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Using selection rules imposed by the Pauli principle, we classify pairing
correlations according to their symmetry properties with respect to spin, mo-
mentum, and energy. We observe that inhomogeneity always leads to mixing
of even- and odd-energy pairing components. We investigate the supercon-
ducting pairing correlations present near interfaces between superconductors
and ferromagnets, with focus on clean systems consisting of singlet supercon-
ductors and either weak or half-metallic ferromagnets. Spin-active scattering
in the interface region induces all of the possible symmetry components. In
particular, the long-range equal-spin pairing correlations have odd-frequency
s-wave and even-frequency p-wave components of comparable magnitudes.
We also analyze the Josephson current through a half-metal. We find an-
alytic expressions and a universality in the temperature dependence of the
critical current in the tunneling limit.

PACS numbers: 74.45.+c, 74.20.Rp, 74.50.+r

1. INTRODUCTION

The rich physics specific for boundary regions between superconduct-
ing and ferromagnetic materials has recently been probed in a series of
experiments.1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 Apart from confirm-
ing earlier theoretical predictions21,22, 23, 24 they provide deep insight into
the coexistence of the two types of order and have inspired new ideas in the
emerging field of spin electronics. In the boundary region the characteristic
correlations known from the proximity effect in normal metals25 are induced,
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but in addition to the usual decay, they show an oscillating behavior.22 The
length scales for decay and oscillations are set by the magnetic length.23 It
is smaller than the decay length in a normal metal, for ballistic systems by
the ratio between temperature and exchange energy, kBT/J , and for dif-
fusive systems by the factor

√

kBT/J . This leads to modifications of the
density of states26,27, 28, 29 and the Josephson effect through ferromagnets.30

For usual ferromagnets J is considerably larger than kBT , and the proximity
effect is hard to observe. A breakthrough came with the advance of dilute
ferromagnetic alloys with rather low spin polarization, such as Pd1−xNix
or Cu1−xNix, where magnetic Ni ions are integrated into a non-magnetic
matrix. A high level of control has been reached with heterostructures con-
taining such “weak” ferromagnets (low spin polarization). E.g., it became
possible to spatially resolve properties on the scale of the magnetic length
and to observe the proximity effect.6,7

In parallel, it remained an important goal for the further development of
spin electronics to create and investigate heterostructures12,13, 14, 15, 16 where
“strong” ferromagnets with large exchange splitting of the bands and high
spin polarization are in contact with superconductors. In the extreme case,
for so-called half-metallic materials, the polarization reaches values close to
100 %. Half metals are metallic in one spin direction with respect to a cer-
tain spin quantization axis, and semiconducting or insulating in the other.
In the course of this research a so-called “long-range proximity effect” was
discovered,13,14, 15, 31, 32, 33, 34, 35 which is governed by a length scale typical of
the proximity effect in a normal metal, rather than the magnetic length of
the ferromagnet involved. Such long-range proximity amplitudes have their
origin in the mixing between singlet and triplet pair amplitudes inherent
to pairing in the presence of broken spin-rotation symmetry.32,34, 36 Triplet
correlations are classified according to their projection on the spin quantiza-
tion axis that renders the quasiparticle bands in the ferromagnet diagonal.
There are three corresponding amplitudes, m = 0,±1. Of those the equal
spin pair amplitudes, m = ±1, lead to the long-range proximity effect, as
pairing occurs within the same spin band and is unaffected by the large ex-
change energy J . This explains the penetration of triplet pair amplitudes
into the ferromagnet, once they are created.31,32, 33 However, the questions
how they are created in the first place and what are their magnitudes remain
active research topics.31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41

The creation mechanisms for pairing correlations inside the ferromagnet
differ in the ballistic limit significantly for weak and strong ferromagnets. For
the following discussion we will concentrate on singlet superconductors. In
the case of a weak ferromagnet the singlet superconductor induces in the first
place a mixture of singlet and m = 0 triplet pairs in the ferromagnet. Both
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penetrate only on the short magnetic length scale, but various mechanisms
may create long-range m = ±1 triplet components. Examples are (i) a
magnetic domain wall near the interface within a distance of the order of the
magnetic length;31,29 or (ii) two ferromagnets with misaligned quantization
axes separated by a singlet superconductor with a thickness of the order
of the superconducting coherence length;38,35 or (iii) a spin-active interface
that allows for spin-flip processes.34 In all cases, magnetic inhomogeneities
mix the triplet pair components and create the long-range equal-spin pair
amplitudes.

In the case of a strong ferromagnet the roles of the ferromagnet and the
superconductor are reversed. Here, in the first place the ferromagnet acts as
a source for spin-polarization of Cooper pairs in the superconductor. This re-
sults in a boundary layer with coexisting singlet and triplet amplitudes near
the interface extending about a coherence length into the superconductor.
The important mechanisms here are the spin-mixing terms34,42, 43, 44, 45, 46

(often called spin-rotation) in the reflection and transmission amplitudes of
the surface scattering matrix. Such spin-mixing effects arise as a conse-
quence of the different matching conditions for spin-up and spin-down wave
functions at the interface.42 Consequently, the creation of triplet pair am-
plitudes is entirely the result of the interface properties, taking place in an
interface region that is of similar size as the magnetic length. Spin-mixing is
most effective at interfaces with strong ferromagnets, increasing in strength
with growing spin-polarization of the ferromagnet. Long-range triplet com-
ponents are created when spin-flip centers are present in the interface region.
This mechanism even works in the presence of completely polarized ferro-
magnets, since the triplet correlations are created entirely within the super-
conductor, and only after their creation penetrate into the ferromagnet.34

In addition, the magnitude of the triplet correlations at the interface is pro-
portional to that of the singlet amplitude at the interface, and both are
insensitive to impurity scattering (in contrast to the decay behavior away
from the interface).47

For intermediate spin polarizations the two creation mechanisms for
triplet pairing, with strengths depending on microscopic details of the in-
terface and domain wall structures in the ferromagnet, compete and are
difficult to characterize theoretically. However, the two limiting cases of
weak and strong spin polarization can be treated within a controlled ap-
proximation, namely the quasiclassical theory of superconductivity.48,49 It
relies on a separation of two energy scales, the superconducting gap ∆ and
the Fermi energy Ef , and can be extended to superconductor-ferromagnet
heterostructures when the exchange energy J lies either in the low- or in
the high-energy range, corresponding to weak and strong ferromagnets, re-
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spectively. For weak ferromagnets, this means that Fermi surface properties
like the density of states at the Fermi level in the normal state, Nf , and the
Fermi velocity, vf , remain unchanged to lowest order in the small quasiclas-
sical expansion parameter J/Ef ; note that the magnetization in the normal
state is a first order term in this parameter and is given by 2µBNfJ , where
µB is the Bohr magneton. On the other hand, for strong ferromagnets all
effective interactions and indeed the quasiparticle band structure itself will
be strongly modified by the presence of the exchange splitting. It is not
possible a priory to describe the crossover between the two limits within
quasiclassical theory.

The outline of this article is as follows. In Sec. 2 we describe how the
Pauli principle leads naturally to a classification of superconducting corre-
lations according to their symmetries with respect to spin, momentum, and
energy. We then show by two examples that all these types of correlations
are indeed induced at superconductor-ferromagnet interfaces. In Sec. 3.1
we analyze the case of a weak ferromagnet in contact with a singlet su-
perconductor through a spin-active interface barrier. We also illustrate the
difference between the spatial dependences of short-range and long-range
proximity amplitudes. In Sec. 3.2 we consider the case of a strong ferromag-
net. In particular, we show results for the proximity effect between a singlet
superconductor and a half-metal, and for a Josephson junction involving a
half metal. We show that an analytic treatment is possible for the case of
small transmissions and a small spin-mixing angle. We find that in these
limits, a previously discovered34 low-temperature anomaly in the critical
Josephson current is independent of the interface parameters, and is a direct
consequence of the different symmetry properties of the pairing correlations
compared to the case of a normal metal between two superconductors.

2. SYMMETRY CLASSIFICATIONS

There has been considerable work that formulated the physics of pair-
ing correlations in diffusive ferromagnets in terms of one particular pairing
component, that has odd-frequency, s-wave, equal-spin triplet symmetry.32

The question arises to which extend this component is important for sys-
tems with weak or intermediate impurity scattering. We will show in the
following chapters that in fact four different symmetry components exist in
ballistic heterostructures, and that they are comparable in size. We start
with a general classification of pairing correlations.

Superconducting correlations are quantified by the anomalous Green’s
function

Fαβ(~r1, τ1;~r2, τ2) = 〈TτΨα(~r1, τ1)Ψβ(~r2, τ2)〉 . (1)
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It is a matrix in spin space and depends on two coordinates and, in the
Matsubara technique, on two imaginary times. The Pauli principle requires
that this function changes sign when the two particles are interchanged,

Fαβ(~r1, τ1;~r2, τ2) = −Fβα(~r2, τ2;~r1, τ1). (2)

This well-known condition follows directly from Eq. (1) and the anti-
commutation relations for the field operators. For homogeneous systems
F depends only on relative coordinates ~r = ~r1 − ~r2 and τ = τ1 − τ2, i.e. it
follows Fαβ(~r, τ) = −Fβα(−~r,−τ), and after Fourier transformations

Fαβ(~p, ǫn) = −Fβα(−~p,−ǫn). (3)

For inhomogeneous systems this equation holds for each set of center coor-
dinates. The symmetry restriction Eq. (3) in spin, momentum ~p, and Mat-
subara frequency, ǫn = (2n + 1)πT , can be satisfied in four different ways,
listed in Table 1. Analytical continuation to the complex z-plane leads to
Fαβ(~p, z) = −Fβα(−~p,−z); in particular, retarded and advanced functions
are related as FR

αβ(~p, ǫ) = −FA
βα(−~p,−ǫ).50

The spin part of Eq. (3) can be divided up into singlet and triplet sectors

Fαβ(~p, ǫn) = Fs(~p, ǫn) (iσy)αβ + ~Ft(~p, ǫn) · (~σ iσy)αβ , (4)

where ~σ = (σx, σy, σz) is the vector of the three Pauli matrices. The singlet
spin matrix (iσy)αβ is odd under the interchange α ↔ β, while the three
triplet matrices (~σ iσy)αβ are even. Some insight about the symmetries in
the momentum- and frequency-domains can be gained by considering the
equal-time correlator.51,52, 53 E.g., for the spin-triplet case the Pauli principle
imposes that the following sum must vanish

~Ft(~r = 0, τ = 0) = T
∑

ǫn

∑

~p

~Ft(~p, ǫn) = 0. (5)

When the orbital part is odd the electrons avoid each other in real space,
the equal-time correlator ~Ft(~p, τ = 0) = T

∑

ǫn
~Ft(~p, ǫn) can be finite, and

the correlator ~Ft(~p, ǫn) is even in frequency. On the other hand, when the
orbital part is even, the correlator ~Ft(~p, ǫn) is odd in frequency, and electrons
avoid each other in time.

We summarize the symmetry classes in Table 1. The usual spin singlet
s-wave orbital symmetry in a BCS superconductor is of type A, while the spin
triplet p-wave orbital symmetry superfluid formed in 3He is of type C. Type
D was first considered by Berezinskii51 in connection with early research on
superfluid 3He. Finally, type B was considered in connection with uncon-
ventional superconductors by Balatsky, Abrahams and others.52,53, 54, 55
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Table 1
The Pauli principle, requiring the pair correlation function to be an odd function
under the exchange of two electrons, can be met by properties in spin, orbital, or
frequency space as follows:

type spin momentum frequency overall symmetry

A singlet (odd) even even odd

B singlet (odd) odd odd odd

C triplet (even) odd even odd

D triplet (even) even odd odd

So far we have only considered the correlation function. In order to
obtain the gap function, additional knowledge of the pairing interaction
λ(~p, ~p ′, ǫn, ǫ′n) is required (here for the singlet case)

∆s(~p, ǫn) = T
∑

ǫ′n

∑

p′

λs(~p, ~p ′, ǫn, ǫ′n)Fs(~p
′, ǫ′n). (6)

Clearly, the symmetry of the pairing interaction dictates the symmetry of
the gap function through the projection of the correlation function in the
gap equation. In particular, if the superconducting correlations are odd in
frequency a frequency-dependent pairing interaction (due to strong retarda-
tion effects) is needed to obtain a non-vanishing gap and a superconducting
transition.

3. TRIPLET PAIRING IN CLEAN S/F STRUCTURES

3.1. Weak Ferromagnets

To illustrate how triplet correlations are induced we study a
superconductor-weak ferromagnet heterostructure in the ballistic transport
regime and include spin-active interface scattering. For simplicity we con-
sider temperatures near the superconducting critical temperature; however,
the main results of this section require only the pairing amplitudes in the
ferromagnet to be small, and apply with minor modifications to any tem-
perature. In this case, within quasiclassical approximation, the anomalous
Green’s function follows from the (linearized) Eilenberger equations,48,49

(~vf · ∇ + 2ǫn) fs = 2π∆ sgn(ǫn) − 2iJ ftz, (7)

(~vf · ∇ + 2ǫn) ftz = −2iJfs, (8)

(~vf · ∇ + 2ǫn) ~ft⊥ = 0. (9)

Here, vf denotes the Fermi velocity for the quasiparticles in the respective
material. The superconducting gap ∆ is non-zero only in the superconduc-
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Fig. 1. (a) The spin quantization axis µ̂ of the interface spin-active scattering
matrix forms an angle α with the exchange field in the ferromagnet and has a
perpendicular component ~µ⊥. (b) The direction of the momentum ~pf is expressed
in spherical coordinates through the angles θp and φp.

tor, while the exchange field J is non-zero only in the ferromagnet. We
assume that the ferromagnet has a single domain and use the direction of
its exchange field Jẑ as spin quantization axis. The spin-active interface can
have a different spin-quantization axis, that we denote µ̂ (see below).

The main features of the set of differential equations (7)-(9) are: (i)
The inhomogeneity of the equation for ftz requires both J and fs to be
present. Thus, this component naturally emerges in a ferromagnet coupled
to a singlet superconductor. (ii) The eigenvalues of the fs-ftz sub-system
for a particular ~vf are given by k±

n = 2(|ǫn| ± iJ)/vf . Thus, both the
singlet fs and the triplet ftz oscillate on the clean-limit magnetic length
scale ξJ = vf/2J , and decay exponentially on the length scale ξn = vf/2|ǫn|;
the latter is dominated by the lowest Matsubara frequency, ǫ0 = πT , and
occurs on the clean-limit normal-metal coherence length scale ξT = vf/2πT .

(iii) The equation for ~ft⊥ = (ftx, fty) is decoupled from the others and is
homogeneous. Therefore, the presence of these components requires spin-
active interface scattering. (iv) The equations for ~ft⊥ do not contain the
exchange field, and these components are monotonic decaying functions on
the scale ξn.

The Eilenberger equations are solved by integrating along trajectories
~vf (~pf ) with an initial condition at the starting point of the trajectory. We
consider the three-dimensional case and introduce a spherical coordinate
system as shown in Fig. 1 (b). The superconductor occupies the region x < 0,
and the ferromagnet the region x > 0. We assume rotational invariance
around x̂, i.e. all quantities will be independent of the variable φp.

For positive Matsubara frequencies, the initial condition for the trajecto-
ries θp ∈ [0, π/2] deep in the superconductor is f(x → −∞) = (π∆/|ǫn|)iσy .
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For trajectories θp ∈ [π/2, π] we start the integration deep in the ferromagnet
with initial condition f(x → +∞) = 0. For negative Matsubara frequen-
cies, the stable direction of integration is the opposite. After applying the
boundary conditions described below, the integration proceeds away from
the interface.

The boundary conditions at the superconductor-ferromagnet interface
for the 2x2 spin matrix Green’s functions coincide for positive Matsubara
frequencies with those for the retarded functions.45 Near Tc, they read

f2,out = S22f2,inS†
22 + S21f1,inS†

21, (10)

where the indices 1 and 2 refer to the superconducting and ferromagnetic
sides, respectively, and ‘in’ and ‘out’ denote functions with momenta directed
towards or away from the interface. The scattering matrix for holes is written
in terms of the scattering matrix for electrons as Sij(~p‖) = Sji(−~p‖)

T . For
negative Matsubara frequencies the boundary conditions coincide with the
ones for advanced functions, which here simply means interchanging S ↔ S†

and the side indices (i ↔ j).
For definiteness, we consider a simplified spin-active model in which the

scattering matrix is independent of the sign of the parallel momentum ~p‖.
In this case e.g. the scattering matrix for transmission can be written as45

S12 = S21 = eiϕ/2 [s21 + s′21(µ̂ · ~σ)
]

exp [i(µ̂ · ~σ)ϑ/2] , (11)

where we have an average transmission parameter s21 = (|t+| + |t−|)/2,
a spin-filtering transmission parameter s′21 = (|t+| − |t−|)/2, plus a spin-
mixing angle ϑ. The amplitudes t± denote the transmission amplitudes of
the interface for the two spin-directions in the basis where µ̂ · ~σ is diagonal.
The phase ϕ does not play a role in the following.

For small transmission and small spin mixing the energy gap ∆ has a
step function form, in which case f1,in retains its bulk form at the interface.
Similarly, the incoming function on the F-side retains its bulk form, i.e. it
vanishes f2,in = 0. The resulting outgoing amplitude at the interface on the
ferromagnetic side can be written as f2,out = (As +sgn(ǫn)At µ̂ ·~σ)iσy, where

As = A0 cos ϑ, At = iA0 sin ϑ, (12)

and the prefactor is A0 = |t+| |t−|π∆/|ǫn|. These amplitudes are the initial
conditions for the singlet and triplet components in the ferromagnet at the
interface. The spatial dependence of all amplitudes can be expressed in
terms of the effective coordinate xθ = x/| cos θp|. We obtain the following
explicit expressions in the ferromagnet

fs(ǫn, xθ) = cs

[

As cos

(

xθ

ξJ

)

− iAt cos α sin

(

xθ

ξJ

)]

e−knxθ , (13)
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ftz(ǫn, xθ) = cs sgn(ǫn)

[

At cos α cos

(

xθ

ξJ

)

− iAs sin

(

xθ

ξJ

)]

e−knxθ , (14)

~ft⊥(ǫn, xθ) = cs sgn(ǫn)Ate
−knxθ ~µ⊥, (15)

where kn = 2|ǫn|/vf . Here we introduced the components of µ̂ parallel to
the z-axis, cos α ẑ, and perpendicular, ~µ⊥, see Fig. 1 (a). The coefficient
cs = [1 + sgn(~pf · x̂) sgn(ǫn)] /2 selects the correct sign of the momentum
relative to the x-axis.

We conclude at this stage: (i) The singlet component is purely real while
the triplet components are purely imaginary. It follows that in the complex
plane fs(−z∗) = fs(z)∗, ~ft(−z∗) = −~ft(z)∗ for each ~p. E.g., the retarded
functions have the symmetries fR

s (−ǫ) = fR
s (ǫ)∗ and ~fR

t (−ǫ) = −~fR
t (ǫ)∗. (ii)

Spin-mixing (finite ϑ) is crucial for triplet components to be induced at the
interface. (iii) The components ~ft⊥ are induced only when µ̂ is misaligned
with respect to the exchange field (here Jẑ).

To investigate the symmetry properties we expand the correlation func-
tions in partial waves. Since we have rotational invariance around the x̂-axis,
and the correlation functions only depend on cos θp through the projection
of the Fermi velocity on the x-axis, we can expand in Legendre polynomials
Pl(cos θp) and get

fs(cos θp, ǫn, x) =
∞
∑

l=0

fs(l, ǫn, x)Pl(cos θp), (16)

fs(l, ǫn, x) =
2l + 1

2

∫ 1

−1
d(cos θp)fs(cos θp, ǫn, x)Pl(cos θp), (17)

and similarly for the triplet components. To proceed we have to model the
dependencies of the tunneling probabilities and the spin-mixing angle on
the trajectory angle and then evaluate the various harmonics. The simplest
model is a tunnel cone model with constant transmission probabilities and
spin-mixing angle within a range of trajectory angles, i.e. |t+(θp)| =

√T+,
|t−(θp)| =

√T−, and ϑ(θp) constant simply called ϑ. In the following we
assume a very wide tunnel cone (→ π/2), but it is straightforward to obtain
the expressions for a more narrow cone. After integrations over cos θp we
obtain the amplitudes

fs(l) = A0 [sgn(ǫn)]l [cos ϑ ReQl(z) − cos α sin ϑ ImQl(z)] , (18)

ftz(l) = iA0 [sgn(ǫn)]l+1 [cos α sinϑ ReQl(z) + cos ϑ ImQl(z)] , (19)

~ft⊥(l) = iA0 [sgn(ǫn)]l+1 [sin ϑ Ql(knx)] ~µ⊥, (20)

where z = k+
n x = 2(|ǫn| + iJ)x/vf . The function Ql(z) for the first few

l is given by Q0(z) = zΓ(−1, z)/2 (s-wave), Q1(z) = 3z2Γ(−2, z)/2 (p-
wave), and Q2(z) = (5/2)

[

3z3Γ(−3, z)/2 − zΓ(−1, z)/2
]

(d-wave), where
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Table 2
The pairing correlations in ballistic superconductor-ferromagnet systems with spin-
active interface scattering can be identified with the four types listed in Table 1.

Eq. (18), singlet: even l: even parity, even in frequency type A
odd l: odd parity, odd in frequency type B

Eqs. (19)-(20), triplets: odd l: odd parity, even frequency type C
even l: even parity, odd frequency type D

Γ(n, z) is the upper incomplete gamma-function. Note the different spatial
dependences of the singlet and m = 0 triplet on the one hand, and the
perpendicular triplets on the other hand, as they enter in the argument
of Ql. Also note that Ql(knx) is purely real since knx is real. The Pauli
principle and the symmetry requirements it imposes is affirmed in Eqs. (18)-
(20). We can also conclude that we have all four types of correlations, see
Table 2, including equal-spin pairing correlations when µ̂ is not parallel to
~J .

In the region ξJ ≪ x ≪ ξ0 of the ferromagnet the various components
show different decaying behaviors depending on whether the pairing corre-
lations involve two spin bands (fs and ftz) or only one spin band (~ft⊥). The
asymptotic form of the gamma function for |z| ≫ 1 is Γ(n, z) ∼ zn−1e−z,
and we can obtain simplified expressions for x ≫ ξJ . We focus on the lowest
Matsubara frequency, for which

Ql(z)|x≫ξJ
≈ −i

2l + 1

2

ξJ

x
e−x/ξ0e−ix/ξJ , (21)

where ξ0 = vf/2πTc. The singlet and triplet amplitudes with zero spin-
projection have the forms

fs(l) = f0

[

− cos ϑ
sin (x/ξJ )

x/ξJ
+ cos α sinϑ

cos (x/ξJ)

x/ξJ

]

e−x/ξ0 , (22)

ftz(l) = if0

[

− cos ϑ
cos (x/ξJ)

x/ξJ
− cos α sin ϑ

sin (x/ξJ)

x/ξJ

]

e−x/ξ0 , (23)

where the prefactor is f0 =
√T+T−(∆/T )(2l+1)/2. Note that there is a π/2

phase shift between the oscillations of the two components fs and ftz. Also
note that the trajectory resolved functions decay exponentially on the large
coherence length scale ξ0, while the various harmonics decay as (x/ξJ)−1,
before the exponential decay on the ξ0 scale sets in at large distances; the
difference comes from the average over trajectories when projecting out the
various harmonics. On the other hand, for the perpendicular triplets the
asymptotic behavior is not reached until x ≫ ξ0, and is of the form

~ft⊥(l) ≈ if0 sin ϑ
ξ0

x
e−x/ξ0~µ⊥. (24)
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Fig. 2. Pair correlation functions in the ferromagnet of a ballistic superconductor-
ferromagnet junction. The first partial wave (l = 0) for the lowest Matsubara
frequency, ǫ0 = πT , is shown. (a) For the singlet, fs, and triplet with zero spin-
projection on the exchange field, ftz, we observe a 1/x-decay and oscillations, both
on the scale ξJ = vf/2J . On the same scale the perpendicular triplet ft⊥ only varies
slowly. (b) At large distances all components decay on the coherence length scale
ξ0. However, the magnitudes of fs and ftz are considerably reduced compared with
ft⊥ before this region is reached. We have chosen ξ0 = 100ξJ , α = π/4, ϑ = π/4,
and we have normalized the functions by (∆/T )

√

T+T−.

We plot in Fig. 2 the l = 0 component of the Green’s functions in the
ferromagnet, as given by Eqs. (18)-(20) for the lowest Matsubara frequency.
The higher order partial waves look very similar and have similar amplitudes.
As can be seen in the figure and from Eqs. (22)-(23), in the region ξJ ≪
x ≪ ξ0 the correlation functions fs and ftz decay like 1/x and are rapidly
reduced by a factor ξJ/ξ0 compared to ~ft⊥. A similar decay for ~ft⊥ is absent
in that region. For x ≫ ξ0 all components continue to decay according to
x−1e−x/ξ0 , as can be inferred from Eqs. (22)-(24).

In fact, the Pauli principle requires odd-frequency amplitudes to be
present in any inhomogeneous superconducting state, not necessarily spin-
polarized. For example, the case of a normal metal coupled to a supercon-
ductor is easily obtained from the above calculations and we recover for the
case of a usual tunnel barrier (no spin-active scattering) the usual proximity
effect.25 There is only a singlet component of the Green’s function and in
the normal metal region it can be expressed in terms of partial waves as

fs(l) = T π∆

|ǫn|
[sgn(ǫn)]l Ql

(

2|ǫn|x
vf

)

, (25)

which for large distances from the interface x ≫ ξ0 decays as ∼
(ξ0/x) exp(−x/ξ0). Above we introduced T , the transparency of the in-
terface within the tunnel cone (here for simplicity chosen very wide → π/2
as above). We see that higher partial waves l ≥ 1 are induced, as is always
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the case in inhomogeneous systems. In accordance with the Pauli principle,
all odd components (l = 1, 3, ..) are odd in frequency. Thus, both singlet
entries (types A and B) in Table 1 are always present in the usual proximity
effect, and in fact in any inhomogeneous singlet superconducting state. Anal-
ogously, the two triplet entries (types C and D) in Table 1 are characteristic
for any inhomogeneous triplet superconducting state.

3.2. Half-metallic Ferromagnet

In this section we analyze the various symmetry components, intro-
duced in the previous sections, for the case of a superconductor cou-
pled to a half-metallic ferromagnet. This case was previously studied on
theoretical grounds, and a non-zero Josephson-effect was predicted for a
superconductor/half-metal/superconductor junction.34 The effect has re-
cently been confirmed experimentally.15 In our previous article we focused
on the p-wave triplet amplitudes, but it should be noted that there is also an
odd-frequency s-wave triplet amplitude present in the half-metal. In fact,
within our model all symmetry classes discussed in the previous chapter and
shown in Table 1 are present in the heterostructure. In the following we
discuss the results for the clean case. We have performed calculations with
impurity scattering ranging from the clean limit to the diffusive limit and
have confirmed that both the even-frequency p-wave triplet and the odd-
frequency s-wave triplet components are always present and important for
the Josephson current through the half metal.47

The full scattering matrix for our model is a 3x3 matrix, where the three
scattering channels are the two spin channels in the superconductor and one
metallic spin channel in the half metal. The second spin channel in the half
metal is insulating and is not participating actively in transport phenomena.
As discussed in the introduction, quasiclassical theory is therefore applicable.
To be specific, we parameterize the scattering matrix connecting incoming to
outgoing waves in the superconductor (S) and half-metallic (F ) sides as,34

Ŝ =

(

rS tSF

tFS −rF

)

=









r↑↑e
i
2
ϑ r↑↓e

i(ϑ↑↑−ϑ↓↑) d↑↑e
i(ϑ↑↑+ ϑ

4
)

r↓↑e
−i(ϑ↑↑−ϑ↓↑) r↓↓e

− i
2
ϑ d↓↑e

i(ϑ↓↑−
ϑ
4
)

d↑↑e
−i(ϑ↑↑−

ϑ
4
) d↓↑e

−i(ϑ↓↑+ ϑ
4
) −r↑↑









,

(26)
where the extra phases of the transmission amplitudes ensure the unitarity
of the scattering matrix, and the magnitudes are given by r↑↑ = 1− t2↑↑/2W ,

r↓↓ = 1 − t2↓↑/2W , r↑↓ = r↓↑ = −t↑↑t↓↑/2W , r↑↑ = 1 − (t2↑↑ + t2↓↑)/2W ,

d↑↑ = t↑↑/W , and d↓↑ = t↓↑/W , with W = 1 + (t2↑↑ + t2↓↑)/4. The five real
parameters of the scattering matrix above are t↑↑, t↓↑, ϑ, ϑ↑↑ and ϑ↓↑.

In the following we derive analytic expressions for a well defined limiting
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case: the case of weak transmissions in all channels and small spin mixing
angle. In the above scattering matrix this means that ϑ, t↑↑ and t↓↑ are
small. Thus, in this limit the scattering matrix assumes the form,

Ŝ0 =









e
i
2
ϑ 0 t↑↑e

i(ϑ↑↑+ ϑ
4
)

0 e−
i
2
ϑ t↓↑e

i(ϑ↓↑−
ϑ
4
)

t↑↑e
−i(ϑ↑↑−

ϑ
4
) t↓↑e

−i(ϑ↓↑+ ϑ
4
) −1









. (27)

Before presenting the results, we comment on the parameters in the
scattering matrix. Within our theory, the scattering matrix is a phenomeno-
logical input that characterizes the scattering of quasiparticles near the Fermi
surface on either side of the interface of the system. Microscopic details of the
interfaces are irrelevant for the low-energy physics near the Fermi surfaces.
Thus, all the parameters are assumed to be independent of energy, and only
depend on the positions of the scattering momenta on the Fermi surface. For
strong ferromagnets, J is not a small quantity, and consequently the scatter-
ing matrix has spin-active scattering terms of the order of J/ǫF , with ǫF the
Fermi energy. Whereas the spin-mixing angle ϑ is a robust property of any
interface to a strong ferromagnet, the spin-flip parameters t↓↑, ϑ↓↑ require
the breaking of spin-rotation symmetry around the quantization axis of the
ferromagnet. This can be the result of various mechanisms, for example the
presence of interface regions with misaligned spin (magnetic grain layers).
The above mentioned parameters represent in this case averages over the
grain configuration along the contact region of the interface for each given

sample, t↓↑e
iϑ↓↑ = 〈t(i)↓↑ eiϑ

(i)
↓↑ 〉i, where i numbers the different grains. Thus,

there are expected sample-to-sample variations in the spin-flip parameters
unless the typical grain size exceeds the contact size.

We now proceed with the derivation of analytic expressions for the vari-
ous symmetry components of the pairing amplitudes. On the superconduct-
ing side of an interface with a half metal, all four components listed in Table
1 are induced and can be calculated perturbatively in the small parameters
ϑ, t↑↑ and t↓↑. In the following we denote Ωn =

√

ǫ2
n + |∆|2. We obtain for

type D: fD
tz = iπϑǫn∆/2Ω2

n, for type C: fC
tz = −iπϑ∆/2Ωn. In an expansion

in spherical harmonics the two components fD
tz and fC

tz correspond to s-wave
and p-wave triplets. The type B component only enters in second order in
ϑ, and has the form fB

s = πϑ2ǫn∆/4Ω2
n. Finally, the renormalization of

the type A singlet component, δfA
s = −πϑ2ǫ2

n∆/4Ω3
n, reduces the leading

component only in second order in ϑ. Consequently, to linear order in ϑ the
self consistent singlet order parameter ∆ is not affected and stays constant
up to the interface. All components, δfA

s , fB
s , fC

tz , and fD
tz decay into the

superconductor exponentially with a decay length given by ξ
(S)
n = vf/2Ωn.
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Next we consider the equal spin pairing amplitudes in a symmetric
Josephson junction with a half metal of length L extending from −L/2 <
x < L/2. On either side of the half metal are singlet superconductors hav-
ing order parameters |∆|eiχ1 and |∆|eiχ2 . The equal spin pairing amplitudes
in the half metal, f↑↑ are proportional to the components ftz in the super-
conductors. For the even-frequency triplet amplitude we obtain in the half
metal,

fC
↑↑ = −i βn sgn(cos θp)

(

sinh knx
µ

sinh knL
2µ

(eiχ̃2 + eiχ̃1) +
cosh knx

µ

cosh knL
2µ

(eiχ̃2 − eiχ̃1)

)

,

(28)
and for the odd-frequency triplet amplitude,

fD
↑↑ = i βn sgn(ǫn)

(

cosh knx
µ

sinh knL
2µ

(eiχ̃2 + eiχ̃1) +
sinh knx

µ

cosh knL
2µ

(eiχ̃2 − eiχ̃1)

)

, (29)

where kn = 2|ǫn|/vf , µ = | cos θp|, and βn = πt↑↑t↓↑ϑ|∆||ǫn|/2(ǫ2
n + |∆|2).

The superconducting phases are renormalized by the phase shifts during
tunneling, and are given by χ̃i = χi − ϑi,↑↑ − ϑi,↓↑ with i = 1, 2. Note
that equal-spin amplitudes are only possible when both t↓↑ 6= 0 and ϑ 6= 0.
Even and odd frequency (i.e. p-wave and s-wave) triplets at the interfaces
(x = ±L/2) are comparable in size.

To illustrate the different symmetry components, we show in Fig. 3
numerical results for a superconductor/half-metal/superconductor junction.
For these results we do not expand the interface scattering matrix in θ,
t↑↑, t↓↑ as in Eq. (27), but use the general scattering matrix (26) and solve
the boundary conditions numerically.34 We allow for an angular variation
with respect to the interface normal of both the spin mixing angle and the
transmission amplitudes; for definiteness we assume a variation proportional
to | cos θp|. We iterate the order parameter and the boundary conditions until
self consistency is achieved. We discuss first results for a π-junction (χ̃1 = 0,
χ̃2 = π) as this is the ground state of the Josephson junction.34 To quantify
the spatial dependences of the different symmetry amplitudes, we define the
functions

Fαβ(x) =
2

π
T
∑

ǫn>0

〈

Pl(cos θp) fαβ(ǫn, x, θp)
〉

~p
f∗

h(ǫn), (30)

where Pl(cos θp) is chosen to project out the s-wave (l=0) or p-wave (l=1)
parts of the pairing amplitudes, and fh(ǫn) = π∆/Ωn is the propagator for a
homogeneous singlet superconductor that is introduced here to ensure con-
vergence at large ǫn (note that at the boundary points fαβ(ǫn) decays weakly
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Fig. 3. Spatial dependences of all components of the pairing amplitude for a
symmetric superconductor/half-metal/superconductor Josephson π-junction with
interfaces characterized by the scattering matrix Eq. (27). The interfaces are in-
dicated by the dashed lines. The components were numerically iterated until self
consistency with the singlet order parameter was achieved. The interface parame-
ters for normal impact angle are ϑ = 0.3π, t↑↑ = 1, t↓↑ = 0.7, ϑ↑↑ = ϑ↓↑ = 0, and
the temperature is T = 0.2Tc.

∼ 1/ǫn). As is shown in Fig. 3, on the superconducting side all possible sym-
metry components listed in Table 1 are induced, of which the even-frequency
p-wave triplet and the odd-frequency s-wave triplet penetrate into the half
metal. The latter two components are of similar magnitude, however the
p-wave triplet is larger in the center region of the junction than the s-wave
triplet. We have also performed calculations including impurity scattering
and have shown that both components are essential for the Josephson current
in the entire range from the ballistic to the diffusive limit. Details will be
presented in a forthcoming publication.47 Also seen in Fig. 3 is that there
are different symmetries with respect to the spatial coordinate, that result
from the symmetry of the Josephson junction. The components shown are
for the ground state; with a finite Josephson current (χ̃2 − χ̃1 6= 0, π) all
amplitudes become complex and the spatial symmetries are lost, as can also
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Fig. 4. The same as in Fig. 3, but for zero phase difference.

be inferred from Eqs. (28)-(29). Note that in Fig. 3, as consequence of higher
order terms in the transmission parameters and the spin-mixing angle, there
are equal-spin pairing correlations also in the superconducting regions, and
there are noticeable inhomogeneous contributions to the singlet amplitudes
as well.

For comparison, we present in Fig. 4 the pairing components for the
zero-junction case (χ̃1 = χ̃2 = 0). In this case, the spatial symmetries are
opposite to that of the π-junction. We have verified that the π junction has
the lower free energy.34

We consider next the Josephson current through the junction. We as-
sume identical interface parameters for both contacts, that may depend on
the impact angle θp via a parameter µ = | cos θp|. We obtain for small ϑ,
t↑↑, and t↓↑ the following expression for the Josephson current density,

J = −Jc sin(χ̃2 − χ̃1) (31)

Jc = eNfvf |∆|2πT
∑

ǫn>0

〈

µ ϑ2|t↓↑|2|t↑↑|2

2 sinh
(

2ǫnL
vf µ

)

〉

µ

ǫ2
n

(ǫ2
n + |∆|2)2 , (32)
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Fig. 5. (a) The normalized critical Josephson current density Jc(T )/Jc0 as com-
puted from Eq. (32) as a function of temperature T . The temperature dependence
of the gap is given by the well-known BCS formula. (b) The zero temperature value
Jc0 = Jc(T = 0) is shown in units of eNfvfTc|t↓↑|2|t↑↑|2ϑ2 as function of junction
length L. (c) The peak position of the curves in (a) as function of L.

where 〈· · ·〉µ =
∫ 1
0 dµ(. . .), and Nf denotes the density of states of the spin-

up electrons at the Fermi level in the half metal. We point out several
differences to the case of the Josephson effect through a normal metal: (i)
The minus sign suggests that the π-junction is stable for all temperatures and
parameters within the above approximation. (ii) The Josephson current is
proportional to the square of the spin-mixing angle ϑ and the squares of both
the tunneling amplitudes t↓↑ and t↑↑. Thus, the magnitude of the critical
current is much more sensitive to the interface characteristics than in a usual
Josephson junction; in particular, strong sample-to-sample fluctuations are
expected as the magnitude is proportional to t↓↑. (iii) The additional phases
ϑ↓↑+ϑ↑↑ in χ̃1,2 can lead to a shift of the equilibrium phase difference between
the superconductors except when they are identical for both interfaces of
the Josephson junction. (iv) The Josephson current density is a result of
both the even-frequency p-wave triplet and the odd-frequency s-wave triplet
amplitudes, and neither of them can be neglected.

In Fig. 5 (a) we show Jc(T ) from Eq. (32) normalized to its zero tem-
perature value. As above we assumed a variation of θ, |τ↑↑|, and |τ↓↑| with
impact angle that is proportional to | cos θp|. As can be seen, there is a low-
temperature anomaly in Jc(T ) that has been discussed previously.34 Here we
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show that this anomaly is a robust feature that exists even in the limit of
small transmission and small spin-mixing angle, and is independent of these
material parameters. Thus, the dependence on the interface parameters can
be divided out and Jc(T )/Jc(0) is a universal function, only dependent on
L/ξ0. The appearance of the anomaly can be traced back to the different
energy dependence of the pair amplitudes in the half metal compared with
a normal metal, which results in the ǫ2

n-factor in the numerator of Eq. (32).
The position of the peak maximum in the temperature dependence of the
Josephson current is shown in Fig. 5 (c) as a function of junction length
L. It scales at large L as Tpeak/Tc ≈ 2.5ξ0/L. For small L it saturates at
a finite temperature. We also show in Fig. 5 (b) the variation of the zero
temperature Josephson current with junction length. It decays for large L,
as is L−1 exp(−L/ξ0).

4. SUMMARY

In conclusion, we have investigated the superconducting pairing correla-
tions with unconventional symmetries at interfaces between superconductors
and ferromagnets. We have demonstrated that in ballistic superconduc-
tor/ferromagnet junctions spin-active interface scattering naturally leads to
all possible symmetry components of pairing amplitudes compatible with the
Pauli principle. We have also discussed the case of a junction with a half-
metallic ferromagnet. In this case odd-frequency s-wave and even frequency
p-wave components are of comparable magnitude and are essential for the
Josephson current. This leads to a π-junction, where the supercurrent is
carried by spin-triplet Cooper pairs. We have shown that a low-temperature
anomaly in the Josephson effect through a half-metal is of universal nature
in the tunneling limit in ballistic systems. We have derived analytic expres-
sions for all pairing components and for the Josephson current in the limit
of small interface transmissions and small spin-mixing angle.
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35. T. Löfwander et al., Phys. Rev. Lett. 95, 187003 (2005); T. Löfwander,
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