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Abstract

The subject of this paper are stationary random measures on a homogeneous space
and their Palm measures. After the discussion of some fundamental properties as the
refined Campbell theorem we will study invariant transports, invariance properties
of Palm measures and stationary partitions. A key tool will be simple transformation
of stationary random measures that will allow to extend recent results for stationary
random measures on a group to the more general case of a homogeneous state space.
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1 Introduction

Palm measure and Palm probabilities are a fundamental and important concept in theory
and application of point processes and random measures, see e.g. Matthes, Kerstan and
Mecke [11], Kallenberg [4], Stoyan, Kendall and Mecke [17], Daley and Vere-Jones [1],
Thorisson [18], Kallenberg [5] and Schneider and Weil [16]. In his seminal paper [12]
Mecke has introduced and studied Palm measures of stationary random measures on
Abelian groups. Later Tortrat [19] and Rother and Zähle [15] introduced Palm measures
of stationary random measure on a group and on a homogeneous space, respectively.
However, these more general cases have found little attention in the literature. The most
general approach to invariance properties of Palm measures can be found in Kallenberg
[6].

In this paper we will advance Palm theory for stationary random measures on a ho-
mogeneous space S. A simple but crucial tool will be a deterministic transformation of a
stationary random measure on S into a stationary random measure on the group G. As
this transformation is preserving the Palm measure, it can be used for extending recent
results from the group case to general homogeneous spaces. This approach is not only
short and elegant but has also the advantage of highlighting the important special case of
a stationary random measure on a group. Stationary random measures and their Palm
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measures are introduced in Section 3. Sections 4-6 are extending some of the results in
[9, 8] on invariance and transport properties of Palm measures. In Section 7 we will estab-
lish Mecke’s [12] intrinsic characterization of Palm measure in our setting, see also [15].
In the two final sections we will apply the theory to stationary partitions (see [3, 7, 2] for
the case S = G = Rd) of (a random subset of) S.

2 Homogeneous spaces

We consider a topologial (multiplicative) group G that is assumed to be a locally compact,
second countable Hausdorff space with unit element e and Borel σ-field G. A classical
source on such groups is [13], see also chapter 2 of [5]. A measure ν on G is locally finite if
it is finite on compact sets. There exists a left-invariant Haar measure on G, i.e. a locally
finite measure satisfying

∫

f(hg)λ(dg) =

∫

f(g)λ(dg), h ∈ G, (2.1)

for all measurable f : G → R+, where R+ := [0,∞). This measure is unique up to
normalization. The modular function is a continuous homomorphism ∆ : G → (0,∞)
satisfying

∫

f(gh)λ(dg) = ∆(h−1)

∫

f(g)λ(dg), h ∈ G, (2.2)

for all f as above. This modular function has the property
∫

f(g−1)λ(dg) =

∫

∆(g−1)f(g)λ(dg). (2.3)

The group G is called unimodular, if ∆(g) = 1 for all g ∈ G.
Next we consider another locally compact second countable Hausdorff space S with

Borel σ-field S. We assume that the group G is operating continuously on S. This means
that there is a continuous mapping (g, x) 7→ gx from G × S to S having ex = x and
h(gx) = (hg)x for all h, g ∈ G and x ∈ S. We assume that G is operating transitively,
i.e. that the projection πx : G → S, πx(g) := gx, is surjective for one (and hence for all)
x ∈ S. We also assume that G operates properly, i.e. that π−1

x K is compact in G for any
compact K ⊂ S. Then S is called homogeneous space.

A measure µ on S is invariant (or G-invariant) if
∫

f(gx)µ(dx) =

∫

f(x)µ(dx), g ∈ G, (2.4)

for all measurable f : S → R+. Up to a factor there is only one such invariant measure
which is locally finite. In fact, we can and will choose

µ := λ ◦ π−1
c , (2.5)

where c is some fixed element of S. For any x ∈ S we let Gx := {g ∈ G : gc = x}. Since
Gc is a compact subgroup of G, there is a unique left- and right-invariant probability
measure λc on Gc. It is convenient to extend λc to G by setting λc(G \Gc) := 0. We have

∆(g) = 1, g ∈ Gc. (2.6)
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Indeed, if w : S → R+ is measurable with
∫

wdµ = 1, then (2.5) and (2.2) imply for
g ∈ Gc that

1 =

∫

w(hc)λ(dh) =

∫

w(hgc)λ(dh) = ∆(g−1)

∫

w(hc)λ(dh) = ∆(g−1).

For any x ∈ S we choose some gx ∈ Gx and define a probability measure λx on G by

λx(B) :=

∫

1{gxg ∈ B}λc(dg), B ∈ G. (2.7)

By Gc-invariance of λc, this definition is independent of the choice of gx. This does also
imply that

∫

1{g ∈ ·}λhx(dg) =

∫

1{hg ∈ ·}λx(dg), h ∈ G, x ∈ S. (2.8)

Note that λx is supported by Gx. Moreover, the proof of Theorem 2.29 in [5] shows that
(x, B) 7→ λx(B) is a kernel disintegrating the Haar measure λ as follows:

∫

f(g)λ(dg) =

∫∫

f(g)λx(dg)µ(dx). (2.9)

In fact, (2.9) is a straightforward consequence of (2.5), Fubini’s theorem and (2.6).
Important examples of groups (e.g. in stochastic geometry) are the translation group,

the rotation group and the group of rigid motions, all defined as subgroups of the group
of bijective affine maps. The linear (resp. affine) Grassmannian of k-dimensional linear
(resp. affine) subspaces of Rd is a homogeneous space under the group of rotations (resp.
rigid motions). More details on these (and related spaces) can be found in the Appendix
of [16].

For further reference we state the important special case of a group acting on itself
explicitly:

Example 2.1. Assume that S := G and that (g, x) 7→ gx is just the multiplication in
the group. Take c := e. Then µ = λ. Moreover, Gh = {h} and λh({h}) = 1 for all h ∈ G.

3 Stationary random measures

We denote by M(S) the set of all locally finite measures on S, and by M(S) the cylindrical
σ-field on M(S) which is generated by the evaluation functionals ν 7→ ν(B), B ∈ S. We
often write M and M instead of M(S) and M(S), respectively. The support supp ν of
a measure ν ∈ M is the smallest closed set F ⊂ G such that ν(G \ F ) = 0. By N ⊂ M

(resp. Ns ⊂ M) we denote the measurable set of all (resp. simple) counting measures on
S, i.e. the set of all those ν ∈ M with discrete support and ν{x} := ν({x}) ∈ N0 (resp.
ν{x} ∈ {0, 1}) for all x ∈ S. We can and will identify Ns with the class of all locally finite
subsets of S, where a set is called locally finite if its intersection with any compact set is
finite.

Although we mostly work on a σ-finite measure space (Ω,F , P) (P need not be a
probability measure), we are still using a probabilistic language. Together with P we
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will consider several other measures on (Ω,F). A random measure on S is a measurable
mapping ξ : Ω → M. A random measure is a (simple) point process on S if P(ξ /∈ N) = 0
(resp. P(ξ /∈ Ns) = 0). A random measure ξ can also be regarded as a kernel from Ω to
S. Accordingly we write ξ(ω, B) instead of ξ(ω)(B). If ξ is a random measure, then the
mapping (ω, x) 7→ 1{x ∈ supp ξ(ω)} is measurable.

We assume that (Ω,F) is equipped with a measurable flow θg : Ω → Ω, g ∈ G. This is
a family of measurable mappings such that (ω, g) 7→ θgω is measurable, θe is the identity
on Ω and

θg ◦ θh = θgh, g, h ∈ G, (3.1)

where ◦ denotes composition. This implies that θg is a bijection with inverse θ−1
g = θg−1 .

A random measure ξ on S is called invariant (or flow-adapted) if

ξ(θgω, gB) = ξ(ω, B), ω ∈ Ω, g ∈ G, B ∈ S, (3.2)

where gB := {gx : x ∈ B}. This means that
∫

f(x)ξ(θgω, dx) =

∫

f(gx)ξ(ω, dx) (3.3)

for all measurable f : S → R+. We will often skip the ω in such relations, i.e. we write
(3.3) as

∫

f(x)ξ(θg, dx) =
∫

f(gx)ξ(θe, dx) or
∫

f(x)ξ(θg, dx) =
∫

f(gx)ξ(dx). Recall that
θe is the identity on Ω. Still another way of expressing (3.2) is

ξ ◦ θg = gξ, g ∈ G, (3.4)

where for ν ∈ M and g ∈ G the measure gν is defined by gν(·) :=
∫

1{gx ∈ ·}ν(dx).
In order to formulate a close relationship between invariant random measures on S

and G we need the following Lemma.

Lemma 3.1. If ν ∈ M(S) then ν ′ :=
∫

λx(·)ν(dx) ∈ M(G).

Proof. Let B ⊂ G be compact. We first prove that

K := {x ∈ S : Gx ∩ B 6= ∅}

is compact. Let U ⊂ G be an open cover of K. Then {π−1
c U : U ∈ U} is an open cover

of B. Indeed, if g ∈ B then there is a x ∈ S with g ∈ Gx, i.e. x ∈ K. This means that
g ∈ π−1

c U for some U ∈ U . Since B is compact, there is a finite subset U ′ of U such that
{π−1

c U : U ∈ U ′} is an open cover of B. But then U ′ is an open cover of K. Indeed, if
x ∈ K, then we may take some g ∈ Gx ∩B. In particular, there is some U ∈ U ′ such that
g ∈ π−1

c U , i.e. x = πcg ∈ U . We conclude that K is compact. It follows that

ν ′(B) =

∫

λx(B)ν(dx) ≤

∫

1{Gx ∩ B 6= ∅}ν(dx) = ν(K) < ∞.

Therefore, ν ′ is locally finite.

The following lemma is a strengthening of Theorem 7.3 in [6] in our more specific
situation. It will play a crucial role in the sequel. Invariance of a random measure on G
is defined in the setting of Example 2.1.
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Lemma 3.2. If ξ is an invariant random measure on S, then

ξ′ :=

∫

λx(·)ξ(dx) (3.5)

is an invariant random measure on G.

Proof. Let B ∈ G. Since x 7→ λx(B) is measurable, ξ′(B) is measurable as well. If B
is compact, then ξ′(B) is finite by Lemma 3.1. Using (2.8) and (3.2) we get for any g ∈ G
and B ∈ S that

ξ′(θg, gB) =

∫

λx(gB)ξ(θg, dx) =

∫

λgx(gB)ξ(dx) = ξ′(B).

Therefore, ξ′ is invariant.

Remark 3.3. If ξ′ is given as in (3.5), then

ξ =

∫

1{gc ∈ ·}ξ′(dg). (3.6)

Conversely, if ξ′ is an invariant random meansure on G, then (3.6) defines an invariant
random measure on S.

A measure P on (Ω,F) is called stationary if it is invariant under the flow, i.e.

P ◦ θg = P, g ∈ G, (3.7)

where θg is interpreted as a mapping from F to F in the usual way:

θgA := {θgω : ω ∈ A}, A ∈ F , g ∈ G.

Example 3.4. Consider the measurable space (M,M) and define for ν ∈ M and g ∈ G
the measure θgν by θgν := gν, i.e. θgν(B) := ν(g−1B), B ∈ S. Then {θg : g ∈ G} is a
measurable flow and the identity ξ on M is an invariant random measure. A stationary
probability measure on (M,M) can be interpreted as the distribution of a stationary
random measure.

Example 3.5. Assume that G is an additive Abelian group and that S = G. Consider
a flow {θ̃g : g ∈ G} as in [9] (see also [14]). In our current setting this amounts to define
gx := x+g and θg := θ̃−1

g . It is somewhat unfortunate that in the point process literature
it is common to define the shift of a measure ν ∈ M by g ∈ G by g−1ν and not (as it
would be more natural) by gν. Here we follow the terminology of [6].

Remark 3.6. Our setting accomodates stationary marked point processes (see [1, 11]) as
well as stochastic processes (fields) jointly stationary with a random measure ξ (see [18]).
The use of an abstract flow {θg : g ∈ G} acting directly on the underlying sample space
is making the notation quite efficient. An even more general framework would be to let
the group operate on the appropriate state spaces and to replace (3.7) by a distributional
invariance, see [6]. Such an approach might be better suited for the case of a group
operating in a non-transitive way. A specific non-transitive case is treated in Remark
3.12.
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We now fix a σ-finite stationary measure P on (Ω,F) and an invariant random measure
ξ on S. Let w : S → R+ be a measurable function having

∫

w(x)µ(dx) = 1. The measure

Pξ(A) :=

∫∫∫

1{θ−1
g ω ∈ A}w(x)λx(dg)ξ(ω, dx)P(dω), A ∈ F , (3.8)

is called the Palm measure of ξ (with respect to P). A more succinct way of writing (3.8)
is

Pξ(A) = EP

∫∫

1{θ−1
g ∈ A}w(x)λx(dg)ξ(dx), A ∈ F , (3.9)

where EP denotes integration with respect to P. It is easy to see that Pξ is concentrated
on {c ∈ supp ξ}, i.e.

Pξ(c /∈ supp ξ) = 0. (3.10)

If ξ′ is an invariant random measure on G, then (3.9) simplifies to

Pξ′(A) = EP

∫

1{θ−1
g ∈ A}w′(g)ξ′(dg), A ∈ F , (3.11)

where w′ : G → R+ is a measurable function having
∫

w′(g)λ(dg) = 1. The following
refined Campbell theorem connects P and Pξ′. For a proof we refer to [19], [6] and [8].

Proposition 3.7. Let ξ′ be an invariant random measure on G. Then Pξ′ is σ-finite and
we have fo any measurable f : Ω × G → R+,

EP

∫

f(θ−1
g , g)ξ′(dg) = EPξ′

∫

f(θe, g)λ(dg). (3.12)

Equation (3.12) or rather its equivalent version

EP

∫

1{(θe, g) ∈ ·}ξ(dg) = EPξ

∫

1{(θg, g) ∈ ·}λ(dg),

is known as skew factorization of the Campbell measure of ξ′. A general discussion of this
technique can be found in [6].

Remark 3.8. For additive groups (3.12) is mostly written as

EP

∫

f(θ̃g, g)ξ(dg) = EPξ

∫

f(θe, g)λ(dg), (3.13)

see Example 3.5.

Equation (3.12) shows in particular that definition (3.11) is independent of the choice
of w′, see the argument below. For instance we may choose w′(g) := w(gc), where w is as
in (3.8). This yields:

Lemma 3.9. Let ξ be an invariant random measure on S, and define ξ′ by (3.5). Then
Pξ = Pξ′.
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The previous lemma is a convenient tool for extending results for Palm measures of
invariant random measures on groups to the case of a homogeneous state space. We start
with the basic refined Campbell theorem. In particular, this theorem will show that the
definition (3.9) is independent of the choice of the function w. In the canonical case of
Example 3.4 and for finite intensities the result was derived in Rother and Zähle [15].

Theorem 3.10. Let ξ be an invariant random measure on S. Then Pξ is σ-finite and we
have for any measurable f : Ω × G → R+,

EP

∫∫

f(θ−1
g , g)λx(dg)ξ(dx) = EPξ

∫

f(θe, g)λ(dg). (3.14)

Proof. Define ξ′ by (3.5) and apply Proposition 3.7 together with Lemma 3.9.

Let w′ : S → R+ be another measurable function having
∫

w′(x)µ(dx) = 1 and take
A ∈ F . Then (3.14) implies that

EP

∫∫

1{θ−1
g ∈ A}w′(x)λx(dg)ξ(dx) = EP

∫∫

1{θ−1
g ∈ A}w′(gc)λx(dg)ξ(dx)

= EPξ

∫

1{θe ∈ A}w′(gc)λ(dg) = Pξ(A).

Hence the definition (3.8) is indeed independent of the choice of w.
The intensity γξ of ξ is defined by

γξ := Pξ(Ω) = EP

∫

w(x)ξ(dx). (3.15)

We have γξ = EPξ(B) for any B ∈ S with µ(B) = 1. The refined Campbell theorem
implies the ordinary Campbell theorem

EP

∫

f(x)ξ(dx) = γξ

∫

f(x)µ(dx), (3.16)

for all measurable f : S → R+. We just have to use that f(x) =
∫

f(gc)λx(dg). In case
0 < γξ < ∞ we can define the Palm probability measure of ξ by P0

ξ := γ−1
ξ Pξ.

To derive another corollary of the refined Campbell theorem, we take a measurable
function w̃ : M× S → R+ satisfying

∫

w̃(ν, x)ν(dx) = 1, (3.17)

whenever ν ∈ M is not the null measure. For one example of such a function we refer to
[12]. We then have the inversion formula

EP1{ξ(S) > 0}f = EPξ

∫

w̃(ξ ◦ θg, gc)f(θg)λ(dg) (3.18)

for all measurable f : Ω → R+. This is a direct consequence of the refined Campbell
theorem (3.14).

The invariant σ-field I ⊂ F is the class of all sets A ∈ F satisfying θgA = A for all
g ∈ G. Let ξ be an invariant random measure with finite intensity and define

ξ̂ := EP

[

∫

w(x)ξ(dx)
∣

∣

∣
I
]

, (3.19)
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where the conditional expectation is defined as for probability measures. Since ξ̂ ◦ θg = ξ̂,
g ∈ G, the refined Campbell theorem (3.14) implies that EP1A

∫

w(x)ξ(dx) = Pξ(A) for
all A ∈ I. Therfore definition (3.19) is independent of the choice of w. If P is a probability
measure and S = G = Rd, then ξ̂ is called sample intensity of ξ, see [11] and [5]. Assuming
that P(ξ̂ = 0) = 0, we define the modified Palm measure P∗

ξ (see [11, 18, 7]) by

P∗

ξ(A) = EPξ̂
−1

∫∫

1{θ−1
g ∈ A}w(x)λx(dg)ξ(dx). (3.20)

Conditioning shows that

P∗

ξ(A) = P(A), A ∈ I. (3.21)

Comparing (3.20) and (3.8) yields

dP∗

ξ = ξ̂−1dPξ. (3.22)

The refined Campbell theorem (3.14) takes the form

EPξ̂
−1

∫∫

f(θ−1
g , g)λx(dg)ξ(dx) = EP∗

ξ

∫

f(θe, g)λ(dg). (3.23)

Remark 3.11. If P is a probability measure and ξ is a simple point process with a
positive and finite intensity, then the Palm probability measure P0

ξ can be interpreted as
a conditional probability measure given that ξ has a point in c. This could be justified by
Theorem 12.8 in [4]. The modified version describes the underlying stochastic experiment
as seen from a randomly chosen point of ξ, see [11], [18]. Both measures agree iff ξ̂ is
P-a.e. constant and in particular if P is ergodic, i.e. P(A) = 0 or P(Ω \ A) = 0 for all
A ∈ I.

The above theory can be extended to certain non-transitive situations:

Remark 3.12. Let (S ′,S ′) be some measurable space and ζ a kernel from Ω to S × S ′.
We call ζ marked random measure (on S with mark space S ′) if ζ(· × S ′) is a random
measure on S. Such a marked random measure is invariant if ζ(· ×B′) is invariant for all
B′ ∈ S ′. In this case the Palm measure Pζ of ζ is the measure on Ω × S ′ defined by

Pζ(A) = EP

∫∫

1{(θ−1
g , z) ∈ A}w(x)λx(dg)M(d(x, z)), A ∈ F ⊗ S ′.

Note that Pζ(· × B′) is the Palm measure of ζ(· × B′). The refined Campbell theorem
(3.14) takes the form

EP

∫∫

f(θ−1
g , g, z)λx(dg)M(d(x, z)) =

∫∫

f(ω, g, z)λ(dg)Pζ(d(ω, z)) (3.24)

for all measurable f : Ω × G × S ′ → R+.
Assume that (Ω,F) is a Borel space. (This is e.g. the case in Example 3.4.) If

Pζ(Ω×·) is a σ-finite measure, then we may disintegrate Pζ, to get another form of (3.24).
For simplicity we even assume that the intensity γξ of ξ := ζ(· × S ′) is finite. Assuming
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also γξ > 0 we can define the mark distribution W of ζ by W := γ−1
ξ Pζ(Ω × ·). There

exists a stochastic kernel (z, A) 7→ Pz
ζ(A) from S ′ to Ω satisfying

Pζ(d(ω, z)) = γξP
z
ζ(dω)W(dz).

Therefore (3.24) can be written as

EP

∫∫

f(θ−1
g , g, z)λx(dg)ζ(d(x, z)) = γξ

∫∫∫

f(ω, g, z)λ(dg)Pz
ζ(dω)W(dz).

As might be expected, the Palm measure is invariant under Gc, see [15].

Proposition 3.13. For all h ∈ Gc we have Pξ ◦ θh = Pξ.

Proof. Let h ∈ Gc. By (2.8) and (2.7) we have for all x ∈ S that

λhx =

∫

1{hgxg ∈ ·}λc(dg) =

∫

1{hgxgh−1 ∈ ·}λc(dg) =

∫

1{hgh−1 ∈ ·}λx(dg),

where the second equality comes from the right-invariance of λc. Using this fact, we get
from the definition (3.9) of Pξ and invariance of ξ for all A ∈ F that

Pξ(θhA) = EP

∫∫

1{θ−1
g ∈ θhA}w(hx)λhx(dg)ξ ◦ θ−1

h (dx)

= EP

∫∫

1{θ−1
g ◦ θ−1

h ∈ A}w(hx)λx(dg)ξ ◦ θ−1
h (dx)

= EP

∫∫

1{θ−1
g ∈ A}w(hx)λx(dg)ξ(dx),

where we have used stationarity (3.7) for the last equation. By invariance of µ we have
∫

w(hy)µ(dy) = 1. Since the definition (3.9) is independent of the choice of w, we conclude
the assertion.

4 Transport-kernels and an exchange formula

We first adapt the terminology from [9] to our present more general setting. A transport-
kernel (on S) is a kernel T from Ω×S to S which is Markovian, i.e. which has T (ω, x, S) = 1
for all (ω, x) ∈ Ω×S. We think of T (ω, x, B) as redistributing a (potential) unit mass at x
within S. A weighted transport-kernel is is a kernel T from Ω×S to S such that T (ω, x, ·)
is locally finite for all (ω, x) ∈ ΩS. A weighted transport-kernel T is called invariant if

T (θgω, gx, gB) = T (ω, x, B), g ∈ G, x ∈ S, ω ∈ Ω, B ∈ S. (4.1)

Quite often we use the short-hand notation T (x, ·) := T (θe, x, ·). If ξ is an invariant
random measure on S and η :=

∫

T (ω, x, ·)ξ(ω, dx) is locally finite for each ω ∈ Ω, then
η is again an invariant random measure. Our interpretation is, that T transports ξ to η
in an invariant way.
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Let ξ and η be two invariant random measures on S. A weighted transport-kernel T
on S is called (ξ, η)-balancing if

∫

T (ω, x, ·)ξ(ω, dx) = η(ω, ·) (4.2)

holds for all ω ∈ Ω. In case ξ = η we also say that T is ξ-preserving. If Q is a measure on
(Ω,F) such that (4.2) holds for Q-a.e. ω ∈ Ω then we say that T is Q-a.e. (ξ, η)-balancing.

We nox fix a σ-finite stationary measure P on (Ω,F). The next result is a fundamental
transport property of Palm measures. It generalizes Theorem 4.2 in [9]. We use the
function ∆∗ : S → (0,∞) defined by

∆∗(x) := ∆(g−1
x ), x ∈ S, (4.3)

where gx ∈ Gx. This definition is independent of the choice of gx. Indeed, if g, h ∈ Gx then
g−1h ∈ Gc so that (2.6) implies 1 = ∆(g−1h), i.e. ∆(g−1) = ∆(h−1). The representation
∆∗(x) =

∫

∆(g−1)λx(dg) shows that ∆∗ is measurable.

Theorem 4.1. Consider two invariant random measures ξ and η on S and let T and T ∗

be invariant weighted transport-kernels satisfying
∫∫

1{(x, y) ∈ ·}T (ω, x, dy)ξ(ω, dx) =

∫∫

1{(x, y) ∈ ·}T ∗(ω, y, dx)η(ω, dy) (4.4)

for P-a.e. ω ∈ Ω. Then we have for any measurable function f : Ω × G → R+ that

EPξ

∫∫

f(θ−1
g , g−1)∆∗(x)λx(dg)T (c, dx) = EPη

∫∫

f(θe, g)λx(dg)T ∗(c, dx). (4.5)

The following special case of the previous theorem has been proved in [9] for Abelian
and in [8] for general groups.

Proposition 4.2. Consider two invariant random measures ξ and η on G and let T and
T ∗ be invariant weighted transport-kernels satisfying

∫∫

1{(g, h) ∈ ·}T (ω, g, dh)ξ(ω, dg) =

∫∫

1{(g, h) ∈ ·}T ∗(ω, h, dg)η(ω, dh) (4.6)

for P-a.e. ω ∈ Ω. Then we have for any measurable function f : Ω × G → R+ that

EPξ

∫

f(θ−1
g , g−1)∆(g−1)T (e, dg) = EPη

∫

f(θe, g)T ∗(e, dg). (4.7)

Proof of Theorem 4.1. Define a kernel T ′ from Ω × G to G by

T ′(g, B′) :=

∫

λx(B
′)T (gc, dx), g ∈ G, B′ ∈ G. (4.8)

Lemma 3.2 implies that T ′ is a weighted transport-kernel on G. From (2.8) and invariance
of T we have for all g, h ∈ G and B′ ∈ G that

T ′(θh, hg, hB′) =

∫

λx(hB′)T (θh, hgc, dx) =

∫

λhx(hB′)T (gc, dx) =

∫

λx(B
′)T (gc, dx).
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Hence T ′ is invariant. Define the invariant weighted transport-kernel T ′∗ on G in terms
of T ∗ as T ′ in terms of T . Defining ξ′ by (3.5), we have

∫∫

1{(g, h) ∈ ·}T ′(g, dh)ξ′(dg) =

∫∫∫∫

1{(g, h) ∈ ·}λx(dh)T (gc, dx)λy(dg)ξ(dy)

=

∫∫∫∫

1{(g, h) ∈ ·}λy(dg)λx(dh)T (y, dx)ξ(dy),

where we have also used Fubini’s theorem. Applying assumption (4.4), we obtain that

∫∫

1{(g, h) ∈ ·}T ′(g, dh)ξ′(dg) =

∫∫

1{(g, h) ∈ ·}T ′∗(h, dg)η′(dh)

holds P-a.e., where η′ :=
∫

λx(·)η(dx). Hence we can apply Proposition 4.2. In view of
Lemma 3.9 this yields the assertion.

Corollary 4.3. Let the assumptions of Theorem 4.1 be satisfied. Assume moreover that
ξ and η have finite intensities and that P(ξ̂ = 0) = P(η̂ = 0) = 0. Then we have for any
measurable function f : Ω × G → R+ that

ξ̂ EP∗

ξ

[

∫∫

f(θ−1
g , g−1)∆∗(x)λx(dg)T (c, dx)

∣

∣

∣
I
]

= η̂ EP∗

η

[

∫∫

f(θe, g)λx(dg)T ∗(c, dx)
∣

∣

∣
I
]

,

P-a.e. for any choice of the conditional expectations.

Proof. Define the random variables X :=
∫∫

f(θ−1
g , g−1)∆∗(x)λx(dg)T (c, dx) and

X ′ :=
∫∫

f(θe, g)λx(dg)T ∗(c, dx) and let A ∈ I. Due to (3.21) we have P∗
ξ = P∗

η on
I. Hence we have to show that

EP∗

ξ
1Aξ̂X = EP∗

η
1Aη̂X ′.

By (3.22) this amounts to EPξ
1AX = EPη

1AX ′, i.e. to a consequence of (4.5).

5 Transport properties of Palm measures

In this section we fix a stationary σ-finite measure P on (Ω,F). The following fundamental
invariance property of Palm measures has recently been established in [9] and [8].

Proposition 5.1. Consider two invariant random measures ξ and η on G and an invari-
ant weighted transport-kernel T on G. Then T is P-a.e. (ξ, η)-balancing iff

EPξ

∫

f(θ−1
g )∆(g−1)T (e, dg) = EPη

f (5.1)

holds for all measurable f : Ω → R+.

The previous proposition generalizes as follows:
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Theorem 5.2. Consider two invariant random measures ξ and η on S and an invariant
weighted transport-kernel T . Then T is P-a.e. (ξ, η)-balancing iff

EPξ

∫∫

f(θ−1
g )∆∗(x)λx(dg)T (c, dx) = EPη

f (5.2)

holds for all measurable f : Ω → R+.

Proof. Assume first that T is P-a.e. (ξ, η)-balancing. Lemma 5.3 below shows that
there exists a invariant transport-kernel T ∗ satisfying (4.4) for P-a.e. ω ∈ Ω. Applying
(4.5) to a function not depending on the second argument, yields (5.2).

Let us now assume that (5.2) holds. Defining the invariant weighted transport-kernel
T ′ by (4.8), (5.2) can be written as

EPξ

∫

f(θ−1
g )∆(g−1)T ′(e, dg) = EPη

f.

Hence we get from Lemma 3.9 and Proposition 5.1 that

∫

T ′(g, B′)λx(dg)ξ(dx) =

∫

λx(B
′)η(dx)

holds P-a.e. for any B′ ∈ G. Applying this with B′ := π−1
c B for B ∈ S easily yields that

(4.2) holds P-a.e.

The above proof has used the following lemma:

Lemma 5.3. Assume that T is a P-a.e. (ξ, η)-balancing invariant weighted transport-
kernel. Then there exists an invariant transport-kernel T ∗ on S such that (4.4) holds for
P-a.e. ω ∈ Ω.

Proof. Consider the following measure W on Ω × S × S:

W :=

∫∫∫

1{(ω, x, y) ∈ ·}T (ω, x, dy)ξ(ω, dx)P(dω).

Stationarity of P, (3.2), and (4.1) easily imply that

∫

1{(θgω, gx, gy) ∈ ·}W (d(ω, x, y)) = W, g ∈ G.

Moreover, as T is a P-a.e. (ξ, η)-balancing, we have

W ′ :=

∫

1{(ω, y) ∈ ·}W (d(ω, x, y)) =

∫∫

1{(ω, y) ∈ ·}η(ω, dy)P(dω). (5.3)

This is a σ-finite measure on Ω × S. We can now apply Theorem 3.5 in [6] to obtain an
invariant transport-kernel T ∗ satisfying

W =

∫∫

1{(ω, x, y) ∈ ·}T ∗(ω, y, dx)W ′(d(ω, y)).
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(In fact the theorem yields an invariant kernel T ′, satisfying this equation. But in our
specific situation we have T ′(ω, y, G) = 1 for W ′-a.e. (ω, y), so that T ′ can be modified
in an obvious way to yield the desired T ∗.) Recalling the definition of W and the second
equation in (5.3) we get that

∫∫∫

1{(ω, x, y) ∈ ·}T (ω, x, dy)ξ(ω, dx)P(dω)

=

∫∫∫

1{(ω, x, y) ∈ ·}T ∗(ω, y, dx)η(ω, dy)P(dω)

and hence the assertion of the lemma.

6 Existence of balancing weighted transport-kernels

We fix a stationary σ-finite measure P on (Ω,F). Our aim is to establish a necessary and
sufficient condition for the existence of a balancing invariant weighted transport-kernel T
satisfying

∫

∆∗(x)T (c, dx) = 1. (6.1)

Theorem 6.1. Assume that ξ and η are invariant random measures on S with positive and
finite intensities. Then there exists a P-a.e. (ξ, η)-balancing invariant weighted transport-
kernel satisfying (6.1) iff

EP[ξ(B)|I] = EP[η(B)|I] P − a.e. (6.2)

for some B ∈ S satisfying 0 < µ(B) < ∞.

The following consequence of Theorem 6.1 has been proved in [9] for Abelian and in
[8] for general groups.

Proposition 6.2. Assume that ξ and η are invariant random measures on G with pos-
itive and finite intensities. Then there exists a P-a.e. (ξ, η)-balancing invariant weighted
transport-kernel satisfying

∫

∆(g−1)T (e, dg) = 1 iff (6.2) holds for some B ∈ G satisfying
0 < λ(B) < ∞.

Proof of Theorem 6.1: Let B ∈ S satisfy 0 < µ(B) < ∞ and take A ∈ I. Applying
the refined Campbell theorem (3.14) with f(θe, g) := 1A1{gc ∈ B} yields that

µ(B)Pξ(A) = EP[1Aξ(B)], µ(B)Pη(A) = EP[1Aη(B)]. (6.3)

Assume now that T is a P-a.e. (ξ, η)-balancing invariant weighted transport-kernel
satisfying (6.1). Then Theorem 5.2 implies for all A ∈ I the equality Pξ(A) = Pη(A).
Thus (6.3) implies EP1Aξ(B) = EP1Aη(B) and hence (6.2).

Let us now assume that (6.2) holds for some B ∈ S satisfying 0 < µ(B) < ∞. From
(6.3) and conditioning we obtain that Pξ = Pη on I. By Lemma 3.9 and Proposition 6.2
there is an invariant weighted transport-kernel T ′ on G such that

∫

∆(g−1)T ′(e, dg) = 1 (6.4)
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and
∫∫

T ′(g, B′)λx(dg)ξ(dx) =

∫

λx(B
′)η(dx) P − a.e. (6.5)

for all B′ ∈ G. Define

T (ω, x, B) :=

∫

T ′(ω, g, π−1
c B)λx(dg), x ∈ S, ω ∈ Ω, B ∈ S. (6.6)

Applying (6.5) with B′ := π−1
c B for B ∈ S, gives
∫

T (x, B)ξ(dx) = η(B) P − a.e. (6.7)

It remains to show that T is an invariant weighted transport-kernel satisfying (6.1).
By definition of T ′ and ∆∗,

∫

∆∗(x)T (c, dx) =

∫∫

∆∗(hc)T ′(g, dh)λc(dg) =

∫∫

∆(h−1)T ′(g, dh)λc(dg).

Using invariance of T ′, we get
∫

∆∗(x)T (c, dx) =

∫∫

∆((gh)−1)T ′(e, dh)λc(dg) =

∫∫

∆(h−1)T ′(e, dh)λc(dg) = 1,

where we have used (6.4) and that ∆(g−1) = 1 for g ∈ Gc. Now we take a compact
B ⊂ S. Since g 7→ ∆(g−1) is bounded away from 0 on the compact set π−1

c B = ∪x∈BGx,
the mapping ∆∗ has the same property on B. Therefore (6.1) implies that T (c, B) must
be finite. Hence T is a weighted transport-kernel. To show invariance, we take h ∈ G,
x ∈ S, and B ∈ S. Then

T (θh, hx, hB) =

∫

T ′(θh, g, π−1
c (hB))λhx(dg) =

∫

T ′(θh, hg, hπ−1
c B)λx(dg),

where we have used (2.8) and π−1
c (hB) = hπ−1

c B. Therefore invariance of T is implied by
the same property of T ′.

7 Mecke’s characterization of Palm measures

In contrast to the previous sections we do not fix a stationary measure on (Ω,F). Instead
we consider here a measure Q on (Ω,F) as a candidate for a Palm measure of a given
invariant random measure w.r.t. some stationary measure P on (Ω,F). In case of an
invariant random measure on an Abelian group (and within a canonical framework) the
following fundamental characterization theorem was proved in [12]. A proof of the present
more general version (close to Mecke’s original proof) can be found in [8].

Proposition 7.1. Let ξ be an invariant random measure on G. The measure Q is a
Palm measure of ξ with respect to some σ-finite stationary measure iff Q is σ-finite,
Q(ξ(G) = 0) = 0, and

EQ

∫

f(θ−1
g , g−1)∆(g−1)ξ(dg) = EQ

∫

f(θe, g)ξ(dg) (7.1)

holds for all measurable f : Ω × G → R+.
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In the canonical framework of Example 3.4 and for finite intensities the following
extension of Proposition 7.1 has been established in [15].

Theorem 7.2. Let ξ be an invariant random measure on S. The measure Q is a Palm
measure of ξ with respect to some σ-finite stationary measure iff Q is σ-finite and invariant
under Gc, Q(ξ(S) = 0) = 0, and

EQ

∫∫

f(θ−1
g , g−1c)∆∗(x)λx(dg)ξ(dx) = EQ

∫

f(θe, x)ξ(dx) (7.2)

holds for all measurable f : Ω × S → R+.

Proof. If Q is a Palm measure of ξ, then Q is σ-finite by Theorem 3.10 and invariant
under Gc by Proposition 3.13. Equation Q(ξ(S) = 0) = 0 holds by (3.10), while the
Mecke equation (7.2) is a special case of (4.5).

Let us now conversely assume the stated conditions. We define a random measure ξ′

on G by (3.5) and consider a measurable function f : Ω×G → R+. Applying (7.2) to the
function (ω, x) 7→

∫

f(ω, h)λx(dh), we obtain

EQ

∫

f(θe, g)ξ′(dg) = EQ

∫∫∫

f(θ−1
g , h)λg−1c(dh)∆(g−1)λx(dg)ξ(dx).

Equation (2.8) and Fubini’s theorem imply

EQ

∫

f(θe, g)ξ′(dg) =

∫

EQ

[
∫∫

f(θ−1
g , g−1h)∆(g−1)λx(dg)ξ(dx)

]

λc(dh). (7.3)

By invariance of Q under Gc the expectation occuring in the above right-hand side equals

EQ

∫∫

f(θ−1
g ◦ θh, g

−1h)∆(g−1)λx(dg)ξ ◦ θh(dx)

=EQ

∫∫

f(θ−1
hg ◦ θh, (hg)−1h)∆((hg)−1)λx(dg)ξ(dx)

=EQ

∫∫

f(θ−1
g , g−1)∆(g−1)λx(dg)ξ(dx),

where we have used the properties of the modular function and (2.6). Inserting this into
(7.3), yields

EQ

∫

f(θe, g)ξ′(dg) = EQ

∫

f(θ−1
g , g−1)∆(g−1)ξ′(dg).

Since Q(ξ′(G) = 0) = 0, Proposition 7.1 implies that there is a σ-finite stationary measure
P such that Q = Pξ′ . A reference to Lemma 3.9 concludes the proof of the theorem.

Remark 7.3. Let ξ be an invariant random measure on S such that Q(ξ(S) = 0) = 0.
The inversion formula (3.18) shows that there is at most one stationary σ-finite measure
P on (Ω,F) such that Q = Pξ.
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8 Stationary partitions

A stationary partition is decomposing a random subset Z of S in pairwise disjoint sets.
This partition is assumed to be consistent with the flow {θg : g ∈ G}. Motivated by
recent work in [3] and [2] on allocations to a simple point process, stationary partitions
were introduced and studied (in case S = G = Rd) in [7]. Stationary tessellations of
classical stochastic geometry (see e.g. [17, 16]) are a special case.

Let η be an invariant simple point process on S. It is convenient to assume that
η(ω) ∈ Ns for all ω ∈ Ω and to identify η with its support. A stationary partition
(based on η) is a pair (Z, π) consisting of a measurable set Z : Ω → S and a mapping
π : Ω × S → S such that both Z and π are covariant and such that π(x) ∈ η whenever
x ∈ Z. We also assume that {Z = ∅} = {η = ∅}. Measurability of Z just means that
(ω, x) 7→ 1{x ∈ Z(ω)} is measurable, while covariance of Z means that

Z(θgω) = gZ(ω), ω ∈ Ω, g ∈ G. (8.1)

Covariance of π is defined by

π(θgω, gx) = gπ(ω, x), ω ∈ Ω, x ∈ S, g ∈ G. (8.2)

For convenience we also assume that π(x) = x, x ∈ S, whenever η = ∅. Define

C(ω, x) := {y ∈ Z(ω) : π(ω, y) = x}, ω ∈ Ω, x ∈ S. (8.3)

Note that C(x) = ∅ whenever x /∈ η 6= ∅. The system {C(x) : x ∈ η} forms a partition of
Z into measurable sets provided that η 6= ∅. Equations (8.1) and (8.2) imply the following
covariance property:

C(θgω, gx) = gC(ω, x), ω ∈ Ω, x ∈ S, g ∈ G. (8.4)

Although we do not make any topological or geometrical assumptions we refer to C(x)
as cell with (generalized) centre x ∈ η. We do not assume that x ∈ C(x) and some of the
cells might be empty.

We now fix a σ-finite stationary measure P on (Ω,F). The following theorem gener-
alizes Theorem 7.1 in [7] from the case S = G = Rd to homogeneous spaces. The former
case is also touched by Lemma 16 in [2].

Theorem 8.1. Let (Z, π) be a stationary partition. Then we have for any measurable
f, f̃ : Ω → R+,

EP1{c ∈ Z}∆∗(π(c))f̃

∫

f(θ−1
g )λπ(c)(dg) = EPη

f

∫

f̃(θ−1
g )1{gc ∈ C(c)}λ(dg). (8.5)

Proof. Consider the random measure ξ := µ(Z ∩ ·). By covariance (8.1) of Z and
invariance of µ we have ξ(θg, gB) =

∫

1{x ∈ gB ∩ gZ}µ(dx) = ξ(B) for all g ∈ G and
B ∈ S. Hence ξ is invariant. An equally simple calculation shows that the Palm measure
of ξ is given by

Pξ(A) = P(A ∩ {c ∈ Z}), A ∈ F . (8.6)
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Define weighted transport-kernels T and T ∗ by T (x, ·) := δπ(x) and T ∗(x, ·) := µ(C(x)∩·).
Since π(x) ∈ η whenever x ∈ Z, it is straigthforward to check that (4.4) holds even for all
ω ∈ Ω. By (8.2), T is invariant. Invariance of T ∗ follows from (8.4) and invarance of µ:

T ∗(θg, gx, gB) = µ(C(θg, gx) ∩ gB) = µ(gC(x) ∩ gB) = T ∗(x, B).

Theorem 4.1 implies that (4.5) holds. Applying this formula to the measurable function
(ω, g) 7→ f(ω)f̃(θ−1

g ω) and taking into account (8.6) as well as the definitions of T and
T ∗, yields the assertion (8.5).

Putting f̃ ≡ 1 in (8.5) yields:

Corollary 8.2. Let (Z, π) be a stationary partition. Then we have for any measurable
f : Ω → R+,

EP1{c ∈ Z}

∫

f(θ−1
g )∆∗(π(c))λπ(c)(dg) = EPη

µ(C(c))f. (8.7)

Under additional assumptions on f and f̃ , Theorem 8.1 can be simplified as follows.

Theorem 8.3. Let (Z, π) be a stationary partition and f, f̃ : Ω × S → R+ be invariant
and measurable. Then

EP1{c ∈ Z}∆∗(π(c))f̃(c)f(π(c)) = EPη
f

∫

C(c)

f̃(x)µ(dx). (8.8)

Proof. Apply (8.5) with f (resp. f̃) replaced by f(θe, c) (resp. f̃(θe, c)).

Corollary 8.4. Let (Z, π) be a stationary partition and f : Ω×S → R+ be invariant and
measurable. Then

EP1{c ∈ Z}∆∗(π(c))f(π(c)) = EPη
fµ(C(c)). (8.9)

The special case f ≡ 1 of (8.9) gives

EPη
µ(C(c)) = EP1{c ∈ Z}∆∗(π(c)) (8.10)

If η has a positive and finite intensity γη and G is unimodular, this yields the formula

EP0
η
µ(C(c)) = P(c ∈ Z)γ−1

η . (8.11)

Define
V (x) := {y ∈ S : π(y) = π(x)}

as the cell containing x ∈ S.

Corollary 8.5. Let (Z, π) be a stationary partition. Then we have for any β ≥ 0 that

EP1{c ∈ Z}∆∗(π(c))µ(V (c))β = EPη
µ(C(c))β+1. (8.12)
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Proof. Define f(ω, x) := µ(C(ω, x))β. Equation (8.4) and invariance of µ imply that
f is invariant. Hence we can apply (8.9). It remains to note that C(π(c))) = V (c).

A stationary partition (Z, π) is called proper, if

Pη(µ(C(c) = 0) = Pη(µ(C(c) = ∞) = 0. (8.13)

For unimodal groups the second equation is implied by (8.10). The following two results
can be proved as in Section 5 of [7].

Proposition 8.6. Let (Z, π) be a stationary and proper partition. Then we have for any
measurable f : Ω → R+,

EP1{c ∈ Z}∆∗(π(c))µ(V (c))−1f(θ−1
π(c)) = EPη

f, (8.14)

where θ−1
π(c) : Ω → Ω is defined by θ−1

π(c)(ω) := θ−1
π(ω,c)ω.

Corollary 8.7. Let (Z, π) be a stationary and proper partition. Then (8.12) holds for all
β ∈ R. If the intensity γη of η is finite, then we have in particular,

γη = EP1{c ∈ Z}∆∗(π(c))µ(V (c))−1. (8.15)

From now on we assume that η has a finite intensity and P(η̂ = 0) = 0. Just for
simplicity we also assume that P (and hence also P∗

η) is a probability measure. We first
note the following consequence of the proof of Theorem 8.1 and Corollary 4.3:

Corollary 8.8. Under the hypothesis of Theorem 8.1 we have for any measurable f, f̃ :
Ω → R+,

EP

[

1{c ∈ Z}∆∗(π(c))f̃

∫

f(θ−1
g )λπ(c)(dg)

∣

∣

∣
I
]

= η̂ EP∗

η

[

f

∫

f̃(θ−1
g )1{gc ∈ C(c)}λ(dg)

∣

∣

∣
I
]

,

(8.16)

P-a.e. for any choice of the conditional expectations. In particular,

η̂−1EP

[

1{c ∈ Z}∆∗(π(c))

∫

f(θ−1
g )λπ(c)(dg)

∣

∣

∣
I
]

= EP∗

η
[fµ(C(c))|I]. (8.17)

Let α > 0. Essentially following [2] (dealing with the case S = G = Rd), we call a
stationary partition (Z, π) (based on η) α-balanced, if

P(µ(C(x)) = αη̂−1 for all x ∈ η) = 1. (8.18)

The significance of α-balanced stationary partitions is due to the following theorem.
The result extends Theorem 13 in [3] and Theorem 9.1 in [7] (both dealing with α = 1)
from Rd to general homogeneous spaces.

Theorem 8.9. Let α > 0. A stationary partition (Z, π) is α-balanced iff

P∗

η = α−1EP1{c ∈ Z}∆∗(π(c))

∫

1{θ−1
g ∈ ·}λπ(c)(dg). (8.19)
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Proof. If (Z, π) is a α-balanced stationary partition, then (8.19) follows from (8.17).
Assume now that (8.19) holds. Since P∗

η has the invariant density η̂ with respect to
Pη, (8.19) implies that

Pαη = EP1{c ∈ Z}∆∗(π(c))η̂

∫

1{θ−1
g ∈ ·}λπ(c)(dg), (8.20)

where we have also used that Pαη = αPη. Using the invariant weighted transport-kernels
T (x, ·) := η̂1{x ∈ Z}δπ(x) this reads,

Pαη = EP

∫∫

1{θ−1
g ∈ ·}∆∗(x)λx(dg)T (c, dx).

Since P is the Palm measure of µ, we get from Theorem 5.2 that T is P-a.e. (µ, αη)-
balancing. Therefore we have P-a.e. that

∫

1{x ∈ Z, π(x) ∈ ·}µ(dx) = αη̂−1η(·).

This is just saying that (Z, π) is α-balanced.

Remark 8.10. If a α-balanced stationary partition (Z, π) is given, then (8.19) provides
an explicit method for constructing the modified Palm probability measure P∗

η by a shift-
coupling with the stationary measure P. In case S = G is a unimodal group, (8.19)
simplifies to

P∗

η = α−1EP1{e ∈ Z}1{θ−1
π(e) ∈ ·}. (8.21)

Since α = P(e ∈ Z), this means that P∗
η = P(θ−1

π(e) ∈ ·|e ∈ Z).

The actual construction of α-balanced partitions is an interesting topic in its own
right. Triggered by [10], the case S = G = Rd was discussed in [3, 2]. Among many other
things it was shown there that α-balanced partitions do actually exist for any α ≤ 1. The
occurence of the sample intensity η̂ in (8.18) is explained by the spatial ergodic theorem,
see Proposition 9.1 in [7]. The paper [3] has also results on discrete groups in case α = 1.
In case of a general homogeneous space with a diffuse invariant measure µ it might be
conjectured that α-balanced partitions exist for all α ≤ 1. For a special case we will
establish this in the final section of this paper.

9 Allocations to isotropic flat processes

In this section we will consider balanced stationary partitions in the case where S is the
affine Grassmannian A(d, k) of all k-dimensional affine subspaces (k-flats) of Rd. Any
F ∈ A(d, k) can be uniquely written as F = L + x, where L is an element of the linear
Grassmannian L(d, k) of all k-dimensional linear subspaces of Rd and x is in the orthogonal
complement L⊥ of L. We let Gd denote the goup of rigid motions on Rd. Any g ∈ Gd can
be written as the composition of a rotation ϑ ∈ SOd and a translation tx, x ∈ Rd. Here
SOd is the special orthogonal group and tx : Rd → Rd is defined by tx(y) := x + y. This
representation can be used to introduce a natural topology on Gd, making Gd a locally
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compact second countable topological group. Moreover, a left- and rightinvariant Haar
measure λ on G is given by

λ =

∫

SOd

∫

Rd

1{tx ◦ ϑ ∈ ·}λd(dx)ν(dϑ),

where λd is Lebesgue measure and ν is the normalized Haar measure on SOd, see [16] for
more detail. Note that λ(B × SOd) = 1 whenever λd(B) = 1. The group Gd is acting on
A(d, k) by

gF := {gx : x ∈ F}, g ∈ Gd, F ∈ A(d, k).

Under this action A(d, k) becomes a homogeneous space. We fix a subspace L0 ∈ L(d, k)
and define an invariant measure µ on A(d, k) by

µ :=

∫

1{gL0 ∈ ·}λ(dg).

Let P be a stationary probability measure on (Ω,F) and η an invariant simple point
process on A(d, k). Then η is an isotropic and stationary process of k-flats, see [16]. The
Palm measure Pξ is defined by (3.9), with L0 serving as the reference point c.

Theorem 9.1. Assume that η has a finite intensity and a positive sample intensity. Let
α ∈ (0, 1]. Then there exists an α-balanced stationary partition (Z, π) based on η.

Proof. Our proof is based on some of the arguments used by the authors of [2] to
prove their Theorems 1 and 3. (These theorems deal with the special case S = Rd,
but make stronger assertions.) To do so, we need an invariant metric ρ on A(d, k), i.e.
a metric generating the topology on A(d, k) and having ρ(gF, gF ′) = ρ(F, F ′) for all
F, F ′ ∈ A(d, k) and all g ∈ Gd. If F = x + L and F ′ = x′ + L′ for L, L′ ∈ G(d, k), x ⊥ F ,
and x′ ⊥ F ′, we can take ρ(F, F ′) as the sum of the Euclidean distance between x and x′

and a SOd-invariant distance between L and L′. We can now use the site-optimal Gale-
Shapley algorithm as in [2] to construct a stationary partition (Z, π) with the following
properties

0 < µ(C(F )) ≤ αη̂−1, F ∈ η, (9.1)

and

{η′ 6= ∅} ∩ {Z 6= A(d, k)} = ∅, (9.2)

where the invariant point process η′ is given by

η′ := {F ∈ η : µ(C(F )) < αη̂−1}. (9.3)

By (8.17) we have P-almost surely that

P(L0 ∈ Z|I) = EP∗

η
[η̂ · µ(C(L0))|I], (9.4)

while (9.2) entails Z = A(d, k) on the invariant event {η′ 6= ∅}. Hence (9.4) implies that

EP∗

η
[η̂ · µ(C(L0)) = α|I] = 1 P − a.s. on {η′ 6= ∅}. (9.5)
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On the other hand, (9.1) implies

P∗

η(η̂ · µ(C(L0)) = α|I) = 1 P − a.s. on {η′ = ∅}. (9.6)

This yields

P∗

η(η̂ · µ(C(L0)) = α) = 1 (9.7)

in case α = 1. Assume α < 1. Then (9.4) and (9.1) imply that P(L0 ∈ Z) ≤ α < 1, so
that P(Z 6= A(d, k)) = 1. Therefore (9.2) yields P(η′ = ∅) = 1, so that (9.6) implies (9.7)
also in case α < 1.

To finish the proof, we use the definition (3.20) of P∗
η together with invariance of µ

and (8.4) to conclude

0 = EPη̂

∫

B

1{η̂ · µ(C(F )) 6= α}η(dF )

for all measurable B having 0 < µ(B) < ∞. This yields P-a.s. that
∫

1{η̂ · µ(C(F )) 6= α}η(dF ) = 0,

as desired.

Remark 9.2. The stationary partition (Z, π) used in the proof of Theorem 9.1 has an
interesting property of stability (see [2]) expressed in terms of the distance ρ. Each centre
in η desires to have the flats in its cell as close as possible, while each flat in A(d, k) would
like to have its centre as close as possible. A pair (E, F ) ∈ A(d, k) × η is called unstable
if it has the following two properties. The first property is that ρ(E, F ) < ρ(E, π(E)) or
E /∈ Z, meaning that E prefers F to its actual centre π(E). (In particular E /∈ C(F ).)
The second property is that ρ(E, F ) < ρ(E ′, F ) for some E ′ ∈ C(F ) or µ(C(F )) < α,
meaning that F would like to have E in its cell. It can be proved as in [2] that unstable
pairs do not exist almost surely.
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