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Texture-Based Modeling of Sheet Metal Forming and Springback

V. Schulze, A. Bertram, T. Böhlke, A. Krawietz

In this paper the application of a crystal plasticity model for body-centered cubic crystals in the simulation of a
sheet metal forming process is discussed. The material model parameters are identified by a combination of a
texture approximation procedure and a conventional parameter identification scheme. In the application of a cup
drawing process the model shows an improvement of the strainand earing prediction as well as the qualitative
springback results in comparison with a conventional phenomenological model.

1 Introduction

The simulation of sheet metal forming has become an important tool for the evaluation and optimization of forming
processes. An important aspect to increase the accuracy of the simulations is the improvement of the material
modeling. At present the material behavior is typically modeled by phenomenological material equations which
do not take into account the evolving mechanical anisotropydue to a deformation induced texture development.

In the last years several phenomenological models have beensuggested for the description of plastically anisotropic
materials (see, e.g., Hill, 1948; Barlat and Lian, 1989; Barlat et al., 1991, 1997, 2003, 2005). Many of these models
are based on linear transformations of the stress tensor andthe application of the theory of isotropic tensor functions
(Barlat et al., 2007). These phenomenological models usually assume that the anisotropy is initially known and
generally constant during deformation. The missing micromechanical information is compensated by the fact that
the computational effort of such an approach is fairly low. The first two models by Hill and Barlat are still standard
for sheet metal forming simulations in an industrial environment due to the ease of the model identification and
rather good correlations with practical measurements (Rohleder, 2002).

In contrast to these approaches, crystal plasticity modelsincorporate the microscopic structure of the material. This
leads to the ability to predict the evolution of the macroscopic behavior due to changes on the micro-scale. This type
of models has been studied intensively in the last decades. The early approaches by Sachs (1928) and Taylor (1938)
introduced relatively coarse assumptions on the interaction of the grains and, consequently, on the homogenization
of strains or stresses. The latter of these two models has been widely used (with some improvements (Bishop and
Hill, 1951a,b)) due to a good correlation with experiments and the rather low computational costs of this model.
In an effort to release the restrictive assumption of the Taylor-model, other models have been developed. One
of the first attempts was to relax certain of the constraints for specific deformation modes, leading to the relaxed
constraint models (Honneff and Mecking, 1978; van Houtte, 1981; Kocks and Canova, 1981), which have been
refined further to enable the transition from the full to the relaxed constraint models (Tomé et al., 1984; van Houtte,
1988; Kocks and Necker, 1994). Another refinement for the crystal plasticity approach was the modeling of the
interaction of the grains with the matrix having the effective properties of the material. This was achieved by the
self consistent models (Eshelby, 1957; Kröner, 1961; Budiansky and Wu, 1962; Hill, 1965; Harren, 1991a,b). The
latest development to improve the accuracy of this approachwas the introduction of finite element simulations
on the micro-scale (Harren and Asaro, 1989; Bronkhorst et al., 1992; Kalidindi and Anand, 1992; Dawson et al.,
1994). The improvement of the model accuracy in these approaches has the price of a drastic increase in the
computational effort, so that such micro-macro approachesare typically only used for virtual material tests.

A general way to reduce the degrees of freedom of a model basedon crystal plasticity is the use of texture compo-
nents (Wassermann, 1939; Bunge, 1993; Helming, 1996). A texture component is a crystal orientation for which
the codf shows a (local) maximum in the elementary region. Inits neighborhood, the codf is decreasing in an
isotropic or anisotropic way. Raabeet al. (2002) and Raabe and Roters (2004) introduced thetexture component
crystal plasticity methoddefined by the simplification that each texture component is described by only one dis-
crete crystal orientation. If a texture component is modeled in such a way, however, the mechanical anisotropy is
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significantly overestimated. Raabe et al. suggested that inorder to reduce this overestimation, the crystal orien-
tations used in the finite element simulation should - from integration point to integration point - scatter around
the mean orientations of the texture components in order to take into account the scattering of the crystallites
around the ideal components. Such an approach has the disadvantage that the scattering is only taken into account
on the average, i.e., if the whole sample is considered. Locally the mechanical anisotropy is still overestimated.
Furthermore, an approach based on discrete random distributions induces a spurious mesh-dependence and does
not generally ensure a reproducibility of the numerical results. Therefore, by Böhlke et al. (2006) it has been
suggested to model the gray texture by an isotropic texture component given by an isotropic plasticity model and
a corresponding volume fraction. Although this approach gives quite good results it has the inherent disadvantage
that the evolution of the volume fraction of the isotropic texture component is rather difficult to model.

In addition to the pure phenomenological and the pure crystal plasticity models there have been studies to combine
the low computational effort of the macro-model with the improved accuracy of the crystal plasticity models.
In this course several ways have been pursued in order to generate analytical functions to approximate the yield
surfaces derived by crystal plasticity models, using either the main components or the full ODF (Montheillet et
al., 1985; Arminjon, 1985; Arminjon and Bacroix, 1990). Other models use a piecewise discretization for this
approximation (Maudlin et al., 1996). The drawback of this approach is the assumption of full plasticity in the
deformation of the crystals, resulting in problems to simulate loading and unloading situations.

The model used in this study is aimed to predict sheet metal forming operations and subsequent springback for
body-centered cubic crystals for medium sized finite element models. For this aim we choose the Taylor assump-
tion combined with a rate-independent pencil glide deformation model on the micro-scale as the crystal plasticity
model. The hardening on the micro-scale is described by a phenomenological hardening law. Special emphasis
is given to approximate the initial texture with a low numberof crystals by a specific approximation schema. In
order to reduce the anisotropy of the model, two different models for an isotropic background are examined and
the results are compared with experimental measurements.

Notation. Throughout the text a direct tensor notation is preferred. The scalar product and the dyadic product
are denoted byA · B = sp(ATB) andA ⊗ B, respectively. A linear mapping of 2nd-order tensors is written as
A = C[B]. Traceless tensors (deviators) are designated by a prime, e.g., A′. A superimposed bar indicates that
the quantity corresponds to the macroscale.

2 Constitutive Equations

Elastic law. In the sequel we rely on the multiplicative decomposition ofthe deformation gradientF into an elastic
partF e and a plastic partF p, see e.g. (Lee, 1969; Mandel, 1974; Krawietz, 1986)

F = F eF p. (1)

The plastic deformation is assumed to be volume preserving such thatF p is unimodular, i.e. its determinant
is equal to one. For rate-independent behavior, this decomposition can be derived from the concept of material
isomorphisms (Bertram, 1999, 2005).

Since the elastic strains are assumed to be small, any linearrelation between a generalized stress and a correspond-
ing generalized strain measure can be used for the formulation of the elastic law. We apply the St.Venant-Kirchhoff
law formulated in terms of quantities with respect to the undistorted configuration. Hence, the elastic law is given
by

Se = C[Ee] (2)

with Se = det(F e)F
−1

e σF−T

e the 2nd Piola-Kirchhoff stress tensor,σ the Cauchy stress tensor,Ee = (Ce − I)/2
Green’s strain tensor andCe = F T

e F e the right (elastic) Cauchy-Green tensor.

Flow rule. The plastic flow is modeled by an evolution equation for the plastic part of the deformation gradient

Ḟ pF
−1

p =
N

∑

α∈A

γ̇α dα ⊗ nα (3)

with the slip rateγ̇α, the slip directiondα and the slip plane normalnα of the slip systemα. A denotes the set of
active slip systems.N is the total number of slip systems.
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The yield condition in each glide system is given by a scalar equation depending on the weighted shear stressτα

and the critical resolved shear stressτC
α

φα(τα, τC
α ) = |τα| − τC

α = 0. (4)

The weighted shear stressτα is determined by the projection of the weighted Mandel stress tensorZe = CeSe/̺0

into the slip system
τα = Ze · dα ⊗ nα (5)

with ̺0 being the mass density in the reference placement (Krawietz, 1999). If the yield condition and the loading
condition are equally fulfilled, the consistency conditionhas to be satisfied for each active slip system

φ̇α = |τα|
· − τ̇C

α = 0. (6)

Pencil glide. Body-centered cubic crystals (bcc) have 48 primary glide systems. For a rate-independent material
law, an admissible combination of the glide systems has to bedetermined that satisfies the yield condition (4) and
the consistency condition (6). A systematic testing sequence would be very time consuming. For the case of bcc
crystals, this cumbersome procedure can be reduced by usingthe pencil glide model. Since the possible glide
planes are very close to each other, in this model all planes are possible glide planes if they have a normal being
orthogonal to the glide direction. This reduces the number of glide systems to four.

In the context of pencil glide for given slip directionsdα corresponding to the lattice directions〈111〉, the slip
plane normalsnα are to be determined. The slip plane normalnα which is normalized and perpendicular to the
corresponding slip directiondα is extremizing the shear stressτα given by (5). Hence thenα can be determined
by the Lagrange multiplier method with the Lagrange function

L = Ze · dα ⊗ nα − λ dα · nα −
µ

2
(nα · nα − 1) (7)

containing the Lagrange multipliersλ andµ. The derivative with respect tonα yields

∂L

∂nα

= ZT

e dα − λdα − µnα = 0 (8)

or equivalently
µnα = ZT

e dα − λdα. (9)

The Lagrange multipliersλ andµ follow from nα · dα = 0 andnα · nα = 1, respectively. The first condition
implies

λ = dα · (Zedα). (10)

Hencenα is

nα =
1

µ
sα, sα = (I − dα ⊗ dα)ZT

e dα, µ = ‖sα‖ (11)

For a given stress stateZe, eq. (11) determines a shear vector for each slip directiondα. Since the vectorsα is
orthogonal to the glide directiondα, one derives the result

τα = sα · nα = ‖sα‖ = µ. (12)

Hardening rule. The hardening is modeled by a phenomenological approach based on an accumulated slip in each
slip system. We assume that the critical weighted shear stressτC

α depends on a hardening parameterξα defined by

ξ̇α = (1 − q)γ̇α + q
∑

β

γ̇β , (13)

whereq is the ratio of self and latent hardening. The hardening can be modeled for example by the ansatz of Swift

τC
α = A1 (1 + A2ξα)

n
. (14)

In order to model a hardening behavior with a pronounced yield limit, the following ansatz is presently preferred

τC
α = A1

(

1 + A2

(

√

A2

3
+ ξ2

α − A3

))n

, (15)
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where theAi andn are fitting parameters for the yield curve.A3 allows for a modeling of a pronounced yield
strength. ForA3 = 0 the Swift ansatz is obtained.

Homogenization of the constitutive behavior.The aim is to perform a finite element simulation on the macroscale
and to simultaneously take into account the crystallographic texture on the grain scale. The relation between the
macroscopic and mesoscopic stress and strain measures can be determined, e.g., by Taylor type models (Taylor,
1938; Asaro, 1985; Mathur and Dawson, 1989). The Taylor model assumes a homogeneous deformation field
through the microstructure of polycrystals. Therefore, itsatisfies the strain compatibility, but not the stress equilib-
rium at the grain boundaries. The Taylor model gives reasonable qualitative approximations of the crystallographic
texture evolution in many single-phase cubic materials, but it is known to significantly overestimate the stresses
and the texture sharpness. Due to the general shortcomings of the Taylor model, different approaches have been
discussed in the literature in order to improve the modelingof the texture evolution. The most simple one is
based on a relaxation of certain constraints of the deformation field (RC Taylor models). A typical example is the
LAMEL model by van Houtte (1982), which has been developed topredict rolling textures. Roughly speaking,
the model takes a stack of two grains, which is compressed, and permits an inhomogeneous deformation. This
allows to satisfy the stress equilibrium for the shear stresses within the flattening plane. The disadvantage of the
model is that it is only applicable for one specific deformation mode. The GIA model (Crumbach et al., 2001) is
applicable for general deformation paths. Due to the more complex modeling of the grain interaction the premises
for the texture prediction are better than for the LAMEL model. For a comparison see van Houtte et al. (2002,
2006). Another quite successful approach is given by the class of self-consistent approximations of the local de-
formation behavior (e.g., Molinari et al., 1987), which satisfy the strain compatibility and the stress equilibrium
in an averaged sense. A purely numerical approach for a detailed description of the microstructure is given by the
representative volume element technique based on finite elements and crystal plasticity (Bronkhorst et al., 1992),
sometimes referred to as CPFEM (crystal plasticity finite element model). For a review of the aforementioned
methods with special emphasis to sheet metal forming see theexcellent review by Dawson et al. (2003). Since the
computational effort of homogenization schemes based on non-homogeneous strain fields is significantly higher
than that of the Taylor model, and since we aim to describe a real metal forming operation, Taylor’s assumption of
a homogeneous deformation field is applied here, i.e.

F = F̄ . (16)

A justification of this coarse assumption will only be possible based on the results discussed below. The effective
Cauchy stress is calculated as the volume average of the crystal stresses with respect to the current volume. For
polycrystals consisting ofM grains with homogeneous orientation this yields

σ̄ =
1

v

∫

v

σ dv =
M
∑

β=1

cβ σβ , (17)

wherecβ is the volume fraction of grainβ. This is equivalent to computing the effective 1st Piola-Kirchhoff stress
tensor by volume averaging with respect to the initial placement.

Modeling of the gray texture. From the numerical point of view, large-scale computationsbased on the Taylor
model are very time-intensive and storage-consuming if thecrystallographic texture is approximated by several
hundred discrete crystals. In the present work we use two different approaches in order to model the gray texture.
In the first approach, a small group of crystals having a perfect elastic isotropy in the sense of the bounds by Voigt
and Reuss (Bertram et al., 2000; Böhlke, 2001; Böhlke and Bertram, 2001) is used in the initial setup. In the
second approach an isotropic von Mises plasticity model with fictitious volume fraction is used (hybrid model). In
this case the elastic law is given by eq. (2) withC being isotropic. The evolution ofF p is modeled by a normality
rule

Ḟ pF
−1

p = γ̇N (18)

with
N =

Z ′

e

‖Z ′

e
‖
≈

S′

e

‖S′

e
‖
. (19)

The yield condition is

‖S′
e‖ −

√

2

3
σF = 0. (20)
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3 Identification of Texture and Material Parameters

Texture measurement.The material used for the following examples are typical ferritic deep drawing steel grades.
The first material considered is DX53, a mild deep drawing grade, while the second material is the high strength
low alloyed steel H340LAD. For the identification of a crystal plasticity model, the initial texture of the material
has to be measured and approximated by the initial orientation of the crystals and their respective volume fraction.
In a second step the parameters for the elastic and plastic constants are determined similar to a conventional
phenomenological model. The crystallographic texture of amaterial can be measured by the scatter of a high
energy beam, such as x-rays, electron beams, or neutron beams on the crystal lattice (Bunge, 1993; Schumann et
al., 1991). In addition, different preparation methods canbe used in order to determine a representative texture of
a material with a texture gradient (Bunge and Welch, 1983; Welch, 1980).

Since the model should be used for an industrial application, and due to the fact that only the orientation distribution
function is of interest for the following texture approximation, the steel sheets are measured by conventional x-
rays. A surface measurement is sufficient for the characterization of the material, because the texture thickness
gradients in the thin sheets (1 mm) under consideration are negligible.

Approximation of the initial texture. The approximation of the initial texture is of high importance not only
for the accuracy of the model but also for the computational effort in the consecutive finite element simulation.
Consequently, this approximation has been the field of special studies by several authors (Toth and Van Houtte,
1992; Kocks et al., 1991; Helming, 1996; Delannay et al., 2000; Cho et al., 2004; Tarasiuk et al., 2004). Since these
methods either need special skills of the operator, are designed for specific textures, or lead to approximations with
a large number of crystals, a different approximation scheme is used in this work. This method is based on a mixed
integer quadratic approximation scheme using sharp components with a joint scatter width to approximate a given
texture (Böhlke et al., 2006). The advantage of this method is that it can be applied to arbitrary crystal and texture
classes, the existence of an error bound for the approximation, and the user-independence of the approximation
results. With this approximation the initial orientation of the crystals as well as their respective volume fraction
can be determined in one optimization procedure.

Identification of the material parameters. Since the material model should be applied in an industrial environ-
ment, the identification of the model parameters has to be performed using only a small set of measurements. Due
to this condition, simple tension tests in three directionswith respect to the rolling direction have been used to
characterize the material.

For the determination of the elastic material parameters, the Young’s modulus has been measured at 0◦, 45◦ and
90◦ with respect to the rolling direction, using tension test specimens of type 2 according to DIN-EN 10002-1.
For the determination of the Young’s modulus, the stress hasbeen increased at a stress rate of 20 MPa/s. The
same approach has been used to determine the yield curves andther-value in the respective directions. For these
measurements, the tests have been performed at a global strain rate of 0.4%/s. Ther-value describes the ratio of
the strains in the width to the thickness direction

r =
ln(b/b0)

ln(t/t0)
=

ln(b/b0)

ln((b0l0)/(bl))
, (21)

whereb is the width,t is the thickness andl is the length of the specimen. The index0 denotes the initial value of
the respective parameter. The results of these tension tests are given in Table 1.

Material Angle wrt.
RD

E in GPa Rp0,2(*ReH )
in MPa

r value

DX53D+Z 0◦ 179 159 2,02
DX53D+Z 45◦ 196 166 1,54
DX53D+Z 90◦ 190 164 2,39
H340LAD 0◦ 201 381* 0.78
H340LAD 45◦ 203 379 1,07
H340LAD 90◦ 210 401 1,10

Table 1: Measured material parameters
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For the approximation of the gray texture two approaches areused. The first approach (ISO12) is the use of a
small group of 12 crystals having initially a perfect elastic anisotropy (Bertram et al., 2000; Böhlke and Bertram,
2001). While the elastic behaviour of cubic crystals is determined by three texture coefficients (Bunge, 1993),
the determination of the plastic parameters needs further coefficients. Consequently, the plastic behaviour of this
group is not perfectly isotropic.

A macroscopic von Mises model on the micro scale is used in thesecond approach to approximate a single isotropic
crystal. This model has two advantages: Firstly, it is perfectly isotropic, with respect to both the elastic and plastic
behaviour. Secondly, the computational effort is dramatically reduced compared with the crystal group. For
simplicty, we assumed a constant isotropic volume fractionduring the deformation process.

The approximation of the isotropic volume fraction is performed by a least square fit of the distribution of the
r-values. A good initial estimation for this volume fractionis given by the approximation procedure for the initial
texture. A modification of the volume fraction of the gray texture has only influence on the height of ther-values
but not on the distribution of the minimal and the maximal magnitudes, which are determined by the orientation
and respective weight of the crystals.

Using the measurement of the Young’s modulus in the three directions and taking into account the material and
crystal symmetry, the missing elastic parameters can be determined. For that purpose, we consider the harmonic
decomposition of the stiffness tensorC of one individual cubic crystal (Böhlke, 2001)

C = 3KP1 + 2GP2 + H
′, (22)

where

P1 =
1

3
I ⊗ I, P2 = I

S − P1 (23)

are the two isotropic projectors governing isotropic linear elastic behavior and

H
′ =

1

5
(λ3 − λ2)

(

2I
S + 1 ⊗ 1 − 5D

)

(24)

with

D =

3
∑

α=1

gα ⊗ gα ⊗ gα ⊗ gα (25)

is the harmonic part of the decomposition. The bulk modulusK and the shear modulusG of the isotropic part can
be determined by the eigenvaluesλi of the stiffness tensor of the single crystal:3K = λ1, 2G = 2λ2/5 + 3λ3/5.

I is the 2nd-order identity tensor.IS is the 4th-order identity tensor on symmetric 2nd-order tensors. The purely
anisotropic partD of the decomposition depends on the lattice vectorsgα. Since the measured elasticity parameters
represent effective material properties and the modeling is based on the Taylor assumption, we compute the Voigt
average of the elasticity tensor in the context of small strains. One obtains

C
V C = 3KP1 + 2GP2 + H

′V (26)

with

H
′ =

1

5
(λ3 − λ2)

(

2I
S + I ⊗ 1 − 5D

V
)

, D
V =

M
∑

β=1

cβ D(gβ
α). (27)

In the case of the approximation of the gray texture by the vonMises model, the corresponding stiffness tensor is
given by

C
MI = 3KP1 + 2GP2. (28)

The total elasticity tensor is then

C
V = cV C C

V C + cMI C
MI , (29)

wherecMI is the volume fraction of the isotropic background. Using this approach, the von Mises model is
consistently identified, and the number of elastic parameters to be identified is kept constant. Due to the nonlin-
earity of the resulting equations and the accuracy of the texture measurement, the approximation is performed by a
least square optimization procedure using a simplex algorithm with bounds for the allowable values of the elastic
parameters.
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The approximation of the plastic response of the crystals isdone by the adjustment of four parameters according
to a hardening law (15). Furthermore, the initial hardeningparametersζ0,i of the crystals have to be determined.
For this approximation, the three yield curve measurementsare used. The calibration is performed in the range of
a homogeneous deformation of the sample specimen. For the approximation, the tension test is simulated and the
parameters are calibrated by a sequential approximation scheme. In the case of the hybrid model, the isotropic part
is first adjusted to the average yield curve of all three directions

σiso (ϕ) =
σ0 (ϕ) + 2σ45 (ϕ) + σ90 (ϕ)

4
. (30)

After this approximation, the plastic parameters of the crystals are determined. The results of this procedure are
given in Table 2 and Table 3.

E G ν q A1 A2 A3 n ξ0 viso

in GPa in GPa GPa

A16I12 110.30 94.90 0.3542 1.4 0.0278 404.400 0.0 0.281 0.0039228 0.72
A48I12 113.27 94.49 0.3474 1.4 0.0294 412.590 0.0 0.269 0.0330004 0.71
A80I12 113.20 94.47 0.3476 1.4 0.0294 413.365 0.0 0.269 0.0330349 0.71
A16M 114.88 94.99 0.3302 1.4 0.0299 410.090 0.0 0.275 0.0330500 0.56
A32M 114.35 94.82 0.3320 1.4 0.0292 409.970 0.0 0.270 0.0330500 0.54
A48M 111.60 95.00 0.3415 1.4 0.0271 400.147 0.0 0.278 0.0326575 0.54
A64M 113.97 94.71 0.3304 1.4 0.0291 414.920 0.0 0.270 0.0330500 0.52
A80M 114.30 94.81 0.3307 1.4 0.0292 409.960 0.0 0.270 0.0330400 0.52
A96M 113.75 94.63 0.3334 1.4 0.0292 409.940 0.0 0.270 0.0330400 0.50

Table 2: Material parameters of DX53 D+Z

E G ν q A1 A2 A3 n ξ0 viso

in GPa in GPa GPa

B16I12 115.58 116.16 0.3146 1.4 0.1414 1712.5 1.504 0.07 2.636E-04 0.97
B48I12 115.54 95.18 0.4404 1.4 0.1410 1712.5 1.506 0.07 3.619E-04 0.94
B80I12 115.54 101.79 0.3952 1.4 0.1410 1712.5 1.506 0.07 4.609E-04 0.92
B16M 145.60 95.25 0.3589 1.4 0.1319 1688.0 0.800 0.07 2.600E-04 0.92
B32M 148.50 95.20 0.3477 1.4 0.1319 1687.8 0.803 0.07 2.589E-04 0.89
B48M 143.05 95.20 0.3630 1.4 0.1303 1697.8 0.803 0.07 2.49E-04 0.85
B64M 145.25 95.20 0.3413 1.4 0.1317 1697.0 0.800 0.07 2.589E-04 0.83
B80M 145.15 95.20 0.3571 1.4 0.1319 1687.7 0.803 0.07 2.598E-04 0.83
B96M 146.71 95.20 0.3509 1.4 0.1310 1691.6 0.724 0.07 2.650E-04 0.79

Table 3: Material parameters of H340LAD

4 Application to Deep Drawing and Springback

Previous work. The earing of a cylindrical cup drawn from a circular blank isa result of the anisotropy of the
material and therefore a measure for the accuracy of the material model. One result of this study is the fact that
Hill’s quadratic yield criterion (Hill, 1948) is unable to predict more than 4 ears. While this is sufficient for typical
steels, it is insufficient for aluminum, which can form up to 8ears. In order to be able to predict this behavior,
more sophisticated models have been derived and tested. Becker (1993); Yoon and Hong (2006) have used the
cup drawing procedure to test yield surfaces of Barlat et al.(2003, 2005) for aluminum. Also the crystal plasticity
based models have been evaluated using this method: Hu et al.(1998) evaluated the influence of the friction, the
blank holder force and the element type on the earing with a forth order plastic strain rate potential derived from
the texture of the material. The combination of a plastic potential with a microstructural based hardening model
has been used by Li et al. (2003) to simulate the cup drawing ofan IF-steel. Engler and Hirsch (2007) studied the
influence of different textures on the earing profile both experimentally and by the simulation based on a visco-
plastic self-consistent model. Recent studies used this method to numerically determine the influence of certain
texture components in steel by a texture based crystal plasticity model (Raabe et al., 2005) and the influence of
texture gradients in on the accuracy of such models (Tikhovskiy et al., 2008).
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The springback behavior is a measure for the ability of a model to predict the internal stresses in the material
correctly. The simulation with finite elements started withsimple processes, such as plane bending processes
(Makinouchi, 1984; Mattiasson et al., 1995) or hat-profiles(Wagoner and He, 1996). More complex and realistic
shapes have been used in the following years to study the influence of different parameters (i.e. the number
of integration points in thickness direction, influence of friction, element size, contact formulation), such as the
studies by Hu et al. (1998); Valente and Traversa (1999); Wagoner and He (1996); Xu et al. (2004). In the work by
Rohleder (2002) a comparison of commercial forming codes has been performed and suggestions for simulation
parameters are derived from simple drawing processes (s-rail), small process chains (deep drawing and cutting)
up to complex deep drawing operations with several forming steps of a typical automotive part. In the paper by
Yoshida and Uemori (2003) it was shown that the incorporation of the deformation induced anisotropy improves
the accuracy of the springback prediction of a u-shaped structure. The work by Andersson (2005) evaluated the
springback behavior of different steels on a front side member of a car, using the Barlat 1989 model. This study
reveals the influence of the modeling of the draw-beads on thesimulation results for complex forming operations.
The Barlat 1989 model was also used as one yield criterion in the study by Dongjuan et al. (2006) which compared
the standard isotropic hardening with a nonlinear kinematic hardening law as well as other yield criteria (Hill 1948)
in a 2D example. The study by Wagoner (2007) was focused on thequestion of the number of integration points
needed for a certain accuracy of the springback results. Using the information of these earlier work, the number of
integration points and the contact handling have been chosen for this study.

Experimental work. For the verification of the material model, a deep drawing test of a circular cup is used.
Subsequent to the deep drawing, the cups are cut into slices and these rings are opened so that the springback of
the part can be evaluated (Rohleder, 2002). The cup has a diameter of 150 mm and a drawing depth of 91.8 mm.
The die radius is 6.5 mm while the punch radius is 8.5 mm. Figure 1 shows the tool in the experimental setup.
During the drawing process, the blank holder force is set to 500 kN and the punch velocity to 30 mm/s. In order to
reach the necessary drawing depth, a lubricant is used.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1: Cup drawing tool setup

For the model verification, the strain field and the cup geometry, and in particular the shape of the rim are measured
by optical means.
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Figure 2: Springback experiment: cup, rings, open rings

For the springback evaluation, a group of cups is first slicedinto rings and then opened by wire-EDM. The diameter
of the rings prior and after the opening is determined by an optical measurement. The change of the ring diameter
is a measure for the internal stresses in the part after the forming process (Rohleder, 2002). The three steps of the
springback evaluation are shown in Fig. 2. It can be seen thatthe amount of the diameter change depends on the
position of the ring within the cup. The diameter of the ringshas been calculated by a least square approximation
of an ideal circle to the normal projection of the measurement points onto the cutting plane.

Simulation of a deep drawing process.For the simulation of the deep drawing process, the CAD-geometry of
the tools is meshed with shell elements on the contact surfaces. The shells belonging to the tools are rigid bodies
that are only used for the contact determination. For this reason it is necessary to avoid angles higher than7.5◦

between the normals of neighboring shell elements. The blank is modeled by deformable shell elements. The
elements used here are underintegrated Belytschko-Lin-Tsay (Hallquist, 1998) elements, which are routinely used
in industrial simulations.

The crystal plasticity model is to be compared with a standard material model used for deep drawing simulations in
industry. This model is a three parameter Barlat 1989 model (Barlat and Lian, 1989), which has been implemented
in LS-Dyna (Hallquist, 1998). This model can be used with an exponentm = 2 resulting in a von Mises-Hill
type yield behavior with an additional shear-stress influence. As an alternative for bcc materials, the exponent is
to be set tom = 6 (Hallquist, 1998). This model is able to take into account the in plane anisotropy by using the
r-values at0◦, 45◦ and90◦ with respect to the rolling direction. For the yield curve, the average yield curve in the
rolling direction is used with a tangent linear extrapolation up to a true strainϕ = 1.

Due to the material and process symmetry it is necessary to simulate at least one half of the cup for the deep
drawing process (Fig. 3), since the springback process has only one symmetry plane. For the reduction of the
computational costs, the simulation has been performed by an adaptive mesh refinement. Furthermore, the tool
velocity is increased. The tool speed is increased continuously with a sinusoidal function to the maximum and
reduced in the same way.

The contacts between the tool and the blank are taken into account with normal and tangential nodal forces. The
stiffness of the tools is modeled by a penalty contact law, since the model is used for the springback evaluation.
The friction between the interacting surfaces is approximated by a Coulomb law with static friction coefficients for
each interface.

Simulation of the springback. For the springback simulation it is of high importance to approximate the stress
distribution in the thickness direction of the shell. This is done by the use of 7 or 9 integrations points in the
thickness direction during the deep drawing simulation andthe subsequent springback calculation. These values
are chosen according to the results of other studies by (Rohleder, 2002). After the initial forming operation, the
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Figure 3: FEM model for the deep drawing simulation

model is interactively cut into the rings using Dynaform. For the crystal plasticity model, the user variables are
mapped after the geometrical cutting procedure to the new mesh in an initialization run.

In order to simulate the cutting, the symmetry boundary conditions on one side of the ring are released, while on
the other side all rigid body motions are permitted for the use of an implicit integration scheme. The position of
the nodes at the end of the deformation is then projected ontothe cutting plane and approximated by an ideal circle
to determine the diameter change in the same way as the experimental values are determined.

Results. For the simulation of the deep drawing process, different configurations of the crystals are used. The
abbreviations are as follows. The letter at the beginning ofthe name characterizes the material, A is DX53D+Z and
B is H340LAD. The following number characterizes the amountof crystals used to approximate the anisotropic
part of the initial texture. In case of the application of theISO12-configuration for the approximation of the
isotropic background (I), an additional group of 12 crystals is used, therefore the overall number of crystals in this
case is the sum of both groups. In case of the hybrid model (M),only the ‘isotropic background’ is added to the
group. The last digit characterizes the number of integration points in thickness direction. For reference, the Barlat
1989 model is characterized similarly. The first number is equal to the exponent, and the "B" stands for the Barlat
1989 model.

For the friction coefficient, a value ofµ = 0, 075 for DX53D+Z andµ = 0, 070 for H340LAD has been measured
and used for the simulation. The penalty parameter is equal to the suggested value for LS-Dyna (Hallquist, 1998).
The results of strain distributions for DX53D+Z are given inFig. 4 - 7. The strain cuts show a distinct increase in
the accuracy of the prediction of the major and minor strainscompared with the reference model.

Considering the prediction of the earing, the result is improved by the application of the crystal plasticity model in
combination with the von Mises model for the background. Only the model with 16 crystals is unable to reproduce
the shape of the earing after the deformation (Fig. 8). For the models with 32 or more crystals, the result is in good
agreement with the measurements. The mean error of the flangedraw-in is reduced from more than 3.3 mm in the
reference model to less than 1.6 mm with the crystal models. The earing height predicted by the Barlat models is
in the range of more than 10 mm while it is less than 4 mm with thehybrid models with more than 32 crystals,
and, therefore, within the range of the measurements (3,6 mm± 0,7 mm).

The application of the ISO12 model for the isotropic background results in quite different findings. With an
increasing number of crystals, the shape of the earing deviates more from the measurements (Fig. 9). The reason
for this behavior is the weighting factor used for the crystals in this group. The overall isotropic volume fraction is
decreasing with an increasing number of crystals. However,at the same time the individual weight of these crystals
is reduced. Therefore, the relative weight of the ISO12-group is increasing. Consequently, the earing is dominated
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by the shape generated by these crystals.

The results of the springback evaluation are given in Fig. 10, 11 and Table 4. The measurements show a closing of
the lowest ring (4) after the opening cut. The maximum diameter is observed at the second highest ring (2), while
the highest ring has a slightly smaller diameter.

Distance from bottom 15 mm 35 mm 55 mm 75 mm
r in mm r in mm r in mm r in mm

Meas. 73,4 86,3 88,4 87,7

A2B7 76,4 96,5 106,4 110,2
A2B9 76,3 96,1 99,1 107,8
A6B7 74,4 89,0 93,6 100,1
A6B9 73,8 89,3 93,4 98,1

A16I7 75,0 89,8 90,9 93,9
A16M7 74,7 92,0 95,0 95,9
A16M9 74,7 88,8 92,5 95,0
A32M7 74,1 90,7 92,9 95,0
A48I7 75,0 89,8 91,0 85,4

A48M7 74,1 90,9 92,6 94,6
A48M9 74,2 89,1 91,3 93,5
A64M7 74,3 91,5 94,2 95,6
A80I7 75,0 89,8 90,7 84,6

A80M7 74,1 91,3 93,4 95,6
A80M9 74,3 91,5 93,5 94,9
A96M7 74,3 91,2 93,3 95,6

Table 4: Results of the springback simulation with DX53D+Z

The crystal models with 7 integration points in thickness direction give a good prediction of the springback. The
closing of ring 4 is predicted well by all crystal plasticitymodels, while the Barlat 1989 model with the exponent
of m = 2 fails to predict this behavior. In contrast to the measurements, all simulations predict the maximum
diameter at the highest ring (1), however, the differences between ring 1 and 2 are small with the crystal plasticity
model in combination with the von Mises model. The maximal error of the crystal models is also smaller than the
one of the Barlat 1989 model.

Figure 4: Major strain in rolling direction (isotropic von Mises component, DX53)
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Figure 5: Minor strain in rolling direction (isotropic von Mises component, DX53)

Figure 6: Major strain in rolling direction (ISO12 background, DX53)
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Figure 7: Minor strain in rolling direction (ISO12 background, DX53)
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Figure 8: Earing profile for models with isotropic von Mises component (DX53)
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Figure 9: Earing profile for models with ISO12 background andisotropic von Mises component (DX53)

Figure 10: Springback results of DX53D+Z: Distribution of the ring radii Barlat 1989 model (7 IP), crystal model
isotropic von Mises component (7 IP)
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Figure 11: Springback results of DX53D+Z: Distribution of the ring radii, Barlat 1989 model (9 IP), crystal model
with von Mises background (9 IP), crystal model with ISO12 background (7 IP)

The increase of the number of integration points in thickness direction increases the accuracy of the solution for
both model types. The qualitative results of the simulations are not affected by this change. The application of the
ISO12-group improves the springback prediction for DX53D+Z. With this approach the position of the maximal
diameter is predicted well by the models with 48 (A48I7) and 80 crystals (A80I7).

For the second material, the strain cuts are shown in Fig. 12 -15. The values of the minor strain are slightly better
with the crystal plasticity model while the results for the major strain are within the range of the reference model.
The earing prediction (Fig. 16 and 17) of the crystal models is higher than the measurement.

The use of the reference models increases this overprediction. While these models predict the maximum flange
draw-in at90◦ with respect to the rolling direction, the crystal models predict a nearly equal flange draw-in at0◦

and90◦ similar to the measurements. The mean error of the crystal models is less than 1.5 mm compared with
more than 2 mm in case of the reference model.

In the springback measurement, the lowest ring opens significantly for H340LAD (Fig. 18- 19). This behavior is
not well predicted by the Barlat models. In fact form = 2 a slight closing is predicted. The simulation with the
crystal models always predicts an opening of the lowest ring. The maximum value for the ring diameter is also
located at the second highest ring (2). This is well estimated by the crystal plasticity models. The Barlat 1989
model withm = 2 fails to predict this finding, while the model withm = 6 shows a dramatic decrease of the
opening for the highest ring.

The increase in the number of integration points does not have any significant effect for this material. The results
of the springback evaluation are given in Table 5. The usage of the ISO12-group for the isotropic background shifts
the maximal diameter to the third ring resulting in a decreasing accuracy of the predicted diameter distribution.
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Distance from bottom 15 mm 35 mm 55 mm 75 mm
r in mm r in mm r in mm r in mm

Meas. 79,7 93,3 95,7 93,6

B2B7 75,2 94,6 99,5 101,6
B2B9 75,5 95,8 97,2 98,2
B6B7 75,5 95,9 102,4 83,3
B6B9 75,5 90,9 100,0 103,1

B16I7 76,9 90,6 92,1 89,3
B16M7 76,7 92,6 93,1 89,3
B16M9 76,9 90,6 92,1 89,3
B32M7 76,9 93,0 93,6 90,1
B48I7 77,2 90,8 92,3 89,1

B48M7 77,0 92,2 93,5 89,3
B48M9 77,2 90,8 92,3 89,2
B64M7 77,0 93,9 94,8 92,5
B80I7 80,4 93,1 92,1 88,5

B80M7 77,1 92,6 92,9 89,2
B80M9 77,4 91,9 92,4 89,5
B96M7 77,2 92,7 93,4 89,6

Table 5: Results of the springback simulation with H340LAD

Figure 12: Major strain in rolling direction (isotropic vonMises component, H340)
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Figure 13: Minor strain in rolling direction (isotropic vonMises component, H340)

Figure 14: Major strain in rolling direction (ISO12 background, H340)
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Figure 15: Major strain in rolling direction (ISO12 background, H340)
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Figure 16: Earing profile for models with isotropic von Misescomponent (H340)
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Figure 17: Earing profile for models with ISO12 background and isotropic von Mises component (H340)

Figure 18: Springback results of H340LAD: Distribution of the ring radii: Barlat 1989 model (7 IP), crystal model
with von Mises background (7 IP)
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Figure 19: Springback results of H340LAD: Distribution of the ring radii: Barlat 1989 model (9 IP), crystal model
with von Mises background (9 IP), crystal model with ISO12 background (7 IP)

Discussion. The evaluation of the model behavior during a deep drawing process and a subsequent cutting and
springback operation shows that the number of crystals although small has only a minor influence on the simu-
lation accuracy. The results of the strain distribution arenearly equal for all configurations under consideration.
The application of the crystal plasticity model slightly improves the predictions compared to the conventional
macroscopic model.

With respect to the earing, the model with the lowest number of crystals had to be rejected, since it was not able
to reproduce the overall shape of the measured values. The same is true for the application of the ISO12-model
for the isotropic background (gray texture) of the initial texture. The resulting earing shapes are dominated by
this group, nearly independent of the other crystals. The simulation accuracy with respect to the location of the
extreme values as well as the earing height is improved by using this model. The number of integration points
in the thickness direction of the shell elements does not have any significant impact on the simulation accuracy
with respect to the strains and the earing results. The results are within the range of other studies (Tikhovskiy et
al., 2008). In this study the influence of the texture gradient is examined. In the considered materials, the texture
gradient between the surface and the center are small (Schulze, 2006), so that the effort for the model setup can
be reduced without a significant loss of accuracy. It also shows the influence of the different initial textures on the
earing shape, similar to the study of (Raabe et al., 2005).

Considering the springback results, it can be stated that the crystal plasticity model is able to reproduce correctly
the qualitative development of the springback. While the Barlat 1989 model is not able to predict the material
dependent opening and closing of the lowest ring, this is achieved by the new model. The overall error of the con-
ventional model is also higher than the one of the crystal plasticity model. Comparing the error of the springback
prediction with the theoretical values that can be expectedfrom the number of used integration points (Wagoner,
2007), we find that for the first material the maximum error is exceeding this limit, while in the second case the
deviation is less than expectable. This shows that in the complex loading situation of a deep drawing process other
factors (such as the friction) also have an influence on the simulation results. The increase of the number of inte-
gration points has also different results: While the result improves for the first material, it is slightly less accurate
for the second. This corresponds also to the oscillation nature of the error (Wagoner, 2007).

The number of crystals does not have any significant impact onthe simulation accuracy. Even with only 16 crystals,
the qualitative agreement of the simulation results is good. The application of the ISO12-group seems to shift the
position of the maximum diameter towards a less strained position, which increases the accuracy for material 1
and decreases it for material 2.
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Taking all these results into consideration, the crystal plasticity model is able to improve the simulation accuracy for
the given case with only 32 crystals for the approximation ofthe isotropic background. The option to approximate
the background with the ISO12 group is less favorable since amuch larger number of crystals would be needed
for the background approximation, and the individual weight of these crystals would have to be of the same order
as the weights for the other crystals in order not to dominatethe evolution of the anisotropy.

Limitations. Due to the application of the Pencil-Glide model for the plastic deformation, different shear stresses
in different glide systems, for instance due to twinning (Daniel and Jomas, 1990), cannot be simulated. Also the
formation of shear bands that influence the texture evolution (Duggan et al., 1999; Leffers, 1999) and, therefore,
this anisotropy is not included in this model.

The Taylor assumption that is used for the homogenization isunable to accommodate inhomogeneous deformation
fields that can be observed in real materials (Boas and Hargreaves, 1948). Also the influence of the orientation of
neighboring grains on the deformation mode cannot be described with this model. The textures simulated with the
Taylor assumption tend to be sharper than the experimental textures and develop stable components such as the
Taylor component which cannot be observed (Dawson and Beaudoin, 1998). The study by van Houtte et al. (2005)
shows also the lack of this model in the course of the development of rolling textures.

The model uses a small group of crystals with volume fractions, which are not equally distributed. This can lead to
an overestimation of the influence of certain crystals on theoverall model behavior, as observed for instance with
the ISO12-group crystal. This negative influence, however,is minor, as long as the volume fractions of the crystals
have the same order of magnitude. The use of the isotropic background can also introduce problems since this part
of the model remains isotropic under any deformation process. This is in contrast to the real material, in which
the isotropic background consists of a large number of crystals that can develop a certain texture and therefore
anisotropic material properties.

5 Conclusions

The study has shown how crystallographic information can beincorporated into a continuum mechanical modeling
of sheet metal forming. Based on a specific optimization scheme, a low-dimensional description of the texture
is obtained. The model is able to increase the simulation accuracy for a typical deep drawing process with a
subsequent springback evaluation. The simulation resultsare in good agreement with the measurements, if at least
32 crystals are used. For the model identification, a texturemeasurement is needed in addition to the conventional
tension tests in three directions of the blank. Therefore, the measurement effort is not increased dramatically. Even
with such a reduced modeling, the computational effort compared with the Barlat 1989 model is increased by two
orders of magnitude. Therefore, such a model will be available in the near future only with parallel computing as
well as for mid size problems.
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