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Abstract

This paper reports on AnnieWAY, an autonomous vehicle that is capable of
driving through urban scenarios and that has successfully entered the finals
of the DARPA Urban Challenge 2007 competition. After describing the main
challenges imposed and the major hardware components, we outline the un-
derlying software structure and focus on selected algorithms. Environmental
perception mainly relies on a recent laser scanner which delivers both range
and reflectivity measurements. While range measurements are used to pro-
vide 3D scene geometry, measuring reflectivity allows for robust lane marker
detection. Mission and maneuver planning is conducted via a concurrent hier-
archical state machine that generates behavior in accordance with California
traffic laws. We conclude with a report of the results achieved during the
competition.



1 Introduction

The capability to concurrently perceive a vehicle’s environment, to stabilize its motion and to
plan and conduct suitable driving maneuvers is a remarkable competence of human drivers.
For the sake of vehicular comfort, efficiency, and safety, research groups all over the world
have worked on building autonomous technical systems that can in part replicate such capa-
bility (Bertozzi et al., 2000; Franke et al., 2001; Nagel et al., 1995; Thorpe, 1990; Dickmanns
et al., 1994).

The DARPA Urban Challenge 2007 has been a competition introduced for expediting re-
search on this kind of systems. Its finals took place on Nov. 3rd, 2007 in Victorville, CA,
USA. As in its predecessors, the Grand Challenges of 2004 and 2005 (Darpa, 2005; Thrun
et al., 2006), the vehicles had to conduct missions fully autonomously without intervention
of human team members (see Fig. 1). In contrast to the earlier competitions, the Urban
Challenge required operation in a mock urban scenario, including traffic made up from both
competing autonomous vehicles and human driven cars. The major challenge imposed was
collision-free driving in traffic in compliance with traffic rules (e.g. right of way at intersec-
tions) while completing the given mission. This required for passing parked cars, performing
u-turns, parking, and merging into regular flow of traffic. Finally, recovery strategies had
to be demonstrated in deadlock situations or in traffic congestions that cannot solely be
handled by strictly following traffic rules.

Figure 1: AnnieWAY stopping at an intersection on track A during the NQE.

The scope of Team AnnieWAY was to extract early research results from the Cognitive
Automobiles project that would allow real-time operation of the vehicle under the restricted
traffic environment in the Urban Challenge. Its team members are professionals in the fields
of image processing, 3D perception, knowledge representation, reasoning, real time system
design, driver assistance systems and autonomous driving. Some of the team members were
in the ’Desert Buckeyes’ team of Ohio State University and Universität Karlsruhe (TH) and
developed the 3D vision system for the Intelligent Off-road Navigator (ION) that traveled
successfully 29 miles through the desert during the Grand Challenge 2005 (Özgüner et al.,
2007; Hummel et al., 2006).



2 Hardware Architecture

The basis of the AnnieWAY automobile is a VW Passat Variant (see Fig. 2). The Passat has
been selected for its ability to be easily updated for drive-by-wire use by the manufacturer.
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Figure 2: Architecture and hardware components of the vehicle.

2.1 Computing system

AnnieWAY relies on an off-the-shelf quad-core computer offering enough processing capacity
to run all required software components for perception, situation assessment, and trajec-
tory generation. The chosen hardware architecture is optimally supported by the real-time-
capable software architecture which is described in Sec. 3.

The main computer is augmented by an electronic control unit (ECU) for low-level control
algorithms. It directly drives the vehicle’s actuators. Both computer systems communicate
over an Ethernet link. The drive by wire system as well as the car odometry are interfaced
via the Controller Area Network (CAN) bus. The DGPS/INS system allows for precise
localization and connects to the main computer and to the low-level ECU.



2.2 Laser-based range and intensity sensors

Since lidar units produce their own light, low light conditions have no effect on this kind
of sensor. In our car we use a rotating laser scanner comprising 64 avalanche photo diodes
that are oriented with constant azimuth and increasing elevation covering a 26.5◦ vertical
field of view. The lasers and diodes are mounted on a spinning platform that rotates at a
rate of 600 rpm. Thus, the lidar provides a 360◦ field of view around the vehicle producing
more than 1 million points per second at an angular resolution of 0.09◦ horizontally and a
distance resolution of 5 cm with distances up to 100 m. The result is a dense, highly accurate
scan representation of almost the entire scene surrounding the vehicle. For each point, the
sensor measures range and reflectivity. The reflectivity map is well suited for monoscopic
image analysis tasks like lane marker detection. The inherent association of each reflectivity
pixel with a range measurement alleviates information fusion of these data significantly. For
parking maneuvers, the main lidar is supported by two 2D laser scanners that cover the area
directly in front and behind the vehicle.

2.3 DGPS/INS

A precise localization is provided by a dead reckoning system which consists of an advanced
six-axis inertial navigation system with an integrated RTK/GPS receiver for position and
a second GPS Receiver for accurate heading measurements. Odometry is taken directly
from AnnieWAY’s wheel encoders. The dead reckoning system delivers better than 0.02 m
positioning accuracy under dynamic conditions using differential corrections and 0.1◦ heading
accuracy using a 2 m separation between the GPS antennas.

2.4 Emergency stop system

As the vehicle had to operate unmanned, a wireless stop system has been integrated for safety
reasons as required by the organizer. This E-Stop system allows to remotely command run-,
pause-, or emergency-stop mode. The system is connected directly to the ignition and the
parking brake to ascertain appropriate emergency stop regardless of the state of the computer
system. Run and pause mode are signaled to the low-level control computer.



3 Software architecture

The core components of the vehicle are the perception of the environment, an interpretation
of the situation in order to select the appropriate behavior, a path planning component and
an interface to the vehicle control. Fig. 3 depicts a block diagram of the information flow
in the autonomous system. Spatial information from the sensors is combined to a static
2D map of the environment. Moving objects are treated differently. Such dynamic objects
also include traffic participants that are able to move but have zero velocity at the moment.
To detect moving objects, the spatial measurements of the lidar sensor are clustered and
tracked with a multi-hypothesis approach. To detect possibly moving objects, a simple form
of reasoning is used: If an object has the size of a car and is located on a detected lane, it is
considered to be probably moving. Lane markers are detected in the reflectance data of the
main lidar. Together with the road network definition file (RNDF), the absolute position
obtained from the dead reckoning system and the mission data file (MDF), this information
serves as input for the situation assessment and the subsequent behavior generation. Most
of the time, the behavior will result in a drivable trajectory. If a road is blocked or the car
has to be parked, modules for special maneuvers, like the parking zone navigation module,
are activated.
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Figure 3: Overview of the software architecture and the information flow.

All data exchange between processes is done via a central communication framework, the
real-time database for cognitive automobiles KogMo-RTDB (Goebl and Färber, 2007b). All
data within the RTDB is represented as time-stamped objects. The centralized data storage
gives the opportunity to easily log and replay all or selected objects. For performance
reasons the database is completely memory based. It is capable of distributing even large
data objects, like lidar raw sensor data, to several processes and at the same time relay
vehicle control commands at a rate of 1 kHz between a vehicle control process and the ECU
(Goebl and Färber, 2007a).



4 Perception

4.1 Environmental mapping

Accurate and robust detection of obstacles at a sufficient range is an essential prerequisite
to avoid obstacles on the road and in unstructured environments like parking lots. The
basic idea is to maintain an evenly spaced 2D grid structure g where each cell gi represents a
random variable. Each random variable is binary and corresponds to the occupancy it covers.
Therefore, in the literature this approach is also called occupancy grid mapping ((Thrun,
2002; Thrun, 2003)) which has the goal to calculate the posterior over maps p(g|z,x) where
z is the set of all measurements and x is the path of the vehicle defined through a sequence
of poses. An example of a resulting evidence map is depicted in Fig. 4.

Figure 4: Example for the evidence mapping of 3D lidar data onto a 2D grid. Darker spots
correspond to high evidence for an obstacle while white cells correspond to drivable area.
Unknown cells are marked as grey.

AnnieWAY uses a grid that is always centered at the vehicle position but aligned with a
global coordinate system. The grid is shifted at each time step to account for the new
vehicle position. This restricts the size of the map to an area around the vehicle while the
cells are bound to an absolute position. The size of each grid cell is 15cm×15cm. Fig. 5
shows an example of our mapping algorithm. The grid is generated mainly from multi-layer,
high resolution lidar data. Algorithms for the integration of low resolution lidar data can be
found in (Thrun, 2002; Thrun, 2003; Biber and Strasser, 2006; Bosse et al., 2003).

Integrating the data of the laser scanners into an environmental map consists of three steps.
In the first step the range measurements zl∈L of one revolution L are projected into a global
coordinate system under consideration of the vehicle’s motion xl. In the second step, different
measures are extracted from the data for each cell gi. Two straightforward measures are the



number of measurements ni and the number of different laser beams bi. The most important
measure we use is the elevation difference

ei(gi, zl) = max
l∈L

h(gi, zl)−min
l∈L

h(gi, zl) , (1)

where h is the vertical component of each measurement.

In the third step, we compute the evidence for each measure by using an inverse sensor
model. E.g. the inverse sensor model for the elevation difference returns locc if ei exceeds
a certain threshold (e.g. 15cm) and lfree otherwise. The inverse models for ni and bi are
slightly more complex since they are learned by a supervised learning algorithm. The result
of the learning procedure is a forward model that accepts gi and ni or bi respectively as
parameters and returns the appropriate evidence.

Finally, we can compute the combined occupancy evidence oi,t as a weighted sum of the
three partial evidences:

oi,t = oi,t−1 + α1 · ni + α2 · bi + α3 · ei , (2)

and the estimated occupancy for a single cell

p(gi|z,x) = 1− 1

1 + exp oi
. (3)

As already mentioned, AnnieWAY is equipped with different sensors and ideally one wants
to integrate information from all sensors into a single map. A naive solution is to update
the map for each sensor separately which neglects the different characteristics of each sensor,
e.g. field of view, maximal range and noise characteristic. To ensure safe driving we use the
most pessimistic approach to fuse sensor data: We compute the maximum of all estimated
occupancies, where K is the number of sensors:

p(gi) = max
k∈K

p(gki ) (4)

If any sensor detects a cell as occupied it will be occupied in the combined map.

The standard occupancy grid mapping algorithm suffers from a major drawback: it is only
suitable for static environments. Driving environments are typically highly dynamic and the
result is very poor without modifications. Moving objects create virtual obstacles with high
evidence while moving. To overcome this problem we introduce a temporal evidence decay.
The evidence is reduced at each time step by a factor εt for cells which are not updated. The
intuition is that the uncertainty increases for cells not augmented by any sensor. Equation
2 turns now into



(a) Map generated from a parking lot. (b) Aerial imagery of the parking lot with a detail
photo of the curb in the lower right corner.

Figure 5: Example for a generated evidence map and an aerial image of the corresponding
region.

oi,t = argmax(0 , oi,t−1 + α1 · ni + α2 · bi + α3 · ei − εt) , (5)

where the argmax operator enforces positive evidences.

5 Tracking of dynamic objects

Driving in urban environments requires to capture and estimate the dynamics of other traffic
participants in real-time. AnnieWAY uses a processing pipeline that takes in raw sensor data
(from different lasers) and generates a list of dynamic obstacles, along with their estimated
locations, sizes, and relative velocities. This pipeline consists of a number of parts, including

1. Data preprocessing: removing irrelevant readings: noise, ground readings, readings
from obstacles outside the road, etc.

2. Obstacle detection: creating a list of obstacles raw readings...includes segmentation
for laser

3. Obstacle tracking: corresponding obstacles time step with those of another time
step in order determine their headings, relative velocities, etc.

4. Obstacle post-processing and publishing

The data preprocessing step used for tracking was discussed earlier as part of Sec. 4.1. The
result of this part is a grid map with occupancy probabilities attached to each cell. All the
sensors’ information has been condensed within this grid.

The first stage of dynamic object tracking is the object detection which is—in the sense of a
statistical approach—equivalent to the identification of object hypothesis. AnnieWAY uses
an occupancy grid map which has been segmented using a connected components approach.
Therefore, we treat each grid cell as a node in a graph G. Two points are connected if and



(a) High resolution lidar data. (b) Tracked vehicles on segmented grid map.

Figure 6: Tracking of dynamic objects with occupancy grid map and linear Kalman Filter.

only if the distance between them is within a threshold d (e.g. 0.5 m). We then find all the
connected components in the graph and assign the same label to those cells. To reduce noise,
we discard any connected component with less than a minimum number of cells. Due to the
uniform angle resolution of the scanners, the number of cells an object consists of depends
on its distance. The closer an object is located to the scanner, the more laser rays will hit
the object.

The connected components are analyzed in a second step for their probability of being a
traffic participants. Several heuristics are used based on their shape and location relative
to the road network. Only ’good’ candidates are augmented in the following tracking step.
Fig. 6(b) displays the resulting objects after post-processing.

With this procedure, not all captured and tracked objects are relevant to be published to
other modules. This is due to noisy observations, occlusion, dynamic objects eaving of our
sensors’ fields of view, etc. All these effects lead to unlikely object hypotheses, but never-
theless they are internally tracked. In order to decide when to publish relevant obstacles, we
define a notion of confidence that works similarly to log-likelihood updates in an occupancy
grid map as mentioned earlier. If an obstacle is observed, we increment its confidence, in
case it goes unobserved in our field of view, we decrement it. Thus defined, the confidence
allows us to set minimum thresholds for the tracking and publishing obstacles: if the object’s
confidence exceeds the threshold, the obstacle is published to all other attached modules.
If its confidence undercuts a certain threshold, the object is removed from the obstacle list.
Hypotheses within the both thresholds are internally tracked, but not published.

Tracking of dynamic objects mainly serves two purposes. First, it aids the correspondence
of obstacles detected in one sensor frame at time t = k with those in subsequent sensor
frames at time t = k + 1. This can be easily achieved with distance-based methods or
more sophisticated 3D fitting and registration algorithms like iterative closest point (ICP).



However, these methods do not take into account the noise and uncertainty of our sensors.
The second and equally important purpose of tracking is to return estimates of other vehicle’s
relative velocities and headings.

AnnieWAY uses a linear Kalman filter (Kalman, 1960) to model a simplified dynamic obstacle

with its appropriate state vector
[
x, y, ẋ, ẏ

]T
. Obviously, this model ignores completely

the underlaying physical and non-linear behavior of a car, but the frequency of sensor updates
(10 Hz) means that cars move very little between them which allows us to assume linear
dynamics. Transition updates are linear with an overlaid Gaussian noise characterized by
its covariance matrix Q:

T =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Q =


0 0 0 0
0 0 0 0
0 0 σ2

q,ẋ 0
0 0 0 σ2

q,ẏ

 . (6)

Since we are extracting the obstacle’s position
[
x, y

]T
from the measurement, the obser-

vation matrix O looks as described below. Further, we assume mutual independent Gaussian
noise sources characterized by the covariance matrix R:

O =

 1 0 0 0
0 1 0 0
0 0 1 0

 , R =

[
σ2
r,x 0
0 σ2

r,y

]
. (7)

After performing an observation, we do not know which detected obstacles within the mea-
surements are already tracked or if they are new objects. Thus, we are required to solve a
problem of correspondence between observations and the internally tracked dynamic obsta-
cles. This is a nontrivial problem, requiring that we define both a measure of distance and
a procedure for finding the optimal correspondence. AnnieWAY uses a maximum-likelihood
matching algorithm to find the optimal assignment of observations to existing Kalman filters.
This matching is a one-to-one function from filters to observations.

6 Lane marker detection

Digital maps of a road network are often not up-to-date or resemble the real road network
only approximately. Therefore, a local offset between the digital and the real road network
may exist. The detection of lane markers helps to minimize this offset. An accurate and
continuous detection of lane markers even enables the creation of new road network maps.

In the context of this paper, lane markers can be either painted markings or curbs. Painted
lane markings are detected within the intensity readings of the lidar whereas curbs cause
small height changes in the range data of the lidar. A combined intensity/range plot is
depicted on the left side of Fig. 8. Both kind of lane markers form one dimensional structures
that can be approximated by line segments locally. In contrast to camera based intensity



images, the laser reflectivity and range data is insensitive to background light and shadows.
However, the sensor samples the road very sparsely, especially at distance. In order to
increase the density of lane marker information, subsequent scans are registered spatially and
accumulated employing absolute positioning information from the dead reckoning system.
The first step in order to obtain a dense bird eye’s view representation of lane marker
features is a classification of data points in each scan into obstacle and ground by the
algorithms described in Sec. 4.1. Lane markers are expected to occur on the road surface
(painted markers) or at its borders (curbs) only. Therefore, points of each individual laser
labeled as ground are searched for large continuous chunks (chunks that do not exhibit height
changes exceeding the height of curbs) representing the road. Only within those large chunks
high intensity gradients are detected. In addition, only measurements exhibiting absolute
intensities larger than the median intensity of each laser scan are taken into account. Both
types of features – painted markings and curbs – are mapped into a feature grid g(x) similar
to the evidence grid described in Sec. 4.1, see Fig. 8(right). Features are detected first in the
single scans and mapped afterwards (instead of creating a dense map first and extracting the
features afterwards) to minimize the effect of errors in the vehicle localization. A summary
of the detection algorithm is shown in Fig. 7.
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Figure 7: Overview of the offset estimation and street topology mapping

Lane segments are detected by applying the Radon transform to the accumulated feature
map data. Since the Radon transform is an algorithm operating globally on the map it
proved to be robust against occlusions, noise and outliers. Compared to the Hough trans-
form, the Radon transforms exhibits the advantage of a calculation time independent of
the numbers of lane markers and the capability to handle gray-scale images efficiently and
without thresholding. For a real-time calculation in the car, an implementation exploiting
the central-slice theorem was used (Bracewell, 1990). The position and direction of lane
boundaries can be calculated by locating their corresponding maxima in the Radon plane.
Since we observed a systematic error of RNDF data in some areas, it appeared sensible to
determine a correcting offset from the detected lane markings. To accomplish this, the lane
markers specified in the RNDF are first projected into the Radon plane. Assuming that
the offset of the road map data does not exceed one lane width, the deviation is obtained
in a second step from the distances to the maxima in the Radon plane closest to the pre-
dicted positions. Assuming further that predicted and estimated lane boundaries are close
to parallel, the vertical distance is sufficient to determine the offset.



Figure 8: Combined range and intensity readings of the lidar (left) and lane marker map
with the estimated current lane segment and an overlay of a part of the original road network
map (right).



7 Reactive Layer

Our system integrates a reactive layer that allows AnnieWAY to modify a planned trajectory
based on GPS waypoints. While the obstacle tracker easily handles objects like cars, small or
extended objects like rocks or pavement edges are more difficult to track explicitly. Hence, we
integrated a reactive mechanism that gets as input a vehicle-centered occupancy grid (built
from the lidar data) and the trajectory planned so far. The algorithm then first evaluates,
whether the given trajectory is clear and - only if not - starts a more complex evaluation of
the grid that results in a modification of the initially given trajectory. This mechanism is
biologically motivated and resembles an insect’s use of its antennae to avoid obstacles. What
are antennae in nature, are precomputed trajectory primitives (we call them tentacles) in
our system. Here, all tentacles are simple circular arcs, but depending on the speed of the
vehicle, the parameters of these arcs vary such that at high speeds no dangerous actions can
be taken (see Fig. 9). To select the appropriate primitive the occupancy grid is investigated
in an area around and underneath that primitive. The final selection is done on the basis of
four aspects:

1. Could the vehicle drive the primitive without causing damage? In particular, within a
distance the vehicles needs to stop, is the ground along the tentacle clear of anything
having a height above 0.1m?

2. How smooth is the terrain under the primitive?

3. How far is the next obstacle along that primitive?

4. How well does the primitive follow the original trajectory?

By considering these aspects as detailed more precisely in (v. Hundelshausen et al., 2008)
the vehicle follows the given trajectory if possible, but avoids obstacles, if not. To coordinate
this reactive layer with the obstacle tracker, tentacles were only evaluated up to the first
explicitly tracked obstacle. In this way, only unexpected obstacles were avoided.

As detailed in (v. Hundelshausen et al., 2008) the overall reactive mechanism was tested
excessively by intentionally defining bad GPS-trajectories, e.g having a large offset to the
real road (passing through the front gardens of neighboring houses), passing through a traffic
circle (instead of leading around it), abbreviating a crossing through a complete house, and
other tests including moving vehicles. At the final of the urban challenge this mechanism
was important at narrow passages.

Figure 9: The reactive system uses a precomputed set of motion primitives that vary with
the speed of the vehicle. As detailed in (v. Hundelshausen et al., 2008), those primitives are
used to evaluate a vehicle-centered occupancy grid to avoid obstacles.



8 Planning

The major challenge imposed by the competition was collision-free driving in traffic in com-
pliance with traffic rules, e.g. right of way at intersections. It included special maneuvers,
like overtaking, u-turns, parking, and merging into regular flow of traffic while completing
the given missions. To accomplish this, the robot must be capable of analyzing the situation,
assessing developments, choosing the appropriate behavior and executing it in a controlled
way. AnnieWAY uses a planning module organized in three layers to address these problems:

1. Mission Planning computes a strategic plan to accomplish mission

2. Maneuver Planning applies California traffic rules and plans actual driving ma-
neuvers (e.g. turns, intersection, passing) and generates a corresponing path.

3. Collision Avoidance tests whether the planned path is collision free taking into
account the obstacle map acquired from the perception module. If a collision is
probable it chooses an alternative path.

In a first preprocessing step, all elements of the RNDF (lanes, checkpoints, exits, etc.) are
converted to a graph-based, geometrical representation. RNDF waypoints form the vertices
of the graph; lanes and exits are represented by graph edges. In addition to waypoints, a
number of vertices interpolating between waypoints are automatically added to the graph.
We make use of the geometric structure of roads to insert these supporting waypoints with
a polynomial road model (splines). In addition to this, we add virtual turnoff lanes at inter-
sections. A virtual lane connects each exit waypoint with a corresponding entry waypoint.
It is generated assuming standard intersection geometry. Information such as distances,
lane boundaries, and speed limits annotate the respective graph edges. These annotations
can be updated dynamically, to incorporate results from the perception module (e.g. road
blockages).

Dynamic objects recognized by the perception module are matched to the most probable edge
of the geometrical graph representation, based on their position and orientation. This allows
for attributing a role to every object, e.g. identification of a leading vehicle, or semantically
localizing an object within an intersection scenario.

Mission Planning is the most abstract form of planning used by AnnieWAY. It finds the
optimal route from one checkpoint to another using an A* graph search algorithm operating
on the internal representation of the road network. The heuristic for the search is the minimal
travel time to the goal based on the Euclidean distance whereas the costs are defined by the
estimated travel time for all edges traversed. The search process is repeated for every pair
of subsequent checkpoints in the MDF. In this way the mission planner finds the optimal
route traversing all mission checkpoints. Generally the mission planner runs only once while
loading the mission file and whenever AnnieWAY has to diverge from the planned route
caused by situation dependent reasons (e.g. road blockades). The route is passed on to the
downstream maneuver planning as a sorted list of edges to be traversed.

The high-level plan and the AnnieWAY’s current position is used by Maneuver Planning to
compute actual driving maneuvers. The maneuver planner is implemented as a Concurrent



Hierarchical State Machine (CHSM) with every state representing a driving behavior. The
key aspect of a hierarchical state machine is to design and group the states in a way
that a sub-state is a specialization of its parent state, and only extensions to the more
general behavior of the parent state have to be modeled explicitly. Thereby, the functional
redundancy of the states and the amount of transitions is reduced, so it is easier to capture
the complex reactional behavior of a system. Fig. 10 shows the UML state chart of the
machine’s main level, with important sub-states annotated as well.
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Figure 10: Overview of the concurrent hierarchical state machine used to model traffic
situations and behavior

Every behavior the car is capable of, is modeled as a state organized within a state hierar-
chy. The state Drive comprises all regular driving maneuvers on normal roads. It has several
sub-states that cover different situations like following the course of a lane (DriveOnLane),
making a k-turn (DriveKTurn) or changing the lane (LaneChange). All behavior at inter-
sections is handled by the Intersection state. It comprises some specialized sub-states for



different types of intersection. Some more insight on the real functionality and architecture
of the state machine is given in Sec. 9, where handling of moving traffic in an intersection
scenario is explained in detail. The navigation in unstructured environments and parking
maneuvers is controlled by the state Zone and its sub-states. These states control invocation
of the navigation module described in Sec. 10. In some situation it becomes necessary for the
robot to replan its route, e.g when the road ahead is blocked. This is triggered by the state
Replan, that re-activates the mission planning module. Most states implement a recovery
state that is activated whenever the car makes no progress at all for a certain amount of
time. If all situation dependent recovery handling fails, a global recovery state is invoked to
navigate back on track using the navigation module.

When all situation assessment has taken place and all state transitions are made, the reached
state generates a path stub, that is input to the closed loop control module (Sec. 11). It
reaches approximately 30 m ahead and consists of densely sampled waypoints combined
with heading and curvature information. In the most common case, when the car is driving
on roads stored within the graph representation, the trajectory is generated in a straight
forward way by sampling the graph edges ahead. These points are smoothed by a spline
approximation to generate a continuous curvature path. In areas that lack road geometry
description and whenever sensible localization within the road network graph is not possible,
the free navigation module in Sec. 10 is used to plan a collision free path to a given target
configuration.

Paths generated by the state machine may be overwritten by the low level avoidance system
described in Sec. 7.



9 Moving traffic

This section describes an algorithm which reduces dynamic maneuvers, such as merging into
moving traffic and crossing intersections with oncoming traffic, to static maneuvers, such as
simple turns. Unfortunately, the actual behavior of the other traffic participants cannot be
exactly predicted. Therefore certain assumptions, simplifications, and conservative estimates
have to be made in an appropriate way, such that the unmanned vehicle operates safely as
well as effectively.

9.1 Problem abstraction and simplifications

In the following, it is assumed that (1) the other traffic participants with the right of way
neither slow down nor speed up, (2) stay in the middle of the road, (3) AnnieWAY’s longi-
tudinal controller accelerates at a known constant rate until the desired maneuver velocity
is met, and (4) all traffic participants’ velocities and positions are known.

Assumption (1) and (2) have to be made, since the actual behavior of the other vehicles (Bi)
cannot be precisely predicted. Therefore it is assumed, that the considered vehicles travel at
a constant velocity in the center of the priority road. Introducing t

BP
as the time needed for

traveling a distance d
BP

in the road center and vB as the other vehicle’s constant velocity,
leads to

t
BP

=
d
BP

vB
. (8)

Assumption (3) is based on the longitudinal control strategy, which is described in Sec. 11.
The resulting drive-off characteristic v(t) from a start velocity v0 to a new desired velocity
vd can be seen on the left in Fig. 11 as a dashed line along with the approximation v̂(t) as a
solid line.

Figure 11: Actual and approximated drive-off characteristic

Here tsw denotes the time, when the approximated velocity v̂(t) reaches vd. It can be calcu-
lated by

tsw =
vd − v0

asat

. (9)

An integration of v̂(t) over time (see Fig. 11) yields the traveled distance of AnnieWAY (A)

d
AP

(t) =

{
v0t+ asat

2
t2 t ≤ tsw

v0tsw + asat
2
t2sw + vd(t− tsw) t > tsw,

(10)
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Figure 12: Different moving traffic scenarios

Solving (10) for t with

ta =
d
AP
− v0tsw − asat

2
t2sw

v0 + asattsw
+ tsw (11)

yields

t
AP

=

{
ta ta > tsw

1
asat

(−v0 +
√
v2

0 + 2asatdAP ) ta ≤ tsw,
(12)

whereas the ambiguity of the solution was resolved.
Fig. 12 illustrates the transfer of different traffic scenarios to the equivalent graphs, whose
generic graph can be found left in Fig. 13 along with the four relevant quantities to be
measured, the current distances dA(t) and dB(t) to MP , and the current velocities vA(t)
and vB(t) (assumption (4)). As can be seen, traffic participants are all assumed to be point
masses. Based on the previous equations and graphs, the movement of the vehicles can be
predicted and used for collision detection in the next section.

9.2 Spatial and temporal verification

On the one hand, at low speed it has to be guaranteed that the autonomous vehicle avoids
collisions by not getting too close to other traffic participants. Therefore spatial safety
distances were introduced (see Fig. 13, right-hand side). On the other hand, spatial safety
distances are not a proper measure at higher speeds. In this case a temporal safety distance
assures certain time gaps between AnnieWAY and the other traffic participants. Since
time gaps become too small referred to the ground at low speed in turn, both spatial and
temporal conditions have to be fulfilled at the same time.

For simplicity’s sake only a single vehicle is considered initially. In order to be the first to
enter the critical area, the following two conditions have to be met:

1. At time tBPB1
, when B reaches PB1, A has to be beyond PA2.

freespat,AB = (dAP (tBPB1
) > dA +DA2) (13)



Figure 13: Measured quantities and geometric parameters of the graph

2. After A has passed MP , a given time span ∆TAB has to elapse, before B reaches
MP .

freetemp,AB = (tBMP > tAMP + ∆TAB) (14)

In order to be the second to enter the critical area, the following two conditions have to be
met:

1. At time tBPB2
, when B reaches PB2, A may not have passed PA1 yet.

freespat,BA = (dAP (tBPB2
) < dA −DA1) (15)

2. After B has passed MP , a given time span ∆TBA has to elapse, before A reaches
MP .

freetemp,BA = (tAMP > tBMP + ∆TBA) (16)

This means if

free = (freespat,AB ∧ freetemp,AB) ∨ (freespat,BA ∧ freetemp,BA)

is true, it is assured that neither A is between PA1 and PA2 as long as B is between PB1 and
PB2 nor the time gaps in MP are shorter than permitted.

The extension from a single vehicle B to n vehicles Bi is straightforward As long as one
vehicle fails the verification, A is not allowed to enter the critical zone:

freetot = free1 ∧ free2 ∧ · · · ∧ freen (17)

9.3 Integration into the state machine

The planner of Sec. 8 always deploys the Moving Traffic Check (MTC) when AnnieWAY
might come into conflict with other traffic participants demanding the same traffic space
(conflict spaces). Contingent upon the result obtained from the MTC and the particular
situation (conflict situations), state transitions are triggered and the resulting state generates
the desired path and approves the free section for the longitudinal control.
In order to prevent frequent switching back and forth between states due to measurement
noise and control inaccuracy, hysteresis in the MTC is introduced by slightly reducing the
requirements once the autonomous vehicle set itself in motion.
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Figure 14: UML diagram of substate Intersection

Since the actual behavior of the other traffic participants can be roughly predicted at best,
additional safety layers are introduced that prevent imminent collisions (see Sec. 8), in ticklish
situations with emergency braking.
The conflict situations that arise from the competition, are limited to

• intersections,

• passing other cars,

• and changing lanes.

Due to the general formulation of the MTC, the different traffic situations can be accounted
for with a corresponding parameter set.
For expository purposes the integration of the MTC in the intersection scenario will be
described. Fig. 14 shows the corresponding block diagram in UML notation. When the
vehicle approaches the intersection, the hierarchical state machine changes into the sub-
state Intersection with the entry state IntersectionApproach. This state is active until the
vehicle enters the intersection unless another traffic participant is perceived on the same lane
between AnnieWAY and the intersection. In this case ItersectionQueue is activated until
the other vehicle has passed the intersection and the lane is free.

In IntersectionApproach, as soon as AnnieWAY gets close to the intersection, the state
transition splits up into



(a) IntersectionStop if AnnieWAY is on a stop road,

(b) IntersectionPrioDriveInside if AnnieWAY is on a priority road and no other vehicle
has the right of way,

(c) or IntersectionPrioStop if AnnieWAY is situated on a priority road, but needs to yield
the right of way for a priority vehicles, e. g. approaching traffic, bevor it may turn
left.

In case (a) AnnieWAY stops at the stop line and changes into the state IntersectionWait. In
this state all vehicles are registered that are already waiting on another stop line which have
the right of way according to the driving rules (4-Way-Stop). As soon as these vehicles have
passed the intersection and the MTC turns out positive for all visible priority vehicles, the
state machine changes to IntersectionDriveInside and AnnieWAY merges into the moving
traffic according to the safety parameters.

In case (b) AnnieWAY drives into the intersection without stopping. If a priority vehicle is
perceived shortly after driving inside the intersection (point of no return has not been passed
yet) and the MTC turns out negative, the state machine switches to IntersectionPrioStop
which is equivalent to (c).

In case (c) in IntersectionPrioStop AnnieWAY stops before crossing the opposing lane, waits
until the MTC confirms that no danger comes from priority vehicles anymore, and turns left.
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Figure 15: Configuration space obstacles. (a): A 1 m safety distance is added to the shape
of the vehicle. Subsequent rotation and rasterization yields a convolution kernel for config-
uration space obstacle generation. (b): Result of convolving obstacle map with kernel from
(a). If the robot has the same orientation as the kernel and is placed in the red area, it must
intersect with an obstacle. (c): Voronoj lines are generated as a set of 8-connected pixels.

10 Navigation in unstructured environment and parking

As has been described in Sec. 8, paths can be generated in a straight forward way by sam-
pling from the geometric road network graph where sufficient road geometry information
is available. However, UC regulations require for navigating in unstructured environments
(zones) that are only described by a boundary polygon. In UC, Zones are used to outline
parking lots and off-road areas. In this kind of area, a graph for path planning is not
available. AnnieWAY’s navigation system comprises a path planning algorithm that
transcends the requirement for precise road geometry definition. It has also proven useful
to plan narrow turns and as a general recovery mechanism when the vehicle gets off track,
the road is blocked or a sensible localization within the given road network is impossible.

10.1 Configuration space obstacles

We restrict search to the collision free subset of configuration space (the vehicles free space)
by calculating configuration space obstacles from an obstacle map obtained from a 360◦-laser
range scanner (cf. Sec. 4.1). The discrete nature of this obstacle map motivated dealing with
configuration space obstacles in a discrete way as well (Kavraki, 1995), as opposed to more
traditional approaches that require obstacle input in the form of polygonal data (Schwartz
and Sharir, 1983; Šwestka and Overmars, 1997). Figs. 15(a) and 15(b) illustrate how the
robots free space can be generated for a discrete set of orientations. By precomputing the
free space in discretized form, a collision check for a certain configuration can be performed
quickly in O(1) by a simple table lookup.
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Figure 16: (a) Kinematic one track model underlying both search graph and closed loop
control. (b) Search graph. Successors are generated for nδ discrete steering angles.

10.2 Search graph and A*

We define an implicit search graph in which all paths are feasible. It is directly derived from
a kinematic model of the car and not only guarantees feasibility of the generated path, but
also allows for straight forward design of a combined feed forward/feed backward controller
(see Sec. 11).

A node of the search graph can be completely described by a tuple (x,ψ,δ), with x, ψ and
δ denoting position, orientation and steering angle (i.e. the deflection of the front wheels)
of an instance of a kinematic one track model (see Fig. 16(a)). Steering angle δ is from a
set of nδ discrete steering angles that are distributed equidistantly over the range of feasible
steering: D = {δ1 . . . δnδ}. To generate successors of a node, the kinematic model equations
are solved for initial values taken from the node, a fixed arc length s and a constant steering
rate δ̇ = δp−δi

s
, spanning clothoid like arcs between the nodes. It is equivalent of driving the

car model over a distance s at constant speed while uniformly turning the front wheels from
δp to δi. For the set of nodes {(0, 0, δi),δi ∈ D}, this results in n2

δ successors, and another n2
δ

if backward motion is allowed. Successors of other nodes can be generated quickly from this
precomputed set by subsequent rotation and translation (cf. Fig. 16(b)).

The search graph is expanded in this way by an A* search algorithm. A* search is a well
known concept in the domain of robotic path planning (Hwang and Ahuja, 1992), that allows
for accelerating exploration of the search space by defining a heuristic cost function that gives
expected cost-to-go for each node of the search graph. If the cost function underestimates
the actual distance to the goal, A* is guaranteed to find the least-cost path. If the error of
the cost function is big, A* quickly degenerates to an exponential time algorithm. This is
common when a metric cost function is used and search gets stuck in a dead end configuration.
We avoid this problem by designing an obstacle sensitive cost function that accounts for the
topology of the free space.
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Figure 17: Cost functions. (a): RTR-metric for three different starting positions. Left
hand side shows the minimum RTR-paths, right image the value of the RTR metric, densely
evaluated on R2 (bright: high value, dark: low value). (b): Voronoj based cost function.
Left: Voronoj graph labeled with distance by Dijkstras algorithm. Right: Voronoj based
cost function evaluated densely on R2 by matching to the Voronoj-graph.

10.3 Cost function

To guide the search process, we combined two different cost functions. The first one accounts
for kinematic constraints of the vehicle, while the second one is derived from the Voronoj
graph of the vehicle’s free space and thus incorporates knowledge of shape and position of
the obstacles.

10.3.1 Local cost function

As a local cost function, the so called RTR metric is used. RTR paths connect two con-
figurations by two circular arcs of minimum turning radius and a straight segment tangent
to both. It can be shown easily (cf. (Šwestka and Overmars, 1997)), that for every pair
of configurations a finite number of such paths can be constructed. The RTR metric is the
arclength of the shortest such path. RTR paths do neither have continous curvature nor are
they optimal (the optimal - in terms of arclength - solution to the local navigation problem
are the so called Reeds and Shepp paths, cf. (Reeds and Shepp, 1991)), but are preferred by
us due to their computational simplicity. Fig. 17(a) illustrates RTR metric.

10.3.2 Voronoj based cost function

We construct a powerful, obstacle sensitive cost function based on the Voronoj graph of the
free space of the vehicle. Actually, a superset of the free space is used that is invariant to the
vehicles orientation. It is generated by generating configuration space obstacles for a disk
shaped structure that is the intersection of all structuring elements from Fig. 15(a).

Our algorithm to calculate Voronoj lines from a binarized obstacle map is similar to (Li and
Vossepoel, 1998), however, instead of using the vector distance map, we use the approximate
chamfer metric to be able to label Voronoj lines using only two passes over the obstacle
map. The method is derived from an algorithm (Borgefors, 1986; Li and Vossepoel, 1998)
for calculating the euclidean distance transform. It gives the Voronoj lines as a set of 8-



connected pixels.

After matching the target position to the closest point on the Voronoj graph, Dijkstras
algorithm is used to calculate the shortest path distance to the target position for every
point on the graph. Cost for a positions not on the graph is derived by matching to the
closest point on the graph and incorporating the matching distance in a way that leads to
a gradient of the cost function that is slightly sloped towards the Voronoj lines. Fig. 17(b)
shows an example.

Using this heuristic function is appealing for several reasons. Since the Voronoj lines comprise
the complete topology of the free space, search cannot get stuck in a dead end configuration,
as is common with conventional, metric heuristics that do not incorporate knowledge of free
space topology and therefore grossly underestimate the cost in such a case. Additionally,
the Voronoj lines have - as the centers of maximum inscribing circles - the property of being
at the farthest distances possible from any obstacle. This is conveyed to the planned paths,
giving reserves to account for control- and measurement errors.

10.3.3 Combination of cost functions

We combine the two cost functions into one by the maximum operator. This procedure can
be justified from the admissibility principle for heuristics in the context of A* search. A
heuristic is called admissible, if it consistently underestimates the cost to the target node.
Consequently, combining two heuristics via the maximum operator still gives an admissible
heuristic. Result of comparing both cost coincides with the practical experience that in the
vicinity of the target position, cost is dominated by the necessity to maneuver in order to
reach the destination in right orientation, while cost at long distances often is caused by the
necessity to avoid obstacles. Fig. 10.3.3 shows some results of A* search using the search
graph from Sec. 10.2 and the combined cost function.
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Figure 18: Some results of path planning on simulated map data. (a): Navigating long
distances in a maze like environment. Planning was from A to B, B to C and C to D
subsequently. (b): Some difficult parking maneuvers performed subsequently. Robot started
on the right.



11 Vehicle Control

The last step of the processing chain is the vehicle control which can be separated into
lateral and longitudinal control. Since the distances to dynamic objects are fairly big in the
Urban Challenge 2007 competition, for high-level decision making the problem of trajectory
planning (coordinates of the desired vehicle position as a function of time) can be reduced to a
combination of path planning (path geometries with no time dependencies) and determining
the free section of the path rather than an exact desired position. The longitudinal strategy
is thereby assigned to a lower level, which evaluates the free section of the path and induces
the vehicle to go faster or slower. The information transfer of the interface is undertaken by
so-called curve points, a discrete representation of the path geometry.

As the emphasis of the competition is on low to medium velocities, the non-holonomic single
track model holds and an orbital tracking controller (e. g. (Müller, 2007)) is chosen for the
lateral dynamics in Sec. 11.1. This offers the advantage of a velocity independent transient
lateral behavior for the closed loop system. Suppose the vehicle had an offset from the
planned path of a couple centimeters caused by sensor drift of the navigation system, the
lateral controller would reduce the error over a certain traveled distance rather than over
time and avoids unpredictable overshoots of the front end which might lead to collisions.
From the longitudinal controller’s point of view, the vehicle drives on rails, as the lateral
controller minimizes the lateral offset. Thus, the longitudinal control strategy faces solely
the task of following moving objects, stopping at certain points, maintaining the maximum
speed, and changing direction along the given path. For this purpose different controllers
are designed in Sec. 11.2 that are included in an override control strategy ensuring bumpless
transfers between them. The output of every longitudinal controller is the vehicle’s acceler-
ation a. This acceleration will be converted to the manipulated variables accelerator pedal
value φgas and brake pressure pbrake in a cascaded acceleration controller exceeding the scope
of this contribution.

11.1 Orbital tracking controller

The dynamics of a non-holonomic vehicle (Fig. 19) in local coordinates sc, d, and ∆ψ are
given by

d

dt

 sc
d

∆ψ

 =

 cos ∆ψ
1−dκc(sc)
sin ∆ψ

tan δ
l
− κc(sc) cos ∆ψ

1−dκc(sc)

 v, (18)

whereas the steering wheel angel δ and the longitudinal velocity v is the system’s input, d is
the lateral offset to the path, ∆ψ is the angle between the vehicle and the tangent to the path,
and l the distance between the rear and the front axle. The singularity at 1− dκc(sc) = 0 is
no restriction in practice since d� 1

κc(sc)
.

Since orbital tracking control does not have any time dependencies, (18) can be rewritten
with the arc length sc as the new time parametrization.



Figure 19: Non-holonomic one track model

With d
dt

() = d
dsc

() · dsc
dt

it becomes

d

dsc

 sc
d

∆ψ

 =

 1

sin ∆ψ · 1−dκc(sc)
cos ∆ψ

tan δ
l
· 1−dκc(sc)

cos ∆ψ
− κc(sc)

 . (19)

For small deviations d and ∆ψ from the desired curve and d
dsc

() = ()
′
, a partial linearization

leads to [
d

∆ψ

]′

=

[
0 1
0 0

] [
d

∆ψ

]
+

[
0
−1

]
κc +

[
0
1
l

]
tan δ. (20)

The linearizing control law

δ = arctan(−lk0d− lk1∆ψ + lκc) (21)

= arctan(−k?1d− k?2∆ψ + lκc) (22)

with k0, k1 > 0 yields the stable linear error dynamics

d

dsc

[
d

∆ψ

]
=

[
0 1
−k0 −k1

] [
d

∆ψ

]
(23)

with respect to sc with the characteristic polynomial λ2 + k1λ + k0 = 0. As long as ṡc > 0,
the system is also stable with respect to time. For backward driving the signs of k0 and
k1 have to be adjusted to the applied sign convention and yields exactly the same error
dynamics as for forward driving.

Fig. 20 shows the transient behavior to different initial errors ∆ψ and d for forward (blue)
and backward driving (red) simulated with MATLAB/SIMULINK. As parameters for the
simulation the Passat’s axis distance l = 2.72, a maximum steering angle of δmax = 30◦, the
controller parameters k0 = 0.25 l and k1 = 1.25 l and equidistant curve point with ∆ = 2m
were chosen. Obviously neither the input saturation δmax nor the discrete representation of
the curve cause any significant problems.



Figure 20: Trajectories for different initial positions.

11.2 Longitudinal controller system

11.2.1 Following controller

Since the acceleration of a leading vehicle is hard to determine, it is assumed that the vehicle
keeps its velocity vB constant. Choosing the distance df and its time derivative ḋf as the
state variables and AnnieWAY’s acceleration af = v̇ as the input, the system’s dynamics are
given by

d

dt

[
df
ḋf

]
=

[
0 1
0 0

] [
df
ḋf

]
+

[
0
−1

]
af (24)

As DARPA requires the vehicle to maintain a minimum forward vehicle separation of one
vehicle length minimum and one length for every additional 10 mph, the desired distance
df,d can be calculated by

df,d = df,0 + τv (25)

with the according parameters df,0 and τ . Considering the acceleration v̇B of the leading
vehicle an unmeasurable disturbance, the linear set-point control law

af = c0(df − df,d) + c1ḋf (26)

= c0(df − df,d) + c1(vB − v) (27)

and v = vB − ḋf yields the total system

d

dt

[
df
ḋf

]
=

[
0 1
−c0 −c0τ − c1

][
df
ḋf

]
+

[
0

c0(df,0 + τvB)

]
. (28)

(29)

The characteristic polynomial λ2 + (c0τ + c1)λ + c0 = 0 can directly be read off from (28).
A double Eigenvalue λ1/2 = −1 leads to a pleasant an yet save following behavior.



11.2.2 Stopping controller

The following controller of the previous section leads to a behavior, which can best be
described as flowing with the traffic. By contrast, the stopping controller should come to a
controlled stop at a certain point as fast as possible without exceeding any comfort criteria.
The control law

as = − v2

2(df − d∆)
(30)

leads to a constant deceleration until the vehicle is d∆ away from the stop point. To prevent
the controller from decelerating too soon and switching on and off, a hysteresis with the
thresholds as,max and as,min, as shown in Fig. 21, is introduced. The singularity at df = d∆ is
avoided by a PD position controller that takes over via a min-operator and ensures a smooth
and save stop at the end.

11.2.3 Velocity controller

As v̇ = a, the simple proportional velocity control law

av = −cv(v − vd) (31)

stabilizes AnnieWAY’s velocity v to the desired velocity vd with a PT1 behavior.

11.2.4 Override control strategy

All three previously introduced controllers are combined by an override control strategy
depicted in Fig. 21. The bumpless transfer between velocity control and following/stopping
control is assure by the max operator. Additional saturation, realized by amax and amin,
prevent the vehicle from inappropriately high acceleration or deceleration without reducing
safety.

velocity controller

af

av

as

pbrake

Φgas

1
0

min

max

acceleration
controller

vehicle

×

amin

following controller

stopping controller

PD

max
amax

Figure 21: Longitudinal override control strategy.



12 Results

Originally 89 teams have entered the competition, 11 of which were sponsored by the or-
ganizer. After several stages, 36 of those teams were selected for the semi-final. There,
AnnieWAY has accomplished safe conduction of a variety of maneuvers including

• regular driving on lanes

• turning at intersections with oncoming traffic

• lane change maneuvers

• vehicle following and passing

• following order of precedence at 4-way stops

• merging into moving traffic

Although the final event was originally planned to challenge 20 teams, only 11 finalists were
selected by the organizers due to safety issues. AnnieWAY has entered the final and was
able to conduct a variety of driving maneuvers. It drove collision-free, but stopped due to a
software exception in one of the modules.

Fig. 22 depicts three examples of the vehicles actual course taken from a log-file and su-
perimposed on an aerial image. The rightmost figure shows the stopping position in the
finals.

Figure 22: Three steps of AnnieWAYs course driven autonomously in the finals.

The following section points out some results of the navigation module. Fig. 23(a) illustrates
one test driven in a parking area close to our test ground. Unlike the required navigation
task in the Urban Challenge, the chosen setup features many surrounding obstacles such as
other cars and curbs.

Search time remains below 2 seconds in all practical situations. Though the environment
is assumed to be static, this is fast enough to cope with slow changes in the environment
by continuous replanning. Additionally, to avoid collision with fast moving objects, a lower
level process continuously determines the free section of the planned path and, if necessary,
invokes a new search. The lateral controller follows the generated paths precisely enough to
implement all of the intended maneuvers.



Figure 23: (a) Path planning in heavily occupied zone with mapper input (red) and sampled
waypoints as output to the controller (green). (b) Recovery maneuver during final event,
driven path is marked olive.

Besides path planning in parking areas, the zone-navigation module was used as recovery
option in case of continuous blocking of lanes or intersections. A falsely detected obstacle on
the left lane forced activation of the navigation module during the final event. The vehicle
was successfully brought back on track after a backup maneuver as can be seen in Fig. 23(b).



13 Conclusions

The autonomous vehicle AnnieWAY is capable of driving through urban scenarios and has
successfully entered the finals of the DARPA Urban Challenge 2007 competition. In contrast
to earlier competitions, the Urban Challenge required to conduct missions in ’urban’ traffic,
i.e. in the presence of other autonomous and human-operated vehicles. The major challenge
imposed was collision-free and rule-compliant driving in traffic. AnnieWAY is based on
a simple and robust hardware architecture. In particular, we rely on a single computer
system for all tasks but low level control. Environment perception is mainly conducted by
a roof-mounted laser scanner that measures range and reflectivity for each pixel. While the
former is used to provide 3D scene geometry, the latter allows robust lane marker detection.
Mission and maneuver selection is conducted via a concurrent hierarchical state machine
that specifically ascertains behavior in accordance with California traffic laws. More than
100 hours of urban driving without human intervention in complex urban settings with
multiple cars, correct precedence order decision at intersections and - last not least - the
entry in the finals underline the performance of the overall system.
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