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Abstract— This paper describes the hardware and software
framework of AnnieWAY, an autonomous vehicle successfully
competing at all qualification stages up to the finals of the
DARPA Urban Challenge 2007 competition. Besides the hard-
ware premises for by-wire steering, braking, throttle control
and sensors, two frameworks for high-level decision making
and low-level control are described in detail. Furthermore, this
contribution points out AnnieWAY’s safety features for both
unmanned competition runs and manned testing. The system
proves to be flexible, expandable, and robust at the same time.

Index Terms— hardware framework, software framework,
autonomous, cognitive automobile, AnnieWAY, DARPA Urban
Challenge

I. INTRODUCTION

In 2006 the German Research Foundation (DFG)
started the Transregional Collaborative Research Center
28 - Cognitive Automobiles interconnecting research of
Universities and research centers in Karlsruhe and Munich.
Its main objective is the development of new methods for
machine perception and machine behavior for automobiles
- not only in theory but also in extensive simulation and in
practice. For the latter, an experimental vehicle based on
a VW Passat platform has been equipped with actuators,
computers, microcontrollers and sensors (see also [4], [5]).
In the DARPA Urban Challenge 2007 competition, the
vehicle was put to a first test by Team AnnieWAY, a spin-off
of the Collaborative Research Center, and made it into the
finals.
This paper gives a detailed description of the hardware
and software framework that the different algorithms
[6] for the competition were integrated into. The focus
of the framework lies on the clarity of the architecture,
the decoupling of components, interchangeability and
expandability of algorithms, and by-passing of the hardware
components for simulation and in-the-loop testing purposes.

The remainder of this paper is organized as follows: After
a brief overview on the hardware components in Sec. II,
the system architecture is presented in Sec. III which the
interaction of the hardware and software components is based
on. In Sec. IV the controller framework is described that
transfers high-level decision into low-level actuator com-
mands. As AnnieWAY’s algorithms only communicate via
a real-time database, Sec. V introduces its main features.

Sec. VI concludes this contribution with a description of the
realized safety features.

II. HARDWARE COMPONENTS

A. Vehicle platform and actuators

For the sake of reliability and time constraints a Volks-
wagen Passat Variant 2.0 FSI was chosen to be directly
equipped with by-wire steering, braking, and throttle control
by the manufacturer (Fig. 1). This includes amongst others
the installation of

• an electric steering motor
• a new prototype power brake unit
• an accelerator value simulator
• a larger alternator
• a LIN interface (e. g. turning lights)
All components are unobtrusively integrated into the

car interior lining and communicated with through a CAN
gateway which provides additional information available
on the series CAN-BUS. The manufacturer’s safety system
also allows for a quick and safe changeover from automatic
to manual control and vice-versa.

Since pulling into and backing out of a parking spot as
well as K-turns are required in the competition, an additional
longitudinal actuator was integrated into the selector lever
case of the automatic transmission in order to engage drive,
rear, and neutral gear.

B. Computing system hardware

The on-board computing system hosts all software for
perception and decision making. It has to provide sufficient
computing power and at the same time high data rates for
sensor data acquisition and low latencies for interprocess
communication. To fulfill these requirements a multicore
multiprocessor computer system using opteron processors
has been chosen. All opteron processors are interconnected
by HyperTransport (HT) at a speed of 3.2 GByte/s each.
This configuration can be regarded as a cluster-in-a-box, yet
infrastructure components like disks and power supply are
needed once only. Due to the employed high-efficent (HE)
CPUs, the system requires about 350W in total from the
DC/DC power supply.
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Fig. 1. Hardware components

For persistent storage, system data and logging data are
distinguished: The system files that seldom undergo changes
are kept on a shock-proof flash disk. In contrast, for logging
purposes a very fast raptor harddisk is used, providing 44-91
MB/s and sustaining accelerations up to 3g. For the unlikely
case of a disk failure, another protection feature comes into
effect: The disks are connected by hot-plug capable serial
ATA (SATA) links. In contrast to parallel ATA, a hardware
failure does not disturb the mainboard hardware function,
but generates only software signals. In our arrangement, if
the logging disks fail or the connection gets loose, only the
logger process dies, leaving the rest of the software running
and keeping the vehicle on course.
To cool the computing system, cold air from the standard air
condition system is supplied, filtered by tissue-pads before
entering the computer case.

C. Real-time microcontroller and distribution box

Since high level decision making runs at soft real time
at best, a hard real time capable rapid prototyping environ-
ment, namely dSpace’s Autobox, is used for the vehicle’s
lateral and longitudinal control. In addition to the processor
board DS1005, the Autobox’ setup provides reliable inter-
face boards for digital I/Os (DS4002), CAN (DS4302), and
ethernet (DS4502Eth).
The Autobox’ digital I/Os are connected to the distribution
box, which converts the TTL level into 12V via relay and
provides enough space for reliable connectors.

D. DGPS/INS and wheel speed sensor

The RT3003 Inertial and GPS Navigation System (IMU) is
a six-axis inertial navigation strap down system that incorpo-
rates an L1/L2 RTK GPS receiver for position and a second
GPS receiver for accurate heading measurements. Additional
wheel speed input taken directly from the Passat’s series
wheel speed sensor in combination with the OmniSTAR
correction signal, the system delivers better than 0.02m
positioning and 0.1◦ heading under dynamic conditions.
The wheel speed information is directly taken from the series

sensor by tapping the signaling line and processing it to the
required TTL specification via a simple electric circuit.

E. 2D and 1D lidars

AnnieWAY’s perception mainly relies on three laser scan-
ners: The Velodyne HDL-64E comprises 64 lasers that are
mounted on upper and lower blocks of 32 lasers each and
the entire unit spins at 10Hz. It inherently delivers a 360◦

horizontal and a 26.8◦ vertical field of view by providing
about one million points per second with a angular resolution
of 0.09◦ horizontally and 0.05m in distance. In addition to
the 3D position the sensor signals reflectivity of each point.
This allows to acquire information from visual textures,
like lane marker information, similar to monoscopic image
analysis.
Two additional Sick LMS 291 1D lidar scanners are mounted
horizontally both on the front and rear bumper in order to
observe obstacles that are too close to the vehicle for tracking
by the Velodyne lidar. Since small parking spots where not
an issue in the competition, the two Sick laser scanners were
dismounted in the finals.

F. E-stop system and warning devices

To ensure safe operation in autonomous mode, DARPA
required every team to implement several safety features
such as audible and visible warning signals and emergency
stop devices. Key part of the emergency stop system is
the Omnitech Robotics Darpa Grand Challenge Safety
Radio (DGCSR) [1] which delivers two signals to remotely
control the vehicle. The RUN/PAUSE signal switches
between manual and autonomous operation. When in
PAUSE mode, the vehicle decelerates to a safe stop and
waits for reactivation. When in RUN mode, audible and
visible warning signals are required.
Additionally, the DGCSR provides an ENABLE/DISABLE
signal for emergency stop purposes which can also be
triggered manually by two emergency stop buttons at both
sides of the vehicle. When in DISABLE mode, the vehicle
decelerates to a safe stop and the engine is shut off.
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To ensure safe operation even under software system
crash, a hardware-only solution has been implemented.
Our solution makes use of the manufacturer-equipped
immobilizer system, which immediately switches off the
engine when no ignition key is present. Instead of physically
removing the key, a simple relay circuit is used to cut its
power supply.
For emergency braking, another relay triggers the
manufacturer-equipped electronic parking brake, which
has a built-in emergency stop feature. When triggered at
higher speeds, it automatically activates all vehicle brakes
via the antilock brake system until the button is released or
the vehicle has come to a complete stop [8]. As soon as the
vehicle has come to a stop, the parking brake is activated
automatically, safely keeping the vehicle in place even at
slopes.
To keep the brake booster operational during emergency
braking, shutting off the engine is delayed by one second.
Fig. 2 shows the response of our vehicle speed after
triggering the emergency brake system.

Fig. 2. Emergency brake maneuver

G. Power unit

In order to handle the increased power consumption of
the vehicle, a larger alternator (220A) and a power unit
was installed. The latter comprises 2 batteries, DC/AC and
DC/DC converters, a charging device, fuses, and buffer
condensators. With this installation AnnieWAY’s computing
system as well as actuators and sensors are independent of
the car battery, even for hours of testing with a shut down
engine.

III. SYSTEM ARCHITECTURE AND DATA TRANSMISSION

In order to avoid extensive cabling between sensors,
controllers, and actuators, a BUS system can be found in
every modern vehicle. For the same and other reasons a real-
time data base (RTDB) as described in Sec. V, has been
introduced. Fig. 3 gives an overview on the complete system
with emphasis on the inherent data transfer.

The flow of information from the sensors to the actors
for vehicle control is shown. The LIDAR and IMU sensors
are connected to the computing system with a 100 MBit/s

ethernet connection. The raw data is stored into the RTDB
with the help of dedicated I/O modules. All algorithms from
obstacle recognition to decision making [6] are executed
on the computing system. The resulting path along with
velocity information and commands like turning signals
etc. are stored in the RTDB and immediately transmitted
by a UDP bridge to the Autobox via ethernet. In turn, the
Autobox sends vehicle sensor data paired with controller
status information back.

Fig. 3. System architecture and information flow diagram

The controller framework on the Autobox evaluates the
received data, provides it to the respective controllers, and
transfers their output to CAN and TTL signals as described
in Sec. IV. The CAN signal is sent to a gateway, which filters
the messages for safety reasons. The described hardware
components of Sec. II are connected to the gateway CAN
BUS as well as the CANtoLIN adapter handling head lights,
wipers, turning signals, etc. The rest of the components,
such as the beeper, the hazard lights and the DARPA e-stop
system are connected to the distribution box controlled by
the Autobox.

IV. REAL-TIME CONTROLLER FRAMEWORK

Since there is also a scientific focus on dynamic
vehicle control, a universal real-time framework has been
implemented in a MATLAB/SIMULINK environment as
depicted in Fig. 6 which different control algorithms can
be integrated into. The framework is set up in a way
that algorithms implemented in Simulink or C can be
validated online and offline as a matter of a mouse click
without any modifications. For offline simulations the
physical vehicle is automatically substituted by a veDYNA
model [7], a highly accurate simulation of vehicle dynamics.

The framework comprises of
• a RTDB-interface,
• interfaces to the actuators and vehicle sensors,
• cascaded control algorithms,
• safety and debugging features.
Through the RTDB-interface information about the

desired vehicle movement as well as LIN commands (e. g.
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turning signal) is transferred to the Autobox. In turn, sensor
information from the vehicle’s CAN BUS is provided to the
RTDB.
The cascaded control algorithms for steering, braking,
acceleration and gear shifting (see Figs. 4 and 5) take
control over the hardware communication and enable the
longitudinal and lateral controllers to simply use steering
angle and acceleration as control output.

Fig. 4. Steering control

Fig. 5. Brake control

V. REAL-TIME DATABASE

The real-time database for cognitive automobiles (KogMo-
RTDB)[2] acts as the central communication framework
for high-level decision making on the computing system.
Every process is connected only to the RTDB and to no
other process. For interprocess communication the following
method is applied:

• All processes have at least one logical database connec-
tion

• Every set of data is packed together into an “object”,
the smallest unit handled by the RTDB

• The sending process inserts an object with the relevant
data into the RTDB

• The receiving process uses the RTDB-API to find the
object and retrieve its data

• Whenever the sender has new data available, it imme-
diately updates the object

• The receiver waits for new data and is informed as soon
as it is submitted

• The data is automatically buffered within the RTDB for
an adjustable time interval, so it is possible to retrieve
older data, e.g. to combine lidar data points with the
correct GPS-position at the time the measurement has
been performed

• Tracked obstacles are inserted as individual objects,
updated with each lidar rotation and removed when they
are lost

Due to the efficient implementation of the real-time
database, it takes only 8.3µs to update an object and 6.4µs
to retrieve it. The full communication from one process to
another takes 29.6µs (see also [2], [3]). Due to the low
overhead, a maximum of computing power is left for the
perception and decision processes (AI modules).

A. Simulation and logging

Using the KogMo-RTDB architecture facilitates the ex-
change of arbitrary software modules. As long as the ex-
changed modules write the same objects into the RTDB, the
other modules will not notice the difference. To test the AI
modules, simulation modules were introduced that compute
the dynamic motion of the own vehicle according to the low-
level lateral and longitudinal control strategy and write the
result into the vehicle status and position objects that would
be written by the Autobox UDP bridge and the I/O processes
from the GPS receiver. With this setup, multiple autonomous
vehicles with multiple decision making processes can be
simulated simultaneously as well as joystick driven cars,
testing the correct interaction.

The centralized data storage offers the opportunity to
record all data together. With the help of the RTDB recorder
all objects can be logged to disk. Whenever a new object
is created, destroyed, or an existing object is changed, the
new state is recorded, including an absolute timestamp with
a nanosecond resolution. Afterwards, the data log can be
replayed in real-time or with a different speed into another
RTDB, giving several options for simulation:

• By watching all replayed objects within the database,
performance measurements for the involved modules
can be taken.

• Only a selected set of objects can be replayed, so an
algorithm can be tested multiple times under equal
conditions.

• The results of a reworked algorithm can be recorded
again together with the original source data.

• As raw data is also recorded, parameter modifications
can be tested offline.
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Fig. 6. MATLAB/SIMULINK controller framework

• The substitution of real-world sensors with the accord-
ing simulation model is possible.

VI. SAFETY CONCEPTS

The most frequently activated safety measure that proved
an important feature for testing has been the seamless
switching between autonomous mode and manual interac-
tion by a safety driver. As soon as either the gas or the
brake pedal is applied, or the deviation between desired
and measured steering angle exceeds a certain threshold, the
system automatically switches to manual mode. To ensure
safe operation when no safety driver is present, such as in the
actual competition, several additional safety measures were
implemented.

A. Manual hardware override

The manufacturer’s emergency system allows a safety
driver to regain control over the vehicle in two different
ways: First, all actuators are designed so that they can always
be overridden by a human operator. In case this is not
sufficient, there are two easily accessible emergency buttons
- one in the center console and another one next the brake
pedal - which completely switch off all actuators and return
control to the driver.
As this system was already integrated by the manufacturer,
it is highly safe and reliable. In manual control, operation
does not differ from a series-production car, so the vehicle
can be used legally on the street.

B. Hardware emergency stop

For operation without a safety driver, a remotely controlled
emergency system based on the DARPA-supplied Omnitech
DGCSR is used. When activated, the vehicle has to come
to a complete stop and, according to DARPA rules, shut off
the engine. Our solution is based on the electronic parking
brake and the electronic immobilizer system. This solution
makes use of vendor-supplied components only, thus it does
not need any additional hardware except for some relays
and a time delay circuit and is therefore highly reliable. As
another advantage, the vehicle can easily be recovered from

DISABLE mode by simply removing the ignition key and
restarting the engine.

C. Software emergency stop

In addition to the hardware emergency stop, the DGCSR
signals is delivered to the Autobox, which itself also triggers
the brakes via the CAN BUS when receiving a PAUSE or
DISABLE signal. Thus even in the unlikely case of an error
in the hardware emergency stop, the Autobox would ensure
that the vehicle comes to a safe stop. Additionally, if no valid
data is received from the main computing system for a certain
amount of time, the Autobox internally switches to PAUSE
state and thus brings the vehicle to a controlled stop. As soon
as the main computer is sending valid data again, the system
switches back to RUN mode and the vehicle continues its
mission.

D. Software monitoring

In case of a detectable software misbehavior, it is safer for
the unmanned vehicle to stop itself automatically rather than
being ultimately e-stopped by the remote control, which
inevitably leads to a disqualification in the competition. So a
software monitoring system was designed to detect failures
and to bring the vehicle to a safe stop. The monitoring
system in Fig. 7 consists of several components:

1) Data watchdog: It indirectly watches the processes by
looking at the data objects they write into the RTDB. For
this analysis the watchdog supervises only one connection
to the RTDB. The monitored processes do not have to fulfill
any prerequisites, like dedicated debugging ports or the like.
By looking at the commit timestamp of every object the
watchdog can decide whether a process is able to meet its
deadlines. If a hardware sensor fails, the I/O process (shown
in Fig. 3) ceases from updating its sensor object, and the
failure is observed by the watchdog. By looking at all
process objects the watchdog can notice dead processes and
restart them. In case of the death of a process, its objects are
preserved for a predefined time (e.g. 5 seconds), so the data
could be used for a possible emergency maneuver along the
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Fig. 7. Monitoring system overview

previously calculated path. By adding object-type specific
modules, the watchdog could look into the data part of
objects and base its emergency reactions on semantic checks.

2) Process restarter: This component is used by the
data watchdog to restart individual processes. At the system
startup, it initially starts all processes. This also includes a
full automatic start at a spurious reboot in case of a short
power failure.

3) Stop sender: In case of serious troubles, e. g. if the
immediate restart of a process fails, the vehicle has to come
to a safe stop as soon as possible. For reliability, a separate
module sends an emergency brake signal to the Autobox as
outlined in Sec. II-F and does neither depend on the UDP
bridge nor the RTDB, which could potentially be the reason
for the failure.

4) RTDB watchdog: Also, the unlikely case that the
RTDB or the data watchdog crashes has to be treated.
The RTDB watchdog is independent from the RTDB. It
periodically tries to connect to the RTDB. It also checks
for the data watchdog. If a check fails, the RTDB watchdog
immediately stops the whole software system and triggers
an emergency brake maneuver using the stop sender. If
the data watchdog is unable to restart a process or the
maximal amount of restarts is reached, it terminates itself,
likewise causing an emergency stop. After the stop, the
whole software system is restarted.

VII. RESULTS AND CONCLUSIONS

The proposed framework has been implemented in the
vehicle base and has been extensively tested in simulations.
In particular, the seamless migration capabilities of software
from simulation to in-the-loop testing and to on-vehicle
operation without necessity for any software changes was
found to expedite the engineering process and increase the
robustness of the experiments. AnnieWAY has successfully
competed in all qualification stages where it demonstrated

its ability to autonomous driving in urban traffic including
the following:

• driving in lane obeying speed limits and safety distances
to preceding vehicles

• passing of static obstacles
• u-turn and k-turn
• compliance with legal order of precedence at intersec-

tions
• obstacle field and parking lot navigation
• dynamic rerouting
• merging into moving traffic
• emergency braking maneuvers

AnnieWAY was among the 11 finalists that were selected by
DARPA. In the finals the vehicle navigated through a large
portion of the terrain and stayed among the few finalists that
drove collision-free. It finally came to a software deadlock
situation that still lead AnnieWAY into a safe mode but
caused its stop. That situation had required rebooting of
the main computer which was not admitted. Although the
competition revealed some room for improvements of the
different algorithms, AnnieWAY’s hardware and software
framework fulfilled all requirements in terms of simplicity,
flexibility, expandability, and robustness and will not be
significantly modified for future research activities.
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