
Universität Karlsruhe - Fakultät für Informatik - Bibliothek - Postfach 6980 - 76128 Karlsruhe

Fourteenth International Workshop on Component-
Oriented Programming

Herausgeber: Ralf Reussner, Clemens Szyperski und

Wolfgang Weck

Autoren: Colin Atkinson, Ivica Crnkovic, Oliver Hummel,
Henning Groenda, Luka Lednicki, Ana Petričić

Interner Bericht 2009-11

 ISSN 1432-7864

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

2

Preface of the
Workshop on Component-Oriented Programming (WCOP) 2009

WCOP 2009 is the fourteenth event in a series of highly successful workshops. WCOP has been a
successful and steady event at ECOOP from 1996 to 2007. Since 2008, WCOP was moved to be
part of the CompArch federated event, as the unique opportunity to associate with this established
conference in the field of components and architecture, aligning well with the WCOP focus. This
move proved successful in gaining submissions of high quality.

COP has been described as the natural extension of object-oriented programming to the realm of
independently extensible systems. Several important approaches have emerged over the years,
including component technology standards, such as CORBA/CCM, COM/COM+, J2EE/EJB,
.NET, and most recently software services and model-driven development. Additionally the
increasing appreciation of software architecture for component-based systems, as in SOA, plays an
important role including the consequent effects on organizational processes and structures as well as
the software development business as a whole.

COP aims at producing software components for a component market and for late composition.
Composers are third parties, possibly end users, who are not able or not willing to change
components. This requires standards to allow independently created components to interoperate,
and specifications that put the composer in a position to decide what can be composed under which
circumstances. On these grounds, WCOP'96 led to the following definition:

A component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. Components can be deployed independently and
are subject to composition by third parties.

Where WCOP'96 focused on the fundamental terminology of COP, the subsequent workshops
expanded attention to the many related facets of component software. In the future, WCOP will
become the Doctoral Symposium of CompArch, as a kind of entry level workshop in the field of
software components and architectures.

WCOP 2009 accepted 3 papers covering the broad field of COP: Self-adapting components,
component certification, and domain-specific component models. The organisers cordially thank
Klaus Krogmann for preparing the proceedings volume.

Ralf Reussner, Clemens Szyperski, Wolfgang Weck

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

3

Workshop Co-organizers

Ralf Reussner
Institute for Program Structures and Data Organization
Universität Karlsruhe (T.H.)
Am Fasanengarten 5
D-76128 Karlsruhe, Germany
E-mail: reussner "at" ipd.uka.de
Web: http://sdq.ipd.uka.de

Clemens Szyperski
Microsoft
One Microsoft Way
Redmond, WA 98053, USA
E-mail: clemens.szyperski "at" microsoft.com
Web: http://research.microsoft.com/~cszypers/

Wolfgang Weck
Independent Software Architect
Böszelgstrasse 13
CH-8600 Dübendorf, Switzerland
E-mail: mail "at" wolfgang-weck.ch
Web: http://www.wolfgang-weck.ch

WCOP Website
http://research.microsoft.com/en-us/um/people/cszypers/events/wcop/

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

4

Table of Contents

Reconciling Reuse and Trustworthiness through Self-Adapting Components
Colin Atkinson and Oliver Hummel 7

Certification of Software Component Performance Specifications
Henning Groenda 13

Using UML for Domain-Specific Component Models
Ana Petričić, Luka Lednicki, and Ivica Crnkovic 23

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

5

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

6

Abstract— Assembling applications from reusable components
can significantly reduce the time and costs involved in software
engineering, but it also raises some significant verification and
validation challenges. Traditionally, there has been a tension
between the trustworthiness of systems (i.e. the level of confidence
that can be placed in their correct execution) and the level of
flexibility and ease with which they can be assembled from
reusable components, especially at run-time. This effectively made
it difficult for developers to strive for both at the same time. In
this paper we present a strategy for alleviating this problem based
on a combination of technologies developed to address each
individually – built-in testing, developed to enhance the trust-
worthiness of systems, and dynamic interface adaptation,
developed to reduce the effort involved in deploying a component
in a new context. After first describing the two technologies
individually, we then explain the synergy between them and
present a vision of how, together, they can be used to make
components self-adapting. The overall benefit is to introduce a
component paradigm in which the compatibility of components is
determined by their behavior (i.e. semantics) rather than the form
of their interfaces (i.e. syntax).

I. INTRODUCTION

 NE of the key problems in assembling new applications
from components1 built by different vendors is ensuring

that they “fit” together – that is, that they have the same
understanding of the contracts through which they interact. A
fully specified contract that includes operation pre- and post-
conditions (according to the principles of design by contract as
applied in [1]) in theory solves this problem because it
specifies both the syntactic form and the semantics of the
operations through which components interact. However, real
components are rarely if ever accompanied by such complete
semantic specifications. For the time being, the most that is
usually available is a specification of the syntactic interface
offered by a component.

Syntactic interface specifications are a mixed blessing,
however. On the one hand they allow the typing integrity of
operation invocations to be automatically checked, thus
reducing the chance of mismatched calls at run-time, but on
the other hand the identifiers they specify make it much more

1 By “component” here we mean any well contained subsystem of a system
that offers a well defined interface. This also includes services in the sense of
service-oriented architectures (e.g. Web services).

difficult to match the interface provided by a component to
that required by a client. If strict name matching is required (as
is the case with compiler-driven interface checking) the reused
component and using components have to agree on the precise
names of operations. In practice, this normally means that the
using component has to be written after the used component
has been acquired, usually by hand. It also greatly reduces the
chance of finding reusable components in the first place since
most component search engines still rely on programming
language identifiers to find candidate components [13].

In effect therefore, with today’s technologies, developers of
component-based systems are caught in the dilemma of having
to choose between trustworthiness and reusability (i.e. high
flexibility in reusing components). If they want high
trustworthiness they need to accept syntactic interface
matching with the drawback that the interacting components
have to agree on the exact names of operations. On the other
hand, if they want more flexibility via the ability to invoke
components without the strict requirement for a-priori name
matching, they need to accept the drawback of a higher chance
of runtime invocation errors (and thus lower trustworthiness).
As figure 1 exhibits, therefore, with current component
technologies high trustworthiness and high reusability tend to
be mutually exclusive. The area at the bottom left of the figure
illustrates the combination of trustworthiness and reusability
that is attainable with current technologies.

trustworthiness

reusability

Fig. 1. Tension between trustworthiness and reusability.

Reconciling Reusability and Trustworthiness
through Self-Adapting Components

Colin Atkinson and Oliver Hummel
Chair of Software Engineering

Faculty for Mathematics and Computer Science
University of Mannheim

{atkinson, hummel}@informatik.uni-mannheim.de

O

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

7

We believe it is possible to improve this situation by
integrating two technologies that were originally developed to
enhance dependability and reusability separately. One is the
built-in testing approach [2], enhanced by the test sheet test
specification technique [3], which were originally developed
to complement syntactic interface checks with semantic ones.
The other is a dynamic interface adapter and associated
automatic permutation generator, originally developed to
support semantic component retrieval based on test-driven
search [9]. While each individually makes an effective
contribution to the specific problem for which it was originally
developed, we believe that when combined there is a strong
synergy between them which can significantly reduce the
tension between trustworthiness and reusability.

In the next two sections, we first describe these two
technologies independently. While section II talks about built-
in testing and test sheets in more detail, section III introduces
the approach for automated interface adaptation as developed
for our implementation of test-driven reuse. Section IV
explains the synergy between the two and presents our vision
of how self-adapting components might mitigate the challenge
of component integration in the future. We conclude our paper
in section V with a summary of our contribution.

II. BUILT-IN TESTING

The idea of building tests into components to increase the
trustworthiness of component-based systems was first
proposed by Wang et al. [2] back in 1999. The original
motivation was to replicate the self-testing capabilities often
provided by hardware components within software
components. However, during the course of several successive
projects this concept has undergone several important changes.

First, during the Component+ project [12], the notion of
built-in tests being mainly for self-testing evolved into the
notion that they are most suited to contract testing. This was
motivated by the recognition that the failure of a previously
successful self-test rather reveals a problem in a component’s
environment than in the component itself. Thus, it was
considered more efficient to directly test a component’s
environment (i.e. the components with which it interacts) in
the form of so-called contract tests.

Second, during the MORABIT project [5], the idea that
built-in tests are code modules, “hardwired” into the run-time
code, evolved into the notion that they are actually test
specifications which are executed by the run-time environment
(i.e. the component container platform) rather than as part of a
component’s application logic. The adjective “built-in”
therefore was reinterpreted to mean that the tests were
packaged with the component (i.e. built into the distribution
packages such as a jar file) rather than physically embedded in
its source code.

Third, during the ECOMODIS project [3]2, the idea that
built-in tests are behavioural specifications rather than
implementation enhancements was consolidated and a new

user-friendly approach for defining, applying and visualizing
the effects of such tests was defined. So called “test sheets”
extend the idea of specifying tests in a tabular fashion (initially
popularized by the FIT approach [6]) with the expressiveness
and flexibility of the well known spread sheet metaphor [3].

A. Run-Time Testing

During this evolution process, a fundamental characteristic
of built-in tests that has remained the same is the notion that
they are executed at run-time when components have been
deployed in their final production environment. The tests may
be executed in a special testing phase at the beginning of a
system’s deployment, but in general it is possible to execute
built-in tests at any appropriate time while a system is running,
for example, when a change is made to the population of
components in the system (dynamic reconfiguration).

To illustrate this idea, let us assume that a component MU
(for Matrix User) needs to be connected to a Matrix
component which is required to pass the following test –

public void testMatrixMultiplication() {
 Matrix mtx1 = new Matrix(2, 3);
 Matrix mtx2 = new Matrix(3, 2);
 mtx1.set(0, 0, 1.0);
 mtx1.set(0, 1, 2.0);
 mtx1.set(1, 0, 2.0);
 mtx1.set(1, 1, 3.0);
 mtx1.set(2, 0, 1.0);
 mtx1.set(2, 1, 4.0);
 mtx2.set(0, 0, 1.0);
 mtx2.set(0, 1, 2.0);
 mtx2.set(0, 2, 3.0);
 mtx2.set(1, 0, 3.0);
 mtx2.set(1, 1, 2.0);
 mtx2.set(1, 2, 1.0);
 mtx1 = mtx1.mul(mtx2);
 assertEquals(mtx1.get(0, 0), 7.0);
 assertEquals(mtx1.get(1, 1), 10.0);
 assertEquals(mtx1.get(2, 1), 10.0);
 assertEquals(mtx1.get(2, 0), 13.0);
}

Listing 1. Matrix multiplication test example (JUnit).

This test is written in Java using the assertion features

provided by JUnit. However, the form of the test and language
used to describe it are not important. What is important is that
this test partially defines the semantics that the required
component must offer. In the terminology of the test-driven
development approach popularized by agile development (as
in Extreme Programming [8]), this defines when the Matrix
component is “fit for purpose”. Although it does not com-
pletely define the required semantics in the sense that the test
would cover all possible behaviours of the component (over all
possible combinations of input values) the test does
characterize the essential behaviour that is expected. In other
words, it characterizes the contract that exists between MU
and a reusable Matrix component. Tests of this form still
represent the only practical way of automatically establishing
fitness for purpose at run-time.

2 Which is still ongoing at the time of writing.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

8

 In the MORABIT approach, when an instance of MU is
connected to an instance of a Matrix component that is
supposed to provide the specified functionality, the run-time
environment will take this test and apply it to the Matrix on
behalf of the MU component. If the Matrix component passes
the test, the likelihood that the system will behave as intended
increases. If it fails, however, there is obviously a serious
problem and the system needs to be reconfigured.

B. Test Sheets

As mentioned above, test sheets provide a more concise and
easy-to-read description of tests which are freed from a
particular programming language’s syntactical idiosyncrasies.
They can therefore be understood by non-IT personnel such as
managers and domain experts who are not familiar with
programming languages. Figure 2 shows the test sheet form of
the matrix multiplication test case illustrated in Listing 1.

A B C D E F

1 Matrix create 2 3

2 Matrix create 3 2

3 F1 set 0 0 1.0

4 F1 set 0 1 2.0

5 F1 set 1 1 3.0

6 F1 set 2 0 1.0

7 F1 set 2 1 4.0

8 F2 set 0 0 1.0

9 F2 set 0 2 3.0

10 F2 set 1 0 3.0

11 F2 set 1 1 2.0

12 F2 set 1 2 1.0

13 F1 mul F2

14 F13 get 0 0 7.0

15 F13 get 1 1 10.0

16 F13 get 2 1 10.0

17 F13 get 2 0 13.0

Fig. 2. Matrix multiplication test sheet.

Each row of the test sheet represents a single method

invocation, like most of the lines in the JUnit version of the
test. The first column (A) identifies the called object, the
second column (B) identifies the called method, and the other
columns to the left of the so called invocation line – the
double-line dividing column E from F – represent the input
parameters. These are “filled up” from left to right according
to the number of parameters required by the method. The
column to the right of the invocation line (F) represents the
results returned by the invocation. In a simple test sheet such
as that in Figure 2 the rows are executed sequentially from top
to bottom just like a sequence of statements in a Java method.
There can be more complex forms of test sheets, however, in
which the execution order is controlled by a special
“behavioural part” at the bottom of the table (see [3] for
further details).

Figure 2 is actually an input test sheet, which defines the test
data and expected return values. Thus, the values that appear
in column (F) represent the results that are expected from the
invocation of the operation in the specified sequence. When

the test sheet is actually applied to a component, a new version
of the sheet is created – a so called output test sheet – that
illustrates whether the actual returned value matched the
expected value. If it did, the corresponding cell is coloured
green. If it did not, the corresponding cell is coloured red and
the actual returned value is shown along side the expected
value.

III. DYNAMIC INTERFACE ADAPTATION

The motivation for a dynamic interface adaptation engine
came from the desire to automatically apply tests to candidate
components retrieved by a search engine in order to filter out
those that do not have the desired behavior [4]. This, in turn,
was motivated by the growing practice of test-driven
development [7] in which tests for components are written
before their implementations. This makes it possible and
worthwhile to search for components which pass the specified
test (and thus by definition are fit for the specified purpose)
before effort is invested in developing an implementation from
scratch. In effect, therefore, the test specification serves as the
query definition for search engines which are able to perform
semantic rather than pure syntactic matching during the search
process [13]. A schematic representation of this approach is
shown in the following figure.

a) Specify test cases

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

a) Specify test cases

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

d) Compile candidatesd) Compile candidates

e) Test candidatese) Test candidatesb) Extract interface

Stack

+push(o:Object):void
+pop():Object

b) Extract interface

Stack

+push(o:Object):void
+pop():Object

c) Search reuse candidatesc) Search reuse candidates

f) Choose componentf) Choose component

DeveloperDeveloper

Reuse
System
Reuse

System

Fig. 3. Required steps for the test-driven reuse of a component.

A key challenge that had to be overcome to implement the

above test-driven search algorithm was to automatically adapt
candidate components to the interface expected by the test
case in order to be able to test them in step (e). Limiting the
initial search for candidates to be tested to those that exactly
match the desired interface is not desirable because the number
of matching components would be far to low and many
semantically suitable classes that happen to have the wrong
names for their methods would not be considered. In principle,
any component with the right set of method signatures (i.e. set
of input and output parameter types, cf. [14]) is a potentially
matching candidate, but using this criterion to determine the
set of candidates to be tested generally results in too many
candidates. In effect, it represents the other end of the
spectrum. In practice, the optimal balance is a middle-way

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

9

solution that combines an interface search based on signature
and loose identifier matching with subsequent testing.

Even in this case, however, there are many ways in which a
given candidate could be called by the test case. For example,
if an operation has several parameters of the same type these
could be passed in various orders. To realize the described
test-driven search technology, therefore, a technique was
needed to systematically explore all possible mappings
between the interface expected in the test and the set of
operations offered by a component, as characterized by their
signatures. A so-called permutation engine was designed to
solve this problem automatically [9].

A. Static Interface Adaptation

In order to explain how the adaptation engine works, in this
section we first briefly review the classic strategy for adapting
the interface of one component to the needs of another. The
most well known version of this approach is the Adapter
Pattern defined in the Gang of Four pattern catalog [11]. The
following figure shows the structure of the so-called object
adapter, the variant of this pattern that is suitable for object-
oriented languages such as Java that do not support multiple
inheritance.

Fig. 4. Object adapter structure.

The underlying idea depicted in figure 4 is simple. The

Client on the left relies on the specified Target interface, but
this unfortunately, is not provided by the Adaptee component
that is supposed to be reused. Thus, an ObjectAdapter needs to
be created in order to “translate” calls to the Target interface
to those actually supported by the Adaptee.

Although this pattern looks simple at a first glance there are
some situations where it is not applicable – One common
example is when the class to be adapted (the Adaptee) contains
methods with parameters or return values of the class’s type. A
clear example of such a situation is illustrated in figure 5 that
shows how method calls are to be mapped onto an Adaptee in
case of a Matrix component. Take for instance the mult
method of the Matrix candidate component on the right hand
side. Since it is not aware that it is going to be adapted it
expects a parameter and returns an instance of the Matrix class
type. In other words, it naturally expects and delivers objects
of its own type rather than of the type of the adapter. Thus, the
simple forwarding of parameters and return values that is
normally carried out by the adapter is no longer sufficient in
this case.

Fig. 5. Matrix adaptation example.

The key idea to overcome this limitation is to manage the

relationship between adapter and adaptee objects inside the
adapter in order to guarantee a traceable 1:1 relationship
between the two. In other words, for each instantiated adapter
object there needs to be an adaptee object and vice versa.
Furthermore, the adapter needs to keep track of all these
relations in a lookup table. This enables the adapter to replace
the appropriate adapter object with an adaptee object and vice
versa whenever necessary. However, as the solution of this
issue is not the focus of this paper we refer the interested
reader to [10] for further details on exactly how the classic
object adapter is extended to overcome this limitation.

B. Adaptation Engine

Figure 5 also demonstrates how our adaptation engine, in
the presence of ambiguous operation signatures, maps the
operations specified by an extended version of the test cases in
listing 1 onto an adaptee [9]. As an example, consider the
getCell method of the right Matrix component for instance.
Given the signature int x int -> double by itself, it is not
clear in what order the method expects the two integer
parameters. Furthermore, the signature Matrix -> Matrix
appears three times within its add, sub and mult methods
which makes it difficult to decide to which one the calls to the
adapter object on the left should be forwarded. Although a
human developer might be able to solve these issues by
reading and understanding the documentation of the
component, he or she will typically also test it afterwards to
establish a specific level of trustworthiness. Nevertheless, if
there is no adequate documentation or perhaps less expressive
operation names as it is often the case today with web services,
even a skilled human engineer might be forced to use trial and
error to establish which operation relations and parameter
orders are expected. When we implemented our automated
adaptation engine we initially experimented with heuristics to
mimic the human understanding of this task, but realized
quickly that only the systematic evaluation of all possible
permutations through testing ultimately guarantees the
successful discovery of the correct mapping (if one exists). As
mentioned before, this engine was able to automatically
resolve the solution shown in figure 5 based on an extended
version of the test case in Listing 1. Further results can be
found in [9].

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

10

IV. SELF-ADAPTING COMPONENTS

As mentioned previously, the technologies described in the
previous two sections were developed independently for
separate purposes - built-in testing was realized to enhance the
trustworthiness of components by arranging for the “fitness” of
their server components to be tested at run-time and the
automated adaptation engine was implemented to enhance the
reusability of components by dynamically mapping invo-
cations to matching operations. Each therefore makes an
individual contribution to simplify the development of
component-based systems. However, we believe that by using
the two together it is possible to overcome the traditional
tension between trustworthiness and reusability, and to
develop systems which are not constrained to the area of low
trustworthiness and/or low reusability depicted in the bottom
left corner of figure 1.

The synergy between the two technologies arises in the
context where built-in tests can be used to verify that the
components to which a given component has been connected
in a particular component-based system are able to meet its
expectations. In such a situation, which is illustrated in figure 6
between a MatrixUser component and a Matrix component, a
test is used to establish the latter’s fitness for purpose from the
perspective of the former.

Matrix User Matrix
A B C D E F

1 Matrix create 2 3

2 Matrix create 3 2

3 F1 set 0 0 1.0

4 F1 set 0 1 2.0

5 F1 set 1 1 3.0

6 F1 set 2 0 1.0

7 F1 set 2 1 4.0

8 F2 set 0 0 1.0

9 F2 set 0 2 3.0

10 F2 set 1 0 3.0

11 F2 set 1 1 2.0

12 F2 set 1 2 1.0

13 F1 mul F2

14 F13 get 0 0 7.0

15 F13 get 1 1 10.0

16 F13 get 2 1 10.0

17 F13 get 2 0 13.0

Fig. 6. Contract testing scenario.

In the standard view of built-in testing as developed in the
MORABIT [5] and ECOMODIS [3] projects, it is implicitly
assumed that there is no need for interface adaptation between
the communicating parties. In other words, the MatrixUser in
this scenario is assumed to “know” the names and signatures of
the operations offered by Matrix and thus to issue only
syntactically correct operation invocations. However, as men-
tioned above, this is unrealistic in practice since independently
written components rarely agree exactly on the operation
names used in their mutual interface, and if this assumption is
enforced in practice it drastically reduces the flexibility of the
whole approach and thus the reusability of components.

In this context, an automated adaptation engine can be used
to alleviate this problem, because as long as a description of
the semantics of the contract is available (as it is in the case of
built-in testing) the engine is able to dynamically adapt the
actual interface of a component to match that expected by the
user (if it is at all feasible). In other words, the relationship
between a client and server component in a built-in testing
environment, where a test is used to capture the semantics of
their contract, provides exactly the conditions needed for an
automated adaptation engine to work. Thus, in the context of
built-in testing, such an approach would always be able to

provide the illusion that a server component exactly matches
the expected interface of the client, even if in actual fact it
does not. To put it another way, once a component has ensured
it can deliver the required semantics (as determined and
verified by built-in tests), a self-adapting component equipped
with this technology would be able to figure out the correct
wiring of input parameters to their internal representations
based on a set of test cases delivered by its clients.

The idea that naturally follows from this observation is that
by including self-adapting behaviour in all reusable
components, and adopting a component deployment approach
in which built-in tests are used to verify semantic
compatibility, the problem of interface adaptation can be
solved automatically. This is the justification for our claim that
when used together the two technologies can enhance
trustworthiness and reusability at the same time. A schematic
picture of such a self-adapting component (a component with
the ability to automatically adapt its interface using a built-in
adaptation engine) is shown in figure 7.

Fig. 7. Schematic representation of a self-adapting component.

A further natural extension of this approach is to use test-
driven search to find suitable components in the first place. In
fact, there is little conceptual difference between searching for
components in the conventional way and then using built-in
testing and automated adaptation to verify their fitness for
purpose or to use a test-driven search up front and only
considering semantically suitable components for reuse. This
raises the issue of the value of making components self-
adapting when a test-driven component search engine is
already able to readily deliver fixed adapters for components
that match the specified test by saving successful operation
and parameter mappings. However, fixed adapters of this kind
are obviously only of use as long as the communication pattern
between components stays fixed. In long lived systems where
component populations and configurations are changed over
time (e.g. SOAs) and in systems which have been deliberately
built to be “adaptive” at run-time, such concrete adaptation is
too rigid. Building interface adaption facilities into the
components or services of such systems clearly enhances the
ease with which they can be reconfigured in a trustworthy way.

Since our proposed approach is able to perform the
adaptation automatically, it can be brought into play whenever
the compatibility of interacting components is cast into doubt,
including dynamic changes to the run-time component archi-
tecture (i.e. dynamic reconfigurations). In principle, as long as

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

11

it is clear that a component is able to semantically fulfil its
contract, all that is needed to re-establish syntactical com-
patibility is to rerun the adapter to re-configure the correct
internal wiring.

V. CONCLUSION

In this position paper we have made the case for combining
what at first sight appear to be two unrelated technologies –
semantic contract validation through built-in testing and
dynamic interface adaptation – in order to lower the tension
that usually exists between two highly desirable characteristics
of components and component based systems – trustworthiness
and reusability. The ultimate effect of this synergy is to
support a composition paradigm in which interface
incompatibilities are automatically resolved, and component
compatibility is determined solely by behaviour. The only
prerequisite for such a paradigm is the use of tests to describe
the behaviour required by a component. Since these tests will
therefore play an increasingly critical role in the overall
composition process, it is important that they are easily
understandable and writeable by human engineers. We
therefore believe that platform independent test description
techniques such as test sheets will play an increasingly
important role in the future of component-based development.

One objection that is often brought up when test cases are
used to specify components is that they only cover samples of
a component’s input space and thus are not able to guarantee
correctness. This is indeed an issue, but even in defect testing
it is impossible to cover the full input space of components and
thus to be sure that they behave exactly as expected. In all
practical software engineering projects, therefore, developers
have to decide on a set of test cases (i.e. a sample) that they
feel is “good enough” for the purpose in hand. For example, in
agile development methods based on test-driven development,
tests are used as the ultimate judge of a component’s “fitness
for purpose”, even though they cover just a fraction of all
possible inputs. The key is to use a sufficiently large and well
defined sample in order to gain the desired level of confidence
that the component has the behaviour desired. Exactly the
same criteria used to determine the adequateness of tests in
test-driven development can be used to judge the adequateness
of the built-in tests in our approach to component-based
development.

Another interesting question related to this approach is its
potential scalability - how well does the approach work when
the components become more complex than in our matrix
example and perhaps depend on other components as well?
This question is not limited to our approach alone, but is a
general problem for all software systems composed
hierarchically from components and objects. Our ultimate
vision, of course, is that all component contracts will be
governed and verified using the built-in testing and self-
adaptation approach described in this paper. Thus, for large
systems composed of many components, the obvious approach
is to start the contract verification process at the leafs of the

component or object tree - in other words, with those units that
do not require any other units to function – and to then work
up towards the root. This strategy is, for example, nicely
explained in [15] in the context of object-oriented
development and can easily be used for the composition of
self-adapting components as well.

REFERENCES

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B., Paech, J. Wust, J. Zettel, Component-based
Product Line Engineering with UML. Addison Wesley, 2002.

[2] Y. Wang, G. King, H. Wickburg, “A method for built-in tests in
component-based software maintenance”, in IEEE International
Conference on Software Maintenance and Reengineering, IEEE
Computer Science Press, 1999.

[3] C. Atkinson, D. Brenner, G. Falcone, M. Juhasz, “Specifying High-
Assurance Services“, in IEEE Computer, vol. 41, no. 8, 2008.

[4] Hummel, O. and C. Atkinson: “Extreme Harvesting: Test-Driven
Discovery and Reuse of Software Components”, in International
Conference on Information Reuse and Integration, 2004.

[5] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, D. Suliman, B. Paech,
“Reducing Verification Effort in Component-Based Software
Engineering through Built-In Testing”, in Information Systems
Frontiers, vol. 9, no. 2-3, Springer 2007.

[6] R. Mugridge, W. Cunningham, FIT for Developing Software:
Framework for Integrated Tests, Prentice Hall, 2005.

[7] K. Beck, Test-Driven Development by Example. Addison-Wesley, 2003.
[8] K. Beck, Extreme Programming Explained: Embrace Change.

Addison-Wesley, 1999.
[9] O. Hummel, “Semantic Component Retrieval in Software Engineering”,

Ph.D. dissertation, Faculty of Mathematics and Computer Science,
University of Mannheim, 2008.

[10] O. Hummel, C. Atkinson, “The Managed Adapter: A Pattern for
Dynamic Component Adaptation”, in International Conference on
Software Reuse, 2009, submitted for publication.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[12] C. Atkinson, H. Gross, “Built-In Contract Testing in Model-driven,
Component-Based Development”, in First International Working
Conference on Component Deployment, 2002.

[13] O. Hummel, C. Atkinson, W. Janjic, “Code Conjurer: Pulling Reusable
Software out of Thin Air“, in IEEE Software, vol. 25 no. 5, 2008.

[14] A.M. Zaremski, J.M. Wing, “Signature Matching: A Tool for Using
Software Libraries”, in ACM Transactions on Software Engineering and
Methodology, vol. 4, no. 2, 1995.

[15] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterarive Development (3rd ed.).
Prentice Hall, 2004.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

12

Certification of Software Component Performance
Specifications

Henning Groenda
FZI Forschungszentrum Informatik,

Software Engineering
10-14 Haid-und-Neu-Straße,
76131 Karlsruhe, Germany

Email: groenda@fzi.de

Abstract—In software engineering, performance specifications
of components support the successful evolution of complex
software systems. Having trustworthy specifications is important
to reliably detect unwanted effects of modifications on the perfor-
mance using prediction techniques before they are experienced
in live systems. This is especially important if there is no test
system available and a system can’t be taken down or replaced
in its entirety. Existing approaches neglect stating the quality
of specifications at all and hence the quality of the prediction is
lowered if the assumption that all used specifications are suitable
does not hold. In this paper, we propose a test-based approach to
validate performance specifications against deployed component
implementations. The validation is used to certify specifications
which in turn allow assessing the suitability of specifications for
predicting the performance of a software system. A small example
shows that the certification approach is applicable and creates
trustworthy performance specifications.

I. INTRODUCTION

Performance prediction plays an important role in the devel-
opment and evolution of complex component-based software
systems. For example, their use in the development phase en-
ables software engineers to predict the performance of differ-
ent design alternatives and hence select the best alternative. In
the deployment phase, these specifications guide the selection
and sizing of an appropriate execution environment and on
the deployment of components within this environment. In the
maintenance or evolution phase, performance predictions al-
low to examine the effect of modifications on the performance
and reduce the probability of discovering unwanted behavior
in live systems. This detection is especially important if there
is no test system and test data available and a system can’t be
taken down or replaced in its entirety. In general, prediction
techniques for the performance of component-based system
use specifications for the components’ performance-relevant
behavior as well as information on their assembly for their
predictions.

The reliance on such performance predictions requires a
predictable assembly of components. A predictable assembly
of components in turn requires trust in both, the prediction
method as well as the component performance specifications.
Prediction method should be based on a sound and falsifi-
able scientific theory. Component specifications should state
objective, test- and verifiable information on the performance-
relevant behavior. Testing by independent certification author-

ities according to a procedure checked by experts can ensure
the trustworthiness of such specifications. Due to the necessary
effort the testing of complex software systems needs to be
limited in most cases to certain parameter ranges. For example
testing a performance specification regardless of deployment
environment and usage profile requires in general prohibitive
effort. Explicit statements about such limits enable statements
about quality of the prediction and aid in identify potential
risks.

Existing performance prediction approaches rely on the
capability of software engineers to select suitable performance
specifications of a component. Research focused on validating
prediction approaches under the assumption that the speci-
fications were suitable for the situation at hand. Validating
performance specifications is seen as manual activity during
the generation of the specifications. Reasoning about the
suitability or quality of an existing performance specification is
however complicated if there are no explicit validity statements
connected to it. Especially if specifications should be reused
in different context, for example because of late composition,
missing validity statements increase overall efforts as specifi-
cations have to be recreated and revalidated.

In this paper, we propose an approach to certify performance
specifications and explicitly state the quality and limitation
of the specifications. The approach is based on a test-based
validation of the specifications against deployed component
implementations. Statistical reasoning is used to assure trust
in the performed validation. This enables the verifiability by
third parties and eases testing the validity. Additionally, it aids
in the protection of interests and trade secrets in marketplaces
as it is sufficient to publish the certified specifications.

The applicability of the approach to create trustworthy spec-
ifications is demonstrated in a small example. The necessary
validation effort as well as the certifiable quality are shown
and discussed.

The paper is structured as follows. Section II contains a de-
scription of the information necessary to validate performance
specifications. The envisioned certification process is describes
in Section III. Section IV contains a description of exist-
ing influencing factors on software performance and which
specification is chosen in the presented approach. Section V
shows a small certification example. Section VI points out and

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

13

discusses related work. Section VII concludes the paper.

II. VALIDATING PERFORMANCE SPECIFICATIONS

Validation of specifications is often made based on test
suites. For example, the functional validation if an application
server fulfills the Java platform enterprise edition require-
ments. Each test in such a test suite provides a simple pass or
fail outcome by comparing expected and experienced results.

However, if performance is considered the comparison of
expected and experienced results is much more difficult.
Performance is for example influenced by input parameters,
internal state, the performance of other required services,
resource contention, and the deployment platform. Depending
on the use measurement method and granularity, performance
measurements often influence the performance itself. Addi-
tionally, experience shows that measured execution times are
scattered in productive environments. Reasons are manifold,
e.g. physical effects like heat or age, or caching of data, con-
current processing of background services, and the precision of
measurements can cause scatter. Many performance specifica-
tions only refer to average or worst case considerations. These
are for example used in Service Level Agreements (SLA) to
ensure adequate performance.

Validating performance specifications stating the exact ex-
ecution time requires determining for which environments
which variations between expected and experienced results
are acceptable. For example, a specification can state that for
a given environment an undisturbed execution takes between
4.9 and 5.1 ms, or equally that the undisturbed execution takes
5 ms with an acceptable deviation of ±2%. The definition of
acceptable variations between expected and experienced result
depends on two independent factors besides the environment.
One factor is the range of input parameters for which the
specification is valid and the second factor is the precision
of the specified resource demands. All factors are explained
further in the following paragraphs.

A. Hardware Environment

The hardware environment describes the hardware and
its configuration for which the specification is valid. If a
specification is validated for an environment it may also be
valid for other environments. This is due to the fact that
prediction approaches can allow transferring specifications
from one environment to another. The environments for which
transfers are supported can be considered as an equivalence
class and validation can be limited to one instance of this
class. An example in which transfers work quite well is if only
the speed of a processor changes between two environments.
However, automated and trustworthy reasoning on this would
require machine-readable specifications and validating the
specification transfer capabilities of the prediction approach.
It is assumed that software engineers using the prediction
approaches know the limits of the transferring capabilities
and are aware of their implications. The validation of transfer
capabilities is not part of the presented approach. An example

for a hardware specification is a Pentium IV Northwood with
2.6 Ghz, Intel Chipset, SATA hard drive, and 2 GB of RAM.

B. Software Environment

The software environment describes the software and it’s
configuration for which the specification is valid. The same
capabilities and limitation apply as for hardware environments.
An example for a specification is a Sun JRE 1.5 on Windows
XP SP3 with the JRE configured in server mode.

C. Input Range

The input range specifies the parameter ranges of parame-
terized specifications for which the specification is valid. For
example, if a specification has the parameter file size and it is
validated for file sizes between 3 and 50 MB this should be
stated as input range.

D. Resource Demand Precision

The resource demand precision states how exact resource
demands of the specification are within the input range
in relation to the implementation executed in the specified
environment. The specification is considered valid as long
as specified and measured resource demands are below the
deviation threshold defined as resource demand precision. A
certain deviation will exist in most cases. This is either due to
the measurement method or due to the fact that performance
specifications are abstractions of the real behavior. Depending
on the kind of the specified demand (expected constant value,
gauss distribution, arbitrary distribution) different validation
estimators can be used. A Validation Estimator can for ex-
ample be an interval, the mean, maximal deviance, variance,
or the Mann-Whitney-Wilcoxon test. As statistical testing
is used for validation, the validity statement can only be
made with a certain probability. For example the certainty
that the distribution of traces from the specification and the
implementation are from the same distribution can be 95%.
An example of a resource demand precision for an expected
resource demand of 100 ms and a maximal deviance of ±10%
will still accept a measured value 105 ms.

III. CERTIFICATION OF PERFORMANCE SPECIFICATIONS

Our certification approach implements a test-based valida-
tion of performance specifications against deployed compo-
nent implementation. The certification process is sketched in
figure 1 and explained in the following paragraphs.

At the beginning, the component creator issues a validation
request to the certification authority. He has to provide the
component specification, the respective implementation, and
the validity statements which should be used for validation.
Validity statements contain the information discussed in chap-
ter II.

An evaluator within the certification authority then assesses
the validity of the specification. Therefore, execution of the
following steps is necessary.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

14

Certification Authority

Validation Request
A

sse
ssm

e
n

t

Performance

Results

Validity

Statements

Component
Creator

Evaluator

Component

Implementation

Comparison

Component Certification Process

• HW & SW Environment
• Mean of 73 ms

• Maximal deviance 10%

 Generate Testcases

 Instrument
Implementation

 Deploy Implementation

 Run Testcases

Dagstuhl, 16.03.20091 Henning Groenda - Quality Validation of Performance Specifications

Component

Specification(s)

Figure 1. Overview about the Component Certification Process

A. Generate Testcases

In this step, test cases are generated automatically which
are used to evaluate the specification. Automatic generation
is chosen to ensure reproducibility of validation results and
reduce the necessary human effort. If random numbers are
used, a pseudo-random number generator has to be used and
initialized. The initialization number has to be stored along
the with the validation information.

Both directions, specification against executed implementa-
tion and vice versa, are checked by the test cases. The forward
direction checks if the statements in the specification are
correct, for example that a resource demand depends linearly
on an input parameter. The backward direction checks that the
implementation does not contain more dependencies than the
ones specified, for example unspecified calls to external ser-
vices, another sequence of calls, or unspecified dependencies
to return values of calls. White-box code-analysis techniques
are used to discover these dependencies. Additionally, input
parameters which should not influence performance according
to the specification should be varied randomly for the test cases
to raise the chance of detecting otherwise undiscovered effects.
However, without exhaustive checking of all possibilities the
chance remains that there are some values which would lead
to an invalid specification. This is mitigated by publishing the
sample size for the measured demands so Software Engineers
can judge for themselves if the risk is acceptable.

If there are required services, mock-ups for the required ser-
vices are created to allow checking return-value dependencies.
As with input parameters, ranges for the return values should
be specified for which the validation is executed.

B. Instrument Implementation

The implementation itself must be instrumented in order to
log the resource demands within the component and correlate
them to the resource demand of the specification. Depending
on the measurement method either measurement facilities
are directly inserted into the code, platform functions of an
adapted application or virtual machine container are applied, or
operating system functions accessing the scheduled demands
are used.

C. Deploy Implementation

The instrumented implementation and mock-ups must then
be deployed in the target hardware and software environment.
The environment must match the environment specified in
the validity statements to allow a meaningful result of the
certification. If some properties of an environment are not
important for a specification and are hence not stated in the
hardware environment, the evaluator can choose an appropriate
environment. An example is if a component does not issue
requests for a hard disk it is not relevant which hard disk
exists in the execution environment.

D. Run Testcases

The testcases derived in the first step are run on the deployed
implementation and measurements of the necessary resource
demands are gathered. A test case is run until the requested
sample size is reached, which can be either specified directly
or being calculated by a confidence level. The overhead for
storing the measurements themselves should be as small as
possible to prevent unwanted side effects on the performance
of the implementation. The measurements from all runs of the
test cases are denoted as performance results.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

15

The evaluator uses the performance results to reason about
the validity of the supplied specification. He uses statistical
analysis to check if the measured values are considered valid
with respect to the validity statements. If this is the case then
a certificate is issued referencing the tested implementation,
validity statements and component specification. If the speci-
fication is not valid then the testcase(s) leading to the rejection
of the validity are given to the component creator.

The presented approach currently has the following limita-
tions and assumptions:

• The approach currently considers only the validation of
resource demands for processors. Hard disk or network
requests are not validated.

• It focuses on the performance needs of business infor-
mation systems and does not consider guarantees, for
example by a schedulability analysis, which are important
in many embedded systems. The methodology is inteded
to compare experienced execution times and not to reason
about best or worst case execution times.

• Validation is currently limited to basic components. The
specifics of composite components specifications, e.g.
how wiring the components is implemented, are not
considered at the moment. However, if composite com-
ponents are specified as basic components the approach
is applicable.

• Resource demand specifications are currently only vali-
dated for fixed resource demands in the specification and
a maximal deviance in percent.

• Checks that the implementation does not contain more de-
pendencies than specified are currently not implemented.

• Data dependencies of components are currently not val-
idated yet. However, the support for parameters of the
used performance specifications allows taking these into
account later on.

• Plain java objects are considered. Code weaving which is
for example used in Java Enterprise Edition application
servers is not considered yet.

IV. COMPONENT PERFORMANCE SPECIFICATIONS

In this chapter, links to existing prediction approaches and
their component performance specifications are given. We
show the selection criteria for the specification which promises
the highest pay off for certification and introduce the selected
specification.

Most of the existing performance prediction and assess-
ment approaches provide own performance specifications for
components. These specifications describe the performance-
relevant behavior of individual components and are used by the
prediction approach to reason about the behavior of an assem-
bled system. A general survey on model-based performance
prediction approaches was created by Balsamo et al. [2]. They
point out and compare which information is required by each
of the approaches as well as on which software life cycle
phase they focus, the degree of automation, and tool support.
Another view is provided by Becker et al. in [3]. They focus
their survey on performance prediction of component-based

systems from an engineering perspective. They review existing
approaches and tools and indentify their respective strengths
and weaknesses in supporting different aspects in the design
and development of component-based systems.

In general, performance specifications depend on the
methodology used in the approach to predict the performance
as well as which influencing factors on software components
are taken into account. These influencing factors are stated for
example by Koziolek in [4, p.42]:

• Implemented Algorithms
• Service Parameters and Internal State
• Performance of Required Services
• Resource Contention
• Deployment Platform

We reviewed the different existing prediction approaches
and specifications in order to identify the one with the best
support of accounting for the influencing factors and which
is suitable for complex component-based systems. These
requirements were selected because a better consideration
of these factors fosters reusing a specification in different
context. A higher degree of reuse promises higher payoffs
for certification effort. Finally, the performance specifications
of the Palladio Component Model (PCM) [1] were selected.
PCM specifications allow taking implemented algorithms, ser-
vice parameters, dependencies to required services, resource
contention and dependencies to the deployment platform into
account. However, the prediction of resource contention effects
is focused on the resource processor. Other resources, e.g.
memory or hard disk access, are only considered on a basic
level.

In PCM, the behavior of services provided by a component
is described by so-called Resource Demanding Service EFFect
(RDSEFF) specifications. They describe the control and data
flow of a component. The description is as abstract as possible
while still allowing accounting for the influencing factors
listed in the last paragraph. The elements of a RDSEFF and
their relation to the influencing factors are explained in the
following paragraph. More detailed descriptions of RDSEFFs
are available in [5], [6], and [1].

The behavior modeled in a RDSEFF consists of required
service calls, branches, loops, resource demands, resource ac-
quisitions, resource releases, and forked behaviors. Of course,
all of these reflect the implemented algorithm or, if still in
the design stage, the estimation of the performance of an
implemented algorithm. All parameters of the elements, e.g.
number of loops or resource demand, can be specified as abi-
trary distribution functions and/or contain service parameters
which influence the demand.

a) Required service calls: allow accounting for the per-
formance of required service by making the point of a service
call explicit and allow weaving in specifications for the behav-
ior of the required service. These calls can be parameterized
to take service parameters into account.

b) Branches and loops: allow accounting for service
parameters influencing the performance of the component

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

16

void execute(int number,
List array){

requiredService1();

// internal computation
innerMethod();

if (number>=0)
for (item in array)
requiredService2();

else
requiredService3();

}

Figure 2. Example: Source Code and corresponding RDSEFF [1]

itself or the effect of control flow on the order of calls to
required services.

c) Resource demands: allow to account for the effect of
resource contention due to the demands issued by components.
The demand in abstract units of a component on resources is
specified. If the deployment of the component is known these
units can be converted and the time required completing the
demand computed.

d) Resource acquisition and release: allows accounting
for the internal state of components and enables synchroniza-
tion.

e) Forked behavior: allows accounting for resource con-
tention effects even within a component by enabling to express
concurrent execution of behavior within a component.

Figure 2 provides a simple example of the structure and
information contained in a RDSEFF. In the example, the
abstract performance-relevant behavior of the service execute
of a component is described. Algorithmic complexity and
substantial source code is hidden in the method calls to
allow easier presentation. First, a call to a required service is
issued. After its completion a component internal calculation is
made, encapsulated in the innerMethod. The execution of this
calculation requires 1000 units on the processor. Afterwards,
the control flow splits depending on the number of elements
in the service parameter array. Either the required service
requiredService2 is executed as many times as array has
elements, or the required service requiredService3 is executed.

V. EXAMPLE

In this chapter, a simple example demonstrates the valida-
tion of a performance specification.

The validated component is labeled ComponentUnderTest.
It requires the interface ProcessingRequest which provides
the parameterless service process. It requires a component
implementing the interface IHelperService which provides the
parameterless service calculate. The RDSEFF of Processin-
gRequest for process first request 500 units of CPU demand for
an internal calculation (innerMethod). Afterwards the required
service is executed and another internal calculation requests
250 units of CPU demand (dataProcessing). This is depicted
in figure 3.

Two implementations are generated using the performance
prototype approach of Becker et. al. [7]. Both implementations
are based on the specification, but the second one should
request 270 units of CPU demand at dataProcessing.

The validity statements are as follows. The hardware en-
vironment consists of a Intel Core 2 processor T5600, Intel
chipset, and 2 GB RAM. One CPU unit in the specification
equals 0.0001 ms on that machine. The software environment
consists of Windows XP Professional SP3, a SUN Java VM
1.6.0_13 with HotSpot Client VM (build 11.3-b02, mixed
mode, sharing). The example does not use input parameters,
so none are listed. The resource demand precision for all
resource demands uses intervals as validation estimator. 95%
of the experienced resource demands of the internal action
innerMethod should lie in the interval 50ms ±6ms, and within
25ms ±3ms for the internal action dataProcessing.

In the generate testcases phase, a sample size of 10000 is
selected to be sure that a validation returns a trustworthy result.
As there are no parameters in the specification there is just
one test requesting the service process. In the example, the
validation is limited to the forward direction. A mock-up for

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

17

ProcessingRequest

void process()

ComponentUnderTest

SEFF <process>

PassiveResourceCompartment

ComponentParameterCompartment

IHelperService

void calculate()

Mock

SEFF <calculate>

PassiveResourceCompartment

ComponentParameterCompartment

<<Provides>>

<<Requires>>

<<Provides>>

<<InternalAction>>

process
ResourceDemand

250 <CPU>

<<InternalAction>>

innerMethod
ResourceDemand

500 <CPU>

<<ExternalCallAction>>

Required_IHelperService_ComponentUnderTest.calculate
InputVariableUsage

OutputVariableUsage

<<InternalAction>>

dataProcessing
ResourceDemand

250 <CPU>

Figure 3. Example components and resource demands

S
ec

on
d

Im
pl

em
en

ta
tio

n
Fi

rs
t I

m
pl

em
en

ta
tio

n

0.025 0.026 0.027 0.028 0.029 0.030

time [s]

Figure 4. Boxplots for experienced resource demands

the required service is created manually. To demonstrate that
any internal processing, for example to calculate any returned
values, does not negatively influence validation an internal
demand of 250 CPU units is issued (see also figure 3). In
the instrument implementation phase, the code is instrumented
manually. Passed time is measured using the wall-clock time
returned by the Java operation System.nanoTime(). The
implementation is then deployed manually in the validation
environment. In the run testcases phase the test are run
automatically until the sample size is reached.

The results for dataProcessing are depicted in figure 4. For
implementation 1 and dataProcessing, 96.26% lie within the
interval. For implementation 2 and dataProcessing, 37.63%
which would lead to the decision that the specification is
invalid for this implementation. For innerMethod, the values

are 97.47% and 97.36% respectively. Overall, implementation
1 is regarded as valid.

The example is limited to the call of required services and
processing of internal actions. The other constructs are not
supported by this early lab prototype because they depend
on validating parameterized specifications and considered as
future work. The value of 95% of all measurements that
should lie within an interval was chosen as the measurement
method used wall-clock time and the used validation system
had many low-load background jobs running which influenced
the measurements.

VI. RELATED WORK

Related work can be split into three different areas: Certi-
fications, Performance Testing, and Performance Specification
Validation. Each area is presented in a separate subchapter.

A. Certification
The research on component certification started in the early

90s and is still ongoing as shown in Alvaro et al.’s survey [8].
The survey shows the history of component certification and
that certification approaches developed in the 90s focus on
statements about the reliability of software components us-
ing test cases or mathematically analyzable models. Starting
around 2000, the focus of the approaches shifted towards
the certification of extra-functional aspects in general and the
prediction of systems built out of certified components, e.g.
[9], [10].

Wallnau also did some basic work on classifying certifi-
cation approaches, for example the 10 useful distinctions for
certification approaches in [11]. According to this classifica-
tion the approach presented in this paper aims at reducing the
gap between the knowledge about what a component does to
what it actually does. It supports a descriptive certification of
objective measures. The software products will be examined
empirically with a given context in a procedural manner.

Meyer introduced in [12] a component quality model which
distinguishes certification approaches between a “low road”

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

18

and a “high road". The low road summarizes the validation
of existing component behavior and the high road means
verification of component behavior with fully proven correct-
ness properties. The approach described in this paper is based
on statistical and empirical testing and hence belongs to the
former category.

Hissam, Moreno, Wallnau et al. introduced the concept of
predictable assemblies in [10] and later extended it to the
Predictable Assembly from Certifiable Components (PACC)
approach, described in [13]. PACC allows the prediction of
the runtime behavior of a software system from the prop-
erties of its components and their patterns of interactions.
PACC’s performance reasoning framework currently focuses
on fixed-priority preemptive scheduling, making it suitable
to analyze hard real-time systems [14]. In contrast to the
approach proposed in this paper, the authors concentrate on
the support for hard real-time systems instead of business
information systems. Additionally, they focus on the small
areas and conditions in which some correctness properties can
be proven.

The Cleanroom Software Engineering approach of Mills
et al. [15] and the corresponding process of [16] target
reliability of software systems. The approach and process
aim to make development more manageable and predictable
by using statistical quality control. The philosophy behind
cleanroom software engineering is to avoid dependences on
costly defect-removal processes by writing code increments
right the first time and verifying their correctness before
testing. Its process model incorporates the statistical quality
certification of code increments as they accumulate into a
system. Cleanroom software engineering yields software that
is correct by mathematically sound design and software that
is certified by statistically-valid testing. In contrast to the
approach presented in this paper, the Cleanroom Software
Engineering approach belongs to the high road approaches.
However, statistical quality control is also used in the approach
presented in this paper.

Alvaro et al. show in [17] the need of component certifica-
tion within component-based software development for busi-
ness information systems and discuss similarities and interde-
pendencies between component selection and certification. The
authors also provide a framework for component selection [18]
as well as an selection process [19]. The approach proposed
in this paper focuses solely on the extra-functional aspect
performance and could later on be integrated in the more
general framework of Alvaro et al..

Bøegh describes in [20] a formalized approach to state
component properties and ensure trust in them by third-party
certification whilst considering a multi-certification-standards
scenario. The approach presented in this paper can be used as
measure to ensure trust in quality claims for the performance
of components of business information software.

In contrast to Bøegh’s third-party approach, Morris proposes
in [21] an approach for self-certification. It is designed to
ease certification of functional aspects for open-source or
free software. He developed a generic model to express test

data. Published instances of these model and the software
itself allow to verify quality claims by interested parties. The
approach presented in this paper differs as it focuses on the
extra-functional property performance instead of functionality
and there is no need to publicize the software itself, nor does
it depend on a preselected set of test cases.

B. Performance Testing

The performance testing market has been growing steadily
[22] and hence there is a number of commercial and non-
commercial performance testing tools available. The tools
are presented in the following paragraphs. In contrast to the
approach presented in this paper, the test cases run by the
shown tools must be specified manually. In the approach of this
paper, the information in the specification and implementation
is used to deduce testcases for validation.

1) HP LoadRunner software: This commercial software is
part of the Performance Center from HP and generates load,
measures the performance, and helps to identify problems
within a system. A more detailed overview is provided at [23].
It is designed to stress test an application from end-to-end and
point out scalability issues. It provides support for diagnostic
probes at code-level, non-intrusive real-time monitoring at
system-level, and the inspection of SQL statements.

The approach presented in this paper uses probes on the
code-level to measure the runtime of component internal
processing sections as exact as possible. Hence, specialized
probes have to be used for measurements.

2) LISA: The commercial LISA suite from iTKO is avail-
able at [24]. It consists of three tools: LISA Test [25] for
designing and executing tests at UI-level and below, LISA
Validate [26] for functional and performance monitoring, and
LISA Virtualize [27] for behavior simulation of dependent
services. The suite can run stand-alone as well as integrated
with JUnit. The advantages of such a combined approach
to end-to-end functional, load, and production testing are
pointed out in [28]. LISA Virtualize provides the concept of
a virtualized service as described in [29]:

Service virtualization involves the imaging of soft-
ware service behavior and the modeling of a virtual
service to stand in for the actual service during
development and testing. With a virtual service,
you image the behavior of a particular service, you
construct the virtual service from that behavior, and
then you deploy it to a virtual service environment.
[29]

The approach presented in this paper is related to LISA Test
and LISA Validate. It is related to the former as it needs to
automatically generate and execute tests on implementations.
The later one is interesting as the behavior of required com-
ponents or services has to be simulated in order to check the
specifications.

3) JMeter: Apache JMeter is part of the Apache Jakarta
Project and available at [30]. It is a java-based tool designed
to load test functional behavior and measure performance for
various server types. Supported server types are Web, SOAP,

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

19

JDBC, LDAP, JMS, and Email. It supports caching and offline
analysis/replaying of test results.

Its testing strengths lie in heavy concurrent load conditions.
The approach presented in this paper focuses on specifica-
tion validation in single-user cases as it can rely on PCM’s
validated prediction approach to scale correctly in high con-
currency situations.

4) OpenSTA: The Open System Testing Architecture
(OpenSTA) is available at [31]. The current toolset has the
capability of performing scripted HTTP and HTTPS load
tests with performance measurements from Win32 platforms.
Testing is performed using the record and replay metaphor
common in most other similar and commercially available
toolsets. Data collections include scripted timers, SNMP data,
Windows Performance Monitor stats, and HTTP results &
timings.

The data collection and capturing possibilities are of interest
for the approach presented in this paper. However, capture
and replay methods are of minor interest, as the specification
validation should not depend on this kind of functional test
data.

5) PushToTest: PushToTest is a commercial open source
alternative for testing and monitoring and available at [32]. It
provides capabilities for functional testing, load testing, and
monitoring.

The approach presented in this paper could use integrated
open-source tools, like Glassbox for monitoring implementa-
tions.

C. Performance Specification Validation

Pavlopoulou and Young examined residual test coverage in
[33]. The program statements not covered by previous testing
approaches are instrumented to see if they are actually used or
if the assumption that they are seldom used in practice holds.

The approach presented in this paper can use statement cov-
erage to determine areas which might influence performance
but have not been measured before.

The effort of testing and reusing components was addressed
by Weyuker in [34]. She states that high reliability and
availability requirements lead to enormous costs. Additionally,
components have to be tested in isolation and after integration
so savings of components-of-the-shelf are not sure. Reusing
components requires retesting for stability, reliability, stress,
and performance testing.

The approach presented in this paper will allow testing
components for specified ranges of parameters and environ-
ments. As long as the components are used within these
boundaries predicting the expected behavior wrt performance
should require only very low effort.

Extra-functional behavior and component testing is also
considered in [35] by Hamlet. The article is about a composi-
tional testing theory based on subdomain or partition testing.
Component test points and their (input and output) propagation
are considered to identify the best test criteria or cases. Focus
is put on functional behavior but extra-functional behavior is
covered as well. Models are used to abstract the data flow

and allow deriving test cases. Resulting from the type of
modeling data flow, the approach has difficulties for example
in finding fix points for loops / iterations. Additionally, the
article points out that theoretical comparisons between random
and subdomain testing have not shown a conclusive advantage
either way in detecting failures.

In contrast to the approach presented in this paper, Hamlet
focuses on functional testing which is also required for the
kind of extra-functional testing described in his article.

VII. CONCLUSION

In this paper, we showed links to existing performance
prediction approaches and their performance specifications.
We gave the reason why the RDSEFF specification was
chosen for this approach and introduced the specification itself.
Additionally, we identified and explained which information is
necessary to validate performance specifications. We presented
our approach to certify specifications against implementations
and explained the process of assessment and certification as
well as listed current limitations and assumptions. A small lab
example demonstrated the applicability of the process.

The presented approach aids companies in offering com-
ponents in marketplaces. The publication of certified perfor-
mance specifications in a marketplace is sufficient for potential
customers to reliably evaluate and select components. How-
ever, the interests and intellectual properties of the offering
companies are still protected as the specifications only contain
a highly abstract view on the component’s behavior and keep
the disclosure of details on the used algorithms and techniques
to a minimum. Having certified performance specifications
additionally supports software engineers in late composition
of components. The software engineers gain the knowledge
if the performance specifications fulfill their requirements
for the intended composition which can in turn ease the
evaluation of components and reduce the necessary effort.
The certification of specifications also supports a predictable
assembly of components. The information contained in these
specifications allows increasing confidence in the results pro-
duced by validated performance prediction approaches or
identifying potential risks. Last but not least, certification by
independent authorities provides a mean for quality assurance.
If the development of components is given to a contractor
the stipulation of certification enables the contracting body to
trust the performance of a developed component beyond a few
test cases while keeping its own quality assurance effort low.
The contracting body can focus on its own expertise and does
not need to employ performance engineers just for quality
assurance.

As a next step the design of a model describing the validity
of performance specifications is planned. It is also planned to
extend the approach to allow the comparison and validation
of parameterized distribution functions including predictions
on the necessary effort in terms of test cases and runs for
the requested validation. Furthermore, support for validating
dependencies to input parameters of a component’s service is
planned as well. In the medium term validating the specified

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

20

against the implemented required interface and the specified
and implemented external call sequence is planned. In the
long term the validation should also include return value
dependencies from external calls.

ACKNOWLEDGEMENTS

Support for this work has been provided by the German
Federal Ministry of Education and Research (BMBF), grant
No. 01BS0822. The author is thankful for this support.

REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2008.03.066

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-Based
Performance Prediction in Software Development: A Survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295–310, May
2004.

[3] S. Becker, L. Grunske, R. Mirandola, and S. Overhage, “Performance
Prediction of Component-Based Systems: A Survey from an Engineering
Perspective,” in Architecting Systems with Trustworthy Components, ser.
LNCS, R. H. Reussner, J. Stafford, and C. Szyperski, Eds. Springer,
2006, vol. 3938, pp. 169–192.

[4] H. Koziolek, “Parameter Dependencies for Reusable Performance
Specifications of Software Components,” Ph.D. dissertation, University
of Oldenburg, 2008. [Online]. Available: http://sdqweb.ipd.uka.de/
publications/pdfs/koziolek2008g.pdf

[5] R. H. Reussner, S. Becker, H. Koziolek, J. Happe, M. Kuperberg, and
K. Krogmann, “The Palladio Component Model,” Universität Karlsruhe
(TH), Interner Bericht 2007-21, 2007, october 2007. [Online]. Available:
http://sdqweb.ipd.uka.de/publications/pdfs/reussner2007a.pdf

[6] K. Krogmann, “Reengineering of Software Component Models to
Enable Architectural Quality of Service Predictions,” in Proceedings of
the 12th International Workshop on Component Oriented Programming
(WCOP 2007), ser. Interne Berichte, R. H. Reussner, C. Szyperski,
and W. Weck, Eds., vol. 2007-13. Karlsruhe, Germany: Universität
Karlsruhe (TH), July 31 2007, pp. 23–29. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007172

[7] S. Becker, T. Dencker, and J. Happe, “Model-Driven Generation
of Performance Prototypes,” in Performance Evaluation: Metrics,
Models and Benchmarks (SIPEW 2008), vol. 5119, 2008,
pp. 79–98. [Online]. Available: http://www.springerlink.com/content/
62t1277642tt8676/fulltext.pdf

[8] A. Alvaro, E. de Almeida, and S. de Lemos Meira, “Software component
certification: a survey,” 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 106–113, September 2005.

[9] J. Stafford and K. Wallnau, “Is third party certification necessary?” in
4th ICSE Workshop on Component-Based Software Engineering, 2001.

[10] S. Hissam, G. Moreno, J. Stafford, and K. Wallnau, “Enabling pre-
dictable assembly,” J. Syst. Softw., vol. 65, no. 3, pp. 185–198, 2003.

[11] K. C. Wallnau, “Software component certification: 10 useful distinc-
tions,” SEI, CMU, Tech. Rep. CMU/SEI-2004-TN-031, September 2004.

[12] B. Meyer, “The grand challenge of trusted components,” Software
Engineering, 2003. Proceedings. 25th International Conference on, pp.
660–667, May 2003.

[13] K. C. Wallnau, “Volume iii: A technology for predictable assembly from
certifiable components (pacc),” SEI, CMU, Tech. Rep. CMU/SEI-2003-
TR-009, 2003.

[14] G. A. Moreno and P. Merson, “Model-Driven Performance Analysis,”
in proceedings of the Fourth International Conference on the Quality of
Software Architectures (QoSA 2008)., ser. LNCS, S. Becker, F. Plasil,
and R. Reussner, Eds., vol. 5281. Springer, September 2008, pp. 135–
152.

[15] H. Mills, M. Dyer, and R. Linger, “Cleanroom software engineering,”
IEEE Software, vol. 4, no. 5, pp. 19–25, September 1987.

[16] R. Linger, “Cleanroom process model,” IEEE Software, vol. 11, no. 2,
pp. 50–58, March 1994.

[17] A. Alvaro, R. Land, and I. Crnkovic, “Software component evaluation:
A theoretical study on component selection and certification,”
Mälardalen University, Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-217/2007-1-SE, November 2007. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=1371

[18] A. Alvaro, E. S. de Almeida, and S. L. Meira, “Towards a software
component certification framework,” Quality Software, 2007. QSIC ’07.
Seventh International Conference on, pp. 298–303, October 2007.

[19] ——, “Component quality assurance: Towards a software component
certification process,” Information Reuse and Integration, 2007. IRI
2007. IEEE International Conference on, pp. 134–139, August 2007.

[20] J. Boegh, “Certifying software component attributes,” Software, IEEE,
vol. 23, no. 3, pp. 74–81, June 2006.

[21] J. Morris, G. Lee, K. Parker, G. Bundell, and C. P. Lam, “Software
component certification,” Computer, vol. 34, no. 9, pp. 30–36, September
2001.

[22] G. Hamilton, “Application complexity spurs growth in performance
validation market,” Yankee Group Research, Inc., Tech. Rep. 4AA1-
7656ENW, December 2007.

[23] L. P., “HP LoadRunner Software Data sheet,” Hewlett-Packard Devel-
opment Company, Tech. Rep. 4AA1-2118ENW, November 2008.

[24] “itko lisa website,” http://www.itko.com/lisa.
[25] J. English, “itko lisaTM test ensuring both end-user and system-

wide quality for enterprise applications,” Interactive TKO, Inc.
(iTKO), Tech. Rep., November 2008. [Online]. Available: http:
//www.itko.com/site/resources/iTKO_LISAtest_PS_Nov08.pdf

[26] ——, “itko lisaTM validate the “always on” build time, runtime,
and change time quality governance platform,” Interactive TKO,
Inc. (iTKO), Tech. Rep., November 2008. [Online]. Available:
http://www.itko.com/site/resources/iTKO_LISAvalidate_PS_Nov08.pdf

[27] ——, “itko lisaTM virtualize eliminate the costs and limitations
of constrained services for quality and agility,” Interactive TKO,
Inc. (iTKO), Tech. Rep., November 2008. [Online]. Available: http:
//www.itko.com/site/resources/iTKO_LISAvirtualize_PS_Nov08.pdf

[28] J. Michelsen, “Merging open source and testing strategies. junit
and lisa: The perfect match,” Interactive TKO, Inc. (iTKO), Tech.
Rep., December 2007. [Online]. Available: http://www.itko.com/site/
resources/open_source.jsp

[29] ——, “Service virtualization in enterprise application development,”
Interactive TKO, Inc. (iTKO), Tech. Rep., January 2009.
[Online]. Available: http://www.itko.com/site/resources/iTKO_WP_
VirtualServicesGuide_Jan062009.pdf

[30] Apache, “Jmeter website,” http://jakarta.apache.org/jmeter/.
[31] “Opensta website,” http://www.opensta.org/.
[32] “Pushtotest website,” http://www.pushtotest.com/.
[33] C. Pavlopoulou and M. Young, “Residual test coverage monitoring,”

Software Engineering, 1999. Proceedings of the 1999 International
Conference on, pp. 277–284, 1999.

[34] E. J. Weyuker, “Testing component-based software: A cautionary tale,”
Software, IEEE, vol. 15, no. 5, pp. 54–59, Sep/Oct 1998.

[35] D. Hamlet, “Software component composition: a subdomain-based test-
ing foundation,” Software Testing, Verification and Reliability, vol. 17,
no. 4, pp. 243–269, 2007.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

21

http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/reussner2007a.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007172
http://www.springerlink.com/content/62t1277642tt8676/fulltext.pdf
http://www.springerlink.com/content/62t1277642tt8676/fulltext.pdf
http://www.mrtc.mdh.se/index.php?choice=publications&id=1371
http://www.itko.com/site/resources/iTKO_LISAtest_PS_Nov08.pdf
http://www.itko.com/site/resources/iTKO_LISAtest_PS_Nov08.pdf
http://www.itko.com/site/resources/iTKO_LISAvalidate_PS_Nov08.pdf
http://www.itko.com/site/resources/iTKO_LISAvirtualize_PS_Nov08.pdf
http://www.itko.com/site/resources/iTKO_LISAvirtualize_PS_Nov08.pdf
http://www.itko.com/site/resources/open_source.jsp
http://www.itko.com/site/resources/open_source.jsp
http://www.itko.com/site/resources/iTKO_WP_VirtualServicesGuide_Jan062009.pdf
http://www.itko.com/site/resources/iTKO_WP_VirtualServicesGuide_Jan062009.pdf
http://www.opensta.org/
http://www.pushtotest.com/

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

22

Using UML for Domain-Specific Component Models

Ana Petričić, Luka Lednicki
Department of Control and Computer Engineering in Automation

Faculty of Electrical Engineering and Computing
Zagreb, Croatia

{ana.petricic, luka lednicki}@fer.hr

Ivica Crnković
Mälardalen Research and Technology Centre

Mälardalen University
Västerås, Sweden

{ivica.crnkovic}@mdh.se

Abstract – Over the recent years there is a tendency for using

domain-specific languages which enable expressing design

solutions in the idiom and level of abstraction appropriate for

a specific problem domain. While this approach enables an

efficient and accurate design, it suffers from problems of

standardization, portability and transformation between the

models. This paper addresses a challenge of tailoring UML, a

widely used modelling language, for domain-specific

modelling. We discuss a possible solution for achieving

interoperability between UML and the domain-specific

language SaveComp Component Model (SaveCCM) intended

for real-time embedded systems, by means of implementing a

transformation between UML and SaveCCM models. The

challenge of the transformation is to keep all necessary

information including the domain specific semantics. The

paper presents the strategy for the transformation, its

implementation and an analysis. We also address the second

challenge, a usability of the domain-specific language (i.e.

SaveCCM) in comparison with usability of extended UML and

by an experiment analyse its usability in comparison with

SaveCCM.

Keywords–Software component models, model transformation,

UML, UML profile, domain-specific languages, modelling

tools

I. INTRODUCTION

A number of Domain Specific Languages (DSL) exists
nowadays which provide more expressiveness at the design
time and efficiency in analysis and testing. One of such
DSLs is the SaveComp Component Model (SaveCCM)
[1][2], intended for building embedded control applications
in vehicular systems. SaveCCM is a research component
model in which design flexibility is limited to facilitate
analysis of real-time characteristics and dependability. As a
domain specific language, SaveCCM is productive for
designing safety-critical systems responsible for controlling
the vehicle dynamics.
A disadvantage of DSL is paradoxically, its specificity – it
may require additional efforts to be used, it can cause
obstacles in communication of design decisions between
different stakeholders, and it requires development of
custom design tools. Contrary to most DSLs, the Unified
Modeling Language (UML) [3] as a de facto standard in

industry has a wide spread base of trained users and a
number of modelling tools. Therefore, providing a way for
domain-specific modelling using UML could prove very
beneficial. By combining UML and SaveCCM, we could
take advantages of both languages in different aspects they
provide, and in different stages of system development
process. Using of UML for domain specific modelling can
reduce time and cost of building specific modelling tools,
and can bring the feature of portability and standardization
to a system model. However there can be a challenge to a)
to express a DSL by UML and b) implement a
transformation between them.
In this paper we set up two questions. The first one is the
feasibility of combining general-purpose and domain
specific languages in terms of full and unique
transformation of models in both directions. The second
question is the usability of our approach, compared to using
only standard, domain specific modelling in order to
perceive if there is any need for building specialized tools
instead of using general purpose ones with appropriate
extensions. These two questions we apply on SaveCCM and
UML. The specificity of the case is the domain, namely
real-time and embedded systems, which requires quite
different modelling, due to specific interaction styles and
specific concerns, such as real-time properties and resource
constraints. To obtain the answer to the first question we
provide a simple solution for achieving interoperability
between SaveCCM and UML through a formal way of
representing SaveCCM models using UML 2.0 component
diagram and defining a transformation between the two
model formats. Usability is discussed over the results of an
empirical evaluation that we carried out to test the
efficiency and user-friendliness in using extended UML
compared to using only a domain-specific language and
specialized tools.
The rest of the paper is organized as follows: After
describing our motivation in section 1, we bring a brief
description of SaveCCM in section 2. In sections 3 and 4
we present our UML profile and the design of
transformation between UML and SaveCCM. Section 5
discusses applicability of our approach and presents results
of an empirical evaluation that we have conducted. Finally,

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

23

section 6 presents related work and our concluding marks
are given in section 7.

II. THE SAVECCM OVERVIEW

SaveCCM is a component model intended for designing
safety-critical resource constrained systems responsible for
controlling the vehicle dynamics. SaveCCM technology
provides a support for designing systems and analysis of
their timing properties built in an integrated development
environment named SaveIDE.

The main architectural elements in SaveCCM are:
• Components, which are the basic units of encapsulated

behaviour with a functionality that is usually
implemented by a single function written in C
programming language. Besides the C function, each
component is defined by associated ports and
optionally quality attributes.

• Switches, which provide facilities to dynamically
change the component interconnection structure (at
configuration or run-time); thus allowing a conditional
transfer of data or triggering between components.

• Assemblies, which provide means to form aggregate
components from sets of interconnected components
and switches.

SaveCCM also provides a hierarchical component
composition mechanism in a form of a special type of a
component – composite component, where the functionality
of a component is specified by an internal composition
instead of using a C function.
An important characteristic of SaveCCM is the distinction
between data transfer and control flow, which is achieved
by distinguishing two kinds of ports; data ports, where data
of a given type can be written and read, and trigger ports
that control the activation of components. The separation of
data and control flow allows a model to support both
periodic and event-driven activities. In addition to ports, the
interface of a component can contain quality attributes,
having each attribute associated with a value or a model-
based specification and possibly a confidence measure.
These attributes can hold the information about the worst
case execution time, reliability estimates, safety models,
etc.
An example of a simple temperature regulation system
modelled using SaveCCM (in SaveIDE tool) is shown on
Figure 1. It consists of two SaveCCM components, one
assembly and one composite component. On the figure are
also visible various types of SaveCCM ports: input and
output trigger ports (triangle shape), input and output data
ports (square shape), and input and output combined ports
(combined triangle and square shape).

Figure 1. SaveCCM model of Temperature regulation system

More information on SaveCCM with a detail description of
model elements and their attributes, as well as an overview
of the SaveCCM execution model can be found in
SaveCCM reference manual [2] and [1][9].
Apart from unique modelling elements, such as switches or
assemblies that provide specific behaviour, as well as clock
and delay components, SaveCCM introduces several
valuable concepts that can not be found in UML.
• The distinction between data transfer and control flow.
• Concept of component interface. In SaveCCM the

functional interface of every modelling element is
defined by a set of ports associated to the element and
optionally, quality attributes.

• Model analysis and verification. SaveCCM uses quality
attributes for defining non-functional properties of
components and systems which allow analysis of
various properties and system verification.

Execution semantics of active model elements, defined to
provide run-time model analysability. The execution model
is rather restrictive, its basis is the pipes and filter control-
flow paradigm in which component execution is defined by
a sequence of activities: start by trigger, read, execute, and
write.

III. THE SAVEUML PROFILE – A UML

SPECIFICATION OF SAVECCM

A common way of specialising UML to align it with
important design issues in different domains is to define a
UML profile suitable for the domain. We will use the UML
profiling mechanisms to tailor UML for SaveCCM domain
in a controlled way. By defining a profile we generate an
extension to UML consisting of elements with different
semantics. However we also must limit the use of standard
UML elements to a subset that fits our target domain. Our
UML profile, named SaveUML profile, defines a one-to-
one mapping to elements defined by SaveCCM. We have
identified the UML 2.0 subset that addresses the concepts
used in component-based development as well as the ones
existing in SaveCCM. It includes the UML 2.0 Components
and Composite Structures packages. We call this subset a
UML 2.0 component model.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

24

The UML profile we developed, is to provide an equivalent
language to SaveCCM language. It aims at modelling
systems in UML but using SaveCCM semantics, and
supporting unambiguous transformation between the UML
and SaveCCM models.
Considering that UML profiles are a standard UML
extension mechanism and are therefore a part of UML, they
are as widely recognized as UML itself and should be
supported by all standard modelling CASE (Computer-
Aided Software Engineering) tools. This possibility of
customizing UML for specific domain purposes while
remaining within boundaries of the UML standard and
keeping the possibility of using UML CASE tools, presents
a reasonable motivation for customizing and using UML
instead of a specific modelling language.
The process of defining the SaveUML profile consisted of
three phases:
1. Identification of SaveCCM and UML component model

elements. We have made a detail analysis of UML 2.0
component model (a subset of UML concerning UML
components), which allowed us to survey the
similarities between UML and SaveCCM and identify
compatible elements. In addition we defined mapping
rules for all SaveCCM elements that need to be

translated to UML elements and corresponding UML
elements that can be used for mapping.

2. Identification of SaveCCM language constraints.
Designing SaveCCM elements with UML 2.0 elements
brought up various problems resulting from a strict
syntax of SaveCCM and the universality of UML.
Therefore, we had to create a set of constraints to
refine the UML 2.0 component model semantics to be
suitable for designing SaveCCM models.

3. Translation of previously identified elements, during
which a suitable UML element is found for every
SaveCCM language elements. Chosen UML elements
were then further customized through the use of
necessary stereotypes, properties and constraints.

The diagram of the SaveUML profile is depicted in Figure
2. The SaveUML profile specifies a set of stereotypes
which extend elements of the UML 2.0, namely UML
Component, Port, Property, Artifact, Usage
and Dependency. Each element from SaveCCM domain
has its corresponding element in the SaveUML profile. For
introducing the properties of SaveCCM elements (e.g. jitter
and period attributes of SaveCCM clock component etc.)
we used the tagged value mechanism. The SaveCCM
semantics is imposed upon the UML model using Object

Figure 2. Diagram of the SaveUML profile

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

25

Constraint Language (OCL).
During the process of creating the SaveUML profile, we
have made several design decisions considering
representing of SaveCCM architectural elements within the
profile, the method of defining substructure of components
and different concepts of interfaces in SaveCCM and UML.
These design decisions are presented below.
Components

Since SaveCCM introduces three main architectural
elements (component, assembly and switch) and three
subtypes of SaveCCM component (clock, delay and
composite component) we had to define six new UML
elements by using stereotypes that will extend the UML
Component element. Similar concept was applied for
defining different port types that exist in SaveCCM
language.

Subcomponents
SaveCCM offers two elements that may have an internal
structure: assembly and composite component. In UML 2.0,
we can specify internal sub-element of a component either
as its property (by using the Property metaclass) or as a
packaged element (using the PackageableElement
metaclass). We chose the latter approach – using
PackageableElement. Unlike the first method, usage
of PackageableElement enables defining a hierarchical
composition of components and its nested subcomponents
to an arbitrary depth. Definition of an owning component
also includes the definition of its subcomponents, leaving
no need for referencing outside elements. Such a definition
of subcomponents is also referred as an embedded

definition of components.

Interfaces

In SaveCCM the functional interface of every modelling
element is defined by a set of ports associated with the
element. Because of semantic differences of interface in
SaveCCM and UML, we decided not to use UML interfaces
in SaveUML profile. It is supposed that when modelling a
user model in UML using the SaveUML profile, the
interface of a component will be determined implicitly by
its ports, as it is done in SaveCCM.

A Using OCL for user model validation

In order enforce the SaveCCM semantics to the SaveUML
profile we defined a number of constraints within the
profile using the Object Constraint Language (OCL) [3].
We used OCL constraints to enforce the SaveCCM
semantics and restrict the usage of UML concepts that do
not have equivalent elements within SaveCCM.
We divided the implemented constraints into two main
groups – Restrictions on UML and SaveCCM semantics.
Each group has several sub-groups which are described in
Table 1. In total we implemented 117 constraints.

We found that identifying and specifying OCL constraints
is the major part in development of a UML profile and can
be a challenging task for non-experienced UML user, as
UML is a complex language with many elements and
various diagram types.
An important part in using OCL is the tool support. We
have chosen to use the Rational Software Modeler (RSM)
[9] tool for implementing SaveUML technology. RSM is
built on the extensible Eclipse framework and it fully
supports the definition of UML profiles, which are
consequently stored in XML files.

TABLE 1. CONSTRAINTS IMPLEMENTED IN SAVEUML PROFILE

Constraint group Count

Restrictions on UML 56

Forbidden connections 17

Restrictions on UML 2.0 considering using various types of
connectors. Also, connectors should not connect elements directly
etc.
Using interfaces 12

Using UML interfaces is not allowed within the SaveUML profile,
these constraints are dealing with this issue.

Substructure definition 6

Internal structure of an element may only be defined using packaged
elements. Further, the only allowed packaged element is a
Component.
Number of stereotypes 21

Even though UML has the option to apply multiple stereotypes to one
element, in SaveUML profile, one element can have only one
stereotype applied.

SaveCCM semantics 61

Owning attributes 6

These constraints are defining attributes that main SaveCCM
elements may own.
Owning ports 13

Since SaveCCM offers several kinds of ports, each port must have
appropriate stereotype applied in order to determine its type. Further,
some SaveCCM elements have restrictions on number of ports that
they own.
Bind port 3

These constraints introduce semantic rules considering special type
of port – bind port.
External ports 6

These constraints introduce semantic rules considering special type
of port – external port.
Switch semantics 5

Switch component is specific SaveCCM element. These constraints
introduce its semantics. They deal with concept of set port, switch

condition and switch connection.
Connections between SaveCCM elements 23

Since SaveCCM offers two kinds of connections, each connector
must have an appropriate stereotype applied. Also, depending on the
connection type, cyclic connections are forbidden or allowed. Finally,
these constraints ensure conformance of the connected ports (their
types and directions).

IV. SAVEUML TRANSFORMATIONS

The transformation approach is based on using the
eXtensible Stylesheet Language for Transformations
(XSLT) [11]. Recommended by the World Wide Web

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

26

Consortium (W3C), XSLT is a flexible language for
transforming XML documents into various formats
including HTML, XML, text, PDF etc. The input to XSLT
transformations are XML Metadata Interchange (XMI)
representations of models, which are based on XML syntax.
XMI eases the problem of tool interoperability by providing
a flexible and easily parsed information interchange format.
In principle, a tool needs only to be able to save and load
the data in XMI format.
The conceptual design of SaveUML transformations is
depicted graphically in Figure 3.

UML Design tool

SaveUML

profile

SaveIDE tool

SaveCCM

Design tool

Analysis

tools

Design phase Analysis phase

SaveUML

XML file

SaveCCM

XML file

SaveUML

Transformation tool

Transformation library

SaveUML

SaveCCM

SaveCCM

SaveUML

Figure 3. Conceptual design of the SaveUML transformations

The UML CASE tool is used for creating a UML model.
Application of the SaveUML profile is necessary in order to
create a UML model which can be transferred into a
SaveCCM model. After designing the model, it is exported
into an XMI file which is then used as the input to the
transformation. The SaveCCM design tool is Save-IDE. For
representing model information, SaveIDE uses several files
which are compatible with XML and are used by the
transformation tool to perform the SaveCCM to UML
transformation. The tool uses the transformation library to
perform translations. It contains XSLT style sheets for
transforming from SaveUML into SaveCCM and vice
versa. Input files based on XML are parsed through the
XSL transformation style sheets and then XML-based
output files, compatible with the desired tool, are generated.

A Characteristics of SaveUML transformations

Inspired by Visser’s classification for program
transformation [12] we classified SaveUML
transformations as language translation, more precisely
migration, as we transform between models specified in
different languages at the same level of abstraction.
After the transformation, the source model and the target
model do not stay untouched but coexist and may evolve
independently due to the development process. Therefore,
we implemented transformations in both directions, from
UML to SaveCCM model and reverse, having in mind this
request. Reverse transformation, i.e. transforming the model

from one language to another and back to the starting
language, should produce a model equivalent to the initial
one. SaveUML profile already provides a one-to-one
mapping from UML to SaveCCM. In addition, models are
transformed at the same level of abstraction which makes
these transformations injective. The transformation process
itself comes to transforming from one XML representation
of a model to another XML file. Therefore, the request for a
unique transformation is fulfilled.
We implemented a prototype of the SaveUML
transformation tool as a Java application. Transformation
tool we developed can be used either as an Eclipse (i.e.
RSM) plug-in or as a standalone application to perform
transformation in both directions, UML to SaveCCM and
SaveCCM to UML models.

V. AN EMPIRICAL COMPARISON OF SAVECCM AND

SAVEUML TECHNOLOGIES

In previous sections we have described an approach for
connecting two different modelling languages. A question
arises on its usability in practical cases. Therefore we
performed an experiment to verify the approach by
comparing the modelling capabilities of both SaveIDE tool
and RSM tool combined with SaveUML profile.
In this section we provide an overview of the experiment
and its results, more detail can be found in [13].

A Discussion and experiment objectives

Even though there are advantages of combining UML and
SaveCCM in different development stages, how many
benefits comes from these advantages and can they
overwhelm the existing disadvantages and problems? In
cases when usability of an UML profile is satisfying, and
the expressiveness of UML extensibility mechanisms is
sufficient for particular domain, then the need for building
specialized tools is questionable. In these cases, designing
an UML profile and using some of existing UML tools
could replace a custom built tool.
There are several significant advantages that support this
approach:
• Using of already existing UML tools, which reduces

time and cost spent on developing a domain-specific
modelling environment.

• Any knowledge of and experience with standard UML
is directly applicable.

• The UML profile is compatible with standard UML,
thus any tool that supports UML can be used for
manipulating models based on a UML profile. This
brings the portability to models designed using
SaveUML profile among many CASE tools.

However, the approach has some drawbacks:
• A UML profile as an upgrade to basic UML can lead to

an overly complicated model within an already complex

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

27

UML specification and a modeller might get confused
with extraneous UML semantics or modelling elements.

• Using standard UML notation, in which an existing
shape corresponding a DSL (such as SaveCCM)
element is used, could compromise the readability and
clarity of the diagrams.

• A DSL is usually not used independently, but in
combination with other tools, models and DSLs. In such
a case the problem is not solved by expressing one DSL
by UML extensions, but about a set of DSLs that should
be mapped.

Our aim was to empirically evaluate our approach, with
respect to development efficiency and ease of use. We
wanted to compare the two modelling tools (SaveIDE and
RSM along with SaveUML profile), to get feedback from
the users and to ascertain advantages or disadvantages in
using these tools.
With this experiment we tried to answer the following
questions:
• Is using of SaveUML profile efficient with regard to

time and efforts, in comparison to using SaveIDE?
• Do extraneous UML elements and semantics confuse

developers and lead to an invalid or incomplete
SaveCCM model?

• Which of technologies is more user-friendly and provide
better user experience?

The given questions have more explorative character, so the
results are shown mostly as descriptive statistics.

B Conduction of the experiment

In this experiment 18 software engineering master students
were given the task to design a model of a real-time system
using either RSM (with SaveUML profile) or SaveIDE tool.
As one of criteria for measuring development efficiency, we
were monitoring efforts spent and quality of designed
model in terms of its validity and detailness. After the

modelling was finished we analysed models delivered by
students, and students were given a questionnaire regarding
their experience of working with the given modelling tool.
Almost all of the students had some experience with UML.
We conducted the study in a form of minutely described
assignments for students with strictly defined deliverable
deadlines. Our experiment was not conducted under
controlled conditions in laboratory, but it is executed in the
field under normal conditions i.e. in a real development
situation. Except for the varying factor we wanted to study,
which was a modelling technology, we controlled the
qualification of the testers and an input for testing i.e. an
example of a real-time system.
The actual study consisted of three phases. First we trained
students in concerned technologies, then we conducted the
experiment, and finally we let students to fill in a
questionnaire and we analysed the results.

Training phase

The training phase lasted for three weeks. First two weeks
were reserved for studying SaveCCM and UML (precisely
UML component diagram). After two weeks students were
given an exam which tested their knowledge. Based on the
results of this exam we separated students into two groups,
one that will use SaveIDE tool, and one that will use RSM
tool with SaveUML profile. The disposition was made in a
way to have two homogeneous groups with a comparable
qualification range. Third week of training phase was
intended for getting familiar with the tools by for modelling
a simple system example.

Modelling phase

For the experiment we prepared a specification of
Autonomous Truck Navigation (ATN) system demonstrated
in [5]. This autonomous system is intended to navigate the
truck to find and follow a straight black line drawn on the
surface area. A model of the system, designed in RSM tool
using SaveUML profile is shown in Figure 4.

Figure 4. A simplified model of Autonomous truck navigation system

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

28

Questionnaire

After the modelling was finished, participants completed a
questionnaire regarding their user experience in the given
tool. This questionnaire covered a number of subjects such
as initial effort participants had to make to learn the
technology, complexity of using the tool and clearness of
graphical representation of modelling elements. Also there
were questions about problems and bugs that encountered
during their work, and several questions about different
aspects of using SaveUML profile.

C Results

By analysing the results of the experiment, our goal is
answer the three questions raised above.

Which of technologies is more user-friendly and provide

better user experience?

The initial effort participants had to make to get to know
with the tool was slightly different for the two tools. As it
can be seen in Figure 5, group using SaveUML had more
problems when starting to use the tool. One of the possible
reasons was that RSM is a more complex tool and offers a
lot of possibilities which confused them. However, the
SaveUML group also reported more improvement after
having some training with the tool (Figure 6).

How much learning effort you had to make to start using the tool?

0 0

4

3

11

0

1

4

2

Minor effort Not a lot of

effort

Neither too

much or too

less effort

Reasonable

effort

A lot of effort

SaveIDE SaveUML

Figure 5. Initial effort for using the tool

Considering the complexity of using the tool, users of
SaveUML found project management, defining properties
of model elements and adding new elements to the model a
bit more intuitive than the SaveIDE users. This is not very
surprising for the first two as the RSM tool is more
advanced and these actions are common to all UML
modelling tools. But one would expect that a custom tool
would have better usability when it comes to adding new
(custom) elements than the usage of UML profile. From this
we can conclude that probably some flaws (unintuitive
steps) in the whole process of adding elements can have
more negative impacts than the steps needed for applying a
UML stereotype.

Workspace organisation and overall complexity of using
the tool were graded very similar by both groups.
SaveUML users also reported better assistance (automated
procedures, offering default values etc.) from the tool,
which is not surprising considering that RSM is a
professional tool.
As SaveIDE uses all custom graphics and SaveUML only
the default UML graphics, it was expected that the SaveIDE
group would report much better readability of models than
the SaveUML group. Although the SaveIDE group reported
a better readability, the difference between the SaveIDE
and SaveUML groups is not as large as expected, as it can
be seen on Figure 7. The comments given by participants
indicate that some flaws in the graphical representation in
the custom tool have a big impact on experience of
graphical environment.
Advantages of the professional RSM tool are clearly visible
to the users. The RSM tool has been graded as much more
stable, and work with it much more tolerable. The overall
grade of using experience was better for SaveUML users, as
it is presented in Table 2. We can explain this by two
reasons: SaveIDE tool is a research tool, of a prototype
level, while RSM is much mature professional tool. The
second reason is the students’ familiarity with the UML
notation.

Was using the tool easier after you made your first model?

0

2

6

2

0

1

3

5

It was harder Neither easier

or harder

It was easier It was much

easier

SaveIDE SaveUML

Figure 6. Effort made after adaption period

Do extraneous UML elements and semantics confuse

developers and lead to an invalid or incomplete SaveCCM

model?

The group using SaveUML found it harder to get
accustomed with using the RSM tool to model SaveCCM.
From their comments we concluded that all the features that
the RSM tool provides initially confused them. In addition,
UML profile extends UML, but does not repress the usage
of non-extended part of UML. The availability of various
UML elements which do not belong to SaveCCM domain
was the cause of most mistakes that students from

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

29

SaveUML group made in their models.
The graphical representation of modelling elements is:

1

0

5

3

0

2

3

4

Confusing Unreadable Sufficient but

should be

improved

Adequate and

understandable

SaveIDE SaveUML

Figure 7. Perspicuity of graphical representation

The common mistakes were:
• Using of wrong relationships for connecting model

elements.
• Not setting the properties (e.g. data type of ports)

through the tagged value mechanism (setting of
properties using tagged values is not as intuitive as
setting of standard properties).

However, after the training phase almost all of the
participants got acquainted with the tool, and these mistakes
were rare.

Is using of SaveUML profile efficient with regard to time

consumption, in comparison to using SaveIDE?

The usage of SaveUML profile had a negative impact on
time consumption (Table 2). This inefficiency arises from
the fact that it takes many steps to accomplish a simple
operation. For example to add a SaveCCM component to
the model, first a UML component has to be added to the
model, then an appropriate stereotype from the UML
profile has to be applied and finally component attributes
can be set.
As a conclusion, while giving the overall experience of
using the tool, even though they reported more working
hours, RSM group also rated the experience as better than
the SaveIDE group.

TABLE 2. OVERALL EXPERIENCE OF USING SAVEUML AND SAVEIDE

Working hours
Technology

Avg. Min. Max.
Overall grade

SaveIDE 6.28 3 15 3.78
SaveUML 8.22 4 13 4.11

Overall results

By this experiment we have indicated usefulness of the
approach of adoption of a general purpose tool instead of a
DSL (or in this concrete example of creating UML profile
SaveUML as an alternative to SaveIDE). This experiment
was focused on feasibility and usability of the design phase
of component-based systems. We have not tested usability

in using the specifications documents and means for
exchanging information between users. Neither have we
evaluated a larger scope of the lifecycle that includes
analysis and verification part which requires repetitive
transformation between the tools. The approach cannot be
generalised in the sense that such approach is always better
or feasible, but the experience indicates this possibility with
pointing out the possible challenges.

VI. RELATED WORK

Many researchers have tried to accomplish linking of UML
with some DSLs. For instance, Polak and Mencl developed
a mapping from UML 2.0 to SOFA and Fractal research
component models [14]. The approach also uses UML
profiles for designing UML models and a tool prototype
generates SOFA and Fractal source code from UML model.
Contrary to SaveUML profile, the UML profile they
created is used only to define new UML metaclasses using
stereotypes and tagged values, while constraints (defined by
OCL) do not exist.
The work by Malavolta et at. [15], is not limited to
particular modelling languages. The automated framework
called DUALLy creates interoperability among various
ADLs, as well as UML. DUALLy is partitioned to two
abstraction levels, separating meta-model definition process
and system development. The transformations between
languages are not done directly but there is a central A0

model using as a intermediate step of every transformation.
A0 is a UML profile and it represents a semantic core set of
architectural elements (e.g. components, connectors,
behaviour). It provides the infrastructure upon which to
construct semantic relations among different ADL and acts
as a bridge among architectural languages. The
disadvantage of this approach is that defined mappings are
not injective, thus the unique reverse transformation is not
ensured.

VII. CONCLUSION

In this paper we presented a simple approach for achieving
modelling language interoperability between UML and a
domain specific language SaveCCM. The main idea is
creating a UML profile to allow developing UML models
with domain-specific semantics. Further, a transformation
tool for such model to SaveCCM is implemented, which
makes it possible to use analysis of timing and other
properties. The transformation is achieved using XML
representations of models as an input for XSLT style sheets.
The proposed approach fosters combining of GPL and DSL
at different design stages. Some of the benefits are making a
good use of advantages of both languages which improves
design productivity, portability of the model as well as
already mentioned standardization. We have validated the
feasibility of the approach and usability of the UML
profile-based tool in comparison to SaveCCM tool, and
found that in spite of quite different characteristics of

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

30

models, adopting a general purpose tool in this case was
feasible since in the experiment similar results were
achieved by both tools.

ACKNOWLEDGEMENT

This work was partially supported by the Swedish
Foundation for Strategic Research via the strategic research
centre PROGRESS, and the Unity Through Knowledge
Fund supported by Croatian Government and the World
Bank via the DICES project, and EU FP7 Q-Impress
project.

REFERENCES

[1] Akerholm, M., Carlson, J., Fredriksson, J., Hansson, H.,
Håkansson, J., Möller, A., Pettersson, P., and Tivoli, M. 2007. The
SAVE approach to component-based development of vehicular
systems. J. Syst. Softw. 80, 5 (May. 2007), 655-667. DOI=
http://dx.doi.org/10.1016/j.jss.2006.08.016

[2] Åkerholm, M., Carlson, J., Håkansson, J., Hansson, H., Nolin, M.,
Nolte, T., and Pettersson, P. 2007. The SaveCCM Language
Reference Manual. MRTC report ISSN 1404-3041 ISRN MDH-
MRTC-207/2007-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, January, 2007.

[3] OMG 2007. Unified Modelling Language Superstructure
Specification. Version 2.1.1, February, 2007.,
http://www.omg.org/uml/

[4] Sentilles, S., Hakansson, J., Pettersson, P., and Crnkovic, I. 2008.
Save-IDE – An Integrated development environment for building
predictable component-based embedded systems. Proceedings of
the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), L'Aquila, Italy, September,
2008.

[5] Sentilles, S., Pettersson, A., Nyström, D., Nolte, T., Pettersson, P.,
and Crnkovic, I., 2009. Save-IDE - A Tool for Design, Analysis
and Implementation of Component-Based Embedded Systems,
Proceedings of the Research Demo Track of the 31st International
Conference on Software Engineering (ICSE), Vancouver, May,
2009

[6] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1:134–152,
1997

[7] Magee, J., Kramer, J., 1999. Concurrency: State Models & Java
Programs, John Wiley & Sons, Inc., New York, NY, USA.

[8] Hansson, H., Akerholm, M., Crnkovic, I., and Torngren, M. 2004.
SaveCCM - A Component Model for Safety-Critical Real-Time
Systems. In Proceedings of the 30th EUROMICRO Conference
(August 31 - September 03, 2004). EUROMICRO. IEEE
Computer Society, Washington, DC, 627-635. DOI=
http://dx.doi.org/10.1109/EUROMICRO.2004.72

[9] IBM Rational Software Modeller web page:
http://www.ibm.com/software/awdtools/modeler/swmodeler/, April
2008

[10] Selic, B. 2007. A Systematic Approach to Domain-Specific
Language Design Using UML. In Proceedings of the 10th IEEE
international Symposium on Object and Component-Oriented
Real-Time Distributed Computing (May 07 - 09, 2007). ISORC.
IEEE Computer Society, Washington, DC, 2-9. DOI=
http://dx.doi.org/10.1109/ISORC.2007.10

[11] W3C 1999. XSL Transformations (XSLT). Version 1.0, W3C
Recommendation, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

[12] Visser, E. 2001. A Survey of Strategies in Program Transformation
Systems. Electronic Notes in Theoretical Computer Science, eds.
Gramlich and Lucas, vol. 57, Elsevier, 2001.

[13] Petričić, A., Lednicki, L., Crnkovic, I., 2009. An empirical
comparison of SaveCCM and SaveUML technologies,
http://www.mrtc.mdh.se/publications/1621.pdf, MRTC,
Mälardalen University. March, 2009.

[14] Polak, M. 2005. UML 2.0 Components, Master Thesis, advisor:
Vladimir Mencl, Charles Univ., Prague, September, 2005.

[15] Malavolta, I., Muccini, H. and Pelliccione, P. 2008. DUALLY: a
framework for Architectural Languages and Tools Interoperability.
23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE2008). September 15-19 2008 L'Aquila, Italy.
IEEE Press.

[16] Mencl, V., and Polak, M. 2006. UML 2.0 Components and Fractal:
An Analysis. 5th Fractal Workshop (part of ECOOP’06), July 3rd,
2006, Nantes, France, Jul. 2006.

Proceedings of the Fourteenth International Workshop on Component-Oriented Programming (WCOP) 2009

31

	Groenda.pdf
	Introduction
	Validating Performance Specifications
	Hardware Environment
	Software Environment
	Input Range
	Resource Demand Precision

	Certification of Performance Specifications
	Generate Testcases
	Instrument Implementation
	Deploy Implementation
	Run Testcases

	Component Performance Specifications
	Example
	Related Work
	Certification
	Performance Testing
	HP LoadRunner software
	LISA
	JMeter
	OpenSTA
	PushToTest

	Performance Specification Validation

	Conclusion
	References

