
Universität Karlsruhe - Fakultät für Informatik - Bibliothek - Postfach 6980 - 76128 Karlsruhe

Parallel Computation of Best Connections in
Public Transportation Networks

Autoren: Daniel Delling, Bastian Katz,
Thomas Pajor

Interner Bericht 2009-16

ISSN 1432-7864

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197556356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Computation of Best Connections in

Public Transportation Networks?

Daniel Delling, Bastian Katz, and Thomas Pajor

Department of Computer Science, Universität Karlsruhe (TH), P.O. Box 6980, 76128 Karlsruhe, Germany.
{delling,katz,pajor}@informatik.uni-karlsruhe.de

Abstract. We present a novel algorithm for the so-called one-to-all profile search problem in public
transportation networks. It answers the question for all fastest connections between a given station
S and any other station at any time of the day in a single query. Our approach exploits the facts that
first, time-dependent travel-time functions in such networks can be represented as a special class
of piecewise linear functions, and that second, only few connections from S are useful to travel far
away. Introducing the connection-setting property, we are able to extend Dijkstra’s algorithm in
a sound manner. Moreover, we are able to parallelize our algorithm in a very natural way, yielding
excellent speed-ups on standard multicore servers. By preprocessing important connections within
the public transportation network, we also accelerate station-to-station queries. As a result, we
are able to compute all relevant connections between two random stations in a complete public
transportation network of a big city (Los Angeles) in less than 120 ms on average. This value is
achieved on a standard multi-core server.

1 Introduction

The developement of fast route planning algorithms has been undergoing a rapid devel-
opement in recent years (cf. [8] for an overview). The fastest techniques for static road
networks yield query times of a few microseconds [2]. Recently, the focus has shifted to
time-dependent networks in which the travel time assigned to an edge is a function of
the time of the day.

Most of recent research focused on time-dependent road networks. While one might
expect that speed-up techniques perform similarly on public transportation networks as
on road networks, it turned out that this does not hold. For example, time-dependent
SHARC [6] yields speed-ups of up to 5 000 over Dijkstra’s algorithm [9] in time-
dependent road networks, while the speed-up for railways only reaches up to 20. The
number is even lower for bus networks.

A query for a fast route usually does not always contain a fixed departure time. Hence,
in time-dependent networks, a comprehensive answer for the travel-time between given
stations is a function of the departure time. This type of query is called profile search. In
this work, we present an easy-to-parallelize query algorithm that performs very well on
public transportation networks, both of railways and buses. As Dijkstra’s algorithm,
it is designed to answer queries for travel times from one station to all others in a single
run, but can be accelerated in the case of a station-to-station query.

Related Work. Modeling issues and an overview of basic route planning algorithms
in public transportation networks can be found in [23]. Basic speed-up techniques like
goal-directed search have been applied to time-dependent railway networks in [10], while
SHARC has been tested on such networks as well [6]. However, most of the algorithms

? Partially supported by the DFG (project WA 654/16-1).

fall short as soon as they are applied to bus networks [3, 7]. Most efforts in developing
parallel search algorithms address theoretical machines such as the PRAM [22, 11] or the
communication network model [4, 24]. Even in these models, no algorithm is known that is
able to exploit parallelism beyond parallel edge relaxations and parallel priority queuing
without doing substantially more work than a sequential Dijkstra implementation in
general networks. There also have been a few experimental studies of distributed single-
source shortest path algorithms for example based on graph partitioning [1, 26] or on the
so-called∆-stepping algorithm proposed in [19], e. g. [18]. For an overview on many related
approaches, we refer the reader to [15]. All these approaches have in common that they
do provide good speed-ups only for certain graph classes. Search algorithms for retrieving
all quickest connections in a given time interval have been discussed in [5]. However, none
of those algorithms have been parallelized and used for retrieving all quickest connections
of a day in realistic public transportation networks.

Our Contribution. We present a novel and easy-to-parallelize algorithm for the so-
called one-to-all profile search problem asking for the set of all relevant connections be-
tween a given station S and all other stations, i. e., all connections that at any time
constitute the fastest way to get from S to some other station. The key idea is that the
number of possible connections is bounded by the number of outgoing connections from
the source station S, and all time-dependent travel-time distances in such networks are
piecewise linear functions that have a representation that is at most linear in this number
of connections. Moreover, only few connections prove useful when traveling sufficiently
far away. The algorithm we present in this work greatly exploits this fact by pruning such
connections as early as possible. To this extend, we introduce the notion of connection-
setting, that can be seen as an extension of the label-setting property of Dijkstra’s
algorithm, which usually is lost in profile searches, e. g., in road networks. Another main
contribution of this work is that we are able to parallelize our approach such that we
obtain faster query times on modern multi-core CPUs. The main idea for parallelization
in transportation networks is that we may distribute different connections outgoing from
S to the different cores. Obviously, a one-to-all profile search also answers a station-to-
station query for a travel time profile. To accelerate these kind of queries, we propose to
utilize the very same algorithm for valuable preprocessing. The key idea is that we select
a small number of important stations (called transfer stations) and precompute a full dis-
tance table between all these stations, which then can be uses to prune the search during
the query. We show the feasibility of our approach by running extensive experiments on
real-world transportation networks. It turns out that our algorithm scales pretty well up
to 4 cores. As an example, we are able to perform a one-to-all profile search in less than a
second and station-to-station queries in less than 120 ms in all transportation networks.

This work is organized as follows: In Section 2 we briefly explain necessary definitions
and preliminaries. Section 3 then introduces our one-to-all algorithm. Therefore, we first
introduce the concept of connection-setting and show how some connections dominate
others. Moreover, we present how our algorithm can be parallelized to run on multi-core
systems. In Section 4 we present how our algorithm can be utilized to accelerate station-
to-station queries. A detailed review of our experiments can be found in Section 5. We
conclude our work with a brief summary and possible future work in Section 6.

2

2 Preliminaries

A directed graph is a tuple G = (V,E) consisting of a finite set V of nodes and a set
of ordered pairs of vertices, or edges E ⊆ V × V . The node u is called the tail of an

edge (u, v), v the head. The reverse graph
←−
G = (V,

←−
E) is obtained from G by flipping all

edges, i. e., (u, v) ∈ ←−E ⇔ (v, u) ∈ E.

Timetables. A periodic timetable is a tuple (C,S,Z, Π, T) where S is a set of stations,
Z a set of trains, C a set of elementary connections and Π := {0, . . . , π−1} a finite set of
discrete time points (think of it as a day’s minutes or seconds). We call π the periodicity
of the timetable. Note that durations and arrival times can take values greater than π
(think of a train arriving after midnight). Moreover, T : S → N0 assigns each station
a minimum transfer time required to change between trains. An elementary connection
from c ∈ C is defined as a tuple c := (Z, Sdep, Sarr, τdep, τarr) and is interpreted as train
Z ∈ Z going from station Sdep ∈ S to station Sarr ∈ S, departing at Sdep at time τdep ∈ Π
and arriving at τarr ∈ N0. For simplicity, given an elementary connection c, X(c) selects
the X-entry of c, e. g. τdep(c) refers to the departure time of c. Due to the periodic nature
of the timetable, the length ∆(τ1, τ2) between two time points τ1 and τ2 is computed by
τ2 − τ1 if τ2 ≥ τ1 and π + τ2 − τ1 otherwise. Note, that ∆ is not symmetric.

S1 S2

Z3

Z1, Z2

Fig. 1: Illustration of the realistic
time-dependent model [23], show-
ing two stations where two routes
run through. Station nodes are
blue, route nodes are purple.

Models. For route planning, the timetable is modeled as a
directed graph. Several approaches have been proposed [23,
7]. In our work we use the realistic time-dependent model as
introduced in [23]. Given a timetable, the graph G = (V,E)
of the realistic time-dependent model is constructed as fol-
lows. First, the set Z of trains is partitioned into routes,
where two trains Z1, Z2 ∈ Z are considered equivalent, if
they run through the same sequence of stations. Regarding
the nodes, for each station S ∈ S, a station node is created.
Moreover, for each route that runs through S, a route node is
created. Route nodes are connected by edges to their respec-
tive station nodes with time-independent weights depicting
the transfer time T (S). Furthermore, for each route and for
each two subsequent stations S1 and S2 on that route, a time-dependent route-edge (u, v)
is inserted between the route nodes u and v of the respective route at the stations S1

and S2. By these means, the time-dependent route-edges e get exactly those elementary
connections c ∈ C assigned, where Z(c) relates to a train of the respective route (between
the two given stations). See Figure 1 for an illustration.

Piecewise Linear Functions. In general, there are two types of distances in a public
transportation network: first, the distance between two stations S and T for a given
departure time τ , denoted by dist(S, T, τ). The other type, which we are interested in is
the distance between two stations S and T for all departure times τ ∈ Π, denoted by
dist(S, T, ·). This type of query is called profile search.

3

τ

f(τ)

πtrain 3train 2train 1

Fig. 2: A piecewise linear function f with
3 connection points, representing 3 relevant
trains to start with.

In profile searches, distances or travel-times be-
tween any two nodes are functions f : Π → N0, such
that f(τ) denotes the travel-time when starting at
time τ . This also includes the time-dependent edges
in the graph G. For the remainder of this paper, it
is a crucial observation that in public transportation
networks these functions can be represented as piece-
wise linear functions of a special form: The travel-
time at time τ is composed of a waiting time for a
good connection c starting at some τdep(c) plus the
duration of the itinerary starting with c. Moreover,
if the best choice at time τ is to wait for a connec-
tion c, the same holds for any τ ≤ τ ′ ≤ τdep in between. See Fig. 2 for an example.
Hence, it is possible to represent f by a set of connection-points P(f) ⊂ Π × N0 such
that f(τ) is f(τ) = ∆(τ, τf) + wf for the (τf , wf) ∈ P(f) which minimizes ∆(τ, τf).
From the timetable, we can easily construct the travel-time functions fe for the time-
dependent edges between route nodes: For each elementary connection c assigned to
some route edge e, we insert a connection point (τ, w) into P(fe) where τ := τdep(c), and
w := ∆(τdep(c), τarr(c)). Respecting periodicy in a senseful way, these travel-time func-
tions have the FIFO-property if for any τ1, τ2 ∈ Π, it holds that f(τ1) ≤ ∆(τ1, τ2)+f(τ2).
In other words: waiting never gets you (strictly) earlier to your destination. Note that all
our networks fulfill the FIFO-property.

Computing Distances. Computing dist(S, ·, τ) can be done by a time-dependent ver-
sion of Dijkstra’s algorithm which we call time-query. It visits all nodes in the graph in
non-decreasing order from the source S. Therefore, it maintains a priority queue Q, where
the key of an element v is the tentative distance dist(S, v). By using a priority queue,
the algorithm makes sure that if an element v is removed from Q, dist(S, v) cannot be
improved anymore. This property is called label-setting.

Determining the complete distance function dist(S, ·, ·), called a profile-query, from a
given station S to any other station for all departure times τ ∈ Π can be computed by
a profile-search algorithm being very similarly to Dijkstra. The main difference is that
functions instead of scalars are propagated through the network. By this, the algorithm
may lose its label-setting property since nodes may be reinserted into the queue that have
already been removed. Hence, we call such an algorithm a label-correcting approach. An
interesting result from [5] is that the running time highly depends on the number of
connection points assigned to the edges.

3 A Parallel Profile Search Algorithm

In this section we introduce a new profile search algorithm tailored to public transporta-
tion networks. The main property of our new approach is the concept of connection-
setting : for each outgoing connection from S we guarantee that a node in the graph is
settled at most once. Moreover, we exploit the fact that some connections are less impor-
tant than others leading to the concept of self-pruning. Finally, we show how we are able
to parallelize our algorithm to p processors (cores).

4

3.1 Self-Pruning Connection-Setting Algorithm

Let G = (V,E) be a graph modeling a timetable (C,S,Z, Π, T), and S ∈ S a sta-
tion. Furthermore, let conn(S) ⊆ C denote all outgoing connections from S defined by
conn(S) := {c ∈ C | Sdep(c) = S}. We make use of the following intuition: an itinerary
from S always has to begin with one of the connections contained in the set conn(S).
This implies that regarding the distance function dist(S, T, ·) where T ∈ S is an arbitrary
station, the set of connection points P(dist(S, T, ·)) of the distance function dist(S, T, ·)
is a subset of the set of connection points induced by conn(S) and the distance to T for
each outgoing connection. More precisely,

P(dist(S, T, ·)) ⊆ {(τ, w) | ∃c ∈ conn(S) : τ = τdep(c), w = dist(S, T, τdep(c))} =: P̂ . (1)

Our algorithm works as follows. First, in an initialization phase, the set conn(S) is de-
termined and a priority Q is initialized with queue items for each outgoing connection of
conn(S). Then, a best route is computed for all connections simultaneously in a similar
way to Dijkstra’s algorithm, which leads us to the concept of connection-setting. As a
result, we obtain the set P̂ . Since P̂ may contain unnecessary connections, P̂ has to be
reduced to P(dist(S, T, ·)) which then induces the distance function dist(S, T, ·). After
showing how this can be done when the algorithm terminates, we introduce self-pruning,
which detects and prunes unnecessary connections during the algorithm.

Initialization. At first, the set conn(S) is determined and ordered non-decreasingly by
the departure times of the elementary connections in conn(S). Thus, we may say that a
connection ci has index i according to the ordering of conn(S).

Our algorithm maintains a priority queue Q of tuples where the first entry depicts a
node v ∈ V and the second entry a connection index 0 ≤ i < |conn(S)|. Each node v ∈ V
and for each connection i a label arr(v, i) is assigned which depicts the arrival time at
v when using connection i. In the beginning, each label arr(v, i) is initialized with ∞.
Then, for each connection ci ∈ conn(S) we insert (r, i) with key τdep(ci) into Q, where r
depicts the route node where connection ci starts from. Note that in the beginning the
‘arrival-time’ arr(r, i) is equal to the departure-time τdep(ci).

Connection-Setting. Like Dijkstra’s algorithm, we subsequently settle queue ele-
ments (v, i) assigning key(v, i) as the final arrival time to arr(v, i). Then, for each edge
e = (v, w) ∈ E we compute a tentative label arrtent(w, i) at w by arrtent(w, i) :=
arr(v, i)+fe(arr(v, i)) (for connection i). If w has not yet been discovered using connection
i, we insert (w, i) into the priority queue with key(w, i) := arrtent(w, i), otherwise, the
element (w, i) is already in the queue and we set key(w, i) to min(key(w, i), arrtent(w, i)).
Note that the following holds for every connection i: when a queue item (v, i) is settled,
the label arr(v, i) is final, thus, the label-setting property holds with respect to each
connection i which we call connection-setting.

The algorithm ends as soon as the priority queue runs empty. We end up with labels
arr(v, i) for each node v ∈ V and each connection 0 ≤ i < |conn(S)| depicting the arrival
time at v when starting with the i’th connection at S.

We like to mention two remarks. First, although the computation is done for all
connections simultaneously, they can be regarded as independent, since the labels and

5

the queue items refer to a specific connection throughout the algorithm. Second, the
original variant of Dijkstra’s algorithm uses distances instead of arrival times as keys.
However, this has no impact on the correctness of the algorithm, since the arrival time is
obtained by adding the departure time to the distance which is constant for all nodes.

Connection Reduction. For each node v ∈ V the resulting label arr(v, ·) induces

the set of connection points P̂ by P̂ := {(τdep(ci),∆(τdep(ci), arr(v, i))) | ci ∈ conn(S)}.
Unfortunately, the function f represented by P̂ does not necessarily fulfill the FIFO-
property: Taking an earlier train in the wrong direction from S and then the fastest
route towards T in general is not better than waiting for the next train in the right
direction. More formally: for two points (τi, wi), (τj, wj) ∈ P̂ with j > i it is possible that

τj +wj ≤ τi +wi. To remedy this issue, the set P̂ is reduced to obtain P(dist(S, T, ·)) by
eliminating those points which are dominated by another point with a later departure
time and an earlier arrival time. More precisely, we scan backward through P keeping
track of the minimum arrival time τ arr

min := τimin
+wimin

along the way. Each time we scan a
connection point j < imin with an arrival time τ arr

j ≥ τ arr
min, the connection point is deleted.

The remaining connection points are exactly those of P(dist(S, T, ·)).

Self-Pruning. Performing the connection reduction after the algorithm has finished,
results in the computation of many unnecessary connections, and therefore many un-
necessary queue operations. Recall that the keys in our queue are arrival times. Thus,
we propose a more sophisticated approach: We introduce a node-label maxconn : V →
{0, . . . , |conn(S)| − 1} depicting the highest connection index with which the node v has
been reached so far. Each time we settle a queue element (v, i) with arr(v, i) := key(v, i),
we check if i > maxconn(v). If this is not the case, the node v has already been settled
earlier—but with a later connection (remember that j > i ⇒ τdep(cj) ≥ τdep(ci)), thus,
implying arr(v, j) ≤ arr(v, i). Therefore, the current connection does not pay off, and
we prune the connection i at v, i. e., we do not relax outgoing edges at v. Moreover, we
set arr(v, i) := ∞, depicting that the i’th connection does not ‘reach’ v. In the case of
i > maxconn(v), we update maxconn(v) to i, and continue with relaxing the outgoing
edges of v regularly. Obviously, by applying self-pruning, the set of connection points
P(dist(S, v, ·)) at each node v induced by arr(v, ·) fulfills the FIFO-property automati-
cally (labels with arr(v, i) =∞ have to be ignored).

Theorem 1 Applying self-pruning is correct.

Proof. Let v ∈ V be an arbitrary node. We show that no optimal connection to v has
been pruned by contradiction. Let arr(v, i) be the arrival time at v of the (optimal) i’th
connection and assume that i has been pruned at v. Let j denote the connection which
was responsible for pruning i. Then, it holds that arr(v, j) ≤ arr(v, i). Moreover, since j
pruned i, it holds that j > i, which implies τdep(cj) ≥ τdep(ci). Therefore, it holds that
∆(τdep(cj), arr(v, j)) ≤ ∆(τdep(ci), arr(v, i)). This is a contradiction to i being optimal:
using the j’th connection results in an earlier arrival at v by departing later at S.

3.2 Parallelization

We parallelize our algorithm in the following natural way. Given p processors (cores), we
partition the set conn(S) into p subsets conn(S)0, . . . , conn(S)p−1 during the initialization

6

phase. Then, we create p threads where each thread independently runs the self-pruning
connection-setting algorithm on its restricted subset conn(S)i. After termination of each
thread, a master thread merges the labels arri(v, ·) of each thread i to a common label
arr(v, ·) while preserving the ordering of the connections. Note that the common label
arr(v, ·) is not necessarily FIFO, since we do not self-prune between threads. For that
reason, the connection points P(S, T, ·)) of the final distance function are obtained by
reducing the connection points induced by the common label arr(v, ·) with our connection
reduction method described above.

Choice of the Partition. The speed-up that can be achieved by the parallelization
of our algorithm depends on the partitioning of conn(S). As the overall computation
time is dominated by the thread with the longest computation time (for computing the
final distance function, all threads have to be in a finished state), nearly optimal paral-
lelism would be achieved if all threads share the same amount of queue operations, thus,
approximately sharing the same computation time. However, this figure is not known be-
forehand, which requires us to partition conn(S) heuristically. We propose the following
simple methods.

The equal time-slots method partitions the complete time-interval Π into p intervals
of equal size. While this can be computed easily, the sizes of conn(S)i turn out to be
very unbalanced, at least in our scenario. The reason for this is that the connections in
conn(S) are not distributed uniformly over the day due to rush hours and operational
breaks at night. The equal number of connections method tries to improve on that by
partitioning the set conn(S) into p sets of equal size (i. e., containing equally many sub-
sequent elementary connections). This is also very easy to compute and improves over
the equal time-slots method regarding the balance. Besides these simple heuristics, in
principle, more sophisticated clustering methods like k-Means [17] can be applied. How-
ever, preliminary tests showed that the improvement on the query performance is rather
insignificant over the simple methods, thus, in our experiments (cf. Section 5) we use the
equal number of connections method as a reasonable compromise.

Impact on Self-Pruning. When computing the partial profile functions independently
in parallel, the speed-up gained by self-pruning may decrease, since a connection j cannot
prune a connections i, if i is assigned to a different thread than j. Thus, with an increasing
number of threads, the effect achieved by self-pruning vanishes to the extreme point
where the number of threads equals the number of connections in conn(S). In this case,
our algorithm basically corresponds to computing |conn(S)| time-queries in parallel—
without any pruning. However, in real-world inputs (especially in local bus networks)
the average number of outgoing connections is significantly larger than the number of
processor cores on today’s computers. Hence, the impact on self-pruning imposed by the
parallelization is almost negligible. See also Section 5 for an experimental evaluation.

4 Station-to-Station Queries

Dijkstra’s algorithm can be accelerated by precomputing auxiliary data as soon as we
are only interested in point-to-point queries [8]. In this section, we present how some of
the ideas, i. e., the so called stopping criterion, map to our new algorithm. Moreover, we

7

show how the precomputation of certain connections improves the performance of our
algorithm in a station-to-station scenario.

Stopping Criterion. For point-to-point queries, Dijkstra’s algorithm can stop the
query as soon as the target node has been taken from the priority queue. In our case,
i. e., station-to-station, we can stop the query as soon as the target station T has its final
label arr(T, i) for all i assigned. This can be achieved as follows. We maintain an index
Tm, initialized with −∞. Whenever we settle a connection i at our target station T , we
set Tm := max{i, Tm}. Then, we may prune all entries q = (v, i) ∈ Q with i ≤ Tm (at any
node v). We may stop the query as soon as the queue is empty.

Theorem 2 The stopping criterion is correct.

Proof. We need to show that no entry q = (v, i) ∈ Q with i ≤ Tm can improve on the
arrival time at T for the connection i. Let q′ = (v′, i′) be the responsible entry that
has set Tm. Since i ≤ Tm holds, we know that regarding the departure times of the
connections τdep(c′i) ≥ τdep(ci) holds as well. Moreover, since q is settled after q′, we know
that arr(v′, i′) ≤ arr(v, i) holds. In other words, it does not pay off to board train i at
station S. ut

S

Fig. 3: Local and via stations of a sta-
tion S. Local stations are indicated in red,
while via stations are marked thicker in
blue.

Pruning with a Distance Table. Next, we show
how to acceletate our station-to-station algorithm
by pruning via a distance table. We therefore con-
sider the station graph GS = (S, ES) where an edge
(S1, S2) indicates at least one train running from S1

to S2. For a node u of the timetable graph, st(u) de-
notes the station a node belongs to. We are given a
subset Strans ⊆ S of stations (called transfer stations)
and a distance table D : Strans × Strans × Π → N0.
The distance table returns, for each pair of stations
S, T ∈ Strans, the arrival time at T when departing from S at τ ∈ Π (without any transfer
times at S and T). Before explaining the pruning rule in detail, we need the notion of
local and via stations.

VjS TA

B

> µi,j

⇒ arr(Vj , i) + T (Vj) ≤ µi,j

Fig. 4: Example for pruning via a distance table,
given an S-T query. A and B are transfer stations,
Vj the via station of T . When settling a node at
station A, we obtain that the arrival time at Vj plus
the transfer time at Vj is smaller or equal to µi,j .
Hence, we may prune the query at B if the lower
bound obtained from the distance table yields an
arrival time at Vj greater than µi,j .

The set of local stations local(S) ⊆ S of
an arbitrary station S includes all stations L
such that there is a simple path from L to S
that contains only non-transfer stations in the
station graph GS. The set of transfer stations
that are adjacent to at least one local station
of S are called the via stations of S, denoted
by via(S) ⊆ Strans. They basically separate S∪
local(S) from any other station in GS. Figure 3
gives a small example. In the special case of S
being a transfer station, we set local(S) = ∅
and via(S) = {S}.

In the following, we call an S-T station
query local, if S ∈ local(T), otherwise the

8

query is called global. Note that a best connection of a global query must contain a
via station of T . We accelerate global S-T queries by maintaining an upper-bound µi,j,
initialized with∞, for each connection i and each via station Vj of T . Whenever we settle
a queue entry q = (v, i) with st(v) ∈ Strans, we set µi,j := min{µi,j,D(st(v), Vj, arr(v, i) +
T (st(v))) + T (Vj)} for all Vj ∈ via(T). In other words, µi,j depicts an upper bound on
the earliest train we can catch at Vj, even if we had to change the train at Vj. So, we may
prune the search regarding q if

∀Vj ∈ via(T) : D(st(v), Vj, arr(v, i)) > µi,j (2)

holds. In other words, we prune the search at v for a connection i if the path through st(v)
is provably not important for the best path to any via station of Vj ∈ via(T). Figure 4
gives a small example.

Theorem 3 Pruning based on a Distance Table is correct.

The proof can be found in Appendix A. It follows the intuition that arriving at a time
≤ µi,j at Vj ensures catching the optimal train toward T . Moreover, when we prune at v,
the path through v yields a later arrival time at Vj than µi,j. Thus, the path at v can be
pruned, since it is no improvement over the path corresponding to µi,j.

Special Cases. Obviously, we may immediately stop the search if S, T ∈ Strans since
the distance table already includes all best connections from S to T . However, we may
also apply an additional pruning rule if T ∈ Strans, which we call target pruning. For
each connection i, we maintain a tentative lower bound γi on the arrival time at T ,
initialized with ∞. Whenever we settle an element q = (v, i) ∈ Q with st(v) ∈ Strans,
we update γi to min{γi,D(st(v), T, arr(v, i))}. As soon as all elements q = (v, i) ∈ Q
for a given connection i have a transfer station as ancestor, γi is a feasible lower bound
on the arrival time at T . When we then remove a queue element q = (v, i) ∈ Q with
st(v) ∈ Strans, we may stop the search for i ifD(st(q), T, arr(v, i)+T (st(v))) = γi holds. We
set arr(T, i) = D(st(q), T, arr(v, i)+T (st(q))) and prune the search for any q = (v, i) ∈ Q.

Theorem 4 Target pruning is correct.

The proof of Theorem 4 follows from the observation that γi is a valid lower bound to
the target station and that when we prune the search, we already have found the optimal
arrival time at T (for i). The full proof can be found in Appendix A.

Determining via(T). We determine the via stations of T on-the-fly: During the initializa-
tion phase of the algorithm, we run a DFS on the reverse station graph from T , pruning
the search at stations V ∈ Strans. Any station V ∈ Strans touched during the DFS is
added to via(T). Note that we may distinguish local from global queries when computing
via(T): as soon as our DFS visits S, the query is local, otherwise it is global.

Selection of Transfer Stations. The success of pruning via a distance table highly depends
on which stations are selected for Strans. In [25], the authors propose to identify important
stations by a given “importance” value provided by the input. However, such values are
not available for all inputs. Hence, we here propose to use the concept of contraction [12]

9

which proved useful in road networks. A contraction routine iteratively removes unim-
portant nodes from the graph and adds shortcuts to the graph in order to preserve the
distances between non-removed nodes. We mark any station as important which has not
been removed after the contraction of c stations.

Another possibility to select important stations is via their degree in the station graph.
More precisely, we mark any station as transfer station having a degree > k in the station
graph.

5 Experiments

We conducted our experiments on up to eight cores of a dual Intel Xeon 5430 running
SUSE Linux 11.1. The machine is clocked at 2.6 GHz, has 32 GiB of RAM and 2× 1 MiB
of L2 cache. The program was compiled with GCC 4.3, using optimization level 3. Our
implementation is written in C++ using solely the STL and Boost at some points. As
priority queue we use a binary heap.

Inputs. We use five different public transportation networks as input: the local networks
of Oahu Transit Services [21], Hawaii (3 918 stops and 1 408 559 elementary connections),
Los Angeles County Metro [16] (15 792 stops and 5 023 877 elementary connections), and
the network of Washington Metropolitan Area Transit Authority [27] (10 764 stops and
3 387 987 elementary connections). Moreover, we use railway networks of Germany and
Europe. The former has 6 822 stations and 554 996 elementary connections, while the
latter has 30 517 stations and 1 775 533 elementary connections. Note, that the local
networks are much denser than the railway networks, i. e., the connections per station
ratio is significantly higher there.

The timetable data of the local city networks is publicly available through Google
Transit Data Feeds [13], while the timetable data of the German and European railway
networks was kindly given to us by HaCon [14].

5.1 One-to-All Queries

Our first set of experiments focuses on the question how well our self-pruning connection-
setting algorihm performs if executed on a varying number of cores. Therefore, we run
1 000 one-to-all queries with the source station picked uniformly at random. We report
the average number of connections taken from the priority queue (sum over all cores) and
the average execution time of a query. Table 1 reports these figures for a varying number
(between 1 and 8) of cores. For comparison, we also report the performance of a label-
correcting approach (cf. Section 2). For better comparability, the number of connections
figure here indicates the sum of the sizes of the connection-labels taken from the priority
queue.

We observe that our algorithm scales pretty well with increasing number of cores. On
all networks except Europe, the number of settled nodes only increases by ≈ 10–20%.
This is less than we expected since we cannot self-prune between different threads. So,
on 4 cores we have a speed-up of a factor 3 compared to an execution on one core. On 8
cores, the speed-up is of a factor of 5. The reason for this is that memory management
also plays a crucial role for the scalability of a parallel algorithm. Still, on eight cores, we

10

Table 1: One-to-all profile queries with our parallel self-pruning connection-setting algorithm (CS) on 1,2,4,
and 8 cores, compared to a label-correcting approach (LC). Column spd-up indicates the time speed-up of a
multi-core run over a single-core execution.

Oahu Los Angeles Washington D.C. Germany Europe
Settled TimeSpd Settled TimeSpd Settled TimeSpd Settled TimeSpd Settled TimeSpd

p Conns [ms] Up Conns [ms] Up Conns [ms] Up Conns [ms] Up Conns [ms] Up

CS 1 931829 369.4 1.0 43119202660.5 1.0 20395781122.7 1.0 1409515 835.4 1.0 28258831913.3 1.0
2 944064 192.7 1.9 43699881411.1 1.9 2060926 576.0 1.9 1465211 439.7 1.9 31126171036.9 1.8
4 968933 125.4 2.9 4493353 927.6 2.9 2106210 352.3 3.2 1577633 256.9 3.3 3658800 677.8 2.8
8 1019357 79.9 4.6 4735290 602.2 4.4 2188936 242.3 4.6 1791296 177.6 4.7 4539940 527.1 3.6

LC1 134480001056.0 —528385004372.3 —164679001219.1 —112902001127.2 —203157002875.2 —

are able to compute all quickest connections of a day in less than 1 second. Note that this
value is achieved without any preprocessing, hence, we can directly use this approach in a
fully dynamic scenario as discussed in [20]. On Europe however, the scalability falls short
when executed on more than 2 cores: on 8 cores, the number of settled nodes increases
by 60% compared to a single-threaded execution yielding a speed-up of only 3.6. The
reason for this is that the average number of outgoing connections per station on Europe
is rather small. Hence, each thread has only a small number of connections assigned
yielding less self-pruning. Moreover, the running times of the threads are more biased
than for networks with more connections.

Comparing our connection-setting (CS) with the label-correcting (LC) approach (cf.
Section 2), we observe that CS clearly outperforms LC, even when CS is executed on
only one core. The main reason for this is that the number of connections investigated
during execution is much smaller for CS than for LC. However, the number of priority
queue operations for LC is up to 4 times lower than for CS. Hence, the advantage of CS
in number of settled connections does not yield the same speed-up in query times.

5.2 Station-to-Station Queries with Pruning by Distance Tables

Next, we evaluate our algorithm in a station-to-station scenario. We use 8 cores as default
and evaluate the impact of different distance table sizes. Since these tables need to be pre-
computed, we also report the preprocessing time and the size of the tables in Megabytes.
The distance tables are computed by running our parallel one-to-all algorithm on 8 cores
from every transfer station. As strategies for selecting transfer stations, we use contrac-
tion with varying number of removed stations and selection via degree in the station
graph. Table 2 gives an overview over the obtained results. We observe that compared
to Tab. 1, the stopping criterion accelerates queries by approximately 20%. Moreover, we
observe that the size of the distance table has a high impact on the query performance.
While augmenting only 1% of the stations to transfer stations hardly accelerates queries,
5% transfer stations yields additional speed-ups between 1.8 and 4.4, depending on the
input. Larger distance tables hardly pay off: the size of the table increases significantly,
and the gain in query performance is little. Hence, selecting 5% of the stations as transfer
stations seems to be a good compromise. For this scenario, we are able to compute all
quickest connections on all inputs in less than 117 ms.

11

Table 2: Performance of our parallel self-pruning query algorithm with stopping criterion enabled. Moreover,
we prune by a distance table as described in Section 4. The number of transfer stations is given in percentage of
input stations.

Oahu Los Angeles Washington D.C.
Prepro Query Prepro Query Prepro Query

Time Space Settled Time Spd Time Space Settled Time Spd Time Space Settled Time Spd
[m:s] [MiB] Conns [ms] Up [m:s] [MiB] Conns [ms] Up [m:s] [MiB] Conns [ms] Up

0.0% — — 853744 66.2 1.0 — — 3718790 473.6 1.0 — — 1869023 208.3 1.0
1.0% 0:08 1.2 748666 64.0 1.0 3:19 18.9 2397412 318.8 1.5 1:01 8.8 1671548 233.1 0.9
2.5% 0:17 5.9 524648 47.5 1.4 7:26 99.4 958027 140.8 3.4 2:34 61.2 999040 157.3 1.3
5.0% 0:30 20.3 329952 31.7 2.1 14:00 346.5 625114 106.5 4.4 4:46 212.0 689025 112.7 1.8

10.0% 0:54 65.7 262030 28.6 2.3 26:10 1252.6 555303 106.9 4.4 8:45 705.0 553261 93.6 2.2
20.0% 1:43 225.6 231840 25.9 2.6 50:23 4490.3 514539 105.7 4.5 — — — — —
30.0% 2:35 477.5 202118 24.6 2.7 — — — — — — — — — —

deg > 2 2:26 376.2 188963 21.9 3.0 57:24 5331.6 428983 90.1 5.3 27:12 5450.0 394984 68.1 3.1

Germany Europe
Prepro Query Prepro Query

Time Space Settled Time Spd Time Space Settled Time Spd
[m:s] [MiB] Conns [ms] Up [m:s] [MiB] Conns [ms] Up

0.0% — — 1400841 140.5 1.0 — — 3339884 387.0 1.0
1.0% 0:19 0.6 1352037 149.9 0.9 4:04 5.9 2492665 309.6 1.3
2.5% 0:52 5.5 777683 88.9 1.6 11:40 55.6 1202247 152.6 2.5
5.0% 1:44 23.3 470028 52.4 2.7 23:27 216.2 860923 116.8 3.3

10.0% 3:17 87.4 338192 40.5 3.5 — — — — —
20.0% 6:12 315.5 286733 35.7 3.9 — — — — —

deg > 2 10:11 804.0 227275 29.2 4.8 — — — — —

6 Conclusion

In this work, we have presented a novel algorithm for computing all relevant connections
from a given station to any other station in a transportation network for a full timetable
period. To this extent, we exploited the special structure of travel-time functions in such
networks and the fact that only few connections are useful when travelling sufficiently far
away. Introducing the concept of connection-setting, we showed how to transfer the label-
setting property of Dijkstra’s algorithm to profile searches in transportation networks.
Our algorithm is easy to use in a multi-core setup. Moreover, utilizing the algorithm to
precompute connections between important stations, we can greatly accelerate station-
to-station queries.

Regarding future work, it will be interesting to incorporate multi-criteria connections,
e. g., minimizing the number of transfers. The main challenge here is to keep up the
connection-setting property and to find efficient criteria for self-pruning in such a scenario.
Moreover, we are interested in checking whether some methods from [6] also work for our
connection-setting approach.

References

1. P. Adamson and E. Tick. Greedy partitioned algorithms for the shortest path problem. International Journal
of Parallel Programming, 20:271–298, 1991.

2. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner. Combining Hierarchical
and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In WEA’08, LNCS 5038, 303–318. 2008.

3. R. Bauer, D. Delling, and D. Wagner. Experimental Study on Speed-Up Techniques for Timetable Informa-
tion Systems. Networks, 2009. Accepted for publication, to appear.

12

4. K. M. Chandy and J. Misra. Distributed computation on graphs: Shortest path algorithms. Comm. ACM,
25(11):833–837, 1982.

5. B. C. Dean. Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis, MIT, 1999.
6. D. Delling. Time-Dependent SHARC-Routing. Algorithmica, July 2009.
7. D. Delling, T. Pajor, and D. Wagner. Engineering Time-Expanded Graphs for Faster Timetable Information.

In Proceedings of ATMOS’08, Dagstuhl Seminar Proceedings. September 2008.
8. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning Algorithms. In Algorithmics

of Large and Complex Networks, LNCS 5515, pp. 117–139. Springer, 2009.
9. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Math., 1:269–271, 1959.

10. Y. Disser, M. Müller–Hannemann, and M. Schnee. Multi-Criteria Shortest Paths in Time-Dependent Train
Networks. In WEA’08, LNCS 5038, pp. 347–361. 2008.

11. J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An alternative to Fibonacci
heaps with applications to parallel computation. Comm. ACM, 31(11):1343–1354, 1988.

12. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies: Faster and Simpler Hierar-
chical Routing in Road Networks. In WEA’08, LNCS 5038, pp. 319–333. 2008.

13. Google Transit Data Feed. http://code.google.com/p/googletransitdatafeed/, 1967.
14. HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 2008.
15. M. R. Hribar, V. E. Taylor, and D. E. Boyce. Implementing parallel shortest path for parallel transportation

applications. Parallel Computing, 27:1537–1568, 2001.
16. Los Angeles County Metropolitan Transportation Authority. http://www.metro.net, 1993.
17. J. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In Fifth Berkeley

Symposium on Mathematical Statistics and Probability, pp. 281–297, 1967.
18. K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak. An Experimental Study of A Parallel Shortest

Path Algorithm for Solving Large-Scale Graph Instances. In ALENEX’07, pp. 23–35. SIAM, 2007.
19. U. Meyer and P. Sanders. ∆-Stepping : A Parallel Single Source Shortest Path Algorithm. In ESA’98, LNCS

1461, pp. 393–404, 1998.
20. M. Müller–Hannemann, M. Schnee, and L. Frede. Efficient On-Trip Timetable Information in the Presence

of Delays. In Proceedings of ATMOS’08, Dagstuhl Seminar Proceedings. 2008.
21. O’ahu Transit Services, Inc. http://www.thebus.org, 1971.
22. R. C. Paige and C. P. Kruskal. Parallel algorithms for shortest path problems. pp. 553–556, 1985.
23. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient Models for Timetable Information in Public

Transportation Systems. ACM Journal of Experimental Algorithmics, 12:Article 2.4, 2007.
24. K. V. S. Ramarao and S. Venkatesan. On finding and updating shortest paths distributively. J. Algorithms,

13:235–257, 1992.
25. F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public

Railroad Transport. In WAE’99, LNCS 1668, pp. 110–123. Springer, 1999.
26. J. L. Träff. An experimental comparison of two distributed single-source shortest path algorithms. Parallel

Computing, 21:1505–1532, 1995.
27. Washington Metropolitan Area Transit Authority. http://www.wmata.com, 1967.

13

A Proofs

Proof of Theorem 3

We are proving the overall correctness by showing the correctness for each connection i
separately. Thus, let i be a fixed connection index and P = [S, . . . , T] the shortest path
of a global S-T -query of connection i. Note that if S-T is a local query, no pruning is
applied. Furthermore, let arropt(T, i) denote the (optimal) arrival time at T when using
P . We show a series of lemmas before proving the main theorem.

Lemma 1. For all tuples (v, Vj) ∈ V × via(T) with st(v) ∈ Strans it holds that

arropt(T, i) ≤D(st(v), Vj, arr(v, i) + T (st(v)))︸ ︷︷ ︸
=: µi,v,j

+ T (Vj) + dist(Vj, T, µi,v,j).

(3)

Proof. Assume that the equation is false, and the right hand side yields an arrival time at
T which is earlier than arropt(T, i). Then, the path induced by the right hand side of the
equation yields a shorter path to T , which is a contradiction to arropt(T, i) being optimal.

Corollary 1. Let µi,j := minv∈V,st(v)∈Strans(µi,v,j), then it holds that arropt(T, i) ≤ µi,j +
dist(Vj, T, µi,j).

Lemma 2. For all tuples (v, Vj) ∈ V × via(T) with st(v) ∈ Strans it holds that

arrVj
(T, i) ≥ D(st(v), Vj, arr(v, i))︸ ︷︷ ︸

=: γi,v,j

+ dist(Vj, T, γi,v,j)
(4)

where arrVj
(T, i) depicts the arrival time of the combined shortest S-v-Vj-T path.

Proof. Assume that the right hand side of the equation evaluates to arr′Vj
(T, i) with

arr′Vj
(T, i) < arrVj

(T, i), but this is a contradiction to the correctness of the distance table
D yielding the earliest arrival time at Vj, since dist(Vj, T, ·) fulfills the FIFO-property and
γi,v,j is the earliest possible arrival time at Vj (without transfer at st(v)).

Lemma 3. Let v ∈ V be a node with st(v) ∈ Strans, and let γi,v,j > µi,j. Then

γi,v,j + dist(Vj, T, γv,i,j) ≥ µi,j + dist(Vj, T, µi, j) (5)

holds.

Proof. This follows immediately from the FIFO-property of dist(Vj, T, ·).

Proof of Theorem 3. Given a global S-T -query with via stations via(T). Let v ∈ V
be a node with st(v) ∈ Strans, where the pruning rule is potentially applied. Then from
Lemma (2), (3) and Corollary (1) we get for a via node Vj ∈ via(T) that

γv,i,j > µi,j =⇒ arrVj
(T, i) ≥ µi,j + dist(Vj, T, µi,j)︸ ︷︷ ︸

=: ψ

≥ arropt(T, i) (6)

Since our algorithm keeps track of µi,j which is the minimum over all µi,x,j with st(x) ∈
Strans, the path which corresponds to µi,j is not pruned. Hence, at the point where v is
pruned a path with arrival time ψ toward Vj is guaranteed to be found. Since v is only
pruned if Equation (5) holds for all Vj ∈ via(T), it follows that v /∈ P , thus, v not being
important for the shortest S-T -path. ut

14

Proof of Theorem 4

Similar to the proof of Theorem 3, we show correctness of Theorem 4 for each connection
i separately. Again, let i be a fixed connection and P = [S, . . . , T] the shortest path of a
global S-T -query of connection i and let arropt(T, i) denote the (optimal) arrival time at
T when using P .

We know that for all nodes v with st(v) ∈ Strans, the inequation arropt(T, i) ≤
D(st(v), T, arr(v, i) + T (st(v)) =: µi,v holds. Moreover, for all nodes u ∈ P with st(u) ∈
Strans, we know that arropt(T, i) ≥ D(st(v), T, arr(v, i)) =: γi,v holds as well. From this
follows that

min
st(v)∈Γ⊆Strans

∃ st(u)∈Γ :st(u)∈P

γi,v := γi ≤ arropt(T, i) ≤ min
st(v)∈Strans

µi,v (7)

holds. In other words, as soon as a transfer station on the shortest path has contributed
to γi, γi is a feasible lower bound on the arrival time at T . So, we have found the optimal
arrival time at T as soon as γi = µi holds. By enabling target pruning only when all
elements in the queue have a node u with st(u) ∈ Strans as ancestor, we ensure that a
transfer station on the shortest path contributes to γi. Hence, Theorem 4 is correct. ut

15

