all

load balancing attempts and should maintain initial imbalances.

5.1. Multiprocessor Load Balancing 149

Scenario Scenario Heavy Load provides the initial load imbalances to evaluate the influ-

ence of lazy-balancing in combination with continuous load. The response time distribution

(Hist(RT)) of each task as well as the number of tasks running on a processor (Load) provide

the necessary information to answer Question LB.Lazy.1.

Hypotheses Since lazy balancing can only be initiated by a receiver (i.e., idle processor),

Hypothesis LB.Lazy.1.a expects an initial balancing attempt where each idle processor re-

ceives one task from the busiest processor. The load distribution then does not change any

further and imbalances remain. Formally, let m be the number of processors, n number

of tasks, and CPUi with i ∈ {1 . . . m} the processors where CPU1 is the initially loaded

processor, then Hypothesis LB.Lazy.1.a expects:

Load(CPUj) =

⎧⎨
⎩

n − m + 1 , for j = 1

1 , for all j > 1
(LB.Lazy.1.a)

Furthermore, the mean response time of a task tj with j ∈ {1 . . . n} is expected to be:

E[RT(tj)] =

⎧⎨
⎩

(n − m + 1) ∗ 250 ms , if tj is running on CPU1

250 ms , if tj is running on CPUi with i ∈ {2 . . . m}
(LB.Lazy.1.b)

The first case represents the shared execution time of all (n−m+1) tasks running on CPU1.

The second case resembles the uninterrupted execution time on an uncontended CPUi. The

following presents the measurements of scenario Heavy Load with seven tasks on a dual-core

system.

Results Figures 5.1(a) and (b) show the response times measured for tasks t1, t2, and

t3 of scenario Heavy Load with two processors (m = 2) and seven tasks (n = 7). For

reasons of clarity, the figures are limited to the response times of the first three tasks. The

cumulative distribution function (Figure 5.1(a)) as well as the histogram (Figure 5.1(b))

show two peaks of the response times: One at 250 ms and one at 1500 ms. The results

correspond to Hypothesis LB.Lazy.1.b, which expects a task response time of either 250 ms

or 1500 ms (= (7 − 2 + 1) ∗ 250 ms) for n = 7 tasks and m = 2 processors. Estimating the

load distribution from these values complies to the expectation of Hypothesis LB.Lazy.1.a.

For each task, Hypothesis LB.Lazy.b expects either a response time of 250 ms or 1500

ms. However, the measurements show mixed response times of 250 ms and 1500 ms for

single tasks. These values suggest that the task is executed on different processors during

the experiment.

150 5. Multiprocessor Scheduling

200 400 600 800 1000 1200 1400 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Task 1
Task 2
Task 3

(a)

250 450 650 850 1000 1200 1400 1600

Histogram

t: Time [ms]

D
en

si
ty

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Task 1
Task 2
Task 3

(b)

Figure 5.1.: Response time distribution for scenario Heavy Load.

Figure 5.2 supports this observation. It shows the response time measurements of one task

during the experiment. The task runs on CPU1 for the first 120 iterations. It shares the

processor with five other tasks, which yields a response time of 1500 ms. It then executes

on CPU2 for more than 200 iterations and does not have to share the processor with other

tasks. However, the overall load distribution is not affected, since all resource demands are

either processed within 250 ms or 1500 ms. During the whole execution of scenario Heavy

Load, CPU1 has been processing six tasks while CPU2 has been executing one task. The

results confirm Hypothesis LB.Lazy.1.a.

While Hypothesis LB.Lazy.1.b correctly reflects the general behaviour of lazy-balancing,

it does not capture the observed effect of “random task switches” shown in Figure 5.2. The

effect leads to a rejection of the hypothesis. However, the measurements confirm the fact

that lazy-balancing does not distribute the system’s load equally if all processors are busy.

Discussion The “random task switches” result from the realisation of user-level threads

(either in the Java virtual machine or the operating system). Scenario Heavy Load uses Java

threads to implement the concurrently running tasks, which need to be mapped to light-

weight processes (or kernel-level threads) to execute. Windows uses a one-to-one mapping

of user-level threads and light-weight processes [SGG05], but their association can change

during runtime. These changes are not visible to the scheduler’s load balancer, which deals

only with light-weight processes, but affect the response times measured for single tasks.

Section 5.1.5 discusses this effect in more detail.

5.1. Multiprocessor Load Balancing 151

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●

0 100 200 300

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Time Series

Index

Ti
m

e
[m

s]

Figure 5.2.: Evolution of the measured response times during the experiments (Heavy Load).

Question LB.Lazy.2: Do waiting times influence load distribution and software

performance?

Question LB.Lazy.1 is intentionally focussed on compute-bound tasks that limit the capa-

bilities of the lazy-balancing policy. This question targets its influence on load distribution

and performance for less loaded systems. Lazy-balancing requires a processor to become idle

in order to initiate load balancing. If tasks successively demand short periods of processing

and waiting time, then the load of the processor changes continuously and, thus, should

trigger load balancing. In the following, we describe the scenarios, hypotheses, and results

for Question LB.Lazy.2.

Scenarios In scenario Moderate Load, tasks execute a resource demand of 250 ms followed

by a waiting period of 10 ms. This short interruption should allow the scheduler to initiate

load balancing.

Hypotheses Hypothesis LB.Lazy.2.a expects the system to reach a balanced state and,

hence, distribute its load evenly among the available processors. As a consequence, the

response times of all tasks are expected to be similar, i.e., only differ within a certain range.

Let m be the number of processor, n the number of tasks, and d the delay of task ti, then

Hypothesis LB.Lazy.2.a expects the following mean response time for all tasks:

E[RT(tj)] = n/m ∗ 250 ms−d for all ti with i ∈ {1 . . . n}. (LB.Lazy.2.a)

152 5. Multiprocessor Scheduling

This formula yields a response time of 865 ms for n = 7 tasks, m = 2 processors, and a delay

of 10 ms. To compare the response times of all tasks, the coefficient of variation (COV) of

the tasks mean response times is expected to be below 5%:

|COV(E[ti])| < 5% for all ti with i ∈ {1 . . . n} (LB.Lazy.2.b)

This equation expresses that all tasks receive the same amount of processing time on average.

Furthermore, Hypothesis LB.Lazy.2.c expects the load of the processors to differ within

predefined bounds:

|Load(CPUj)−Load(CPUk)| < n/(2∗m) for CPUj and CPUk with j �= k (LB.Lazy.2.c)

For example, for a system with two processors (m = 2) and seven tasks (m = 7), the load

of the processors is expected to differ no more than 1.75 tasks in average. The bounds are

given by the deviation from the ideal distribution, e.g., n/m = 3.5 for the previous example.

Hypotheses LB.Lazy.2.c expects the load distribution to deviate less then 50% from the ideal

distribution.

400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Task 1
Task 2
Task 3

(a)

250 450 650 850 1000 1200

Histogram

t: Time [ms]

D
en

si
ty

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Task 1
Task 2
Task 3

(b)

Figure 5.3.: Response time distribution for scenario Moderate Load.

Results Figures 5.3(a) and (b) show the response time distributions for scenario Moderate

Load with seven concurrently running tasks (n = 7) on a system with two processors (m = 2).

For clarity, the figures only show the first three tasks. The task response times are distributed

between 250 ms and 1200 ms. This distribution is a considerable difference to the results of

scenario Heavy Load, where the response times bundled at two values.

5.1. Multiprocessor Load Balancing 153

Task 1 2 3 4 5 6 7
Mean Response Time [ms] 760,1 768,6 785,1 750,5 712,0

Table 5.3.: Mean response times of tasks t1 to t7 for scenario Moderate Load.

Table 5.3 lists the mean response time of all tasks of scenario Moderate Load. The co-

efficient of variation of the mean response times listed there is 3.7% and, thus, below the

threshold of 5% specified in Hypothesis LB.Lazy.2.c. However, the average response time

of all tasks is with 755.5 ms about 110 ms below the expected value of 865 ms rejecting

Hypothesis LB.Lazy.2.a. The task waiting time is responsible for this difference in measure-

ment and expectation. Even though the specification of the scenario demands a delay of 10

ms, the actual delay during the execution is approximately 135 ms. Due to the high load

of seven simultaneously running tasks, the operating system is not able to adhere to the

specified waiting times. Computing the expected mean response time with a value value of

135 ms yields an expected response time of 740 ms, which is much closer to the actually

measured value.

Response Time Histogram

Time [ms]

D
en

si
ty

200 400 600 800 1000 1200

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

(a) Combined response time histogram of tasks t1
to t7.

0,19

0,27

0,16

0,12

0,26

1 2 3 4 5

Re
la

ti
ve

 F
re

qu
en

cy

Number of Concurrent Tasks

(b) Relative frequency of concurrently executing
tasks.

Figure 5.4.: Response time and load distribution for scenario Moderate Load.

Figure 5.4(a) depicts the histogram of joined response times for tasks t1 to t7. Despite the

stronger distribution of the response times compared to scenario Heavy Load, the histogram

contains multiple peaks in the response time distribution. Especially for 250 ms, 500 ms,

and 1250 ms, the histogram shows high densities.

Figure 5.4(b) approximates the load distribution for scenario Moderate Load based on

the response times of tasks t1 to t7 (cf. Section 5.1.2). It depicts the resulting relative

154 5. Multiprocessor Scheduling

frequencies for the number of simultaneously running tasks. As expected from the response

time distribution, the undisturbed execution of a task has a relative frequency of 20%.

However, the concurrent execution of six tasks (the expected counterpart when seven tasks

are running in parallel) does not occur. The effect is caused by long waiting times of each

task, which reduces the overall load of the system. In Figure 5.4(b), two (27%) and five (26%)

tasks are most likely to be executed concurrently. However, the optimal load distribution

of three and four tasks has the least relative frequency of 16% and 12%. Lazy-balancing

distributes the load more evenly in scenario Moderate Load than in scenario Heavy Load,

but still allows strong imbalances to occur. Thus, Hypothesis LB.Lazy.2.c must be rejected.

Question LB.Lazy.3: What happens when system load decreases?

Question LB.Lazy.3 targets the behaviour of lazy-balancing under decreasing load. If tasks

finish successively, the policy needs to move tasks from the busiest to the new idle processor.

Scenarios Scenario Decaying Load resembles such a behaviour (cf. Section 5.1.2). The

concrete scenario subsumes six tasks running in parallel on a two processor system. Each

task issues 400 resource demands of 250 ms and a waiting time of 0 ms in a loop and then

terminates. The initial load distribution of the scenario consists of five tasks running on the

first processor and one on the second processor.

Hypotheses Hypothesis LB.Lazy.3.a expects the number of tasks running on the busiest

processor to decrease continuously until each processor executes a single task.

Let m be the number of processors, CPUi with i ∈ {1 . . . m} be a single processor, where

CPU1 denotes the busiest processor and n be the current number of running tasks with

n > m + 1. Furthermore, let Loadt(CPUi) denote the loads of processor CPUi at time t,

then:

∀ Loadt(CPU1) = n − m + 1 and Loadt(CPUi) = 1 with i > 1,∃ Δ ∈ R>0 :

Loadt+Δ(CPU1) = (n − m) and Loadt+Δ(CPUi) = 1 (LB.Lazy.3.a)

In other words, whenever a task finishes, the number of tasks on the busiest processor is

reduced. If the task is running on a lightly loaded processor (Load(CPU) = 1), then the

processor becomes idle and receives a task from the busiest processor. Otherwise, the task

has already been running on the busiest processor (Load(CPU) = n − m + 1). In both

cases, the busiest processor looses one of its tasks. Analogously to Question LB.Lazy.2, the

number of concurrently running tasks is determined on the basis of the task response times

(cf. Section 5.1.2).

5.1. Multiprocessor Load Balancing 155

●●●
●
●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●
●
●●●

●
●●●●●●●●●●●●●

●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300 350

40
0

60
0

80
0

10
00

12
00

Time Series

Index

Ti
m

e
[m

s]

(a) Task t1.

●●●●●●●●
●
●●

●

●●

●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400

40
0

60
0

80
0

10
00

12
00

Time Series

Index

Ti
m

e
[m

s]

(b) Task t2.

Figure 5.5.: Response time measurements for the scenario Decaying Load.

Results Figure 5.5 depicts the evolution of response times for two tasks as a series of

measurements. Figure 5.5(a) shows a series of response times for a task running on the

busiest processor. For the first 160 iterations, the task has a response time of 1250 ms and,

thus, shares its processor with four other tasks. Then, during a period of 10 iterations, the

task’s response time decreases from 1250 ms to 500 ms in intervals of 250 ms. Each decrease

corresponds to the completion of another task. The sudden termination of three tasks in a

brief period suggests that not only a single task runs on the second processor as expected

by Hypothesis LB.Lazy.2.a, but the second processor executed (at least) three tasks. From

the measurements, three tasks can be identified that exhibit “random task switches” already

observed in scenario Heavy Load (Question LB.Lazy.1). Their total execution time matches

the time of the first 160 iteration in Figure 5.5(a).

Figure 5.5(b) depicts the response time of a task executing for a long period on the second,

uncontended processor. However, the task switches multiple times between short (250 ms)

and long (1250 ms) response times. In total, it executes 290 requests in 250 ms and 101

requests in 1250 ms. Even though the number of uncontended iterations exceeds the number

of contended ones, the task spends only 36% of its processing time on the uncontended

processor compared to 64% on the contended one. Likewise, two other tasks of scenario

Decaying Load show a behaviour similar to the task depicted in Figure 5.5(b). Furthermore,

their total execution time sums up to approximately 200 seconds which corresponds to

the execution time of the first 160 iteration of the task shown in Figure 5.5(a). These

measurements suggest, that three tasks randomly share the uncontended processor. After

156 5. Multiprocessor Scheduling

200 seconds, the three tasks finish in a relatively short period, which leads to the decreasing

response time shown in Figure 5.5(a).

Despite the “random task switches” between the contended and uncontended processor,

the tasks in the scenario behave as expected. Only one task at a time is running on the

uncontended processor, whereas all other tasks share the other processor. Furthermore, the

lazy-balancing polices moves only one task at a time if a processor becomes idle.

LB.Act.1 LB.Act.2 LB.Act.3
Questions How well does the scheduler

balance the system?
How long does the scheduler
need to balance the system's

load?

Does interactive load
influence load balancing?

Scenario Heavy Load Heavy Load Moderate Load
Metric RT, Load(CPUi) RT, E[transient],

Pr(Imbalance)
RT, Load(CPUi),
COV(E[RT(t)])

Hypothesis The System stayes balanced The system balances during
the first seconds.

Interactive Load allows
better balancing than

continuous load.

 Identify the relevant performance properties of multiprocessor load balancing policies

Table 5.4.: GQM plan for load balancing under Linux 2.6.22.

Question LB.Act.1: How well does the scheduler balance the system?

Question LB.Act.1 addresses the capabilities of the active-balancing policy for compute-

bound tasks. It expects the policy to evenly distribute the load among the available proces-

sors.

Scenario Scenario Heavy Load answers Question LB.Act.1. The resulting load distribution

as well as the task response times give hints on the capabilities of the active-balancing policy.

Hypotheses Hypothesis LB.Act.1.a and LB.Act.1.b expect the active-balancing policy to

evenly distribute the load among the available processors. Thus, the load of all processors

should at most differ by one task. For a system with n tasks and m processors, the expected

load of a processor CPUi with i ∈ {0 . . . m} is:

Load(CPUi) =

⎧⎨
⎩
�n/m , for m − (n mod m) processors

�n/m� , for (n mod m) processors
(LB.Act.1.a)

Furthermore, Hypothesis LB.Act.1.b expects the response time of a task tj with j ∈ {1 . . . n}
to be a multiple of the load of the processor CPUi executing tj. The actual task response

5.1. Multiprocessor Load Balancing 157

time depends on the number of interruptions of task tj. In the experiment, all tasks have the

same priority and timeslice (prio(tk) = 0 and TS(tk) = 100 ms∀ k ∈ {1 . . . n}, cf. Table 2.2

page 34).

For task tj, which demands a processing time of dj = 250 ms, the scheduler interrupts

its processing time either two or three times for a timeslice of 100 ms. Due to the fair run

queues of the Linux scheduler, all other tasks have to finish their timeslice, before tj resumes

its execution. This behaviour yields the following expected response times for all tasks:

RT(tj) =

⎧⎨
⎩
�dj/ TS(tj) ∗ Load(CPUi) ∗ TS(tj) + (dj mod TS(tj))

(�dj/ TS(tj)� ∗ Load(CPUi) − 1) ∗ TS(tj) + (dj mod TS(tj))
(LB.Act.1.b)

The actual response time depends on the number of interruptions of the task’s execution

expressed by �dj/ TS(tj) and �dj/ TS(tj)�. The first case represents the response time for

the minimum number of interruptions, while the second case yields the maximum number

of interruptions.

650 710 770 830 890 950 1000 1100 1200

Histogram

t: Time [ms]

D
en

si
ty

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Task 1
Task 2
Task 3

(a)

700 800 900 1000 1100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Task 1
Task 2
Task 3

(b)

Figure 5.6.: Response time distribution for scenario Heavy Load.

Results Figures 5.6(a) and (b) present the results for scenario Heavy Load and active-

balancing. The scenario was executed on a two processor system with seven concurrent

tasks. For clarity, the figures depict the response time of the first three tasks. The response

times of the remaining four tasks are similar to the depicted ones. Hypothesis LB.Act.1.b

expects a response time of either 650 ms or 850 ms for the processor loaded with three tasks

and either 850 ms or 1150 ms for the processor loaded with four tasks. The following formula

158 5. Multiprocessor Scheduling

computes the task response time for three concurrent tasks to illustrate the interpretation

of Hypothesis LB.Act.1.b:

RT(t1) =

⎧⎨
⎩
�250 ms /100 ms ∗ 3 ∗ 100 ms +50 ms = 650 ms (lowest RT)

(�250 ms /100 ms� ∗ 3 − 1) ∗ 100 ms +50 ms = 850 ms (highest RT)

The results presented in Figures 5.6(a) and (b) confirm the expectation of Hypothesis

LB.Act.1.b. In the experiment, the load balancer assigns three tasks to the first and four to

the second processor. Furthermore, the task response times lie around 650 ms, 850 ms, and

1150 ms as anticipated. Thus, Hypotheses LB.Act.1.a and LB.Act.1.b cannot be rejected.

●●●●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 50 100 150 200 250

70
0

80
0

90
0

10
00

11
00

Time Series

Index

t:
Ti

m
e

[m
s]

Figure 5.7.: Measurements of the task response time for load balancing under Linux.

However, the series of measured response times (Figure 5.7) suggests that the load dis-

tribution changes during the measurements. For the first 50 iterations, the task runs on a

processor with two other tasks yielding a response time of 650 ms and 850 ms. Then the

number of concurrently executing tasks increases to four for the next 110 iterations leading

to a response time of 850 ms and 1150 ms. For the last 120 iterations, the load drops back

to three tasks, but the response time shows more disturbances.

To answer Question LB.Act.1, active-balancing equally distributes the running tasks

among the available processors. The next question addresses the time a system needs to

reach a balanced state.

5.1. Multiprocessor Load Balancing 159

Question LB.Act.2: How long does the scheduler need to balance the system’s load?

The results of Question LB.Act.1 suggest that active-balancing equally distributes the load

over the available processors. However, the system’s load in scenario Heavy Load is relatively

high. Balancing events occur only during task creation and active load balancing intervals.

Thus, Question LB.Act.2 addresses the time necessary for active-balancing in heavily loaded

environments. Its hypotheses expect balancing to occur during the first seconds of scenario

execution. During this initial transient phase, imbalances occur irregularly until the scenario

reaches a steady state.

Scenarios Like for Question LB.Act.1, we consider scenario Heavy Load with m processors

and n tasks in the following. The duration of the initial transient phase provides sufficient

information to answer Question LB.Act.2.

Hypotheses Hypothesis LB.Act.2 expects the initial transient phase to last longer with

an increasing number of tasks. A system reaches its steady state when the systems load

disperses as specified in Hypothesis LB.Act.1.a and the response time of all tasks falls into

the categories defined in Hypothesis LB.Act.1.b for the remaining execution time. The first

time the requirements above are fulfilled, then, for the remainder of the experiment, the

requirements above mark the end of the transient phase and the beginning of the steady

state behaviour.

Hypothesis LB.Act.2.a expects the transient time of scenario heavy load to increase with

the number of tasks in the system. Let E[transn] be the expected transient time for n

concurrent tasks, then

E[transn] ≤ E[transk] with n < k and n, k ∈ N (LB.Act.2.a)

Furthermore, Hypothesis LB.Act.2.b states that imbalances occur irregularly during the

transient phase and the number of imbalances increases with the number of tasks in the

system. To distinguish balanced from imbalanced requests, the expected response times of

Hypothesis LB.Act.1.b define the upper and lower bound for the range of balanced requests.

For a task tj with a processing demand dj, the lower bound is the minimum response time

on the least loaded processor. Similarly, its upper bound is the maximum response time on

the most loaded processor:

lower(tj) = �dj/ TS(tj) ∗ �n/m ∗ TS(tj) + (dj mod TS(tj))

upper(tj) = (�dj/ TS(tj)� ∗ �n/m� − 1) ∗ TS(tj) + (dj mod TS(tj))

160 5. Multiprocessor Scheduling

For example, a system with m = 2 processors, n = 7 tasks, and a demand of 250 ms

has a lower bound of 2 ∗ 3 ∗ 100 ms +50 ms = 650 ms and an upper bound of (3 ∗ 4 − 1) ∗
100 ms +50 ms = 1150 ms. All response times within this range are considered as balanced,

while all others are considered as imbalanced. Due to disturbances of single response time

measurements, the tolerance bounds may be extended by half a timeslice, e.g., to 600 ms

and 1200 ms.

Formally, let Prn(Imbalance) be the probability that the response time of a task tj with

j ∈ {1 . . . n} is not within the balanced range for a system with n tasks and m processors,

i.e., Prn(Imbalance) = Pr((RT(tj) > upper(tj)) ∨ (RT(tj) < lower(tj))), then

Prn(Imbalance) ≤ Prk(Imbalance) with n < k and n, k ∈ N (LB.Act.2.b)

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Re
sp

on
se

 T
im

e
[m

s]

Execution Time [ms]

Task 1 Task 4 Task 7

Figure 5.8.: Response time series for three tasks on a dual-core processor.

Results Figure 5.8 shows the initial transient phase during the experiment’s execution. It

depicts the response times of three out of seven tasks. Its x-axis represents the execution time

of the experiment and its y-axis a task’s measured response times. Hypotheses LB.Act.2.a

and LB.Act.2.b consider the measured response times that fall into the range from 650 ms

to 1150 ms as balanced. The light grey area in Figure 5.8 emphasises the balanced region.

During the first 5 seconds of the experiment, several of the measured response times lie below

or above this region. After this initial phase, the response time measurements scatter less

and start forming a regular pattern within the balanced range.

5.1. Multiprocessor Load Balancing 161

Tasks
Transient
Time [sec]

Imbalanced
Requests [%]

1 0 0
2 0 0
3 1,6 5
4 2,5 7,5
5 3,3 22,5
6 5,1 32,5
7 6,7 40

Table 5.5.: Changes of load balancing with an increasing number of tasks.

Table 5.5 lists the average transient times for n = 1 to 7 tasks as well as the relative amount

of imbalanced requests during that period. Like Hypotheses LB.Act.2.a and LB.Act.2.b

expect, the initial transient phase as well as the probability of imbalanced requests increases

with the number of tasks in the system. Thus, both hypotheses cannot be rejected.

Question LB.Act.3: Does interactive load influence load balancing?

Questions LB.Act.1 and LB.Act.2 are focussed on the performance influences of active-

balancing for compute-bound tasks. Question LB.Act.3 targets its balancing capabilities for

interactive tasks, since interactivity strongly influences the Linux scheduler’s behaviour (cf.

Section 4.2).

Scenarios In the following hypotheses and experiments, we employ scenario Moderate

Load to answer Question LB.Act.3. Its results give an impression on the mutual influ-

ences of interactivity and multiprocessor load balancing. We use a waiting time of 50 ms

(Delay.VALUE = 50) instead of 10 ms in order to force the Linux scheduler to classify all

tasks as interactive.

Hypotheses In general, Hypothesis LB.Act.3.a expects a stronger variation of response

times and processor loads compared to scenario Heavy Load. Thus, the peaks in response

time distributions are expected to disappear. The load of a processor is expected to vary

between three and four concurrent tasks in most cases. Even though the task response

times are less regular, the coefficient of variation (COV) for the response times of all tasks

is expected to be less than 5%. In other words, the system is expected to be balanced:

|COV(E[ti])| < 5% for all ti with i ∈ {1 . . . n} (LB.Act.3.a)

162 5. Multiprocessor Scheduling

Furthermore, the load is expected to be equally balanced. The following hypotheses

formulate the expectations on mean response times and the load distribution for scenario

Moderate Load.

For a system with n tasks and m processors, each processor CPUi with i ∈ {1 . . . m} has

the following load in 90% of all cases:

Load(CPUi) =

⎧⎨
⎩
�n/m , for m − (n mod m) processors

�n/m� , for (n mod m) processors
(LB.Act.3.b)

For seven tasks (n = 7) and two processors (m = 2), this yields an expected load of 3

to 4 tasks per processor during 90% of the measurement period. For a processing time of

di = 250 ms, and a delay (waiting time) of wi = 50 ms for all tasks ti with i ∈ {1 . . . n}, the

expected mean response time is given by:

E[RT(ti)] = di ∗ n/m − wi. (LB.Act.3.c)

For the system above, the equation yields an expected mean response time of 825 ms for

all tasks. To reject Hypothesis LB.Act.3.c, the measured mean response time of all tasks

must deviate more than 5% from the expected value. Since active-balancing should lead

to an equal distribution, Hypothesis LB.Act.3.d expects 90% of all tasks to execute their

resource demand within the lower (650 ms for the system above) and the upper (1150 ms for

the system above) response time bounds:

Pr(RT(ti) < upper(ti) ∧ RT(ti) > lower(ti)) > 0.9 (LB.Act.3.d)

Results Figures 5.9(a) and (b) show the response time distributions of the first three tasks

for scenario Moderate Load with seven concurrently running tasks (n = 7) on a system with

two processors (m = 2). In this scenario, the response times are distributed between 350 ms

and slightly more than 1100 ms.

Task 1 2 3 4 5 6 7 COV

Windows 760,1 768,6 785,1 750,5 712,0 3,8
Linux 812,6 826,8 805,2 834,8 814,0 792,9 841,8 2,1

Table 5.6.: Mean response times of tasks t1 to t7 for scenario Moderate Load for Windows
and Linux.

Table 5.3 lists the mean response time of all tasks of scenario Moderate Load for Win-

dows (lazy-balancing) as well as for Linux (active-balancing). For active-balancing, the

5.1. Multiprocessor Load Balancing 163

320 420 520 620 720 820 920 1000 1100

Histogram

t: Time [ms]

D
en

si
ty

0.
00

00
0.

00
10

0.
00

20
0.

00
30 Task 1

Task 2
Task 3

(a)

400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t: Time [ms]

F(
t)

Task 1
Task 2
Task 3

(b)

Figure 5.9.: Response time distribution for scenario Moderate Load.

coefficient of variation of the mean response times is 2.1% meeting the exception of hypoth-

esis LB.Act.3.a of 5%. The average response time of all tasks is 816.9 ms and deviates less

than 1% from the expected response time of 825 ms. The difference is below the specified

threshold of 5%. Thus, Hypothesis LB.Act.3.c cannot be rejected.

Response Time Histogram

Time [ms]

Fr
eq

ue
nc

y

400 600 800 1000 1200 1400

0
20

40
60

80
10

0
12

0

(a) Combined response time histogram of
tasks t1 to t7.

0,2

0,3

0,2
0,1

0,3

0,0
0,1

0,6

0,3

0,0

1 2 3 4 5

Re
la

ti
ve

 F
re

qu
en

cy

Number of Concurrent Tasks

Windows Linux

(b) Relative frequency of concurrently executing
tasks.

Figure 5.10.: Load distribution for scenario Moderate Load.

Figure 5.10(a) shows a histogram of accumulated response times for tasks t1 to t7 under

Linux 2.6.22. Hypothesis LB.Act.3.d expects 90% of all values to fall in the range of 650

ms to 1150 ms. For the experiment, 1462 response time measurements of a total of 1614

164 5. Multiprocessor Scheduling

measurements lie in this range. Thus, 90.6% of all response times lie in the expected range

and Hypothesis LB.Act.3.d. cannot be rejected.

Estimating the load distribution of the processors based on the task response times (cf.

Section 5.1.2) yields the number of simultaneously running tasks depicted in Figure 5.10(b).

The active-balancing policy of Linux concurrently executes three and four tasks in most

cases (90%). Only in 10% of all cases do two tasks share one processor. The figure depicts

the results for the lazy-balancing policy of Windows. The comparison between both policies

shows, that the Linux scheduler keeps a good balance of all tasks most of the time. By

contrast, Windows minimises its balancing effort and, thus, tolerates larger imbalances in

the system, but minimises its overhead for moving tasks.

5.1.4. Extending MOSS to Symmetric Multiprocessor Systems

In this section, we extend the CPN model of MOSS introduced in Sections 4.1.3 and 4.2.4 by

different load balancing policies for symmetric multiprocessing environments. The prediction

model reflects the variation points presented in Section 3.2.2.

Static Load Balancing

Static load balancing policies assign newly created tasks to a processor. Figure 5.11 depicts

the static load balancing policies available in the context of MOSS: cyclic splitting, random,

and same as parent. The static load balancing policy is part of the subnet InitialiseTask

(cf. Figure 3.9 page 67) and, hence, is responsible for assigning an initial processor to

the newly created task. Place New holds newly created tasks, which already received a

unique identifier (id), static and dynamic priority (prio), and timeslice (timeslice). The

subnets for the static load balancing policy assign an initial processor to the new tasks and

hand them over to the scheduler. Therefore, transitions CyclicSplitting, Random, and

SameAsParent take the new task’s SCHED TASK token with its UNDEFINED processor from

place New, determine the initial processor of the task, and enqueue it in the list of incoming

tasks of the scheduler on place Incoming.

Transition CyclicSplitting (Figure 5.11) uses the CPU token on place NextCPU to deter-

mine the new task’s processor. Place NextCPU contains a single token of colour CPU, which

specifies the identifier of the next available processor. When transition CyclicSplitting

fires, it removes one of a newly created task from place New, takes the next processor’s identi-

fier from place NextCPU and the list of the scheduler’s incoming tasks from place Incoming.

It appends a new token to the scheduler’s list of incoming tasks (taskList). The token

contains the identifier, priority, and timeslice that have already been defined. Its initial pro-

cessor is set to the value of cpu. Furthermore, transition CyclicSplitting determines the

5.1. Multiprocessor Load Balancing 165

�������� �	
�������

���

���������	
���
� �� ��

���

����
��������������������������

��������������	�

 	
���
 	
���

��

�	����	�

��

	�����

�

��!
��!"����

��#��$"%�&
��!"����

�	����	�"���� 	
�����������''
���(����������������������� ��������	

���

	�����
	����	

���������	�
���	��������������		������������

���������	�
���	������������������

 	
��� 	
���

��
��������

�	
�������

����
��������������������������

)�	���

����������������
�����	
��������������
������������� �!�" ��
�������	

�	����	�

��

��!
��!"����

��#��$"%�&
��!"����

�	����	�"����
	�����
	����	

 	
���

���������	�
�����������������	���������

��������

 	
���

��

���������	
*���	�"����

 	
���

����
����������
����������������

���
�����������
��������������������

�	
�������

���

��������*���	�

���������	�

�	����	�

��

��!
��!"����

��#��$"%�&
��!"����

�	����	�"����
	�����
	����	

�������	

�����������������

����������
���������������������� �!�" ��

 	
���

Figure 5.11.: Static load balancing.

166 5. Multiprocessor Scheduling

processor for the next arriving task ((cpu MOD NUM CPU) + 1). The computation ensures

that the set of processor identifiers ranges from 1 to NUM CPU. A processor identifier of 0

stands for an undefined processor (UNDEFINED).

The subnets for the random and same as parent policies follow the same structure. Tran-

sition Random calls function randomInt to generate a uniformly distributed random number

between 1 and NUM CPU, which represents the selected processor of the new task. Transition

SameAsParent looks up the SCHED TASK token of the task which created the new task, i.e.,

its parent.

Listing 5.1: Colour set PARENT SCHED TASK.

colset PARENT SCHED TASK = product TASK ID ∗ SCHED TASK;

Place ParentTask contains the SCHED TASK tokens of the parent tasks associated to the

identifier (TASK ID) of the created task (cf. Listing 5.1). This tokens allows transition

SameAsParent to look up the parent’s processor (p cpu) and assign the new task to the

same processor. All three transitions of the static balancing policy subnets retrieve the

token onForkList from place OnFork. Independent of the list’s current content, they return

a list with a single token. The new token on fusion place OnFork notifies the dynamic load

balancing policy that a new task has been created.

Dynamic Load Balancing

���������	
��

��	���

	
��

���������	
��

����� ����������
��

����������
��

����

����
����

�����

������

�������

��������������

�������

��������������

��������������
��������	
� ����������
��

��

��������

��

��	���	���

������

��

��	���	���

Figure 5.12.: Overview of dynamic load balancing.

MOSS reflects the influence of various features for dynamic multiprocessor load balancing

policies. It includes different load indices as well as transfer, location, information, and

selection policies. MOSS requires a high flexibility as it allows various configurations of

different features. In Figure 5.12, the CPN for dynamic load balancing policies is split

5.1. Multiprocessor Load Balancing 167

into multiple subnets, which are represented by substitution transitions, to support such

a flexibility. In the following, we give an overview of the overall dynamic load balancing

behaviour.

When load balancing has been activated (i.e., transition Trigger fired), transition

DetermineLoad determines the current load index for all processor identifiers on place

StartBalancing and stores the result on place Load. Next transition DetermineRole par-

titions the processors into senders and receivers based on their current load. Whether a

processor needs to participate in load balancing as well as its role depend on the specified

transfer policy. When all processors have been partitioned and a sender and a receiver are

available, transition Couple creates pairs of potential senders and receivers. The transition’s

behaviour depends on the information policy of the load balancer. Transition Balance mod-

els the movement of tasks from one processor to another. It chooses the tasks for transfer

according to the defined selection policy. In the following, we present the realisation of each

substitution transition in detail.

Activating Dynamic Load Balancing

��������	
 �����������	

������	 �� ������	 �� �������������

���	�����

���� ���������	
������	�����	

��������

��

�
��

��

!�	�����	���

��

!"#$%&�'�!

!�	�����(��

��

!�	������

��

!"#$%&�'�!

!�	���
!������

��

'������

��

)�����
)����� !�	�	 '������ !�	�	

"������ "���� "�����"�����	���

"�

�������

������	

������	

�����
�
���	

�����*
��
�(�+�����

�����
�,�����+�����

��
�(�

$,�����
$,�����!�	�	$,�����!�	�	

��
�(�!�	�	

����������
��������

����������
��������

������������

������������

������!�!��
������!�

��

	� !�!"#�"$
�����	

 �����	

�
�

%!&%�'!� !�!"#�"$

Figure 5.13.: Subnet Trigger for the state change driven activation of load balancing.

Figure 5.13 depicts the general behaviour of subnet Trigger. The GUARD of transition

StartLoadBalancing depends on the selected information policy. The places TaskFinished,

TaskPutToSleep, TaskWokeUp, and TaskArrived belong to the fusion sets OnFinished,

OnSleep, OnWake, and OnFork, respectively, and represent state changes of the scheduler

important for load balancing. Whenever one of these events occurs, the scheduler puts a

token on the respective event’s place.

168 5. Multiprocessor Scheduling

��

��������	
�
�����	
���

���
������
���
���

��

����	������	�

�������
������������

������

��������
��������������������������

	����������
������������

	�������������������
	������������������

	�����������
	���������������

����
��������
��	
����������

��������
�
������������

	� ��!��	�!"�	�

����"���

����"���##$%���&���&�
���	
����������%����&
���������'&������
���'(

����������

%���&���&�����&������
���'

	���������������

����������

��

	������������������
����	����

������������
��	�

%���&��&����&�����
���'

��
���������

%���&���&������������������
%����&���������'&������
���'

�������

%��&����������'

����

�������	
�

	����������������

%��&����������'

%��&����!����%''

$(

��

��

��

Figure 5.14.: Load balancing activation.

For example, Figure 5.14 depicts the extended subnet for the management of waiting

tasks from Section 4.2.4. Additionally to their original behaviour, transitions PutToSleep

and WakeUp insert tokens into the lists on places PutTaskToSleep and WokeUpTask of fusion

sets OnSleep and OnWake respectively. Thus, when a task is put into the waiting queue

during the acquisition of a semaphore, the subnet notifies the load balancer that an OnSleep

event occurred.

Each event place contains a single list of tokens. Transition StartLoadBalancing retrieves

all lists and concatenates the ones of interest. If the concatenated list contains at least one

element, then an event of interest occurred. When transition StartLoadBalancing fires,

it removes all tokens from the event places and inserts all processor identifiers into the list

on place Start. The latter belongs to the fusion set StartBalacing, which finally triggers

the load balancing. The inhibitor arc to place Incoming ensures that all incoming task are

placed in the run queue before load balancing is initiated. The inhibitor arc prevents wrong

load balancing decisions for the events OnWake and OnFork.

The different feature configurations of the state-change-driven information policy influence

the guard of transition StartLoadBalancing. Listing 5.2 shows the conditions for the state-

5.1. Multiprocessor Load Balancing 169

change driven information policies implemented in Windows Server 2003 and Linux 2.6.22.

The condition modelling the behaviour of the Windows Server 2003 operating system reacts

when a processor becomes (or currently is) idle (OnIdle). Whenever an event occurs (i.e., the

concatenated event list is greater than zero) transition StartLoadBalancing checks whether

a processor is idle (i.e., it executes the idle task with id = IDLE ID) and whether its run

queue is empty (i.e., length(runQueue) = 0). The transition ensures this condition by its

bidirectional arcs to the places Ready (or Active and Expired) and Running. The arcs

select the currently executing task and the run queue of a processor. Only if the run queue

is empty and a processor is idle, then transition StartLoadBalancing fires.

Listing 5.2: Different variants of the guard of transition Trigger Load Balancing.

val NUM CPU = 2 ;
val UNDEFINED = 0 ;
colset CPU = in t with 0 . .NUM CPU;
val ALLCPUs = CPU. a l l () −− 1 ‘UNDEFINED;

(∗ OnIdle (Windows Server 2003) ∗)
[l ength onF in i shedL i s t ˆˆ onS l e epL i s t ˆˆonWakeList ˆˆ onForkList > 0
andalso id = IDLE ID andalso l ength runQueue = 0]

(∗ OnWake, OnFork , and OnIdle (Linux 2 . 6 . 22) ∗)
[(l ength onF in i shedL i s t ˆˆ onS l e epL i s t > 0 andalso id = IDLE ID

andalso l ength (activeQueue ˆˆ expiredQueue) = 0)
orelse l ength onWakeList ˆˆ onForkList > 0]

Similarly, transition StartLoadBalancing for Linux 2.6.22 waits for tokens on places

TaskFinished, TaskPutToSleep, TaskWokeUp, and TaskArrived. While the latter two di-

rectly conform to the events OnWake and OnFork, respectively (like their fusion set is

called), event OnIdle is triggered if the number of executable tasks in the system reduces

and, hence, a processor becomes idle. Condition length onWakeListˆˆonForkList > 0

enables the transition if either a token lies on place TaskWokeUp of fusion set onWake or

on place TaskArrived of fusion set onFork. To initiate load balancing whenever a proces-

sor becomes idle, condition length(onFinishedListˆˆonSleepList) > 0 checks whether

event onFinished or onSleep occurred. Furthermore, condition id = IDLE ID requires the

idle tasks to currently execute on one of the processors whose active and expired run queues

are empty (length (activeQueue ˆˆ expiredQueue) = 0). These conditions enable tran-

sition StartLoadBalancing, whenever a task finishes or starts waiting and a processor be-

comes idle.

Transition StartLoadBalancing encapsulates the complex load balancing activation to

guarantee atomicity. Furthermore, its inhibitor arc to place Incoming of the scheduler only

allows to start balancing if all scheduling operations have been finished. Using a single

170 5. Multiprocessor Scheduling

transition that is only activated if the scheduling is terminated ensures that no invalid

balancing operations are executed, e.g., the processors are balanced even though not all

tasks have been placed in run queues. Furthermore, the transition reduces the simulation

overhead necessary, since it combines a set of events into a single scheduling attempt.

Determining the Load

If load balancing has been initiated, then the load of each processor has to be determined

next. Figure 5.15 depicts two subnets for substitution transition DetermineLoad.

The first subnet (Figure 5.15(a)) determines the current CPU queue length. It collects

the necessary information from places Ready and Running and stores the resulting load in

the list on place Start. The second subnet (Figure 5.15(b)) computes the ageing CPU

queue length using the subnet in Figure 5.15(a). It incorporates the current load with the

previously determined one.

For the computation of the current CPU queue length, transition DetermineCurrentLoad

is enabled as soon as an element is added to the CPU LIST on place Start. Furthermore, a

bidirectional arc with an empty list ensures that the TASK LIST on place Incoming is empty

(inhibitor arc patter, cf. Appendix B.6). When firing, transition DetermineCurrentLoad

removes the first element from the CPU LIST on place Start and gets the corresponding

run queue (from place Ready) as well as the currently running task (from place Running).

Furthermore, it adds a new token of colour CPULOAD (cf. Listing 5.3) to the list on place

Load. The CPULOAD embodies a CPU representing the processor’s identifier and an integer

representing its load. Function insertAscending (cf. Listing 5.3) realises the priority

queue pattern (cf. Appendix B.6) and ensures that processors on place Load are ordered

according to their current load. Finally, transition Determine Current Load uses function

determineLoad to compute the processor’s load from the run queue and the executing task’s

identifier (cf. Listing 5.3).

The age based load index (Figure 5.15(b)) requires multiple steps to determine the ageing

load from the current and last load of a processor. Furthermore, it is necessary to deter-

mine the load for all processors on place Start before transition DetermineRole is enabled.

Place DetermineLoad of fusion set IsDeterminingLoad contains a list of processor identi-

fiers whose load has not yet been computed. The realisation of transition DetermineRole

employs an inhibitor arc on this place to ensure that the load of all processors is available.

When a list of processor identifiers is put on place Start, transition StartDetermineLoad

is enabled. It removes the list of processors from place Start and puts a copy on place

IsDetermingLoad and on place GetCurrentLoad. While the latter ensures, that the load

balancer determines the load of all processors, before it assigns roles (i.e., sender or receiver)

5.1. Multiprocessor Load Balancing 171

��������	
��

�

��������

�

�������

�����������������������

����� ���������

������������

��������
�������������

�

 ������

!"���� ! ##
!"���� $

 ���%
 ���%�����

&����
��

�

����

'��

��

 ���%�����

 ����������� �������������

!"�!���##
!"�$���

���������	�
���

��
���
�����������

���
���

���������	

����
����	

��
���� ������

�����
��
���� ������

������

�������	����������	�	�����������	� ��������� ������������������	�����

�������	����������	�	���������	����������� ����������	��������������	�����

���

����������������
�����!����� ���
!"�������������##�!
$!"�
���#

$!"�
�������� ���!
�������
!"�

������� ((!"���

�������

�������

�

� ����������

����� �����

����� ���������
&����)������������

�����* ������� + ,�

-�.����

/�����

�

��������

!"�!�,�##
!"�$�,�

&����
��

�

����
'��

/�������

�������

��������

��

'��

��)��������������
��)����������������)��������������

0��	����������

���
���

���
���

���
���

��
���
���

���
��� !�����!�
�%���&�!'!(#!)!��%
!"! �
%���&�!)!$"��
!"�##

���
���

���
���

���������������������$!"�#�!$!"�
���# $!"�
���

�����!��%
!"�#
**$!"�
��� $!"�
���

	����������

)��������	����������)��������	����������

����� ���!
�������
!"�

+

Figure 5.15.: Subnets for different load indices.

172 5. Multiprocessor Scheduling

Listing 5.3: Functions determineLoad and insertAscending.

colset CPULOAD = product CPU ∗ INT ;
colset CPULOADLIST = l i s t CPULOAD;

fun determineLoad (runQueue , id) =
i f id = IDLE ID

then l ength runQueue
else l ength runQueue + 1 ;

fun lowerLoad ((cpu1 , load1) , (cpu2 , load2)) =
(load1 < load2) ;

fun i n s e r tAscend ing (elm , []) = [elm]
| i n s e r tAscend ing (elm , (q : : queue)) =

i f lowerLoad (elm , q)
then elm : : q : : queue
else q : : (in s e r tAscend ing (elm , queue)) ;

to each processor, the first initiates the actual load computation. When a list of processors

is put on place GetCurrentLoad substitution transition DetermineCurrentLoad sums up

the length of the (active and expired) run queue including the currently running process. Its

subnet is similar to the one for the feature CPU queue length in Figure 5.15(a).

When a new CPULOAD token is inserted into the list on place CurrentLoad, transition

Ageing is enabled. It takes the processor’s newly computed load (token (cpu, newLoad))

and its last known load (token (cpu, lastload)) from place LastLoad and computes the

aged load from both values. Parameter weight determines the influence of the past and

current load’s value. Finally, transition Enqueue adds the resulting load in the CPULOADLIST

on place Load, removes the processor’s identifier from the list on place IsDeterminingLoad,

and stores the resulting load on place LastLoad for the next balancing attempt. Transition

Enqueue uses function insertAscending to add the computed load to the list on place Load.

Determine Senders and Receivers

When the load of all processors has been determined, senders and receivers for balancing need

to be identified. The transfer policy determines how the scheduler classifies the processors

based on their current load index. Figure 5.16 shows the subnets of the threshold-based

(Figure 5.16(a)) and relative (Figure 5.16(b)) transfer policies.

For the threshold-based policy (Figure 5.16(a)), either transition IsReceiver, IsBalanced,

or IsSender fires depending on the processor’s load. If the lower bound is smaller than the

upper bound, the guards of all three transitions are disjoint and only one transition is enabled

at a time. In case both bounds are equal, only transitions IsReceiver and IsSender can

be enabled.

5.1. Multiprocessor Load Balancing 173

�������� 	��
���

��
������
������

������
�����

������
����� ����
�����������	
���

����

��������	
�

��������	
�

��������	
�

�
�������� ������	��
�
������	��

��

������

��

����	���
���

��

���

�
������	����

	�
����
����	���
��������� �!��������	
�

�����!"#!��$�������!
�����
�

!����!%#!�����������

�����!���� &&�����	
�

	�
���'�
����	���
��������� �!��������	
�

�������	
�

�������	
�

����	
�

�������	
�
���

��������

��������

��������

���������������������

���������������������

����
��

�
����	���

�����!%!��$��������

�
������

�����!"!�����������

��������	
�!��!
����

��������	
�

��

��

���������� �

��	(������	
�

��

��

��

�� ��

��

��

��������	
�

��������	
���
�(�)����
�(�*)��

��(�*)���!
(�*���� �

��(�)���!
(����� �

���!�����	
��

�+�!�����	
��

�����	
�

��(�*)���!
(�*���� �

��(�)���!
(����� �

��(�*)���!
(�*���� ���

�� ��(�)���
(����� �

,�,���
-��.������ ������	��,����/�	���

��(�*����!
�!(����� !
%!�	
������

�����	-01	�1�* ������	����/�	���
��(�*����!
�!(����� !
"#!�	
������

).23���,

1�*

��

).2���'���,

1	�

��

).2���'���,

������	��
�
�����	��

��

).23���,

������
���

��

).2���'���,

����

��

).2���'���,

����	���
���

��

).2���'���,
���

��

���

�
�����	��

�
'����(������
�
'����(�	�������
'����(�	������

��

������ �
���������!�"#

�������	����������������������������	�����������

�������	����������������������	�����������

Figure 5.16.: Subnets to determine senders and receivers for load balancing.

If the load of a processor lies below the lowerBound, transition IsReceiver considers the

processor as a receiver and inserts it into the list on place Receiver. For the insertion,

transition IsReceiver calls function insertAscending. Analogously, transition IsSender

fires if a processor’s load lies above the upperBound. Function insertDescending adds the

tuple (cpu, load) to the list on place Sender in descending order (cf. Listing 5.4). By

sorting the receivers in an ascending order and the senders in a descending order, MOSS

allows the direct identification of the highest and least loaded processors for balancing.

Finally, transition IsBalanced fires if no balancing for the selected processor is necessary.

The transition simply removes the processor from the list of currently balanced processors

and, thus, aborts balancing for this processor.

174 5. Multiprocessor Scheduling

Figure 5.16(b) shows the role assignment for the relative transfer policy as implemented in

Linux 2.6.22. Once the load of all processors is determined, either transition IdentifyMinMax

or NoTransferPartner is enabled. While the first requires at least two processors in the

CPULOADLIST on place Load and determines the list’s minimum and maximum, the latter

is responsible for removing a single processor from the list, for which no proper partner

can be found. Transition IndentifyMinMax takes the list of processor loads (loadList)

from place Load and puts its head on place Min and its tail on place Max. Finally, func-

tion trim(loadList) (cf. Listing 5.4) returns the list without its head and tail to place

Load. Since the list of processor load tokens in loadList is sorted in an ascending or-

der, its first and last elements are the minimum and maximum of the list, respectively.

Once the minimum and maximum are available, either transition BalancingRequired or

BalancingNotRequired is enabled. In the first case, the load difference of the minimum

and maximum loaded processor is equal to or larger than the predefined distance and load

balancing is required. When transition BalancingRequired fires, it moves the minimum

loaded processor token ((minCpu, minLoad)) to place Receiver and the maximum loaded

processor token ((maxCpu, maxLoad)) to place Sender.

Listing 5.4: Functions insertDescending and trim.

fun higherLoad ((cpu1 , load1) , (cpu2 , load2)) =
(load1 > load2) ;

fun i n s e r tDescend ing (elm , []) = [elm]
| i n s e r tDescend ing (elm , (q : : queue)) =

i f higherLoad (elm , q)
then elm : : q : : queue
else q : : (in s e r tDescend ing (elm , queue)) ;

fun tr im (head : : l) = L i s t . take (l , l ength l − 1)
| tr im ([]) = [] ;

If instead transition BalancingNotRequired is enabled, the difference of the mini-

mum and maximum load is smaller than the predefined distance. Thus, transition

BalancingNotRequired terminates the balancing attempt for both processors. It removes

their tokens from places Min and Max as well as their processor identifiers minCpu and maxCpu

from the list on place Balancing.

5.1. Multiprocessor Load Balancing 175

Finding Partners for Transfer

To eventually create a balanced situation for all processors of a system, the load balancing

policy needs to identify transfer partners, i.e., senders and receivers, so that tasks can be

moved from one to the other. The subnet of substitution transition Couple realises the

identification of fitting transfer partners in the context of MOSS.

��

��

��

����������

	

	

��������
���������
�����������
	
��������
���

������������������
����������

����

	

��������

��������������� � ��������

����!"�����

����!"�����

�����
!#�
����"��
!#�

����

��

���� ������
���� ����� $'������%%

$'��������

&� ��������

������������

	

���������
�� ������

	

��������������������
������������

	�������� �����
�����������
�������������

&� ��������

������

��������

��������������� �
��������������� �

��

Figure 5.17.: Subnet for substitution transition Couple.

Figure 5.17 depicts its subnet with the input places Sender and Receiver and the output

place Pairs. It contains two fusion places IsBalancing and IsDeterminingRole, which

ensure that the role of all processors involved in load balancing has been determined. If

this is the case, either transition TerminateBalancing or Bind is enabled. The first en-

sures that the balancing attempt is terminated if no redistribution of load is possible. Its

guard calls function cannotBalance which checks whether the receiverList or whether

the senderList is empty while its counterpart still contains at least one element. In this

case, the system is either overutilised (contains only senders) or underutilised (contains only

receivers) and balancing is not possible. Thus, transition TerminateBalancing terminates

the balancing attempt, removes all senders and receivers, and empties the list of currently

balanced tasks on place IsBalancing.

If, otherwise, the lists on places Sender and Receiver contain at least one element each,

transition Bind is enabled. It takes the first sender and receiver token from the lists on places

Sender and Receiver and puts a new CPUPAIR token on place Pairs. The token contains

the sending and receiving processor’s identifiers as well as the number of tasks to move. By

176 5. Multiprocessor Scheduling

Listing 5.5: Function cannotBalance.

colset CPUPAIR = product CPU ∗ CPU ∗ INT ;

fun cannotBalance (senderL i s t , r e c e i v e r L i s t) =
(l ength r e c e i v e r L i s t = 0 andalso l ength s ende rL i s t > 0)
or else

(l ength s ende rL i s t = 0 andalso l ength r e c e i v e r L i s t > 0)

default, MOSS assumes that threshold based policies just move a single task while relative

policies equalize the load of the sender and receiver. Furthermore, transition Bind terminates

the load balancing attempts for all other processors and removes their tokens from places

Sender, Receiver, and IsBalancing. The termination is necessary, since the load balancing

of the two selected processors changes the overall load distribution. If further balancing is

required, a whole new balancing attempt must be started to determine the new senders and

receiver. For example, one of the processors involved in the current load balancing attempt

may still be the busiest processor after balancing is finished. Continuing load balancing with

the remaining processors would not resolve such situations.

Balancing the Load

�������� ��
	
���

 �����	� ����
��� � ��
	��� �������� ��
	
���
���� ��������
���������	���
	
����

��

	����
�	

��������
���������	�����
�����

�������� ����
����

�������� ��
�
��������

�����

��
�
���� !���"���

#�
��
��
#�
��
��"����

�
	
��
�
	
��"����

$%�$����&&
$%�'����

�����

��
#�����

��

��

���
���
���
���"����

$%�$����&&
$%�'����

(�
��
#�#�

���
���"����

#�����

��

#�
��
��"����

��

�
	
��"����
)(*+,*-.*�*�

)(*+,*-.*�*�

���� � ��

����������
�
�������/$�

 �����	� ����
��� � ��
	��� 	����
�	00���	�����
������
�
����
���� 	����
�	00���	���
	
�����
�
����1)3�2+"�15+�#1"

)(*+�#1"

����������
�
������
)(*(�#,

���������	

Figure 5.18.: Subnet for substitution transition Balance.

After substitution transition Couple identified two transfer partners, transition Balance

(Figure 5.18) can select and move tasks from the sender to the receiver. For each pair

on place Pairs, it moves the specified number of tasks from the sending to the receiving

processor. The task transfer is executed in multiple steps. During each step, transition

5.1. Multiprocessor Load Balancing 177

MoveTask moves one task from the sender to the receiver until no further tasks have to be

moved. Then transition BalancingFinished terminates the load balancing operation.

Transition MoveTask takes a CPUPAIR token from place Pairs, whose number of tasks

to move is greater than zero (num > 0). Furthermore, it selects the sender’s (active and

expired) run queue from places Active and Expired. Transition MoveTask first tries to

move the last task of the expired queue. If such a task exists (i.e., length sExpired > 0),

transition MoveTask removes it from the sender’s expired run queue and adds it to the list

of tasks on place incoming (taskListˆˆlast(sExpired, receiver)), where function last

returns the last element of a run queue and sets its processor identifier to the specified one

(cf. Listing 5.6). The functions last and removeLast realise the selection policy of the load

balancer. Its preferred priority is low, its preferred waiting time is short, and processor as

well as cache affinities are not considered.

Listing 5.6: Functions update and interactive.

fun l a s t ([] , newCpu) = []
| l a s t ([(cpu , id , pr io , t im e s l i c e)] , newCpu) = [(newCpu , id , pr io , t im e s l i c e)]
| l a s t (q : : queue , newCpu)= l a s t (queue , newCpu) ;

fun removeLast [] = []
| removeLast [elm] = []
| removeLast (q : : queue) = q : : removeLast (queue) ;

The scheduler’s subnet automatically places the tasks in the list on place Incoming in the

correct run queue of the receiving processor. If the expired run queue of the sender is empty,

transition MoveTask switches to its active run queue performing the same operations as for

the expired one. Finally, it return the CPUPAIR token to place Pairs reducing its number of

tasks by one. If the number is still greater than zero, transition MoveTask is enabled again

and can move the next task.

As soon as the number of tasks to move reaches zero, transition BalancingFinished is

activated. It empties the list of currently balanced processors on place Balancing. This

terminates the balancing operation.

For MOSS, we considered the configurations of information policies, load indices, transfer

policies, and selection policies. However, we neglected the different location policies. Loca-

tion policies have only a limited influence on software performance, since the load balancing

itself does not consume simulated time. In the next section, we validate the prediction

accuracy of MOSS for symmetric multiprocessing environments.

178 5. Multiprocessor Scheduling

5.1.5. Validation of MOSS’ Prediction Accuracy

In this section, we present a validation of MOSS’ prediction accuracy for symmetric mul-

tiprocessing environments following the same structure as in Sections 4.1.4 and 4.2.5. The

validation is based on the experiments in Section 5.1.3 and targets the prediction accuracy of

the multiprocessor load balancers of Windows Server 2003 and Linux 2.6.22 under different

load conditions. In the validation, we compare predictions and measurements for single-,

dual-, and quad-core systems and, thus, extend the scenarios of Section 5.1.2.

Goal: Purpose Assessment

Issue of MOSS’ prediction accuracy

Object for symmetric multiprocessing environments

Viewpoint from the software architect’s point of view.

Questions Can the model predict the
 influence of heavy load?

Can the model predict the
influence of moderate load?

Scenarios Heavy Load
250 ms Demand

0 ms Delay
7 Tasks

Moderate Load
250 ms Demand

Windows: 10 ms Delay
Linux: 50 ms Delay

7 Tasks

Metrics Err(RT), Err(Load(CPU)) Err(RT), Err(Load(CPU))

Hypotheses Yes, the prediction error
is less than 5%
Err(RT) < 5%

Err(Load(CPU)) < 5%

Yes, the prediction error
is less than 5%
Err(RT) < 5%

Err(Load(CPU)) < 5%

Evaluation of the Prediction Accuracy for Multiprocessor Load Balancing

Table 5.7.: GQM plan for the multiprocessor load balancing prediction model.

Table 5.7 shows the scenario-based GQM plan of the validation. The first question ad-

dresses the influences of initial imbalances under heavy load conditions. While the imbal-

ances are expected to remain under Windows, the Linux scheduler is expected to balance

the system (cf. Section 5.1.3). The second question addresses MOSS’ prediction accuracy

for moderately loaded systems, where both operating systems achieve a more balanced state.

In the following, we answer both questions for the considered operating systems and discuss

the effect of changes in the prediction model on performance results. For brevity, we only

list the scenarios and hypotheses in Table 5.7 omit a detailed description.

Prediction Accuracy for Lazy Load Balancing

MOSS accurately predicts the effect of Window’s lazy-balancing policy on software perfor-

mance. Figure 5.19 depicts the response time distributions for scenarios Heavy Load and

5.1. Multiprocessor Load Balancing 179

280 420 580 720 880 1000 1200 1300 1500

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Prediction
Measurement

(a) Histogram for scenario Heavy Load.

250 350 450 550 650 750 850 950 1100 1200

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

00
1

0.
00

2
0.

00
3

Prediction
Measurement

(b) Histogram for scenario Moderate Load.

400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(c) Cdf for scenario Heavy Load.

400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(d) Cdf for scenario Moderate Load.

16,9

26,4

17,8

14,0

24,9

18,7

27,1

15,7

12,0

26,5

1 2 3 4 5

Re
la

ti
ve

 F
re

qu
en

cy
 [%

]

Number of Concurrent Tasks

Predicted Measured

(e) Comparison between predicted and measured load distribution.

Figure 5.19.: Predictions and measurements for load balancing under Windows.

180 5. Multiprocessor Scheduling

Moderate Load. MOSS predicts the task response times for both scenarios with an error of

less than 1% (Table 5.8(b)). Figures 5.19(a) and 5.19(c) show the accumulated response time

distributions of all seven tasks for scenario Heavy Load. As expected, one task is executed

without preemptions on one processor while the remaining six tasks share the second proces-

sor. This behaviour yields the depicted response time distribution, where 50% of all requests

finish within 250 ms and 50% in 1500 ms. Analogously, Figures 5.19(b) and Figure 5.19(d)

show the accumulated results for scenario Moderate Load.

(a) Estimated load distribution for scenario
Moderate Load.

Error [%]
Tasks Predicted Measured

1 16,9 18,7 1,86
2 26,4 27,1 0,74
3 17,8 15,7 2,14
4 14,0 12,0 2,05
5 24,9 26,5 1,59

Relative Frequency [%]

(b) Measured and predicted response times for sce-
narios Heavy Load and Moderate Load.

Prediction Measurment Error [%]

Min. 251,9 251,8 0,0
1st Qu. 471,5 476,1 1,0
Mean 753 754,5 0,2
3rd Qu. 1124 1123 0,1
Max 1224 1237 1,1

Min. 251,8 251,8 0,0
1st Qu. 251,9 251,8 0,0
Mean 881 886 0,6
3rd Qu. 1512 1502 0,7
Max 1513 1503 0,7

Heavy Load

Task Response Time [ms]
Scenario

Moderate Load

Table 5.8.: Prediction accuracy for Windows Server 2003.

Tables 5.8(a) and 5.8(b) summarise the prediction error for both scenarios. The predicted

load distribution among the available processor (Figures 5.19(e)) matches the measurements

with an error of approximately 2% for scenario Moderate Load and less than 1% for scenario

Heavy Load.

Prediction Accuracy for Active Load Balancing

Similar to the lazy load balancing policy, MOSS accurately predicts the task response times

and load distribution for scenarios Heavy Load (Figures 5.20(a) and 5.20(c)) and Moderate

Load (Figures 5.20(b) and 5.20(d)). However, the predictions for scenario Moderate Load

show a larger variance than the corresponding measurements. This difference becomes evi-

dent in the predicted and measured load distribution (Figure 5.20(e)).

For scenario Heavy Load, MOSS predicts the response time with an error of less than 1%

(Table 5.9). It predicts the mean response time for scenario Moderate Load with the same

accuracy. However, the quantiles show larger differences due to the larger variance of the

predicted response times compared to the measured response times. The first quantile of

both distributions differs by 12% and the third by 17%. Furthermore, the minimum and

5.1. Multiprocessor Load Balancing 181

660 700 760 800 860 900 960 1000 1100 1100

Histogram

Time [ms]

D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05 Prediction

Measurement

(a) Histogram scenario Heavy Load.

450 550 650 750 850 950 1000 1200

Histogram

Time [ms]

D
en

si
ty

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Prediction
Measurement

(b) Histogram scenario Moderate Load.

700 800 900 1000 1100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(c) Cdf scenario Heavy Load.

600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(d) Cdf scenario Moderate Load.

0,0

23,2

43,1

27,1

6,2
0,0

8,5

61,0

30,1

0,4

1 2 3 4 5

Re
la

ti
ve

 F
re

qu
en

cy
 [%

]

Number of Concurrent Tasks

Predicted Measured

(e) Comparison between predicted and measured load distribution.

Figure 5.20.: Predictions and measurements for load balancing under Linux.

182 5. Multiprocessor Scheduling

(a) Estimated load distribution for scenario
Moderate Load.

Error [%]
Tasks Predicted Measured

1 0,0 0,0 0,00
2 23,2 8,5 14,63
3 43,1 61,0 17,85
4 27,1 30,1 2,94
5 6,2 0,4 5,73

Relative Frequency [%]

(b) Measured and predicted response times for sce-
narios Heavy Load and Moderate Load.

Prediction Measurment Error [%]

Min. 419,0 541,6 22,6
1st Qu. 635,0 693,0 8,4
Mean 790,6 804,4 1,7
3rd Qu. 934,0 909,3 2,7
Max 1261,0 1136,0 11,0

Min. 653,6 653,8 0,0
1st Qu. 853,4 853,5 0,0
Mean 884,8 885,9 0,1
3rd Qu. 855,9 859,9 0,5
Max 1154,0 1154,0 0,0

Heavy Load

Task Response Time [ms]
Scenario

Moderate Load

Table 5.9.: Prediction accuracy for Linux 2.6.22.

maximum response times deviate by 17% and 16% respectively. While the measurements

show a load of 3 and 4 tasks in most cases, the prediction expects a load distribution ranging

from 2 to 5 tasks. Hence, MOSS does not achieve the same degree of balancing as the Linux

scheduler.

Thread vs. Process Load Balancing

In this section, we examine the effect of “random task switches” observed in Section 5.1.3.

The effect is caused by the dynamic remapping of light weight processes (LWPs [SGG05])

or kernel-level threads and user-level threads. The mapping affects the performance metrics

observed for the tasks in scenarios Heavy Load and Moderate Load. For scenario Heavy

Load, the response time predicted for a single task strongly deviates from the measurements,

while the accumulated response time of all tasks is predicted accurately. The histogram in

Figure 5.21(a) compares the predictions and measurements. While MOSS predicts an almost

constant response time of 1500 ms, the measurements alternate between 250 ms and 1500

ms. Thus, the task switched processors during its execution. However, it did not affect the

overall response time of all tasks as the results depicted in Figures 5.19(a) and (c) show.

A changing association between user-level threads and light weight processes (or kernel-

level threads) explains this effect. In general, Windows uses a separate LWP for each user-

level thread. However, the relation can change in multiprocessing environments. Whenever

a user-level thread has to wait for a resource, its associated LWP looks for a new user-level

thread of the same heavy weight process to execute. Such situations lead to the “random

task switches” observed in scenario Heavy Load. In this case, two user-level threads switch

5.1. Multiprocessor Load Balancing 183

280 420 580 720 880 1100 1300 1500 1700

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Prediction
Measurement

(a) Histogram scenario Moderate Load.

400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(b) Cdf scenario Moderate Load.

Figure 5.21.: Differences in predictions and measurements for load balancing under Windows.

processors without affecting the overall balancing situation, i.e., one processor still executes

a single task while the other processor executes the remaining six.

The “random task switches” also occur in scenario Moderate Load. Lazy-balancing alone

is not sufficient to explain the measurements shown in Figure 5.19(b) and 5.19(d). Consider,

for example, the predicted response times for scenario Moderate Load with lazy-balancing

(Figure 5.21(b)). Compared to the measurements, the predictions show a higher variance,

i.e., short requests are interrupted less often while long requests are additionally delayed.

To better understand the effect, consider the results of a simplified version of scenario

Moderate Load in Figures 5.22(a) and (b). The figures compare predictions for process load

balancing with measurements for thread load balancing. In the first case, an idle processor

moves an available light weight process from the busiest processor to its run queue. In the

second case, a light weight process (whose user-level thread starts waiting) looks for a new

user-level thread to execute in exchange for its waiting one. The predictions depicted in

Figure 5.22 demonstrate the different performance influences of both strategies, which affect

the delay of each task (Figure 5.22(a)) as well as its response time (Figure 5.22(b)).

The delay distribution (Figure 5.22(a)) provides information on how often and at what

times the load balancing policy moves tasks between the available processors. For process

load balancing, tasks wait for one timeslice, in most cases (≈80%). A task only waits for

a full timeslice if the scheduler does not move it to another processor, assuming that the

scheduling interupts of both processors occur independently. If the task would be moved,

the remaining timeslice of the currently running task is most likely to be less than a full

184 5. Multiprocessor Scheduling

15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Process Load Balancing
Thread Load Balancing

(a) Predicted and measured delay.

250 300 350 400 450

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Process Load Balancing
Thread Load Balancing

(b) Predicted and measured response time.

Figure 5.22.: Prediction results for load balancing with 3 tasks (and no LWP-thread
switches).

timeslice. Only if the task remains on the same processor, then it either has to wait for a full

timeslice or wait until the currently running task on the same processor finishes execution.

For thread load balancing, a task has to wait less than a full timeslice in 60% of all cases.

This is only possible if the scheduler moves the thread to another processor (where the

currently running task’s timeslice already progressed). However, the lazy-balancing policy

is not sufficient to explain this effect. The measurements and predictions in Figure 5.22(a)

suggest that the processing of a task must start before the timeslice of the currently running

task is finished and before the second processor becomes idle. Both can only happen if the

task is already in the other processor’s run queue. Such a reallocation of tasks is not possible

with the lazy-balancing policy of Windows. Only a change in the association of light weight

processes and user-level threads explains the observed effect. If two LWPs switch their

executing threads, then this keeps both processors busy and adds the currently waiting user-

level thread to the busiest processor’s run queue. The change in the association explains the

“random task switches” in scenario Heavy Load.

5.1. Multiprocessor Load Balancing 185

Lifting MOSS to Different Environments.

MOSS has been validated and modelled according to the measurement results on a dual-core

system with Windows Server 2003 and Linux 2.6.22. In the following, we present predictions

and measurements of scenarios Heavy Load and Moderate Load for a quad-core system with

Windows Vista to emphasise its transferability to other platforms. The experiments address

the following two questions: (i) Does the number of symmetric multiprocessors influence load

balancing? (ii) Do newer operating system versions implement a more efficient (or different)

load balancing strategies?

250 350 450 550 650 750 850 950 1200

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Prediction
Measurement

(a) Histogram scenario Heavy Load.

280 320 380 420 480 520 580 620 680

Histogram

Time [ms]

D
en

si
ty

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6 Prediction
Measurement

(b) Histogram scenario Moderate Load.

400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(c) Cdf scenario Heavy Load.

300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(d) Cdf scenario Moderate Load.

Figure 5.23.: Predictions and measurements for a quad-core system with Windows Vista.

186 5. Multiprocessor Scheduling

Figure 5.23 shows the resulting measurements and predictions. As predicted by MOSS, the

imbalances generated in scenario Heavy Load remain and, thus, yield the extreme response

times of 250 ms and 1000 ms. The predicted long response times (i.e., four tasks sharing one

processor) deviate approximately 12% from the measurements (Figures 5.23(a) and 5.23(d)).

The relative large deviation of about 100 ms results from an additional preemption of the

tasks, which does not occur in the predictions. The task is preempted by its three competing

tasks and, thus, prolongs the response time by three timeslices (94.5 ms) plus its remaining

processing time. The additional interruption is a result of the approximated generation

of resource demands (cf. Appendix C.1) and of disturbing influences in multiprocessing

environments explained in the following.

250 255 260 265 270 275 280

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Other Processors Busy
Other Processors Idle

Figure 5.24.: Influence of the load on other processors on task response time.

In multiprocessing environments, the response time of a task solely running on its own

processor is influenced by the activity of the other processors. If all processors in the system

are busy processing a single task, the response time of each task increases compared to its

response time in a system where all other CPUs are idle. Figure 5.24 illustrates this effect.

The initially specified response time of 250 ms increases up to 280 ms. The task executes

a computation intensive algorithm that only rarely accesses main memory. Therefore, pos-

sible contention effects of the main memory and memory buses cannot cause this effect (cf.

Section 5.3). The additional processing time yields the delay observed in Figures 5.23(a)

and (c).

Table 5.10 summarises the prediction quality of MOSS for quad-core processors with

Windows Vista. The predictions and measurements for the quantiles and mean deviate

by less than 5%. The results demonstrate that the model is capable of predicting the

performance of tasks on platforms with more processors as well as newer versions of the

5.2. Case Study 187

Prediction Measurment Error [%]
Moderate Load

Min. 251,8 254,1 0,9
1st Qu. 282,1 268,8 4,9
Mean 365,9 374,1 2,2
3rd Qu. 414,7 436,1 4,9
Max 663,7 685,6 3,2

Heavy Load
Min. 253,4 253 0,2
1st Qu. 255,3 254,9 0,2
Mean 434,2 442 1,8
3rd Qu. 279,9 280,5 0,2
Max 1122 1122 0,0

Scenario
Task Response Time [ms]

Table 5.10.: Prediction error Windows Vista quad-core.

Windows operating system. However, it may be necessary for other platforms to reexecute

the defined scenarios in order to validate the validity of the scheduler performance model on

the new platform.

5.2. Case Study

In this section, we continue the case study of Section 4.3, which is placed in the scenario of a

supply chain management for supermarkets. For the business intelligence reporting use case

evaluated in Section 4.3, the predictions and measurement showed that a single-core system

cannot handle the load of the HQ application. With the given hardware, the HQ server can

easily become a bottleneck for management and accounting of the supermarket company.

In the following, we continue the performance evaluation, discusse the relevant performance

questions (Section 5.2.1), and present the results (Section 5.2.2). Please see Section 4.3 for

an introduction to the overall scenario of the case study.

5.2.1. Performance Questions

Driven by the performance problems discovered in the previous case study (Section 4.3),

performance analysts decide to continue the evaluation. In order to resolve the bottleneck,

they evaluate the benefit of a multiprocessor system for the HQ application. They want to

answer the following questions:

1. How would a new multiprocessor system improve performance?

2. Which operating system (Linux 2.6.22 or Windows Server 2003) provides the best

performance under heavy load?

188 5. Multiprocessor Scheduling

A multiprocessor system could be used to improve performance if the processor was the

bottleneck. However, overload conditions can occur even with additional hardware due to

the strongly fluctuating load. Thus, performance analysts want to further ensure, that the

system’s performance meets the requirements for intensive load.

5.2.2. Results

In this section, we discuss the predicted and measured response times for a dual-core proces-

sor running with the Windows Server 2003 and Linux 2.6.22 operating systems. The results

demonstrate the differences and similarities in performance of single- and multi-core systems

as well as the prediction accuracy MOSS.

Prediction Measurement Error [%] Prediction Measurement Error [%]
Windows (Dual)

Static Pages 5,0 5,1 2,5 5,0 5,1 1,8
Monitoring 256,6 256,5 0,0 463,3 458,4 1,1

Reporting 3191,0 3028,0 5,4 4584,0 4653,0 1,5
Linux (Dual)

Static Pages 5,2 5,3 1,8 5,3 5,2 2,0
Monitoring 252,6 255,6 1,2 259,3 258,5 0,3

Reporting 3018,0 3009,0 0,3 5739,0 4445,0 29,1
Windows (Single)

Static Pages 5,0 5,4 7,2
Monitoring 704,0 814,1 13,5

Reporting 9546,0 12100,0 21,1
Linux (Single)

Static Pages 5,5 5,1 7,4
Monitoring 266,2 261,4 1,8

Reporting 13720,0 11480,0 19,5

180 req / min 360 req / min

Table 5.11.: Predicted and measured median of the response time distribution under Linux
2.6.22 and Windows Server 2003.

Prediction Accuracy To illustrate MOSS’s prediction accuracy, the predictions and mea-

surements of the following four scenarios are compared:

1. Dual-core Windows 180 requests / minute

2. Dual-core Linux 180 requests / minute

3. Dual-core Windows 360 requests / minute

4. Dual-core Linux 360 requests / minute

Figure 5.25 shows the cumulated distribution functions of the response times of the online

monitoring in all four scenarios. Furthermore, Table 5.11 summarises the predicted and

measured median of response times for all request types and scenarios. The prediction error

5.2. Case Study 189

250 300 350 400 450 500 550 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(a) 1. Windows Server 2003 and 180 req/min.

250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(b) 2. Linux 2.6.22 and 180 req/min.

500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(c) 3. Windows Server 2003 and 360 req/min.

300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Prediction
Measurement

(d) 4. Linux 2.6 and 360 req/min.

Figure 5.25.: Monitoring requests, results for a single-core system.

ranges from 5% to 10% in most cases and does not exceed 30%. The prediction error for

business reporting under Linux is caused by the same influences as discussed in the previous

case study (cf. Section 4.3.5).

The results for the dual-core scenario suggest a significant improvement in response time

for all request classes when compared to a single-core system. Even though the load doubles

(360 requests per minute), the system shows a much better response time than the single-core

system with the original load (180 requests per minute).

190 5. Multiprocessor Scheduling

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Single−Core
Dual−Core (same rate)
Dual−Core (double rate)

(a) Windows Server

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F(
t)

Single−Core
Dual−Core (same rate)
Dual−Core (double rate)

(b) Linux

Figure 5.26.: Comparison between single-core and dual-core performance.

Single- versus Dual-core Processors Using a system with an additional processor core

in the HQ server represents a significant performance gain for the whole application (cf.

Table 5.11). If the load conditions stay similar, then Windows maintains a mean response

time of 5 ms for static pages, while Linux reduces it from 50 ms to 5 ms (factor of 9.5).

However, the median response time stays similar for both operating systems (5 ms). This

performance gain indicates that the response time distribution for the dual-core processor

does not have a heavy tail as the one for the single-core system. The additional processor

core reduces contention and allows Windows and Linux to serve incoming requests to static

pages immediately. The number of threads in the pool increases with the additional processor

core. The threads reduce the contention of the thread pool and further decrease the delay

of incoming requests.

For online monitoring under Windows, the median of the response time decreases from

814 ms to 256 ms. By contrast, the additional processor does not affect the response time’s

median under Linux, but rather reduces its mean value. Similar to the static page requests,

the heavy tail of the distribution vanishes which yields the reduction of mean response times.

Finally, the response time of the business reporting benefits by a factor of 3 to 4 for both

operating systems.

The reduced contention leads to a significant performance gain for all request types. The

response time not only halves (as one might expect) but improves by a factor ranging from

2 to 5. This large gain is a consequence of the reduced contention. The additional processor

reduces waiting times and, thus, significantly increases the performance perceived by users.

5.2. Case Study 191

If the server’s load doubles from 180 to 360 requests per minute, the response times listed

in Table 5.11 still suggest an overall performance-gain of a factor up to 2. For the mean

values the factor is even larger, ranging from 1 to 6. All request types benefit from the

second core even though the system utilisation is similar to the single-core scenario. This

effect may not be expected in the first place, but it is a direct result of the operating system

scheduler’s behaviour. Figure 5.26 compares the response times of the online monitoring for a

single- and dual-core system. It depicts the cumulative distribution functions of the response

time under Windows Server 2003 (Figures 5.26(a)) and Linux 2.6.22 (Figures 5.26(b)). For

the scenarios single-core and dual-core (same rate), requests arrive at a rate of 180

requests per minute, for dual-core (double rate) with 360 requests per minute.

The speedup of the dual-core processor is a consequence of the multiprocessor load bal-

ancing implemented in the Windows and Linux operating systems. It significantly reduces

the waiting time for all tasks executing currently. For a single-core processor, the execution

of one task delays all others waiting in the queue. In a dual-core system, the operating

system scheduler moves tasks as soon as one of the processors becomes idle (Windows) or

is less loaded (Linux). Load balancing between the processor cores reduces the delay for

each request. In this case, delays are determined by the tasks currently running on both

cores. If a request is finished, the scheduler moves tasks from the busier to the more idle

core to balance the load. This balancing affects the delay of all requests. Since the load of

the (previously) busier core is reduced, the remaining tasks can process with shorter waiting

times. The tasks moved to the second core find a less contended processor and receive a

larger share of processing time. As a result, a major decrease of the response times can be

observed, especially under Windows.

In the beginning of this section, performance analysts asked whether a dual-core system

can provide sufficient performance for the HQ application. In the next paragraph, we answer

the questions that the performance analysts posed before this case study.

Answers to the Performance Questions Performance analysts predicted the response

times for multiprocessing environments of the HQ application. Based on the results, they

suggest to deploy the application on a new dual-core processor system running Windows

Server 2003. This execution environment profits from the major performance gain of the

second core even under heavy load conditions and ensures fast responses to static web pages.

However, from the performance analyst’s perspective, the risk of timeouts for static page

requests under Linux is significantly larger than possible delays in the online monitoring

under Windows. Hence, the performance analysts prefer the Windows Server 2003 system

over Linux 2.6.

192 5. Multiprocessor Scheduling

5.3. Discussion of Assumptions and Limitations

In the case study presented in the section above, we demonstrated the good prediction

accuracy of MOSS. MOSS increases the accuracy of the predicted response times of the

business reporting use case by several orders of magnitude compared to scheduling policies

classically used in performance prediction. However, MOSS still requires several assumptions

and simplifications to make multiprocessing environments predictable. In this section, we

discuss the assumptions and limitations underlying MOSS.

No Memory Access In symmetric multiprocessing environments, different processors and

cores may share common caches and memory buses. These contented low-level resources

can become a limiting factor for the scalability of software applications. Therefore, the

task’s memory usage, the processor cache sizes, and the memory bus together determine

the influence of memory access on software performance. Thus, the effect varies for different

processor architectures. The first dual-core processors showed strong influences of concurrent

memory access on software performance [HKR06]. The concurrent execution of memory

intensive tasks could actually prolong task response times instead of reducing it. Even though

today’s multi-core processor architectures still show a similar effect, its influence on software

performance has been strongly reduced [BDH08]. Current research in processor design is

directed towards the optimisation of memory buses for concurrent memory access [AS01,

IZG+07].

MOSS explicitly neglects contentions of the memory bus, varying memory access times,

and caching effects. While these factors can have a large influence on software performance,

the actual influence depends on the underlying processor architecture. Thus, we assume

that memory access times are uniform (uniform memory access, UMA) and do not depend

on the memory location. Consequently, we do not consider the influence of non-uniform

memory access (NUMA) in MOSS. Furthermore, predicting the contention at the memory

bus requires a behavioural model for tasks (such as RD-SEFFs, cf. Appendix A) that reflects

the type and degree of memory access and keeps track of the data’s location in memory.

Modelling memory access requires much additional effort for the software architects, which

cannot be justify by the small benefit for software performance prediction. With the rapid

development of multi-core processors, contentions of the memory bus are likely to vanish or

become marginal in the near future.

Focus on Symmetric Multiprocessing Environments MOSS has been designed for per-

formance predictions in symmetric multiprocessing environments. Therefore, it assumes that

all processors and cores in the evaluated system are similar with respect to their performance

properties. MOSS cannot accurately predict performance in asymmetric multiprocessing en-

5.3. Discussion of Assumptions and Limitations 193

vironments such as IBM’s cell processor [IBM]. In such processor architectures, a single main

processor executes (parts of) the operating system and delegates work to other, specialised

processors.

Furthermore, MOSS cannot predict the influence of simultaneous multi-threading (SMT,

also called hyper-threading) on software performance. SMT systems allow multiple threads

to run concurrently on a single processor utilising internal resources of the processor. Due

to these shared internal resources, the influence of SMT processors on software performance

is hard to estimate. In [BP04], Bulpin and Pratt evaluate the performance of different

SPEC CPU2000 benchmarks on a Pentium 4 with hyper-threading. They systematically

execute different combinations of benchmarks concurrently. The results show that the actual

performance gain or loss caused by SMT technology strongly depends on the properties of

the combined benchmarks. The observed effect ranges from a performance gain of more than

30% to a slowdown of more than 20%. Determining the relevant properties of a software

application beforehand is nearly impossible for software architects. Thus, MOSS does not

reflect the performance influences of SMT systems.

Simplified Model of Linux’ Multiprocessor Load Balancing Policy Linux uses a hierar-

chical model that reflects the structure of the underlying hardware to make load balancing

decisions. It uses different decision policies on each level of the hierarchy. The policies

reflect the varying costs for moving tasks between the processors. The costs include the

task’s transfer itself as well as its dependencies to the local memory or any other resource.

While MOSS reflects the decision policies of all layers, it does not model the hierarchical

processor structure. Instead, it focusses on a single level of the hierarchy and treats all pro-

cessors equally. This restriction is closely related to the focus on symmetric multiprocessing

environments.

Furthermore, the results of the case study as well as the validation of MOSS prediction

accuracy in Section 5.1.5 suggest that MOSS does not reflect all performance-relevant prop-

erties of Linux’ multiprocessor load balancing policy. In general, the measurements show

a more balanced load distribution than the predictions of MOSS. The effect can be caused

by Linux load balancing policy as well as other scheduler features such as the interactivity

policy or starvation prevention.

194 5. Multiprocessor Scheduling

5.4. Summary

In this chapter, we have presented an extension of MOSS to symmetric multiprocessing

environments. Similarly to Chapter 4, we have systematically evaluated the influences of

multiprocessor load balancing on software performance. Furthermore, we have introduces a

CPN model to address the performance-relevant factors identified in the evaluation.

A comparison between the results for the active-balancing policy and the results for the

lazy-balancing policy implemented in the Linux and Windows schedulers shows that active-

balancing leads to more evenly distributed load than lazy-balancing. As a consequence,

response times show less variance under Linux than under Windows. However, the through-

put and mean response times are similar for both systems in the scenarios that have been

considered.

A closer examination of the results shows that not only load balancing itself influences the

response time of the tasks, but the association of kernel- and user-level threads also plays

a major role. For both systems, the association can change during execution. As soon as

a user-level thread starts waiting, its kernel-level thread looks for a new task to execute for

the remaining timeslice. Interestingly, this behaviour – an effect of the thread library used

by Java – further reduces the variance of response times.

195

6. Message-based Communication

Details about the underlying Message-oriented Middleware (MOM) are essential for accu-

rate performance predictions for software systems using message-based communication. The

MOM’s configuration and usage strongly influence its throughput, resource utilisation and

timing behaviour. However, the inclusion of MOM in software architecture models requires

additional effort as well as detailed knowledge of the infrastructure used. As a consequence,

software architects might omit its influence. However, this can lead to erroneous or even

misleading predictions. Detailed performance models for MOM (such as [LG05]) are difficult

to apply for software architects, especially if they are not integrated into proper architecture

description languages. Prediction models need to reflect these effects and allow software

architects to evaluate the performance influence of MOM that has beed configured for their

needs. In the context of the Palladio Component Model (PCM, cf. Appendix A), per-

formance completions (cf. Section 2.1.4 or [WPS02, WW04, Bec08]) provide the general

concept to include low-level details of execution environments into performance models.

In this chapter, we present a meta-model extension to the PCM for Message-oriented Mid-

dleware [HFBR08] using the concept of performance completions. Our performance com-

pletion for message-based communication integrates abstract descriptions for MOM based

on messaging patterns [HW03] in software architecture models. The messaging completion

allows software architects to specify message-based communication in a pattern-based lan-

guage tailored to their vocabulary. The use of pattern-based configurations in combination

with model transformations reduces the model complexity (from the software architect’s per-

spective) and increases prediction accuracy. For performance evaluation, a model-to-model

transformation integrates the low-level details of a MOM into software architecture models.

In a case study based on the SPECjms2007 Benchmark [SPE], we evaluate the predic-

tion accuracy of the messaging completion. The benchmark models a typical supply chain

management scenario of a supermarket. The case study evaluates three design alternatives

196 6. Message-based Communication

with varying pattern selections for message based communication as well as varying message

sizes. In the case study, predictions and measurements deviate less than 20%.

This chapter is structured as follows. Section 6.1 introduces the GQM plan for the per-

formance evaluation of messaging patterns. In Section 6.2, we elaborate their influence on

software performance and describe parametrisation of messaging completion. In Section 6.3,

messaging completion is introduced to the PCM. In Section 6.4, we evaluate the prediction

accuracy of the messaging completion in a case study. The assumptions and limitations of

the messaging completion are discussed in Section 6.5. In Section 6.6, we summarise the

main results of this chapter.

6.1. Performance Evaluation of Messaging Patterns

In this section, our goal is the identification of performance-relevant patterns for message-

based communication. Analogously to Chapters 4 and 5, a detailed performance evaluation

provides the information necessary to design a performance model for MOM. However, this

section differs in several aspects from our previous evaluations:

• Message-oriented middleware has multiple dependencies between parameters (e.g.,

message sizes, number of message consumers, or number of messages in a transaction)

and performance. The evaluation needs to study the influence of these parameters

systematically.

• The evaluation targets the definition of a general performance model for MOM that

does not depend on its underlying implementation and is sustainable for future im-

plementations. Thus, the model is based on measurements and messaging patterns

only.

• Different patterns can lead to different performance models (i.e., different behaviour

of the MOM) or just affect the model’s resource demands.

Due to the combination of models and measurements, it is necessary to determine resource

demands for each execution environments independently. In Section 3.1.4, we already pre-

sented the general idea of parametric performance completions. We apply this concept for

the design of the messaging completion. Before the performance prediction can take place,

an automated test driver evaluates the resource demands of the specific MOM platform used.

The results are added to the performance model skeletons defined in Section 6.3.

For the sake of brevity, this section is limited to the most relevant results of the evaluation.

A full description of the evaluation that includes the implementation of the benchmark

application and all results can be found in Holger Friedrich’s master’s thesis [Fri07].

6.1. Performance Evaluation of Messaging Patterns 197

The Goal

Goal: Purpose Identify

Issue the performance influence of MOM

Object for different messaging patterns

Viewpoint from the user’s point of view.

Similar to the evaluation of GPOS schedulers, this evaluation should identify the

performance-relevant features. However, in the case of MOM, the level of abstraction is

considerably higher. Instead of looking at the implementation details of each MOM, we

focus on the more general messaging patterns that are realised in most MOM platforms

(e.g., most patterns can be found in the Java Message Service standard [HBS+08]). This

abstraction is possible since the actual implementation of a pattern influences the MOM’s re-

source demands but not its general behaviour. For GPOS schedulers, the resource demands

of the scheduler are dispensable for software performance. Only its behaviour determines

the response time and throughput of a software application. Thus, for MOM, it is sufficient

to model the general behaviour as specified by the messaging patterns and determine the

necessary resource demands by measurements.

Questions

MOM enables loosely-coupled components to communicate via the exchange of messages.

The messaging patterns summarised in [HW03] structure the various implementation and

configuration possibilities for message-based communication. They present standard solu-

tions for different types of senders, receivers, and message channels. From these messaging

patterns, the evaluation has to be focussed on those patterns useful in the context of Java

Message Service [HBS+08, MHC02]. Furthermore, the performance model should contain

only options that have an actual influence on performance or provide special features for

message-based communication.

Therefore, the questions address the influence of each messaging pattern (described below),

the combination of different patterns, and the influence of variable parameters, such as

message sizes or the number of message consumers. For the sake of brevity, we only present

the most relevant questions. All other questions are analogous. The performance metric for

MOM used in the evaluation is the delivery time of a message, i.e., the time passed from

sending a message until its processing starts (the onMessage method is executed).

1. How does guaranteed delivery influence the delivery time of a message?

2. How does an increasing message size influence the delivery time of a message?

3. How does an increasing message size influence the delivery time of a message with

guaranteed delivery?

198 6. Message-based Communication

The first question addresses the influence of a single feature (guaranteed delivery) on the

delivery time of a message. The pattern guaranteed delivery persistently stores messages

before they are delivered to ensure their arrival even in the case of failures. Its perfor-

mance influence is determined by comparing the delivery time of the same message with

enabled/disabled guaranteed delivery. Depending on the results, the pattern’s performance

influence is classified.

The second question addresses the influence of message sizes. The delivery time is expected

to grow with an increasing message size. This effect requires several measurements for

different message sizes. It is important to notice that the delivery time is unlikely to grow

linearly with an increasing message size due to the general overhead of the transmitted

message and due to packet sizes of the network.

The third question targets the mutual dependency of two different influencing factors. For

an efficient evaluation of all parameter combinations, a k-factorial analysis [Jai91] allows to

determine the mutual influences of various parameters with a minimum set of experiments.

6.2. The Performance Influence of Messaging Patterns

Messaging Pattern
~0 < 0.1 <= 1.0 > 1.0

Point-to-Point x
Publish-Subscribe (x)

Guranteed-Delivery x
Idempotent-Receiver x

Selective Consumer x
Transactional Client x
Durable Subscriber x

Competing Consumer x

Message Size x
Remote Receiver/MOM x

Influence Factor

Table 6.1.: Messaging patterns and features categorised according to their performance
influence.

In this section, we describe the evaluation results for all message patterns for the JMS im-

plementation Sun Java System Message Queue 3.6 conducted within a master’s thesis [Fri07].

Table 6.1 lists the resulting classification for the evaluated messaging patterns. We distin-

guish features without performance influence (mean delivery time not changed), features

with a small influence (below 10%), features with a moderate influence (between 10% and

100% change of mean delivery time), and features with a large influence (more than 100%

change of mean delivery time). For the last category, all of its features depend on input

parameters, e.g., message size, number of messages in a transaction, or number of compet-

6.2. The Performance Influence of Messaging Patterns 199

Messaging

Point-to-Point
Channel

Publish-Subscribe
Channel

Message
Channel

Pool Size

Competing
Consumers

Exclusive OR

Mandatory Feature

Optional Feature

Message
Size

Selective
Consumer

Durable
Subscriber

Transactional
Client

Transaction
Size

Guaranteed
Delivery

Legend

Receiver
Sender

Figure 6.1.: Feature diagram of the relevant messaging patterns.

ing consumers. A benchmark application measured the delivery time for each messaging

pattern. The results of the benchmark form the basis for the pattern selection presented in

Figure 6.1. In the feature diagram, we distinguish patterns for message channels, receivers,

and senders. In the following, we explain the patterns and their performance influences in

more detail.

Message channels Message channels are logical connections between communicating com-

ponents. They can be considered as queues. While point-to-point channels only allow a single

receiver for messages, multiple receivers can subscribe to publish-subscribe channels. Option-

ally, a receiver can durably subscribe to the latter. In this case, the MOM keeps all published

messages until they can be delivered if a receiver disconnects from a messaging channel.

The influence of multiple receivers on performance is not considered in this thesis (see

Section 6.5 for a discussion). For a single receiver, the choice between publish-subscribe

and point-to-point channels has no considerable effect on the delivery time. However, this

distinction is necessary for modelling multiple receivers and, thus, is included in the model.

Furthermore, durable subscription leads to longer delivery times even if the receiver always

stays connected.

Senders Senders add messages to a message channel. The sender of a message determines

its size, transaction boundaries, and type of delivery. The message size depends on the

data that needs to be transferred from the sender to the receiver. A message is a simple

data structure containing a header and a body. However, message size refers only to the

body of a message neglecting the influence of possible overheads in the message, such as its

header. To guarantee the delivery of a message, the MOM stores messages persistently during

their transfer. The implementation of the MOM determines how the message is stored, for

200 6. Message-based Communication

example, using a database or file system. Stored messages can survive system crashes and, if

possible, are delivered after a restart. A transactional client sends one or multiple messages

as a single transaction. The transaction boundaries are specified by the sender.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

1 10 100 1000 10000 100000

D
el

iv
er

y
Ti

m
e

[m
s]

Message Size

non-persistent persistent

(a) Persistent vs. non-persistent message transfer.

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 10 100 1000 10000 100000

D
el

iv
er

y
Ti

m
e

[m
s]

Message Size

local remote

(b) Local vs. remote message transfer.

Figure 6.2.: The influence of message size on the delivery time.

The size of a message significantly influences its delivery time. Figure 6.2 illustrates

this effect. With an increasing message size the delivery time of a message increases as

well. While the slope of the curves is rather small for short messages, its impact grows for

messages larger than 10000 bytes. The influence of the message size strongly depends on the

evaluated platform. For the evaluated system in Figure 6.2, the message size influences the

delivery time, but its effect is limited. However, its influence becomes clearly visible for the

system depicted in Figure 6.5.

6.2. The Performance Influence of Messaging Patterns 201

For guaranteed delivery (Figure 6.2(a)), the access to additional resources, e.g., the hard

disk, leads to longer delivery times. Compared to the delivery time without guaranteed

delivery, Figure 6.2(a) yields a factor of approximately 25% for its increase. If the MOM

or the message receiver is deployed on a remote machine, the necessary transfer over the

network further delays the delivery of a message (Figure 6.2(b)). The network’s influence

is much larger and cannot be captured by a single factor. For transactional clients, the

� ���� ���� ����
�������	�
����������

��
�

��
�

��
�

�
��

�
��
��
�

�
��
��
�	
�

��
�

��
�

��
�

Figure 6.3.: Delivery time of messages in a transaction set with 1000 messages.

delivery time of a message strongly depends on the number of messages in a transaction and

the message’s position in the transaction set. The delivery time increases linearly with the

message’s position in the transaction set (see Figure 6.3) The MOM stores all messages until

it receives the last message of a transaction set and then executes the message sequentially.

Since the generation of a message is much faster than its processing, successive tasks exceed

the accounted waiting time of the first message (0.4 seconds). The sequential processing of

messages leads to the observed linearly increasing delivery times.

Receivers Receivers remove messages from a message channel. They can employ multiple,

competing consumers to process incoming messages concurrently. The consumers wait for

incoming messages. When a message arrives, it is processed by the next waiting consumer. If

no consumer is available, messages queue up until a consumer finishes processing its current

message. Furthermore, message receivers can filter messages delivered via its subscribed

channels. These selective consumers only accept messages, which match their filter criteria.

Competing consumers can have a large impact on performance. If too few consumers

are available, congestion is likely and will lead to long delivery times. For example, if

messages are received and processed sequentially by a single consumer, the consumer can

easily become a bottleneck leading to congestion on receiver side. In Figure 6.4(a), a single

consumer processes all incoming messages. However, it cannot keep pace with the arriving

202 6. Message-based Communication

� ���� ���� ����
�������	�
����������

�
��

�
��
��
�

�
��
��
�	
�

��
�

��
��

��
�

(a) Single consumer.

� ���� ���� ����
�������	�
�����������

�
��

�
��
��
�

�
��
��
��

�
�

�
�

(b) Multiple (128) consumers.

Figure 6.4.: The effect of competing consumers on delivery time.

messages. Message delivery times increase constantly up to 1400 seconds. When multiple

consumers are used to processing the same load (Figure 6.4(b)), the system can maintain

the pace of message arrivals and yields acceptable message delivery times of less than 10 ms.

Thus, multiple competing consumers can avoid congestion on the receiver end.

The influence of selective consumers depends on the complexity of the filters used. For

their simple filters considered in this evaluation, the influence on delivery times was marginal.

In the next section, we describe how parameter dependent resource demands can be derived

from measurements and be included in the performance completion.

6.2. The Performance Influence of Messaging Patterns 203

Parameter Dependent Resource Demands

The size of a message’s content strongly influences its delivery time. With an increasing

message size, the usage of resources increases. Figure 6.5 shows how the message size affects

the average delivery time. Here, the sender, receiver, and MOM are deployed on the same

machine. A single regression analysis [Fre05] over the measured times yields the linear

function in Figure 6.5(a). While the approximation is good for large messages, it largely

deviates for small ones. To achieve better prediction results, multiple regression functions

are necessary: One for messages smaller than 1000 bytes and one for messages larger than

1000 bytes. The more fine grained approximations yields the curve shown in Figure 6.5(b)

and reduces the estimation error to 5% – 30%.

-50

0

50

100

150

10 100 1000 5000 10000 15000 20000 25000 30000

D
el

iv
er

y
Ti

m
e

[m
s]

Message Size

Mean Value Single-Regression

(a)

-50

0

50

100

150

10 100 1000 5000 10000 15000 20000 25000 30000

D
el

iv
er

y
Ti

m
e

[m
s]

Message Size

Mean Value Multi-Regression

(b)

Figure 6.5.: Regression analysis for different message sizes.

In the PCM, stochastic expressions [BKR07, RBH+07] reflect the influence of different

parameters on software performance and, thus, can model resource demands depending on

messages sizes. Stochastic expressions support basic arithmetic operations on probability

204 6. Message-based Communication

distributions and parameters (cf. Appendix A). For example, the average delivery time of

messages larger than 1000 bytes can be computed by a linear function with a slope of 0.02

and a y-intercept of -32.8 yielding the following stochastic expression:

0.02 * message.BYTESIZE - 32.8

In the prediction model, a branch condition selects the correct regression for a specific

message size. The stochastic expressions resulting from the regression analysis are integrated

in the messaging completion described in the following.

6.3. PCM Completion Models

The messaging completion takes into account the patterns described in Section 6.1 together

with message sizes and the allocation of the MOM. An annotation model allows software ar-

chitects to easily choose among different design alternatives regarding the messaging service.

Completion components realise the performance-relevant messaging patterns.

Message
Oriented

Middleware

Message
Sender
Adapter

Message
Receiver
Adaper

IMessageSender

IMessageReceiverAdapter

Messaging Completion

Transformation

(a) Annotated connector (b) Result of the transformation

Figure 6.6.: Replacement of an annotated connector by completion components.

Messaging Annotation Model Message-based communication affects the connectors be-

tween components in the software architecture. An annotation model allows to select and

customising connectors for message-based communication. Figure 6.6(a) shows an example

for a messaging annotation. The annotation references a connector between two commu-

nicating components. The possible configurations are defined by the feature diagram in

Figure 6.1. In the example, we configured the communication between the components as

6.3. PCM Completion Models 205

a point-to-point channel. The transfer of messages is transactional and messages are stored

persistently during the transaction (guaranteed delivery). The message size is specified by

a probability mass function over the domain of integers. With a probability of 0.01 the

message size is 10 bytes, with a probability of 0.04, 100 bytes, and with a probability of 0.95,

500 bytes. The receiver uses a single consumer to process messages and does not filter the

incoming messages.

In addition to the options shown in the feature diagram, the annotation contains a reference

to a connector and a resource container where the MOM is deployed. In the example,

the annotation references the connector with identifier RfidAdapter InventoryManagement

and the resource container with identifier WarehouseApplicationServer. As shown in

figure 6.6, a transformation replaces annotated connectors by completion components, which

are described in the following.

6.3.1. Messaging Completion Components

Message
Sender
Adapter

Message
Oriented

Middleware

Message
Receiver
Adapter

Sender

service

Receiver

serviceref
MoM

Sequence
Diagram

onMessage

publishMessage

Figure 6.7.: Interactions of the messaging completion components.

Figure 6.6(b) and 6.7 show the components generated by the transformation as well as their

interactions. The transformation selects a platform-specific MOM component corresponding

to the configuration of the messaging annotation. Furthermore, it generates the adapters

necessary to hide the message-based communication from the sender and receiver.

A MessageSenderAdapter provides the same interface as required by the sender. When

the sender calls a service on this interface, the adapter generates a message of the size

specified in the annotation model and starts the message transfer by calling publishMessage.

As soon as the message has been added to its channel, the control flow returns and allows

the sender to continue its execution.

206 6. Message-based Communication

The MOM component loads the CPU and hard disk of its resource container with

the resource demands caused by the message. Then, it forwards the call to the

MessageReceiverAdapter, which hides the messaging service from the called component.

Its onMessage method calls the corresponding service on the receiver component.

<< ResourceDemandingSEFF >>
onMessage

<< BranchAction >>
selectRequiredService

<< GuardedBranchTransition >>
serviceName.VALUE == "service"

<< ExternalCallAction >>
Interface.service

<< ResourceDemandingSEFF >>
service

<< ExternalCallAction >>
IMessageSender.publishMessage

<< InputVariableUsage >>
message.BYTESIZE =

IntPMF[(10;0.01)(100;0.04)(500;0.95)]

<< InputVariableUsage >>
serviceName.VALUE = "service"

(a) Sender Adapter (b) Receiver Adapter

Figure 6.8.: Behavioural specification for the completion’s basic components.

In the PCM model of the messaging completion, RD-SEFFs specify the communication

and resource demands of the components. Furthermore, they model the data flow between

the components. Figure 6.8 shows the RD-SEFFs of the sender and receiver adapters.

Since an interface can contain multiple services, the sender adapter (Fig. 6.8(a)) needs to

pass a unique identifier of the called service. Furthermore, it sets the size of the mes-

sage according to the size specified in the annotation model. The ExternalCallAction

of service publishMessage passes this information to the MOM Component with two

InputVariableUsages. The first sets the value of parameter calledService to the ser-

vice’s name, which is assumed to be unique.

The receiver adapter uses this parameter in its onMessage method (Figure 6.8(b))

to identify the service addressed by the message. The BranchAction contains a

GuardedBranchTransition for each available service. If the serviceName’s value complies

with the identifier specified in the condition, then the transition calls the selected service.

The second InputVariableUsage of the sender adapter sets the size of the message. The

MOM component uses this value to determine the resource demand for delivering the mes-

sage. The size of a message can be a probabilistic distribution over different message sizes

as shown in Figure 6.6(a).

6.3. PCM Completion Models 207

MOM Completion Components

The component MessageOrientedMiddleware decouples the receiving process from the send-

ing process and generates resource demands according to its configuration. Figure 6.9 shows

its internal structure and the interaction of its subcomponents.

MessageOrientedMiddleware

Message
Sender

Message
Receiver

Messaging
System

IMessageReceiver

IMessageSender IMessageReceiver

IMomTransfer

(a)

Message
Sender

Messaging
System

Message
Receiver

deliverMessage()

Message
Sender
Adapter

Message
Receiver
Adapter

publishMessage()

onMessage()

transferMessage()

processMessageTransfer()

(b)

Figure 6.9.: Subcomponents of the MessageOrientedMiddleware component and their
interactions.

Component MessageSender asynchronously invokes service transferMessage on the

MessagingSystem. This decouples the delivery of a message from the sender process. After

internally processing the message transfer, the MessagingSystem asynchronously calls the

service deliverMessage of the MessageReceiver. Figure 6.10(a) shows its RD-SEFF. The

transfer of a message starts with an InternalAction, which represents the internal process-

ing of the MessagingSystem. The resource demand of this action is a stochastic expression,

208 6. Message-based Communication

whose resource demand increases with the message size (cf. Section 6.2). The whole resource

demand is assigned to a single resource (instead of hard disk drive, memory, and processor),

which does not reflect the actual load distribution in distributed scenarios (discussion in

Section 6.5). When the internal processing finishes, a ForkAction starts a new thread which

calls service deliverMessage. As the property synchronize is set to false the execution of

transferMessage continues immediately and does not wait for the ForkActions behaviour

to finish. This models the asynchronous call of deliverMessage in the PCM.

<< ResourceDemandingSEFF >>
deliverMessage

<< AcquireAction >>

<< ExternalCallAction >>
IMessageReceiverAdapter.

onMessage

<< ReleaseAction >>

<< PassiveResource >>
ConsumerPool

Capacity = 1

<< ResourceDemandingSEFF >>
transferMessage

<< ForkAction >>

<< ExternalCallAction >>
IMessageReceiver.

deliverMessage

<< Parameter >>
parameterName = "inputName"
parameterName = "message"

<< Parameter >>
parameterName = "inputName"

<< InternalAction >>
processMessageTransfer

<< InputVariableUsage >>
serviceName.VALUE =

inputName.VALUE

synchronized = false

<< InputVariableUsage >>
serviceName.VALUE =

inputName.VALUE

<< ParametricResourceDemand >>
demand = (1 + 0.0026 * message.BYTESIZE) *
DoublePDF[(0.5;0)(1.5;0.63)(2.5;0.34)(3.5;0.03)]

(a) Message System (b) Message Receiver

Figure 6.10.: Behavioural specification for the MOM-model’s basic components.

Next, deliverMessage calls the onMessage service of the MessageReceiverAdapter. Its

RD-SEFF (Fig. 6.10(b)) models the influence of competing consumers. The passive resource

ConsumerPool contains the maximum number of competing consumers specified in the an-

notation model. Before calling onMessage, the method acquires one of the consumers from

the pool. AcquireAction blocks until a consumer becomes available. When the processing

of onMessage finishes, the ReleaseAction returns the consumer to the pool. This limits the

number of concurrently processed messages.

6.4. Case Study 209

6.3.2. Transformation

An in-place model-to-model transformation [(OM07a] integrates the messaging completion

components into the architecture model. Following the scheme of a Y-transformation, it takes

as input a PCM instance (software architecture model) and an instance of the messaging

annotation model. The latter references a connector in the software architecture model which

needs to be replaced. The transformation is implemented in plain Java code. Both models

are specified in Ecore, the meta-modelling language of the Eclipse Modelling Framework1

(EMF).

The transformation (1) generates adapter components for the sender and receiver, (2)

selects a MOM component for the annotated configuration, (3) connects the new components

to the sender and receiver, and finally (4) allocates the new components to its resource

containers. See [Fri07] for a more detailed description of the transformation.

6.4. Case Study

In this section, present a case study that evaluates the prediction quality of the messaging

completion described in Section 6.3. A comparison between predictions based on archi-

tectural specifications and measurements of an implementation gives an impression of the

prediction accuracy on messaging completion. The case study is based on the SPECjms2007

Benchmark [SPE, SKCB07, SKBB07] and is focussed on the influence of the MOM on per-

formance. Since the messaging completion should support early design decisions, the case

study evaluates three design alternatives for one of the benchmark’s interactions. The case

study should answer the question: Are the predictions of our messaging completion good

enough to support design decisions and to identify the MOM configuration with the best

actual performance?

The SPECjms2007 Benchmark [SPE, SKCB07, SKBB07] provides suitable scenarios for

the case study. It is a standard industry benchmark for performance analyses of JMS de-

veloped by SPEC’s OSG-Java subcommitee (including IBM, TU Darmstadt, Sun, Sybase,

BEA, Apache, Oracle, and JBoss). SPECjms2007 reflects the way messaging services are

used in real-live systems including the communication style, the types of messages, and the

transaction mix. Furthermore, it is focussed on the influence of the MOM’s implementation

and configuration. The benchmark minimises the impact of other components and services

that are typically used in the chosen application scenario. For example, the database used

to store business data and manage the application state could be easily become the limiting

factor of the benchmark and, thus, is not represented in the benchmark. This design allows

1http://www.eclipse.org/modeling/emf/

210 6. Message-based Communication

Company HQ

Super-
markets

Suppliers Supermarket Company

Distribution
Centers

= goods and
information flow

= only information
flow

Figure 6.11.: Overview of the interactions of the supermarket supply chain [SKBB07].

us to focus our evaluation on the influences of the MOM without possible disturbances of

other infrastructure components.

The SPECjms2007 Benchmark resembles a typical scenario of the supply chain manage-

ment domain. It models a set of supply chain interactions between a supermarket company,

its stores, its distribution centres, and its suppliers (Figure 6.11). In the following, we de-

scribe the involved parties, their responsibilities, and a business reporting use case for the

company headquarters.

The company headquarters are responsible for managing the accounting of the company.

This includes managing information about goods and products offered in the supermarkets

like their selling prices. HQ monitors the flow of goods and money in the supply chain.

Distribution centres supply goods to supermarket stores in a given area. They take orders

from supermarkets and deliver goods on demand. In addition, they order goods from external

suppliers and provide statistical data to HQ for data mining. Supermarkets sell goods to

consumers and manage the inventory of their warehouses. The different supermarket stores

vary in size and range of products. Some supermarkets do not have enough room for all

products and, thus, have to order goods on demand. Other supermarkets are specialised

for some product groups (e.g., food). A supermarket receives its goods always from a single

distribution centre. Finally, external suppliers deliver goods to distribution centres. Each

supplier offers different groups of products and has its own product catalogue. Suppliers

deliver goods on demand.

The case study is focussed on the inventory management of a supermarket. Inventory

management is necessary when goods leave the warehouse of a supermarket, to refill a

shelf. RFID readers register goods leaving the warehouse and notify the local warehouse

application, which updates its inventory.

6.4. Case Study 211

Warehouse Application Server

RFID Hardware

RFID
ReaderRFID

Adapter

DB
Adapter

Web
Form

<<Interface>>
IReport

<<Interface>>
IWarehouseDB

Warehouse
Database

<<Interface>>
IAdministration

<<Interface>>
HTTP

Inventory
Management

Business
Intelligence
Reporting

<<Interface>>
IInventory

Figure 6.12.: Architecture of the warehouse application.

Architecture of the Warehouse Application Figure 6.12 shows the static architecture of

the warehouse application. A hardware RFID Reader is directly connected to the Warehouse

Application Server. An RFID Adapter component manages the connection to the RFID

reader. It converts and forwards the read data to the Inventory Management. A Messaging

Annotation configures the connector between the Inventory Management and the RFID

Adapter as persistent and transactional messaging channel. The message service allows

RFID Adapter to quickly accept new requests from the RFID Reader as it will not block its

execution. Persistency ensures that no inventory update is lost in case of failures. When

notified, the Inventory Management updates the inventory data using the DB Adapter com-

ponent.

Usually, many goods leave the warehouse at once, e.g., an employee brings a lorry with

goods into the supermarket to refill the shelves. In this case, the RFID reader sends many

messages in a short time period. Experts estimate the number of messages up to 100 in a

second. The software architect now wants to know whether such a high load can be handled

by the Message-oriented-Middleware. In addition, it needs to be ensured that the warehouse

application itself is not affected.

Design Alternatives The software architect considers three design alternatives of the ware-

house application (Table 6.2). The original architecture (alternative 1, Persistent) sends the

complete data, i.e., message.BYTESIZE = Full from the RFID Reader to the Inventory

Management. Alternative 2 (Non-Persistent) uses a reconfigured message service, since per-

sistency and transactionality might produce too many overheads. However, turning both off

carries the risk of loosing messages in case of failures, but might solve possible performance

problems. Alternative 3 (Small) reduces the message sizes. Instead of transmitting all data

kept on an RFID chip to the inventory management, the message could be limited to a

single product identifier. This strategy reduces the message size, but also requires changes

212 6. Message-based Communication

Arrival Rate Message Size Configuration
1. Persistent 100 Full Persistent, Transacted
2. Non-Persistent 100 Full
3. Small 100 Identifier Persistent, Transacted

Full := IntPMF[(10;0.01)(100;0.04)(500;0.95)]
Identifier := IntPMF[(10;0.95)(100;0.04)(500;0.01)]

Alternative

Table 6.2.: Design alternatives.

of the Inventory Management component. Thus, this alternative should only be considered

if really necessary.

To make a decision, the software architect defines performance requirements for the ware-

house application. The RFID reader should not affect the rest of the application too much,

so it should not utilise the system more than 50%, which enables the other components to

keep working properly. Furthermore, the system must be able to handle 100 RFID reads

per second, which is the expected maximum number of goods taken out of the warehouse at

once. Finally, the delivery time of a message must not exceed 1 second in 90% of all cases.

Results A simulation of the model for each alternative predicted the delivery times and

CPU utilisations. Each simulation run lasted 5 minutes and simulated the delivery of over

one million messages. A warm-up period of the first 2500 measurements was not included

in the prediction results.

The measurements were conducted with the SPECjms2007 Benchmark version 1.0. The

benchmark was deployed on a single machine, to focus on the effects of message sizes and

the message service’s configuration. Sun’s Java System Message Queue 3.6 provided the

necessary infrastructure for the measurements. During the measurement period, the bench-

mark executed only the inventory movement interaction. The upper 5% of measured values

were removed, to exclude disturbances from the results. All other interactions were disabled

and, thus, not considered in the case study. A warm-up period of 10 minutes preceded the

measurement period of 30 minutes.

Figure 6.13 summarises the predictions and measurements for the three design alternatives.

It shows the average and percentile 90% of the delivery time as well as the CPU utilisation.

Measured values are printed in dark grey, predicted values in light grey. The prediction error

for the average delivery time (Fig. 6.13(a)) as well as the percentile 90% (Fig. 6.13(b)) is

below 15% in all cases. The messaging completion predicts the CPU utilisation (Fig. 6.13(c))

with an error below 2% for design alternatives 1 (Persistent) and 2 (Non-Persistent). For

alternative 3 (Small), the prediction error is nearly 20%. In the scenarios considered, the

usage of persistent message transfer has a major influence on the delivery time of a message.

While the measured and predicted average delivery times for alternative 2 (Non-Persistent)

6.4. Case Study 213

722

150

1,3

650

165

1,5

Persistent Non-Persistent Small

A
ve

ra
ge

 [m
s]

Measured Predicted

(a) Average

1354

449

2,2

1537

411

2,1

Persistent Non-Persistent Small

Pe
rc

en
ti

le
 9

0
[m

s]

Measured Predicted

(b) Percentile 90

98 96

24

99,2 96,4

29

Persistent Non-Persistent Small

CP
U

 U
ti

lis
at

io
n

[%
]

Measured Predicted

(c) CPU utilisation

Figure 6.13.: Predictions and measurements of the three design alternatives.

are 150 ms and 165 ms, respectively, they are 722 ms and 650 ms for alternative 1 (Persistent).

The percentile 90% of the latter exceeds the upper bound of 1 second. The delivery time for

measurements is 1354 ms and for the prediction 1537 ms.

To allow a visual comparison, Figure 6.14 shows the cumulative distribution function (cdf)

of the predicted and measured delivery times for design alternative 2 (Non-Persistent). The

measured time is printed in dark grey and the predicted time in light grey. Both functions

match to a large extent. The model predicted that 90% of all messages are delivered in less

than 411 ms. This estimate is confirmed by the measurements, where 90% of all messages

are delivered in less than 449 ms. In this case, the prediction error is 8.5%. However, the

predicted and measured CPU utilisation (Figure 6.13(c)) of about 96% for alternative 2

exceed the required maximum utilisation of 50%.

Alternative 3 (Small) shows the best performance. Its measured and predicted delivery

times are much smaller than for the other alternatives. For example, 90% of all messages are

214 6. Message-based Communication

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Pr
ob

ab
ili

ty

Time [ms]

Measured Predicted

Percentile 90%

Predicted
411ms

Measured
449ms

Figure 6.14.: Delivery time of alternative 2 (cdf).

delivered in less than 2.2 ms (measured) and 2.1 ms (predicted). The measured and predicted

CPU utilisation is in the range of 24% and 29% and, thus, below the required upper bound of

50%. Alternative 3 is the best choice for the software architect with respect to performance.

Coming back to the question posed in the beginning of this section, messaging completion

can correctly rank different design alternatives concerning message services. It can predict

the delivery time of messages with an error of less than 15% and the resource utilisation with

an error less than 20%. In the following section, we discuss the results of the case study as

well as the design of the messaging completion.

6.5. Discussion of Assumptions and Limitations

Case Study The case study in section 6.4 demonstrated the prediction accuracy of the

messaging completion. The different configurations of alternative 1 and 2 significantly influ-

ence performance. Furthermore, the delivery time of a message strongly depends on its size.

Especially in highly loaded systems, different message sizes can change the delivery time by

several orders of magnitude. Therefore, the MOM’s configuration as well as message sizes

are important factors for performance of systems using message-based communication.

The case study showed that predictions and measurements can deviate up to 20%. This

deviation is mainly caused by the abstraction of the model compared to a real system.

In the model, demands to multiple resources, e.g., processor, hard disk, and network, are

summarised into a single resource demand. Furthermore, the model does not represent the

actual arrival rates of messages in the benchmark. The benchmark tries to achieve the

6.5. Discussion of Assumptions and Limitations 215

specified rate of messages. However, if the system is overloaded, the benchmark reduces the

pace, since the workload driver does not get enough processing time. The approximation

of the resource demands by linear regression introduces another abstraction to the model.

Therefore, the uncontended resource demands derived from a linear function already deviate

from the demands in a real system.

Measurement-based Model The resource demands of the completion’s internal actions are

based on measurements. To predict the performance of a MOM system on different hardware

platforms, it is necessary to re-execute the benchmark application for each platform in order

to determine its resource demands. If the target platform is available, then it is no longer a

problem. However, the necessary hardware might not be available if the performance of an

application should be evaluated during early development stages.

Relying on measurements of time consumption leads to further challenges. The MOM

might access different resources during the measured period. For example, a persistent

message channel will access the hard drive. Measuring the whole period makes it challenging

to assign the correct load to single resources, but requires to assign all load to a single

resource. This simplification can lead to false predictions if another resource than the loaded

one becomes a bottleneck. Here, detailed measurements for each resource are needed.

Not only the assignment of load to different resources is challenging, but also the allocation

of load to involved components is difficult. Since the MOM is considered as a black box,

its internal time consumptions cannot be measured. Thus, the proper load of the sender,

receiver, and MOM components cannot be determined. Instead, all load is assigned to the

MOM. It might be possible to measure the time consumption of each component for open

source MOM implementations. However, such an approach would impose a lot of effort and

would be limited to open source systems.

Limitations of the Messaging Completion While constructing the performance comple-

tion for message oriented middleware, several assumptions and simplifications were necessary.

The type of a message (Object, Map, or Text) might influence its delivery time. The MOM

completion does not reflect this effect and is focussed on text messages with varying sizes.

The delivery time of object messages and map messages may depend on the object that is

send. To include such effects on performance, the messaging completion can be combined

with a marshalling completion developed by Becker [Bec08]. Most of the additional resource

consumption will be produced by the marshalling and demarshalling of messages. Using an

already evaluated marshalling completion would easily allow to predict the performance of

other message types.

216 6. Message-based Communication

In the description of the SPECjms2007 Benchmark, Kounev and Sachs [SKBB07] distin-

guish horizontal and vertical scaling. For horizontal scaling, the number of receivers for a

message is varied, while for vertical scaling the number of messages in the system is var-

ied. As demonstrated in the case study presented in Section 6.4, messaging completions

can successfully predict the influence of additional messages in the system. The influence of

additional message receivers can however only be predicted with limited accuracy.

Furthermore, the model does not consider service parameters. So, software architects need

to specify the size of a message in the annotation model. Ideally, the specification should be

derived automatically from the parameters of a service. A similar problem is the forwarding

of parameter characterisations from the sender to the receiver. Forwarding of parameters is

not supported by current messaging completion.

6.6. Summary

In this chapter, we have presented a performance completion for Message-oriented Mid-

dleware. The completion is customisable for different messaging patterns, like publish-

subscribe or competing consumers. Messaging annotations allow software architects to spec-

ify message-based communication in software architecture models in a language specific to

their domain. An in-place model-to-model transformation generates components, which rep-

resent the MOM as well as adapters for the communication components. The behaviour of

generated components reflects the configuration of the MOM. Parameter dependencies model

the influence of varying message sizes on performance. The MOM is treated as a black box.

This approach makes the model independent of the MOM’s actual implementation, but re-

quires to initially measure the performance of the MOM. The measurements determine the

resource demands of messaging completion. Regression analysis approximates the influence

of message sizes on resource demands. A case study based on the SPECjms2007 Benchmark

has demonstrated the prediction quality of messaging completion. For the three design alter-

natives: Persistent, Non-Persistent, and Small, the delivery time of a message was predicted

with an error less than 15%. The predictions of the CPU utilisation showed an error of at

most 20%.

The messaging completion supports software architects to predict the influence of message

services on the performance of their applications. The messaging annotations for the PCM

hide the underlying complexity and allow an easy integration of different message services.

217

7. Related Work

In this chapter, we summarise the state-of-the-art of software performance evaluation with

respect to scheduling. In Section 7.1, we discuss recent analytical solutions for queueing

models with various scheduling policies and their implications for software performance.

From a more practical perspective, we present measurements and prediction results for spe-

cific features of general purpose operating systems in Section 7.2. Furthermore, we provide

an overview of the existing work on scheduling in real-time systems and high performance

computing. In Section 7.3, we outline approaches that integrate infrastructure performance

models into architectural specifications.

7.1. Performance Evaluation of Scheduling Policies in

Queueing Theory

A significant part of ongoing work in the area of queueing theory is devoted to assessment

and evaluation of performance influences of different scheduling policies. The overall aim of

this work is the identification of optimal scheduling policies with respect to mean response

time, fairness, and resource utilisation. In the following, we describe the current research for

single-server (Section 7.1.1) and multi-server queues (Section 7.1.2).

7.1.1. Performance Properties of Scheduling Policies in Single-Server

Queues

Advanced policies for single-server systems prefer shorter jobs over longer ones or extend

processor sharing with priorities and job classes. Such policies can provide an initial ap-

proximation of specific features of GPOS schedulers, like their preference of I/O-bound and

interactive tasks or task priorities. In the following, we discuss the performance influences of

policies which are biased towards small jobs. Furthermore, we describe recent results regard-

ing their fairness properties compared to other scheduling policies. Finally, we summarise

existing work on performance evaluation with extended processor sharing.

218 7. Related Work

Bias Towards Small Jobs Wierman et al. [WHBO05] introduced a class of scheduling poli-

cies called SMART policies, which are biased towards jobs with small sizes. Such scheduling

policies promise better interactivity and responsiveness for desktop and server systems. Thus,

these polices can approximate the behaviour of GPOS schedulers which prefer interactive

and I/O-bound tasks over compute-bound ones. SMART policies subsume the well known

Shortest Remaining Processing Time (SRPT) [Sch68] and Preemptive Shortest Job First

(PSJF) policies. If the job sizes are not known, Least-Attained-Service (LAS, also known as

feedback scheduling) is typically used to approximate SRPT [YWSHB06]. LAS prioritises

jobs with a short life span (little attained service) so that short jobs (which always have little

attained service) tend to have the server for themselves. If several jobs received the same

service, they share the processor via PS.

Yang et al. [YWSHB06] have shown that the mean delay of any SMART policy is near

optimal under all service distributions. Furthermore, they have proved that all SMART

policies have the same response time distribution as SRPT, which is well-known to be optimal

for mean delays [Sch68]. Additionally, they have come to the conclusion that the delay

distribution of SMART policies improves upon the delay distribution of LAS. However, LAS

still provides an improvement over FCFS for most job sizes [YWSHB06] and over PS for

specific job size distributions [WBHB03].

The applicability LAS and SMART policies has been evaluated in empirical studies.

Harchol-Balter and Schroeder [HBSBA03, SHB02] compared the performance of a webserver

under a fair scheduling policy and a variant of SRPT. They found that the performance can

be dramatically improved for short jobs using SRPT. In their experiments, long jobs expe-

rienced only negligibly higher response times. Inspired by the use of SRPT for webservers,

Rawat and Kshemkalyani [RK03] introduced the so called SWIFT scheduling policy for web

servers. Additionally to the job size, SWIFT considers the network and server characteris-

tics. Taking these effects into account, the SWIFT scheduling policy can improve response

times of long jobs by additional 2.5% to 10%.

Fairness Scheduling policies which are biased towards small jobs optimise mean response

times. However, SMART policies tend not to be used in practice due to their expected

unfairness. This trade-off also occurs for age based policies such as LAS. Wierman and

Harchol-Balter [WHB03] address the question of fairness for different scheduling policies

and classify them accordingly. They define three classes of fairness: Always fair, sometimes

fair, and always unfair (cf. Table 7.1). Based on a formal definition of the fairness classes,

they show that SRPT (being an instance of the SMART policies) is only unfair under certain

service time distributions and under certain load distributions. Interestingly, LAS (being an

approximation of SMART policies) is classified as always unfair, since it disproportionately

penalises long jobs independently of service times and load distributions.

7.1. Performance Evaluation of Scheduling Policies in Queueing Theory 219

Name Description Policies

Always Fair
Policies that are fair under all load

and all service distributions

Processor Sharing,
Preemptive Last Come

First Serve

Sometimes Fair

Policies that are unfair for some load
and some service distributions, but are
fair under other loads and other service

distributions

Shortest Remaining
Processing Time,
Shortest Job First

Always Unfair
Policies that are unfair under all load

and all service distributions

First Come First Served,
Least Attained Service,

Preemptive Shortest Job
First

Table 7.1.: Fairness classification of scheduling policies [WHB03].

Beyond Processor Sharing Processor sharing is commonly used in software performance

evaluation to approximate the behaviour GPOS schedulers. However, PS does not con-

sider the performance influence of priorities and different classes of tasks (or jobs). To

predict such influences, extended processor sharing policies have been introduced (surveyed

by [AAB+07]). These policies can discriminate different job classes and assign different

service-levels to jobs depending on their class. Common extensions to processor sharing

are Discriminatory Processor Sharing (DPS), Generalised Processor Sharing (GPS), and

Multilevel Processor Sharing (MLPS) explained below.

DPS assigns a positive weight factor to each job class. The service capacity is shared

among all jobs present in proportion to the respective class-dependent weights. Therefore,

DPS can be used to abstractly model the behaviour of Linux’ run queue. Linux uses priority-

dependent timeslice sizes that can be approximated by DPS weights.

Unlike DPS, GPS uses class-dependent weights to share the service capacity among all

non-empty classes (i.e., classes that currently have jobs waiting). It does not consider the

actual number of jobs present for a class. Thus, all jobs of one class share the capacity

assigned to their class. This policy guarantees a minimum capacity to each class and isolates

competing classes. GPS is mostly used in telecommunications to reflect the behaviour of

routers with shared bandwidth.

Finally, MLPS exploits the variability in service demands to improve the overall system

performance. It gives precedence to shorter requests over longer ones. It assigns arriving jobs

to classes based on their service time. Within a class, jobs are served by ordinary PS policy.

Therefore, MLPS is an approximation of simple multi-level feedback queue schedulers.

Discussion The analytical solutions for queueing networks with generally distributed ser-

vice times are becoming increasingly powerful. However, they are still limited to simple

scheduling policies that do not reflect the complexity of GPOS schedulers.

220 7. Related Work

Policies that are biased towards small jobs (SMART policies) provide the best mean re-

sponse times when job sizes are known a priori. These policies are not as unfair as expected.

However, job sizes cannot be known a priori in GPOS. Furthermore, tasks use processors

as well as other resources alternately so that the same task enters and leaves a processor’s

queue several times during its lifetime. Some GPOS schedulers (such as the O(1) and CFS

implemented in Linux 2.6) consider the task’s past waiting and processing times in order to

make good scheduling decisions. Therefore, models that only consider the duration of a job

are not sufficient for performance prediction.

The implementations of GPOS schedulers, such as the Windows and Linux operating

system series, are based on MLFQ to prefer I/O-bound and interactive tasks. The dynamic

priority of a task decreases with the time a task spends computing. However, the priority

decay depends on the scheduling policy and significantly determines the share of processing

time received by a task (cf. Section 4.2). Static priorities additionally favour specific tasks

independent of their behaviour or size.

The performance influences of GPOS schedulers mentioned above affect the applicability

of extended processor sharing policies. DPS, GPS, and MLPS partially model the run

queue of GPOS schedulers, but neglect influences of its interactivity and multiprocessor load

balancing policies. The focus on specific features only allows good performance estimates for

specific scenarios only. Furthermore, the prediction accuracy of PS (or one of its variants) for

GPOS schedulers strongly depends on the workload characteristics. For example, PS yields

large prediction errors for small requests (e.g., that are smaller than a single timeslice), while

FCFS provides a good approximation for such cases (cf. Section 4.1)

In the next section, we summarise and discuss current research on the performance eval-

uation of different scheduling and routing policies in multi-server queueing models.

7.1. Performance Evaluation of Scheduling Policies in Queueing Theory 221

7.1.2. Performance Properties of Scheduling and Routing Policies for

Multi-Server Queues

While scheduling policies for single-server systems are well understood and analytically

tractable, multi-server queueing models pose several new challenges [Squ07]. For example,

the SRPT policy, which is proven to be the optimal scheduling policy with respect to mean

response time for single-server queues, is not optimal for multi-server systems [LR97]. An

optimal strategy for multi-server systems is yet unknown. Furthermore, analytical solutions

have a limited availability, i.e., for specific combinations of scheduling and routing policies.

For multi-server systems with immediate dispatching, the routing policy is crucial for

achieving good utilisation and low response times. However, its mutual influences with

local scheduling of service centres is not yet fully understood. Accurate models for load

distribution in multi-server systems are essential for performance evaluation of symmetric

multiprocessing and distributed systems. In such environments, the dynamic re-distribution

of load plays a major role for software performance. Thus, researchers address the question of

how analytical models of load balancing policies, such as cycle stealing or coupled processor

models [Oso05], can improve the overall system performance.

In the following, we describe work devoted to the analysis of multi-server systems with

different routing and scheduling policies. First, we present approaches that evaluate the

performance influence of priorities in multi-server systems. Second, we discuss analytical

approaches for the performance evaluation of load balancing and/or load distribution.

Priorities Harchol-Balter et al. [HBOSWW05] analysed multi-server systems with priori-

tisation and compared the resulting response times with their single-server counterparts.

Priority queueing is difficult to analyse in a multi-server setting, since jobs of different prior-

ities may be in service (at different servers) at the same time, which leads to complex Markov

chains. They came to the conclusion that the effects of prioritisation in multi-server systems

cannot be predicted by considering a comparable single-server system. Furthermore, the

authors state that a set of servers provides a strong benefit in dealing with highly variable

job sizes, yet they hinder performance under light load. Finally, SMART prioritisation has

much stronger effect in a single-server system than in a multi-server system of equal capacity.

Choosing a Queue – The Routing Policy In multi-server systems, the distribution of

jobs among the available servers is one of the most important design questions. The central

queue model and the immediate dispatching model are two different concepts addressing this

question.

222 7. Related Work

In the immediate dispatching model, random and round-robin are the simplest assignment

strategies. While the random policy assigns an incoming job to each server with probability

1/k, where k is the number of servers, round-robin distributes jobs to servers in a cyclic

order. However, they neither maximise utilisation nor minimise mean response times. Under

the Join-the-Shortest-Queue (JSQ) policy, incoming jobs are immediately dispatched to the

host with the fewest number of jobs in the queue. This policy has been shown to be optimal

for exponentially distributed service times and unknown job sizes [Win77, TSC92, MS91,

EVW80].

In the central queue model, the M/G/k/FCFS policy has been proven to minimise mean

response time and maximise utilisation for exponentially distributed service times and un-

known job sizes [Wol89]. The M/G/k/FCFS policy holds all jobs in a central queue. When

a host becomes free, it receives a job from the central queue in the order of their arrivals.

While policies like Join-Shortest-Queue and M/G/k/FCFS perform well when job sizes

are exponentially distributed, they perform poorly when the job size distribution has higher

variability [KST99, Whi86]. It has been shown analytically and empirically that the so-

called dedicated routing policy outperforms both policies with respect to mean response

time [SHB04, HBCM99]. The dedicated policy designates some servers as “short servers”

and others as “long servers”. It always routes short jobs to the “short server” and long jobs

to the “long server”. The dedicated policy is defined for both the immediate dispatching

model and the central queue model, which behave similarly under the dedicated policy. The

dedicated policy performs well when job sizes have high variability, because it isolates short

jobs from the long jobs as waiting behind the long jobs is costly [OHBSW05].

The unnecessary idling of some servers is the major disadvantage of the dedicated policy.

For example, if many short but no long jobs arrive the “long servers” remain idle while the

“short servers” become saturated with the load. Cycle stealing provides first concepts to

overcome this shortage.

Balancing the Load – Cycle Stealing In his Phd-Thesis [Oso05], Osogami addressed the

problem of imbalanced situations for the dedicated policy. He introduced the concept of

cycle stealing to combine the variance reducing benefit of the dedicated policy with the

high utilisation property of M/G/k/FCFS and Join-the-Shortest-Queue. Basically, cycle

stealing enables one server to help another one when its own queue is empty. For example,

if the “long server’s” queue is empty while the “short server” is under heavy load, the latter

may steal the “long servers’s” idle cycles to serve short jobs.

However, cycle stealing grants short jobs access to the long server only when the long

server is free. It must not let long jobs starve causing them undue delay. Since jobs are not

preemptive, there is a penalty to a long job which arrives to find a short job using the long

7.1. Performance Evaluation of Scheduling Policies in Queueing Theory 223

server. Osogami shows that cycle stealing can provide an boundless benefit over the simple

dedicated policy.

To be a good estimator for real systems, cycle stealing needs to reflect the costs of moving

jobs between servers [OHBSW05]. The additional costs may be caused by reloading memory,

the resumption of processing of donor jobs, remote execution costs, loading memory to

the donor machine. Thus, cycle stealing may pay off only if the beneficiary’s queue is

sufficiently long. Osogami analysed the optimal thresholds on the beneficiary and donor

queue [OHBSWZ04].

Discussion In this section, we have presented current research on queueing theory which

addresses the performance evaluation of scheduling and routing policies. The analytical

solutions for multi-server systems are still limited to specific combinations of routing and

scheduling policies. For example, just recently solutions for multi-server queues with JSQ

routing and PS scheduling have been proposed. The dedicated policy promises the best

performance for multi-server systems which have to process load with a high variance of

service times. However, the analytical solutions for different combinations of routing and

scheduling policies as well as the load balancing models are still an initial step towards the

analytical solution of multi-server queueing systems.

Regarding the assumptions made by queueing network models, it is still unclear under

which conditions a multi-server queue yields accurate performance predictions for symmet-

ric multiprocessors. The scheduling and routing policies used in queueing theory are strong

abstractions of the scheduling policies of real systems [RUKVB04]. To make good perfor-

mance predictions, it is necessary to understand the conditions for the applicability of a

specific queueing model.

224 7. Related Work

7.2. Performance Evaluation of Operating System

Schedulers

In this section, we summarise work involved in the performance evaluation of operating

system schedulers. These approaches include the performance evaluation of multiprocessor

load balancing policies for GPOS schedulers (Section 7.2.1), their interactivity features (Sec-

tion 7.2.2), real-time operating systems (Section 7.2.3), and high-performance computing

(Section 7.2.4).

7.2.1. Multiprocessor Load Balancing of General Purpose Operating

Systems

Chanin, Correa et al. [CCF+06, CZS06] analysed the influence of different load balanc-

ing polices for NUMA systems on software performance focussing on the effect of different

memory access times. They proposed an optimised multilevel load balancing algorithm

and demonstrated with simulations, measurements and formal analyses of stochastic au-

tomata networks [PA91] the possible performance gain of the new algorithm. However, the

results of the simulation and formal analysis are contradicting. While the simulation and

measurements yielded a performance gain of 2.2% to 10% depending on the underlying hard-

ware architecture [CZS06], the analytical results predicted an improvement of no more than

1% [CCF+06].

The contradicting results are a consequence of an oversimplified analytical model. Chanin

et al. [CCF+06] modelled the behaviour of processes by alternating periods of I/O and

computation. The period durations were approximated by exponential distributions. Fur-

thermore, the model contains only one explicit task. All other tasks in the system have

a fixed influence on the waiting time of the explicit task, i.e., the task’s waiting time in

the different processor queues does not change over time. The modelled load-balancer can

only move a single task between the available processors. This restriction strongly limits

the capabilities of the modelled load balancer compared to real systems. The simulation

results and measurements in [CZS06] suggest that the analytical model does not reflect the

performance-relevant properties of the system under study accurately.

The work presented above demonstrates the need for performance model validation, which

compares predictions to measurements. The authors neglected performance-relevant details

of the load balancer, which were essential for their approach. Omitting the model validation

led to misleading conclusions about the performance of the system under study.

Ahmad et al. [AGM+94] evaluated the influence of various load balancing policies and

of their parameters on software performance using neural networks. They trained a neural

7.2. Performance Evaluation of Operating System Schedulers 225

network using simulation results of different load balancing policies for distributed multi-

computer systems. The simulation model is based on a simple queueing network with FCFS

scheduling and exponentially distributed service times. The neural network predicts the re-

sponse time of the system under study with different parameters for various load balancing

strategies. The prediction error is below 5% in most cases. While the usage of neural net-

works to predict the influence of scheduling and load-balancing policies seems promising, the

examined system still contains strong restrictions, such as exponential distributions, FCFS

scheduling, and the restriction of the considered metrics to mean response times.

Kluge et al. [KN07] developed a framework for monitoring the Linux scheduler called

VAMPIR that observes the number of task movements in multiprocessor environments. In a

larger case study, they observed the scheduler’s load balancing behaviour for an MPI appli-

cation in three different scenarios. In the first scenario (big blocks of work), the system was

balanced quickly and it remained balanced for the whole experiment. The second scenario

(small blocks, busy waiting) required repetitive balancing attempts of the scheduler, but

still achieved a balanced state. Finally, the third scenario (small blocks, yield CPU) led

to continuous task movement during the whole experiment and the system did not reach a

balanced state. However, even though the third scenario was not stable with respect to load

balancing, it yielded the fastest overall response times. The results of Kluge et al. pointed

out strong mutual dependencies between multiprocessor load balancing and the interactivity

policy of the Linux scheduler. The usage of different synchronisation methods as well as

the partitioning of the overall work into differently sized blocks affected the overall response

times.

7.2.2. Interactivity and Processor Reservation in GPOS Schedulers

In their experiments, Torrey et al. [TCM06] focus on the performance of interactive and

I/O-bound tasks under Linux 2.6.3. One of the main aims of the Kernel developers was the

improvement of interactivity in the Linux 2.6 scheduler. However, the MLFQ implemen-

tation of Torrey et al. outperforms the Linux scheduler with respect to interactivity. The

observed performance gain comes at the cost of losing priority levels and starvation preven-

tion. Furthermore, the performance of batch processes and server systems was not evaluated.

In their experiments, Torrey et al. observed a fixed ratio of processing and sleeping times

for tasks to be classified as interactive. If a task sleeps for at least one quarter of its pro-

cessing time, the Linux scheduler considers it as interactive. While Torrey et al. evaluated

many performance properties of the Linux scheduler, the underlying concepts that cause the

observed results remain unclear. Their study particularly emphasises the difference between

the Linux scheduler and formal scheduler models as described in Section 7.1.

226 7. Related Work

Kawasaki et al. [KGC+06] proposed an extension of the Linux operating system sched-

uler, which reserves a percentage of the processor’s capacity to specific tasks. The reser-

vation ensures responsiveness and predictability of these tasks. The authors used a simple

Markov model to capture the behaviour of the Linux scheduler. The model demonstrates

the improvements of their approach compared to the current scheduler implementation. The

evaluation of their performance model is limited to a comparison with a simulation which

contains similar simplifications and assumptions like the proposed Markov model. Accord-

ing to their results, the reservation of processor capacity for specific tasks can improve the

performance of these tasks. However, this reservation leads to a performance degradation of

other tasks.

7.2.3. Real Time Operating Systems

There are numerous approaches for the performance evaluation of real-time systems avail-

able in literature, e.g., [BMdW+04, BKR95, EE00, FNNS06, HZS01, LM99, MPC04,

YW98, MPC04, SG06, JLT85]. While the performance evaluation of real-time systems and

component-based enterprise applications may exhibit some common problems, their level of

abstraction, their assumptions about the underlying hard- and software infrastructure as

well as the performance metrics they consider vary significantly. For example, simulators of

real-time operating systems (such as [MPC04, SG06]), which allow system designers to eval-

uate the influence of different scheduling policies on the performance of their system, include

many low level details, such as the saving and loading of tasks context, context-switch times,

and scheduling latency, which are negligible for GPOS schedulers. The performance metrics

considered are mostly related to the meeting of hard and soft deadlines. The scheduling poli-

cies available for modelling are often limited to the most basic policies such as RR, FCFS,

or SRPT. Their simplicity on the one hand and the large number of low-level details on the

other make them inapplicable for performance evaluation in enterprise applications.

7.2.4. High Performance Computing

In the past several decades, various scheduling policies for multiprocessing systems have

been evaluated in order to identify the critical factors for performance in high performance

computing applications (e.g., [MEB88, Maj92, GTU91, LV90, AD96, RSSS98]). Table 7.2

summarises the most important scheduling policies of this area. The findings differ de-

pending on the focus of the authors. While Majumdar et al. [MEB88, Maj92] rate policies

with a priori job knowledge (especially Smallest Number of Processes First) best, Gupta et

al. [GTU91], who emphasise the influence of caching effects, favour co-scheduling. Leuteneg-

ger and Vernon [LV90] observe the best performance for dynamic partitioning and round

7.3. Infrastructure Performance Models 227

Name Description
Time

Sharing
Space
Sharing

Known�
Job�Size

Batch�Schedul
FCFS

ing��/ All�processes�of�an�arriving�job�are�placed�co
shared�queue.�If�a�processor�becomes�empt
first�process�from�the�queue.

nsecuti
y�it�

vely�in�a
fetches�the

� � � �

Dynamic�Parti
Policy

tioning Assign�an�equal�fraction�of�processors�to�eac
at�most�assigned�as�many�processors�as�ther

h�
e�are�

available�
parallel�

job.�Jobs�are�
processes.

� yes �

Gang�Scheduli
Coschedulingg

ng�/ All�runnable�processes�of�an�application�are�
on�the�processors�at�the�same�time.�When�ap
running�processes�are�preempted�simultane
from�another�application�are�scheduled�for�

schedu
�time�
ously,�
the�

led�to�
slice�
and�all�

next�time�

run�
ends�all�

yes � �

processes�
slice.

Smallest�Num
Processes�Firs

ber�of�
t�(SNPF)

Process�the�job�with�the�least�number�of�processes�first. � � yes

Preemptive�Sm
Number�of�Pro
First�(PSNPF)

allest�
cesses�

Similar�to�SNPF,�but�preempts�the�currently�
new�job�with�less�processes�arrives.

running�job,�if�a� yes � yes

Preemptive�Sh
Cumulative�De
First�(PSCDF)

ortest�
mand�

Process�the�job�with�the�least�cumulative�de
demands�of�all�processes)

mand�(sum�of�the� yes � yes

Process�Round
(Rrprocess)

�Robin� Round�robin�strategy�that�assigns�an�equal�s
power�to�each�process.

hare�of�processing� yes � �

Job�Round�Ro
(RRjob)

bin� Round�robin�strategy�that�assigns�an�equal�s
power�to�each�job.

hare�of�processing� yes � �

Table 7.2.: Overview of scheduling policies for high performance computing [LV90].

robin job policy (where a job subsumes several processes). Au and Dandamudi [AD96] eval-

uated effects of a program’s structure on the performance of scheduling policies for UMA

systems. They observe the best performance for preemptive shortest cumulative demand first

scheduling. Rosti et al. [RSSS98] include I/O accesses into their evaluation of scheduling

policies. They demonstrate that the contention of disk resources can become a dominating

factor which significantly influences scheduler performance.

7.3. Infrastructure Performance Models

In this section, we describe model-driven performance prediction approaches that add

platform-specific performance specifications to software architectures. Furthermore, we dis-

cuss performance prediction models for middleware infrastructures. The considered ap-

proaches provide the necessary concepts to integrate MOSS as well as other infrastructure

performance models into high-level architectural models for performance prediction.

228 7. Related Work

Including Infrastructure Models into Abstract Software Architectures Inspired by the

ideas of component-based software engineering, Woodside and Wu [WW04] proposed the

reuse of performance (component) specifications. These previously calibrated sub-models or

“performance components” can be used flexibly in the system model. This approach allows

the straightforward integration of middleware details into prediction models. The envisioned

concept is in line with their earlier proposition of performance completions [Woo02], which

supply additional information not needed for functional specification but rather required for

performance prediction.

Following the same idea, Grassi et al. [GMS06] used refinements from model-driven tech-

nologies to integrate aspects of performance (and reliability) into their prediction model

KLAPER. In the considered example [GMS06], they integrate the overhead of remote pro-

cedure calls into a performance specification of a distributed application. Woodside and Wu

as well as Grassi et al. focus on the concepts of completions and refinements.

Verdickt et al. [VDGD05] developed a framework to automatically include the impact of

CORBA middleware on the performance of distributed systems. Transformations map high-

level middleware-independent UML models to other UML models with middleware-specific

information. Their work is focused on the influence of Remote Procedure Calls (RPCs)

as implemented in CORBA, Java RMI, and SOAP. Their integration of delays imposed by

RPCs is based on the mean values of simple measurements. The proposed transformation

approach extends the architectural specification by performance models of the infrastructure.

While this method enables the usage of various solutions for annotated UML specifications,

infrastructure specification are constrained by the capabilities of UML. Thus, complex data

dependencies or scheduling algorithms are hard or even impossible to express.

Cortelessa et al. [CPR07] developed a framework that combines architectural performance

specifications with simulation prototypes of resources. In their case study, they evaluate the

influences of schedulers and webserver components on a web application. Resource proto-

types are reusable basic blocks for platform models. Their framework includes prototype

models of some of the most used resource types like CPU, mass memory, and network. To

include resources into software architecture, resource prototypes can be either directly in-

stantiated or specialised adding additional performance or behavioural information. These

resource prototypes embed specific probes to collect performance data. Resource prototypes

can be assembled to processing nodes or to whole platform models. For this purpose, special

dispatching components standardise the management of resource service requests.

Behaviour of resources is specified in terms of UML state-charts. Resources communicate

via ports, which can be regarded as the interface of a resource. For example, to specify a

simple scheduler, an external port accepting resource requests has to be modelled. When a

request arrives, a set of elementary jobs (required to satisfy the request) is enqueued (e.g., a

7.3. Infrastructure Performance Models 229

disk reading can be partitioned as a set of block reading jobs). When the scheduler selects

a job for execution, its behavioural specification (i.e., the statechart) moves to another state

(e.g., “busy”) for a specific time. Such transitions simulate the time spent by the physical

resource to execute the job. When all the jobs that are related to a request have been

processed, the caller is notified that its request has been satisfied.

Cortelessa et al. [CPR07] only give prototypical description of schedulers in their frame-

work. The state-charts are just an abstract representation of what happens inside the sim-

ulation. For example, the authors do not model the queueing of jobs necessary for the

scheduler. Furthermore, they do not validate their prototypical resource models. However,

validation is essential for reliable prediction models.

Measurement-based Development of Infrastructural Models Gorton and Liu [LFG05,

GL03] as well as Denaro et al. [DPE04] studied the influence of middleware on software

performance. Both considered middleware as the determining factor for performance in

distributed systems and, thus, focused on its modelling and evaluation.

Gorton and Liu [LFG05, GL03] proposed a measurement-based approach in combination

with mathematical models to predict the performance of J2EE applications. Measurements

provide the necessary data to compute the input values of a queueing network model. The

computation reflects the behaviour of the application under concern. The queueing net-

work is solved to derive performance metrics, such as response time and throughput for the

application.

Denaro et al. [DPE04] completely focused on measurements and did not rely on predic-

tions. They assumed that the infrastructure of a software system is available during early

development stages. They use test cases based on architecture designs to provide perfor-

mance estimates of a software system. Both approaches strongly simplify the behaviour of

an application neglecting its influences on software performance. For measurements, they

require the complete infrastructure which may not be available during the design phase.

230 7. Related Work

7.4. Summary

In this chapter, we have discussed approaches closely related to this thesis. We have ad-

dressed approaches from (i) mathematical analysis of scheduling policies, (ii) performance

evaluation of operating system schedulers, and (iii) performance models for middleware plat-

forms.

1. Formal analyses of scheduling policies have achieved interesting results about the in-

fluence of scheduling policies on software performance. They point out possible per-

formance gains by the improvement scheduling policies. Unfortunately, the models are

still simple compared to the behaviour of real operating systems schedulers. However,

the results guided the experiments in Chapter 4 and 5.

2. Experiments on the performance influences of GPOS schedulers have provided interest-

ing insights into the performance influences of Linux’ interactivity and load balancing

policies. However, all performance prediction models for GPOS schedulers discussed

here lack a thorough validation. The lack of validation leads to oversimplified perfor-

mance models and, thus, erroneous predictions.

3. Performance models for middleware platforms provide background of the performance

completion for message-oriented middleware (MOM). However, at their current state,

significant expertise is necessary for their application. The steep learning curve hinders

their usage in practice.

In this thesis, we have addressed the shortcomings of existing approaches and have pro-

posed a performance model for GPOS schedulers that accurately predicts their influence on

software performance (Chapters 3, 4, and 5). In addition, we have developed a performance

completion for MOM that allows software architects to include influences of MOM in their

architectural model (Chapter 6).

231

8. Conclusions

8.1. Summary

In this thesis, we have presented performance modelling frameworks for general purpose op-

erating system schedulers and message-based communication in symmetric multiprocessing

environments. Their design followed a novel iterative method that experimentally derivates

performance models from specification and documentation. The models have been exten-

sively validated and contain only those factors that influence software performance. Software

architects can customise the models according to the requirements of the system under study.

The proposed techniques help software architects to predict response time, throughput, and

resource utilisation with an error of less than 5% to 10% in most cases and, thus, decrease

the prediction error by several orders of magnitude compared to today’s prediction methods.

In the following, we summarise the main contributions of our work.

Experiment-based Model Derivation For accurate performance predictions, model de-

sign needs to be goal-oriented and tightly coupled with measurements. For this purpose,

we have proposed and employed a systematic approach to the experimental derivation of

performance models from initial specification and documentation. The method focuses the

modelling effort and identifies the performance-relevant factors before model design. An ex-

plicit validation of assumptions identifies counter-intuitive performance-factors of the system

under study and directs further investigation if necessary. Based on the results, a perfor-

mance model can be designed. Finally, a comparison between predictions and measurements

further ensures that the model captures all important influences and has been defined on an

appropriate level of abstraction.

Furthermore, performance models can be parametrised over the execution environment.

Parametrisation enables software architects to customise models for their specific target

platform. To determine the resource demands of that platform, automated test drivers

execute a series of predefined measurements. The results determine the parameter values

of the model. Additionally, parametrisation allows the definition of generic performance

models for a class of middleware platforms. Model-driven techniques integrate the models

into architectural specifications and, thus, hide their complexity from software architects.

232 8. Conclusions

Performance Model for GPOS Schedulers We extensively employed the experiment-

based derivation method during the construction of MOSS, a performance model for gen-

eral purpose operating system schedulers. MOSS reflects the mutual influences of different

time sharing, interactivity, and multiprocessor load-balancing policies on the performance

of software applications. MOSS specifically addresses the influence of GPOS schedulers in

symmetric multiprocessing environments, such as today’s multi-core processors. In a series

of goal-oriented experiments, we have evaluated the performance influences of the Win-

dows and Linux operating system series. Based on the results, we have determined the

performance-relevant properties of GPOS schedulers described in the scope of this thesis.

On an abstract level, feature diagrams model the performance-relevant properties of GPOS

schedulers. Feature characteristics reflect, for example, the different types of run queues,

dynamic priorities, and dynamic load balancing policies employed in both systems. Software

architects can customise the GPOS scheduler models based on the identified features.

For performance prediction, CPNs formally describe the behaviour of GPOS schedulers

and of their feature characteristics. These CPNs are hierarchically structured so that each

subnet represents a different feature. This separation of concerns allows the straightforward

integration of different feature characteristics in a single CPN. In a final validation of MOSS,

we have compared predictions to measurements and ensured that the model captures all

important performance-influences.

To hide the complexity of MOSS from software architects and from performance analysts,

MOSS has been integrated with the PCM, which is an architectural modelling language

that supports performance predictions during early development stages. For the integration,

we have implemented a discrete event simulation technique specialised for MOSS. Software

architects can either choose from existing scheduler configurations, e.g., Windows Server

2003 or Linux 2.6, or provide their own configuration. Depending on the configuration, the

simulation chooses different time sharing, interactivity and multiprocessor load balancing

policies. This approach hides the complexity of the scheduler model from software architects

while significantly increasing prediction accuracy.

However, MOSS also requires several assumptions on the task behaviour and underlying

execution environment. For example, memory access is not considered. Caching effects,

possible bottlenecks at memory buses, or varying memory access times for different memory

spaces can have a significant effect on software performance.

Messaging Completion Message-passing is widely used for communication in distributed

enterprise applications. To model and predict the performance of such applications, we have

proposed a parametrised performance model for Message-oriented Middleware. Software

architects can customise a so-called messaging completion that models the behaviour of

the underlying MOM using a language specific to their domain. The model as well as its

8.1. Summary 233

specification language are based on design patterns for message-based communication. To a

large extent, these patterns are realised in standards for message-oriented middleware, such

as Java Message Service [HBS+08].

For model design, we have identified those patterns that significantly influence the deliv-

ery time of a message in a series of experiments. The proposed performance model only

reflects the behaviour specified in the messaging patterns and abstracts from the actual im-

plementation. Measurements determine the necessary resource demands of a specific MOM

platform in the target environment. For this purpose, an automated test driver measures the

necessary data for the new platform. To reflect the influence of different usage profiles (e.g.,

message and transaction sizes), regression analyses extract the parametric dependencies of

input parameters and resource demands from the measurements. The resulting functions

determine the resource demands in dependency of the current input parameters.

Messaging can be customised for different execution environments and implementations of

MOM. The combination of pattern-based models with measurements allows accurate perfor-

mance predictions for different vendor implementations using the same performance model.

Software architects can customise the prediction model according to a feature diagram mod-

elling the performance-relevant messaging-patterns (e.g., publish subscribe or guaranteed

delivery).

The abstract modelling of complex middleware also requires several assumptions. For

example, demands to individual resources cannot be determined exactly by this approach.

Thus, it is assumed that the message delivery time is sufficient to model the performance

of MOM. Even though the assumption holds in the considered case study, more complex

scenarios may require a detailed resource demand breakdown to individual resources.

Validation In the scope of this thesis, we have validated the performance models by means

of a series of case studies all placed in the scenario of a supermarket supply chain manage-

ment. The case studies have provided detailed performance evaluations of HQ’s business

reporting and a supermarket’s warehouse applications. Both involve different types of re-

quests as well as message-based communication. The overall scenario of the case studies has

been introduced in the context of the SPECjms2007 benchmark [SPE, SKCB07]. We have

extended the benchmark to reflect additional classes of requests and support more elaborate

scenarios.

The benefit of MOSS for performance prediction of business applications has been demon-

strated by a business reporting use case for HQ’s application. Supermarket managers as well

as employees of HQ can request different kinds of business reports. The reports are generated

on the fly from the collected data. The case study evaluates the performance of the system

for different types of requests and for different execution environments including a dual-core

234 8. Conclusions

system under Linux and Windows. MOSS predicts the response time for all types of requests

with an error of less than 5 – 10% in most cases. Compared to commonly used prediction

models, MOSS increases the prediction accuracy up to several orders of magnitude.

The performance completion for Message-oriented Middleware has been evaluated in the

context of the supermarkets warehouse management. An RFID-reader notifies the system

whenever goods leave the warehouse. The application keeps track of the stored goods and

notifies the supermarket management whenever new goods have to be ordered. In the case

study, we have evaluated the performance influence under peak load conditions that may

occur when many goods leave the warehouse at once, e.g., a lorry of goods is brought into

the shop. The performance model has predicted the message delivery time with an error of

less than 15%. The resource utilisation has been predicted with an error of 20%. The case

study has demonstrated that some of the assumptions underlying the messaging completion

affect prediction accuracy and should be weakened in the future. However, a prediction error

of less than 30% is considered a good performance prediction [MAD04] in general.

8.2. Benefits

The results of this thesis support software architects and performance analysts to i) focus

their modelling effort on the performance-relevant factors of the system under study, ii)

transparently evaluate the performance influences of different GPOS schedulers, and iii)

include message-based communication into their software performance models.

The proposed experimental derivation of performance models supports performance an-

alysts designing goal-oriented performance models. Its support for parametrisation allows

abstracting from the underlying hard- and software layers. Software architects can use the

parametrised models to predict performance properties of their software application in dif-

ferent environments with little additional modelling effort.

The performance model for GPOS schedulers (MOSS) allows accurate predictions of in-

fluences of the Windows and Linux operating system series on software performance. Such

predictions are especially useful in symmetric multiprocessing environments which become

more common with today’s multi-core technology. The model increases the prediction accu-

racy by several orders of magnitude reducing the risk of erroneous performance predictions.

It supports software architects judging different design alternatives correctly. Based on the

predicted results, software architects can identify the operating system best suited for their

needs. Especially in heavy load situations, operating systems differ significantly in their

influence on software performance. Depending on the scenario and the performance require-

ments, either equal distributions of processing time or large differences may be preferable.

While the first guarantees similar response times for all tasks, the latter can be used to

minimise the overall mean response time [WHBO05].

8.3. Lessons Learned 235

MOSS can further support operating system developers to predict the effect of changes in

scheduling algorithms on software performance a priori. Assessing the influence of changes

without measurement and/or simulation is a difficult or even impossible task. Today’s

GPOS schedulers target a wide range of systems with largely varying requirements. They

must perform well on desktop systems with few processors only and with high requirements

to interactivity as well as on sever systems with a large number of processors and tasks.

Evaluating the influence of changes to a scheduler in a set of representative scenarios re-

duces risk lowering the performance for one user group while increasing the performance for

another. Furthermore, it focuses the development effort on the relevant scheduler features.

The messaging completion proposed in Chapter 6 enables software architects and perfor-

mance analysts to model and to predict the influence of asynchronous communication via

message passing on performance of their application. They can configure the messaging

completion using a language specific to their domain that reflects the performance-relevant

messaging patterns, e.g., durable subscription or competing consumers.

8.3. Lessons Learned

In the following, we summarise some of the lessons learned during the course of this thesis

with respect to software performance engineering.

For the design of accurate performance models, an initial validation of the model’s as-

sumptions is essential. Performance influences are often counterintuitive. Especially, mutual

influences of different system parts are difficult to track. For concurrent software systems,

just the understanding of the functional behaviour can be challenging [Lee06]. Therefore,

formal analyses techniques, such as model checking, are essential to ensure correctness. It

is mandatory for performance prediction to understand the mutual influences of – on the

first glance – independent system behaviour, to design models that accurately reflect the be-

haviour of the overall system. Goal-oriented experiments can guide the identification of such

mutual dependencies. They help performance analysts and software architects to get the

complexity of today’s enterprise applications under control. The experiment-based deriva-

tion of performance models proposed in Chapter 3 systematically challenges expert intuition

by comparing their expectations to measurements. This method supports performance an-

alysts to focus their attention on the most critical parts of the system under study.

However, not only counter-intuitive influences are a threat to validity for software perfor-

mance engineering but also the experimental settings selected for evaluation. For example,

the workload type (i.e., open or closed) is of major importance for the performance influence

of scheduling policies. While scheduling has a limited impact for closed workloads, it affects

response times up to several orders of magnitude for open workloads. Identifying the right

236 8. Conclusions

experimental setting for performance evaluation is challenging. The settings have to provide

proper results answering specific questions, but must not be too specific so that their results

can still be generalised.

While measurements are essential to build valid performance models for software systems,

they can also lower model complexity. In Chapter 6, simplified models were used to cap-

ture the influence of Message-oriented Middleware. While this work has been focused on

the basic concepts underlying the simplification (parametrised performance models), the

general approach has much more potential for software performance engineering. With the

increasing complexity of software systems, strong abstractions are necessary for performance

modelling. Parametrised models in combination with measurements could help to get control

over today’s complexity of software systems.

While abstraction is necessary and helpful for some infrastructure models, such as message-

oriented middleware, it can hurt prediction accuracy for others. The design of MOSS has

demonstrated that some details can have a large impact on the overall software performance.

Schedulers affect all software artefacts running on the system under study, since they access

and manage most resources of a system. The identification of the relevant factors requires

detailed measurements to get a proper understanding of the mutual influences of scheduler

features and task behaviour.

The validation of MOSS by multiple experiments and case studies captures a wide range

of possible influencing factors. However, a broader application of MOSS in different envi-

ronments and contexts is necessary to identify those factors not yet included.

8.4. Future Work

In the following, we propose several improvements of MOSS, parametrised performance

completions, as well as performance modelling and model solution techniques.

MOSS - Performance Model for General Purpose Operating System

Schedulers

Further Case Studies for Validation At the time of writing, a larger case study that

continues the supply chain management scenario for supermarket stores [SPE, SKBB07] is

being conducted. The validation integrates the performance modelling techniques prosed in

this thesis. It includes message passing, multi-core processors, different operating systems,

and various types of requests. The case study will give an impression on how the techniques

can be combined and what the expected prediction accuracy can be.

8.4. Future Work 237

Support a boarder range of GPOS schedulers In this thesis, the design of MOSS has

been focussed on the Linux and Windows operating system series. For the future, we plan to

support a much wider range of operating systems common in the server and desktop market.

MOSS is planned to include the new Completely Fair Scheduler (CFS) of Linux as well as

the operating system schedulers of FreeBSD, Open Solaris, and AIX.

Integration with other simulation-based performance models Currently, MOSS is inte-

grated into the Palladio Component Model (PCM). However, its functionality is indepen-

dent of the PCM. Other performance simulation environments, such as Queueing Petri Nets

(QPNs), are planned to include MOSS to improve their prediction accuracy for GPOS sched-

ulers. Furthermore, an integration with more powerful simulation environments is possible.

For example, MOSS may be implemented as a module for OMNeT++ [omn], which is a

powerful and widely used simulation environment for distributed systems. On the one hand,

this allows MOSS to benefit from OMNeT++’s network simulation capabilities and, on the

other hand, OMNeT++ provides an easy access to MOSS for a broad user community.

Many-core processors If today’s trend of multi-core processors will continue, the number

of processors on a single chip is likely to increase according to Moore’s Law. Thus, the

future generations of processors will not only contain two, four, or eight cores, but several

hundreds or thousands of specialised processor cores. This expectation poses new challenges

for operating system development, programming language design, and software performance

prediction. Appropriate abstractions of such processors need to be identified for accurate

software performance prediction. MOSS is a first step in this direction. However, its pre-

diction capabilities have to be refined with the evolution of operating systems and processor

technology.

NUMA architectures MOSS’ current support for symmetric multiprocessors (SMP) en-

vironments needs to be extended to non uniform memory access (NUMA) architectures as

a major step in this direction. Compared to SMP, NUMA architectures are connected to

multiple memory banks with different access times, which strongly influence software per-

formance. The extension of MOSS and the PCM towards such influencing factors requires

the PCM to specify the used memory and its location, i.e., the position of a task’s data in

distributed memory, as well as different memory access times.

Virtualisation of resources Furthermore, the increasing virtualisation of processing re-

sources poses new challenges to software performance prediction. Companies try to optimise

the usage of their existing hard- and software resources. Virtualisation provides the neces-

238 8. Conclusions

sary technologies to offer mutually independent software environments to different customers

sharing the underlying hardware resources. In such environments, the environment hosting

the virtual operating systems also influences task performance. In the long term, we plan

to extend MOSS by an additional virtualisation layer that allows predicting software perfor-

mance in such dynamic environments.

Parametrised Performance Completions

Automated generation of platform-specific completions from measurements Paramet-

ric performance completions use measurements of predefined performance metrics on the tar-

get environment to predict the performance of the system under study. Within this thesis,

a parametric messaging completion has modelled the influence of different messaging pat-

terns on the delivery time of a message. For a broader application of parametric performance

models, it is necessary to automate the entire process of measuring the required performance

metrics, executing regression analyses, and creating platform-specific completions from mea-

surements. This approach makes the process transparent for software architects and provides

the necessary prediction accuracy for the target platform.

Additional infrastructure completions Furthermore, additional parametric performance

models for other infrastructure layers are planned, e.g., for databases and application servers.

However, databases require more sophisticated models for input parameters, since the pro-

cessing time of requests mainly depends on the query and the database state.

Performance characteristic curves The messaging completion assumes that resource con-

tention can be approximated by assigning the whole delivery time to single shared resource.

However, the discussion in Chapter 6 has shown that the approximation is not always suffi-

cient. It may be necessary to measure delivery times with respect to the number of concurrent

messages in the system and their size to increase prediction accuracy. The resulting function

captures – similar to characteristic curves in physics – the influences of different parameters

on the observed performance. While this approach increases the prediction accuracy for the

message delivery time, it does not capture contention effects with other services using the

same resources. Queueing theory provides the necessary mathematics to compute the re-

source demands of a single request from the observed resource utilisation and the message’s

delivery time. However, measuring times in distributed environments is challenging. The

delivery time of a single message is often smaller than the clock drift between the involved

hardware nodes.

8.4. Future Work 239

Regression splines Finally, the messaging completion uses linear regression to extract

the functional dependencies of the message delivery time and the message’s size. While

this was appropriate for the scenarios considered, better regression analyses for parame-

ter dependencies of infrastructure performance models are desirable. Courtois and Wood-

side [CW00, WVCB01] propose regression splines to model the functional dependencies

between input parameters and observable performance metrics. Applying this technique

to parametrised performance completions allows extracting much more complex functional

dependencies from measurements.

Performance Modelling and Model Solution Techniques

Design patterns for concurrent software systems With the rise of multi-core proces-

sors in the common server and desktop market, concurrency becomes ubiquitous in software

development. To ease performance modelling and implementation of concurrent software ar-

chitectures, design patterns can support the definition of software behaviour on an abstract

level. Performance completions in combination with model-driven techniques (as proposed

by Becker [Bec08]) enable the automatic transformation of abstract pattern-based models

to complete behavioural specifications. The pattern-based approach encapsulates the imple-

mentation knowledge and allows software architects to reason about systems on an abstract

level. The transformation into full behavioural specifications further enables the performance

evaluation of the system under study as well as automated code generation.

Variance reduction With the ubiquity of concurrency in multiprocessing environments,

the need for efficient analysis and simulation methods rises. As a first step, the use of

statistical methods for variance reduction can lower the simulation effort needed and aid the

simulation of more complex models.

Combining simulation and analytical methods A next step to increase the solution ca-

pabilities for performance models is the combination of simulation and analytical methods.

It is often not necessary to predict all parts of the software architecture with similar (high)

accuracy. Therefore, it may be useful to select different solution techniques for different

parts of a model. Especially, the currently emerging fluid models that approximate solutions

of continuous time Markov chains (e.g., [Hil05, CDGH06, BP07]) are promising for highly

concurrent software systems. Furthermore, efficient solutions for different types of GI/GI/n

queues have been proposed recently (e.g., [Oso05]). Combining such methods with discrete

event simulation can help to cope with the ever increasing complexity of performance models.

Acknowledgements

This page is most likely one of the first pages you are reading (and it’s actually the last

one I wrote). You want to know what you meant in a PhD-candidate’s life. A tough task

for me. However, this page gives me the possibility to reflect a long time of experimenting,

discussing, modelling, and writing. Many of you accompanied this work. We discussed ideas,

gave feedback to each others work, listened to talks and wrote papers together. I want you

to know how much I enjoyed that time!

First of all, I would like to thank Lucka for being an incredible girlfriend. Lucka, I love

you for your endless patience, your reassurance, and for showing me what is really important

in life. And, yes, I’m back now.

Furthermore, I would like to thank my parents for their absolute support which goes way

beyond my PhD-studies. I’m grateful for your motivation and your help. It is good to know

that there is someone you can rely on no matter how good or bad things go.

This thesis was accompanied by two great professors: Prof. Dr. Ralf Reussner and Prof.

Dr. Eike Best. Ralf, without your guidance and support, I would never have come this

far. You gave me a good feeling for what research is about. Your constructive feedback

and advice helped me to accomplish my goals, the large ones as well as the smaller ones.

Furthermore, I would like to thank Eike Best for supervising this thesis and for his detailed

and constructive comments.

Moreover, this work would not have been possible with the continuous support of my

PhD-fellows Heiko Koziolek and Steffen Becker who accompanied my PhD-studies for the

best part. I really loved (and still love) the intensive and constructive discussions, the long

days of paper writing, and – not to forget – the beers we had (and the cocktails, by the way).

During the course of this thesis, I worked with many great people from various projects at

the University of Oldenburg and at the University of Karlsruhe (TH). From the University of

Oldenburg, I would like to thank Martin Fänzle and Willhelm Hasselbring as well as my col-

leagues and TrustSoft fellows (note the alphabetic order): Marko Boskovic, Abhishek Dhama,

Viktoria Firus, Simon Giesecke, André van Hoorn, Henrik Lipskoch, Roland Meyer, Karl-

Heinz Pennemann, Astrid Rakow, Matthias Rohr, Christian Storm, Mani Swaminathan,

Timo Warns, Daniel Winteler for their fruitful comments and constructive discussions. Not

to forget our secretaries Ira Wempe and Manuela Wüstefeld: You have your heart in the

right place!

In Karlsruhe, the people of the Chair of Software Design and Quality strongly contributed

to this work. I would like to thank (again, in alphabetic order) Franz Brosch, Samuel

Kounev (Thanks for the very good atmosphere you brought to our office!), Klaus Krog-

mann, Michael Kuperberg, Anne Martens, Christof Momm, Thomas Goldschmidt, Henning

Groenda, Christoph Rathfelder, Johannes Stammel for your constructive discussions, the

great Dagstuhl sessions we had, and the long nights in the wine-cellar. Furthermore, I would

like to thank the good souls of our institute, Elena Kienhöfer and Elke Sauer, who took the

responsibility of finalising my education and helped me out in any situation.

During the course of this work, I supervised the diploma theses of Henning Groenda and

Holger Friedrich whose contributions are also part of this work. Henning, you started the

evaluation of operating system schedulers and by this laid some of the fundamentals of this

work. Holger, you investigated message-based communication. Many thanks to both of you!

I really enjoyed (and still enjoy) working with you. I would also like to thank all students

that worked with me during the last years: Tobias Dencker, Ihssane El-Oudghiri, Rainer

Scheuerer, and Wenyun Zhou. Your work and your input helped me to keep things going.

Last but not least, I would like to thank my Czech and Slovak colleagues Barbora Zim-

merova, Jan Kofron, and Lucia Kapova for the great time we had together in Karlsruhe. I’m

already missing our (almost) Check/Czech evenings. It was great to have you here!

To all of you, who are not listed here but have the strong feeling that they actually should

be: Please let me know. I guess I won’t be able to change these acknowledgements, but I’m

definitely able to buy you a beer.

243

A. The Palladio Component Model

The Palladio Component Model (PCM) [RBH+07, KBHR07, BKR08] is an architec-

ture description language supporting design time performance evaluations of component-

based software systems. The PCM provides transformations to stochastic regular expres-

sions [FBH05, KBH07], discrete-time Markov chains [Hap05b], Layered Queueing Net-

works [RS95, Fra99], and an event-based simulation framework [BKR07]. The modelling and

evaluation of the PCM is supported by a tool called PCM Bench [Pal06]. In this section, we

introduce the necessary concepts for the messaging completion introduced in Chapter 6.

A.1. CBSE Development Process

In component-based software engineering (CBSE), the development of a software system

is typically distributed over multiple independent roles. Each role takes different respon-

sibilities and contributes to the overall software system. In the context of the PCM, we

distinguish four developer roles who produce artefacts of a software system [KH06]:

• Component developers specify and implement components. The specification contains

an abstract, parametric description of a component and its behaviour.

• Software architects assemble components in order to build applications. For the eval-

uation of extra-functional properties, such as performance or reliability, they retrieve

component specifications from a repository. Based on these specifications, simulation-

based and analytical methods predict the expected behaviour of a system.

• System deployers model the resource environment and the allocation of components

to different resources.

• Business domain experts, who are familiar with the customers or the users of a system,

provide usage scenarios as well as typical parameter values.

The PCM provides a domain specific modelling language for each developer role. It sup-

ports a mixture of top down and bottom up development for component-based software

systems [KBHR08]. For performance evaluation, all model parts are combined and trans-

formed into a single performance model that can be solved using different analytical or

simulation-based solution techniques.

244 A. The Palladio Component Model

A.2. Component Specification (Component Developers)

Component developers specify and implement components, whose artefacts (e.g., specifica-

tions and binaries) are stored in repositories. Additionally, they may assemble so-called

composite components from existing (sub-)components. To enable performance predictions,

component developers create abstract descriptions of service behaviour.

Interfaces In the PCM, components communicate via interfaces which they can provide

or require. An interface serves as a contract between a client requiring a service and a server

providing the service. Components implement services specified in their provided interfaces

and may use services specified in their required interfaces during execution. The role of an

interface (i.e., provided or required) is thereby determined by its relation to a component.

Note that an interface can take multiple roles.

Components Software components are the core entities of the PCM. Basic components

contain an abstract behavioural specification called Resource-Demanding Service-Effect-

Specification (RD-SEFF) for each provided service. RD-SEFFs describe how component

services use resources and call required services using an annotated control flow graph. Ba-

sic components cannot be further subdivided. Composite components are assembled from

other components introducing hierarchy into the model. To connect components, a connector

binds a required interface of one component to the provided interface of another component.

Resource Demanding Service Effect Specification RD-SEFFs are stochastic abstractions

of the control flow of a service. For each provided service of a component, an RD-SEFF

describes how the service uses hardware/software resources and how the service calls the

component’s required services.

Resource demands in RD-SEFFs abstractly specify the consumption of resources by the

service’s internal behaviour, e.g., in terms of CPU units needed, or in terms of bytes read or

written to a hard disk. Resource demands as well as calls to required services are included in

an abstract control flow specification, which captures call probabilities, sequences, branches,

loops and forks. In the following, we describes the elements of RD-SEFFs in more detail.

Internal actions model resource demands and abstract from computations performed in-

side a component. For performance prediction, component developers need to specify de-

mands of internal actions to resources, like CPUs or hard disks. Demands can depend on

parameters passed to a service or return values of external service calls.

External call actions represent invocations by a component of services provided by other

components. For each external service call, component developers can specify performance-

A.2. Component Specification (Component Developers) 245

relevant information about the service’s parameters. For example, the size of a collection

passed to a service can significantly influence its execution time, while the actual values

may have only little effect. Modelling only the size of the collection keeps the specification

understandable and the model analysable. Apart from input parameters, the PCM also deals

with return values of external service calls.

External service calls are always synchronous in the PCM, i.e., the execution is blocked

until a call returns. This is necessary for considering the effect of return values on perfor-

mance. However, asynchronous calls can be modelled by a combination of external service

calls and fork actions that allow parallel execution.

Control flow elements allow component developers to specify branches, loops, and forks of

the control flow. Branch actions represent “exclusive or” splits of the control flow, where only

one of the alternatives can be taken. In the PCM, the choice can either be probabilistic or

determined by a guard. In the first case, each alternative has an associated probability giving

the likelihood of its execution. In the latter case, boolean expressions on the service’s input

parameters guard each alternative. With a stochastic specification of the input parameters

provided by the caller, the guards are evaluated to probabilities.

Loop actions model the repetitive execution of a part of the control flow. A probability

mass function specifies the number of loop iterations. For example, a loop might execute

5 times with a probability of 0.7 or 10 times with a probability of 0.3. The number of

loop iterations can depend on the service’s input parameters. Furthermore, iterations over

a collection are also modelled explicitly where the number of repetitions depends on the size

of a collection.

Fork actions split the control flow into multiple concurrently executing threads. The

control flow of each thread is modelled by a so-called forked behaviour. The main control flow

only waits for forked behaviours that are marked as synchronised. Its execution continues as

soon as all synchronised forked behaviours finished their execution (barrier pattern [Dou02]).

Acquire and release actions model the acquisition and release of limited passive resources,

e.g., semaphores or connection pools (see pooling pattern [Dou02]). Passive resources can

have a significant influence on the execution time of a service due to waiting times and,

hence, are included in the PCM.

Parametric Dependencies In the PCM, parameter dependencies [KHB06, KBH07] ab-

stractly specify input and output parameters of component services with a focus on

performance-relevant aspects. For example, the PCM allows to define the VALUE, BYTESIZE,

NUMBER OF ELEMENTS, or TYPE of a parameter. The characterisations can be stochastic, e.g.,

246 A. The Palladio Component Model

the byte size of a data container can be specified by a probability mass function:

data.BYTESIZE = IntPMF[(1000;0.8) (2000;0.2)]

where IntPMF is a probability mass function over the domain of integers. The example

specifies that data has a size of 1000 bytes with probability 0.8 and a size of 2000 with

probability 0.2.

Stochastic expressions model data flow based on parameter characterisations. For example,

the stochastic expression

result.BYTESIZE = data.BYTESIZE * 0.6

specifies that a compression algorithm reduces the size of data to 60%. The expression thus

yields: IntPMF[(600;0.8) (1200;0.2)]. Stochastic expressions support arithmetic opera-

tions (∗,−,+,/,...) as well as logical operations for boolean expressions (==,>,<,AND,OR,...)

on random variables.

A.3. Architecture Model (Software Architect)

Software architects usually build systems from existing components. Similarly, component

developers create composite components. Within these composed structures, the connection

of required and provided interfaces specifies the flow of control between different compo-

nents. Furthermore, delegation connectors forward incoming and outgoing requests from the

surrounding structure to the internal components and vice versa.

Architects and developers can use multiple instances of the same component in the same

composite structure. Components are embedded in unique contexts [BHK06], which sep-

arate the component specification from its environment. All information that depends on

a component’s environment (i.e., parameter valuations, service times for specific resources)

are held by its context.

A.4. Resource Model (System Deployer) 247

A.4. Resource Model (System Deployer)

System deployers model the resource environment of a component-based software architec-

ture and allocate individual components to resources. According to the PCM, they instan-

tiate abstract resource types from a global resource repository to describe their concrete

resources. The PCM distinguishes between processing (or active) resource types (e.g., CPU,

HD, Memory, etc.) and passive resource types (e.g., semaphores etc.). Component devel-

opers specify RD-SEFFs which reference resource types without knowing concrete resource

instances.

Resource environments contain a number of resource containers (called nodes in UML)

connected by linking resources. Resource containers include processing resource specifica-

tions (e.g., a CPU with a processing rate 1000 work units per second) or passive resource

specifications (e.g., a data base connection pool with a capacity of 10). System deployers

group resources in resource containers. For example, a resource container that models a

server contains multiple CPUs, memory, and caches. To model distribution, the PCM pro-

vides link resources that model network connections between multiple resource containers.

A component that is embedded in a specific software architecture (its so-called assembly

context) can be allocated to the concrete resources. The abstract resources referred to by

the RD-SEFFs can be substituted by the concrete resources from the resource environment

to compute actual resource demands.

A.5. Usage Model (Domain Expert)

Domain experts specify a system’s usage in terms of workload (i.e., the number of concurrent

users), user behaviour (i.e., the control flow of user system calls), and parameters (i.e.,

stochastic characterisations of input data).

Usage models contain multiple scenarios, each of which models a single use case of the

system. For each scenario, a workload describes its usage intensity and a behavioural model

describes its flow of user actions (analogously to RD-SEFFs). Similar to queueing networks,

the workload may be open or closed (cf. Section 2.1.2).

Modelling alone is not sufficient to design performance models that accurately predict

the performance characteristics of interest. Therefore, performance modelling needs to be

combined with systematic experiments that support the model design [Jai91, Kou06].

249

B. Timed Coloured Petri Nets

In this appendix, we described the concepts and features of timed Coloured Petri Nets

(CPNs) [Jen92] for the purpose of software performance evaluation. Further information on

the formal background of CPNs as well as their analytical capabilities can be found in the

literature [Jen92, Jen94, JKW07].

CPNs are a formally well-founded modelling language for the evaluation of functional and

extra-functional properties of concurrent systems. They support the modelling of concurrent

behaviour as well as the specification of data flow and data manipulation. Thus, CPNs

provide high flexibility with respect to performance modelling. For example, they support

generally distributed service and transition times as well as customised performance monitors

which collect the performance metrics of interest. To ease the design of complex models,

CPNs additionally allow the definition of hierarchically structured nets. Modelling and

evaluation of CPNs described in this section have been implemented in a tool suite called

CPN Tools [JKW07]. The tool determines the performance characteristics of a CPN model

by means of simulation. The expressive power and modelling support for complex systems

make CPNs well suited for the design of performance models of operating system schedulers

presented in Chapter 3 to Chapter 5.

In the next section, we informally introduces the basic modelling concepts of CPNs. Sec-

tion B.2 describes their dynamic behaviour. In Section B.3, we introduce hierarchical mod-

elling with CPNs. Sections B.4 and B.5 describe the modelling of time and the collection of

data in CPNs. Both are fundamental concepts for software performance evaluation. In Sec-

tion B.6, we summarise CPN-patterns, i.e., typical solutions of problems in CPN modelling

employed in the context of this thesis.

B.1. Overview of the Structure of CPNs

Similarly to ordinary Petri nets [Pet62], places (denoted by circles or ellipses), transitions

(denoted by rectangles), and directed arcs connecting places and transitions constitute the

structure of a coloured Petri net. An arc always connects a place to a transition or a

transition to a place. Thus, arcs are not allowed between two nodes of the same kind, i.e.,

between two transitions or two places. Furthermore, names are associated to places and

250 B. Timed Coloured Petri Nets

transitions. For CPNs, the names have no formal meaning but improve the readability of

the net.

In addition, textual inscriptions are associated to places, transitions, and arcs. The inscrip-

tions have to be specified in a variant of Milner’s functional programming language Standard

ML [MTHM97] called CPN ML. In the graphical notation, inscriptions are written next to

their transition, place, or arc.

��� ���

� �����	

����

�������	�

����������

�����

���	
���	

�	�����������	�

��������

�����

���

������	��
��
�

�

�����
������
 ��		

������
�������
��	

��������������

�������	
	�������
�	
���������

Figure B.1.: Example of the basic concepts of CPNs.

Figure B.1 exemplarily shows a CPN. It consists of two places (Source and Sink) and a

single transition (Transmit). By convention, the inscription below a place denotes the set

of token colours (data values) allowed on that place. The set is specified by means of a type

(similar as in programming languages) called the colour set of a place (colset in CPN ML).

In Figure B.1, places Source and Sink can hold tokens of the colour set INT, i.e., all integer

values.

Each place can contain zero or more tokens of its colour set. Each token has an attached

data value called token colour or simply colour. For example, place Source in Figure B.1

can contain tokens with integer values. These tokens represent the current state of a place

also called its marking. The initial marking is, by convention, written above the place. The

state of the system, i.e., the marking of the whole CPN model, is the combined marking of

the individual places.

The marking of a place subsumes its current number of tokens as well as their colours. In

Figure B.1, the current number of tokens on place Source is denoted by the number (7) in

the circle next to it. The individual token colours are listed in the box. The listing specifies

a multi-set, which contains multiple instances of the same token colour. The operators ‘

and ++ combine multiple token colours into a single set. The left argument of the infix

operator ‘ is a positive integer which denotes the number of appearances of the element

specified as the right argument. The ++ operator returns the union of two multi-sets

(sum). Furthermore, multi-sets can be multiplied, compared, and subtracted, which allows

a straightforward manipulation of tokens with CPNs. The initial (and current) marking of

place Source (Figure B.1) contains seven tokens: One token with value 5, two tokens with

value 100, and 4 tokens with value 43.

B.2. Dynamic Behaviour 251

Transitions represent the events that can take place in the modelled system. When a

transition fires, it removes tokens from its input places (those places that have an arc leading

to the transition) and adds new tokens to its output places (those places that have an arc

coming from the transition). Arc expressions (textual inscriptions next to the arcs) determine

the colours of tokens removed from input places and added to output places. Guards (written

next to the transition) restrict the enabling of transitions.

In Figure B.1, transition Transmit removes a token from place Source, which is bound

to variable i in the scope of the transition. Variable i is declared as “var i : INT;” and

has thus to be bound to a value of type INT. A concrete binding of variable i for transition

Transmit is denoted by:

(Transmit, 〈i = 100〉)
Here, variable i receives the value 100 for the scope of transition Transmit. The transition’s

guard (i >= 10) restricts the binding of variable i to tokens colours whose value is equal to

or greater than 10 in the example. Only if tokens are available which fulfil this condition,

transition Transmit is enabled. When transition Transmit fires, it removes a token from

place Source and puts a new token on place Sink. The new token’s value is defined by the

arc inscription i-10, i.e., the value of the new token is 90 for the above binding (i = 100).

CPNs also allow to model double-headed arcs as a shorthand notation for two arcs in

opposite directions between a place and a transition with the same arc expression. Formally,

the place is both an input place and an output place for the transition. In practical terms,

such arcs only check the existence of specific token(s) in the respective place.

B.2. Dynamic Behaviour

Enabling and Firing of Transitions Transitions represent events of a studied system in its

CPN model. The expressions on the input arcs of a transition together with the tokens on

the input places determine whether the transition is enabled, i.e., is able to fire in a given

marking. Therefore, a binding of the variables that appear in the adjacent arc expressions

of the transition must be found. The arc expressions of each input arc must evaluate to a

multi-set of token colours that is present on the corresponding input place.

When a transition fires with a given binding, it removes the multi-set of token colours to

which the corresponding input arc expression evaluates from each input place. Analogously,

it adds the multi-set of token colours to which the expression on the corresponding output

arc evaluates to each output place. In the following, we describe how CPNs resolve non-

determinism and conflicts of concurrently enabled transitions.

252 B. Timed Coloured Petri Nets

Source

INT INT

Sink

INT

Storage
i+5

i

i

i

i

Store Retrieve

Transmit
i+1

1`5++
4`43++
2`100

1

1`100

6

1`10++
4`48++
1`105

Figure B.2.: Concurrency and conflicts in CPNs.

Steps, Concurrency, and Conflict Figure B.2 shows a CPN model with three simultane-

ously enabled transitions. Boldly printed rectangles denote enabled transitions in the de-

picted CPN model. For the shown marking, the binding of transitions Store and Retrieve

can fire concurrently (i.e., in parallel) without any interferences. Transition Store requires a

single token from place Source while transition Retrieve requires a single token from place

Storage. The pair consisting of a transition and a binding for the variables of the transition

is called a binding element. For example, (Store, 〈i=100〉) is the only possible binding

element for transition Store. Transitions Store and Retrieve can get the required tokens

without competing with each other (cf. the current marking in Figure B.2). In general,

multiple binding elements are concurrently enabled in a given marking if there are enough

tokens on the input places of the considered transitions to simultaneously bind all variables.

However, transitions Store and Transmit compete for the remaining tokens on place Source

and are thus in conflict with each other. Both transitions are enabled in the current state but

only one of them can fire since both require the last token on place Source. The resolution

of conflicts is discussed at the end of this section.

A step consists of a non-empty and finite multi-set of concurrently enabled binding el-

ements. The effect of firing of a set of concurrently enabled binding elements is the sum

of the effects caused by firing the individual binding elements (interleaving semantics). In

other words, the CPN model reaches the same marking as if the set of binding elements fired

sequentially in arbitrary order. For the marking in Figure B.2, the occurrence of a step with

binding B (see below) always results in markings MStorage and MSink for places Storage and

Sink independently of the order of the occurrence of individual transitions:

B = 1‘(Store, 〈i = 100〉) ++ MStorage = 1‘105 MSink = 1‘10 ++

1‘(Retrieve, 〈i = 10〉) ++ 4‘48 ++

4‘(Retrieve, 〈i = 48〉) ++ 1‘105

1‘(Retrieve, 〈i = 105〉)

B.3. Hierarchical Models 253

In general, an occurrence sequence describes an execution of a CPN model. It specifies

the steps that occur and the intermediate markings that are reached. A marking that is

reachable via an occurrence sequence starting in the initial marking is called a reachable

marking. The existence of a reachable marking with more than one enabled binding element

makes the CPN model non-deterministic, i.e., there may exist different occurrence sequences

containing different sequences of steps and leading to different reachable markings.

Simulation-based analyses need to select one of the enabled transitions to resolve non-

determinism. For CPNs, the simulation randomly chooses among the enabled transi-

tions [Jen98]. Thereby, all transitions are selected with equal probability. Weighting or

prioritisation of transitions, like in queueing Petri nets [Bau93, KB06], is not possible for

the CPNs introduced by Jensen. Timed CPNs (cf. Section B.4) employ the same policy

of choosing among simultaneously enabled transitions, implementing a pre-selection pol-

icy [MBB+89], i.e., the transitions are selected before their firing starts.

For CPNs, only the choice between the enabled steps is non-deterministic while the in-

dividual steps themselves are deterministic. Once an enabled step has been selected in a

given marking, its occurrence always results in a uniquely determined marking. The only

exception are random functions discussed in Section B.4. In the next section, we describe

hierarchical modelling with CPNs.

B.3. Hierarchical Models

Modellers can structure their CPN model hierarchically into multiple hierarchically related

modules and submodules, also called subnets in the context of this thesis. Hierarchy enables

modellers to separate different concerns of complex CPN models and use a single module for

parts with equal behaviour.

So-called substitution transitions and fusion sets define the hierarchy and communication

points for different modules. Substitution transitions encapsulate possibly complex behaviour

as a single transition. The behaviour of the transition is specified as a separate module with

defined input and output places (called input and output ports), which directly relate to the

places connected to the substitution transition. Fusion sets merge fusion places of different

modules. Thus, tokens on one fusion place are visible and available for firing on all other

fusion places of the same fusion set.

Figure B.3 continues the above example (Figure B.2). Here, the storage of tokens is

encapsulated in a separate submodule (Figure B.3(a)) which is now used by two substitu-

tion transitions (Store 1 and Store 2 in Figure B.3(b)). Submodules receive tokens from

their environment via input ports (places tagged as In, e.g., Source in Figure B.3(a)) and

send tokens to their environment via output ports (places tagged as Out, e.g., Sink in Fig-

254 B. Timed Coloured Petri Nets

�

��� �
��������	�
��

	�
����������
�
�����

�

	
����
��

�����
������
�����

���

	���
��� ���

	�
�� �

���

�����

�����

������

����!�

���������� ��	
������ �����������	
��������

��������������	�
�	

(a) Submodule Store.

����
�����	�
 ����

��

������

�����
������
�����

��

�
�����

�
����
���

�
�����

�
����
���

������������	
�������������������������

������
������

������
������

(b) Top-level CPN model.

Figure B.3.: Modelling with hierarchical CPNs.

ure B.3(a)). Note that input/output ports (tagged as I/O) are also available and support

the import and export of tokens. For the example in Figure B.3(a), places Source and

Sink constitute the interface for the Store module to exchange tokens with its environment

(i.e., other modules). The untagged place Storage is internal to the module and cannot be

accessed by other modules.

In Figure B.3(a), Place StoredElements is a fusion place and belongs to the fusion set

TotalStorageSize. Intuitively, all places belonging to the same fusion set can be considered

identical. Thus, the marking of a fusion place is identical for all places of the same set in all

modules. In the example, the fusion set is used to keep track of the total number of elements

of all storages. Therefore, transitions Store and Retrieve increase and decrease the value

of the place’s token by one.

Figure B.3(b) depicts the higher-level module whose substitution transitions (drawn as

double rectangular boxes) are associated with submodule Store. In the CPN notation,

the submodule that is associated to a substitution transition is shown as a tag next to the

transition. For each substitution transition the ports of the submodule need to be mapped

to places of the higher-level module. Analogously to ports, they are called input, output,

and input/output sockets.

The port assignment maps the port places of the submodule to the socket places of the

substitution transition. After the assignment of a port to a socket, the two places constitute

two different views of a single place. Therefore, the port and socket place always share the

same marking and hence conceptually become the same place.

In Figure B.3(b), the input and output places of the submodule (Figure B.3(a)) are mapped

to places with the same name in the higher-level module for both substitution transitions.

Note that both substitution transitions have separate Storage places but share fusion place

StoredElements whose tokens thus reflect the total number of elements on the Storage

places of both submodules.

B.4. Time 255

Hierarchy allows the decompositions of CPN models in multiple modules that communicate

via ports and sockets as well as fusion places. In the next section, we describe the modelling

of time in CPNs which is essential for software performance evaluation.

B.4. Time

To include timing aspects into a CPN model, the availability of a token for binding can be

deferred by an arbitrary delay. Thus, tokens in timed CPN models can carry a timestamp in

addition to the token colour. The marking of a place with timed tokens is a timed multi-set

which specifies the elements together with their number of appearances and timestamps.

The time value associated with a token (called timestamp) is a non-negative integer or

real number, from which the CPN Tools only support non-negative integers [JKW07]. The

timestamp determines the time at which the token is ready for usage, i.e., the time at which

it can be removed from the place by an occurring transition. The tokens on a place carry a

timestamp if the colour set of the place is timed (CPN ML keyword timed). The distribution

of tokens among the places together with their timestamps and the value of the global clock

is called a timed marking.

�

�
�������

	
�	

�����

��

�� �
�������
���������

����������		��� ���	���������

���

������

���

Figure B.4.: Modelling time in CPNs.

Figure B.4 depicts an excerpt of the submodel in Figure B.3(a) augmented with timing

information. Transition Store now defers the availability of tokens by the current value of

their token colour. Therefore, an additional inscription of transition Store adds the value

(bound to variable i) to the current simulation time. The symbol @ denotes the present

value of the global clock of a CPN model, i.e., the current simulation time. The global clock

is unique for a CPN model, i.e., in a hierarchical timed CPN model there is a single global

clock that is shared among all the modules.

The transition delay in Figure B.4 assigns a timestamp of @+i to all timed tokens created

by transition Store. For more fine grained modelling, the timestamps can also be specified for

individual tokens at the inscriptions of the transition’s output arcs. Instead of the transition

delay, the inscription of the arc between transition Store and place Storage can be changed

to i+5@+i which – as before – creates a new token on place Storage with the timestamp @+i

but does not affect other tokens created by the transition. Furthermore, arbitrary functions

256 B. Timed Coloured Petri Nets

(specified in CPN ML) can determine the timestamp assigned to a token. The functions can

be well-known probabilistic distributions, such as Normal, Binomial, Erlang, or Exponential

distributions, or can be defined individually. In the latter case, the function can depend on

the current marking of the net. For example, the delay can depend on the current number

of tokens in a place modelling a load dependent server.

Figure B.4 moreover depicts the current timed marking of place Storage. The marking

contains two tokens: One with value 48 and timestamp 43 and the other with value 105 and

timestamp 100. Thus, all transitions which require a token from place Storage cannot be

enabled before the global clock reaches 43. Thus, the global clock controls the execution

of a timed CPN model. It is similar to event queues found in most simulation engines for

discrete-event simulation (such as [LMV02]). The model remains at a given simulation time

as long as there are binding elements that are enabled (i.e., have the needed input tokens)

and are ready for execution (i.e., the required tokens have timestamps which are less than

or equal to the current value of the global clock). When there are no such binding elements,

the clock advances to the earliest model time at which binding elements can be executed.

Each marking exists in a closed interval of simulation time (which may be a point, i.e., a

single moment of time).

Timed CPNs resolve non-determinism with the same policy as plain CPNs. They randomly

choose the next binding element from all simultaneously enabled ones, employing a pre-

selection policy [MBB+89]. Please see [Jen92] for details.

In the next section, we describe how data collectors can be used to determine the perfor-

mance metrics of interest.

B.5. Data Collection

The CPN Tools support performance analyses via simulation combined with data collection.

This enables performance analysts to conduct a number of simulation runs and collect the

performance metrics of interest. They specify by means of data collector monitors what data

needs to be collected during a simulation experiment. The data can be written in log files

for post-processing. Batch simulations help performance analysts to explore the parameter

space of a model and conduct multiple simulation runs without user intervention. In the

following, we briefly summarise the concepts and possibilities of data collection. For detailed

information see [JKW07, cpn].

In general, numerical data can be extracted from binding elements that occur and markings

that are reached during a simulation run. CPNs Tools provide some generic data collector

but also allow the implementation of user-defined data collector monitors that are specific

to a CPN model. For example, the count transition occurrences monitor is a generic data

B.6. CPN Modelling Patterns 257

collector monitor, which counts the number of times a transition fires during a simulation

run. Furthermore, the marking size monitor measures the number of tokens on a place during

a simulation run. Performance analysts can assign the monitor directly to a transition or

place.

Generic data collector monitors require the definition of some monitoring functions listed

in the following

• The predicate function determines when a monitor should collect data from the model,

i.e, data is only collected when the function returns true.

• The observation function collects numerical data from the model when predicate func-

tion returns true.

• The initialisation function collects data from the initial marking of the model.

• The stop function collects data from the final marking of a simulation.

The data collectors enable performance analysts to determine the performance metrics

of interest, such as response time, throughput, and resource utilisation. All data collector

monitors can produce log files, statistical reports, and scripts for plotting data values as well

as other performance-related output. In the next section, we describe the CPN-patterns

employed in the design of the scheduler model in Chapter 3 to Chapter 5.

B.6. CPN Modelling Patterns

Despite their expressive power, CPNs lack some major modelling constructs for software

performance evaluation, e.g., queueing places and inhibitor arcs. Mulyar [MvdA05] proposed

a set of modelling patterns for CPNs (called CPN-patterns) that provide solutions to common

problems when modelling with CPNs. In the following, we summarise the patterns relevant

for this thesis, namely id matching, id manager, aggregated objects, and basic queues.

Id Matching In CPNs, tokens can represent information about an object, e.g., the state

of a process in supply chain management. In many cases, it is desirable to distribute the

information among multiple tokens, to change the information while keeping a copy, or to

apply multiple modifications to it simultaneously. In such cases, it is mandatory to keep

track of the identity of the object whose information is represented by multiple tokens.

The id matching pattern assigns the same identifier to each token holding information

about the same object. Multiple tokens can represent data related to the same object. For

this purpose, the affected colour sets are extended by an identifier (e.g., an affected colour

set T becomes colset IDxT = product INT * T). When the information about an object

is distributed among multiple tokens (Figure B.5), each token receives the same identifier.

258 B. Timed Coloured Petri Nets

Furthermore, transitions that combine tokens related to the same object have to bind the

identifiers of the tokens to the same value.

Id Manager In most cases, the identifiers introduced above have to be unique in order to

allow the correct distribution data among tokens and its later merging. Id managers provide

the necessary constructs to generate unique identifiers and manage their lifecycle. For the

scope of this thesis, only the generation of unique identifiers is important.

Id managers store the next unique identifier on a distinct place (NextID in Figure B.5).

Whenever an identifier is requested, transition AssignIdentifier removes the token stored

on place NextID, assigns its value to the token requiring a unique identifier, and places a

new token with the value id+1 in NextID.

Aggregated Object Sometimes it is necessary to apply changes to or request information

about all tokens on a specific place. For example, information about all tokens on a place is

necessary for inhibitor arcs and queues described below. Instead of putting tokens on a place

individually, the colour set of that place (e.g., T) is changed to a list of tokens (e.g., list T).

The considered place then contains a list represented as single token. To access individual

tokens, a transition must retrieve and return the whole list. It selects individual tokens

using access operators and functions for lists. For example, the expression head::tail

assigns the queue’s head to variable head and its tail to variable tail. Both variables can

be manipulated independently. Since all transitions have to use the list in order to access

individual tokens, the Petri net becomes more complex.

Inhibitor Arc An inhibitor arc stops a transition from firing if its input place is not empty.

Its realisation is based on the aggregated object pattern, i.e., tokens are not stored directly

in a place, but are held within a collection. The inhibitor arc simply tests for the size of the

collection. If the collection contains no elements (length list = 0) the transition can be

enabled.

Queue In software performance evaluation, queues model the contention for hard- and

software resources. In CPNs, the queue pattern models unbounded queues with different

queueing policies (also called scheduling policies in the context of this thesis). The pattern

extends the aggregated object pattern by different queueing policies. The general model is

similar for all queueing policies. The place that models the queue holds an ordered list of

tokens. The insertion and removal of tokens determines the queueing policy. In the following,

we introduce the FCFS (First-Come, First-Served) and priority queueing policies.

B.6. CPN Modelling Patterns 259

���

�

���

�����	

��	�����

��

��

����

������

�������

���

������������

�������

�������

���

��

���

�

���

�������

�������

�

�����
�����

"	����� ���� �������

!��	

���""�

���

#
��$
���
��������

�

��	%

&���
�

��	�����'
��%�	

(����)*�

����	�)*�

+��������
(����)*�

����������

	
�������

	
��������

	��������	�

���

Figure B.5.: Model for different CPN patterns.

The FCFS policy sorts tokens according to their arrival time. For an FCFS queue, tokens

are appended at the end of the queue and removed from its beginning. Thus, tokens remain

in the queue until all tokens that where in the queue at the time of arrival have been removed.

Figure B.5 exemplarily depicts the behaviour of an FCFS queue. The queue stores tokens

of type IDxT in a list (LIST IDxT). Transition Enqueue removes a token (idt) from place

FirstHalf and the list token (q, i.e., the queue) from place Queue. It appends token idt

at the end of list q and stores the new list in place Queue. In CPN ML, [idt] denotes a

list ([. . .]) with a single element idt and statement qˆˆ[idt] concatenates the lists q and

[idt].

Listing B.1: Functions hasHigherPriority and priorityInsert for priority queues.

colset T = INT ; (∗ Basic co lour s e t o f queued tokens ∗)
colset PT = product T ∗ INT ; (∗ Adding a p r i o r i t y (INT) ∗)
colset LIST PT = l i s t PT; (∗ Colour s e t f o r queueing p l a c e s ∗)

fun hasH ighe rPr i o r i ty ((t1 , p1) , (t2 , p2)) = (p1 > p2) ;

fun p r i o r i t y I n s e r t (element , []) = [element]
| p r i o r i t y I n s e r t (element , head : : queue) =

i f hasH ighe rPr i o r i ty (element , head)
then element : : head : : queue
else head : : (p r i o r i t y I n s e r t element , queue) ;

If the queue contains at least one element, transition Dequeue is enabled. It removes the

current queue (idt::q) from place Queue where idt denotes the head and q the tail of the

260 B. Timed Coloured Petri Nets

queue. Furthermore, it puts the tail back and creates a new token with colour idt on place

ProcessedFirstHalf.

Priority queues order tokens according to an externally defined priority. The priority

queue ensures that all elements are ordered with respect to their priority, i.e., the highest

priority comes first, the lowest last. Transitions accessing a priority queue always remove

the first element, i.e., the token with the highest priority, from the queue. Listing B.1

shows the necessary data types and functions for a priority queue. Colour set PT extends

the basic colour set T by a priority. Collection List PT represents the necessary collection.

Function hasHigherPriority compares the priority of two PT tokens. Finally, function

priorityInsert directly inserts the token (element) into the list if it is empty, or recursively

moves through the list until the priority of the current element is larger than the one of the

queue’s head.

The queue pattern family requires that all transitions insert and remove elements according

to the defined policy. Mulyar [MvdA05] proposes further approaches for the modelling of

queues. However, all proposed models impose rules for transitions accessing the place. The

above variant provides a high flexibility and is thus well-suited for modelling general purpose

operating system schedulers.

261

C. Technological Background

C.1. Benchmark Application

The resource demands specified in the model need to be mapped to actual code that con-

sumes the specified amount of processing time. Therefore, algorithms, like the Fast Fourier

Transform or Fibonacci number computations, generates the necessary load. Such algorithms

are, for example, used in the SPEC CPU2000 benchmark to measure the performance of a

processor [Cor00, Hen00]. The resource demand generator [BDH08] automatically deter-

mines fitting input parameters for an algorithm to meet the specified resource demands on a

given platform. A calibration identifies the dependency of input parameters and processing

time for an algorithm. Its results define the algorithm’s input parameters during prototype

execution. If, for example, a Fibonacci number generating algorithm needs to approximate

a resource demand of 32 ms, then the calibration will determine the amount of Fibonacci

numbers to compute during this period, say 253. The prototype uses this value, instead of

the specified time, to generate the resource demand of 32 ms. The calibration measures the

execution time of an algorithm in the single-threaded case, i.e., its (almost) uninterrupted

and undisturbed execution time. During the prototype’s execution, the system may process

multiple requests concurrently. The measured performance metrics reflect influences of the

underlying platform such as resource contention and caching effects. Thus, different load

generating algorithms can lead to different performance results when executed concurrently.

In the following, we describe the requirements and preconditions of the proposed approach

and introduces the calibration as well as the execution of demands in detail. A discussion of

open challenges and limitations concludes this appendix.

Calibration Requirements The calibration needs to map specified processing times to in-

put parameters of an algorithm. It must be independent of the actual platform and algo-

rithm, i.e., the calibration must automatically determine the input parameter of an algorithm

on a given platform to create the specified resource demands. For example, it may require

43 Fibonacci number computations on one system and 345 on another to generate a demand

of 1 ms. In the scenarios considered in this paper, the times taken by the demand gener-

ating functions range from one millisecond to several seconds. Furthermore, the framework

262 C. Technological Background

should support multiple load generating algorithms, since the different behaviour of algo-

rithms (e.g., memory usage) can affect a prototype’s performance. Finally, the calibration of

an algorithm’s input parameters should be fully automated and transparent to the software

architect, to achieve a proper applicability of our approach.

Calibration Strategy In order to fulfil the above requirements, assumptions such as the load

of an algorithm is controlled by a single integer value as input parameter, e.g., the amount

of Fibonacci numbers generated, must be made. The execution time of each algorithm needs

to be minimum for 0 and increases monotonically with the input value. For the Fibonacci

number generation, the computation of 0 numbers is (surprisingly) fastest and its execution

time increases the more numbers it computes. Except for the need for a monotonically

increasing function, we do not make any further assumptions about the dependency of the

input parameter’s value and the algorithm’s execution time. The dependency can be linear,

exponential or any other monotonically increasing function.

To efficiently approximate resource demands, we first calibrate an algorithm for a given

hard- and software environment. Its input parameters are determined for a set of predefined

execution times. The results provide the basis for load generation during a prototype’s exe-

cution. Since a prototype can issue many arbitrary resource demands, we cannot determine

the input parameters for all demands in advance. Instead, we compose requested demands of

smaller, previously calibrated ones. In the following, we explain the details of the calibration

as well as the resource demand break down.

C.1.1. Determining the Input Value for a Specific Resource Demand

The calibration method iteratively approximates the best input value to reach a specified

execution time. Therefore, it implements a variant of the bisection method [BF88], which is

a root-finding algorithm.

We want the execution time of an algorithm execalg(n) with input parameter n to match

the specified target execution time t: execalg(n) = t. Thus, we need to solve execalg(n)− t =

0. If we define f(n) = execalg(n) − t, the problem becomes a typical root finding problem

with f(n) = 0. Figure C.1 illustrates the approximated function f(n) as well as the bisection

method. Provided that all implemented algorithms have strictly monotonic behaviour, each

generated function has got exactly one root point representing the corresponding iteration

parameter to the targeted run time.

To find function f ’s root, the calibration needs to identify two input values nleft and nright

that represent the borders of the first interval. The interval must contain the function’s root,

thus the function must be smaller than zero for the left border (f(nleft) < 0) and larger for

C.1. Benchmark Application 263

Input Value [n]Target
Processing

Time [t]

1. Interval

2. Interval

f(nleft)

f(nright)

f(nmean)

tim
e

[f(
n)

]
f(n) = execalg(n) - t

Figure C.1.: Abstract illustration of the bisection method.

the right one (f(nright) > 0). For the first, the calibration selects zero (nleft = 0) as initial

value, which corresponds to the smallest possible value of f . To find a value for nright with

f(nright) > 0, the calibration executes the algorithm with a predefined value. If the result for

f is smaller than zero, the calibration doubles the input value and re-executes the algorithm.

This continues until a value with f(nright) > 0 is found. For the above example, the interval’s

left border is nleft = 0. Since the generation of zero Fibonacci numbers consumes no time,

the functions value is f(nleft) = −32. The initial value for the right hand side is nright = 200.

However, the functions value f(nright) = −5 is still below zero. Thus, the calibration doubles

the value (nright = 400) and determines the new result, e.g., f(nright) = 48 which is greater

than zero. The initial interval borders are nleft = 0 and nright = 400.

When the borders of the first interval have been determined, the execution of the bisection

method starts. It repeatedly halves the interval, determines the execution time of the algo-

rithm for the interval’s mean value, and selects the subinterval which contains the function’s

root. The intervals mean value of the example is nmean = 200 with a value of f(200) = −5.

Thus, the bisection method selects n′
left = nmean = 200 as left and n′

right = nright = 400 as

right border of the new interval. Figure C.1 illustrates two iteration steps of the bisection

method. The approximation terminates as soon as the distance of the interval borders is

equal or less than 1 millisecond or a predefined number of iterations is exceeded.

The execution time of an algorithm needs to be determined accurately to enable exact

input value calibrations. This requires multiple executions of the algorithm during each

iteration of the bisection method. The application of statistical methods removes outliers

and achieves stable results over multiple executions. In the next section, we describe how

264 C. Technological Background

a single resource demand can be mapped to multiple pre-calibrated input values of a load

generating algorithm.

C.1.2. Resource Demand Break Down

The bisection method allows us to determine the input value of an algorithm on a specific

platform for a certain resource demand. However, the process requires several iterations

including multiple executions of the algorithm with different input values. As we want to

keep the calibration effort minimum, we focus on a limited number of resource demands

whose input parameters are determined during the calibration period. All other resource

demands are composed from the predetermined ones.

During the calibration the algorithm’s input values for 2n with n ∈ {0 . . . 10} milliseconds

are determined. The results of the calibration are stored in a table which contains ap-

proximated parameters associated with their individual execution times. Using the greedy

strategy, an incoming demand is dived into multiple sub-demands of 20 ms to 210 ms. To

generate the workload of the whole demand, each of the sub-demands is executed sequen-

tially. This allows us to efficiently and automatically approximate different demand types on

arbitrary platforms. For example, a demand of 300 ms is approximated by the sub-demands:

256 ms + 32 ms + 8 ms + 4 ms. For each sub-demand the input value of the used algorithm

is retrieved from the previous calibration. Executing the algorithm four times with the corre-

sponding input values leads to a total time consumption of 300 ms. The overhead introduced

by the break down and multiple executions is much smaller than 1 ms and, hence, can be

neglected. This allows an approximation of any demand for any platform and algorithm.

Next, we discuss the limitations of this calibration approach.

C.2. Workload Generation 265

C.1.3. Discussion

The accuracy of the demand calibration is limited due to disturbances of the underlying

platform, like garbage collection or operating system services. During the calibration pe-

riod, multiple executions of the algorithm in combination with statistical analyses limit the

influence of these disturbances. However, these influences can lead to deviations about 6%

of requested and actual processing time during the run time of a prototype. Furthermore,

it requires to execute the prototype multiple times in order to achieve stable results. The

varying execution times are a result of disturbances of the underlying platform and cannot

be totally excluded from the resource demand generation. The use of longer calibration runs

with more executions of the algorithm can increase accuracy, but cannot totally remove the

effect.

On the other hand, it can also be desirable to capture overheads on account of life cycle

activities such as garbage collection. An algorithm can, for example, mimic object creations,

memory usage, and even trigger stress related effects such as swapping. If the load generating

algorithm is chosen in the right way, it will allow software architects to identify the systems

load limits and evaluate the effect of memory usage on software performance. However,

the amount of memory used cannot be specified within the PCM, but would be defined by

the algorithm in use. This allows only vague estimations of the actual memory usage of an

application.

The algorithm itself does not model I/O or CPU bursts of a process. The RD-SEFFs of the

PCM describe such behavioural aspects of an application, which software architects have to

describe explicitly. The following case study demonstrates the accuracy of our approach as

well as the influence of the underlying platform and the selected algorithm on performance.

It is often desirable to express the execution time of an internal action in dependency of the

system’s state. The PCM models such dependencies with stochastic expressions. They can,

for example, derive the execution time of an internal action from the number of concurrently

running tasks (load dependent server) or from the number of elements in an array. During

execution, the performance prototype evaluates the stochastic expressions. The result of

the evaluation represents the actual execution time and is passed to the calibrated resource

demand, which translates the demand into parameters for the load generating algorithm.

C.2. Workload Generation

The test driver needs to allow a flexible characterisation of workloads (open and closed)

and an exact specification of resource demands. It must enable maximum control over the

system load, user task behaviour, and task priorities. The actual handling must be compa-

266 C. Technological Background

rable for the considered operating systems. To reach this aim, the test driver consists of a

load generator and demand servers. Both run in separate operating system processes that

communicate via remote message invocation (RMI). The division of the test driver among

multiple processes is necessary to assign separate priorities to all involved tasks. For ex-

ample, the load driver usually recieves a higher priority than the worker tasks. To control

task priorities, the nice command available in all Unix operating systems is used [SGG05].

Under Windows, its Cygwin implementation [RH] maps the different nice-level to windows

priorities. This allows a comparison between the results among different operating systems.

The load driver always runs at the highest possible priority avoiding disturbances by the

currently executing demand servers. The usage of RMI allows synchronous communication

between different processes, but adds additional overhead, e.g., the marshalling and demar-

shalling of method calls. However, the overhead can be tolerated for the scenarios considered

in this thesis (below 3 ms [Bec08]).

C.3. Resource Demand Generation

To evaluate the different influences of processors and operating systems, the demand servers

can generate load with different algorithms:

1. Prime number Calculator

2. Fast Fourier Transformation

3. Quicksort (Java Implementation)

These algorithms are common in processor benchmarks such as SPEC CPU2000 [Hen00,

Cor00]. The demand servers allow adjusting of the specification of resource demands with

milliseconds precision. For each algorithm and execution environment the demand server

first calibrates, so that it can translate requested execution times to parameters for the

corresponding algorithm (cf. Appendix C.1).

C.4. Experimental Setting

The description of the experimental setup should allow the reproduction of the experiment.

It includes a description of the hardware and software environment, the implemented test

driver, the measurement method, and a list of possible threads to validity. Furthermore,

Appendix C.1 describes the implementation of the benchmark application and discusses

how different execution environments influence the measurements. For the experiments, the

following hardware and software environments have been used.

C.4. Experimental Setting 267

Processor:

1. Intel Pentium M, 1.86 GHz, 2 GB RAM

2. Intel Pentium D, 3 GHz, 2 GB RAM

3. AMD Athlon 64 X2 Dual Core Processor 5200+, 2.61 GHz, 2 GB RAM

Operating Systems:

1. Windows XP Professional (SP2)

2. Windows Server 2003 (SP2)

3. Ubuntu 7.10 Desktop Edition (Kernel 2.6.22)

Java Run-Time Environment:

• Java HotSpot(TM) Client VM (build 1.6.0 03-b05, mixed mode, sharing)

List of Figures 269

List of Figures

2.1. Open and closed workload models. 13

2.2. Overview of the model-driven performance engineering process. 14

2.3. Performance completions in the PCM. 15

2.4. Load distribution in multi-server queueing models. 18

2.5. Task states [SGG05, p.83]. 25

2.6. Simple example of a multilevel feedback queue [SGG05, p.168]. 26

2.7. Schematic overview of the run queue of Linux’ O(1) scheduler. 33

2.8. Example of multiple levels of scheduling domains [CCF+06]. 37

3.1. Experimental derivation of performance models. 45

3.2. Relations between goals, questions, and metrics [BCR94]. 49

3.3. Process of creating platform-specific completion components. 54

3.4. Feature diagram of a scheduler’s time sharing properties. 57

3.5. Feature diagram of a scheduler’s interactivity properties. 57

3.6. Feature diagrams for classifying load balancing strategies. 59

3.7. Integration of the scheduler performance model (MOSS) into the PCM. . . . 65

3.8. Hierarchical structure of the scheduler performance model (MOSS). 66

3.9. Schematic overview of the scheduler performance model. 67

4.1. Task behaviour for closed and open workloads of the experiment. 74

4.2. Comparison between the response time distribution of scenario

ExponentialShort for round-robin, first-come-first-served, and processor-

sharing. 79

4.3. Response time and throughput of task th and tl with different priorities for

the fair run queue with priority-dependent timeslices implemented under Linux. 85

4.4. Schematic overview of the scheduler’s behaviour. 87

4.5. Subnet of transition Process – the processing of resource demands. 89

4.6. Assignment of fixed and priority-dependent timeslices. 90

4.7. Model for fair and unfair run queues. 91

4.8. Comparison between measurements and predictions for unfair run queues

(Linux). 96

270 List of Figures

4.9. Closed workload with acquisition and release of a passive resource (Closed

breakStupid! Interactive). 99

4.10. The effect of priority bonuses on processing and waiting times. 100

4.11. Mean response times and their distribution for tasks ti and tn. 104

4.12. Distribution of the high priority time of task ti. 106

4.13. High priority time of task ti for an increasing number of semaphore acquisitions.107

4.14. Dynamic priority and response time of tasks ti and tn for an increasing delay

of ti. 110

4.15. Interactivity threshold for an increasing processing time. 112

4.16. CPN modelling a fair run queue with an history-dependent interactivity policy.114

4.17. CPN modelling task preemption. 117

4.18. CPN model for the acquisition of passive resources. 119

4.19. CPN managing waiting tasks. 122

4.20. CPN modelling the release or passive resources (e.g., semaphores). 123

4.21. Predictions and measurements for interactive tasks under Windows. 125

4.22. Predictions and measurements for interactive and non-interactive tasks for

the history-dependent interactivity policy. 128

4.23. Function modelling the fluctuating workload of HQ’s business reporting. . . 131

4.24. Static and deployment view of the HQ’s server application. 132

4.25. Behaviour (RD-SEFFs) of the HQ’s server components. 134

4.26. Predictions and measurements for static page requests under Linux 2.6.22. . 137

4.27. Predictions and measurements for monitoring requests. 138

4.28. Differences between Windows, Linux, and processor sharing. 140

5.1. Response time distribution for scenario Heavy Load. 150

5.2. Evolution of the measured response times during the experiments (Heavy Load).151

5.3. Response time distribution for scenario Moderate Load. 152

5.4. Response time and load distribution for scenario Moderate Load. 153

5.5. Response time measurements for the scenario Decaying Load. 155

5.6. Response time distribution for scenario Heavy Load. 157

5.7. Measurements of the task response time for load balancing under Linux. . . 158

5.8. Response time series for three tasks on a dual-core processor. 160

5.9. Response time distribution for scenario Moderate Load. 163

5.10. Load distribution for scenario Moderate Load. 163

5.11. Static load balancing. 165

5.12. Overview of dynamic load balancing. 166

5.13. Subnet Trigger for the state change driven activation of load balancing. . . 167

5.14. Load balancing activation. 168

List of Figures 271

5.15. Subnets for different load indices. 171

5.16. Subnets to determine senders and receivers for load balancing. 173

5.17. Subnet for substitution transition Couple. 175

5.18. Subnet for substitution transition Balance. 176

5.19. Predictions and measurements for load balancing under Windows. 179

5.20. Predictions and measurements for load balancing under Linux. 181

5.21. Differences in predictions and measurements for load balancing under Windows.183

5.22. Prediction results for load balancing with 3 tasks (and no LWP-thread switches).184

5.23. Predictions and measurements for a quad-core system with Windows Vista. . 185

5.24. Influence of the load on other processors on task response time. 186

5.25. Monitoring requests, results for a single-core system. 189

5.26. Comparison between single-core and dual-core performance. 190

6.1. Feature diagram of the relevant messaging patterns. 199

6.2. The influence of message size on the delivery time. 200

6.3. Delivery time of messages in a transaction set with 1000 messages. 201

6.4. The effect of competing consumers on delivery time. 202

6.5. Regression analysis for different message sizes. 203

6.6. Replacement of an annotated connector by completion components. 204

6.7. Interactions of the messaging completion components. 205

6.8. Behavioural specification for the completion’s basic components. 206

6.9. Subcomponents of the MessageOrientedMiddleware component and their

interactions. 207

6.10. Behavioural specification for the MOM-model’s basic components. 208

6.11. Overview of the interactions of the supermarket supply chain [SKBB07]. . . 210

6.12. Architecture of the warehouse application. 211

6.13. Predictions and measurements of the three design alternatives. 213

6.14. Delivery time of alternative 2 (cdf). 214

B.1. Example of the basic concepts of CPNs. 250

B.2. Concurrency and conflicts in CPNs. 252

B.3. Modelling with hierarchical CPNs. 254

B.4. Modelling time in CPNs. 255

B.5. Model for different CPN patterns. 259

C.1. Abstract illustration of the bisection method. 263

List of Tables 273

List of Tables

2.1. Priority boosts after the acquisition of the named resources [SR05]. 28

2.2. Priority-dependent timeslices of the Linux scheduler. 34

3.1. How to model different scheduling features influencing software performance. 56

3.2. Comparison between Linux and Windows schedulers. 63

4.1. GQM plan – questions and expectations concerning the performance influence

of time sharing policies. 73

4.2. Mapping of nice-levels to operating system priorities. 75

4.3. Evaluation scenarios for Question TS.1. 77

4.4. Characteristics of the measured response times for scenarios ContinuousLong

and ContinuousShort. 78

4.5. Simulation results for scenario ExponentialShort. 79

4.6. Mean response time and throughput for high and low priority tasks under

open and closed workload. 82

4.7. Scenarios for Question TS.3. 83

4.8. Expected response times and throughputs of Hypothesis TS.3.a. 84

4.9. GQM plan for the validation of time sharing. 93

4.10. Comparison between measurements and predictions for fair and unfair run

queues with different priorities and timeslices. 94

4.11. Priority and Workload of interactive task ti and non-interactive task tn. . . . 99

4.12. Scenarios for the evaluation of different interactivity policies. 99

4.13. Sequence of processing times and waiting times measured. 101

4.14. GQM plan for the resource-dependent interactivity policy. 102

4.15. Parameter characterisations for tasks ti and tn. 102

4.16. Parameter characterisations for tasks ti and tn. 105

4.17. GQM plan for the history-dependent interactivity policy. 108

4.18. Parameter characterisations for tasks ti and tn. 108

4.19. Parameter characterisations for tasks ti and tn. 111

4.20. GQM plan to evaluate the prediction accuracy of the developed model for

interactive schedulers. 124

274 List of Tables

4.21. Prediction error for interactive tasks under Windows. 126

4.22. Prediction and measurement ti’s interactivity threshold. 127

4.23. Prediction accuracy for single-core system running under Linux and Windows. 139

5.1. GQM plan for the evaluation of lazy-balancing. 146

5.2. Scenarios for the evaluation of different multiprocessor load balancing policies. 147

5.3. Mean response times of tasks t1 to t7 for scenario Moderate Load. 153

5.4. GQM plan for load balancing under Linux 2.6.22. 156

5.5. Changes of load balancing with an increasing number of tasks. 161

5.6. Mean response times of tasks t1 to t7 for scenario Moderate Load for Windows

and Linux. 162

5.7. GQM plan for the multiprocessor load balancing prediction model. 178

5.8. Prediction accuracy for Windows Server 2003. 180

5.9. Prediction accuracy for Linux 2.6.22. 182

5.10. Prediction error Windows Vista quad-core. 187

5.11. Predicted and measured median of the response time distribution under Linux

2.6.22 and Windows Server 2003. 188

6.1. Messaging patterns and features categorised according to their performance

influence. 198

6.2. Design alternatives. 212

7.1. Fairness classification of scheduling policies [WHB03]. 219

7.2. Overview of scheduling policies for high performance computing [LV90]. . . . 227

275

Bibliography

[AAB+07] S. Aalto, U. Ayesta, S. Borst, V. Misra, and R. Nú nez Queija. Beyond

Processor Sharing. ACM SIGMETRICS Performance Evaluation Review,

34(4):36–43, 2007.

[Aas05] J. Aas. Understanding the Linux 2.6.8.1 Scheduler. Technical report, Silicon

Graphics, Inc. (SGI), 2005.

[AD96] S. Au and S. Dandamudi. The Impact of Program Structure on the Per-

formance of Scheduling Policies in Multiprocessor Systems. International

Journal of Computers and Their Applications, 3(1):17–30, April 1996.

[AGM+94] I. Ahmad, A. Ghafoor, K. Mehrotra, C. Mohan, and S. Ranka. Performance

Modeling of Load Balancing Algorithms Using Neural Networks. Concur-

rency: Practice Experience, 6(5):393–409, 1994.

[Apa] Apache. Apache HTTP Server Project. http://httpd.apache.org. Last

retrieved 2008-07-02.

[AS01] E. Almog and H. Shachnai. Scheduling memory accesses through a shared

bus. Performance Evaluation, 46(2-3):193–218, 2001.

[Bau93] F. Bause. ”QN + PN = QPN” - Combining Queueing Networks and Petri

Nets. Technical report, Fachbereichs Informatik der Universität Dortmund,

Germany, 1993.

[BBG97] M. Bravetti, M. Bernardo, and R. Gorrieri. From EMPA to GSMPA: Al-

lowing for General Distributions. In E. Brinksma and A. Nymeyer, editors,

Proc. of the 5th Int. Workshop on Process Algebras and Performance Mod-

eling (PAPM’97), pages 17–33, 1997.

[BC05] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly Media,

Inc., 2005.

[BCR94] V.R. Basili, G. Caldiera, and H.D. Rombach. The Goal Question Metric

Approach. Encyclopedia of Software Engineering, 1:528–532, 1994.

276 Bibliography

[BCS06] M. Bertoli, G. Casale, and G. Serazzi. Java Modelling Tools: an Open

Source Suite for Queueing Network Modelling andWorkload Analysis. In

QEST ’06: Proceedings of the 3rd international conference on the Quanti-

tative Evaluation of Systems, pages 119–120, Washington, DC, USA, 2006.

IEEE Computer Society.

[BCS07] M. Bertoli, G. Casale, and G. Serazzi. The JMT Simulator for Performance

Evaluation of Non-Product-Form Queueing Networks. In ANSS ’07: Pro-

ceedings of the 40th Annual Simulation Symposium, pages 3–10, Washington,

DC, USA, 2007. IEEE Computer Society.

[BD04] M. Bravetti and P.R. D’Argenio. Tutte le Algebre Insieme: Concepts, Dis-

cussions and Relations of Stochastic Process Algebras with General Distri-

butions. In Validation of Stochastic Systems, volume 2925 of Lecture Notes

in Computer Science, pages 44–88. Springer-Verlag Berlin Heidelberg, 2004.

[BDC02] M. Bernardo, L. Donatiello, and P. Ciancarini. Stochastic Process Algebra:

From an Algebraic Formalism to an Architectural Description Language. In

Performance Evaluation of Complex Systems: Techniques and Tools, volume

2459 of Lecture Notes in Computer Science, pages 236–260. Springer-Verlag

Berlin Heidelberg, 2002.

[BDH08] S. Becker, T. Dencker, and J. Happe. Model-Driven Generation of Per-

formance Prototypes. In SIPEW 2008: SPEC International Performance

Evaluation Workshop, volume 5119 of Lecture Notes in Computer Science,

pages 79–98. Springer-Verlag Berlin Heidelberg, 2008.

[BDHH04] M.J. Bligh, M. Dobson, D. Hart, and G. Huizenga. Linux on NUMA Systems.

In Proceedings of the Linux Symposium, volume 1, pages 89–102, 2004.

[Bec08] S. Becker. Coupled Model Transformations for QoS Enabled Component-

Based Software Design. Dissertation, University of Oldenburg, Germany,

January 2008.

[BF88] R.L. Burden and J.D. Faires. Numerical Analysis. PWS Publishing Co.

Boston, MA, USA, 1988.

[BGTdM98] G. Bolch, S. Greiner, K. S. Trivedi, and H. de Meer. Queueing Networks

and Markov Chains: Modeling and Performance Evaluation With Computer

Science Applications. Wiley & Sons, New York, NY, USA, 1998.

Bibliography 277

[BH07] M. Bernardo and J. Hillston, editors. Formal Methods for Performance

Evaluation (7th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems, SFM2007), volume 4486

of Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg,

May 2007.

[BHK06] S. Becker, J. Happe, and H. Koziolek. Putting Components into Context:

Supporting QoS-Predictions with an explicit Context Model. In R. Reussner,

C. Szyperski, and W. Weck, editors, Proceedings of the 11th International

Workshop on Component Oriented Programming (WCOP’06), pages 1–6,

July 2006.

[BK92] G. Bolch and M. Kirschnick. PEPSY-QNS – Performance Evaluation and

Prediction SYstem for Queueing NetworkS. Technical Report TR-I4-92-21,

Universität Erlangen-Nürnberg, Institut für Mathematische Maschinen und

Datenverarbeitung IV, 1992.

[BK96] F. Bause and P. S. Kritzinger. Stochastic Petri Nets - An Introduction to

the Theory. Vieweg, 1996.

[BKR95] A. Borshchev, Y. Karpov, and V. Roudakov. COVERS - A Tool for the De-

sign of Real-time Concurrent Systems. In Proc. 3rd International Conference

on Parallel Computing Technologies (PaCT ’95), pages 219–233. Springer,

1995.

[BKR07] S. Becker, H. Koziolek, and R. Reussner. Model-based Performance Predic-

tion with the Palladio Component Model. In Proceedings of the 6th Interna-

tional Workshop on Software and Performance (WOSP2007), pages 56–67.

SIGSOFT Software Engineering Notes, ACM, New York, NY, USA, Febru-

ary 2007.

[BKR08] S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model

for Model-Driven Performance Prediction: Extended version. Journal of

Systems and Software, 2008. In Press, Accepted Manuscript.

[BMdW+04] E. Bondarev, J. Muskens, P. de With, M. Chaudron, and J. Lukkien. Predict-

ing Real-Time Properties of Component Assemblies: A Scenario-Simulation

Approach. In Proc. 30th EUROMICRO Conference (EUROMICRO ’04),

pages 40–47. IEEE Computer Society, 2004.

[BMIS04] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based Per-

formance Prediction in Software Development: A Survey. Transactions on

Software Engineering, 30(5):295–310, May 2004.

278 Bibliography

[Bos02] S. K. Bose. An Introduction to Queueing Systems. Springer-Verlag Berlin

Heidelberg, 2002.

[BP04] J.R. Bulpin and I.A. Pratt. Multiprogramming Performance of the Pentium

4 with Hyper-Threading. In Proceedings of the Third Annual Workshop on

Duplicating, Deconstruction and Debunking, pages 53–62, 2004.

[BP07] L. Bortolussi and A. Policriti. Stochastic Concurrent Constraint Program-

ming and Differential Equations. In Proceedings of the Fifth Workshop on

Quantitative Aspects of Programming Languages (QAPL 2007, volume 190

of Electronic Notes in Theoretical Computer Science, pages 27–42. Elsevier,

2007.

[BSUK07] E.W. Biersack, B. Schroeder, and G. Urvoy-Keller. Scheduling in Practice.

ACM SIGMETRICS Performance Evaluation Review, 34(4):21–28, 2007.

[CCF+06] R. Chanin, M. Correa, P. Fernandes, A. Sales, R. Scheer, and A. Zorzo. An-

alytical Modeling for Operating System Schedulers on NUMA Systems. In

Proceedings of the Second International Workshop on the Practical Applica-

tion of Stochastic Modeling (PASM 2005), volume 151 of Electronic Notes

in Theoretical Computer Science, pages 131–149. Elsevier, 2006.

[CDGH06] M. Calder, A. Duguid, S. Gilmore, and J. Hillston. Stronger computational

modelling of signalling pathways using both continuous and discrete-state

methods. In Computational Methods in Systems Biology, volume 3746 of

Lecture Notes in Computer Science, pages 63–77, 2006.

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,

and Applications. Addison-Wesley, 2000.

[CGL94] G. Ciardo, R. German, and Ch. Lindemann. A Characterization of the

Stochastic Process Underlying a Stochastic Petri Net. Transactions on Soft-

ware Engineering, 20(7):506–515, 1994.

[CMZ02] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability

of EJB applications. SIGPLAN Notices, 37(11):246–261, 2002.

[Cor00] Standard Performance Evaluation Corporation. SPEC CPU2000 V1.3.

http://www.spec.org/cpu/, 2000. Last retrieved 2008-06-10.

[cpn] CPN Tools. www.daimi.au.dk/CPNTools. Last retrieved 2008-08-20.

[CPR07] V. Cortellessa, P. Pierini, and D. Rossi. Integrating Software Models and

Platform Models for Performance Analysis. Transactions on Software Engi-

neering, 33(6):385–401, June 2007.

Bibliography 279

[Cre05] M. Creeger. Multicore CPUs for the Masses. Queue, 3(7):64–65, 2005.

[CW00] M. Courtois and M. Woodside. Using regression splines for software perfor-

mance analysis. In WOSP ’00: Proceedings of the 2nd international workshop

on Software and performance, pages 105–114. ACM, 2000.

[CZS06] M. Corrêa, A. Zorzo, and R. Scheer. Operating System Multilevel Load

Balancing. In SAC ’06: Proceedings of the 2006 ACM Symposium on Applied

computing, pages 1467–1471. ACM, New York, NY, USA, 2006.

[DB78] P. J. Denning and J. P. Buzen. The Operational Analysis of Queueing Net-

work Models. ACM Computing Surveys, 10(3):225–261, 1978.

[Dou02] B. P. Douglass. Real-Time Design Patterns. Object Technology Series.

Addison-Wesley Professional, 2002.

[DPE04] G. Denaro, A. Polini, and W. Emmerich. Early Performance Testing of

Distributed Software Applications. SIGSOFT Software Engineering Notes,

29(1):94–103, 2004.

[EE00] J. Engblom and A. Ermedahl. Modeling Complex Flows for Worst-Case

Execution Time Analysis. In In Proceedings of the 21st IEEE Real-Time

Systems Symposium (RTSS 2000), pages 163–174. IEEE Computer Society,

2000.

[EVW80] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing

problem. IEEE Transactions on Automatic Control, 25(4):690–693, 1980.

[FBH05] V. Firus, S. Becker, and J. Happe. Parametric Performance Contracts for

QML-specified Software Components. In Proceedings of 2nd International

Workshop on Formal Foundations of Embedded Software and Component-

Based Software Architectures (FESCA ’05), pages 64–79, 2005.

[FLM+98] A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G. Oldano, and E. Orazi.

Applying GQM in an industrial software factory. ACM Transactions on

Software Engineering and Methodology, 7(4):411–448, 1998.

[FMW+07] G. Franks, P. Maly, M. Woodside, D. Petriu, and A. Hubbard. Layered

Queueing Network Solver and Simulator User Manual, May 2007. Last re-

trieved 2008-01-13.

[FNNS06] J. Fredriksson, T. Nolte, M. Nolin, and H. Schmidt. Predicting Execution

Time for Variable Behaviour Embedded Real-Time Components. In Proceed-

ings of Workshop on Models and Analysis for Automotive Systems, December

2006.

280 Bibliography

[Fra99] G. Franks. Performance Analysis of Distributed Server Systems. PhD the-

sis, Department of Systems and Computer Engineering, Carleton University,

Ottawa, Ontario, Canada, December 1999.

[Fre05] D. Freedman. Statistical Models: Theory and Practice. Cambridge University

Press, 2005.

[Fri07] H. Friedrich. Modellierung nebenläufiger, komponentenbasierter Software-

Systeme mit Entwurfsmustern. Masters thesis, Universität Karlsruhe (TH),

2007.

[GL03] I. Gorton and A. Liu. Performance Evaluation of Alternative Component

Architectures for Enterprise JavaBean Applications. IEEE Internet Com-

puting, 7(3):18–23, 2003.

[GMS05] V. Grassi, R. Mirandola, and A. Sabetta. From design to analysis models: a

kernel language for performance and reliability analysis of component-based

systems. In Proc. 5th International Workshop on Software and Performance

(WOSP ’05), pages 25–36. ACM, New York, NY, USA, 2005.

[GMS06] V. Grassi, R. Mirandola, and A. Sabetta. A Model Transformation Approach

for the Early Performance and Reliability Analysis of Component-Based Sys-

tems. In Proceedings of CBSE’06, volume 4063 of Lecture Notes in Computer

Science, pages 270–284. Springer-Verlag Berlin Heidelberg, 2006.

[GPB+06] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java:

Concurrency in Practice. Addison-Wesley, 2006.

[GTU91] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System

Scheduling Policies and Synchronization Methods of Performance of Parallel

Applications. In SIGMETRICS ’91: Proceedings of the 1991 ACM SIG-

METRICS conference on Measurement and modeling of computer systems,

pages 120–132. ACM, New York, NY, USA, 1991.

[Hap05a] J. Happe. Performance Prediction for Embedded Systems. In Trustworthy

Software Systems, volume 2, pages 173–196, 2005.

[Hap05b] J. Happe. Prediction Mean Service Execution Times of Software Compo-

nents Based on Markov Models. In Proceedings of the First International

Conference on Quality of Software Architectures (QoSA2005), number 3712

in Lecture Notes in Computer Science (LNCS), 2005.

[Hap07] J. Happe. Towards a Model of Fair and Unfair Semaphores in MoDeST.

In Proceedings of the 6th Workshop on Process Algebra and Stochastically

Timed Activities, pages 51–55, 2007.

Bibliography 281

[HBCM99] M. Harchol-Balter, M. Crovella, and C.D. Murta. On Choosing a Task

Assignment Policy for a Distributed Server System. Journal of Parallel and

Distributed Computing, 59(2):204–228, 1999.

[HBOSWW05] M. Harchol-Balter, T. Osogami, A. Scheller-Wolf, and A. Wierman. Multi-

Server Queueing Systems with Multiple Priority Classes. Queueing Systems:

Theory and Applications, 51(3-4):331–360, 2005.

[HBS+08] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message

Service Specification - Version 1.1. http://java.sun.com/products/jms/, Jan-

uary 2008.

[HBSBA03] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based

scheduling to improve web performance. ACM Transactions on Computer

Systems, 21(2):207–233, 2003.

[Hen00] John L. Henning. SPEC CPU2000: measuring CPU performance in the new

millennium. IEEE Computer, 33(7):28–35, 2000.

[HFBR08] J. Happe, H. Friedrich, S. Becker, and R. H. Reussner. A Pattern-Based

Performance Completion for Message-Oriented Middleware. In Proceedings

of the 7th International Workshop on Software and Performance (WOSP

’08), pages 165–176. ACM, 2008.

[HHK02] H. Hermanns, U. Herzog, and J.-P. Katoen. Process Algebra for Performance

Evaluation. Theoretical Computer Science, 274(1-2):43–87, 2002.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cam-

bridge University Press, 1996.

[Hil05] J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the

Second International Conference on the Quantitative Evaluation of Systems

(QEST’05), pages 33–43, Washington, DC, USA, 2005. IEEE Computer

Society.

[HKR06] J Happe, H. Koziolek, and R. H. Reussner. Parametric Performance Con-

tracts for Software Components with Concurrent Behaviour. In Frank S.

de Boer and Vladimir Mencl, editors, Proceedings of the 3rd International

Workshop on Formal Aspects of Component Software (FACS), volume 182

of Electronic Notes in Theoretical Computer Science, pages 91–106, 2006.

[HSZT00] C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi. Reliability and Per-

formability Modeling Using SHARPE 2000. In TOOLS ’00: Proceedings

of the 11th International Conference on Computer Performance Evaluation:

Modelling Techniques and Tools, volume 1786 of Lecture Notes in Computer

Science, pages 345–349. Springer-Verlag Berlin Heidelberg, 2000.

282 Bibliography

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-

ing, and Deploying Messaging Solutions. Addison-Wesley Longman Publish-

ing Co., Inc., 2003.

[HZS01] X. S. Hu, T. Zhou, and E. H.-M. Sha. Estimating probabilistic timing per-

formance for real-time embedded systems. IEEE Trans. Very Large Scale

Integr. Syst., 9(6):833–844, 2001.

[IBM] IBM. The Cell project at IBM Research. http://www.research.ibm.com/

cell/. Last retrieved 2008-08-16.

[IZG+07] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,

L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory

in CMP Platforms. ACM SIGMETRICS Performance Evaluation Review,

35(1):25–36, 2007.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis : Techniques

for Experimental Design, Measurement, Simulation, and Modeling. Wiley,

1991.

[Jen92] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods, and

Practical Use, volume 1 of EATCS Monographs on Theoretical Computer

Science. Springer-Verlag Berlin Heidelberg, 1992.

[Jen94] K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri

Nets. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A

Decade of Concurrency, volume 803, pages 230–272, 1994.

[Jen98] K. Jensen. An Introduction to the Practical Use of Coloured Petri Nets. In

Lectures on Petri Nets II: Applications, Advances in Petri Nets, the volumes

are based on the Advanced Course on Petri Nets, pages 237–292, London,

UK, 1998. Springer-Verlag Berlin Heidelberg.

[JKW07] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN

Tools for modelling and validation of concurrent systems. International Jour-

nal on Software Tools for Technology Transfer (STTT), 9(3):213–254, 2007.

[JLT85] E.D. Jensen, C.D. Locke, and H. Tokuda. A Time-Driven Scheduling Model

for Real-Time Operating Systems. In Proceedings of the IEEE Real-Time

Systems Symposium, pages 112–122. IEEE Computer Society, 1985.

[KB03] S. Kounev and A. Buchmann. Performance Modelling of Distributed E-

Business Applications using Queuing Petri Nets. In IEEE International Sym-

posium on Performance Analysis of Systems and Software, ISPASS, 2003.

Bibliography 283

[KB06] S. Kounev and A. Buchmann. SimQPN: a tool and methodology for an-

alyzing queueing Petri net models by means of simulation. Performance

Evaluation, 63(4):364–394, 2006.

[KB07] M. Kuperberg and S .Becker. Predicting Software Component Performance:

On the Relevance of Parameters for Benchmarking Bytecode and APIs. In

R. Reussner, C. Czyperski, and W. Weck, editors, Proc. 12th International

Workshop on Component Oriented Programming (WCOP’07), July 2007.

[KBH07] H. Koziolek, S. Becker, and J. Happe. Predicting the Performance of

Component-based Software Architectures with different Usage Profiles. In

Proceedings of the 3rd International Conference on the Quality of Software

Architectures (QoSA), volume 4880 of Lecture Notes in Computer Science,

pages 145–163. 4909, 2007.

[KBHR07] H. Koziolek, S. Becker, J. Happe, and R. Reussner. Model-Driven Soft-

ware Development: Integrating Quality Assurance, chapter Evaluating Per-

formance and Reliability of Software Architecture with the Palladio Compo-

nent Model. IDEA Group Inc., December 2007. To Appear.

[KBHR08] H. Koziolek, S. Becker, J. Happe, and R. Reussner. Life-Cycle Aware Mod-

elling of Software Components. In Proceedings of the 11th International Sym-

posium on Component-Based Software Engineering (CBSE), volume 5282 of

Lecture Notes in Computer Science, pages 278–285. Springer-Verlag Berlin

Heidelberg, October 2008.

[KGC+06] R. Y. Kawasaki, L. A. Guedes, D. L. Cardoso, C. R. L. Frances, G. H. S.

Carvalho, J. C. W. A. Cost, and N. L. Vijaykumar. A Markovian Perfor-

mance Model for Resource Allocation Scheduling on GNU/Linux. In Fron-

tiers of High Performance Computing and Networking – ISPA 2006 Work-

shops, number 4331 in Lecture Notes in Computer Science (LNCS), pages

844–853, 2006.

[KH05] H. Koziolek and J. Happe. Performance Metrics for Specific Domains. In

Dependability Metrics, volume 4909 of Lecture Notes in Computer Science,

pages 239 – 248. Springer-Verlag Berlin Heidelberg, 2005.

[KH06] H. Koziolek and J. Happe. A QoS Driven Development Process Model for

Component-Based Software Systems. In Ian Gorton, George T. Heineman,

Ivica Crnkovic, Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski,

and Kurt C. Wallnau, editors, Proceedings of the 9th International Sympo-

sium on Component-Based Software Engineering (CBSE’06), volume 4063 of

Lecture Notes in Computer Science, pages 336–343. Springer-Verlag Berlin

Heidelberg, 2006.

284 Bibliography

[KHB06] H. Koziolek, J. Happe, and S. Becker. Parameter Dependent Performance

Specifications of Software Components. In Ch. Hofmeister, I. Crnkovic,

R. Reussner, and S. Becker, editors, Quality of Software Architectures, 2nd

International Conference, QoSA 2006, Väster̊as, Sweden, June 27 - 29,

2006, Proceedings, volume 4214 of Lecture Notes in Computer Science, pages

163–179. Springer-Verlag Berlin Heidelberg, June 2006.

[KN07] M. Kluge and W. E. Nagel. Analysis of Linux Scheduling with VAMPIR. In

Proceedings of the 2nd International Conference on Computational Science,

volume 4488 of Lecture Notes in Computer Science, pages 823–830. Springer-

Verlag Berlin Heidelberg, 2007.

[Kou06] S. Kounev. Performance Modeling and Evaluation of Distributed

Component-Based Systems Using Queueing Petri Nets. Transactions on

Software Engineering, 32(7):486–502, July 2006.

[Koz08a] H. Koziolek. Parameter Dependencies for Reusable Performance Specifica-

tions of Software Components. Dissertation, Universität Oldenburg, 2008.

[Koz08b] Heiko Koziolek. Dependability Metrics, volume 4909, chapter Introduction

to Performance Metrics, pages 199 – 203. Springer-Verlag Berlin Heidelberg,

2008.

[KST99] G. Koole, P. Sparaggis, and D. Towsley. Minimizing response times and

queue lengths in systems of parallel queues. Journal of Applied Probability,

36(4):1185–1193, 1999.

[Kun91] T. Kunz. The Influence of Different Workload Descriptions on a Heuristic

Load Balancing Scheme. Transactions on Software Engineering, 17(7):725–

730, 1991.

[LB05] P. L’Ecuyer and E. Buist. Simulation in Java with SSJ. In WSC ’05: Pro-

ceedings of the 37th conference on Winter simulation, pages 611–620. Winter

Simulation Conference, 2005.

[Lee06] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):33–42, May

2006.

[LFG05] Y. Liu, A. Fekete, and I. Gorton. Design-Level Performance Prediction

of Component-Based Applications. Transactions on Software Engineer-

ing, 31(11):928–941, 2005. Member-Yan Liu and Member-Alan Fekete and

Member-Ian Gorton.

Bibliography 285

[LG05] Yan Liu and Ian Gorton. Performance Prediction of J2EE Applications Us-

ing Messaging Protocols. In Component-Based Software Engineering: 8th

International Symposium, volume 3489 of Lecture Notes in Computer Sci-

ence, pages 1–16. Springer-Verlag Berlin Heidelberg, 2005.

[lin] Linux Kernel Source. http://www.eu.kernel.org/pub/linux/kernel/v2.

6/linux-2.6.22.19.tar.gz. Last retrieved 2008-07-28.

[LM99] Y.T.S. Li and S. Malik. Performance Analysis of Real-Time Embedded Soft-

ware. Kluwer Academic Publishers, 1999.

[LMV02] P. L’Ecuyer, L. Meliani, and J. Vaucher. SSJ: A Framework for Stochastic

Simulation in Java. In Proceedings of the 2002 Winter Simulation Confer-

ence, pages 234–242. IEEE Computer Society, 2002.

[LR97] S. Leonardi and D. Raz. Approximating Total Flow Time on Parallel Ma-

chines. In STOC ’97: Proceedings of the twenty-ninth annual ACM sympo-

sium on Theory of computing, pages 110–119. ACM, New York, NY, USA,

1997.

[LV90] S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed

multiprocessor scheduling algorithms. In SIGMETRICS ’90: Proceedings of

the 1990 ACM SIGMETRICS conference on Measurement and modeling of

computer systems, pages 226–236. ACM, New York, NY, USA, 1990.

[LZGS84] E.D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative

System Performance - Computer System Analysis Using Queueing Network

Models. Prentice-Hall, 1984.

[MAD04] Daniel A. Menasce, Virgilio A.F. Almeida, and Lawrence W. Dowdy. Per-

formance by Design - Computer Capacity Planning by Example. Prentice

Hall, 2004.

[Maj92] S. Majumdar. The Performance of Local and Global Scheduling Strategies

in Multiprogrammed Parallel Systems. In Eleventh Annual International

Phoenix Conference on Computers and Communications, Conference Pro-

ceedings., pages 55–62, 1992.

[Mau03] W. Maurer. Linux Kernelarchitektur – Konzepte, Strukturen und Algorith-

men von Kernel 2.6. Carl Hanser Verlag, 2003.

[MBB+89] M. A. Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani.

The Effect of Execution Policies on the Semantics and Analysis of Stochastic

Petri Nets. Transactions on Software Engineering, 15(7):832–846, 1989.

286 Bibliography

[MBC+95] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons Ltd,

1995.

[MEB88] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in Multiprogrammed

Parallel Systems. ACM SIGMETRICS Performance Evaluation Review,

16(1):104–113, 1988.

[MHC02] R. Monson-Haefel and D.A. Chappell. Java Message Service. O’Reilly, 2002.

[MPC04] R. Le Moigne, O. Pasquier, and J-P. Calvez. A Generic RTOS Model for

Real-time Systems Simulation with SystemC. In Proceedings of the confer-

ence on Design, automation and test in Europe (DATE ’04), page 30082,

Washington, DC, USA, 2004. IEEE Computer Society.

[MS91] R. Menich and R. F. Serfozo. Optimality of routing and servicing in depen-

dent parallel processing systems. Queueing Systems: Theory and Applica-

tions, 9(4):403–418, 1991.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan-

dard ML. MIT Press, 1997.

[MvdA05] N.A. Mulyar and W.M.P. van der Aalst. Patterns in Colored Petri Nets.

Technical report, Eindhoven University of Technology, Department of Tech-

nology Management, April 2005.

[Nag87] J. Nagle. On Packet Switches with Infinite Storage. Transactions on Software

Engineering, 35(4):435–438, 1987.

[OHBSW05] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle steal-

ing with switching times and thresholds. Performance Evaluation, 61(4):347–

369, 2005.

[OHBSWZ04] T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, and L. Zhang. Exploring

threshold-based policies for load sharing. In Proceedings of 42nd Annual

Allerton Conference on Communication, Control and Computing. University

of Illinois, 2004.

[(OM04] Object Management Group (OMG). UML 2 Superstructure, Final Adopted

Specification, 2004. last retrieved 2008-01-13.

[(OM05] Object Management Group (OMG). UML Profile for Schedulability, Per-

formance and Time. http://www.omg.org/cgi-bin/doc?formal/2005-01-02,

2005. Last retrieved 2008-01-13.

[(OM07a] Object Management Group (OMG). Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification (ptc/07-07-07), 2007. Last re-

trieved 2008-01-13.

Bibliography 287

[(OM07b] Object Management Group (OMG). UML Profile for Modeling and Analysis

of Real-Time and Embedded systems (MARTE), Beta 1, 2007. Last retrieved

2008-01-13.

[(OM07c] Object Management Group (OMG). Unified Modeling Language: Super-

structure version 2.1.1, 2007. last retrieved 2008-01-13.

[omn] OMNeT++ Community Site. http://www.omnetpp.org. Last retrieved

2008-07-28.

[Oso05] T. Osogami. Analysis of multi-server systems via dimensionality reduction

of markov chains. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,

USA, 2005.

[PA91] B. Plateau and K. Atif. Stochastic Automata Network of Modeling Parallel

Systems. Transactions on Software Engineering, 17(10):1093–1108, 1991.

[Pal06] DFG-Research Group Palladio. PCM Bench. http://sdqweb.ipd.uka.de/

wiki/Palladio_Component_Model, 2006. Last retrieved 2008-08-22.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, University Bonn,

Institut für Instrumentelle Mathematik, 1962.

[PW02] D.B. Petriu and M. Woodside. Software Performance Models from Sys-

tem Scenarios in Use Case Maps. In TOOLS ’02: Proceedings of the 12th

International Conference on Computer Performance Evaluation, Modelling

Techniques and Tools, volume 2324 of Lecture Notes in Computer Science,

pages 141 – 158. Springer-Verlag Berlin Heidelberg, 2002.

[RBH+07] R. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krogmann, and M. Kuper-

berg. The Palladio Component Model. Technical Report 2007-21, Universität

Karlsruhe (TH), 2007.

[RH] Incorporated Red Head. GNU + Cygnus + Windows = Cygwin. http:

//cygwin.com/. Last retrieved 2008-07-09.

[RK03] M. Rawat and A. Kshemkalyani. SWIFT: Scheduling in Web Servers for Fast

Response Time. In NCA ’03: Proceedings of the Second IEEE International

Symposium on Network Computing and Applications, pages 51–58. IEEE

Computer Society, 2003.

[RL80] M. Reiser and S. S. Lavenberg. Mean-Value Analysis of Closed Multichain

Queuing Networks. Journal of the ACM, 27(2):313–322, 1980.

[Rod85] David P. Rodgers. Improvements in multiprocessor system design. ACM

SIGARCH Computer Architecture News, 13(3):225–231, 1985.

[RS95] J. A. Rolia and K. C. Sevcik. The Method of Layers. Transactions on

Software Engineering, 21(8):689–700, 1995.

288 Bibliography

[RSSS98] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante. The impact of I/O on

program behavior and parallel scheduling. In SIGMETRICS ’98/PERFOR-

MANCE ’98: Proceedings of the 1998 ACM SIGMETRICS joint interna-

tional conference on Measurement and modeling of computer systems, pages

56–65. ACM, New York, NY, USA, 1998.

[RUKVB04] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E.W. Biersack. Performance

analysis of LAS-based scheduling disciplines in a packet switched network. In

SIGMETRICS ’04/Performance ’04: Proceedings of the joint international

conference on Measurement and modeling of computer systems, pages 106–

117. ACM, New York, NY, USA, 2004.

[Rus07] M. Russinovich. Inside the Windows Vista Kernel. TechNet Mag-

azine, http://technet.microsoft.com/en-us/magazine/cc162494.aspx,

February 2007.

[SB99] R. Van Solingen and E. Berghout. Goal/Question/Metric Method: A Prac-

tical Guide for Quality Improvement of Software Development. McGraw-Hill

Inc., 1999.

[SB01] R. Van Solingen and E. Berghout. Integrating Goal-Oriented Measurement

in Industrial Software Engineering: Industrial Experiences with and Ad-

ditions to the Goal/Question/Metric Method (GQM). In METRICS ’01:

Proceedings of the 7th International Symposium on Software Metrics, page

246, Washington, DC, USA, 2001. IEEE Computer Society.

[Sch68] L.E. Schrage. A proof of the optimality of the shortest remaining processing

time discipline. Operations Research, 16(3):687–690, 1968.

[Sch84] P. Schatte. The M/GI/1 Queue as Limit of Closed Queueing Systems. Op-

timization, 15(1):161–165, 1984.

[SG06] P.K. Saraswat and P. Gupta. Design and Implementation of a Process Sched-

uler Simulator and an Improved Process Scheduling Algorithm for Multime-

dia Operating Systems. In Proceedings of the International Conference on

Advanced Computing and Communications (ADCOM 2006), pages 513–517,

2006.

[SGG05] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. Wiley

& Sons, 7 edition, January 2005.

[SHB02] B. Schroeder and M. Harchol-Balter. Web servers under overload: How

scheduling can help. Technical Report CMU-CS-02-143, Carnegie-Mellon

University, 2002.

Bibliography 289

[SHB04] B. Schroeder and M. Harchol-Balter. Evaluation of Task Assignment Policies

for Supercomputing Servers: The Case for Load Unbalancing and Fairness.

Cluster Computing, 7(2):151–161, 2004.

[SKBB07] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Workload Characteriza-

tion of the SPECjms2007 Benchmark. In In Proceedings of the 4th European

Performance Engineering Workshop, volume 4748, pages 228–244, 2007.

[SKCB07] K. Sachs, S. Kounev, M. Carter, and A. Buchmann. Designing a Workload

Scenario for Benchmarking Message-Oriented Middleware. In Proceedings of

the 2007 SPEC Benchmark Workshop, January 2007.

[SKS92] N. G. Shivaratri, P. Krueger, and M. Singhal. Load Distributing for Locally

Distributed Systems. IEEE Computer, 25(12):33–44, 1992.

[Smi80] C.U. Smith. The Prediction and Evaluation of the Performance of Software

from Extended Design Specifications. PhD thesis, University of Texas at

Austin, 1980.

[Smi90] C. U. Smith. Performance Engineering of Software Systems. Addison-Wes-

ley, Reading, MA, USA, 1990.

[Smi02] C. U. Smith. Performance Solutions: A Practical Guide To Creating Re-

sponsive, Scalable Software. Addison-Wesley, 2002.

[SPE] SPEC. SPECjms2007 Benchmark. http://www.spec.org/jms2007/. Last

retrieved 2008-08-16.

[Squ07] M. S. Squillante. Stochastic analysis of multiserver systems. SIGMETRICS

Perfomance Evaluation Review, 34(4):44–51, 2007.

[SR05] D. A. Solomon and M. E. Russinovich. Microsoft Windows Internals : Win-

dows 2000, Windows XP und Windows Server 2003. Microsoft Press, 2005.

[SWHB06] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:

a cautionary tale. In NSDI’06: Proceedings of the 3rd conference on 3rd

Symposium on Networked Systems Design & Implementation, pages 239–

252, Berkeley, CA, USA, 2006. USENIX Association.

[Tan01] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition,

2001.

[TCM06] L. A. Torrey, J. Coleman, and B. P. Miller. A comparison of interactivity

in the Linux 2.6 scheduler and an MLFQ scheduler. Software: Practice and

Experience, 37(4):347–364, 2006.

[Tra] Kernel Trap. Linux: The Completely Fair Scheduler. http://kerneltrap.

org/node/8059. Last retrieved 2008-08-16.

290 Bibliography

[TSC92] D. Towsley, P. D. Sparaggis, and C. G. Cassandras. Optimal routing and

buffer allocation for a class of finitecapacity queueing systems. IEEE Trans-

actions on Automatic Control, 37(9):1446–1451, 1992.

[VDGD05] T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester. Automatic Inclusion of

Middleware Performance Attributes into Architectural UML Software Mod-

els. Transactions on Software Engineering, 31(8):695–771, 2005.

[VS06] M. Völter and T. Stahl. Model-Driven Software Development. Wiley, 2006.

[WBHB03] A. Wierman, N. Bansal, and M. Harchol-Balter. A note on comparing re-

sponse times in the M/GI/1/FB and M/GI/1/PS queues. Operations Re-

search Letters, 32(1):73 – 76, 2003.

[Wel02] L. Wells. Performance Analysis Using Coloured Petri Nets. In MASCOTS

’02: Proceedings of the 10th IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunications Systems

(MASCOTS’02), pages 217–221, Washington, DC, USA, 2002. IEEE Com-

puter Society.

[WHB03] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with re-

spect to unfairness in an M/GI/1. ACM SIGMETRICS Performance Eval-

uation Review, 31(1):238–249, 2003.

[WHBO05] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly insensitive bounds

on SMART scheduling. ACM SIGMETRICS Performance Evaluation Re-

view, 33(1):205–216, 2005.

[Whi83] W. Whitt. The Queueing Network Analyzer. Bell System Technical Journal,

62:2779–2815, 1983.

[Whi86] W. Whitt. Deciding which queue to join: Some counterexamples. Operations

Research, 34(1):55–62, 1986.

[Win77] W. Winston. Optimality of the shortest line discipline. Journal of Applied

Probability, 14(1):181–189, 1977.

[Wol89] R.W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice Hall,

1989.

[Woo02] M. Woodside. Tutorial Introduction to Layered Modeling of Software Per-

formance, May 2002. Last retrieved 2008-01-13.

[WPS02] M. Woodside, D. Petriu, and K. Siddiqui. Performance-related completions

for software specifications. In ICSE ’02: Proceedings of the 24th International

Conference on Software Engineering, pages 22–32. ACM, New York, NY,

USA, 2002.

Bibliography 291

[WS03] L. G. Williams and C. U. Smith. Making the Business Case for Software

Performance Engineering. In Proceedings of CMG, 2003. Last retrieved

2008-01-13.

[WVCB01] C. M. Woodside, V. Vetland, M. Courtois, and S. Bayarov. Resource Func-

tion Capture for Performance Aspects of Software Components and Sub-

Systems. In Performance Engineering, State of the Art and Current Trends,

volume 2047 of Lecture Notes in Computer Science, pages 239–256. Springer-

Verlag Berlin Heidelberg, 2001.

[WW04] X. Wu and M. Woodside. Performance modeling from software components.

SIGSOFT Software Engineering Notes, 29(1):290–301, 2004.

[YW98] T.-Y. Yen and W. Wolf. Performance estimation for real-time distributed

embedded systems. IEEE Transactions on Parallel and Distributed Systems,

9(11):1125–1136, November 1998.

[YWSHB06] C.-W. Yang, A. Wierman, S. Shakkottai, and M. Harchol-Balter. Tail asymp-

totics for policies favoring short jobs in a many-flows regime. ACM SIGMET-

RICS Performance Evaluation Review, 34(1):97–108, 2006.

[ZBLG07] L. Zhu, N.B. Bui, Y. Liu, and I. Gorton. MDABench: Customized Bench-

mark Generation using MDA. Journal of Systems and Software, 80(2):265–

282, 2007.

[ZFH01] A. Zimmermann, J. Freiheit, and G. Hommel. Discrete Time Stochastic Petri

Nets for Modeling and Evaluation of Real Time Systems. In International

Parallel and Distributed Processing Symposium, 2001.

www.uvka.de

ISBN: 978-3-86644-381-5
ISSN: 1867-0067

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

With today’s rise of multi-core processors, concurrency becomes a ubiquitous chal-
lenge in software development. Concurrency allows the improvement of software
performance by exploiting available processor cores. Performance prediction me-
thods have to reflect the influence of multiprocessing environments on software
performance in order to help software architects to find potential performance
problems during early development phases. In this thesis, we address the influ-
ence of the operating system scheduler on software performance in symmetric
multiprocessing environments. We propose a performance modelling framework
for operating system schedulers such as Windows and Linux. Furthermore, the
influence of the middleware on software performance is addressed by a perfor-
mance modelling approach to message-oriented middleware. A series of case stu-
dies demonstrates that both techniques reduce the prediction error to less than
5 % to 10 % in most cases.

