
Tracking of the Articulated Upper Body on Multi-View Stereo Image Sequences

Julius Ziegler
julius.ziegler@stud.uni-karlsruhe.de

Kai Nickel
nickel@ira.uka.de

Rainer Stiefelhagen
stiefel@ira.uka.de

Interactive Systems Laboratories
Universität Karlsruhe (TH)

Germany

Abstract

We propose a novel method for tracking an articulated
model in a 3D-point cloud. The tracking problem is for-
mulated as the registration of two point sets, one of them
parameterised by the model’s state vector and the other ac-
quired from a 3D-sensor system. Finding the correct pa-
rameter vector is posed as a linear estimation problem,
which is solved by means of a scaled unscented Kalman fil-
ter. Our method draws on concepts from the widely used
iterative closest point registration algorithm (ICP), basing
the measurement model on point correspondences estab-
lished between the synthesised model point cloud and the
measured 3D-data. We apply the algorithm to kinemati-
cally track a model of the human upper body on a point
cloud obtained through stereo image processing from one
or more stereo cameras. We determine torso position and
orientation as well as joint angles of shoulders and elbows.
The algorithm has been successfully tested on thousands of
frames of real image data. Challenging sequences of sev-
eral minutes length where tracked correctly. Complete pro-
cessing time remains below one second per frame.

1. Introduction

Image based, marker-less articulated body tracking has
become an active field of research in the area of computer
vision within the last decade. Detailed body tracking is use-
ful since it facilitates automatic analysis of human motion.
It can be used to provide features to a classification backend
for gesture recognition, making novel methods of human-
computer interaction possible. Other applications not re-
quiring classification include motion capture, for example
to directly teach motion to human-like robots.

In the following, we will give a short overview of sem-
inal contributions to the topic of articulated body tracking
and comment on the novelty of our approach compared to
them.

Some approaches [4, 11] to articulated tracking utilise a
particle filter (condensation filter) for tracking. This proba-
bilistic framework employs Monte Carlo approximation to
track the state vectors probability density. The main prob-
lem in its application to articular body tracking is the high
number of degrees of freedom, since the required number of
Monte Carlo samples (particles) rises exponentially in the
dimensionality of the state space.

Deutscher et al. [4] refine the particle filtering scheme
by introducing additional resampling steps, evading local
minima of the state probability in a manner similar to simu-
lated annealing. With this modification, they can track full
body motion with as little as 100 particles. The particles are
weighted by rendering synthetic silhouette and edge images
from every particle. These are compared with silhouette and
edges extracted from the image sequence.

Lee et al. [11] effectively reduce the dimensionality of
the state probability distribution by analytically incorporat-
ing the results of feature detectors (head, hands, body main
axis) into the particle representation. The weighting func-
tion is based on silhouette extraction.

Approaches exploiting 3D-data for articulated tracking
are relatively rare. Jojic et al. [7] present an algorithm that
tracks articulated motion in disparity maps by modelling
body parts as 3D-point clusters and tracking their respec-
tive second order stochastic moments.

Kehl et al. [10] propose an algorithm which processes
3D-data obtained from volumetric reconstruction of at least
four camera views. They state articulated tracking as the
minimisation of a scalar objective function. This is accom-
plished using a gradient descent method with local step size
adaption. The objective function is not minimised with re-
spect to all degrees of freedom at once, but for the torso and
the single extremities consecutively.

Mikic et al. [13] exploit volumetric reconstruction to ob-
tain 3D data as well. The algoithm identifies single body
parts and filters their position and orientation using an ex-
tended Kalman filter (EKF) to assert that kinematic con-
straints are met.
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Urtasun and Fua [16] formulate full body tracking as a
minimisation problem as well. Here, 3D-data is obtained by
stereo image processing. The focus is on the application of
strong temporal motion models to guide the minimisation
process. This currently restricts the algorithm to tracking
of some distinctive classes of motion, like walking and run-
ning.

Demirdjian and Darrell [3] apply the iterative closest
point algorithm to fit models of single limbs to a point
cloud acquired from stereo image sequences. In this phase,
limbs are treated as uncoupled rigid objects. Kinematic con-
straints resulting from the human body are impressed on
them subsequently.

Our approach is based on a kinematic model, so that
kinematic constraints of the human body are met implicitly.
All degrees of freedom are tracked at once, as opposed to
the hierarchical scheme used in [10]. We believe this to be
advantageous, since all body parts mutually constrain each
other in every phase of the algorithm. We also found out,
that fitting the torso position independently of the limbs is
difficult, as the torso on its own has too few features and
relatively indistinct principal moments. In contrary to [16],
we do not constrain the range of feasible motions by strong
motion models.

We obtain the 3D-data used for tracking from dispar-
ity images, which are obtained by stereo image process-
ing. Disparity images are insusceptible to lighting changes
and shadows. They allow for straight forward, robust fore-
ground segmentation. In contrast, volumetric reconstruc-
tion as applied in [10] heavily relies on conventional fore-
ground segmentation techniques.

Like particle filtering approaches, our algorithm is for-
mulated within a probabilistic, Bayesian framework. More
concretely, the tracking problem is posed as a linear esti-
mation problem and solved by an unscented Kalman fil-
ter. Consequently, the state probability density is not rep-
resented by a large set of Monte Carlo samples, but by the
compact unscented representation. The unscented represen-
tation captures mean and variance of the state probability
density by maintaining a small set of deterministically cho-
sen samples. The unscented Kalman filter avoids the neces-
sity to compute the Jacobian matrices of the model func-
tions, so it allows us to use a complex measurement model
without complicating filter design. The employed measure-
ment model is inspired by the iterative closest point (ICP)
algorithm for point cloud registration. It relies on point cor-
respondences that are established between a model surface
and the measured 3D-data based on spatial proximity. ICP
in its original form is tailored to the registration of rigid ob-
jects. By integrating the ICP algorithm with an unscented
Kalman filter, we yield a novel registration algorithm capa-
ble of tracking articulated structures.

This article is structured as follows: Section 2 addresses
established concepts this contribution builds upon. Con-
cretely, the ICP algorithm and the unscented Kalman filter

Figure 1. Illustration of ICP registration algorithm.

are presented. Section 3 describes the preprocessing steps
used to obtain the point cloud that serves as input to our
algorithm. These include stereo processing and segmenta-
tion. Section 4 describes the core aspect of our algorithm,
namely the formulation of registration as a linear estimation
problem. Section 5 presents experimental results, including
an evaluation in terms of tracking precision. We conclude
the article with a short summary in section 6.

2. Theoretical Background
2.1. Iterative Closest Point (ICP)

The iterative closest (also: corresponding) point (ICP)
algorithm is a widely applied method for the registration of
two datasets. For the following description, we will assume
that the datasets are Euclidian point sets.

Let X denote the fixed model point set and P the
adjustable data point set that is to be registered with it. The
algorithm returns a rigid body transformation θ that aligns
P to an optimal fit with X . The algorithm works as follows
(cf. [2]):

Repeat the following steps until termination:

1. Initialisation:
k = 0, θ0 = id, P0 = P

2. Repeat steps a, b, c and d until termination:

(a) For every point in Pk compute the closest point
in X , yielding the set of correspondents Yk.

(b) Compute the local registration θk that minimises
the summed square distances between the points
in Pk and their correspondents in Yk.

(c) Apply the registration: Pk+1 = θk(P0).

(d) If the change of the summed square distances
drops below the threshold τ that has been cho-
sen according to the desired precision, terminate
with result θk.

See figure 1 for an illustration.

Several closed form solutions exist for the calculation of
local registration in step b of the algorithm. The most com-
mon ones are either based on singular value decomposition
[1] or on a representation in quaternion space [6]. Both are
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Figure 2. Unscented Transformation of x̂ and P through a nonlin-

ear function h. Weighted averaging of the transformed σ-points

yields an approximation of the transformed probability distribu-

tion.

restricted to the case of registering rigid bodies and not ap-
plicable to articulated structures. Therefore, we restated the
local registration as a linear estimation problem, so we can
use an unscented Kalman filter to solve it.

2.2. Unscented Kalman Filter (UKF)
The Kalman filter [12] is a tool to estimate a state vector

that can only be observed through indirect measurements
which are subject to noise. The functional dependency be-
tween a state vector x and the measurement vector z is mod-
elled by the function h: z = h(x). All deviations from the
expected behaviour are summarised and described in terms
of their covariance matrix R. The Kalman filter allows to
incorporate knowledge of system dynamics into the estima-
tion in form of the functional system model f . f models the
state transition from one discrete time instant k to the next:
xk+1 = f(xk). Errors of this model are again summarised
by their covariance matrix, termed Q.

In the following, we will use x̂[i|j] to denote the state
vector’s estimated mean at time instant i, given all mea-
surements up to time instant j. The notation P[i|j] for the
covariance matrix of the state estimate is to be interpreted
accordingly.

The general Kalman filtering framework consist of the
iteration of the following steps. k is the discrete time index
and is incremented with every iteration:

• Prediction: Extrapolate the a priori estimate x̂[k+1|k]
and its covariance matrix P[k + 1|k] from the optimal
state estimate x̂[k|k] and its covariance matrix P[k|k],
by propagating it through the functional system model
f . The covariance matrix Q of the system noise will be
incorporated into P[k+1|k] as an additive component.
x̂[k+1|k] and P[k+1|k] are subsequently propagated
through the measurement model h, yielding a predic-
tion for the expected measurement, ẑ[k + 1|k], and its
covariance Pzz[k + 1|k]. The deviation of the actual
measurement z[k+1] from the expected measurement,
ν[k + 1] = z[k + 1] − ẑ[k + 1|k], is called the mea-

surement residual. The variance of this quantity Pνν

is obtained by adding the covariance matrix R of the
measurement noise: Pνν [k +1] = Pzz[k +1|k] +R.

• Update: By incorporating the measurement z[k + 1],
the extrapolated value x̂[k + 1|k] is corrected to yield
x̂[k + 1|k + 1]. The error covariance of the corrected
estimate, P[k+1|k+1], is minimised. The state update
equations are:

x̂[k + 1|k + 1] = x̂[k + 1|k] + i[k + 1] (1)

P[k + 1|k + 1] = P[k + 1|k] − I[k + 1] (2)

with the two correctional terms

i[k + 1] = K[k + 1]ν[k + 1] (3)

I[k + 1] = K[k + 1]Pνν [k + 1|k]K[k + 1]T.(4)

K[k + 1] is called the Kalman-Gain. It is calculated
according to the following equation:

K[k + 1] = Pxz[k + 1|k]P−1
νν [k + 1|k] (5)

Pxz[k + 1|k] is the cross covariance matrix describing
the linear dependence of the random variables x and z.

As we can see, filtering requires the propagation of mean
x̂ and variance P of the state estimate through the func-
tional models f and subsequently h. With the latter propa-
gation (through the measurement model h), we additionally
need to calculate the covariance between the original and
the transformed random variable (cross covariance). The
simple Kalman filter allows linear models only, so that the
propagation can be expressed in terms of matrix multipli-
cations. The same is true for the widely used extended
Kalman filter (EKF), since it linearises the models around
the mean of the state estimate by building their Jacobian
matrices.

The unscented Kalman filter (UKF) as proposed by
Julier and Uhlman [8] exploits the unscented transformation
to propagate mean and covariance through arbitrary func-
tions. The Unscented representation of P is the set of col-
umn vectors from a positive and a negative scaled matrix
square root:

{σ1, ..., σn} column vectors←−−−−−−−−−−−−±
√

(n + κ)P. (6)

n is the dimensionality of the state space, κ a scaling factor
to be described later. The obtained set of vectors σi has
zero mean, so adding x̂ to each of the σi results in a set
{X1, ...,X2n}with mean x̂. x̂ itself is inserted into the set
to yield the set of the 2n+1 so called σ-points {X0, ...,X2n}
with

X0 = x̂ (7)

Xi = σi + x̂. (8)
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The σ-points completely capture mean and covariance of
the original distribution. By individually transforming them
through the model function with

Zi = h(Xi), (9)

one yields the set of transformed σ-points, {Z0, ...,Z2n},
which approximates the transformed distribution. Through
weighted averaging, mean ẑ and variance Pzz of the trans-
formed distribution can be reconstructed. See figure 2 for a
two dimensional example. Averaging is done as follows:

ẑ =
1

n + κ
{κZ0 +

1
2

2n∑

i=1

Zi}, (10)

Pzz =
1

n + κ
{κ[Z0 − ẑ][Z0 − ẑ]�

+
1
2

2n∑

i=1

[Zi − ẑ][Zi − ẑ]�}. (11)

The cross covariance matrix is obtained by averaging the
direct products of the original and the transformed points:

Pxz =
1

n + κ
{κ[X0 − x̂][Z0 − ẑ]�

+
1
2

2n∑

i=1

[Xi − x̂][Zi − ẑ]�}. (12)

The parameter κ allows to arbitrarily “scale” the distribu-
tion of the σ-points around the mean. Bringing the σ-points
close to the mean is desirable in order to avoid sampling
non-local effects of the respective model function. This
is especially true for trigonometric functions as used here
to describe articulated body kinematics. In [9], Julier and
Uhlman refine the concept of scaling, additionally guaran-
teeing positive semi definiteness for the transformed covari-
ance matrix. Their method has been adopted for this work.

3. Preprocessing and Segmentation
The input to our tracking algorithm is a 3D point cloud

representing the appearance of the human body. It is ob-
tained from the raw stereo data through several preprocess-
ing and segmentation steps, to remove points belonging to
the background.

The first preprocessing step is disparity computation. It
is accomplished using a commercially available stereo sys-
tem.1 Usually, disparity computation yields many invalid
values in low-textured or very dark image regions. These
regions can be identified by an edge detection filter. Figure
3(b) shows an example of a disparity map, with invalidated
pixels displayed in black.

Disparity maps allow extracting foreground regions in a
very straight forward way. Each pixel of an acquired dis-
parity image is compared to the corresponding pixel in a

1 Triclops system [15], developed by Point Grey.

(a) (b) (c)

(d) (e)

Figure 3. Preprocessing of stereo images. (a) Original images. (b)

Disparity maps. (c) Result of foreground segmentation. (d) Joint

point cloud in a global coordinate system. (e) Point cloud after

application of noise filter.

background model. If the current disparity is greater than
that in the model, the pixel must belong to the foreground.
The background model can be averaged over the past frames
with an α-process to allow slow adaption of changes in the
scenery. The segmentation method used here is similar to
that proposed by Eveland et al. [5]. Disparity maps are
insensitive to lighting changes, and so is the implemented
foreground segmentation. Figure 3(c) shows an example.

The 3D-position xcam =
(

x y z
)

of the associ-
ated point can be reconstructed from the image coordinates
of a pixel and its disparity. The obtained position xcam

is relative to a coordinate system originating in the prin-
cipal point of the respective camera. Multiplication with a
camera specific homogenous transformation matrix Tcam

yields a 3D point in a common world coordinate system,
allowing the precise fusion of the 3D data of all cameras.
The Tcam matrices are determined through a conventional
camera calibration procedure using a checkerboard pattern.
Our algorithm will process the fused point cloud, so track-
ing over multiple cameras is implemented implicitly. Figure
3(d) shows the result of fusing pre-segmented 3D-data from
two stereo cameras. It reveals a characteristic weakness in
the foreground segmentation which results in artefacts hav-
ing the form of small, isolated groups of points. These are
removed by a subsequent filtering stage, yielding the final
point cloud to be used for tracking (Figure 3(e)).
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(a) (b)

Figure 4. (a): Kinematic model of the upper body. Each of the in-

dicated joints is represented by a rotation matrix, which is param-

eterised by the depicted number of degrees of freedom. Together

with the translation vector describing the position of the torso in

space, we yield a total of 14 degrees of freedom. (b) Unscented

representation of model state and its uncertainty. Here, it has been

depicted by rendering a stick figure for each of the 29 σ-poses.

Depending on number and setup of cameras, the ob-
tained point cloud representation of the body may be in-
complete due to occlusions. This fact is accounted for in
the measurement model, see section 4.2.

4. Tracking of Articulated Objects in 3D Point
Clouds

Kalman filtering requires the description of both, system
dynamics and the input/output-relation of the measurement
system, as functional models. Since we use the unscented
variant of the Kalman filter, we neither need to supply the
models in a linear form, nor do we need to compute their
Jacobian matrices as we would have to with the commonly
used extended Kalman filter. This simplifies filter design
considerably and allows us to use a complex measurement
model.

4.1. System Model

The state vector x comprises the 14 degrees of free-
dom depicted in figure 4(a). The state vector’s evolution
is merely modelled as a random walk, without incorporat-
ing higher order dynamics. This accounts for the fact that
the frame rate of the video system used is relatively low
(∼10 Hz) compared to the frequency of human motion, so
that modelling of velocities or even accelerations could eas-
ily lead to errors due to under sampling. Consequently, the
model function is the identity: f(x) = x. Hence, a change
in the state from frame to frame is actually modelled as error
and comprised in the system covariance matrix Q. Figure
4(b) shows the unscented representation of the model state
consisting of 29 σ-points. We will also speak of σ-poses,
since the σ-points are sampled from the model’s pose space.

Figure 5. Removing occluded model points with the z-buffer-

algorithm. Each point is compared against the z-buffer and deleted

if its z-value is greater than the correspondig value in the z-buffer.

4.2. Measurement Model

For generating the measurement vector and evaluating
the measurement model, we have implemented a procedure
to render a point cloud depicting the upper body taking up
the pose equivalent to a specific state x.

As we want the generated point cloud to resemble as
good as possible the point cloud as it would be output from
the stereo system we only render points visible in at least
one of the cameras. Removing occluded points is crucial
for adapting the system to different camera setups. Thus,
adding and removing new views becomes possible easily.
The problem of occlusion is handled with the z-buffer al-
gorithm. This algorithm is commonly used in computer
graphics and fast implementations are ubiquitous and as-
sisted by standard graphics hardware. It works by maintain-
ing a depth map (z-buffer) while rendering a volumetric rep-
resentation of the model from 3D-primitives (polygons, in
our case). [17] elaborates further on the z-buffer algorithm.
Figure 5 shows how points are tested for occlusion by com-
paring their projections against the z-buffer. We term the
point cloud generated for a state x as G(x).

For generating the measurement vector, we render the
point cloud Pẑ = G(x[k + 1|k]) from the predicted state.
Then we establish correspondences between Pẑ and the
point cloud acquired from the stereo system, yielding the
point set Pz (see figure 6(a)).

We generate the measurement vector z by projecting ev-
ery element of Pz onto the line connecting it with its cor-
responding point in P ẑ. Every element of P z yields one
scalar component of z. Equivalently, we generate the pre-
dicted measurement ẑ = h(x̂[k + 1|k]) from the point set
Pẑ. As it can be seen from figure 6(b), the difference of
z and ẑ, called the measurement residual or innovation ν
within the Kalman filtering framework, comprises the dis-
tances between corresponding points.

Since we use the Unscented transformation to propa-
gate x̂[k + 1|k] and P[k + 1|k] through the measurement
model, we additionally need to evaluate h at the σ-points
distributed around x̂[k + 1|k]. This is done analoguely to
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(a)
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νi

pi
z

�0

ẑi

pi
ẑ

(b)

(c)

Figure 6. Generation of measurement vector z and predicted mea-

surement ẑ. (a) shows the predicted point cloud Pẑ in red, the

point cloud obtained from stereo processing in light grey and the

points corresponding to the prediction, P z, in black. (b) shows

the generation of one scalar component of z and ẑ, respectively.

(c) schematically shows the propagation of the state uncertainty

through this measurement model by means of the unscented trans-

formation, see the text for further explanation (the time index

[k + 1|k] has been omitted here).

the calculation of ẑ. For the sake of computational cost,
correspondences are not recalculated for the σ-points, but
are based on the predicted state x̂[k + 1|k] only. The same
applies for the occlusion test.

Figure 6(c) illustrates, how the state’s unscented repre-
sentation is used to predict the probability distribution of

the measurement vector. The axis pi
ẑpi

z from figure 6(b)
has been oriented towards the abscissa. The small red points
were obtained by sampling the same model point from all σ-
poses representing the predicted state and its variance (com-
pare figure 4(b)). Only five out of these 29 points are ac-

tually depicted. They are projected onto pi
ẑpi

z , and subse-
quently, the projections are averaged according to equations
10 and 11 to yield mean ẑ[k+1|k] and variance Pzz[k+1|k]
of the respective component of the measurement prediction
(both depicted in red). The variance of z (depicted in black)
is the measurement noise R. Note that figure 6(c) shows
the transformation for one component of the measurement
vector only. Actually, the transformation is done for all
model points at once, yielding the multidimensional vec-
tor ẑ[k + 1|k] and the covariance matrix Pzz[k + 1|k]. νi

in figure 6(c) is the component of the measurement residual
generated from the correspondence (pi

ẑ pi
z). As described

above, it contains the distance of the corresponding points.

Figure 7 concretises the meaning of cross covariance

(a)

ν5

ν4

ν3

ν2

ν1

ν0

α β γ

(b)

Figure 7. Explanation of cross covariance considering a sim-

ple articular model with the three dimensional state vector

x =(α β γ)T. The cross covariance is a measure for the linear

dependence of state vector and measurement residual ν. Given the

correspondences (pi
ẑ pi

z) depicted left, the resulting cross covari-

ance Pxz is qualitatively displayed on the right. White means

strong negative correlation, black means strong positive correla-

tion. Medium grey fields indicate no correlation.

within the algorithm. The cross covariance matrix Pxz

is created from the σ-poses {X0, ...,X28} and their trans-
formed equivalents {Z0, ...,Z28} with equation 12.

Finally, we calculated all quantities (Pzz, Pxz and ν)
to perform the state update according to equations 1 - 5.
We use multiple iterations of update steps, as we expect the
correspondences to improve with every iteration. This pro-
ceeding has been inherited from the ICP algorithm.

Instead of sampling the model points deterministically
like depicted in figure 5, we resample model points stochas-
tically at every iteration. This prove to advance tracking
performance, especially if few model points where used.
This finding conforms with [10].

Tracking with the described method is susceptible to sit-
uations where body parts touch or come very close to each
other. Point correspondences are based on spatial proxim-
ity, so wrong correspondences can easily occur in these sit-
uations. As a remedy, we detect these problematic config-
urations and artifically push the respective limbs apart by
applying simple inverse kinematics. This proceeding ad-
ditionally asserts that geometric constraints of the human
body are met, and overlap of body parts is avoided.

5. Experimental Results
The tracking system has been tested on four image

sequences with four different persons. Each of the se-
quences spans several minutes during which the subjects
performed unconstrained, fully articulated motions while
walking around, taking turns and bending over. The total
number of frames collected was 6029. Recordings where
done with four synchronised stereo cameras facing each
other in a cross over setup, with a distance to the opposite
camera of approximately 5 m. All sequences where tracked
successfully over the full length, without divergence. For
the results shown here, 64 vertices where sampled from the
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torso position [cm] 7.0

torso longitudinal [◦] 8.8

torso transverse [◦] 12.8

upper arm [◦] 22.7

lower arm [◦] 25.7

Table 1. Mean tracking errors averaged over all 6029 frames.

Figure 8. Distribution of tracking errors for torso longitudinal axis

and lower arms.

body model. Full processing time for one frame remained
below one second.

Tracking precision was evaluated by comparision against
a ground truth that was obtained by manual labeling. Dis-
tinctive points of the body (hands, ellbows, shoulders, head
centroid and two points on the hips) where labeled in ev-
ery frame on all camera views. The kinematic upper body
model was fitted to these labels in order to obtain a reference
trajectory. The reference trajectory was used to calculate the
mean error of torso position, torso longitudinal axis (hip to
head), torso transverse axis (shoulder to shoulder) and an-
gular errors of upper and lower arms. See table 1 for the
results. Figure 8 shows the distribution of tracking errors as
a histogram for the lower arm and one of the torso axes.

Figure 9 shows some short scenes taken from the full
length sequences. Note upper right scene, in which the per-
son bends over to tie his shoe strings. The subject is tem-
porarily almost completely outside of the front camera’s
field of view. Though tracking errors get high during this
scene, the tracker recovers nicely.

6. Summary and Conclusions
We proposed a novel method for fast tracking of articu-

lated structures within 3D sensor data. It builds upon con-
cepts from the ICP rigid body registration algorithm, but in-
tegrates an unscented Kalman filter in order to allow track-
ing of articulated structures. The algorithm was applied to
track the human upper body kinematically in 3D data that
was acquired from four stereo cameras. Tracking of an up-
per body model with 14 degrees of freedom was achieved
with a frame rate of less than a second. The correct track
was maintained over challenging, several minute long se-
quences. Tracking precision was evaluated by comparison

against a ground truth trajectory obtained by manual label-
ing.

For the future, we plan to fuse the tracking system with a
feature tracker [14] that is capable of extracting hand and
head positions from the stereo image sequences. It can
be integrated seamlessly into the existing stochastic frame-
work by formulating an additional functional measurement
model. The feasibility of this approach has already been
proven by incorporating hand and head positions obtained
from manual labeling into the pose estimate. The results are
very promising, surpassing the precision achieved here even
with a one camera setup.
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