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Abstract
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of Kusuoka (2001) of coherent, law-invariant risk measures with the Fatou property to
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1 Introduction

Risk measures assign a real number to a risk, which is described by a random variable

X : Ω → R. As usual in actuarial sciences we assume thatX describes a potential loss, but we

allow X to assume negative values, which means that a gain occurs. Typically risk measures

are defined by an axiomatic approach. For pioneering work in actuarial science, where risk

measures occur in the context of premium principles, see e.g. Goovaerts et al. (1984). In

the financial literature there is a seminal paper by Artzner et al. (1999). Reasonable axioms

for risk measures which have been used throughout the literature are monotonicity, i.e. if

X ≤ Y then ρ(X) ≤ ρ(Y ) and convexity, i.e. ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y )

for all λ ∈ [0, 1]. Of course monotonicity captures the idea that a larger loss is more risky.

The meaning of convexity is a mathematical formulation that diversification pays. Namely

the risk of a portfolio which diversifies between two risks X and Y is less, than the sum of

the risks in both positions. For more details on convex risk measures we refer the reader to

Föllmer and Schied (2002).

On the other hand there is a long tradition of decision theory which faces a similar

problem and often uses stochastic orderings to formulate some favorable properties of risks.

For example, if X and Y are two risks and X ≤st Y , where ≤st is the usual stochastic order,

then any rational decision maker would prefer X. Another important ordering to compare

risks is the convex ordering ≤cx which is often used in the actuarial sciences, and which is

related to notions of risk aversion. Here once more it is reasonable to assume that if X and

Y are two risks and X ≤cx Y , then a rational decision maker would prefer X if she is risk

averse, see e.g. Rothschild and Stiglitz (1970).

The problem whether risk measures are monotone with respect to stochastic orderings

has been considered in the literature before for special cases. Pflug (1999) has shown that

several risk measures are consistent with second order stochastic dominance. Similar results

can be found in a series of papers by Ogryczak and Ruszczyński (1999,2001,2002). De Giorgi

(2005) uses consistency with respect to second order stochastic dominance as an axiom in

his definition of a risk measure. Goovaerts et al. (2004) show preservation of convex ordering

for the so called Haezendonck risk measure.

In this paper we study in general the problem of consistency in the following sense: Is it

true that a monotone risk measure ρ has the property that X ≤st Y implies ρ(X) ≤ ρ(Y ) and

that a convex risk measure has the property that X ≤cx Y implies ρ(X) ≤ ρ(Y )? At least

for the monotonicity property this seems to be a trivial statement. However, surprisingly we

show that these statements can be wrong. The crucial point is the probability space on which

the risks are defined. On certain finite probability spaces these implications can be wrong,
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whereas they are true on non-atomic probability spaces. Of course for practical purposes this

means that the stochastic orderings and the corresponding properties of risk measures are

consistent. This holds also for the stop-loss order and for second order stochastic dominance

which are combinations of the stochastic and convex order and are often used in the actuarial

sciences or the economic literature.

We apply our results to bound the risk of a portfolio, i.e. of the joint financial position

X1 + . . . +Xn. This is of practical importance, since in many situations only the marginal

distributions of X1, . . . , Xn are known and not the dependence relation between them. This

topic has been discussed in Embrechts et al. (2003) for the Value-at Risk. However, the Value-

at Risk is not a convex risk measure. For convex risk measures we derive tight upper bounds

which can be computed quite efficiently. For example we show that the general Markowitz

type portfolio optimization problem with conservative upper bound can be solved by a linear

program.

Most of the literature on risk measures deals with bounded risks. However, financial

risks are typically unbounded and even heavy-tailed in actuarial applications. This is the

reason why we decided to use L1 as a framework for modelling risks. As a consequence we

had to extend some results from L∞ to L1. In particular, we extended the characteriza-

tion of Kusuoka (2001) of coherent, law-invariant risk measures with the Fatou property to

unbounded random variables. This seems to be an interesting result of its own.

Our paper is organized as follows: in section 2 we review the necessary theory of stochastic

orderings and in section 3 we deal with risk measures on finite probability spaces. The theory

of risk measures on L1 and non-atomic probability spaces is developed in section 4. The

remaining sections deal with the applications of obtaining tight upper bounds for the risk of

portfolios and with portfolio optimization problems.

2 Stochastic orders

Let us recall some basic definitions and results from the theory of stochastic orders. For a

comprehensive review we refer to Shaked and Shanthikumar (1994) or Müller and Stoyan

(2002). In the following, in inequalities between expectations it is always tacitly assumed

that the expectations exist. Throughout the paper we assume that all mentioned random

variables have a finite mean and are defined on a common probability space (Ω,A, P ) unless

stated otherwise.
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Definition 2.1. For given random variables X, Y we define the order relations

X ≤st Y , if Ef(X) ≤ Ef(Y ) for all increasing f.

X ≤cx Y , if Ef(X) ≤ Ef(Y ) for all convex f.

X ≤icx Y , if Ef(X) ≤ Ef(Y ) for all increasing convexf.

X ≤icv Y , if Ef(X) ≤ Ef(Y ) for all increasing concavef.

The ordering ≤st is called usual stochastic ordering or first order stochastic dominance

(FSD). In a financial setting it means that any rational decision maker, having a utility

function in the sense of von Neumann-Morgenstern, prefers the return Y to the return X.

In the following theorem we collect some basic results for the order relation ≤st. For more

details see Müller and Stoyan (2002), section 1.2.

For any random variable X we denote by FX(t) := P (X ≤ t), t ∈ R the distribution

function and by

qX(α) := inf{x ∈ R | P (X ≤ x) ≥ α}, 0 < α < 1,

the quantile function, which is the generalized inverse of the distribution function.

Theorem 2.2. For random variables X and Y with distribution functions FX and FY the

following statements are equivalent:

(i) X ≤st Y ;

(ii) there is a probability space (Ω′,A′, P ′) and random variables X ′ and Y ′ on it with the

distribution functions FX and FY such that X ′(ω′) ≤ Y ′(ω′) for all ω′ ∈ Ω′;

(iii) FX(t) ≥ FY (t) for all t.

(iv) qX(α) ≤ qY (α) for all α ∈ (0, 1).

In part (ii) it is always possible to choose Ω′ = (0, 1), A′ the Borel-σ-algebra, P ′ the

Lebesgue-measure, and X ′(ω) := qX(ω), Y ′(ω) := qY (ω). If X and Y are random variables

on some finite probability space Ω, then it is, however, not always possible to choose Ω′ = Ω!

Example 2.3. Let Ω = {ω1, ω2} with P ({ω1}) = 1/3, P ({ω2}) = 2/3, and consider

X(ω1) = 3, X(ω2) = 1, Y (ω1) = 2, Y (ω2) = 4.
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Then X ≤st Y , but X(ω1) > Y (ω1). As the probabilities of ω1 and ω2 are different, there

do not exist two different random variables with the same distribution on Ω. Therefore

there are no random variables X ′ =st X and Y ′ =st Y on Ω with X ′ ≤ Y ′ a.s.! One has

to choose some strictly larger sample space Ω′ to find random variables with this property.

In this case it is possible to choose Ω′ = {ω1, ω2, ω3} with P ′({ωi}) = 1/3, i = 1, 2, 3, and

X ′(ω1) = X ′(ω2) = 1, X ′(ω3) = 3, Y (ω1) = 2, Y ′(ω2) = Y ′(ω3) = 4. Then X ′ =st X,

Y ′ =st Y , and X ′ ≤ Y ′ P ′-a.s.

The ordering ≤icx is also known as stop-loss order in actuarial sciences. The reason is that

≤icx holds if and only if the corresponding stop-loss transforms are ordered. The stop-loss

transform πX of a random variable X is defined as

πX(t) = E(X − t)+ = Emax{X − t, 0} =

∫ ∞

t

F̄X(s)ds, t ∈ R.

Here the latter equality follows by partial integration. In decision theory X ≤icx Y has the

meaning that any risk averse decision maker prefers the risk X to the risk Y .

The increasing concave ordering ≤icv is the corresponding ordering for returns instead

of losses. This is also known as second order stochastic dominance (SSD), especially in the

economic literature. If X ≤icv Y holds, where X and Y are risky returns, then any risk averse

decision maker prefers Y to X, see Rothschild and Stiglitz (1970). Note that X ≤icv Y holds,

if and only if −X ≥icx −Y . Because of this equivalence, and as we consider here risks, we

will state our subsequent results for ≤icx. It is easy to translate them into results for ≤icv.

The next result is a slight generalization of Theorem 1.5.14 in Müller and Stoyan (2002).

Theorem 2.4. Let X and Y be random variables on a probability space (Ω,A, P ) with

X ≤icx Y . Then there is a random variable Z on (Ω,A, P ) with

X ≤st Z ≤cx Y.

Proof. The proof of Theorem 1.5.14 in Müller and Stoyan (2002) shows that it is sufficient

to find a random variable Z with πZ(t) = max{πX(t), EY − t}. If EX = EY , then we can

choose Z = X. Otherwise there is a unique point a, where the functions t 7→ πX(t) and

t 7→ EY − t cross. Then we can define

Z(ω) =

a, if X(ω) ≤ a,

X(ω), else.
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Theorem 2.4 shows that it is sufficient to consider the orderings ≤st and ≤cx. If one finds

results for these two orders, then one can combine them to find also results for ≤icx or ≤icv.

For the ordering ≤cx there is a result similar to Theorem 2.2.

Theorem 2.5. For random variables X and Y with distribution functions FX and FY the

following statements are equivalent:

(i) X ≤cx Y ;

(ii) there is a probability space (Ω′,A′, P ′) and random variables X ′ and Y ′ on it with the

distribution functions FX and FY such that E[Y ′|X ′] = X ′;

(iii) πX(t) ≤ πY (t) for all t, and EX = EY .

(iv) ∫ 1

α

qX(s)ds ≤
∫ 1

α

qY (s)ds

for all α ∈ (0, 1), and EX = EY.

As in Theorem 2.2 it is in part (ii) always possible to choose Ω′ = (0, 1), A′ the Borel-

σ-algebra and P ′ the Lebesgue-measure. If X and Y are random variables on some finite

probability space Ω, then it is, however, not always possible to choose Ω′ = Ω! This is not

possible even if P is uniform on Ω, as we will show in the next example.

Example 2.6. Let Ω = {1, 2, 3, 4} with P ({ω}) = 1/4 for all ω, and consider X(ω) = ω and

Y (1) = Y (2) = 1, Y (3) = Y (4) = 4.

It is easy to see that X ≤cx Y , and that a random variable X ′ on Ω has the same distribution

as X if and only if X ′ is a permutation of the numbers 1,2,3,4. Therefore for any random

variable Y ′ having the same distribution as Y it is E[Y ′|X ′] ∈ {1, 4} and E[Y ′|X ′] must

have the same distribution as Y . Therefore E[Y ′|X ′] = X ′ is not possible!

In section 4 we will need results on the relation between convex order and the concept

of a fusion. This topic is considered in Elton and Hill (1992). We will use here a slight

variation of the definition of a fusion given there. We use the notation µP for the mean of

a probability measure P (which is assumed to exist throughout the paper) and δc for the

one-point measure in c.
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Definition 2.7. A probability measure P is said to be a fusion of a probability measure Q,

if there are probability measures P1, P2 and a constant 0 ≤ α ≤ 1 such that

P = αP1 + (1− α)δµP2
and Q = αP1 + (1− α)P2,

In the special case that P2 = Q|A for some set A, our definition coincides with what is

called an elementary fusion in Elton and Hill (1992). Therefore our definition is more general

than the definition of an elementary fusion there. On the other hand it is obvious that for

our definition it still holds that P ≤cx Q, if P is a fusion of Q. We can show the following

result.

Theorem 2.8. For probability measures P and Q with the same finite mean the following

are equivalent:

(i) P ≤cx Q;

(ii) there is a sequence of probability measures (Qn) such that Q0 = Q, Qn+1 is a fusion of

Qn, and Qn converges weakly to P ;

Moreover, there are random variables X,X0, X1, X2, ... with X ∼ P and Xn ∼ Qn such

that E|X −Xn| → 0.

Proof. The equivalence of (i) and (ii) can be shown as Theorem 4.1 in Elton and Hill (1992).

For a simple constructive proof in the case of distributions on the real line see Müller (1996).

To prove the second part of the theorem, let (Xn) be a sequence of random variables with

distributions Qn, which form a reversed martingale. According to Strassen’s theorem (see

equivalence (ii) in Theorem 2.5) such a sequence exists. It follows from the well known

martingale convergence theorem that the sequence (Xn) converges to some random variable

X almost surely and in L1. Obviously X has distribution P .

3 Risk measures on finite probability spaces

In what follows all random variables constitute the outcome of potential losses. Positive

values are regarded as losses, negative values as gains. We start with the basic definitions

of risk measures on a finite probability space. Let (Ω,A, P ) be a probability space with

Ω = {ω1, ..., ωn} finite and A = ℘(Ω). We assume that all elements of Ω are relevant, i.e.

P ({ωi}) > 0 for i = 1, ..., n. We denote by X the set of all functions X : Ω → R. A mapping

ρ : X → R is called a risk measure, if it fulfills some conditions. The following conditions

for X, Y ∈ X are of interest:
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Monotonicity: If X ≤ Y then ρ(X) ≤ ρ(Y );

Translation invariance: if m ∈ R, then ρ(X +m) = ρ(X) +m;

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

Positive homogeneity: if λ > 0, then ρ(λX) = λρ(X);

Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all λ ∈ [0, 1];

Law invariance: If PX = PY , then ρ(X) = ρ(Y ).

According to Artzner et al. (1999) a functional ρ is called a coherent risk measure, if it is

monotone, translation invariant, subadditive and positively homogeneous. They show that

any coherent risk measure has a representation

ρ(X) = sup
Q∈Q

EQ(X), (3.1)

where Q is some set of probability measures. This means that ρ(X) is the worst expected

loss under Q, where Q varies over some set of probability measures.

Föllmer and Schied (2002) introduced the weaker concept of ρ being a convex risk measure

if it satisfies the condition of monotonicity, translation invariance and convexity. They show

that any convex risk measure is of the form

ρ(X) = sup
Q∈Q

(EQ(X)− α(Q)) ,

where α is a penalty function, which can be chosen to be convex and lower semi-continuous

with α(Q) ≥ −ρ(0).

For this section, it is important to note that the notion of law invariance is indeed

ambiguous. There are two interpretations: a weak and a strong one. The weak interpretation

is that for any random variables X and Y defined on an arbitrary probability space (Ω,A, P ),

then PX = PY implies ρ(X) = ρ(Y ), so that (Ω,A, P ) does not really matter. The strong

interpretation is that (Ω,A, P ) is given and we only consider random variables X and Y on

this specific probability space. PX = PY then implies ρ(X) = ρ(Y ). In what follows we will

always understand law invariance in the strong sense. On certain finite probability spaces,

there is a difference between these two notions as we will see in this section. However, on

non-atomic probability spaces both notions coincide (see section 4).

In this paper we are interested in consistency of risk measures with stochastic orders.

Given a stochastic order � we say that a risk measure is
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consistent with �, if X � Y implies ρ(X) ≤ ρ(Y ).

As stochastic orders are law invariant, it is clear that law-invariance is a necessary condition

for such a property. At first sight, it might seem to be an obvious consequence from Theorem

2.2 that a law invariant monotone risk measure has the property that X ≤st Y implies

ρ(X) ≤ ρ(Y ). This, however, is not true in general. If the probability space has atoms of

different size, then law invariance is not a severe restriction, and then it may happen that

the implication becomes wrong.

Example 3.1. Let us look again at Example 2.3 with Ω = {ω1, ω2}, P ({ω1}) = 1/3,

P ({ω2}) = 2/3, and

X(ω1) = 3, X(ω2) = 1, Y (ω1) = 2, Y (ω2) = 4.

Consider the risk measure ρ(X) = X(ω1). This obviously is even a coherent risk measure

(with Q in the representation (3.1) containing only δω1 , the one-point measure in ω1). It is

law-invariant in the strong sense. However, ρ(X) > ρ(Y ), though X ≤st Y .

When P is the uniform distribution on a finite probability space, then there are many

different random variables with the same distributions, namely any permutation of X has

the same distribution as X. In that case, law invariance is a severe restriction that ensures

a monotone risk measure to be monotone with respect to usual stochastic order.

Theorem 3.2. Let Ω = {ω1, ..., ωn} with P (ωi) = 1/n, i = 1, ..., n, and let ρ be a monotone

law-invariant risk measure on X . Then X ≤st Y implies ρ(X) ≤ ρ(Y ).

Proof. It is sufficient to show that for any X, Y : Ω → R with X ≤st Y we can find X ′

and Y ′ on Ω with X ′ =st X, Y ′ =st Y , and X ′(ω) ≤ Y ′(ω) for all ω. Let xi := X(ωi) and

yi := Y (ωi), i = 1, ..., n, and let

x(1) ≤ x(2) ≤ ... ≤ x(n) and y(1) ≤ y(2) ≤ ... ≤ y(n)

be the increasing rearrangements of the vectors (x1, ..., xn) and (y1, ..., yn), respectively. As

x(i) = qX(i/n) and y(i) = qY (i/n), it follows from Theorem 2.2 that x(i) ≤ y(i) for all i.

Therefore it is sufficient to define X ′(ωi) = x(i) and Y ′(ωi) = y(i) for all i.

Next we consider consistency of risk measures with respect to convex order. The natural

conjecture is that X ≤cx Y should imply ρ(X) ≤ ρ(Y ) for any reasonable risk measure.

Again this is not true, if we have a finite probability space with atoms of different size.
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Example 3.3. Let us consider Ω = {ω1, ω2}, P ({ω1}) = 1/3, P ({ω2}) = 2/3, and define

X(ω1) = X(ω2) = 2, Y (ω1) = 4, Y (ω2) = 1.

Consider the coherent and law-invariant risk measure ρ(X) = X(ω2). According to Jensen’s

inequality it is obviously X ≤cx Y , but ρ(X) > ρ(Y ).

Here again we get a positive result for the case of P being the uniform distribution on a

finite set. In that case the only relevant property of a risk measure is its convexity. In the

proof of the next theorem we need some basic facts about majorization and doubly stochastic

matrices. We refer the reader to Marshall and Olkin (1979) for details about this topic.

Theorem 3.4. Let Ω = {ω1, ..., ωn} with P (ωi) = 1/n, i = 1, ..., n, and let ρ be a law-

invariant risk measure having the convexity property. Then X ≤cx Y implies ρ(X) ≤ ρ(Y ).

Proof. Let x = (x1, ..., xn) and y = (y1, ..., yn) be the vectors withX(ωi) = xi and Y (ωi) = yi,

i = 1, ..., n. It is well known that X ≤cx Y holds, if and only if x ≤M y, where ≤M denotes

the majorization order (see e.g. Müller and Stoyan (2002)). According to a theorem of

Hardy, Littlewood and Polya (see e.g. Marshall and Olkin (1979), p. 22) this holds if and

only if there is a doubly stochastic matrix A such that

x = Ay, (3.2)

and according to Birkhoff’s theorem (see e.g. Marshall and Olkin (1979), p. 19) the dou-

bly stochastic matrix A is a convex combination of permutation matrices, i.e. there are

permutation matrices Bj and weights αj, j = 1, ...,m with αj ≥ 0 and
∑m

j=1 αj = 1, such

that

A =
m∑

j=1

αjBj. (3.3)

Define random variables Zj : Ω → R such that Zj(ωi) is the i-th component of Bjy. Then

Zj, j = 1, ...,m all have the same distribution as Y , and it follows from (3.2) and (3.3) that

X =
m∑

j=1

αjZj.

Law-invariance and the convexity property of ρ therefore imply

ρ(X) = ρ

(
m∑

j=1

αjZj

)
≤

m∑
j=1

αjρ(Zj) =
m∑

j=1

αjρ(Y ) = ρ(Y ).
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Notice that the proof does not use any of the properties monotonicity, translation invari-

ance, subadditivity or positive homogeneity of a risk measure. Therefore it applies to risk mea-

sures as considered in Schied (2004). We also note that our Theorem 3.4 is related to Lemma

2.3 in Schied (2004), which implies that on a finite probability space ρ(E[Y |X]) ≤ ρ(Y ) holds

for all law-invariant convex risk measures. In light of Theorem 2.5 one might believe that

this implies consistency with respect to ≤cx. However, it is not possible to prove Theorem

3.4 with this approach, as Example 2.6 reveals.

Also one might be tempted to assume that the converse statement of Theorem 3.4 holds,

i.e. suppose ρ is a risk measure which is consistent with ≤cx. Is then ρ convex in the

sense of the postulated axiom? The answer is no! This can be seen from the following

counterexample: Let (Ω,A, P ) be any nontrivial probability space and define

ρ(X) =

EX, if V ar(X) ≤ 1,

EX + 1, if V ar(X) > 1.

So ρ is only a function of the expectation and the variance, thus clearly law-invariant,

and increasing in the expectation and the variance. As X ≤cx Y implies EX = EY and

V ar(X) ≤ V ar(Y ), this in turn implies ρ(X) ≤ ρ(Y ). However, ρ is not convex. Assume

that X ≡ 0 and let Y be a random variable with EY = 0 and V ar(Y ) = 5. Then ρ(X) = 0,

ρ(Y ) = 1, and

ρ(
1

2
X +

1

2
Y ) = ρ(

1

2
Y ) = 1 >

1

2
=

1

2
ρ(X) +

1

2
ρ(Y ).

For a law-invariant, monotone and convex risk measure we can combine Theorem 3.2

with Theorem 3.4 to get consistency of the risk measure with ≤icx.

Theorem 3.5. Let Ω = {ω1, ..., ωn} with P (ωi) = 1/n, i = 1, ..., n, and let ρ be a law-

invariant risk measure on X , having the monotonicity and convexity property. Then X ≤icx

Y implies ρ(X) ≤ ρ(Y ).

Proof. Assume that X ≤icx Y . According to Theorem 2.4 there is some Z with X ≤cx Z ≤st

Y . It follows from Theorem 3.4 that ρ(X) ≤ ρ(Z) and from Theorem 3.2 that ρ(Z) ≤ ρ(Y ).

Hence ρ(X) ≤ ρ(Y ).

4 Risk measures on non-atomic probability spaces

We now assume that (Ω,A, P ) is a standard probability space with P non-atomic. This

implies that for any distribution Q on R there is a random variable X : Ω → R with Q = PX .

Indeed, there even exists a sequence of i.i.d. random variables with this distribution. In the
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literature on risk measures it is typically assumed that the risk measure is defined on the set

L∞(Ω,A, P ) of all bounded random variables, see e.g. Artzner et al. (1999) and Kusuoka

(2001). Almost all concrete models in insurance and finance, however, consider unbounded

random variables with e.g. normal distributions or even heavy tailed distributions. Therefore

we consider it more natural to work with the larger space X = L1(Ω,A, P ) of all random

variables having a finite mean under P . This makes it necessary to allow a risk measure

to assume the value +∞, compare Delbaen (2002). Thus a risk measure is a mapping

ρ : X → R ∪ {+∞}. The properties monotonicity, translation invariance, subadditivity,

positive homogeneity, convexity and law-invariance are defined as before. Notice that since

the probability space is now rich enough, law-invariance even in the strong sense means that

ρ can equivalently be considered as a mapping on the set of all distribution functions of

probability measures with a finite mean. In this general setting continuity properties are of

additional interest. We first show that we can not expect a risk measure to be continuous

with respect to convergence in law.

Theorem 4.1. Let ρ be a monotone, convex and law-invariant risk measure, continuous

with respect to convergence in law. Then ρ is constant.

Proof. Without loss of generality we assume that Ω = (0, 1), A is the Borel-σ-algebra and

P is Lebesgue-measure and fix two numbers a < b. Define X0 ≡ b and for n = 1, 2, 3, ... let

Xn(ω) =

2nb+ (1− 2n)a, ω ≤ 1/2n,

a, otherwise,

and

X ′
n(ω) =

2nb+ (1− 2n)a, 1/2n < ω ≤ 2/2n,

a, otherwise.

Thus Xn =st X
′
n, Xn = 1

2
(Xn+1 +X ′

n+1) and Xn → a in law. Convexity and law-invariance

imply

ρ(Xn) = ρ(
1

2
(Xn+1 +X ′

n+1)) ≤
1

2
ρ(Xn+1) +

1

2
ρ(X ′

n+1) = ρ(Xn+1)

Thus n 7→ ρ(Xn) is an increasing sequence. Therefore monotonicity of the risk measure

implies

ρ(a) = lim
n→∞

ρ(Xn) ≥ ρ(X0) = ρ(b) ≥ ρ(a)

Thus ρ(a) = ρ(b) and by monotonicity we get for any X with a ≤ X ≤ b that ρ(X) =

ρ(a). As a and b were arbitrary, this implies that ρ is constant on the set of all bounded
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random variables, and approximating an unbounded random variable Y by the sequence

Yn = (Y ∧ n) ∨ −n of bounded random variables, this extends also to unbounded random

variables.

In what follows we denote by Xn →w X weak convergence, Xn →p X convergence in

probability and by Xn →L1 X convergence in L1, i.e. E|X −Xn| → 0. In the literature on

risk measures, where only random variables in L∞ are considered, one typically assumes the

following lower semi-continuity assumption, called Fatou property:

If (Xn) is a uniformly bounded sequence of random variables with Xn →p X, then

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

As we are working on L1, it is natural to replace this condition by the more natural

following condition, that we will also call the Fatou property:

If X,X1, X2, ... are integrable random variables with Xn →L1 X, then

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

Recall that Xn →L1 X holds if and only if both Xn →p X and (Xn) is uniformly

integrable. Therefore a uniformly bounded sequence (Xn) converging to X in probability

of course satisfies Xn →L1 X, and thus our condition is more general than the usual one.

Moreover, notice that the sequence (Xn) used in the proof of Theorem 4.1 does not satisfy

Xn →L1 X.

Now we will show that under reasonable assumptions risk measures on non-atomic prob-

ability spaces are consistent with usual stochastic order and convex order.

Theorem 4.2. Assume that (Ω,A, P ) is a standard probability space with P non-atomic, and

let the risk measure ρ be monotone and law-invariant. Then X ≤st Y implies ρ(X) ≤ ρ(Y ).

Proof. As all non-atomic standard probability spaces are Borel isomorph, we can assume

without loss of generality that Ω = (0, 1) and that P is the Lebesgue-measure. If X and Y

are random variables with X ≤st Y , then there are random variables X ′ and Y ′ on (Ω,A, P )

with the same distribution satisfying X ′ ≤ Y ′, see Theorem 2.2 and the subsequent remark.

Therefore monotonicity and law-invariance of the risk measure imply

ρ(X) = ρ(X ′) ≤ ρ(Y ′) = ρ(Y ).

Theorem 4.3. Assume that (Ω,A, P ) is a standard probability space with P non-atomic,

and assume that the risk measure ρ is convex, law-invariant and has the Fatou property.

Then X ≤cx Y implies ρ(X) ≤ ρ(Y ).

12



Proof. We first define X1 := X, X2 := Y and assume that PX1 is a fusion of PX2 . This

means that there are probability measures P1 and P2 such that

PX1 = αP1 + (1− α)δµP2
and PX2 = αP1 + (1− α)P2,

Let W, I, Y1, Y2, ... be random variables with P (I = 1) = α = 1 − P (I = 0), W having

distribution P1 and Y1, Y2, ... being a sequence of i.i.d. random variables having distribution

P2. Define Vn := IW + (1− I)Yn, n = 1, 2, .... Then Vn has the same distribution as X2 and

V0 := IW + (1− I)EY1 has the same distribution as X1. Since

1

n

n∑
i=1

Vi = IW + (1− I)
1

n

n∑
i=1

Yi,

it follows from the law of large numbers that

E

∣∣∣∣∣V0 −
1

n

n∑
i=1

Vi

∣∣∣∣∣ = E

∣∣∣∣∣(1− I)
1

n

n∑
i=1

(Yi − EY1)

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1n
n∑

i=1

(Yi − EY1)

∣∣∣∣∣→ 0.

Thus law-invariance, convexity and the Fatou-property imply

ρ(X1) = ρ(V0) ≤ lim inf
n→∞

ρ(
1

n

n∑
i=1

Vi) ≤ lim inf
n→∞

1

n

n∑
i=1

ρ(Vi) = ρ(V1) = ρ(X2).

Now consider arbitrary X1 and X2 with X1 ≤cx X2. According to Theorem 2.8 there is

a sequence of probability measures (Pn) such that P0 = PX2 , Pn+1 is a fusion of Pn, and

Pn →w PX1 , and there exists a sequence {Zn} of random variables with distributions {Pn}
such that Zn →L1 Z for some Z with the same distribution as X1. It follows from the first

part of the proof that ρ(Zn+1) ≤ ρ(Zn), and applying the Fatou-property once more yields

ρ(X1) = ρ(Z) ≤ lim inf
n→∞

ρ(Zn) ≤ ρ(Z0) = ρ(X2).

As in Theorem 3.5 we can combine Theorem 4.2 and Theorem 4.3 to get the following

result.

Theorem 4.4. Assume that (Ω,A, P ) is a standard probability space with P non-atomic,

and let ρ be a monotone, convex and law-invariant risk measure with the Fatou property.

Then X ≤icx Y implies ρ(X) ≤ ρ(Y ).

13



Of course the question arises, whether there exist risk measures on L1 with these prop-

erties, in particular the Fatou property and how they look like. We will show now that it

is possible to extend the characterization of Kusuoka (2001) of coherent, law invariant risk

measures with the Fatou property from L∞ to L1. To this end, we recall the definition of

the risk measure Conditional Value at Risk (CVaR), which is defined for some fixed value

α ∈ (0, 1] as

ρα(X) :=
1

α

∫ 1

1−α

qX(u)du.

We also set

ρ0(X) := ess.sup(X).

Note that ρα : L1 → R∪{∞}, α ∈ [0, 1] is well-defined, ρ1(X) = EX and ρα(X) is decreasing

in α (see e.g. Acerbi and Tasche (2002)). We obtain the following theorem:

Theorem 4.5. Assume that (Ω,A, P ) is a standard probability space with P non-atomic. A

risk measure ρ : L1(Ω,A, P ) → R is a law invariant coherent risk measure with the Fatou

property if and only if the following representation holds:

ρ(X) = sup{
∫ 1

0

ρα(X)µ(dα);µ ∈ P0}, (4.1)

where P0 is a compact, convex set of probability measures on [0, 1].

Proof. First assume that ρ is of the given form. Obviously ρ is law invariant. Acerbi and

Tasche (2002) have shown that ρα is coherent. As coherence is preserved under taking convex

combinations and suprema, it follows that ρ is coherent, too. Thus, it remains to show that ρ

satisfies the Fatou property, i.e. for X,X1, X2, . . . ∈ L1 with Xn →p X and {Xn} uniformly

integrable, it follows that

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

First note that Xn →p X implies qXn(α) → qX(α) for almost all α ∈ (0, 1) and that qX(U)

has distribution function FX , where U is a random variable with uniform distribution on

(0, 1). Thus, we obtain by assumption that {qXn(U)} is uniformly integrable. Applying a

standard result from probability theory we obtain for α ∈ (0, 1]

ρα(X) =
1

α

∫ 1

1−α

qX(u)du =
1

α

∫ 1

1−α

lim
n→∞

qXn(u)du

= lim
n→∞

ρα(Xn).

Also note that Xn →p X implies lim infn→∞ ρ0(Xn) ≥ ρ0(X) (but not necessarily equality).

Next let µ ∈ P0 be arbitrary. Recall that α 7→ ρα(X) is decreasing with ρ1(X) = EX.

14



Suppose that N(ε) is such that |EXn − EX| ≤ ε for all n ≥ N(ε). Thus, for all n ≥ N(ε)

and all α ∈ [0, 1] we have ρα(Xn) ≥ EX − ε and the Lemma of Fatou implies

lim inf
n→∞

∫ 1

0

ρα(Xn)µ(dα) ≥
∫ 1

0

ρα(X)µ(dα).

Obviously we have for all µ′ ∈ P0:

sup{
∫ 1

0

ρα(Xn)µ(dα);µ ∈ P0} ≥
∫ 1

0

ρα(Xn)µ′(dα).

Taking the limes inferior on both sides yields

lim inf
n→∞

ρ(Xn) ≥ lim inf
n→∞

∫ 1

0

ρα(Xn)µ′(dα) ≥
∫ 1

0

ρα(Xn)µ′(dα).

Since this inequality holds for all µ′ ∈ P0, taking the supremum over all µ′ ∈ P0 implies the

Fatou property of the risk measure ρ.

Now we have to show that any law invariant coherent risk measure ρ′ with the Fatou

property is of the given form. Consider the restriction of ρ′ to L∞. By Theorem 4 in Kusuoka

(2001) there is a representation as in (4.1), which we will denote by ρ. We have to show that

ρ = ρ′ also holds for unbounded random variables in L1. Suppose first X ∈ L1 and X is

bounded from below. Consider the sequence Xn := X ∧ n. Thus, Xn are bounded, Xn ↑ X
and {Xn} is uniformly integrable. From the monotonicity and the Fatou property of ρ and

ρ′ and the fact that ρ = ρ′ on L∞, we obtain

ρ(X) ≤ lim inf
n→∞

ρ(Xn) = lim inf
n→∞

ρ′(Xn) ≤ ρ′(X) ≤ lim inf
n→∞

ρ′(Xn) = lim inf
n→∞

ρ(Xn) ≤ ρ(X).

Thus, ρ(X) = ρ′(X) for all X ∈ L1 which are bounded from below. Next let X ∈ L1

be arbitrary and consider Xn := X ∨ (−n). Obviously we have Xn ↓ X, Xn are bounded

from below and {Xn} is uniformly integrable. First notice that for this special sequence

{Xn} we have limn→∞ ρ(Xn) = ρ(X). This can be seen as follows: fix n large. Then we

have qXn(u) = qX(u) for all u ≥ α∗ and ρ0(Xn) = ρ0(X). Thus, ρα(Xn) = ρα(X) for all

α ≤ 1− α∗. Now for α > 1− α∗ we obtain

|ρα(Xn)− ρα(X)| = 1

α

∣∣∣∣∫ 1

1−α

qXn(u)− qX(u)du

∣∣∣∣ ≤ 1

1− α∗
|EX − EXn|.

The last expression can be made small enough by choosing n large enough. Hence, ρα(Xn) →
ρα(X) uniformly for α ∈ [0, 1], which implies for all ε > 0 that there is an N(ε) such that

for all n ≥ N(ε) and µ ∈ P0:∫ 1

0

ρα(Xn)µ(dα) ≤
∫ 1

0

ρα(X)µ(dα) + ε.

15



Taking the supremum over all µ ∈ P0, letting ε ↓ 0 and combining this with the Fatou

property yields

ρ(X) ≤ lim inf
n→∞

ρ(Xn) ≤ lim sup
n→∞

ρ(Xn) ≤ ρ(X)

and thus limn→∞ ρ(Xn) = ρ(X).

Now we show that indeed ρ(X) = ρ′(X). We have Xn = X+Yn with Yn := (−X−n)∨0.

By subadditivity of ρ′ we get

ρ(Xn) = ρ′(Xn) ≤ ρ′(X) + ρ′(Yn) = ρ′(X) + ρ(Yn).

Taking n→∞ and noting that Yn →L1 0 and ρ(0) = 0 we obtain ρ(X) ≤ ρ′(X). The Fatou

property of ρ′ now implies

ρ′(X) ≤ lim inf
n→∞

ρ′(Xn) = lim inf
n→∞

ρ(Xn) = ρ(X)

and ρ = ρ′ follows.

Now in case of a coherent risk measure an alternative proof of Theorem 4.4 is possible,

based on the characterization in Theorem 4.5.

Corollary 4.6. Assume that (Ω,A, P ) is a standard probability space with P non-atomic.

Let ρ : L1(Ω,A, P ) → R be a law invariant coherent risk measure with the Fatou property.

Then X ≤icx Y implies ρ(X) ≤ ρ(Y ).

Proof. It follows from part (iv) in Theorem 2.5 and Theorem 2.2 resp., that X ≤st Y

[X ≤cx Y ] implies ρα(X) ≤ ρα(Y ) for all α, and therefore Theorem 4.5 together with

Theorem 2.4 immediately implies the result.

A result similar to Corollary 4.6 can be found in Leitner (2004). There a so called balayage

ordering is considered, which is some sort of a distribution free version of convex ordering.

5 Bounds for Coherent Risk Measures

The results of the previous sections can be used to bound the risk of portfolios. Suppose

X1, . . . , Xn ∈ L1 constitute financial risks. Recall that X1, . . . , Xn are called comonotone, if

there exist increasing functions f1, . . . , fn and a random variable U , uniformly distributed

over (0, 1) such that (X1, . . . , Xn) =st (f1(U), . . . , fn(U)). In what follows we denote for

arbitrary random variables X1, . . . , Xn by Xc
1, . . . , X

c
n some comonotonic random variables

having the same marginal distributions.
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Lemma 5.1. For all monotone, convex and law invariant risk measures ρ with the Fatou

property and all functions ψ : Rn → R increasing and supermodular we have

ρ(ψ(X1, . . . , Xn)) ≤ ρ(ψ(Xc
1, . . . , X

c
n)).

Proof. It is well-known that (X1, . . . , Xn) ≤sm (Xc
1, . . . , X

c
n) which implies that

ψ(X1, . . . , Xn) ≤icx ψ(Xc
1, . . . , X

c
n)

for ψ increasing and supermodular (see e.g. Müller and Stoyan (2002) section 3.9). The

result thus follows from Theorem 4.4.

Of course, as far as portfolios are concerned, the function ψ(x1, . . . , xn) =
∑n

i=1 xi is of

particular interest. In this case we can dispense with the assumption of monotonicity of the

risk measure. With a proof similar to the one of Lemma 5.1 the get the following result.

Lemma 5.2. For all convex, law invariant risk measures ρ with the Fatou property we have

ρ

(
n∑

i=1

Xi

)
≤ ρ

(
n∑

i=1

Xc
i

)
.

Thus, we obtain a tight upper bounds for convex risk measures in the following sense:

Suppose X = (X1, . . . , Xn) has distribution function F and F ∈ F(F1, . . . , Fn), i.e. the

marginal distributions F1, . . . , Fn are known, but not the copula of X. This is a situation

encountered very often in practice. Then ρ(
∑n

i=1Xi) ≤ ρ(
∑n

i=1X
c
i ) and the upper bounds

are attained for an F ∈ F(F1, . . . , Fn), namely if the copula of F is the Fréchet-Hoeffding

upper bound M(x1, . . . , xn) = min{x1, . . . , xn} (for a treatment of copulas, see e.g. Nelsen

(1999)). As shown by Embrechts et al. (2003), the situation is much more complicated for

the very popular risk measure Value-at-Risk, which is not convex.

Of course in the case of a coherent risk measure, the subadditivity axiom gives us a trivial

upper bound for the sum:

ρ

(
n∑

i=1

Xi

)
≤

n∑
i=1

ρ(Xi).

One is tempted to be satisfied with this bound. But how good is it really? The following

example shows that it is not tight and can even be arbitrary bad.

Example 5.3. We consider as a risk measure the so-called standard semideviation:

ρ(X) = EX + α
(
E
{
(X − EX)+

}2
)1/2

, 0 < α ≤ 1.
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ρ is law-invariant, coherent and obviously satisfies the Fatou property (see e.g. Ogryczak

and Ruszczyński (2002)). However, ρ is not comonotone additive: take e.g. X ∼ N (0, 1)

and Y := X3. Then X and Y are comonotone and

ρ(X) + ρ(Y )− ρ(X + Y ) =: ε > 0.

Thus, if we take λ > 0, then λX and λY are comonotone and

ρ(λX) + ρ(λY )− ρ(λX + λY ) = λε

which tends to ∞ if λ tends to ∞.

Nevertheless, there are some important cases where both bounds coincide. Trivially this

holds true if ρ is comonotone additive. This property is for example satisfied by the CVaR

ρα for all α ∈ (0, 1]. On the other hand, if we have some further information about the class

of distributions X is in, the bounds can also coincide, irrespective of the chosen risk measure

ρ.

Example 5.4. Suppose X has distribution function F and F ∈ F(X1, . . . , Xn) ∩ En, i.e.

X has an elliptical distribution and the marginal distributions are known (for details about

elliptical distributions see Fang et al. (1990)). How does the comonotone version of X look

like? If X is elliptically distributed then the marginals are necessary mixtures of normal

distributions, i.e. we have for i = 1, . . . , n:

Xi = SYi + µi

where Yi ∼ N (0, σ2
i ), µi ∈ R and S is an arbitrary random variable with support [0,∞).

Thus, the comonotone version is of the form

Xc
1 = SY1 + µ1

Xc
i = ci(SY1 +

µi

ci
) = ciX1 + di

where ci = σi

σ1
> 0 and di = µi − µ1ci, for i = 1, . . . , n. This means that the Xc

i are linear

transformations of Xc
1 and thus we obtain for any coherent law invariant risk measure

ρ

(
n∑

i=1

Xc
i

)
= ρ(cX1 + d) = cρ(X1) + d =

n∑
i=1

ρ(Xi),

where c =
∑
ci and d =

∑
di.
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6 Portfolio Optimization

Let us look at the classical portfolio optimization problem of Markowitz type where we

replace the variance by a coherent risk measure ρ. The random variables X1, . . . , XN rep-

resent the outcome of N financial positions which can be chosen for investment. Thus we

have “risks” −X1, . . . ,−XN . In what follows we suppose that only the marginal distribu-

tions of X1, . . . , XN are known and that the set P0 of ρ is the convex hull of finitely many

probability measures P0 = conv{µ1, . . . , µM},M ∈ N, where µi, i = 1, . . . ,M are discrete

probability measures on 0, 1
K
, . . . , K−1

K
, 1. Note that every compact, convex set P0 of proba-

bility measures on [0, 1] can be approximated arbitrarily close by such a set. Since the joint

distribution of X = (X1, . . . , XN) is not known, we look at the conservative optimization

problem which minimizes the upper bound, i.e.
−E(λ′X) + ρ(−λ′Xc) → min∑N

i=1 λi = 1

λi ≥ 0 i = 1, . . . , N,

with ρ(X) = sup{
∫ 1

0
ρα(X)µ(dα);µ ∈ P0} and λ = (λ1, . . . , λN). In what follows define

ρij := ρ j
K

(−Xi) and µjl := µl(
j
K

) for i = 1, . . . , N, j = 0, . . . , K, l = 1, . . . ,M . The

computation of ρij if Xi is discrete can be done quite efficiently, see e.g. Rockafellar and

Uryasev (2002), Proposition 8. Thus, we obtain the optimization problem
−
∑N

i=1 λiEXi + sup{
∑N

i=1

∑K
j=0 λiρijµ( j

K
);µ ∈ P0} → min∑N

i=1 λi = 1

λi ≥ 0, i = 1, . . . , N,

which is similar to a matrix game and can be solved by the following linear program:

−
∑N

i=1 λiEXi + w → min∑N
i=1

∑K
j=0 ρijλiµjl ≤ w, l = 1, . . . ,M∑N
i=1 λi = 1

λi ≥ 0 i = 1, . . . , N,

with variables λ1, . . . , λN and w. Thus, in the common situation that only the distribution of

X1, . . . , Xn is known but not the copula, the general Markowitz type portfolio optimization

problem with conservative upper bound can be solved quite efficiently by a linear program.
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7 Conclusion

As a main result in this paper we have shown that under weak assumptions on the underlying

probability space convexity of a risk measure implies consistency with respect to convex

order. As convex ordering has the intuitively appealing meaning that any risk averse decision

maker prefers the risk which is smaller in this ordering, we consider this consistency an

important property of a risk measure, which is more intuitive than the convexity of a risk

measure as introduced by Föllmer and Schied (2002). Therefore it could be an interesting

topic of future research to replace the axiom of convexity by the weaker axiom of consistency

with respect to convex order, and to investigate properties and characterizations of the

resulting class of risk measures.

Acknowledgement: we would like to thank Rudolf Grübel and Dirk Tasche for interesting

discussions on this topic.
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