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Elastic Properties of Microcomponents under Uniaxial Stress
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In order to develop highly stressable microcomponents for various applications, the structural behavior of such partshas to
be examined with respect to an accurate prediction of the elastic and plastic characteristics. When simulating microparts, the
major challenge is to capture the significant material heterogeneities, which are the result of the small geometrical dimensions
of the components being of the same order of magnitude as the grain size. For this reason, the concept of effective properties
fails and apparent properties have to be considered. In thispaper we examine the elastic properties of microspecimens made
of gold. Therefore, various finite element simulations havebeen evaluated statistically in order to identify the characteristic
parameters of the distribution. Polycrystals are modeled as a periodic Voronoi tesselation with a uniform distribution of crystal
orientations.
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1 Elastic properties of gold

1.1 Single crystals

Gold has a cubic crystal symmetry, therefore, three independent elastic constants describe the elastic material behavior of the
single crystal. Using the projector representation of the elasticity tensors, we can write [1]
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with the eigenvaluesλ1 = C1111+2C1122, λ2 = C1111−C1122 andλ3 = 2C2323 and the cubic projectorsP1 = 1/3 I ⊗ I,
P2 = D − P1, P3 = IS − D. The anisotropic partD of the projectors contains the lattice vectorsgi
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gi ⊗ gi ⊗ gi ⊗ gi. (2)

Young’s modulus of a single crystal can be calculated subject to an arbitrary loading directiond [2]

1

E(d)
= d ⊗ d · S[d ⊗ d] (3)

with the compliance tensorS = C−1. E(d) is bounded by its extremal values, located at the〈100〉 and〈111〉 crystal direction.

1.2 Polycrystals

The orientation of each single crystal is described by a proper orthogonal tensorQ ∈ SO(3) which maps a fixed reference
basisei onto the lattice vectorsgi = Qei. For modeling a polycrystalline sample, we assume that every orientation is
equiprobable. If the number of grains in the sample tends to infinity (isotropic material), the shear modulus is bounded by the
well-known isotropic Voigt and Reuss bounds [3,4]
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A closer estimation of the upper and the lower bound for the shear modulus can be obtained by the Hashin-Shtrikman
bounds [5]
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The first isotropic eigenvalue, which is thrice the bulk modulus, is identical to the first cubic one3K = λ̄R
1 = λ̄V

1 = λ̄HS
1 = λ1.

Young’s modulus of an isotropic estimate can be determined by Ē = (3λ̄1λ̄2)/(2λ̄1 + λ̄2).
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2 FE based homogenization of elastic properties

The experimental stress-strain curves for specimens made of StabilorR©G, which is primarily composed of gold and, therefore,
shows a similar mechanical behavior, can be seen in Fig. 1 (left) [6,7]. In the elastic as well as in the plastic region, a scattering
of the slope of the curves, denoting Young’s modulus and the hardening behavior, can be identified. Furthermore, there exists
a broad variation of the initial yield stress.

The FE program ABAQUS has been used to carry out simulations of uniaxial tensile tests. Discretizing the tensile specimen,
45000 hexahedral elements are taken in order to reproduce a variety of numbers of grains in the sample volume with the same
model. In the FE model, the microstructure is represented asa periodic Voronoi tessellation. In order to determine mean
values and standard deviations of Young’s modulus, 300 different discrete orientation distributions have been examined for
each of the number of grains considered in this study.
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Fig. 1 Left: experimental stress-strain curves [7]; Right: Young’s modulus of gold for different numbers of grains
in the sample:� Voigt upper bound,� Reuss lower bound,⋄ Hashin-Shtrikman bounds,× arithmetic mean of
Young’s modulus from simulations,N maximum Young’s modulus in simulations,△ minimum Young’s modulus in
simulations,• Young’s modulus in〈111〉-direction,◦ Young’s modulus in〈100〉-direction,+ experimental results

The scattering of Young’s modulus of gold for different numbers of grains in the specimen is shown in Fig. 1 (right). The
arithmetic mean and the standard deviation are denoted witherrorbars in between the extremal values of the simulations. With
an increasing number of grains the macroscopic material behavior gets less anisotropic, which is indicated by a decreasing
scattering of Young’s modulus. Moreover, the arithmetic mean tends between the Hashin-Shtrikman bounds. So, this estima-
tion, which is much more narrow than the Voigt and Reuss bounds, agrees well with the results obtained by simulations for
weakening anisotropy in the specimen.

The errorbar with the plus sign located at 600 grains shows experimental data of tensile tests of the alloy StabilorR©G.
The experimentally determined Young’s modulus (Eexp

600 = 103 ± 2 GPa) differs significantly from the one identified by the
simulations for pure gold (Enum

600 = 74.7 ± 0.8 GPa).

3 Conclusion

In this work, simulations have been carried out in order to examine the variation of Young’s modulus of polycrystalline spec-
imens for different numbers of grains. Compared to experiments for StabilorR©G, Young’s modulus having been numerically
determined by the usage of the elastic constants of gold is too low. Therefore, we propose a uniform scaling of the underlying
eigenvaluesλi with an approximate factor of 1.4 in order to capture the experiments. The magnitude of the scattering of
Young’s modulus obtained by the simulations agrees with theexperimental findings.
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