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In order to develop highly stressable microcomponents &ious applications, the structural behavior of such plaats to
be examined with respect to an accurate prediction of thatieland plastic characteristics. When simulating micrtgpdhe
major challenge is to capture the significant material logfeneities, which are the result of the small geometriqakdisions
of the components being of the same order of magnitude agéiegze. For this reason, the concept of effective progert
fails and apparent properties have to be considered. Iiptpsr we examine the elastic properties of microspecimemem
of gold. Therefore, various finite element simulations hbagen evaluated statistically in order to identify the chteastic
parameters of the distribution. Polycrystals are modesea geriodic Voronoi tesselation with a uniform distributtiaf crystal
orientations.
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1 Elastic properties of gold

1.1 Single crystals

Gold has a cubic crystal symmetry, therefore, three inddpeetelastic constants describe the elastic material hethaithe
single crystal. Using the projector representation of tlasteity tensors, we can write [1]
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with the eigenvalues; = C1111+2C1122, A2 = C1111 — C1122 @ndAs = 2C5303 and the cubic projectoi®, = 1/3 I ® I,
P, =D —P;, P;=1°—D. The anisotropic pafd of the projectors contains the lattice vectgrs
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Young’s modulus of a single crystal can be calculated suilbgean arbitrary loading directiod [2]
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with the compliance tensd$ = C~!. E(d) is bounded by its extremal values, located at(ttt#®) and(111) crystal direction.
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1.2 Polycrystals

The orientation of each single crystal is described by a @ropthogonal tensof) € SO(3) which maps a fixed reference
basise; onto the lattice vectorg, = Qe;. For modeling a polycrystalline sample, we assume thatyesgentation is
equiprobable. If the number of grains in the sample tendsftnity (isotropic material), the shear modulus is boundgdhe
well-known isotropic Voigt and Reuss bounds [3, 4]
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A closer estimation of the upper and the lower bound for theashmodulus can be obtained by the Hashin-Shtrikman
bounds [5]
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The firstisotropic eigenvalue, which is thrice the bulk musuis identical to the first cubic omds = Aff = A1 = A5 = A;.
Young’s modulus of an isotropic estimate can be determinef b= (3X\1X\2)/(2)\1 + A2).
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2 FE based homogenization of elastic properties

The experimental stress-strain curves for specimens nfg8iabilor®G, which is primarily composed of gold and, therefore,
shows a similar mechanical behavior, can be seen in FigftlL[@e7]. In the elastic as well as in the plastic region, atsering

of the slope of the curves, denoting Young’s modulus and #rddning behavior, can be identified. Furthermore, theis®x
a broad variation of the initial yield stress.

The FE program ABAQUS has been used to carry out simulatibmsiaxial tensile tests. Discretizing the tensile specime
45000 hexahedral elements are taken in order to reproduaeetywof numbers of grains in the sample volume with the same
model. In the FE model, the microstructure is representea jasriodic Voronoi tessellation. In order to determine mean
values and standard deviations of Young’s modulus, 30@mifft discrete orientation distributions have been exachfor
each of the number of grains considered in this study.
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Fig. 1 Left: experimental stress-strain curves [7]; Right: Yolsngodulus of gold for different numbers of grains
in the sample:l Voigt upper bound[J Reuss lower bound; Hashin-Shtrikman boundss arithmetic mean of
Young’s modulus from simulationa, maximum Young’s modulus in simulations, minimum Young’s modulus in
simulations,e Young's modulus in111)-direction,o Young’s modulus in(100)-direction,+ experimental results

The scattering of Young's modulus of gold for different nuenbof grains in the specimen is shown in Fig. 1 (right). The
arithmetic mean and the standard deviation are denotedawithbars in between the extremal values of the simulatidvith
an increasing number of grains the macroscopic materiadiehgets less anisotropic, which is indicated by a dedngas
scattering of Young’s modulus. Moreover, the arithmetiamé&nds between the Hashin-Shtrikman bounds. So, thisaesti
tion, which is much more narrow than the Voigt and Reuss bepadrees well with the results obtained by simulations for
weakening anisotropy in the specimen.

The errorbar with the plus sign located at 600 grains shovpermental data of tensile tests of the alloy Stal§ilGr
The experimentally determined Young's modulég{; = 103 + 2 GPa) differs significantly from the one identified by the
simulations for pure goldHg;;" = 74.7 + 0.8 GPa).

3 Conclusion

In this work, simulations have been carried out in order tareie the variation of Young's modulus of polycrystallinees-
imens for different numbers of grains. Compared to expeniméor StabiloPG, Young’s modulus having been numerically
determined by the usage of the elastic constants of golaikote Therefore, we propose a uniform scaling of the undegy
eigenvalues\; with an approximate factor of 1.4 in order to capture the expents. The magnitude of the scattering of
Young's modulus obtained by the simulations agrees witre#tpeerimental findings.
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