
Integration of a Security Product
in Service-oriented Architecture

Aleksander Dikanski, Christian Emig, Sebastian Abeck
Research Group Cooperation & Management, Universität Karlsruhe, Germany

{ dikanski | emig | abeck } @ cm-tm.uka.de

Abstract

The future of enterprise software development lies

in the use of a service-oriented architecture (SOA) to
support business concerns. Business services are using
security services offered by service-oriented security
architectures for security support. The question re-
mains how to implement the security services using
traditional security products and how to map security
policies defined at service level to product-specific po-
licies. In this paper we present an approach for inte-
grating existing security products into service-oriented
security architectures. We show how traditional se-
curity products can be adapted to fit into the overall
service-oriented paradigm. We present a case study
that applies our approach.

1. Introduction

To tackle the increasingly complex requirements of

IT systems, enterprises are adopting service-oriented
architecture (SOA) to align their IT with their business
processes. While Web service technology is commonly
used to implement core concerns, cross-cutting con-
cerns are hard to integrate into the overall SOA devel-
opment process. Especially security is often an after-
thought, considering the amount of overly complex
Web service security standards. A service-oriented so-
lution to this problem is to provide security as a serv-
ice, i.e. offering a set of services, offering the central
functionality of e.g., authentication, authorization and
policy management. These services are part of a secu-
rity architecture, of which we presented a blueprint of
in [1].

Yet the critical task of the security services requests
the reuse and therefore integration of existing security
products into the security architecture. Additionally,
focusing on access control, the respective policy
models at service and at product level must be aligned.
The integration requires two main tasks. At first, the

components of the security product need to be mapped
to the logical building blocks of a security architecture.
Design gaps between the provided service interfaces of
a security architecture and the proprietary interfaces of
the security product require adaptation. Secondly,
access control policies for an SOA are specified in a
language not supported by the security products and
therefore need to be mapped to the internal policy
language of the security product.

Service-Oriented Architecture

Integration /
Composition Layer

Existing
Application

Basic Web Services

Web Service
Composition

Application Servers
(Wrapping to
Web Services)

Applications,
Components,
Databases

Authorization
Verification

Portal AuthenticationPresentation Layer

Existing
Application

SOA
Core Concerns

SOA-aware
Security

Architecture

Figure 1. Service-oriented Architecture

requiring Security Services

The contributions of this paper are:

1. We present an approach to transparently integrate
existing security products into a security architecture,
focusing on the access control service.

2. We show how access control policies for Web
services can be mapped in order to be used by the
integrated security product.

In order to achieve these goals, we built upon our

previous works concerning service-oriented security
architectures and access control policy models [1]. We
demonstrate our approach by integrating the commer-
cial of the shelf (COTS) security product Tivoli Access

2009 Third International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3668-2/09 $25.00 © 2009 IEEE

DOI 10.1109/SECURWARE.2009.8

1

First published in:

EVA-STAR (Elektronisches Volltextarchiv – Scientific Articles Repository)
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000012012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197556978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Manager of IBM into our service-oriented security ar-
chitecture and by mapping our service-oriented access
control policies onto product-specific policies.

The paper is organized as follows: Section 2

presents approaches to security architectures focusing
on access control and access control models. In Sec-
tion 3 we present our approach to the integration of ex-
isting security products into a service-oriented security
architecture. In Section 4 we show how to derive prod-
uct-specific access control policies from product-inde-
pendent ones. In Section 5 our approach is applied
practically in a case study. A conclusion and an out-
look on future research in this area close the body of
this paper.

2. Related Work

2.1 Access Control Architectures

The access control architecture described in [2] uses

multiple distributed access control processors (ACP) to
control access to Web services. An ACP itself is a
Web service which is responsible for access control
decisions. A special ACP called gatekeeper is used to
put the access control decision for a Web service into
action, authenticating users and issuing security to-
kens. It also determines the necessary ACP to compute
the access control decision for an access request. The
amount and order of the ACP is an open design deci-
sion. The interceptor pattern [3] is used to implement
the gatekeeper in order to intercept the SOAP mes-
sages sent to a Web service. The flexibility of the ap-
proach is also its greatest weakness when it comes to
the implementation of the ACP using existing security
products. Obviously each ACP could be implemented
by a security product, but there is no need for all the
ACP to be Web services themselves. A service should
offer a coarse-grained interface which reduces the nec-
essary invocations of that service, as these are expen-
sive operations. Calling multiple ACP Web services
leads to a tremendous performance loss.

In [4] an approach for a policy based access control
architecture is proposed using an event-driven para-
digm. The coordination between the security services
takes place using the exchange of events. This allows
the distribution of the services without a central con-
trol. The functional services themselves are distributed
into a digital identity management, an authentication
management as well as an access control service. Each
service has a similar structure consisting of a decision
point which evaluates related policies and an enforce-
ment point which puts the decisions into place. In or-

der for each service to maintain a coherent view of all
security relevant information and to be able to create a
shared context, a notification service and a context
service are introduced into the architecture. Questions
still remain concerning the interaction between the
services, the format of the events and the handling of
event messages. This approach also suffers from the
overuse of Web service interfaces. Additionally one
can question the choice of an event-driven approach
for the communication between the services. Events
are typically used for asynchronous communication
between distributed partners in an unreliable network.
Assuming that one applies the security architecture in
the controllable and reliable environment of an enter-
prise intranet the use of synchronous communication
might be more applicable.

Although each of the security architectures tries to
solve a certain problem, they are not suited for the task
of integrating an existing security product efficiently.
This is due to the lacking differentiation of distin-
guished service interfaces offered to the business serv-
ices of a SOA and the internal component interfaces
used by the security architecture itself.

2.2 Access Control Models

SecureUML [5] is an access control model based on

an extended version of role based access control
(RBAC). In the model, the nature of the protected
object is undetermined and can be adapted to multiple
use cases. This is demonstrated by defining policy lan-
guages for process and component systems. Policies
contain the possible actions a subject can perform on
an object and are supported by basic attribute based
authorization constraints. Opposite to the basic RBAC,
basic actions can be composed. A policy defined for a
compound action is passed on to its basic actions. Al-
though the approach is flexible enough to be used in
the context of a service-oriented architecture (SOA),
the usage in a security architecture and of a specialized
security product is not the main focus. Instead the se-
curity infrastructure of an underlying development
platform is utilized. Additionally, the complex context
of an SOA, e.g., a composition of Web services, can
not be represented with SecureUML.

RBAC is also the basis for SECTET-PL [6], a poli-
cy language for business workflows using Web serv-
ices. It is based on the declarative Object Constraint
Language (OCL) [7] and can therefore be used in the
context of system models defined using the Unified
Modeling Language (UML) [8]. Policies are specified
using predicates and are attached to Web services
defined in an interface view. This view contains de-
scriptions of the partner services interface, service ex-

2

change documents as well as roles and permissions.
The usage of the approach is demonstrated by mapping
the policies to the policy language eXtensible Access
Control Markup Language (XACML, [9]). Most of the
arguments against SecureUML hold for SECTET-PL
as well. Another constraining argument is the indispen-
sable focus on OCL and UML to define the policies.

In summary comparing the approaches to the aim of
integrating existing security products it can be seen
that RBAC alone is not flexible enough for specifying
service level policies [10]. The mapping of service
level policies to product level policies has so far only
been shown for ABAC policies [11].

3. Architectural Integration

Security is not a core concern of a service-oriented

architecture (SOA). Yet it is an important aspect of
practical usage. To cover this cross-cutting concern,
security should be offered as a set of services itself.
We proposed a well-defined set of security service
interfaces to be used by Web services and in an SOA
in [12]. Existing and field-tested security products
should be used to implement these interfaces. In this
Section we describe relevant parts of our security ar-
chitecture followed by an overview of the IBM Tivoli
Access Manager (TAM). Then we show how the com-
ponents of the TAM fit into our architecture.

3.1 Service-oriented Security Architecture

The security architecture we described in [1] and

[12] consists of three logical layers. The first layer
contains the well-defined and stable service interfaces
to be used by other services. The authentication inter-
face provides operations to authenticate a subject and
to issue a temporary security token to be used for fur-
ther access control. An access control decision can be
delegated to the authorization verification service in-
terface. Management of users, groups as well as access
control policies is done through the administration
service interface. We also presented a set of possible
components, implementing these interfaces. In a func-
tional layer, a secure token service component per-
forms the authentication of subjects. A policy decision
point (PDP) component encapsulates access control
decisions logic. Lastly an administration component
implements the administration interface. The func-
tional components store and retrieve their data from
components placed in the data layer below.

Policy
Decision
Point

Token
Repository
Token
Repository

Policy
Store
Policy
Store

Security
Token
Service

User/
Service/Policy
Administration

User
Directory
User
Directory
User
Directory

Service
Registry
Service
Registry

Authorization Authentication Administration

WSDL/SOAP

Function

Interfaces

Data

Figure 2. Blueprint of an SOA-aware Security

Architecture

Notice that with the exception of the interface layer,

the components and their respective communication
technology are not fixed. They are only provided as
reference components. As only the interfaces are deter-
mined, existing security products can be integrated. In
the following we show how the security product Tivoli
Access Manager, presented in the next Section, can be
used to provide the required functionality.

3.2 Overview of the Tivoli Access Manager

The Tivoli Access Manager (TAM) is a universal

authentication and authorization framework used in
several security products.

«subsystem»

TAM Authorization Service
«subsystem»

TAM Authorization Service
Administration

API
Authorization

API

External Authorization Service

Master Policy Database Replicated Policy Database

Policy Management ServerPolicy Management Server Authorization ServerAuthorization Server

«use» «use»

«use»

«use»

Figure 3. Architecture of the Tivoli Access Manager

The overall architecture of the authorization service

provided by the TAM, shown in Figure 3, consists of a
Policy Management Server, a Master Policy Database
and one or more Authorization Servers. The Policy
Management Server manages users, groups, policies
and protected resources. The resources are defined for
a security domain and are stored in the Master Policy
Database. Distributed copies of the Database are used
by the Authorization Servers which are deployed for
localized access control decisions. Interfaces can be
used by policy enforcement points to request an access

3

control decision from the servers. A more extensive
overview of the TAM framework is given in [13].

3.3 Approach to Integration

Integration of the Tivoli Access Manager (TAM)

into our security architecture requires a mapping of
interfaces as well as data formats. The adapter pattern
is an appropriate approach to perform this task [14],
i.e. an additional component, converting the invocation
of the service operations into the equivalent methods
of the interface of the TAM, must be implemented in
order to leave existing clients of the security services
unchanged. This can lead to typical integration prob-
lems depending on the chosen service interface and the
security product. Enterprise application integration
(EAI) and other current software engineering ap-
proaches provide best practice advises for solving such
an integration task.

Accessing the security products’ authorization func-
tionality is a typical problem. Two extreme cases of
interface provisioning can be distinguished. Firstly, the
security product could offer no explicit interface at all,
in which case a change of the security product might
be advisable. Secondly, the security product offers
standardized and well documented interfaces, which
simplifies the integration. Assuming a security product
offers an interface, the next problem is to map the
policy data formats. Service level security data pro-
vided via the service interface might be represented by
multiple data structures, it might not map at all on the
product side and vice versa. If possible one of the two
data formats can be changed to match the other one.
Otherwise a mapping must be developed which allows
the transformation of the greatest possible subset of the
data.

If the TAM is to be integrated into the security ar-
chitecture the approach is less problematic. The simpli-
fied authorization verification service interface of our
security architecture provides a single authorize-opera-
tion, which receives an authorization request message
and returns an access control decision in form of a
Boolean value. The request message contains the u-
nique identifier of the requested resource, a session
token issued to the user on authentication, as well as
other security related data. In case of the TAM this
represents the minimal information necessary to per-
form an access control decision. The TAM provides a-
mongst others an object-oriented authorization inter-
face consisting of several classes. Therefore the task of
the adapter component is to map the invocation of the
coarse-grained service operation to a sequence of fine-
grained object operations. In order to use the interface
the adapter component must be registered in the TAM

using provided configuration tools. Furthermore, the
session token of the user needs to be issued by the
same TAM instance so that the resource identifier is
known to the TAM. Using these pieces of information
the relevant objects of the TAM interface can be cre-
ated and the access control decision be requested from
the Authorization Server. Additional parameters can be
sent too, using attribute objects as containers for name-
value pairs.

With this an integration of the security product can
be performed at the software level. Further integration
is needed for the different access control models to
align the access control policies at service and product
levels.

4. Access Control Model Integration

Integration of a security product into a service-

oriented security architecture leads to the necessity of
managing different access control models. This is due
to the different granularity and languages of service
level and product level policies. This task of inte-
gration can be subdivided into two subtasks. Firstly,
the access control models at both levels need to be ana-
lyzed. Secondly, rules can be defined which map poli-
cies defined at the service level to policies at the pro-
duct level. Manual adaptation is an error-prone process
which is not feasible because of the resulting security
issues. Therefore the policy mapping should be auto-
mated.

In this Section we present an approach for inte-
grating different access control models. In the fol-
lowing we firstly give an overview of an extended ver-
sion of the Web Service Access Control Markup Lan-
guage (WSACML). Afterwards we describe the pro-
duct level access control model of the Tivoli Access
Manager (TAM). Finally we define rules to map WS-
ACML polices to TAM policies.

4.1 Service Level Access Control

In [12] we presented a conceptual access control

model based on attribute based access control (ABAC,
[10]). Based on this, we developing the Web Service
Access Control Markup Language (WSACML) to
express attribute based access control policies at the
service level [11]. The conceptual model of WSACML
contains policy elements which are attached to objects.
These policies contain one or more rules which deter-
mine the conditions necessary for permitting access to
the object. These rules use attributes of the accessing
subject (e.g., the identifier, the credential and the ses-
sion token), the object (e.g., possible input parameter

4

to a service operation) as well as attributes determined
by the context of the access request. The object hierar-
chy is specialized using Web service collections, i.e. a
set of unrelated Web services, and Web service com-
positions, i.e. a set of Web services used in a business
process, allowing the attachment of one policy to
multiple Web services.

«complexType»

Policy

«complexType»
Rule

-«attribute» name : string
-«attribute» effect : Effect

«complexType»
Service

«complexType»
Operation

«complexType»
Assertion

-«attribute» assertionFunction : AssertionFunction

«complexType»
Binding

-«attribute» name : string

-«attribute» name : string

«complexType»
Attribute

-«attribute» name : string

-«attribute» name : string
-«attribute» ruleSelectionAlgorithm : RuleSelectionAlgorithm

*

1..*

1..*

1..*

1

11

1

1

*

Figure 4. Web Services Access Control Markup

Language (WSACML)

4.2 Product Level Access Control

The access control model of the TAM, presented in
Figure 5, consists of policy elements and a hierarchical
arrangement of so called protected resources (PO). The
latter represents the objects a user can access.

Secure
Domain

Protected
Objectspace

Protected
Object

Ressource
Object

Container
Object

Access
Control List

Protected
Object Policy

Authorization
Rule

*

*

*
*

*
*

0..1

0..1

0..1

1

Figure 5. Authorization Metamodel for
Tivoli Access Manager

All protected resources belonging to a particular or-

ganization unit are placed in a secure domain, which
itself is partitioned into objectspaces. An objectspace is
managed and secured by a policy enforcement point
(PEP) and contains PO of the same type, e.g., Web
based resources, services, message queues, file sys-
tems, printer etc. The PO can further be ordered by hi-
erarchically arranging them using container objects.
The PO can be explicitly secured by attaching policy
elements to them or implicitly by attaching it to a con-
tainer object.

TAM policies can be defined using access control
lists (ACL), policies for protected objects (POP) and
authorization rules. ACLs can be used for identity or
role based policies. POP and authorization rules pro-
vide the possibility of defining policies related to the
PO. Our main interest lies with the authorization rule
policy element, which enable ABAC policies. The
rules are based on an access decision information
(ADI) document and are specified using the trans-
formation language Extensible Stylesheet Language
(XSL) [15].

4.3 Mapping Rules

After analyzing the Web Service Access Control
Markup Language (WSACML) and the Tivoli Access
Manager (TAM) policy model, mapping rules between
WSACML policies and TAM policies can be defined.
A WSACML policy is attached to at most one object,
which itself can be a container for other objects. E.g., a
Web service collection is a container for a set of Web
services and a Web service represents a collection of
Web service operations. Such collections are mapped
to TAM container objects. The objects in the collection
are mapped to protected objects. All container and re-
source objects are placed in a predefined objectspace
managed by a specialized policy enforcement point
(PEP) for Web services, such as a secure service agent
[16].

As WSACML policies are based on attribute based
access control (ABAC), we make extensive use of the
TAM authorization rule policy element. A WSACML
policy can be represented by a single authorization rule
using a XSL-choose construct. Inside this construct,
the WSACML rules are mapped to XSL-when con-
structs. Using the assertion and assertion function ele-
ments of the WSACML policy a Boolean expression
for the test attribute can be defined. The effect of a
WSACML rule is mapped to the predefined return val-
ues of the TAM rule. The relevant data to be used by
the TAM rule evaluation engine is provided by various
data sources. Subject attributes can be retrieved auto-
matically using the credential information of the re-
questing subject. Object attributes can be retrieved by
an external provider using the TAM plug-in mechan-
ism or alternatively by the PEP. The latter is used in
the case of input parameters to a Web service oper-
ation. The same applies to environment attributes. The
main problem is to determine the format of the ADI
document used to evaluate the authorization rules.
Using the above attributes types, a standard format can
be chosen which provides the relevant data inside
corresponding XML elements. E.g., the /subjectAttrib-
ute/role expression refers to the role-element inside the

5

subjectAttribute-element. A tool to automate and sup-
port the mapping of service level to product level poli-
cies can be implemented on the basis of such a fixed
set of mapping rules and the predefined format of the
ADI document.

5. Case Study

We applied our approach to secure Web services
used by a Web application. The application allows stu-
dents to inspect their current academic record, a sce-
nario typically found in the university domain. We
used Web Service Access Control Markup Language
(WSACML) policies to secure the access to the Web
services by defining a service level policy with two
rules. The first rule allows a user in the student role to
review his/her and only his/her academic record. In
this case the rule states that the unique identification
number (UID) of the student must match the UID of
the requested academic record and the requestor must
be in the student role. A second rule allows a user in
the counselor role to review all the academic records.
In this case only the role membership is checked.

To secure the application we implemented an adapt-
er for the Tivoli Access Manager (TAM) to encap-
sulate the transformation logic and to provide unified
access as described earlier. For that we used stateless
session bean components of the Enterprise JavaBeans
(EJB) [17] component technology. The adapter com-
ponent skeleton was created in a contract-first ap-
proach given the security service interface description
provided in [12]. The Java classes provided by the
TAM were used for accessing the authorization frame-
work. The classes can be used either used directly or as
an authorization provider in the authorization mechan-
ism of the Java platform. The former approach turned
out to be more usable in our case.

We further mapped the Web services and the WS-
ACML policy for the application to equivalent TAM
protected resources and authorization rules by applying
the rules defined earlier. The resulting TAM rule con-
sisted of two when-constructs, each representing an
equivalent Boolean expression to the WSACML rules.
These protected resources where stored in a container
object inside a preconfigured objectspace. The policy
rules were then linked to the container object.

To minimize possible errors introduced by manual
mapping, we implemented a tool using Extensible
Stylesheet Language (XSL) for our XML notation of
WSACML. The tool produces an XML document de-
scribing the protected objects and the authorization
rules in a format used by the policy import tool of the
TAM. The import tool takes care of automatically con-

figuring the resources and policies. Defining the ob-
jectspace for Web service resources remains the only
manual task.

6. Conclusion and Further Work

In this paper we presented an approach for trans-

parent integration of existing security products into a
service-oriented security architecture in order to use
existing technology to secure a modern service-ori-
ented IT infrastructure. The integration steps include
software integration using adaptation as well as policy
integration by mapping service level to product level
policies. We showcased our approach by integrating
the security product IBM Tivoli Access Manager into
our security architecture and by mapping service level
to technical product level access control policies.

We see two directions for further research. Firstly
we aim to evolve our security architecture into a more
distributed and decentralized one. Thereby increasing
reliability as well as enhancing solutions to issues con-
cerning privacy and distributed security information.
Secondly, we are interested in bridging the gap be-
tween policies defined in the analysis phase and at the
implementation phase of a software development proc-
ess by applying the presented approach of automatic
mapping of policies to the business level.

7. References

[1] Ch. Emig, F. Brandt, S. Kreuzer and S. Abeck. “Identity
as a Service - Towards a Service-Oriented Identity
Management Architecture”, 13th EUNICE Open European
Summer School and IFIP TC6.6 Workshop on Dependable
and Adaptable Networks and Services (EUNICE 2007),
Twente, Netherlands, July 2007.

[2] R. Kraft, “Designing a distributed access control
processor for network services on the Web”, Proceedings of
the 2002 ACM Workshop on XML Security (XMLSEC '02),
ACM, New York, NY, 2002, pp. 36-52.

[3] Ch. Steel, R. Nagappan and R. Lai, Core Security
Patterns: Best Practices and Strategies for J2EE, Web
Services and Identity Management, Pearson Education,
Upper Saddle River, N.J., 2006.

[4] E. Bertino, L.D. Martion, “A Service-oriented Approach
to Security – Concepts and Issues”, Proceedings of the 11th
IEEE International Workshop on Future Trends of
Distributed Computing Systems (FTGCS’07), IEEE
Computer Society, Washington, D.C., 2007, pp. 31-40.

[5] D. Basin, J. Doser, T. Lodderstedt: “Model Driven
Security: From UML Models to Access Control

6

Infrastructures”, ACM Transactions on Software Engineering
and Methodology, ACM, New York, NY, January 2006.

[6] M. Alam, R. Breu, M. Hafner: “Modeling permissions in
a (U/X)ML world”, First International Conference on
Availability, Reliability and Security (ARES'06), IEEE
Computer Society, Los Alamitos, CA, 2006. pp. 685-692

[7] Object Management Group (OMG): Object Constraint
Language, [online] OMG, Available from:
<http://www.omg.org/docs/formal/06-05-01.pdf>, [Accessed
4 Dec. 2008]

[8] Object Management Group (OMG): Unified Modeling
Language, [online] OMG, Available from:
<http://www.uml.org/>, [Accessed 4 Dec. 2008]

[9] Organization for the Advancement of Structured
Information Standards (OASIS): Extensible Access Control
Markup Language, [online] OASIS, Available from:
<http://docs.oasis-open.org/xacml/2.0/access_control-xacml-
2.0-core-spec-os.pdf>, [Accessed 4 Dec. 2008]

[10] E. Yuan, J. Tong: “Attribute Based Access Control
(ABAC) for Web Services”, IEEE International Conference
on Web Services (ICWS 2005), Orlando, Florida, July 2005.

[11] Ch. Emig, S. Kreuzer, S. Abeck, J. Biermann, H. Klarl:
“Model-Driven Development of Access Control Policies for
Web Services”, IASTED International Conference on
Software Engineering and Applications (SEA 2008),
Orlando, Florida, November 2008.

[12] Ch. Emig, F. Brandt, S. Abeck, J. Biermann, H. Klarl,
“An Access Control Metamodel for Web Service-oriented
Architecture“, IEEE Conference on Software Engineering
Advances (ICSEA`07), Cap Esterel, France, August 2007.

[13] G. Karjoth, “Access Control with IBM Tivoli Access
Manager”, ACM Transactions on Information and System
Security (TISSEC), ACM, New York, NY, May 2004, pp.
232-257.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Boston, Mass., 1995

[15] L. Quin: The Extensible Stylesheet Language Family,
[online] World Wide Web Consortium (W3C), Available
from: <http://www.w3.org/Style/XSL/>, [Accessed 4 Dec.
2008]

[16] Ch. Emig, H. Schandua, S. Abeck, “SOA-aware
Authorization Control”, International Conference on
Software Engineering Advances (ICSEA `06), Tahiti,
November 2006.

[17] Sun Microsystems, Enterprise Java Beans Technology,
[online] Sun Microsystems, Available from:
<http://java.sun.com/products/ejb/>, [Accessed 4 Dec. 2008]

7

