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We consider a financial market with one bond and one stock. The dynamics of the stock
price process allow jumps which occur according to a Markov-modulated Poisson process. We
assume that there is an investor who is only able to observe the stock price process and not
the driving Markov chain. The investor’s aim is to maximize the expected utility of terminal
wealth. Using a classical result from filter theory it is possible to reduce this problem with
partial observation to one with complete observation. With the help of a generalized Hamilton-
Jacobi-Bellman equation where we replace the derivative by Clarke’s generalized gradient, we
identify an optimal portfolio strategy. Finally, we discuss some special cases of this model and
prove several properties of the optimal portfolio strategy. In particular we derive bounds and
discuss the influence of uncertainty on the optimal portfolio strategy.
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1 Introduction

We consider an incomplete financial market with one bond and one stock. The stock price
process allows for jumps of a random height where the jump time points are generated by a
Markov-modulated Poisson process. There is an investor who wants to maximize his utility
from terminal wealth and who is only able to observe the stock price process. In particular he
is not informed about the state of the continuous-time Markov chain which drives the jump
intensity. Such a model is also called a Hidden Markov Model. For a general treatment of such
models see e.g. Elliott et al. (1994).

A model with unobservable intensity process is natural, since jumps in the stock price
process are often generated by various external events whose impact on the stock market
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cannot completely be analyzed. We are only able to draw some conclusions about the jump
intensity from the observation of the stock prices. Also it is more appropriate to allow a
stochastically varying jump intensity since a deterministic jump intensity seems only to be
realistic for a short period of time. A continuous-time Markov chain can model the changing
conditions which give rise to a changing jump behavior. This underlying Markov chain can be
interpreted as an environment process which collects factors which are relevant for the stock
price dynamics like technical progress, political situations, law or natural catastrophes.

There is an extensive literature on portfolio optimization with partial observation as well
as on portfolio optimization with discontinuous stock price processes. In this paper we will
treat these two aspects in one model.

Most papers on problems with partial observation deal with the case of an unobserved
(stochastic) appreciation rate process (µt). Lakner (1995, 1998) for example treats the case
where the appreciation rate follows a linear Gaussian model. The most recent papers by Honda
(2003), Sass and Haussmann (2004), Haussmann and Sass (2004) and Rieder and Bäuerle (2005)
consider a Hidden Markov Model for (µt). We refer the reader to these papers for a recent
survey on financial models with partial observation. Of course it would be more realistic to
assume that both the appreciation rate and the jump intensity depend on the hidden Markov
chain but this seems to be too challenging at the moment. For a risk averse investor it might
be more important to model an unobserved jump intensity than an unobserved appreciation
rate, since potential losses due to jumps can be much higher. In order to solve these problems
the usual technique is to use the well-established filter theory to reduce the stochastic control
problem with partial observation to one with complete observation. It is then possible to solve
this problem either with stochastic control methods or via the martingale approach (which is
mostly done in case of a complete market in the literature).

On the other hand there exist several papers on portfolio optimization problems with dis-
continuous stock price processes, in particular in the case where the price is modelled with the
help of a Lévy process. Empirical work has shown that logreturns are in general not normally
distributed and that stock price models should contain a jump component. In Framstad et al.
(1999), the authors deal with the problem of optimal consumption and portfolio selection in
a model where the stock price follows a geometric Lévy process. They assume a power utility
and solve the problem explicitly by showing that the value function is a classical solution of the
associated Hamilton-Jacobi-Bellman equation. Benth et al. (2001) consider a similar question
in the case that the stock price is given by an exponential Lévy process. They have to use the
notion of a constrained viscosity solution to characterize their solution. As we will see later,
our price process cannot be written as a functional of a Lévy process. Important applications
of optimization problems with jumps are well-known in risk theory and insurance mathematics
(see e.g. Hipp and Plum (2003), Schmidli (2002)). But in these papers the intensity process is
always observable.

In this paper we combine the jump diffusion model with an unknown jump intensity. Our
main contributions are a non-standard approach to solve the stochastic control problem by
a generalized Hamilton-Jacobi-Bellman (HJB) equation which might be interesting for other
portfolio problems as well and moreover, a study of the influence of uncertainty on the optimal
portfolio strategy. The outline of the paper is as follows. In Section 2 we give a precise math-
ematical formulation of our model and define the optimization problem. In Section 3 we show
how we can use filtering theory to reduce the problem to one with complete observation. The
reduced market model we end up is not complete. Thus, the martingale approach cannot be
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applied directly. In the case of a logarithmic utility function, it is shown in section 4 that the
portfolio optimization problem can be solved (as usual) rather easily by a pathwise optimiza-
tion. Section 5 deals with the power utility. Here we use the theory of stochastic control to
solve the problem explicitly. The value function is not a classical solution of the correspond-
ing Hamilton-Jacobi-Bellman equation, however, we can characterize the value function as a
solution of a generalized HJB equation where we use the Clarke generalized gradient. This
is possible since the value function can be shown to be locally Lipschitz-continuous and al-
most convex. This approach is non-standard and has the advantage that the optimal portfolio
strategy can be given rather explicitly. Most interesting is the fact that the expression for
the optimal portfolio strategy includes the value function but no derivative of it. Section 5.1
contains the main results. In Section 5.2 we deal with some special cases and derive some
important properties and comparison results for the optimal portfolio strategy. In particular
we highlight the role of uncertainty in our model. It turns out that adding more uncertainty
by jumps reduces the investment in the stock for all investors with power utility. Moreover, we
look at the Bayesian model, i.e. when the jump intensity is constant but unobservable. We are
able to derive bounds and compare the optimal portfolio strategy in this case with the strategy
we obtain in a model where the constant jump intensity is equal to the estimated one. The
comparison depends on whether jumps go upwards or downwards and on the parameter of the
power utility function. In this case further uncertainty does not automatically lead to a smaller
investment in the stock. Some auxiliary results which are needed for the proof of our main
theorems are given in Section 6. Section 7 finally contains the proofs of our main theorems in
the case of a power utility.

2 The Model

We consider a financial market with one bond and one risky asset. More precisely let (Ω,F ,F =
{Ft, 0 ≤ t ≤ T}, P ) be a filtered probability space. T > 0 is a fixed time horizon. The bond
price process (Bt) evolves according to

dBt = rBtdt

with interest rate r > 0 and the stock price process evolves according to

dSt = St−

(
µdt + σdWt +

∫
yN(dt, dy)

)
,

where σ > 0, µ ∈ IR are given constants and (Wt) is a Brownian motion w.r.t. F. N is the
random counting measure of a Markov-modulated compound Poisson process. That means N
is constructed as follows: let us denote by (Yt) a continuous-time Markov chain with state space
{e1, . . . , ed} where ek is the k-th unit vector in IRd and (Yt) has the generator Q0 = (qij). qij is
the intensity of getting from state ei in state ej . Further let us denote by T0 = 0, T1, T2, . . . the
jump time points of a Poisson process with F-intensity (λt) := (λ′Yt) where λ = (λ1, . . . , λd) ∈
IRd

+, i.e. as long as Yt = ej , jumps arrive at rate λj . Finally we assume that (δn) is a sequence
of independent and identically distributed random variables bounded from above with δn > −1.
The probability distribution of δn is denoted by Q. Then we have

N =
∑
n≥1

ε(Tn,δn)
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where εx is the one point measure in x. δn is the relative jump height of the stock at time
Tn. Note that the restriction δn > −1 guarantees that the stock price stays positive. The
compound Poisson process which describes the jumps is then obtained by∫ t

0

∫
yN(ds, dy) =

Nt∑
n=1

δn.

The economic interpretation of (Yt) is some kind of environment process which collects factors
which are relevant for the stock price dynamics like e.g. technical progress, political situations,
laws or natural catastrophes. These factors change stochastically over time. All processes are
adapted w.r.t. F and (Wt) and N are independent as well as (δn) and (Yt).

In what follows we assume an investor who is only able to observe the stock price process
and who knows the distribution of Y0. This means that the investor is not informed about the
intensity with which the stock price process jumps. Of course it is more realistic to assume
that the appreciation rate of the stock price also depends on the unobservable environment
process (Yt), however this case is much more challenging. The case of unobservable Markov-
modulated appreciation rate has been investigated in Honda (2003), Sass and Haussmann
(2004) , Haussmann and Sass (2004) and Rieder and Bäuerle (2005) among others.

Let FS = (FS
t ) be the filtration generated by the stock price process (St). Our aim is

to solve the optimization problem our investor faces, when he tries to find portfolio strategies
that maximize the expected utility from terminal wealth. We restrict ourselves to self-financing
portfolio strategies and denote by πt ∈ [0, 1] the fraction of the wealth invested in the stock
at time t. The restriction of the fraction to [0, 1] (” no short-sellings ”) guarantees a positive
wealth process which is reasonable for logarithmic and power utility. Due to the jumps of
the stock price a violation of this restrictions may lead to a negative wealth with positive
probability. The process π = (πt) is called portfolio strategy. An admissible portfolio strategy
has to be FS-predictable and takes values in [0, 1]. Thus, we introduce the set

U [t, T ] := {π = (πs)t≤s≤T | πs ∈ [0, 1] for all s ∈ [t, T ], π is FS − predictable.}.

The wealth process under an admissible portfolio strategy π ∈ U [0, T ] is given by

dX̃π
t = X̃π

t−

(
(r + (µ− r)πt)dt + σπtdWt + πt−

∫
yN(dt, dy)

)
.

We assume that X̃π
0 = x0 is the given initial wealth. Let U : IR+ → IR be an increasing,

concave utility function. Then we define the value functions for π ∈ U [t, T ], t ∈ [0, T ], x > 0
by

Ṽπ(t, x) := Et,x
[
U(X̃π

T ) | FS
t

]
Ṽ (t, x) := sup

π∈U [t,T ]
Ṽπ(t, x)

where the expectation is taken w.r.t. the probability measure P t,x with X̃π
t = x. Note that

Ṽπ(t, x) and Ṽ (t, x) are random variables, in particular Ṽπ(t, x) is FS
t -measurable. Moreover,

Ṽπ(0, x0) and Ṽ (0, x0) depend on the distribution of Y0 which is fixed. A portfolio strategy
π∗ ∈ U [0, T ] is optimal if

Ṽ (0, x0) = Ṽπ∗(0, x0).
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We have chosen the appreciation rate and the volatility to be constant. All the analysis
which follows can be done in a similar way if they are modelled by bounded, deterministic
(observable) processes.

3 The Reduction

We can reduce the control problem to one with complete observation. This procedure is
classical. The idea is to update our belief about the distribution of the environment state Yt

continuously and make it part of our state space. Note that only the jump time points of
the stock price contain relevant information for estimating the environment state and thus the
jump intensity. This continuous estimation is done by the so-called Wonham filter. We proceed
as in Brémaud (1981) p. 94 ff. Define

pk(t) = P (Yt = ek | FS
t ), k = 1, . . . , d

and pt = (p1(t), . . . , pd(t)). pk(t) is the probability that the environment process is in state k
at time t, given that we have observed the stock price process until time t. The process (pt) is
called filter process. Recall form section 2 that the Markov-modulated Poisson process is given
by ∫ t

0

∫
N(ds, dy)

and counts the number of jumps in the stock price until time t. This counting process has
F-intensity (λt) = (λ′Yt) which is equivalent to

ηt :=
∫ t

0

∫
N(ds, dy)−

∫ t

0
λsds

being an F-martingale. The following statements hold:

Lemma 3.1: There exists an FS−martingale (η̂t) such that

a) the filter processes pk(t) satisfy for t ≥ 0

dpk(t) =
∑
j

qjkpj(t)dt + pk(t−)
(λk − λ̂t−

λ̂t−

)
dη̂t

with λ̂t :=
∑d

k=1 λkpk(t) = E[λt | FS
t ].

b) λtdt + dηt = λ̂tdt + dη̂t.

c) (Wt) and (η̂t) are independent.

Part b) of Lemma 3.1 states that the Markov-modulated Poisson process
∫ t
0

∫
N(ds, dy)

admits an FS-intensity (λ̂t) and can be compensated in order to obtain an FS-martingale

η̂t :=
∫ t

0

∫
N(ds, dy)−

∫ t

0
λ̂sds.
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In what follows we also need the compensated random measure

M̂(dt, dy) = N(dt, dy)− λ̂tdtQ(dy).

Note that ∫ t

0

∫
f(s, y)N(ds, dy)−

∫ t

0

∫
f(s, y)λ̂sdsQ(dy)

is a martingale for arbitrary f whenever the integrals exist. The control model with complete
observation is now characterized for π ∈ U [0, T ] by the following d+1-dimensional state process:

dXπ
t = Xπ

t−

((
r + πt−(µ− r) + πt−λ̂t

∫
yQ(dy)

)
dt + σπtdWt + πt−

∫
yM̂(dt, dy)

)
Xπ

0 = x0

dpk(t) =
∑
j

qjkpj(t)dt + pk(t−)
(λk − λ̂t−

λ̂t−

)
dη̂t

pk(0) = P (Y0 = k), k = 1, . . . , d

where P (Y0 = k), k = 1, . . . , d, is the given distribution of Y0. A solution of the stochastic
differential equation for the wealth process is given by

Xπ
t = x0 exp

{∫ t

0
(r + (µ− r)πs −

1
2
σ2π2

s)ds +
∫ t

0
σπsdWs +

∫ t

0

∫
ln(1 + πsy)N(ds, dy)

}
= x0 exp

{ ∫ t

0

(
r + (µ− r)πs −

1
2
σ2π2

s + λ̂s

∫
ln(1 + πsy)Q(dy)

)
ds +

∫ t

0
σπsdWs

+
∫ t

0

∫
ln(1 + πsy)M̂(ds, dy)

}
.

By ∆d we denote the probability simplex in IRd. The value functions in the reduced model are
for π ∈ U [t, T ] and p ∈ ∆d, t ∈ [0, T ], x > 0 defined by

Vπ(t, x, p) := Et,x,p [U(Xπ
T )]

V (t, x, p) := sup
π∈U [t,T ]

Vπ(t, x, p)

where Et,x,p is the conditional expectation, given Xπ
t = x, pt = p. The reduced model now solves

our original problem. This is often taken for granted, however it has to be proved formally.
The next theorem states that the filter contains the necessary information in order to solve our
original problem. Instead of the whole history FS

t it is sufficient to know pt. More precisely,
Ṽ (t, x) depends on the history FS

t only through pt.

Theorem 3.2: For all π ∈ U [t, T ] it holds that Vπ(t, x, pt) = Ṽπ(t, x) and V (t, x, pt) = Ṽ (t, x)
for all x > 0, t ∈ [0, T ].

Proof: From Lemma 3.1 and the stochastic differential equation for the wealth process it follows
that X̃π

T = Xπ
T a.s. for all π ∈ U [t, T ] which obviously yields the statement.

In the reduced model, all processes are FS-adapted and admit an FS-intensity respectively.
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Therefore, we can solve this problem by stochastic control techniques. The following properties
are easily derived.

Lemma 3.3:

a) For all π ∈ U [t, T ], p ∈ ∆d and x > 0 we have

Vπ(t, x, p) =
d∑

j=1

pjVπ(t, x, ej).

b) The mapping p 7→ V (t, x, p) is convex for all t ∈ [0, T ] and x > 0.

Proof: Part a) is obtained by conditioning.
For b) let p, q ∈ ∆d be two initial distributions and α ∈ [0, 1]. Then

V (t, x, αp + (1− α)q) = sup
π∈U [t,T ]

α
∑
j

Vπ(t, x, ej)pj + (1− α)
∑
j

Vπ(t, x, ej)qj


≤ α sup

π∈U [t,T ]

∑
j

Vπ(t, x, ej)pj + (1− α) sup
π∈U [t,T ]

∑
j

Vπ(t, x, ej)qj

= αV (t, x, p) + (1− α)V (t, x, q).

4 Logarithmic Utility

In this section we briefly summarize the results in the case of a logarithmic utility function
U(x) = log(x). This is always the easiest case. For π ∈ U [t, T ] we obtain from the explicit
solution for Xπ

t

Vπ(t, x, p) = log(x) + hπ(t, p)

where

hπ(t, p) = Et,p

[∫ T

t
r + (µ− r)πs −

1
2
σ2π2

s + λ̂s

∫
log(1 + πsy)Q(dy)ds

]
.

Note that hπ does not depend on x. Obviously we obtain the following result:

Lemma 4.1:

a) For all t ∈ [0, T ], x > 0, p ∈ ∆d we have

V (t, x, p) = log(x) + h(t, p),

where h(t, p) = supπ∈U [t,T ] hπ(t, p).
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b) Suppose that for all p ∈ ∆d, u∗(p) maximizes

u 7→ r + (µ− r)u− 1
2
σ2u2 + λ′p

∫
log(1 + yu)Q(dy) on [0, 1]

then π∗ = (π∗t ) ∈ U [t, T ] with π∗t = u∗(pt−) is an optimal portfolio strategy for the given
portfolio problem.

Note that π∗t depends on FS
t only through pt. It is easy to show that in the case of complete

observation, i.e. when we know that the state of the Markov chain is for example ei, the optimal
portfolio strategy would be to invest a constant fraction u∗ of the wealth in the stock, where
u∗ is the maximizer of

u 7→ r + (µ− r)u− 1
2
σ2u2 + λi

∫
log(1 + yu)Q(dy)

on [0, 1]. Part b) of Lemma 4.1 shows that the so-called certainty equivalence principle holds,
i.e. the unknown intensity λt is replaced by the estimate λ̂t = E[λt | FS

t ] in the optimal portfolio
strategy (cf. Kuwana (1991)). This means that uncertainty about the jump intensity does not
change the optimal portfolio strategy in this case. The situation is completely different in the
case of a power utility function as we will see in section 5.2.

5 Power Utility

In this section we assume that the utility function is given by U(x) = 1
γ xγ for γ < 1, γ 6= 0.

The value function under strategy π ∈ U [t, T ] is therefore

Vπ(t, x, p) =
1
γ

xγgπ(t, p),

where

gπ(t, p) = Et,p

[
exp

{ ∫ T

t
γ(r + (µ− r)πs −

1
2
σ2π2

s)ds +
∫ T

t
γσπsdWs

+γ

∫ T

t

∫
ln(1 + πsy)N(ds, dy)

}]
.

Note that gπ does not depend on x. If we define

g(t, p) := sup
π∈U [t,T ]

gπ(t, p)(1)

then it obviously holds that

V (t, x, p) =
1
γ

xγg(t, p).
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5.1 The Solution of the Portfolio Optimization Problem

In this section we summarize the main results. We use a stochastic control approach to solve the
problem. Unfortunately it is not clear whether the value function is continuously differentiable
in p and t and we thus are not able to obtain a classical solution for the associated Hamilton-
Jacobi-Bellman (HJB) equation. The standard way would then be to show that the value
function is the unique viscosity solution of the HJB equation. However this type of solution
is quite weak and the uniqueness proof can be hard. In our setting it is possible to show that
the value function is locally Lipschitz-continuous and thus almost everywhere differentiable.
This is much more than continuity which is required for the viscosity solution. Therefore we
decided to pursue a different approach by considering a generalized HJB equation where the
classical derivative is replaced by a generalized derivative. A similar approach has been used
by Davis (1993) for piecewise deterministic models. We can show that the value function is the
unique solution of the generalized HJB equation and the maximizer yields an optimal portfolio
strategy. In this section we only present the results, proofs are postponed to section 7.

For the analysis, it is important to note that (pt) is a piecewise deterministic process with
jumps appearing according to the FS-intensity (λ̂t). We denote by

φk(t, p0) = pk(0) +
∫ t

0

∑
j

qjkpj(s)− pk(s)(λk − λ̂s)ds, k = 1, . . . , d

and φ(t, p0) = (φ1(t, p0), . . . , φd(t, p0)) the evolution of the filter between jumps and by

J(p) =
(

λ1p1

λ′p
, . . . ,

λdpd

λ′p

)
the new state of the filter directly after a jump from state p. Moreover, we let Sd be the interior
of the probability simplex ∆d. In order to obtain a reasonable model we assume now that all
states of the Markov chain Y communicate. Thus, the filter process pt will for t > 0 always stay
in Sd. Let us introduce the following operator L which acts on functions v : [0, T ] × Sd → IR
and u ∈ [0, 1]

Lv(t, p, u) := v(t, p)(r + (µ− r)u +
1
2
(γ − 1)σ2u2)

+
λ′p

γ

(
v(t, J(p))

∫
(1 + yu)γQ(dy)− v(t, p)

)
.

In order to motivate the HJB equation of this problem, we give some heuristic arguments.
For this purpose, suppose that the value function V is sufficiently differentiable. An application
of Ito’s Lemma gives:

V (T,Xπ
T , pT ) = V (t, x, p) +

∫ T

t
Vt(s,Xπ

s , ps)ds +
∫ T

t
Vx(s,Xπ

s , ps)dXπ
s

+
d∑

k=1

∫ T

t
Vpk

(s,Xπ
s , ps)dpk(s) +

1
2

∫ T

t
Vxx(s,Xπ

s , ps)σ2
(
Xπ

s

)2
π2

sds

+
∑

0<s≤t

[V (s,Xπ
s , ps)− V (s−, Xπ

s−, ps−)]− Vx(s,Xπ
s , ps)∆Xπ

s

−
d∑

k=1

Vpk
(s,Xπ

s , ps)∆pk(s).
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It can be shown that t 7→ V (t, Xπ
t , pt) is a martingale under the optimal portfolio strategy

and a supermartingale under any admissible strategy. Thus, the drift terms in the preceding
equation have to be zero. Moreover, plugging in the form V (t, x, p) = 1

γ xγg(t, p) yields as an
optimality condition:

0 =
1
γ

gt(t, p) + g(t, p)
(
r + π(µ− r) +

1
2
(γ − 1)σ2π2

)
+

λ′p

γ

(
g(t, J(p))

∫
(1 + yπ)γQ(dy)− g(t, p)

)
+

1
γ

d∑
k=1

gpk
(t, p)

( ∑
j

qjkpj − pk(λk − λ′p)
)
.

However, since the value function (in particular g defined in equation (1)) is probably not
differentiable w.r.t. gk we replace the gradient by the Clarke generalized gradient. The resulting
generalized Hamilton-Jacobi-Bellman equation for our problem then reads as follows

0 = sup
u∈[0,1]

{Lg(t, p, u)}+ sup
θ∈∂g(t,p)

{1
γ

θ0 +
1
γ

d∑
k=1

θk

( ∑
j

qjkpj − pk(λk − λ′p)
)}

with boundary condition g(T, p) = 1 for all p ∈ Sd. The set ∂g(t, p) ⊂ IRd+1 denotes the Clarke
generalized gradient (see Clarke (1983)). This is a weaker notion for differentiability which is
defined as follows: let f : IRd → IR be a locally Lipschitz continuous function. For x, y ∈ IRd

the upper generalized directional derivative of f at x in direction y is defined by

f0(x; y) := lim sup
z→x,ε→0

f(z + εy)− f(z)
ε

.

The Clarke generalized gradient of f at x is now defined by the set

∂f(x) := {θ ∈ IRn | f0(x; y) ≥ θy for all y ∈ IRd}.

∂f(x) is a non-empty, convex, compact subset of IRd and if f is differentiable at x, then
∂f(x) := {∇f(x)}. Moreover, since f is locally Lipschitz continuous, it is almost everywhere
differentiable and we can find for every point x ∈ IRd sequences of points xn ∈ IRd such that
limn→∞ xn = x and f is differentiable at xn. ∂f(x) can then be written as the closed convex
hull of existing limits of sequences ∇f(xn), i.e.

∂f(x) := co{lim sup
n→∞

∇f(xn) | lim
n→∞

xn = x}.

Our first result is a verification theorem:

Theorem 5.1: Suppose there exists a bounded function v : [0, T ] × Sd → IR+ such that for
all p ∈ Sd, t 7→ v(t, φ(t, p)) is absolutely continuous, v(T, p) = 1 and v satisfies the generalized
HJB equation. Further assume that u∗ is a maximizer of the generalized HJB equation, i.e. for
all t ∈ [0, T ] and p ∈ Sd, u∗(t, p) maximizes

u 7→ Lv(t, p, u) on [0, 1].
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Then V (t, x, p) = 1
γ xγv(t, p) and the strategy π∗ = (π∗t ) ∈ U [0, T ] with π∗t := u∗(t−, pt−) is an

optimal feedback strategy for the given portfolio problem.

Note that π∗t depends on FS
t only through pt. The next theorem states the existence of a

solution of the generalized HJB equation.

Theorem 5.2: The value function of our problem is given by V (t, x, p) = 1
γ xγg(t, p) with g

defined by (1) above and g satisfies the generalized HJB equation

0 = sup
u∈[0,1]

{Lg(t, p, u)}+ sup
θ∈∂g(t,p)

{1
γ

θ0 +
1
γ

d∑
k=1

θk

( ∑
j

qjkpj − pk(λk − λ′p)
)}

with boundary condition g(T, p) = 1 for all p ∈ Sd. Moreover, π∗ from Theorem 5.1 (with v
replaced by g) is an optimal portfolio strategy.

5.2 Special Cases and Properties of the Optimal Portfolio Strategy

In this section we investigate the optimal portfolio strategy in some special cases in greater
detail and establish some interesting properties. In particular we discuss the influence of
uncertainty on the optimal portfolio strategy.

A) Jumps occur with known and constant intensity
Suppose that δn ≡ δ ∈ (−1,∞) is deterministic and that the jumps in the stock price process
occur with known constant intensity λ > 0, i.e. λ = λ1 = . . . = λd. This model is similar to the
setup investigated in Øksendal and Sulem (2004) and Framstad et al. (1999). In this case it
is optimal to invest a constant fraction u∗δ(λ) (independent of time) of the wealth in the stock.
Specializing our HJB equation (note that J(p) = p in this case), it is easy to see that u∗δ(λ) is
the maximum point of the mapping

u 7→ (µ− r)u +
1
2
(γ − 1)σ2u2 +

λ

γ
(1 + δu)γ on [0, 1].

In this case it can also be shown that the value function is a classical solution of the HJB
equation.

In what follows we want to compare the optimal fractions which are invested in the stock in
different models. In particular we highlight the role of uncertainty. For this task the following
simple lemma is useful:

Lemma 5.3: Let f, h : [0, 1] → IR be continuous functions and suppose that h is increasing. If
we denote

u∗f := argmax {f(u) | u ∈ [0, 1]}
u∗f+h := argmax {f(u) + h(u) | u ∈ [0, 1]}
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then u∗f ≤ u∗f+h.

Throughout the paper we use increasing and decreasing in the non-strict sense. A direct
implication of the previous lemma is

Lemma 5.4: If δ < 0, then λ 7→ u∗δ(λ) is decreasing and if δ > 0, then λ 7→ u∗δ(λ) is increasing.

Of course this result is not surprising. If we have downward jumps, we invest less in the
stock if the jump intensity increases. In order to investigate the influence of further uncertainty
we have to add a jump martingale to the stock price to keep the expected drift unchanged.
Thus, suppose for a moment that the stock price process evolves according to

dSt = St−(µ̂dt + σdWt + δdηt),

where ηt =
∫ t
0

∫
N(ds, dy)−λt. If we set µ̂ = µ+λδ we obtain a stochastic differential equation

for the stock price in the form given in section 1. In the case without jumps (δ = 0), we know
that the optimal fraction maximizes

u 7→ (µ̂− r)u +
1
2
(γ − 1)σ2u2 on [0, 1].

In the case with jumps (δ 6= 0), we know that the optimal fraction maximizes

u 7→ (µ̂− r)u +
1
2
(γ − 1)σ2u2 +

λ

γ
(1 + δu)γ − λδu on [0, 1].

Thus we obtain the following comparison result:

Theorem 5.5: In the previous model we have

u∗0 ≥ u∗δ(λ).

Proof: In view of Lemma 5.3 it is sufficient to show that

h(u) :=
λ

γ
(1 + δu)γ − λδu

is decreasing for all δ > −1, δ 6= 0. This can be done by showing that h′(u) ≤ 0.

Theorem 5.5 means that the optimal fraction invested in the stock in the model with further
uncertainty coming from jumps is always less or equal to the optimal fraction in the model
without jumps. Note that the expected drift of the stock remains the same in both scenarios.
Since we have a risk averse investor such a result is not unexpected. However also note that
the statement is true for all γ < 1, γ 6= 0. In B) we will observe a different behavior.

B) Jumps occur with unknown and constant intensity - the Bayesian case
Suppose that δn ≡ δ ∈ (−1,∞) is deterministic and that the jumps in the stock price process
occur with unknown constant intensity λ > 0. We assume that λ can be one of the possible

12



values λ1 ≤ . . . ≤ λd and that the initial probability p0 ∈ Sd for the values is given. Thus,
we have a Bayesian control problem with an unknown parameter. This is a special case of our
model, if we formally set the intensity matrix of the Markov chain (Yt) to zero, i.e. Q0 = 0
and the Markov chain stays in the initial state. If we define

pk(t) = P (Y0 = ek | FS
t ) = P (λ = λk | FS

t )

and pt = (p1(t), . . . , pd(t)), then the following equation holds

pk(t) = pk(0) +
∫ t

0
pk(s−)

(λk − λ̂s−

λ̂s−

)
dη̂s

where (η̂t) is defined as in Lemma 3.1. The optimal fraction π∗t invested in the stock depends
on the time and the estimate pt−, i.e π∗t = u∗δ(t−, pt−) and u∗δ maximizes

u 7→ (µ− r)u +
1
2
(γ − 1)σ2u2 +

λ′p

γ

g(t, J(p))
g(t, p)

(1 + δu)γ on [0, 1].

It is possible to compare the optimal portfolio strategy of this scenario with the previous case
A) of complete observation.

Theorem 5.6: The optimal fraction u∗δ(t, p) invested in the stock has the following properties:

a) If δ < 0 (downward jumps) it holds for all (t, p) ∈ [0, T ]× Sd that

u∗δ(λd) ≤ u∗δ(t, p) ≤ u∗δ(λ1).

If δ > 0 (upward jumps) the inequalities are reversed.

b) If δγ < 0 it holds for all (t, p) ∈ [0, T ]× Sd that

u∗δ(λ
′p) ≤ u∗δ(t, p).

If δγ > 0 the inequality is reversed.

Proof:

a) Suppose δ < 0. In view of Lemma 5.3 it suffices to show

λ′p · g(t, J(p)) ≥ λ1 g(t, p) and λ′p · g(t, J(p)) ≤ λd g(t, p).

Recall that

g(t, p) = sup
π∈U [t,T ]

gπ(t, p) = sup
π∈U [t,T ]

d∑
j=1

pjgπ(t, ej).

Now suppose π ∈ U [t, T ] is fix. Note that due to the definition gπ(t, ej) ≥ 0 for all
t ∈ [0, T ] and j. We obtain

λ′p · gπ(t, J(p)) =
d∑

j=1

pjλjgπ(t, ej) ≥ λ1

d∑
j=1

pjgπ(t, ej) = λ1 gπ(t, p).

Taking the supremum over all π ∈ U [t, T ] then yields the first inequality. The case δ > 0
and the second statement obviously follows similarly.

13



b) Suppose δ < 0 and 0 < γ < 1. In view of Lemma 5.3 it suffices to show

g(t, J(p)) ≤ g(t, p).

Note that if p = ej , the counting process of jumps is simply a Poisson process with
intensity λj . Moreover, it is well-known that if λ ≥ λ̂ > 0, then a Poisson process with
intensity λ pathwise stochastically dominates a Poisson process with intensity λ̂ (see e.g.
Sec. 4.3.3 in Müller and Stoyan (2002)). Thus, under an arbitrary fixed π ∈ U [t, T ] we
have Xπ

t ≤st X̂π
t where ≤st is the usual stochastic order. Thus, the value function is

decreasing in λ and we obtain

gπ(t, e1) ≥ . . . ≥ gπ(t, ed),

for all t ∈ [0, T ]. Thus, it follows that

d∑
j=1

pjgπ(t, ej)
d∑

j=1

pjλj ≥
d∑

j=1

pjλjgπ(t, ej)

where this inequality is derived by applying the following general inequality (cf. Mitronovic
et al. (1993)): let α1 ≤ . . . ≤ αd and β1 ≥ . . . ≥ βd be real numbers and p1, . . . , pd ≥
0,

∑d
j=1 pj = 1. Then

d∑
j=1

pjαj

d∑
j=1

pjβj ≥
d∑

j=1

pjαjβj .

Taking the supremum over all π ∈ U [t, T ] then yields the statement.

Please note that in the case γ < 0 we obtain the inequality

gπ(t, e1) ≤ . . . ≤ gπ(t, ed),

for all t ∈ [0, T ] since the value function is negative. The case δ > 0 can be shown
analogously.

Part a) of Theorem 5.6 means that the optimal fraction which is invested in the stock is
bounded by the smallest and largest invested fraction in the models with known intensity λ1

and λd. Part b) of this theorem is most interesting. For example in the case of downward jumps
δ < 0 and γ ∈ (0, 1), the optimal fraction invested in the stock in the model with unknown
jump intensity in state (t, p) is larger than in the model with known (average) intensity λ′p.
Though our investor is risk averse, this is a situation where more uncertainty leads to a higher
investment in the risky stock. If γ < 0 the situation is vice versa. An economic explanation is
that the degree of risk aversion changes with γ. From the Arrow-Pratt absolute risk aversion
coefficient which is

−U ′′(x)
U ′(x)

= (1− γ)
1
x

in the case of the power utility U(x) = 1
γ xγ , we see that the risk aversion decreases with γ for

all wealth levels. If γ → 0 we obtain the logarithmic utility case and we know from section
4 that here the optimal fractions invested coincide, i.e. u∗δ(λ

′p) = u∗δ(t, p). In particular if
γ ∈ (0, 1) the investor is less risk averse. A similar result has been obtained for a model with
unobservable appreciation rate in Rieder and Bäuerle (2005).
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6 Auxiliary Results

In this section we summarize some results which are important for the proofs of our main
theorems. Lemma 6.1 summarizes important properties of the function g defined in (1) which
is part of the value function V .

Lemma 6.1: Let g be defined by (1) in Section 5.

a) p 7→ g(t, p) is convex for all t ∈ [0, T ].

b) t 7→ g(t, p) is decreasing (increasing) for all p ∈ Sd if 0 < γ < 1, (γ < 0).

c) g(t, p) is bounded on [0, T ]× Sd.

d) t 7→ g(t, p) is locally Lipschitz-continuous for all p ∈ Sd.

e) t 7→ g(t, φ(t, p)) is locally Lipschitz-continuous for all p ∈ Sd.

Proof:

a) follows from Lemma 3.3 b).

b) This is equivalent to showing that t 7→ V (t, x, p) is decreasing. But this is clear since
because of r > 0 we get a positive reward over a small time interval by putting all the
money in the stock.

c) For γ < 0 the statement is obvious due to part b) and the fact that g(t, p) ≥ 0 and
g(T, p) = 1. For γ ∈ (0, 1) it suffices to show that g(0, p) is bounded on Sd. It is
convenient to introduce a new measure Qπ by dQπ = Lπ

T dP , where π ∈ U [0, T ] and Lπ
t

is a solution of the stochastic differential equation

dLπ
t = Lπ

t−

(
γσπtdWt +

∫
((1 + yπt)γ − 1)M̂(dt, dy)

)
where M̂(dt, dy) := N(dt, dy) − λ̂tdtQ(dy) is the compensated random measure defined
before. The solution is given by

Lπ
T = exp

{ ∫ T

0

(
− 1

2
γ2σ2π2

s − λ̂s

∫
((1 + yπs)γ − 1)Q(dy)

)
ds +

∫ T

0
γσπsdWs

+γ

∫ T

0

∫
ln(1 + yπs)N(ds, dy)

}
.

It is easy to see that for π ∈ U [0, T ]

gπ(0, p) = E0,p
Qπ

[
exp

{ ∫ T

0
γ
(
r + (µ− r)πs +

1
2
(γ − 1)σ2π2

s

)
+λ̂s

∫
((1 + yπs)γ − 1)Q(dy)ds

}]
.

Since πt, δn and λ̂t = λ′pt are bounded, it follows from this equation that gπ(t, p) is
bounded on [0, T ]× Sd and the bound is independent of π.
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d) In this part we make the dependence of g on the time horizon explicit by writing gπ,T (t, p).
First note the following: if π ∈ U [t, T ] we define π̂ by π̂s = πt+s for s ∈ [0, T − t] which
implies that gπ,T (t, p) = gπ̂,T−t(0, p). Now let 0 ≤ t1 < t2 ≤ T . Then there exists for
every ε > 0 a strategy π ∈ U [0, T − t1] with

|g(t1, p)− g(t2, p)| ≤ |gπ,T−t1(0, p)− gπ,T−t2(0, p)|+ ε

≤ K0E
0,p
Qπ

[∣∣∣∣∣ exp
{ T−t1∫

T−t2

γ
(
r + (µ− r)πs +

1
2
(γ − 1)σ2π2

s

)

+λ̂s

∫
((1 + yπs)γ − 1)Q(dy)ds

}
− 1

∣∣∣∣∣
]

+ ε

≤ K1E
0,p
Qπ

 T−t1∫
T−t2

|γ| · |2r + µ + σ2|+ λ̄

∫
((1 + yπs)γ + 1)Q(dy)ds

 + ε

≤ K2|t2 − t1|+ ε

where λ̄ = maxk λk. This implies the statement if we let ε → 0. Note that K2 can be
chosen independent of p and π.

e) Let 0 ≤ t1 < t2 ≤ T . Then

|g(t2, φ(t2, p))− g(t1, φ(t1, p))| = |g(t2, φ(t2, p))− g(t2, φ(t1, p)) +
g(t2, φ(t1, p))− g(t1, φ(t1, p))|

≤ |g(t2, φ(t2, p))− g(t2, φ(t1, p))|
+ |g(t2, φ(t1, p))− g(t1, φ(t1, p))|.

Since g is convex in p it is also locally Lipschitz-continuous in p ∈ Sd with a module K3

which can be chosen independent of t (see e.g. Sec. 10 in Rockafellar (1970)). Therefore
we obtain

|g(t2, φ(t2, p))− g(t1, φ(t1, p))| ≤ K3‖φ(t2, p)− φ(t1, p)‖+ K2|t2 − t1|.

But obviously t 7→ φ(t, p) is also locally Lipschitz-continuous with a module independent
of p which yields the result.

Recall that 0 = T0 < T1 < T2 < . . . are the jump time points of the Markov-modulated
Poisson process. Since t 7→ g(t, φ(t, p)) is locally Lipschitz-continuous, there exists a function
Dg(s, ps) such that

g(Ti−, pTi−)− g(Ti−1, pTi−1) =
∫ Ti

Ti−1

Dg(s, ps)ds.

Almost everywhere on the time interval [0, T ], the derivative of g(s, ps) w.r.t. s exists and we
can choose Dg(s, ps) = gt(s, ps) +

∑
k gpk

(s, ps)φ̇k(s, p). Let us define the operator

Hv(t, p, u) := Lv(t, p, u) +
1
γ

Dv(t, p)

16



for all functions v : [0, T ] × Sd → IR where the right-hand side is well defined. Note that the
HJB equation can be written as

0 = sup
u∈[0,1]

{Hv(t, p, u)} = sup
u∈[0,1]

{Lv(t, p, u)}+
1
γ

Dv(t, p)

at those points (t, p) where v is differentiable.

Lemma 6.2: Suppose that π ∈ U [0, T ] is an arbitrary strategy. The value function V satisfies
the following stochastic differential equation

dV (t, Xπ
t , pt) = (Xπ

t )γ ·Hg(t, pt, πt)dt + dηπ
t ,

where (ηπ
t ) is an FS-martingale with zero expectation.

Proof: Let π ∈ U [0, T ] be arbitrary. Using Ito’s Lemma we can verify that Zπ
t := (Xπ

t )γ

satisfies the following stochastic differential equation

dZπ
t = γZπ

t (r + (µ− r)πt +
1
2
(γ − 1)σ2π2

t )dt

+γZπ
t σπtdWt + Zπ

t−

∫
((1 + yπt−)γ − 1)N(dt, dy).

Moreover, since t 7→ g(t, φ(t, p)) is absolutely continuous, we can write

g(t, pt) = g(0, p0) +
∫ t

0
Dg(s, ps)ds +

∑
0<s≤t

g(s, ps)− g(s−, ps−).

Since V (t, Xπ
t , pt) = 1

γ Zπ
t · g(t, pt), the product rule implies

V (t, Xπ
t , pt) = V (0, x, p) +

∫ t

0
g(s, ps)Zπ

s (r + (µ− r)πs +
1
2
(γ − 1)σ2π2

s)ds

+
∫ t

0
g(s, ps)Zπ

s σπsdWs +
∫ t

0
Zπ

s

1
γ

Dg(s, ps)ds

+
1
γ

∑
0<s≤t

Zπ
s g(s, ps)− Zπ

s−g(s−, ps−).

Let us define

ηπ,1
t :=

1
γ

∑
0<s≤t

Zπ
s g(s, ps)− Zπ

s−g(s−, ps−)

−1
γ

∫ t

0
Zπ

s λ̂s

(
g(s, J(ps))

∫
(1 + yπs)γQ(dy)− g(s, ps)

)
ds.

According to Brémaud p.27, T8, (ηπ,1
t ) is an FS−martingale, since

E

[∫ T

0
|Zπ

s g(s, ps)− Zπ
s−g(s−, ps−)|λ′psds

]
< ∞.
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Moreover, due to our boundedness conditions

ηπ,2
t :=

∫ t

0
g(s, ps)Zπ

s σπsdWs

is also an FS-martingale. If we define now ηπ
t := ηπ,1

t + ηπ,2
t the statement follows.

Theorem 6.3: Bellman equation
Let τ ∈ [t, T ] be an FS-stopping time. Then

V (t, x, p) = sup
π∈U [t,T ]

Et,x,p [V (τ,Xπ
τ , pτ )] .

The proof of the Bellman equation follows the usual recipe and we skip it here.

7 Proofs for the Results in Section 5.1

In this section we provide the proofs of the Verification Theorem and the fact that V is a
solution of the generalized HJB equation.

Proof of Theorem 5.1:
Let π ∈ U [0, T ] be an arbitrary strategy. Then we obtain for Zπ

t := (Xπ
t )γ and G(t, x, p) :=

1
γ xγv(t, p) as in Lemma 6.2

G(T,Xπ
T , pT ) = G(t, x, p) +

∫ T

t
Zπ

s ·Hv(s, ps, πs)ds + ηπ
T − ηπ

t

where (ηπ
t ) is an FS-martingale with zero expectation. At those points where v(s, ps) is differ-

entiable we have Hv(s, ps, πs) ≤ 0 since v satisfies the generalized HJB equation. Moreover,
s 7→ v(s, ps) is almost everywhere differentiable which yields∫ T

0
Zπ

s ·Hv(s, ps, πs)ds ≤ 0.

Thus, we obtain

G(T,Xπ
T , pT ) ≤ G(t, x, p) + ηπ

T − ηπ
t .

Taking the conditional expectation on both sides (note that G(T,Xπ
T , pT ) = U(Xπ

T )) yields:

Et,x,p[U(Xπ
T )] ≤ G(t, x, p).

Taking the supremum over all admissible strategies gives V (t, x, p) ≤ G(t, x, p). Next, note
that the maximum points of the HJB equation trivially exist. If we use π∗ we obtain∫ T

t
Zπ∗

s ·Hv(s, ps, π
∗
s)ds = 0
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and the result follows.

Proof of Theorem 5.2:
Let τ be the time of the first jump of the stock price process (St) after time t. From the

Bellman equation (Theorem 6.3) we obtain for every strategy π ∈ U [t, T ] and t < t′ ≤ T :

V (t, x, p) ≥ Et,x,p [
V (τ ∧ t′, Xπ

τ∧t′ , pτ∧t′)
]
.

From Lemma 6.2 we know that for Zπ
t = (Xπ

t )γ

V (τ ∧ t′, Xπ
τ∧t′ , pτ∧t′) = V (t, x, p) +

∫ τ∧t′

t
Zπ

s ·Hg(s, ps, πs)ds + ηπ
τ∧t′ − ηπ

t .

Inserting this equation in the preceding inequality yields

0 ≥ Et,x,p

[∫ τ∧t′

t
Zπ

s ·Hg(s, ps, πs)ds

]
.

Let π̃ be now a fixed strategy with π̃s ≡ u ∈ [0, 1] for s ∈ [t, t + ε), ε > 0. Thus, we get

0 ≥ lim
t′↓t

Et,x,p

[
1

t′ − t

∫ τ∧t′

t
Z π̃

s ·Hg(s, ps, π̃s)ds

]
=

= lim
t′↓t

Et,x,p

[
1

t′ − t

∫ t′

t
Z π̃

s ·Hg(s, ps, π̃s)ds
∣∣∣ t′ < τ

]
P (t′ < τ) +

+ lim
t′↓t

Et,x,p
[

1
t′ − t

∫ τ

t
Z π̃

s ·Hg(s, ps, π̃s)ds
∣∣∣ t′ ≥ τ

]
P (t′ ≥ τ)

Since P (τ ≤ t′) ≤ 1 − e−λ̄(t′−t) → 0 for t′ ↓ t, where λ̄ = maxk λk, we obtain at those points
(t, p) where g is differentiable

0 ≥ Z π̃
t ·Hg(t, p, u).

From the definition we see that Z π̃
t > 0 which yields 0 ≥ Hg(t, p, u). Let now (t, p) be an arbi-

trary point, where g might not be differentiable. We know that
∂g(t, p) = co{lim supn→∞∇g(tn, ptn), tn → t} which means by definition that every θ ∈ ∂g(t, p)
is a convex combination of θm = lim supn→∞∇g(tmn , ptmn ) for sequences tmn → t, along which g
is differentiable. Since g is continuous, we obtain

0 ≥ Lg(t, p;u) +
1
γ

θm
0 +

1
γ

d∑
k=1

θm
k

( ∑
j

qjkpj − pk(λk − λ̂)
)

which yields the same inequality with θ. Finally since u and θ are arbitrary, we obtain

0 ≥ sup
u∈[0,1]

{Lg(t, p;u)}+ sup
θ∈∂g(t,p)

{1
γ

θ0 +
1
γ

d∑
k=1

θk

( ∑
j

qjkpj − pk(λk − λ̂)
)}

.

On the other hand, for ε > 0 and 0 < t < t′ ≤ T with t′ − t > 0 small enough there exists
a strategy πε,t′ ∈ U [t, T ] with

V (t, x, p)− ε(t′ − t) ≤ Et,x,p
[
V (τ ∧ t′, Xπε,t′

τ∧t′ , pτ∧t′)
]
.
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Again with Lemma 6.2 we obtain

−ε(t′ − t) ≤ Et,x,p

[∫ τ∧t′

t
Zπε,t′

s ·Hg(s, ps, π
ε,t′
s )ds

]
.

Thus, we get

−ε ≤ Et,x,p

[
1

t′ − t

∫ τ∧t′

t
Zπε,t′

s ·Hg(s, ps, π̃
ε,t′
s )ds

]

≤ Et,x,p

[
1

t′ − t

∫ τ∧t′

t
Zπε,t′

s · sup
u∈[0,1]

Hg(s, ps, u)ds

]
.

Denote now by u∗(t) the maximum point of u 7→ Lg(t, φ(t, p), u) on [0, 1]. Since t 7→ u∗(t) is
continuous we obtain at those points (t, p) where g is differentiable

−ε ≤ xγ sup
u∈[0,1]

Hg(t, p, u)

and since ε > 0 is arbitrary
0 ≤ sup

u∈[0,1]
Hg(t, p, u).

The analysis if g is not differentiable at (t, p) follows in the same way as before by using the
convexity of ∂g(t, p). Altogether it follows that V satisfies the generalized HJB equation.
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