
ppppppppppppp Universität Karlsruhe (TH)

Analyse des tt̄H-Kanals

am CMS-Detektor des LHC

mit Neuronalen Netzen

Dennis Schieferdecker

Diplomarbeit

an der Fakultät für Physik
der Universität Karlsruhe

Referent: Prof. Dr. Günter Quast

Institut für Experimentelle Kernphysik

Korreferent: Prof. Dr. Michael Feindt
Institut für Experimentelle Kernphsyik

1. Februar 2006

Deutsche Zusammenfassung

Die Entdeckung atomarer und subatomarer Strukturen hat einen wesentlichen Beitrag zum Fortschritt

der Menschheit im letzten Jahrhundert geleistet. Elektronik, neue Materialien und die moderne

Medizin sind letztendlich alle der fortwährenden Forschung im Bereich der Teilchenphysik zu

verdanken.

Die Physik bietet heute ein sehr gutes Verständnis der elementaren Bausteine der Natur in

Form des Standardmodells der Teilchenphysik (SM). Die Vorhersagen dieses Modells wurden

bisher größtenteils mit Hilfe von Teilchenbeschleunigern überprüft, indem Teilchenstrahlen bei

sehr hohen Energien auf ein festes Ziel geschossen oder zur Kollision miteinander gebracht und die

entstandenen Zerfallsprodukte untersucht wurden. So wurden zum Beispiel die Austauschteilchen

der schwachen Wechselwirkung, das W- und das Z-Boson, 1983 an einem Ringbeschleuniger am

CERN1 in Genf entdeckt. Seit damals konnten der später am CERN errichtete ”Large Elec-

tron Positron” Beschleuniger (LEP) sowie der ”Stanford Linear Collider” und das Tevatron am

Fermilab in den USA weitere Erfolge in der Erforschung der kleinsten Teilchen und ihrer Wech-

selwirkungen erzielen.

Bisher konnten alle Experimente die Aussagen des Standardmodells bestätigen. Es gibt aber

noch viele ungeklärte Fragen. Zum Beispiel, warum besitzen Teilchen Masse und woher kommt

diese? Momentan wird davon ausgegangen, dass ein weiteres Teilchen, das so genannte Higgs-

boson existiert, durch das die anderen Teilchen ihre Masse erlangen. Weitere ungelöste Probleme

umfassen die Existenz und Beschaffenheit der dunklen Materie und Energie sowie die Vereini-

gung aller vier fundamentalen Kräfte in einer gemeinsamen Theorie, der ”Great Unified Theory”

(GUT).

Schon heute wird an bestehenden Teilchenbeschleunigern nach Hinweisen für die Existenz des

Higgsbosons gesucht. Für eine gründlichere Untersuchung wird aber ein Beschleuniger mit einer

wesentlich höheren Energie, wie zum Beispiel den momentan im Bau befindlichen ”Large Hadron

Collider” (LHC) benötigt. Er wird am CERN im ehemaligen Tunnel des LEP aufgebaut und soll

2007 in Betrieb genommen werden. In ihm werden zukünftig Protonen mit einer Schwerpunkts-

energie von 14 TeV zur Kollision gebracht, um anschließend die entstehenden Zerfallsprodukte in

Detektoren aufzuzeichnen.

Eines der vier am Beschleunigerring errichteten Experimente ist der ”Compact Muon Solenoid”

(CMS) Detektor. Hierbei handelt es sich im Prinzip um einen Allzweckdetektor, der allerdings

1Conseil Européen pour la Recherche Nucléaire

II Deutsche Zusammenfassung

für die Entdeckung des Higgsbosons bis hin zu einer Masse von 1TeV/c2 optimiert ist. Sobald

der Detektor in Betrieb geht, wird er riesige Mengen an Daten produzieren. Davon wird zwar

nur weit weniger als ein Promille zur weiteren Analyse gespeichert werden, dabei handelt es sich

allerdings immer noch um mehrere Petabytes pro Jahr. Um diese Herausforderung zu meistern,

mussten neue Technologien entwickelt werden, angefangen bei der Detektorelektronik bis hin zu

modernen Grid-Technologien für die weltweit verteilte Auswertung und Speicherung der Daten.

Neben der Technik mußten allerdings auch bestehende Analysemethoden weiterentwickelt

werden, um die Daten, die der CMS Detektor liefern wird, auswerten zu können. In früheren

Analysen wurden einfache Schnitte auf Variablenwerten durchgeführt, um Untergrundereignisse

zu selektieren und zu entfernen und dadurch ein klareres Signal zu erlangen. Später wurden

”Likelihood”-Werte berechnet, um die in den Daten enthaltenen Informationen besser ausnutzen

zu können. Neuronale Netze bieten sich als weitere Methode zu Datenanalyse an. Sie sind

mittlerweile gründlich nach wissenschaftlichen Standpunkten erforscht worden und stellen ein

ausgereiftes Analysewerkzeug dar. Ein Netz ermöglicht es, die in einem Datensatz enthaltenen

Informationen vollständig auszureizen – falls es korrekt verwendet worden sind. Dieser Ansatz wird

in der Hochenergie-Teilchenphysik seit etwa einem Jahrzehnt mit wachsendem Erfolg benutzt.

Die vorliegende Arbeit handelt vom Gebrauch aktueller Netztechnologien im Bereich der

Teilchenphysik. Im Speziellen wird ihre Anwendbarkeit auf bestimmte Analyseaufgaben im Rah-

men des CMS Experiment untersucht. Konkret wird der semileptonische t̄tH Zerfallskanal mit

einem Muon im Endzustand betrachtet. Hierbei handelt es sich um die erste Anwendung

neuronaler Netze in der CMS Gruppe am Institut für Experimentelle Kernphysik in Karlsruhe

(IEKP), um zukünftige Analysen mit neuronalen Netzen auf diesem Gebiet zu erleichtern. Es

werden zwei unterschiedliche Netzwerkpakete verwendet und ihre Leistungsfähigkeit verglichen,

namentlich NeuroBayes r©, das von der Firma < Phi− T > vertrieben wird, sowie die Klasse

TMultiLayerPerceptron des kostenlosen Analysepakets ROOT.

Der t̄tH-Kanal am LHC hat das Potential zu einer Entdeckung des Higgsbosons im Bereich

kleiner Massen unterhalb von 200 GeV/c2 beizutragen. Er wurde zusammen mit dem zugehörigen

t̄tbb̄ Untergrundkanal als idealer Anwendungsfall für neuronale Netze ausgewählt, denn auf Grund

seiner Komplexität können die Netze ihre Fähigkeiten voll ausnutzen. Der Endzustand dieses

Kanals umfasst sechs hadronische Jets, ein Lepton und ein Neutrino. Diese müssen den de-

tektierten Teilchen zugeordnet werden, was aufgrund der vielen kombinatorischen Möglichkeiten

erhebliche Schwierigkeiten bereitet. Die daraufhin folgende Unterscheidung in Signal- und Unter-

grundereignisse stellt eine weitere Herausforderung dar, da ihre Endzustände eine sehr ähnliche

Topologie und Kinematik aufweisen.

Deshalb wurde zuerst ein neuronales Netz entworfen, dass die detektierten Teilchen korrekt

den Teilchen im Endzustand des t̄tH- bzw. t̄tbb̄-Zerfalls zuordnen soll. Dieser Schritt ist beson-

ders wichtig, da jede weitere Analyse die korrekte Teilchenzuordnung benötigt. Eine bereits

existierende Analyse basierend auf ”Likelihood”-Werten [1] wurde hierfür auf ein neuronales Netz

übertragen und erweitert. Die Leistungsfähigkeit dieses Netzes ist in Abb. 1 dargestellt. Die

korrekte Teilchenzuordnung gelingt in 33,4% aller Fälle für Signalereignisse und für 31,6% der

III

Netzausgabe
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
nz

ah
l

0

1000

2000

3000

4000

5000

6000

7000

8000

Netz zur Teilchenidentifikation

Signaleffizienz
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- U

nt
er

gr
un

de
ff

iz
ie

nz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Auf der linken Seite ist Ausgabe der Analyse zur Teilchenzuordnung dargestellt (Signal: grün, Unter-
grund: rot). Auf der rechten Seite ist das zugehörige Effizienzdiagramm aufgetragen.

Untergrundereignisse. Dies ist vergleichbar zu den Ergebnissen der vorherigen Analyse. Zudem

wurde festgestellt, dass sich das TMultiLayerPerceptron Netz nicht zur Bewältigung dieser

Aufgabe eignet.

Als zweites wurde ein neuronales Netz für die eigentliche Analyseaufgabe dieser Arbeit kon-

struiert. Sein Ziel ist die Unterscheidung von t̄tH Signal- und t̄tbb̄ Untergrundereignissen, um sie

anschließend voneinander trennen zu können. Hierfür wurden aufbauend auf einer CMS Note [2]

weitere Variablen bestimmt, die hilfreich für die Trennung der Ereignisse sind.

Netzausgabe
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
nz

ah
l

0

20

40

60

80

100

120

140

160

180

Netz zur Untergrundunterdrueckung

Signaleffizienz
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- U

nt
er

gr
un

de
ff

iz
ie

nz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Auf der linken Seite ist Netzausgabe der Analyse zur Untergrundunterdrückung dargestellt
(Signal: grün, Untergrund: rot). Auf der rechten Seite ist das zugehörige Effizienzdiagramm aufgetragen.

IV Deutsche Zusammenfassung

Higgsmasse [GeV/c^2]
0 20 40 60 80 100 120 140 160 180 200

A
nz

ah
l

0

50

100

150

200

250

300

Rekonstruierte Higgsmasse

Figure 3: Verteilung der Higgsmasse

(dunkel: simuliert, hell: rekonstruiert).

Die Leistung des erstellten Netzes ist gut,

wie man Abb. 2 entnehmen kann. Das

zu erwartende Signal zu Wurzel über Unter-

grund Verhältnis nach einem Jahr der Daten-

nahme am CMS Detekor bei niedriger Lumni-

nosität liegt bei 10,8. Um die invariante

Masse des Higgsbosons zu bestimmen, wur-

den alle Ereignisse mit einer Netzausgabe

kleiner 0.4 als Untergrund klassifziert, was einer

Signaleffizienz von 0.9 entspricht. Die aus

den restlichen Ereignissen rekonstruierte Hig-

gsmasse ergibt mHiggs = 100.0± 0.5 GeV/c2

zusammen mit einer Standardabweichung von

σHiggs = 30.7± 0.4 GeV/c2. Dies entspricht

nahezu dem erwarteten Wert nach der Detek-

torsimulation von mHiggs = 105.1± 0.4 GeV/c2

mit σHiggs = 23.0± 0.3 GeV/c2 und stellt somit ein sehr gutes Ergebnis dar. Die angegebenen

Werte wurden hierbei mit Hilfe einer Gauss-Ausgleichskurve aus Abb. 3 bestimmt. Diese Analyse

konnte mit beiden Netzwerkpakete erfolgreich durchgeführt werden.

Nachdem beide neuronalen Netze entworfen, trainiert und ausgewertet worden sind, wurden sie

zu einer kombinierten Analyse verbunden. Hierbei erhält das Netz zur Untergrundunterdrückung

die Teilchenidentifikationen des anderen Netzes, anstatt wie bisher auf die wahren Werte zurück-

Netzausgabe
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
nz

ah
l

0

10

20

30

40

50

60

70

80

90

Kombinierte Netzanalyse

Signaleffizienz
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- U

nt
er

gr
un

de
ff

iz
ie

nz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Auf der linken Seite ist die Netzausgabe der kombinierten Analyse dargestellt
(Signal: grün, Untergrund: rot). Auf der rechten Seite ist das zugehörige Effizienzdiagramm aufgetragen
(pink: kombinierte Analyse, blau: Analyse unter Verwendung der wahren Teilchenidentitäten).

V

zugreifen. Das so entstandene Netz ist weiterhin in der Lage die Analyseaufgabe – im Rahmen der

sich geänderten Voraussetzungen – zu meistern (Abb. 4). In der Verteilung der rekonstruierten

Higgsmasse in Abb. 5 lässt sich allerdings eine deutliche Verschiebung zu niedrigeren Werten

erkennen. Diese ist auf die nicht perfekte Zuordnung von detektierten Teilchen zu den simulierten

Teilchen des t̄tH bzw. t̄tbb̄ Endzustandes zurückzuführen. Wie man an der gestrichelten Linie

erkennen kann, tritt diese Verschiebung der Higgsmasse direkt nach der Teilchenzuordnung in

den Signalereignissen auf und rührt somit nicht von einer schlechten Untergrundunterdrückung

her. Somit ist die mangelnde Teilchenidentifikation die entscheidende Schwachstelle der Analyse.

Aus diesem Grund wird eine Verbesserung in diesem Punkt als nächstes Ziel angestrebt.

Higgsmasse [GeV/c^2]
0 20 40 60 80 100 120 140 160 180 200

A
nz

ah
l

0

50

100

150

200

250

300

350

Rekonstruierte Higgsmasse

Figure 5: Verteilung der Higgsmasse

(dunkel: simuliert, gestrichelt: nach der Teilchen-

zuordnung, hell: rekonstruiert).

Die vorliegende Arbeit hat gezeigt, dass

neuronale Netze auch im Bereich der Hoch-

energiephysik ein nützliches und mächtiges

Werkzeug zur Datenanalyse darstellen. Sie

können die mit herkömmlichen Analysemeth-

oden erzielten Ergebnisse reproduzieren und

sogar noch übertreffen. Dabei bieten beide ent-

worfenen Netze noch Raum für zusätzliche Op-

timierungen. Es existieren noch weitere interes-

sante Variablen in den Ereignissen und Optio-

nen der Netzwerkpakete, die untersucht werden

können.

Während dieser Diplomarbeit wurde zudem

ein Framework für neuronale Netze entwick-

elt, dass es erlaubt Analysen unabhängig von

dem tatsächlich verwendeten Netzwerkpaket

durchzuführen. Eine Schnittstelle für die bei-

den benutzten Pakete wurde bereits entworfen, um ihre Leistungsfähigkeit einfach vergleichen zu

können. In Zukunft können weitere Netzwerkpakete in dieses Framework eingebracht werden,

so dass das jeweils beste Netz für eine bestimmte Aufgabe herangezogen werden kann, ohne

jeweils eine komplett andere Programmierschnittstelle verwenden zu müssen. Zudem kann das

Framework einfach um weitere Analyse-Funktionalitäten ergänzt werden.

ppppppppppppp Universität Karlsruhe (TH)

Analysis of the tt̄H Channel

at the CMS Detector of LHC

with Neural Networks

Dennis Schieferdecker

Diploma Thesis

on the Department of Physics
at the University of Karlsruhe

Referee: Prof. Dr. Günter Quast

Institut für Experimentelle Kernphysik

Coreferee: Prof. Dr. Michael Feindt
Institut für Experimentelle Kernphsyik

1st February 2006

”I hear and I forget,

I see and I remember,

I do and I understand.”

(accredited to Confucius)

Contents

Contents i

Introduction 1

1 The LHC and the CMS Experiment 3

1.1 The Large Hadron Collider (LHC) . 3

1.2 The Compact Muon Solenoid (CMS) . 4

1.2.1 Tracking System . 5

1.2.2 Calorimeters . 6

1.2.3 Muon System . 8

1.2.4 Trigger and Data Acquisition . 9

2 Physics of the Higgs Boson 11

2.1 The Standard Model of Particle Physics . 11

2.2 Theory of the Higgs Boson . 13

2.2.1 Higgs Boson . 13

2.2.2 Higgs Mechanism . 13

2.3 The Search for the Higgs Boson . 15

2.3.1 Higgs Production at the LHC . 15

2.3.2 Higgs Decay Modes . 18

2.3.3 The tt̄H Channel . 19

2.3.4 Analysis Challenges . 21

3 Neural Networks 23

3.1 Fundamentals . 24

3.1.1 The Biological Model . 24

3.1.2 The Artificial Neuron . 25

3.1.3 Training Methods . 26

3.2 Feed-Forward Networks . 27

3.2.1 Topology . 27

3.2.2 The Perceptron . 28

3.2.3 Multilayer Networks . 31

ii Contents

3.3 Training Optimisations . 33

3.3.1 Regularisation . 33

3.3.2 Preprocessing . 33

3.3.3 Learning Rate . 34

3.3.4 Other Error Functions . 34

3.3.5 Further Optimisations . 35

3.4 Network Design and Interpretation . 36

3.4.1 Design Criteria for Neural Networks . 36

3.4.2 Interpretation of the Neural Network Output 38

3.5 Other Neural Network Models . 40

3.5.1 Radial Basis Function Networks . 40

3.5.2 Kohonen Maps . 41

3.5.3 Hopfield Networks . 43

4 Simulation and Analysis Tools 45

4.1 The CMS Software Framework . 45

4.2 ROOT . 47

4.3 PAX . 47

4.4 NeuroBayes r© . 49

4.5 Software Versions . 52

5 Jet Pairing 53

5.1 Data Samples . 53

5.2 Ambiguities in the Final State . 54

5.3 Description of the Analysis Methods . 55

5.4 Analysis of Generator Events . 56

5.5 Analysis of Reconstructed Events . 59

5.5.1 Improving the Analysis . 60

5.5.2 Analysis of Background Events . 63

5.6 Comparison of Neural Network Packages . 66

5.7 Comparison to the Likelihood Analysis . 67

6 Background Suppression 69

6.1 Description of the Analysis Methods . 69

6.2 Analysis of Generator Events . 70

6.3 Analysis of Reconstructed Events . 73

6.3.1 Improving the Analysis . 74

6.4 Comparison of Neural Network Packages . 76

6.5 Combination of both Analyses . 77

7 Conclusion and Outlook 81

Contents iii

A Framework for Neural Network Packages 83

A.1 PaxNeuralNet Class . 84

A.2 PaxRootMLP Class . 85

A.3 PaxNeuroBayesNet Class . 85

A.4 Applying the Neural Network Framework . 87

B Network Parameters and Input Variables 89

B.1 Jet Pairing . 89

B.2 Background Suppression . 94

List of Figures 97

List of Tables 99

Bibliography 101

Acknowledgement 107

iv Contents

Introduction

The discovery of the atomic structure of matter has played a large part in human’s progress in the

last century. Electronics, new materials and modern medicine are ultimately all the result of the

continuous expansion of our understanding of the fundamental particles and their interactions.

Physicists now have a good comprehension of nature’s basic building blocks, compiled in

the Standard Model of particle physics (SM). The predictions of this model thus far have all

been verified by observing collisions of particle beams at very high energies in large accelerators.

For example, the W and Z bosons which mediate the weak force have been discovered in 1983

using a circular particle collider at CERN2 in Geneva. Since then the Large Electron Positron

Collider (LEP) subsequently built at CERN, and also the Stanford Linear Collider and the Tevatron

Collider at Fermilab in the USA, have further probed the properties of these particles and found

hard evidence for the existence of the other proposed particles.

Up to now, all these experiments have indicated that the Standard Model works well. However,

it is far from complete and there are still many unanswered questions remaining. For instance,

why do particles have mass and what is its origin? The currently most accepted theory implies

the existence of a new particle called the Higgs boson that gives mass to the other particles

through interactions with them. Other open questions include the imbalance between matter

and anti-matter in the universe or the unification of four interactions in one ultimate theory, the

Great Unifying Theory (GUT).

Physicists are already searching for evidences of the Higgs boson at existing colliders. However,

for a more thorough investigation a collider with much higher energies is required. This machine,

the Large Hadron Collider (LHC), is now being built at the CERN site in the former LEP tunnel.

It will collide intense beams of protons at a centre of mass energy of 14 TeV.

One of the four experiments installed at the LHC ring will be the Compact Muon Solenoid

(CMS) detector. It is a multipurpose detector optimised for the discovery of the Higgs boson at

masses of up to 1 TeV/c2. When the collider takes up its service, the CMS detector will record a

large amount of data each second. Far less than a promille will even be stored for investigation by

offline end-user analysing software. This data will still range in the region of millions of gigabytes

each year. To meet this challenge, new technologies had to be devised, from detector electronics

up to grid technologies for worldwide computation and storage. But not only technology has to

scale with the requirements, analysing methods have too.

2Conseil Européen pour la Recherche Nucléaire

2 Introduction

Early analyses in former experiments have used simple cuts on variables to enrich signal events

and suppress background events. Later, likelihood ratios were calculated to make better use of

the information inherent to the recorded data. By now, neural networks have been studied to

a great extent and their capabilities have been scientifically evaluated. Originally designed to

mimic the functionality of the human brain, they now represent a sophisticated method for data

analyses, able to take full advantage of all available information – if handled correctly. This neural

network approach to data analysis has been used in the field of high energy physics with growing

approval since about a decade.

In this thesis current neural network technologies are applied and their usefulness for specific

analysing problems in the upcoming CMS experiment are investigated. It is the first usage of

neural networks in the CMS context at the Institut für Experimentelle Kernphysik in Karlsruhe

(IEKP). Here their functionality is exploited to analyse the semi-leptonic t̄tH decay channel with

a muon in the final state and to pave the way for future analysis with neural networks in this

field.

The t̄tH decay channel at the LHC has the potential to contribute to a discovery of the Higgs

boson in the lower mass ranges up to 200 GeV/c2. It was chosen as a benchmark channel for this

thesis along with one of its background channels (t̄tbb̄). Due to its complex topology consisting

of six hadron jets, one lepton and missing energy in the final state, it poses an ideal field of

application for neural networks. The allocation of detected hadrons to the original particles is

difficult because of the large number of possible combinations. In addition the differentiation

between signal and background events is challenging in itself, due to their final states having a

similar topology and similar kinematics. Here neural networks will be able to fully utilise their

classification capabilities.

At first, this thesis will give an overview of the future measuring instrument used, the CMS

detector, followed by a brief introduction to the physics of the Higgs boson, needed for the com-

prehension of the following analysis. In particular, the properties and difficulties of detecting the

Higgs boson at the LHC are described. Subsequently, neural network technologies, the basis for

the analysing work in this thesis are elaborated and other used analysis tools are presented. The

actual analysis is prefaced by an introduction to the pairing challenge of the examined decay

channel and the neural network approach to it, followed by a study on suppressing background,

also using neural networks as modus operandi. At the end, both neural networks are combined

for the final analysis.

Further information about the implemented neural network interface can be found in the ap-

pendices. Here the actual network details and the data samples that were used for the training

are also presented. In addition a comparison of the performance of two different neural network

packages on the analysis task in this thesis is given.

The LHC and the CMS Experiment

The Compact Muon Solenoid (CMS) experiment [3] - [9], one of the four detectors that are

currently being constructed at CERN1 is going to be our eye in the Large Hadron Collider (LHC)

[10] to detect new physics and validate existing theories, like the mechanism responsible for the

masses of elementary particles. Therefore huge amounts of data will constantly be recorded

and processed. The following sections will give a short overview of the capabilities of the LHC

and the CMS detector and highlight the associated data volume that only modern information

technologies and data analysis methods can handle.

1.1 The Large Hadron Collider (LHC)

Primarily designed as a proton-proton collider2, the Large Hadron Collider situated at CERN near

Geneva represents the currently largest project in collider physics (fig. 1.1). It is being installed

between 30 m and 150 m below the surface in the tunnel where the Large Electron Positron

(LEP) collider was previously located. It is expected to be brought online for the first time next

year in 2007.

Figure 1.1: Schematic overview of the Large Hadron Collider (LHC) at CERN [11].

1Conseil Européen pour la Recherche Nucléaire
2In addition, heavy ion collisions (Pb-Pb) are also planned, but not part of this thesis.

4 The LHC and the CMS Experiment

Around the 27 km long tunnel, about 10,000 superconducting niobium-titanium magnets are

installed. They will produce a magnetic field of about 8.33 T to focus the circulating particles

and keep them on track – beam lifetimes of up to ten hours are expected. In the first years

an operation at ”low luminosity” with L = 2 · 1033 cm−2s−1 and an integrated luminosity of

Lint = 20 fb−1 per year is foreseen, followed by a ”high luminosity” phase with L = 1034 cm−2s−1

and Lint = 100 fb−1 per year. This will result in 3.5 and 17.5 interactions per crossing, respectively.

The proton-proton collisions will be at a centre of mass energy of 14 TeV, which is about a

factor of ten higher than at previous colliders like the Tevatron3. About 1011 protons are clus-

tered into a bunch of which about 3000 are in the collider at once. They are accelerated and

brought to collision with a frequency of 40 Mhz at four interaction points, where the detectors

are located. Two of those, ALICE (A Large Ion Collider Experiment) and LHCb (Large Hadron

Collider beauty experiment) have special purposes (heavy ion collisions and b-physics respec-

tively), whereas the other two, ATLAS (A Toroidal LHC ApparatuS) and CMS are designed as

complementary multipurpose detectors.

The experiments carried out at the LHC will likely be able to discover new physics. One

primarily anticipates to find an evidence for the Higgs boson. This discovery would finally be

the experimental proof for the mechanism of electroweak symmetry breaking, which explains the

origin of mass of elementary particles. At the very least, the LHC will produce vast amounts of

statistics that can be used for precise measurements of known physical parameters.

1.2 The Compact Muon Solenoid (CMS)

The CMS experiment is one of the largest scientific efforts of mankind. An international team

of more than 2300 scientists and engineers of 160 institutes from 36 countries contribute to

construct and operate this detector. Currently, the various modules of the detector are being

built above ground at LHC access point 5 (Cessy, France) and then lowered into the detector

cavern for final assemblage.

Although called ”compact” it has an overall length of 22 m and a diameter of 15 m with a

total mass of 12,500 t. Its central part is a superconducting solenoid, measuring 13 m in length,

6 m in height and weighing 5,000 t. It produces an axial magnetic field of 4 T that is returned

via a 1.5 m thick saturated iron yoke with a mass of 7,000 t. With these specifications it is the

world’s largest superconducting solenoid, providing the highest stored energy of 2.6 GJ ever.

The detector itself can be divided into a barrel region and two endcap regions. Furthermore

it is made up of many cylindrical layers around the beam pipe. Each layer is designed for a

specific measuring task. Together, these layers will provide all the data allowing CMS to precisely

measure all the detectable particles that the collisions at LHC will produce.

3The Tevatron is a proton - anti-proton collider at Fermilab, Chicago, with a centre of mass energy of
ECM = 1.96 TeV.

1.2 The Compact Muon Solenoid (CMS) 5

The various detector layers are described in the following subsections as well as the triggering

system needed for data acquisition. For a more in-depth description of the CMS detector, its

technical design report [TDRcms] can be consulted; in addition, a detailed overview of the detector

is given in figures 1.2 and 1.3.

Figure 1.2: Schematic overview of the Compact Muon Solenoid (CMS) detector [11].

1.2.1 Tracking System

The tracking system is the innermost part of the detector, situated within the magnetic field of

the solenoid. It is used for measuring tracks of charged particles. Thus, it needs to have a good

spatial resolution and an efficient pattern recognition. In addition, it has to withstand the high

level of radiation around the beam pipe for several years. The system also has to have a small

response time in order to minimise pile-up4 interfering with the measurement. Thus an all-silicon

tracking system was chosen for the CMS detector, since it best fulfills the requirements.

Silicon Pixel Detector

The innermost detectors are the pixel detectors, designed for measuring the positions and thus

the trajectories of particles. With this data, the particle momenta can then be calculated. In

the barrel there are three layers of pixel detectors situated at radii of 4 cm, 7 cm and 11 cm.

4At the LHC several events can be in the detector at once due to the high bunch cross rate and also due to
the high proton density, which leads to several collisions per bunch crossing. This effect is called pile-up.

6 The LHC and the CMS Experiment

The innermost and the middle layer are used for the lower luminosity phase; the middle and the

outermost layer are then used for the higher luminosity phase, due to the higher radiation in this

phase. In addition, there are two discs of pixel detectors installed in each of the endcaps covering

radii from 6 cm to 15 cm.

Each pixel covers a surface of (150× 150) µm2 which allows for a spatial resolution of about

10 µm and 14 µm in Φ and z coordinates, respectively5. On the whole, there are about fifty

million single pixels that are read out.

Silicon Strip Detector

Ten layers of silicon microstrip detectors are located beyond the pixel detectors. There are 4

layers installed in the inner barrel and 6 layers in the outer barrel covering a radial range from 20

to 110 cm and a longitudinal range of |z| < 280 cm. The strips are oriented along the beam axis

to allow measurements of the azimuthal coordinates. Each of the two innermost layers are two-

sided with slightly shifted strips to allow measurements of the polar coordinate. Three small strip

detector discs are located in the inner endcaps and six larger discs are built into the outer endcaps.

Here, the strips are oriented radially to allow measurements of the Φ coordinate. In addition,

double layers at the inner and outer regions of the endcap discs allow measurements of the radial

coordinate. The endcap strip detectors cover a longitudinal range of 120 cm < |z| < 280 cm.

In total there are 7,888 single-sided and 4,032 double-sided silicon strip modules built into

the detector covering an area of about 210 m2.

1.2.2 Calorimeters

Further outside but still within the magnetic field of the solenoid, the calorimeters are situated.

They basically use a total-absorption method to measure the energy and direction of particles.

A particle passing through the calorimeters will interact with the calorimeter material, producing

particle showers. These showers will lead to ionisation and excitation in the calorimeter, which

can be measured and used to determine the energy and direction of the particle.

There are two layers of calorimeters each with its own special purpose. The inner layer is

designed to detect electrons, positrons and photons whereas the outer layer is designed to detect

hadrons.

Electromagnetic Calorimeter (ECAL)

The electromagnetic calorimeter lies just outside of the tracking system. Here, electrons, positrons

and photons produce electromagnetic showers as a result of interactions with the electrons in the

calorimeter material.

5Typically only a resolution of about 43 µm is expected for a pixel width of 150 µm. This improvement is the
result of purposefully not compensating for the large Lorentz angle which leads to significant charge sharing.

1.2 The Compact Muon Solenoid (CMS) 7

Figure 1.3: Schematic cuts through the CMS detector across and along the beam pipe [11].

The electromagnetic calorimeter is composed of 75,000 lead tungstate (PbWO4) crystals, of

which 60,000 can be found in the barrel region and 15,000 in the endcaps. PbWO4 was chosen

because of its high density of 8.28 g/cm3 and its large average number of electrons per atom.

This results in a short radiation length of 0.89 cm for electrons, positrons and photons and thus

in a compact calorimeter.

With its high energy resolution, the ECAL was especially designed to measure the mass in

the benchmark decay of the Higgs boson into two photons with a very large accuracy.

Hadronic Calorimeter (HCAL)

Hadrons traverse the electromagnetic calorimeter largely without hadronic interactions. They are

then stopped in the hadronic calorimeter where they interact with the nuclei of typically heavy

material, and produce hadronic showers of pions, kaons, nucleons and fragments of nuclei.

The hadronic calorimeter consists of 50 mm thick copper absorbers interleaved with 4 mm

thick scintillator tiles, which are read out with wavelength shifting fibres.

To provide a good resolution for missing energy, there has to be a calorimeter coverage up

to a pseudo-rapidity of |η| = 5. Therefore, Very Forward Calorimeters (VCALs) are installed 6 m

downstream of the endcap calorimeters. They also provide a means for tagging very forward jets.

The VCALs are designed similar to the HCAL except that in these calorimeters quartz fibers are

used as active medium embedded in a copper absorber matrix.

8 The LHC and the CMS Experiment

1.2.3 Muon System

The muon system is the outermost part of the detector, located outside the solenoid. It consists

of the iron return yoke interleaved with four layers of detectors for triggering and position mea-

surement. Muons arriving here have already deposited about 3.5 GeV in the inner layers, whereas

most other particles (besides weakly interacting particles like muons or neutrinos) have already

been absorbed in the calorimeters.

Resistive Plate Chambers (RPC) are used for triggering purposes in both, the barrel and end-

caps, since they have an excellent time resolution, covering a pseudo-rapidity range of |η| ≤ 2.1.

In the barrel region, Drift Tubes (DT) provide the position measurements, whereas in the endcap

regions Cathode Strip Chambers (CSCs) are used for this task, covering a pseudo-rapidity range

of |η| ≤ 1.3 and 1.3 ≤ |η| ≤ 2.4, respectively. A resolution of 150 µm in z-direction and 100 µm

in r and Φ directions can be achieved for the barrel region.

Figure 1.4: Profile of the CMS detector with various particle tracks: charged particles have a curved trajectory
whereas neutral particles move in a straight line; electrons, positrons and photons deposit their energy in the
ECAL, hadrons in the HCAL and muons are detected in the muon system [11].

1.2 The Compact Muon Solenoid (CMS) 9

1.2.4 Trigger and Data Acquisition

At the LHC, the proton bunches will cross each other with a rate of 40 Mhz. Each crossing will

yield about 17.5 proton-proton collisions, resulting in 7 · 108 interactions per second. Every bunch

crossing generates roughly 1.5 MB of data, leading to 60 TB per second. This enormous data

rate has to be reduced to feasible numbers for the mass storage systems and offline computing

facilities. For this purpose a 3-level trigger system was devised, the CMS Trigger and Data

Acquisition System (TriDAS). It is designed to select events at a maximum rate of O(102) Hz.

At first, the level-1 trigger reduces the event rate by a factor of 400 to about 100 kHz,

deciding for each event in about 2 µs if it is interesting or not. To achieve this task, it is

completely implemented in hardware and only uses the data from the muon systems’ RPCs and

from the coarsely segmented calorimeters. Meanwhile, the full event data remains in the memory

buffers.

If the event gets accepted it is then passed to the High Level Trigger (HLT), which is deployed

as an online processing farm, consisting of fully programmable processors. The HLT can be

divided into a level-2 trigger and a level-3 trigger. The former trigger is using the full calorimeter

and muon system information and the latter is also utilising tracker information for triggering

purposes. Together they decide in roughly 1 s if the event is to be stored and later used for

analysis or discarded, resulting in a final event rate of O(102) Hz.

An overview of the data flux and its reduction by the trigger from the CMS detector to the

mass storage systems can be seen in figure 1.5.

Figure 1.5: Overview of the CMS Trigger and Data Acquisition System. The 60 TB/s of raw data is filtered by
the Level-1 trigger to a rate of 150 GB/s. The High Lever Trigger system then reduces the data further to about
225 MB/s, which is feasible for the storage systems [11].

10 The LHC and the CMS Experiment

Physics of the Higgs Boson

Once the Large Hadron Collider will commence its work, the continuous search for the Higgs

boson will reach a new climax, as it is expected that the LHC will either verify or disprove its

existence. This thesis takes part in the search for this last unseen particle of the Standard Model

of Particle Physics (SM). Therefore, an introduction to the Standard Model, describing the Higgs

boson, and the theory of the Higgs boson itself will be given here. Subsequently, the possibilities

of Higgs production at the LHC and its decay are described, in particular the challenges of the

t̄tH channel, studied in this thesis, are elaborated.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is the currently accepted theory that describes all matter

along with three of its four interactions. It further predicts the existence of a new and yet

undiscovered particle, the Higgs boson, which is discussed later. According to the SM, matter

can be divided into two classes, fermions, half-integer spin particles, following the Fermi-Dirac

distribution and bosons, integer-spin particles, following the Bose-Einstein distribution. The

fundamental spin-1
2

fermions can be further divided into two families of quarks and leptons, with

three generations each, according to their quantum numbers (see table 2.1).

The mass eigenstates of the different quark flavours have turned out not to be the flavour-

eigenstates participating in the weak interaction introduced below1. Therefore, certain quantum

numbers descriptive for a quark generation are subject to change under the weak interaction.

Thus, the observable mass eigenstates of the quarks can be transformed into each other.

Baryons are massive particles consisting of two (mesons) or three quarks (hadrons)2. The

former is composed of a quark and an anti-quark and the latter consists of three quarks or anti-

quarks. Each baryon carries an integer electrical charge and a white colour charge. Colour charge

is defined in analogy to the colour theory. It comes in three basic flavours: red, green and blue as

well as the respective anti-colours. White is the product of a colour and its associated anti-colour

or all three colours or anti-colours combined. Colour charge was first introduced as a quantum

number to fulfil the Pauli principle for hadrons with three otherwise identical quarks, which have

actually been observed.

1The eigenstates can be transformed into each other by the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
2There are also proposed more exotic compositions like Pentaquarks, consisting of five quarks.

12 Physics of the Higgs Boson

generation electrical colour interaction
1st 2nd 3rd charge charge strong em weak grav.

quarks u c t 2/3 r, g, b, r̄, ḡ, b̄ x x x x
d s b -1/3 r, g, b, r̄, ḡ, b̄ x x x x

leptons e µ τ -1 - - x x x
νe νµ ντ 0 - - - x x

Table 2.1: The two families of fundamental spin 1/2 fermions, divided into three generations, along with their
charges and interactions. In the SM, electrically neutral neutrinos are massless and for each fermion there exists
an anti-fermion with inverted quantum numbers but otherwise identical properties.

Each fermion is subject to the weak interaction, fermions with an electrical charge also expe-

rience the electro-magnetic interaction and colour charged fermions are influenced by the strong

interaction, too. The fourth fundamental interaction, gravity is not covered by the SM, but due

to its relative weakness (a factor of 10−40 compared to the strong interaction), it generally can

be ignored in theoretical studies.

These interactions are mediated by gauge bosons listed in table 2.2. The gauge bosons of the

weak interaction (W± and Z0) are massive, whereas all the other bosons (gluons, gravitons and

photons) are massless. Gluons carry a colour charge and are therefore themselves subject to the

strong interaction they are mediating. Photons on the other hand don’t carry an electrical charge

and are thus unaffected by the electro-magnetic interaction. Furthermore, W± and Z0 bosons

interact weakly with each other and the electrically charged weak gauge bosons also interact with

the photon.

Further information about the Standard Model of Particle Physics can be found in [12,13].

interaction gauge electric colour relative
boson charge charge strength

strong gluon g 0 r, g, b, r̄, ḡ, b̄ 1

electromagnetic photon γ 0 - 1/137

weak W± ±1 - 10−14

Z0 0 -

gravitation graviton G 0 - 10−40

Table 2.2: The three interactions described by the SM along with their spin 1 gauge bosons as well as the
gravitation with its yet unseen spin 2 mediator. In addition, the charges of the gauge bosons and the relative
strength of the interactions is shown.

2.2 Theory of the Higgs Boson 13

2.2 Theory of the Higgs Boson

2.2.1 Higgs Boson

Around 1964, the Higgs boson was first proposed by the English physicist Peter Higgs. It is a

massive scalar elementary particle, predicted to exist within the Standard Model, but until now

undetected. The Higgs boson is associated with a field. This Higgs field consists of two neutral

and two charged component fields – the Higgs boson is the quantum of one of the neutral fields.

The Higgs field permeates every place in the universe and has a non-zero vacuum expectation

value of 246 GeV/c2. This property gives mass to every elementary particle. In particular,

the non-zero vacuum expectation value spontaneously breaks the electroweak gauge symmetry, a

phenomenon known as the Higgs mechanism described below. This is the only known mechanism

capable of giving mass to the gauge bosons that is also compatible with gauge theories.

The Higgs boson’s mass is not predicted by the Standard Model, in fact it is rather one of its

free parameters. Right now there exists an experimental lower bound for the Higgs boson’s mass

of 114.4 GeV/c2 at 2σ confidence, obtained at the LEP [14].

2.2.2 Higgs Mechanism

The Higgs mechanism explains how elementary particles obtain their mass. This is done by

the coupling of a gauge boson to a scalar field. To understand this, an exemplary model for

spontaneous symmetry-breaking is explained first. For this purpose a complex scalar field H,

representing the Higgs field, is introduced. It is then associated with a non-negative potential

energy of the form

V = (|H|2 − v2)2 (2.1)

having continuous minima at |H|2 = v2 (fig. 2.1) [15].

Figure 2.1: Example for a Higgs potential like function: V(H) = (|H|2 − 1)2.

14 Physics of the Higgs Boson

The point H = 0 is symmetric with respect to the U(1) symmetry, that changes the complex

phase of H. But this point is energetically unstable. The Higgs field will eventually settle in

a position of minimal potential energy at H = v · eiφ with arbitrary φ phase. This induces an

asymmetry on the vacuum, in the sense that the ground state is not invariant under the U(1)

symmetry.

The spontaneous symmetry-breaking model predicts a massless scalar particle, which is the

quantum excitation along the direction of φ, the so-called Nambu-Goldstone boson. There is no

potential energy cost to move around the bottom of the circular valley, so the energy of such a

particle is pure kinetic energy, which in quantum field theory implies that its mass is zero. But

no massless scalar particles have been detected yet.

A similar problem in the non-Abelian gauge theory was the existence of massless gauge bosons,

which, apart from the photon, also have not been detected. Higgs combined the gauge theory

with a spontaneous symmetry-breaking model solving both problems: when coupling the scalar

field to the gauge theory, the massless φ mode of the Higgs combines with the gauge boson to

form a massive gauge boson.

In contrast to the U(1) symmetric model explained above, the weak interaction in the SM

requires a SU(2) symmetry. This leads to a two-dimensional complex Higgs field. Two of its

constituting fields are charged and become the W± gauge bosons with the approach described

above. One of the neutral fields is then identified as the Z0 boson and the remaining neutral

field becomes the Higgs boson. This theory is called the ”Weinberg-Salam-Model” [16]. It is the

mechanism that gives mass to the gauge bosons of the weak interaction and to the Higgs boson

itself.

The Yukawa mechanism defines the couplings of the Higgs field to the fermions which provides

mass to all quarks and leptons in the Standard Model. The coupling constants of this interaction

are linearly related to the fermion masses but not provided by theory itself and thus have to be

determined experimentally.

The Higgs mechanism was first incorporated into modern particle physics by Steven Weinberg

and is now an essential part of the Standard Model. Its experimental discovery or falsification on

the other hand is still due and will probably happen in the coming years at the LHC.

2.3 The Search for the Higgs Boson 15

2.3 The Search for the Higgs Boson

The foremost goal physicists hope to accomplish at the LHC is to detect the Higgs boson and

verify the theory of electroweak symmetry breaking. To manage this task it is essential to know

what one is looking for. Therefore, the most important Higgs production processes at the LHC

and its decay processes are explained in this thesis, with special focus on the t̄tH channel and its

associated background channels.

The SM predicts that the couplings of the Higgs boson are proportional to the masses of the

involved particles. This fact is of great relevance for all Higgs production and decay processes.

2.3.1 Higgs Production at the LHC

Hadron colliders provide several ways to produce Higgs bosons. The four most important ones

are presented below and an overview of the cross-sections is shown in figure 2.2.

Chapter 4

Higgs search in the
����

channel

This chapter gives an overview of the predicted Higgs production processes at the LHC and discusses
the search in the channel � ��� , which is investigated in a full simulation study in the following chapters
of this dissertation.

4.1 Higgs Production at the LHC
At the LHC, Higgs production preferably occurs with involvement of intermediate heavy particles

which provide indirect coupling of the Higgs bosons to the light quarks and massless gluons present in
the 7 TeV proton beam. Fig. 4.1 shows the leading order cross-section for different Higgs production
processes and decay branching ratios as a function of the Higgs mass [28, 29] .

The by far dominant process is gluon fusion (�� 	 � , Fig. 4.2.a), where a quark loop (because of
its high mass most often a �-quark, Fig. 4.2.b) couples the massless gluons to the colorless Higgs boson.
The suppression of this process resulting from the presence of the (massive) loop is compensated by
the high gluon density in the proton beam, providing the highest of all Higgs production cross-sections.
Depending on the Higgs decay mode, searches in this channel suffer from the presence of immense SM
backgrounds. Final states which can efficiently be utilized for Higgs searches are � 	 � � , the so-called
Golden Channel, and the Gold-Plated Channel � 	 � � � 	 � �.

A more characteristic signature is provided by the following processes of associated Higgs produc-

a) b)

M /cH [GeV]
2

M /cH [GeV]
2

Figure 4.1: Leading order cross-section for different Higgs production processes at the LHC (a) [28] and
decay branching ratios (b) [29] for the Higgs boson as function of its mass �	 .

15

Figure 2.2: Cross-sections of the main Higgs production processes at the LHC according to the Standard Model.
The thick line marks the process of associated Higgs production with t̄t, analysed in this thesis; the grey area
highlights the studied Higgs mass of 120 GeV/c2 [17].

Gluon-Gluon Fusion

Gluon-gluon fusion is the most dominant Higgs production process over the whole Higgs mass

range (fig. 2.3). It is mediated by a quark loop (most often by a top quark loop due to its high

mass) since the colour charged gluons cannot couple directly to the colourless Higgs boson and

because the gluons are massless. This process is suppressed due to the heavy quark loop but this

is compensated by the high gluon luminosity of the LHC.

16 Physics of the Higgs Boson

Searches in this channel may suffer from the presence of many background processes. So, only

few final states can be used effectively like H → γγ or H → 4l.

�

�

�

���

Figure 2.3: Leading order Feynman graph for Higgs production via gluon-gluon fusion, mediated through a top
quark loop. This is the dominant production process over the whole Higgs mass range.

Weak Gauge Boson Fusion

The fusion of two Z0 or W± bosons is the second largest Higgs production process at the LHC

(fig. 2.4). Two quarks each radiate a weak gauge boson that fuse together to form a Higgs

boson with the final state quarks leaving in forward and backward directions. In the case of Z0

fusion quark flavours are conserved, whereas with W± bosons quark flavours change.

After the initial detection of the Higgs boson, this process can be further exploited to measure

charge and parity (CP) properties and properties of the Higgs coupling.

�

���

�

� �

���
���

� �

�

�����

���

� �	���

���

��

�

Figure 2.4: Higgs production via a weak gauge boson fusion process at leading order. Fusion processes with
charged bosons change the involved quarks, whereas uncharged boson fusions leave the quark flavours unchanged.

Higgs Radiation

The next frequent Higgs production process is an associated process where a weak gauge boson is

always produced together with the Higgs boson (fig. 2.5). Two quarks annihilate to an off-shell

Z0 or W± that then radiates the Higgs boson. For the Z0 production a quark and its anti-quark

2.3 The Search for the Higgs Boson 17

is needed which results in a suppression of this process, which would otherwise be higher than

the Higgs production through a W± boson (because of the higher Z0 mass).

This channel can easily be distinguished from its background channels through the bosons’ decay

particles and furthermore it is for measurements of the corresponding Yukawa couplings.

���

�

��

���

���

	
�

�

����

	�

���

Figure 2.5: Higgs radiation process for Higgs production. The Higgs boson is radiated by a weak gauge boson
that was produced off-shell.

Associated Higgs Production with a Top Quark Pair

The Higgs production in association with a top and anti-top can mainly occur via two processes.

In the first process two gluons decay into t̄t pairs and a top from one decay tree together with an

anti-top from the other decay tree then annihilate in the Higgs boson. In the second process, a

gluon that was produced through quark-quark or gluon-gluon annihilation decays into a top and

an anti-top and one of these then radiates the Higgs boson (fig. 2.6).

This channel has a rather small cross-section but is nonetheless very attractive due to its remark-

able signature, especially in the lower Higgs mass ranges. Here the Higgs boson predominantly

decays into a bb̄ pair which together with the two W bosons and b quarks from the top decays

shows a high tagging potential .

�

�

�

� �

������ � �
�

�

��

�

� �

���

Figure 2.6: Leading order Feynman graphs for the Higgs production with an associated top quark pair in the
final state. On the left, a top-top fusion process is shown and on the right-hand side a gluon decay is displayed.

18 Physics of the Higgs Boson

2.3.2 Higgs Decay Modes

The Higgs decay mode is highly dependent on the Higgs mass. As already mentioned, it preferably

decays into the heaviest particles kinematically possible. Therefore, different analysis approaches

have to be used, depending on the assumed Higgs mass to be studied. The branching ratios of

the various decay modes are shown in figure 2.7.

Chapter 4

Higgs search in the
����

channel

This chapter gives an overview of the predicted Higgs production processes at the LHC and discusses
the search in the channel � ��� , which is investigated in a full simulation study in the following chapters
of this dissertation.

4.1 Higgs Production at the LHC
At the LHC, Higgs production preferably occurs with involvement of intermediate heavy particles

which provide indirect coupling of the Higgs bosons to the light quarks and massless gluons present in
the 7 TeV proton beam. Fig. 4.1 shows the leading order cross-section for different Higgs production
processes and decay branching ratios as a function of the Higgs mass [28, 29] .

The by far dominant process is gluon fusion (�� 	 � , Fig. 4.2.a), where a quark loop (because of
its high mass most often a �-quark, Fig. 4.2.b) couples the massless gluons to the colorless Higgs boson.
The suppression of this process resulting from the presence of the (massive) loop is compensated by
the high gluon density in the proton beam, providing the highest of all Higgs production cross-sections.
Depending on the Higgs decay mode, searches in this channel suffer from the presence of immense SM
backgrounds. Final states which can efficiently be utilized for Higgs searches are � 	 � � , the so-called
Golden Channel, and the Gold-Plated Channel � 	 � � � 	 � �.

A more characteristic signature is provided by the following processes of associated Higgs produc-

a) b)

M /cH [GeV]
2

M /cH [GeV]
2

Figure 4.1: Leading order cross-section for different Higgs production processes at the LHC (a) [28] and
decay branching ratios (b) [29] for the Higgs boson as function of its mass �	 .

15

Figure 2.7: Branching ratios of the main decay channels of the Higgs boson in the Standard Model. The thick
line marks the decay process H → bb̄ analysed in this thesis; the grey area highlights the studied Higgs mass of
120 GeV/c2 [18].

Higgs Decay into Massive Particles

For a Higgs mass below about 150 GeV/c2, decays into two fermions will dominate, with H → bb̄

being the most probable one due to the high b mass (fig. 2.8). For higher Higgs masses, decays

into two W± or two Z0 bosons become possible. At first, one boson will be produced off-shell3

and, when the kinematical threshold is reached, on-shell as well . The t̄t final state is suppressed

until the decay into two real top quarks becomes kinematically possible. But this process will

remain less important for higher Higgs masses compared to both boson decay modes.

3An off-shell particle is a virtual particle with a mass far away from the actual resonance mass of the on-shell
or real particle. It is only part of the quantum probability calculations in the Feynman diagrams and cannot be
measured experimentally. Processes with off-shell particles have a smaller cross-section than the same process
with an on-shell particle, but the latter might not always be kinematically possible.

2.3 The Search for the Higgs Boson 19

���

�������
	���

�������
	���

���

��� ��� �

��� ��� �

Figure 2.8: Decay process of the Higgs boson into two massive leptons or bosons.

Higgs Decay into Massless Particles

In addition, the Higgs boson can also decay into two massless gluons or photons (fig. 2.9). In the

case of a gluon-gluon final state, this decay has to be mediated by a quark loop (predominantly

with a top quark loop, due to its high mass), since the colourless Higgs boson cannot couple

directly to the gluons that have a colour charge. Accordingly, the photon-photon final state is

mediated by an electrically charged particle loop.

����

�

�

����

�

�

Figure 2.9: Leading order Feynman graphs for the decay of the Higgs boson into massless gluons or photons
mediated by a quark or charged particle loop, respectively.

2.3.3 The tt̄H Channel

The channels that are promising for an early discovery of the Higgs boson at the LHC are H → γγ

up to a Higgs mass of 140 GeV/c2, H → 4l for Higgs masses between 130 and 700 GeV/c2 and

H → jjll, H → llνν or H → jjlν at Higgs masses of 0.5 to 1.0 TeV/c2. In the mass range just

above the current experimental limit of 114.4 GeV/c2, the channel of associated Higgs production

t̄tH, as shown in figure 2.6, has also the potential to support the Higgs discovery. This channel

suffers from a lower production rate compared to the other mentioned channels, but otherwise it

features a clear signature due to its two top quarks, that can be detected easily.

20 Physics of the Higgs Boson

The two top quarks produced in association with the Higgs boson almost exclusively decay

into a W boson and a b quark. Each W boson then decays further, either hadronically into two

light quarks or leptonically into a lepton and the associated neutrino. Depending on the decay

mode of the W bosons, the final state of the t̄tH channel is categorised as hadronic (WW → 4j),

leptonic (WW → lνl′ν ′) or semi-leptonic (WW → jjlν). This thesis focuses on the semi-leptonic

final state with its four b jets, two light quark jets, one muon (used for triggering) and one

neutrino (fig. 2.10).

�

�

���

���

� �

�

�

�

�

	

��

�

�

Figure 2.10: Schematic view of the final state topology of the t̄tH channel analysed in this thesis.

The semi-leptonic final state was chosen because it offered the best overall compromise of

all three possible final states. It features a high branching ratio (see table 2.3), less obstruc-

tive background processes than the fully hadronic final-state and contains only a single lepton,

simplifying triggering and missing energy calculations with regard to its associated neutrino.

Process Branching Ratio

W → jj 0.68

W → lν 0.32

WW → 4j 0.46

WW → jjlν 0.44

WW → lνl′ν ′ 0.10

Table 2.3: Selected branching ratios of the W and WW decay [14].

2.3 The Search for the Higgs Boson 21

�

�

���

� �

�

�

�

�

�

�

���

���

� �

�

�

�

�

�

�

�	�

� �

�

�

�

�

�

�

�
�

�	�

� �

�

�

�

�

Figure 2.11: Schematic view of the main background channels along with their sub-channels sporting b jets.

The main background channels for the t̄tH channel will be t̄tjj, where two top quarks and

two quark or gluon jets are produced in the proton-proton collision and t̄tZ with Z → jj, where

a Z boson produced in association with the two tops decays into two quark jets. Both channels

can be largely reduced through b-tagging algorithms4, but their sub-channels with b jets as light

quark jets remain irreducible (fig. 2.11). In table 2.4, the leading order cross-sections for these

channels are listed, as well as the expected number of events after one year of data taking at low

luminosity at the LHC. It is evident that the t̄tjj (reducible through b-tagging by a factor of 102

to 103 according to [19]) and the t̄tbb̄ (irreducible) channels will be the dominant background

channels that have to be handled. The t̄tZ channel will only slightly contribute to the background

due to its low production rate and the wide decay spectra of the Z boson.

Final state LO cross-section [pb] number of events

t̄tH 0.577 11,534

t̄tZ 0.646 12,920

t̄tbb̄ 3.28 65,600

t̄tjj 507 10,140,000

Table 2.4: Leading order cross-sections for the tt̄H channel and its most prominent background channels along
with the resulting events after one year of data taking at low luminosity (20 fb−1) at the LHC [19].

2.3.4 Analysis Challenges

The t̄tH channel features a complex topology with four b jets, two light quark jets, an iso-

lated muon, missing energy and possible additional jets from Initial State Radiation (ISR) and

Final State Radiation (FSR). This entails high requirements on all levels of the detection and

reconstruction chain. Jet resolutions need to be good in order to allow a clear identification of the

top quarks, the b-tagging efficiency has to be high to yield a sufficient number of signal events,

and the mistagging-rate must be low, so that the immense t̄tjj background can be suppressed.

4The aim of b-tagging algorithms is to identify jets in an event containing a b or b̄ quark.

22 Physics of the Higgs Boson

The complex final state leads to non-trivial ambiguities in the assignment of the observed

detector objects to the original partons of the process that have to be resolved during the analysis.

At least, 24 different combinations are possible (assuming perfect jet identification): there are

12 ways to distribute the four b jets to the two top quarks and the Higgs ((6-2)!/2, since the

two b jets from Higgs decay as well as the two light quarks are indistinguishable). In addition,

there are almost always two different solutions for the longitudinal component of the neutrino’s

momentum that has to be taken into account5. With finite jet resolutions, imperfect b-tagging

and the presence of additional jets, the complexity of the final state increases and makes it even

more difficult to correctly identify the final state particles.

The t̄tbb̄ background channel features the same distribution of final state particles with very

similar kinematics as the t̄tH channel, making the identification of a background event difficult.

Small differences in the available observables have to be detected and exploited extensively to

separate these two channels and to get a clearer view on the Higgs boson.

Another problem arising in the detector is the pile-up of different events. Because of the high

proton density in each bunch several collisions can happen per bunch crossing and due to the

high bunch cross rate an event from a previous bunch crossing can still be in the detector, when

the next bunch crossing happens. This leads to the detection of additional jets which are not

coming from the currently triggered event and to the measurement of wrong values as several

jets deposit their energy in the same detector element. Sometimes the effect of multiple collisions

in one bunch crossing is also referred to as minimum bias. The term pile-up then only applies to

collisions in consecutive bunch crossings happening in too quick succession.

5In proton-proton collisions, only the transverse component of the neutrino’s momentum can be determined
accurately by a missing energy measurement; a W mass constraint can then be used to obtain the (generally two)
analytical solutions for the longitudinal component.

Neural Networks

A common task in high energy physics analyses is to separate experimental data into certain

classes. For example interesting events (signal) have to be divided from unwanted events (back-

ground). One way to do this is applying cuts1 on certain variables of the events. This usually

yields acceptable results, but with an increased number of cuts, the number of signal events

that do not pass the cut increases, too. Furthermore additional information inherent to the cor-

relations between variables is also wasted. To handle this problem and to improve the overall

separation, the whole information inherent to an event can be transferred into one single variable.

This variable is then used to classify an event as signal or background. Methods for the necessary

transformation step are for example likelihood methods, or more sophisticated, artificial neural

networks (ANNs).

The human brain is able to solve complex classification functions with ease. This extraordinary

ability has been widely researched by scientists of various fields. In the last decades great efforts

were taken to find good models for this design of nature and to adapt it for technical usage. The

results of these researches are a variety of artificial neural network models. One expects to built

systems based on these models which are able to learn certain facts guided by a teacher or on their

own. This accumulated knowledge is then to be applied in different situations, generalising from

the learned facts and coming to correct conclusions even with incomplete or faulty information.

In addition such systems provide an ideal playground for parallel processing models.

It is important to note that artificial neural networks represent a whole family of models, not

just a single technique. Each form is optimised for a specific task, analogous to the functional

specifity associated with different regions of the human brain. This thesis is based on the appli-

cation of artificial neural networks. Therefore an extensive overview of this topic is given in the

following sections, focusing on feed-forward networks, since the neural network packages used for

this thesis are based on this model. In addition a short overview of other neural network models

is given in the last section.

Further information about neural networks can be found in [20] - [23].

1The act of rejecting an event if the value of a specific variable of the event does not meet a certain threshold
is called, applying a cut on this variable.

24 Neural Networks

3.1 Fundamentals

3.1.1 The Biological Model

The research in the field of artificial neural networks has been greatly inspired and influenced by

our knowledge of biological nervous systems. Their basic component is the neuron. This nerve

cell receives electro-chemical stimuli from other neurons and, in response, generates electrical

signals of its own that are transmitted to other nerve cells. 1010 to 1012 of these cells form a

network, called the brain.

A neuron is highly asymmetric in shape (fig. 3.1). Its central part is the soma or cellular body

containing the nucleus and providing the link between the cellular extensions called dendrites and

axons. Each nerve cell has got many dendrites that are the main information sources of the

neuron. In contrast it has got only a single extension, called the axon, to carry away nerve signals

to other neurons. It grows extremely long and undergoes extensive branching to reach as many

other nerve cells as possible. At the end of each branch there is a small swelling that connects

the axon to a dendrite of a different neuron. This swelling is called a synapse. Thus a highly

interconnected network of nerve cells is formed.

Neural activity is defined by an internal electrical potential which is influenced by the activities

of the nerve cells connected through the dendrites. If this potential reaches a certain threshold,

the neuron ”fires” and a series of electrical stimuli are sent through the axon to the synapses.

Here, neuro-transmitters, a kind of chemical messengers, are poured out and exhibit or inhibit

the following nerve cell. This information transfer between the neurons is mainly regulated at the

synapses. These are able to grow and shrink; new synapses can form and old ones can disappear.

It is assumed that this behaviour is the actual basis for the learning process of our brain.

Figure 3.1: Schematic view of a biological nerve cell.

3.1 Fundamentals 25

3.1.2 The Artificial Neuron

In accordance to the biological neuron, an artificial neuron is generally devised as shown in

(fig. 3.2). This was first realised by McCulloch and Pitts in 1943 [24]. A more biological

approach to artificial neurons can be found for example in [25, 26].

Figure 3.2: Schematic view of an artificial neuron.

A neuron j has multiple inputs in1..n(t) coming from other neurons. These values get summed

up to aj(t) in the neuron according to the weights wji of the inputs. The final neural output

outj(t + 1) of the neuron j is obtained by applying an activation function f(aj(t)) to the summed

inputs aj. McCulloch’s and Pitts’ model used binary values for the input variables and a Heaviside

activation function.

The final equation modelling an artificial neuron is as follows:

outj(t + 1) = f

(
n∑

i=1

ini(t)wij − σj

)
(3.1)

The term σj is called bias. It is used to control the threshold of the neuron. This gets more

vivid, when using the Heaviside-function Θ(x) as an example for the activation function. Here

the bias directly controls at which sum the neural output will switch from 0 to 1, i.e. when the

neuron will ”fire”. The actual value of the bias can also be learned by the neural network, too.

Therefore each neuron j gets an additional input with a fixed input value of -1 and a weight σj

equal to the value of the bias.

Today, current neural network approaches utilise a continuous activation function that is

differentiable and maps (−∞,∞) → [0, 1]. For this purpose, the sigmoid function

s(x) =
1

1 + e−cx
(3.2)

is often used, but other functions like tanh(x) are also employed. This is the primary feature of

modern neural networks. The described activation function enables the neural network to learn

non-linear relations between different input variables.

26 Neural Networks

3.1.3 Training Methods

The training method is the most important part of a neural network. It defines how a network will

learn and what it will be capable of later. Training methods can be classified into two principal

categories: supervised and self-organised learning. They will be explained below.

Supervised Learning

Supervised learning methods require a teacher that knows what the target outputs of the network

should be for a given set of training input patterns. The training then follows simple steps, which

are done for every input pattern of the training and repeated as often as needed:

1. An input pattern is presented to the network.

2. The network output is calculated.

3. The network weights are adapted according to the difference between the calculated output

and the target output.

Adjustments of the weights can happen at several occasions. One usually distinguishes between

the following two options:

• Batch Mode:

All training patterns are presented to the network before the weights are adjusted. This

is useful to take advantage of the full training sample before altering the network. It gets

applied to achieve a better adaptation of the neural network to the training patterns.

• Online Learning:

The network weights are already adjusted after several training patterns have been presented

to the network. This is usually done if the number of training patterns is too large to keep

all the data quickly accessible or if the speed of the training is important.

The neural network models discussed in this chapter all require supervised learning and use the

online learning method, if not mentioned otherwise.

Self-Organised Learning

In contrast to the supervised learning method, self-organised learning or unsupervised learning

does not need a teacher. It tries to cluster similar input patterns and to maximise the distance in

output space between diverse input patterns. This learning method is usually applied when there

is no a-priori knowledge of the network output or if it would be too costly to generate. Prominent

representatives of this method are Kohonen networks, explained in section 3.5.2.

3.2 Feed-Forward Networks 27

3.2 Feed-Forward Networks

3.2.1 Topology

Neural network topologies exist in great quantities. The simplest structures are called feed-forward

networks (fig. 3.3). They only feature information transport into one direction from the inputs

to the outputs. Here, neurons are usually arranged in layers and connections only exist from one

layer to the next. One distinguishes between the input layer, the output layer and possible hidden

layers in-between. It is common convention not to include the input layer in the overall layer

count. The inputs of the network are generally also referred to as neurons even though they play

no active role in the information processing.

Figure 3.3: Structure of a feed-forward network, including an input, one hidden and an output layer.

Other topologies include recurrent and fully connected networks (fig. 3.4). A network is called

recurrent if cross, auto and backward connections exist between the neurons. A fully connected

network has got connections from each neuron to each other neuron.

Figure 3.4: Different network topologies. (a) fully connected, (b) recurrent.

28 Neural Networks

3.2.2 The Perceptron

The perceptron was first devised in 1957 by Frank Rosenblatt [27]. It is the simplest type of

a feed-forward network, consisting only of an input and an output layer (fig. 3.5). Each input

neuron is linked to each output neuron by a weighted connection.

Figure 3.5: A simple perceptron, consisting of an input layer with n inputs and an output layer with m outputs.
Every input neuron is connected to every output neuron.

Every output out1..m of the perceptron is an explicit function of the inputs in = (in1, ..., inn)
T,

that can be calculated straightforward after propagating the input values through the network:

outj = f

(
n+1∑
i=1

ini wji

)
j = 1, ..., m (3.3)

The bias mentioned above is included in the sum of formula 3.3 as an additional weight wj(n+1)

for each neuron j with a fixed input value of inn+1 = −1.

Gradient Descent

The training of the perceptron is done with a supervised learning method. Therefore a set of

N training samples comprised of input patterns inq and associated target output patterns outq is

needed. These sample input patterns are presented to the network and the weights are adjusted

according to the target and network output.

In order to measure the quality of a neural network training an error quantity E(W) is defined

as function of the network weights. The goal of a network training is to minimise this error

function by altering the network weights, so that target and network outputs converge.

3.2 Feed-Forward Networks 29

A commonly used error function is the sum-of-squares error, defined as:

E(W) =
1

2

N∑
q=1

m∑
j=1

(
outqj − trueq

j

)2
=

N∑
q=1

Eq(W) (3.4)

Here the squared differences between the target outputs trueq
j and the calculated outputs outqj

for each input pattern q get summed up. The factor 1/2 is introduced to eliminate duplicate

summands.

If E(W) is differentiable with regard to the network weights wji various gradient-based tech-

niques can be applied to obtain a minimum of E(W). This will typically yield only a local minimum

but certain training techniques and a careful choice of the starting values of the weights help to

reach a local minimum not far from the global minimum.

The best understood of these numerical optimisation techniques is the gradient descent al-

gorithm. It suggests to change each weight wji of the neural network in the opposite direction of

the gradient of the error function E(W) at the position of the current network weights W:

∆wji = −η
∂E(W)

∂wji
=

N∑
q=1

∆wq
ji (3.5)

The parameter η is called learning rate and indicates how fast the network weights are changed.

It should be chosen small in order not to miss a possible minimum. But it should also be chosen

not too small for a faster training. Typically it is not a constant and gets reduced as the network

training approaches a final minimum.

If the activation function f(x) is differentiable, equation 3.5 can be further rewritten as:

∆wq
ji = −η δq

j inq
i (3.6)

with:

δq
j = (outqj − trueq

j) f ′(aq
j)

aq
j =

n+1∑
i=1

inq
i wji

Equation 3.8 defines an update rule for the perceptron’s weights that minimises the error function

E(W). It is referred to as delta rule [24]. Since it is only dependent on one input pattern and

the output of one neuron, it is easy to implement. The calculations get particularly simple if the

sigmoid function s(x) of equation 3.2 with parameter c = 1 is chosen as activation function, since

s′(x) = s(x) · (1− s(x)).

30 Neural Networks

Network Interpretation

Because of the simple structure of the perceptron, its functionality can be easily visualised. Each

network output function outj describes a hyperplane in input space, separating it into two halves.

The actual position of that hyperplane – not its orientation – can be varied further by the bias.

Thus input patterns can be separated into two classes. Figure 3.6 gives an example of a neural

network simulating a logical AND-function.

Figure 3.6: Logical AND function. The truth table of the AND function is shown on the left. A neural network
able to simulate this function is displayed in the middle using neurons according to McCulloch and Pitts. On
the right, the input space {in1, in2} is plotted with the associated outputs outi. The dashed line symbolises the
hyperplane the neural network introduces, separating the areas with out1 = 1 from the areas with out1 = 0.

Limits of the Perceptron

As described in the previous section the perceptron is only capable of learning problems that are

linear separable. A simple challenge as the logical XOR function (fig. 3.7) cannot be modelled

by this approach. This deficiency led to a drastic decrease in neural network researches in the

1970s before more sophisticated models got developed.

Figure 3.7: Logical XOR function. The truth table of the XOR function is shown on the left. On the right
the input space {in1, in2} is plotted with the associated outputs outi. There exists no single hyperplane that can
separate the areas with out1 = 1 from the areas with out1 = 0.

3.2 Feed-Forward Networks 31

3.2.3 Multilayer Networks

In order to overcome the limitations of single layer neural networks like the perceptron this

concept got expanded. A logical step is to introduce another layer of neurons, thus effectively

linking several perceptrons together to form a multi-layer perceptron (MLP) that surpasses the

classification capabilities of its components (fig. 3.8). Further layers can be added accordingly to

the neural network. In each case the computations for each neuron stay the same, even though

the output neurons are no longer direct functions of the input variables ini1.

Figure 3.8: A multi-layer perceptron with n inputs and m outputs, featuring one hidden layer with k neurons.
Input patterns traverse the neural network from the bottom to the top and get processed thereby whereas errors
are handed backwards for the training.

The hidden layer of a MLP transforms an input pattern {in11, ..., inn1} into another represen-

tation {in12, ..., ink2} (not necessarily injective). Here the output layer can construct a hyperplane

that separates the classes (fig. 3.9). Another interpretation of the functionality of a MLP takes

advantage of the MLP’s buildup of several perceptrons. It states that each perceptron forms one

hyperplane in input space to separate the classes.

Figure 3.9: Logical XOR function. On the left, the input space {in11, in21} is shown along with the associated
output regions. It gets transformed by the hidden layer into {in12, in22} as depicted in the middle. Now a
hyperplane can be found to separate the two classes. On the right, the responsible two-layer neural network is
presented; the bias inputs are only shown implicitly.

32 Neural Networks

Backpropagation

Multi-layer neural networks cannot be trained by the simple delta-rule introduced for the percep-

tron, since the values of the target output of the hidden neurons are not known. If an network

output deviates from its target value, it is impossible to tell which neuron in the hidden layer was

responsible for this error and thus which weight should be changed.

An extension to the delta-rule, also based on the gradient descent method is the backprop-

agation algorithm. It was independently developed by several scientists, of whom Paul Werbos

was the first in 1974 [28] but backpropagation has not become widely known until a decade later.

This algorithm is divided into two steps:

• An input pattern is presented to the network and associated network output is computed

• The errors are backpropagated from the output layer to the input layer

The principal approach stays the same as in equation 3.5. Only now the derivative δE(W)
δwji

has to

be calculated using the chain rule. This leads to the following results:

• for the output layer:

∆wq
ji = −η δq

j2 inq
i2 (3.7)

with:

δq
j2 = (outqj − trueq

j) f ′(aq
j)

aq
j =

k∑
i=1

inq
i2 wji

• for the hidden layer:

∆vq
ji = −η δq

j1 inq
i1 (3.8)

with:

δq
j1 = f ′(aq

j) ·
m∑

i=1

wij δq
j1

aq
j =

n∑
i=1

inq
i1 vji

where vji stand for weights from the input layer ini1 to the hidden layer ini2 and wji denote

the weights from the hidden layer to the output layer outi.

The actual weight update rule stays the same in both cases, only the δ-function is different for the

output layer and the hidden layer. These equations can be expanded accordingly for additional

hidden layers.

3.3 Training Optimisations 33

3.3 Training Optimisations

Simple training algorithms like the backpropagation algorithm introduced above deliver good

training results. But there are many approaches to accelerate the training speed of a network

and to improve the overall network quality after the training. Some of these optimisations are

introduced in this section.

3.3.1 Regularisation

Oscillation of the error function E[W] around a minimum can be a problem in the training of the

neural network. This can be suppressed by introducing a penalty term to the error function:

E(W) → E(W) + τ · P(W) (3.9)

The penalty term P(W) is controlled by the free parameter τ . A value of τ = 0 means, that

there will be no regularisation. Furthermore the penalty term can be used to enforce certain

requirements on the neural network. One potential penalty term is defined as follows:

P(W) =
∑

i

w2
i

1 + w2
i

(3.10)

The neural network now gets punished for having large weights wi. Thus minimising this error

function leads to a network with overall small weights. Oscillations are also suppressed due to an

altered form of the error function. This approach is called weight elimination [29].

3.3.2 Preprocessing

Convergence to a minimum in the error function ∆E(W) may be improved by preprocessing the

input patterns before the training of the neural network. Some methods for preprocessing are

listed below. For more information see [30].

• mean cancellation:

The mean of all values in an input pattern should be evenly distributed around zero to avoid

a bias and to improve the training speed. For example if all input patterns consist solely of

positive values, the next weight update will happen in the same direction for every weight.

• decorrelation:

With uncorrelated input variables the weights of the neural network can be minimised

separately instead of the complicated process to minimise all weights at once.

• covariance equalisation:

If the covariances of all input variables are in the same order of magnitude, convergence to

a minimum may be reached faster.

34 Neural Networks

3.3.3 Learning Rate

Momentum Term

The learning rate η is a crucial parameter for a quick and successful training. If the error function

E(W) features broad minima, η can be chosen large to speed up the training. However steep

minima could be missed in this way. In general, if the weight update rule depends too strongly

on the learning rate, oscillations around the minima of E(W) can occur. To avoid this behaviour

a momentum term is usually added to the weight update rule:

∆wji(t + 1) = −η
∂E(t)

∂wji
+ α · wji(t) (3.11)

This helps to prevent large changes in wji and to keep the direction of the weight updates on

track. The momentum term typically speeds up the convergence and leads to a more efficient

training [31].

Adaptive Learning Rate

It is useful to have a high learning rate η at the beginning of the training, leading to quickly

made improvements. After the training gets close to a minimum in the error function, η should

be reduced to actually reach it. Such a learning rate is called adaptive learning rate.

The learning rate should be increased if ∆E(W) constantly decreased in the last N steps and

vice-versa. If the changes in the error function did not show a clear tendency, the learning rate

should be kept constant. This can be modelled by the following equation:

η(t + 1) =

+aη(t) if ∆E(W, n) < 0 ∀ n = t, ..., t− N + 1

−bη(t) if ∆E(W, n) > 0 ∀ n = t, ..., t− N + 1

0 otherwise

(3.12)

whereas ∆E(W, n) = E(W, n)− E(W, n− 1) denotes the change in the error function from step

(n-1) to step n. The free parameters a, b and N in this equation have to be chosen appropriately.

There are more sophisticated methods that exploit the idea of altering the learning rate like

Quickprop [32] or Rprop [33]. These are in general more theoretically founded and offer even

better training results.

3.3.4 Other Error Functions

The sum-of-squares error function defined in equation 3.4 represents only one way of calculating

the quality of a network. Different error functions can be used to focus the training on certain

aspects.

For example different norms could be chosen instead of the Euclidean distance in the sum-

of-squares error function (eqn. 3.13). For large values of R this would favour training patterns

3.3 Training Optimisations 35

with large errors. However individual runaway patterns could falsify the whole result.

E(W) =
1

2

N∑
q=1

m∑
j=1

(
outqj − trueq

j

)R
(3.13)

The relative entropy function (eqn. 3.14) forces the network to learn the hypothesis repre-

sented by the output outj with a probability 1
2
(1 + outqj) that this hypothesis is true [26]. The

advantage of this function is that it rapidly diverges if one output saturates. In the same scenario,

the sum-of-squares error would just stay constant for a long time.

E(W) =
N∑

q=1

m∑
j=1

(
1

2
(1 + trueq

j) ln
1 + trueq

j

1 + outqj
+

1

2
(1− trueq

j) ln
1− trueq

j

1− outqj

)
(3.14)

Other error functions are defined differently at the beginning and at the end of the learning

procedure (eqn. 3.15). To avoid early local minima, the error function is larger for those output

values outj that are not yet close to the desired target output truej.

E(W) =
N∑

q=1

m∑
j=1

{
γ(outqj − trueq

j)
2 if sign(trueq

j) = sign(outqj)

(outqj − trueq
j)

2 if sign(trueq
j) = −sign(outqj)

(3.15)

with 0 < γ < 1 chosen appropriately.

3.3.5 Further Optimisations

Skipping of Training Patterns

Training patterns that are already trained well, i.e. that produce a small error function, do

not need to be learned further. After the first step in the backpropagation algorithm E(W) is

checked against a threshold value c. If the error is smaller than c, the next training pattern is

used, otherwise the error backpropagation is done.

Output representation

The actual representation of the output pattern can also complicate the training. For example, a

neural network should learn to classify an alphabet A-Z. Now 26 output neurons are introduced,

one for each letter. Output outj = 1 indicates, this is letter j and outj = 0 denotes, this is not

letter j. The difference in the output pattern between the different classes is not very large

(A = 100... vs. B = 010...), therefore they are difficult to be trained well. Either the

output representation should be modified using fewer output neurons, for example using a binary

representation, or individual networks should be used for each letter.

36 Neural Networks

3.4 Network Design and Interpretation

3.4.1 Design Criteria for Neural Networks

When defining the parameters for a neural network, one is faced with multiple decisions that

will all have an impact on the quality of the trained network. Several of these options are now

explained in more detail.

Hidden Layer

The number of hidden layers defines the abilities of the neural network, which mathematical

functions it will be able to simulate. As shown, a network with no hidden layer can only learn linear

separable problems. One hidden layer enables the network to learn arbitrary continuous functions

and with two hidden layers, every function can be approximated with a neural network [32,34].

The number of hidden neurons is another free parameter in the neural network design. If too

few neurons are chosen the network will not be able to learn all characteristics of the training

input patterns. On the other hand, if too many hidden neurons are chosen, the network might

get overtrained. In the worst case it will learn every training pattern by heart and not be able to

correctly classify any other input pattern (fig. 3.10).

Experience has shown that a good value for the number of hidden neurons lies between half

the number of input neurons and double that number. Growing and pruning algorithms exist to

alter the number of hidden neurons during the training, alleviating this choice [26,35].

Figure 3.10: Network input space {in1, in2} with training patterns and the network separation line. On the left,
the network was not able to learn all aspects of the training patterns and thus some patterns are classified wrong.
In the middle, the network has learned to generalise between the two classes and a good separation line is drawn.
On the right, the network has learned each training pattern by heart, leading to a poor division of the two class
regions.

3.4 Network Design and Interpretation 37

Initial Weights

Even though the initial weights of a neural network are chosen randomly, several conditions should

be taken into account. Most important, the weights should not be chosen equal. If it is still

done, all neurons will behave in the same way forever. At the start of the training they all have

the same connections, thus they will receive the same inputs, yield the same output and generate

the same error, leading to the same weight updates. Basically a neural network with only one

neuron per layer is generated by this means.

The weight modification ∆wji is directly proportional to the derivative of the activation func-

tion f ′(aq
j). Therefore it is advantageous to start with small weights and distribute them evenly

around zero. Thus aq
j will be initialised around zero, too, where the gradient of f(aq

j) is at its

maximum for typical activation functions. This prevents an initial bias and leads to larger weight

updates making the initial training faster.

Training Input Patterns

The choice of the training input patterns is especially crucial since the network will receive all

its knowledge from these patterns. They have to be chosen carefully so that input patterns are

taken of all classes that have to be distinguished. Special regard has to be given to the complex

regions in input space, where different classes meet. Here, the input patterns will be quite similar

and therefore difficult to separate. Furthermore the training patterns have to be distributed

equally over all classes so that every class can be learned equally well. If not enough patterns are

available, this can be simulated by weighting the individual patterns differently.

Generally the training patterns are divided into a training sample and a test sample, which

both exhibit the same features as described above. In this case, the training sample is used for

the network training and the test sample to survey the training process. If the neural network is

trained too much, it could get overtrained, specialised in the separation of the training patterns

and therefore losing its ability generalise. This behaviour can be restrained by using test samples

(fig. 3.11).

Figure 3.11: Progression of the network error function for training and test patterns. At some iteration t the
network begins to learn the training patterns by heart and the results on the test patterns begins to deteriorate.

38 Neural Networks

3.4.2 Interpretation of the Neural Network Output

In order to evaluate the quality of a neural network, one has to examine the ability of the trained

network to separate signal events from background events. For a quantitative analysis of the

quality, the variables purity P and efficiency E are defined:

P(out) =
number of signal events with network output > out

number of events with network ouput > out
(3.16)

E(out) =
number of events with network output > out

number of events
(3.17)

The parameter out is a threshold for the interpretation of the network output. If the output is

larger than c, the corresponding input pattern is regard as signal event and as background event

otherwise.

Purity is a measure for how many of the classified events actually belong to that class. A high

signal purity indicates that most events considered to be signal events are truly signal events.

Efficiency denotes how many signal events of the whole sample got classified at all. A low signal

efficiency shows that most input patterns produce a network output below the threshold c. For

representative purposes the network quality is usually visualised as shown in figure 3.12.

< phi-t >
 TeacherNeuroBayes

Network output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

ev
en

ts

0

500

1000

1500

2000

2500

3000

3500

Node 1Node 1

efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
u

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

p
u

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node 1Node 1

Figure 3.12: On the left, the number of analysed events, divided into signal (red) and background (black) is
plotted versus the network output. On the right, the purity of the signal is plotted versus the efficiency of the
signal. Each point on this curve is a possible working point for the neural network. The nearer this point is to
the top-right corner, the better the network will work.

The network output scaled to [0, 1] is generally interpreted as a probability value. This

assumption is only true, if the network output c for each input pattern is about equal to the

associated signal purity P(c) (fig. 3.13). In this case, the neural network is trained optimally [36].

This can be shown in the following way: the mean contribution to the error function E for the

3.4 Network Design and Interpretation 39

input patterns with the network output out can be described as

E = P(out) · (1− out)2 + (1− P(out)) · (0− out)2 (3.18)

The first term describes the contribution of the signal events with a purity P(out) and a target

network output of 1. The second one represents the contribution of the background events which

have a purity of (1 - P(out)) and a target output value of 0. The network training tries to

minimise the error function, thus if E is minimal, the neural network is trained optimally. This

leads to:
dE

dout
= 0 → P(out) = out (3.19)

This makes the purity P(out) a linear function of the network output for an optimally trained

network.

 TeacherNeuroBayes

Network output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

ev
en

ts

0

500

1000

1500

2000

2500

3000

3500

Node 1Node 1

Network output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

p
u

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node 1Node 1

Figure 3.13: The signal purity plotted against the network output. The better the points lie on the first bisector,
the better the network training is regarding the interpretability of the network output as a probability.

40 Neural Networks

3.5 Other Neural Network Models

As mentioned in the introduction, the term neural network encompasses not only one single

technique but a whole range of models. Not all of these models are predestined for the usage in

this physical analysis context just as not every part of our brain is suited for every task. In order

to give a broader view of the subject of neural networks, three more kinds of these networks are

introduced. The radial basis function (RBF) network is similar to the neural network described

above, only the hidden neurons are handled differently, using a RBF. Self-organising or Kohonen

maps (SOM) pose a completely different learning approach as they try to classify the input

patterns on their own. Finally Hopfield nets are an example of a network architecture with

recurrent connections.

3.5.1 Radial Basis Function Networks

Radial Basis Function (RBF) networks [37, 38] are in general two-layer feed-forward networks,

similar to the MLP described above. But in contrast to them, the hidden neurons in RBF

networks feature radial basis functions as activation functions. Thus these neurons only produce

a large output for input patterns that are close to their centre. Typically a Gaussian function is

chosen as RBF:

Φj(in) = e
−
||in−µj||

2

2σ2
j (3.20)

with in being an input pattern and µj, σj being parameters of neuron j similar to weights.

An idea behind using radial basis functions is to get a more visual representation of what the

network has actually learned. Each neuron j in the hidden layer represents an area in input space

with its centre µj and and variance σj. One or more of these neurons then represent a class. The

output layer detects which hidden neurons were activated by the input pattern and thus which

class the pattern belongs to.

However, this approach requires a good coverage of the input space by radial basis functions.

A common solution is to associate each input pattern with a hidden neuron and then to apply

shrinking techniques to reduce the size of the hidden layer. This is needed to avoid overfitting

and reducing the computation requirements in the output layer.

Various training methods exist for RBF networks. In general one has to distinguish between

the training of the hidden layer and the output layer. The latter represents in principle a simple

perceptron and can be trained accordingly. On the other hand the hidden layer requires new

techniques for adapting the centres, variances and even the number of hidden neurons. Here a

modified delta rule or even a geometric approach is used [39,32].

3.5 Other Neural Network Models 41

3.5.2 Kohonen Maps

Kohonen or self-organising maps (SOM) [40] are a neural network structure that uses unsupervised

learning. It is based on a single layer of m neurons, organised in a grid structure (fig 3.14).

Figure 3.14: Kohonen map with a quadratic grid structure. The inputs and weights for one neuron are shown.

The neurons are only connected to the n inputs ini, between them, only neighbourhood

relationships exist. These relations induced by the grid structure are of special importance for

the network training and interpretation. Furthermore each neuron has a weight vector w of the

same dimension as the input patterns. There are several ways to compute the neuron outputs.

One possibility is to calculate the inverse Euclidian distance:

outj =

(
n∑

i=1

(ini − wji)
2

)−1

(3.21)

Training Algorithm

At first the n-dimensional weight vectors wj = {wj1, ..., wjn} get initialised randomly for each

neuron j. The training follows these steps:

1. An input pattern in = {in1, ..., inn} gets selected randomly and presented to the network.

2. The similarity of each neuron j to the input pattern is calculated by the Euclidian distance:

E =
n∑

i=1

(ini − wji)
2 (3.22)

The neuron with the smallest distance to the input pattern is then selected, labelled

neuron k.

42 Neural Networks

3. The neurons i in the neighbourhood of the best matching neuron k get updated by shifting

their weights wi closer to the input pattern in according to:

wi(t + 1) = wi(t) + η · φ(i, k) · (in−wi) (3.23)

with η being the learning rate and φ(i, k) being a distance function on the grid structure,

also called neighbourhood kernel. It is a measure for the strength of the neighbourhood

couplings between neuron i and neuron k.

The training is done several times for all training patterns until the results are sufficient.

Interpretation

Kohonen maps are especially good for visualising classes in a high-dimensional input space. They

learn to map the n-dimensional input space to a lower-dimensional structure, most often a two-

dimensional grid. The neuron’s weights directly characterise the input pattern, it will be most

sensitive for. Because of the training method, neurons which are sensitive to similar input patterns

are clustered together. Thus the trained Kohonen map gives a good impression of the existing

classes and their distribution in input space.

When a new input pattern is presented to the map, those neurons will produce the highest

output values, whose weights are most similar to the input pattern. It can be classified according

to the region of the Kohonen map that produced the highest network output. But as the training

is unsupervised, there is no a-priori knowledge of which neurons represent which class. Therefore a

tuning has to be done after the training of the network. Input patterns with a known classification

are presented to the network and the responsive regions are noted in order to determine which

areas of the Kohonen map describe which class.

Variations

The neighbourhood relations can be modelled with various grid structures. Commonly used are

one-dimensional chains or two-dimensional grids. Quadratic grids are easier to compute whereas

hexagonal ones yield better results [41].

Depending on the grid structure and the desired neighbourhood relations, the distance function

φ(i, k) can be chosen in many ways, typically a function that is fast to calculate like a gauss

distribution or a cylinder distribution:

φ(i, k)cylinder = Θ(c− ||wi −wk||) (3.24)

with parameter c defining the neighbourhood radius.

Preprocessing in the form of decorrelation and normalisation of the input variables inj is also

a useful extension of this network structure since the Kohonen map is sensitive to input variables

from vastly different regions and correlations between them.

3.5 Other Neural Network Models 43

3.5.3 Hopfield Networks

Hopfield networks [42] are a kind of feed-back neural networks. In contrast to the feed-forward

networks, a feed-back network also features backward connections, so that there is no explicit

information flow from the input neurons to the output neurons. When an input pattern is

presented to the network, it is updated until a stable state is reached or until a certain number

of update steps are made.

Hopfield networks consist of only one layer of neurons (fig. 3.15). These act as input and

output neurons at the same time. Each of them is connected with each other but not with itself.

Thus the network exhibits only indirect feedback loops.

Figure 3.15: Hopfield network with its single layer of three neurons.

Hopfield neurons are designed as binary McCulloch-Pitts neurons with a Heaviside activation

function. Thus the whole network can take 2n different input and output patterns. The network

weights are usually required to be symmetric, i.e. wij = wji. This is motivated by the idea of setting

up an energy function for the network and analyse it with the methods of statistical mechanics.

The Hopfield network design can be expanded for a continuous activation function and con-

tinuous input and output values [43]. The considerations described below also apply in principle.

Weight Update Mechanism

The recursive structure of the Hopfield network provides different possibilities for updating the

weights of the neurons.

• synchronous update: all neurons change their state at the same time.

• asynchronous update: a neuron gets selected randomly and its state gets updated.

The asynchronous update method is usually applied for Hopfield networks since it is easier to

implement and especially suited for parallel computers. The synchronous update method on the

other hand is better suited for theoretical calculations.

44 Neural Networks

Training

The network training stores N input patterns {ini
1, ..., in

i
n} in the neural network by adjusting the

network weights. This can be done in one step by the generalised Hebbs training law:

wij = wji =

{ ∑N
k=1 ink

i ink
j i 6= j

0 i = j
(3.25)

However, the capacity of the network for storing patterns is limited. It can be approximated by

the factor N
n
≈ 0, 138 [44].

Stability

Like in all feed-back systems, the changes in the Hopfield network have to decrease over time

in order to reach a stable state. Otherwise the network output might start to oscillate. The

Cohen-Grossberg theorem gives a sufficient criteria for the stability of such recurrent networks:

Cohen-Grossberg theorem (1983): Recurrent neural networks are stable, if the following

conditions are fulfilled for all network weights wij :

1 . wij = wji ∀i 6= j

2 . wii = 0 ∀j

This theorem can be proven by introducing an energy function for the network as shown below.

It is also important to note that these requirements are not mandatory. A feed-back network can

be stable without fulfilling them but has not to be.

Energy Function

The Hopfield network can be described by an energy function:

E(t) = −1

2

n∑
i=1

n∑
j=1

wji outi(t) outj(t)−
n∑

j=1

inj outj(t) +
n∑

j=1

σj outj(t) (3.26)

where the network inputs inj, weights wji and thresholds σj stay constant during every network

update, that is made.

It can be proven that E decreases with each step and does not stay constant until a trained

pattern is reached – denoting a minimum in the energy function [42]. This energy function is

similar to the Ising model in theoretical physics and thus the same thoughts can be applied.

Simulation and Analysis Tools

When performing analyses in a high energy physics context one usually prefers to use already

established frameworks and tools to facilitate the task. These software environments are geared

to perform especially well with the huge amount of data arising in such an environment. Most

are under continuous development, leading to frequent updates with additional functionalities.

For this analysis as well various existing tools were used directly and indirectly to simulate,

store and analyze data. These software packages are introduced in the following sections.

4.1 The CMS Software Framework

Since the LHC and the CMS detector are still under construction, no real data for analysis can

be acquired. In order to prepare analyses before the start-up of the collider, a large software

framework has been compiled, capable to simulate every step from the particle collisions up to

the final detector output. It is also used for reconstruction purposes and physics analyses, which

use realistic algorithms that will also be used on real data.

The data samples analysed in this thesis have been produced with this CMS software. There-

fore, a short overview of its most important components concerning this thesis will be given.

CMKIN, CompHEP and PHYTIA

The physical processes in a particle collision are calculated by Monte Carlo event generators. In

the CMS framework these generators are interfaced by the CMS kinematics software package

CMKIN [45], which sets up the CMS and LHC specific parameters. It provides a common

linkage between the physics event generators (CompHEP, PHYTIA, etc.) and the CMS detector

simulation. This interface is based on the HEPEVT (High Energy Physics Event) common block,

a current standard structure used in the CMS framework to store particle information about one

event, that will be replaced in the future by the object-oriented HepMC (High Energy Physics

Monte Carlo) standard.

CompHEP [46] is a package made for automatic calculations of elementary particle decay and

collision properties in the lowest order of perturbation theory. For this purpose it offers several

physical models for calculations. The package can be divided into a symbolic part, mainly for

calculations of the squared matrix elements of the decay processes, and a numerical part for the

generation of the hard decay process.

46 Simulation and Analysis Tools

PYTHIA [47] is a Monte Carlo event generator including showering and hadronisation pro-

cesses. The program is intended to generate complete events in as much detail as possible in

leading order perturbation theory. Therefore, several models for various physical aspects are in-

cluded (soft and hard interactions, initial- and final-state parton showers, etc.). It can utilise

events generated by matrix element generators like CompHEP, ALPGEN or Madgraph.

CMSIM and GEANT3

Together the CMSIM [48] and GEANT3 [49] packages are used to describe the passage of particles

through the detector. In our context, these are mostly particles originating from a collision.

GEANT3 is a general detector description and simulation tool. Its core functionality is to

describe interactions of particles with matter. Thus, it is used to describe the interactions of

the incident particles with the detector material as well as secondary processes, providing particle

trajectories and energy deposits within the various detector layers.

The CMS simulation package CMSIM is an application of GEANT3. It provides the CMS detector

specific descriptions needed for the simulation. In addition, it offers a simple interface to users

not familiar with GEANT3 to get access to the full detector simulation.

CMSIM has been recently replaced by the newly developed package OSCAR (Object-oriented

Simulation for CMS Analysis and Reconstruction) [50] which interfaces GEANT4 [49], the object-

oriented successor of GEANT3. For this thesis data samples still generated with CMSIM were

used since they were readily available.

ORCA

The ORCA (Object-oriented Reconstruction for CMS Analysis) [51] framework provides the re-

construction software for further event analysis. It is intended to be used for final detector

optimisations, trigger studies, global detector performance evaluations and event reconstruction.

ORCA consists of several subsystems describing detector components such as tracker, calorime-

ter, etc. and classes describing reconstructed physical objects like vertices and jets. The necessary

reconstruction algorithms such as vertex finders or jet finders are also part of this framework.

ORCA is based on CARF (CMS Analysis and Reconstruction Framework) [52], a framework de-

signed to prototype reconstruction methods. It enforces the design principles of action-on-demand

(objects will only be reconstructed once and only if needed) and event-driven notifications (in

response to events, observer classes will be called, that initialise the appropriate actions).

Further Components

The CMS Framework consists of many more components that are not presented here, because

of their little importance for this thesis. But some shall be mentioned: FAMOS (a fast detector

simulation and reconstruction software) [53], SCRAM (a software configuration management and

build tool) [54] and XCMSInstall (a graphical CMS software installation tool) [55].

4.2 ROOT 47

In the near future, the complete CMS framework is going to be replaced by an improved new

framework, called CMSSW, which stands for CMS Software [56]. This framework is then also

intended to be applied when the LHC commences its work in 2007.

4.2 ROOT

ROOT [57] is an object-oriented framework written in C++ aimed at solving the data analy-

sis challenges in high-energy physics. It provides an extensive set of classes for analyzing and

visualisation purposes such as curve fitting, fourvector handling or histogramming. ROOT was

developed in the mid 1990s to succeed the then standard PAW [58] framework which was writ-

ten in FORTRAN-77 and slowly reached its limits with the ever increasing amounts of data the

experiments yield.

A notable feature of ROOT is CINT, its built-in C++ command line interpreter and script

processor. This interpreter makes interactive data analysis possible without having to recompile

after each change of the code, and thus facilitates rapid prototyping. one can also create a

standalone analysis program in C++ by linking against the ROOT libraries which will run faster

compared to CINT and can utilise all current C++ features.

Another important part of the ROOT software framework concerning this thesis are the

class TMultiLayerPerceptron and associated classes. These classes provide a rudimentary

implementation of a standard feed-forward neural network with various backpropagation learning

algorithms, along with training optimisations like a momentum term and input normalisation.

The class TMLPAnalyzer was also later integrated into the ROOT framework to measure and

visualise the network’s performance, thus giving the user a standardised tool for these analysing

tasks. Introductory examples for the usage of these classes can be found in the ROOT distribution

[59].

4.3 PAX

The Physics Analysis Expert (PAX) [60] is a C++ based toolkit, developed at the Universities of

Aachen and Karlsruhe. It introduces a new level of abstraction between the event generator and

detector reconstruction software on one side and the physics analysis algorithms on the other side.

The actual physical data are saved in an independent PAX container structure, which the analysis

code then uses. Thus, a new freedom from the underlying experiment-specific analysis software

can be achieved. With analysis code no longer being dependent on the actual data format, it can

be easily shared between various research groups and similar analyses can be compared quickly.

Within one experiment the code also stays persistent against changes in the event generator and

detector reconstruction software.

48 Simulation and Analysis Tools

To achieve this task, PAX depends on interfaces that fill the data from the event generator or

detector reconstruction software into PAX structures. Interfaces already exist for many commonly

used physics data formats (PaxTuple for HEPEVT, PaxHepMC for HepMC, etc.) and if needed,

new interfaces can be easily implemented due to PAX being published as free software under the

GNU Lesser General Public License.

Another main feature of PAX is its ability to deal with multiple event interpretations. Current

analyses often have to deal with a lot of particles per event, which leads to ambiguities as

depicted in chapter 2.3.4. PAX provides functions to manage and evaluate the possibly huge

combinatorics.

PAX Class Structure

The main unit of PAX is the PaxEventInterpret class (see fig. 4.1), a general container for

high energy physics events. It comprises further containers for the physical objects of the event

like vertices (PaxVertex), fourvectors (PaxFourVector) or collisions (PaxCollision)

as well as additional values needed in the course of the analysis. The PaxFourVector class

either inherits from the HepLorentzVector class provided by the CLHEP [61] package or

from the TLorentzVector class of ROOT. Thus basic fourvector functionality is obtained

and a connection to an existing analysis software is made by extending the CLHEP or ROOT

functionality, respectively.

Figure 4.1: The PaxEventInterpret class represents the basic unit in PAX. It contains physical objects like fourvec-
tors (PaxFourVector), vertices (PaxVertex), collisions (PaxCollisions) and additional values (PaxUserRecord).

Relations between physical objects in an event can be manifold. Most often one has to

deal with many-to-many relations that are not easy to handle. For this purpose the class

PaxRelationManager (see fig. 4.2) was devised to deal with the relations that can arise

within one PaxEventInterpret. This class construct utilises the mediator design pattern [62]

to achieve its task. It attends to the connections between fourvectors, vertices, etc. constructing

the whole decay tree of the event. One application of these relations is the locking mechanism

included in PAX. It allows excluding certain objects and their entire decay tree from the analysis.

4.4 NeuroBayes R© 49

Figure 4.2: The PaxRelationsManager controls the relations between the physical objects in an event, providing
additional information like the decay tree of the event and additional functionality like the locking mechanism.

PAX Persistency

The PAX framework also provides a functionality to store PaxEventInterpret objects to

disk. These objects can then later be analysed with a stand-alone PAX-based analysis. Thus,

it is possible to store all relevant objects like fourvectors or vertices and the relations between

them, retaining the complete decay trees and event histories.

Further information about the PAX libraries including documentation, source code and exam-

ple analyses is available at the official PAX website located at CERN [63].

4.4 NeuroBayes r©

NeuroBayes r© [64] has been developed at the University of Karlsruhe by Prof. Dr. Michael Feindt

et al. It is now distributed by < Phi− T > [65], a spin-off company also located in Karlsruhe,

that makes its functionality available outside of physical contexts, e.g. for optimisations of car

insurance conditions.

NeuroBayes r© represents an advanced neural network technology utilising modern and sophis-

ticated algorithms. It is based on a three-layer feed-forward network with a backpropagation algo-

rithm for the training. This network is accompanied by complex preprocessing routines and signif-

icance control mechanisms that considerably enhance the network’s performance. NeuroBayes r©
utilises Bayes’ theorem1 to take a priori knowledge into account. This is advantageous since the

1P(theory|data) = P(data|theory)·P(theory)
P(data) : experimentally measured data is interpreted in context of the theory

50 Simulation and Analysis Tools

network output will thus never lie outside of the training range, i.e. unphysical results will not

arise. In addition, the neural network output can be interpreted as Bayesian a-posteriori proba-

bility when using this approach. For this, signal and background patterns have to be trained with

target values of 1 and 0, respectively.

Structure

The NeuroBayes r© package is based on two components, the Teacher and the Expert. The

former is used to train the neural network. At first, (pre-)processing parameters have to be

adjusted for the actual training. Then, the Teacher receives all training patterns along with their

associated target value(s). After they have been preprocessed, the network is trained with these

data samples. Then, the resulting network description is stored in a file, the Expertise, along

with an additional file containing information about the training process and its results. The

Expertise can be read subsequently by the Expert component of NeuroBayes r© to set up the

neural network, which is used to analyse new data.

Preprocessing

One of the main features of NeuroBayes r© is its extensive preprocessing capability. With its

sophisticated routines, an automated and robust preprocessing of the input data becomes possible.

It transforms the input data into another representation better suited for network training without

losing information inherent to the data samples. This step is especially important, as the search

for the global minimum can usually be accelerated and the final results improved. NeuroBayes r©
supports many different preprocessing options that are further described in [64]. They can be

separated into two groups:

• General Preprocessing:

Several preprocessing methods are executed on all input data if not defined otherwise. At

first, the input variables are equalised and scaled to a range of [-1, 1], so that extreme input

values have no excessive influence on the training. In a second step, these flat distributions

are transformed into a normalised Gaussian distribution.

The input variables are correlated to the target value but also to each other, which compli-

cates network training. Therefore, they are rotated in the parameter space they span until

they are linear independent to each other.

• Individual preprocessing:

Specific preprocessing settings can be defined for each individual input variable to further

exploit the user’s knowledge of these variables and improve the training. Thus, a special

treatment of variables with discrete values or a δ-function becomes possible. Also regu-

larised fits with spline functions can be applied to the distributions of the input variables.

4.4 NeuroBayes R© 51

Pruning

Another notable feature of NeuroBayes r© is its ability to alter and thus improve its predefined

network structure. This optimisation process happens through two different kinds of pruning

methods implemented in NeuroBayes r©:

• Input variable pruning:

Before the actual training begins, NeuroBayes r© excludes certain input variables from the

training. The decision which variables are to be pruned in this way is based on the statistical

significance of the input variables in relation to the training target. This behaviour is entirely

controlled by the user, who defines the significance threshold to be used by the network

preprocessor, if any.

• Connection pruning:

During the training phase NeuroBayes r© monitors the performance of each network con-

nection and can eliminate those connections which have become irrelevant for the network

output by setting their weight to exactly zero. This alters the network structure and low-

ers the number of free parameters, leading to an easier training in the following training

iterations.

Usage

NeuroBayes r© has originally been implemented in FORTRAN and further development still con-

tinues in this language. To open up its possibilities to a larger number of users, several interfaces

have been devised, e.g. for C++ with ROOT. The C++ interface is now commonly used by the

CDF and CMS working groups at the University of Karlsruhe.

But some limitations coming from its FORTRAN origin have to be kept in mind. For example,

only one instance of the Teacher component may run at the same time because of its internal

structure, whereas several Experts can run simultaneously. The relevant C++ classes have been

implemented accordingly.

An abstract wrapper class for neural network usage in general has been developed in the

scope of this thesis. Two concrete classes have been derived for existing neural network packages

of which one is a dedicated NeuroBayes r© wrapper and the other interfaces the neural network

included in the ROOT package. These classes are described in more detail in appendix A.

More information about NeuroBayes r© can be found in [64].

52 Simulation and Analysis Tools

4.5 Software Versions

The various software versions used in the scope of this thesis are presented in table 4.1. This

includes production software for the generation of the data samples used, as well as analysis

software for the subsequent processing of this data. Fundamental programs like the underlying

Linux distribution, the C++ compiler, etc. are not listed.

Software package version

compHEP 41.10

PYTHIA 6.215

CMSIM 133

ORCA 7.6.1 and 8.7.4

PAX 2.00.10

ROOT 4.02/00

NeuroBayes 1.3 (internal version)

Table 4.1: Software versions used for simulation and analysis within the scope of this thesis.

Jet Pairing

The CMS detector will observe the particles produced in proton-proton collisions at the LHC. But

this is only part of the information needed for analysing such events. It is also necessary to find

the relations between the detected particle jets, to know which of them decayed from the same

mother particle and essentially to rebuild the entire decay tree of the detected event. In order to

achieve this, the detected jets have to be successfully paired with the expected particles of the

decay. This jet matching can be an easy task or quite difficult, depending on the character of

the observed event.

In this thesis, the decay channel t̄tH and one of its background channels (t̄tbb̄), as depicted in

chapter 2.3.3, are analysed. These channels have a complex topology for jet matching, consisting

of four b quarks, two light quarks and a lepton with an associated neutrino. In addition, there

are usually additional partons detected, coming from initial state radiation, final state radiation

or not from the current collision at all. This leads to a very large number of possible pairing

combinations of which the correct one has to be singled out.

There is already an existing study on jet matching for these channels based on a likelihood

method by Alexander Schmidt [1]. This study has been used as a basis for the approach with

neural networks presented here.

5.1 Data Samples

For this thesis two data sets were provided by Alexander Schmidt, one for the signal process t̄tH

and one for the background process t̄tbb̄. The events were produced as described below, using

the software packages and versions described in chapter 4.

At first the hard decay process of two protons was simulated with CompHEP. For the signal

samples the Higgs mass was set to mHiggs = 120 GeV and no restrictions in phase space were

made. For the background process the following constraints were required for the two additional

b jets not coming from top decays: Pt > 15 GeV, |η| < 3 and ∆R(b1, b2) > 0.3. In both cases,

the top mass was set to mtop = 175 GeV and the bottom quark mass to mbottom = 4.62 GeV.

The PDF model used was CTEQ4l. The compHEP output was then interfaced to PYTHIA for

simulating parton showering and fragmentation to produce a full generator event. Here, only

events with a muon in the final state were selected. Next, the interaction of the generated par-

tons with the detector material was simulated with CMSIM and GEANT3. After this detector

54 Jet Pairing

simulation, ORCA was used to calculate the response of the detector electronics to the energy

deposit in the detector by the partons. The reconstruction of physical objects like tracks and

jets was then also done by ORCA although with a different version, leading to a reconstructed

event. Finally these events were filled into PaxEventInterprets. Here, two versions of each

event are stored, one containing the information after the event generation with PYTHIA and

one containing the event information after the full reconstruction with ORCA. In addition both

event interpretations include further information for identifying the various jets. In case of the

reconstructed data this could not be fully done for each event. Here the reconstructed jets had

to be matched with the ones in the generator event, which becomes impossible if the observed

jet is headed along the beam line or too close to another one. Thus only some reconstructed

events have the true information from the generator level needed for the network training. These

are called good matched events.

Some size information of the signal and background event samples are shown in table 5.1.

Signal Samples Background Samples

All Events 86907 83292
Good matched Events 16601 13869

Table 5.1: Event sample sizes for the events used in this thesis. Good matched events are those reconstructed
events for which the information needed for jet identification could be retrieved completely.

5.2 Ambiguities in the Final State

The events to be examined by the jet pairing neural network exhibit a complex topology with four

b jets, two light quark jets, one muon and missing energy in the final state. Two of the b jets

and the light quark jets come from top decays and the other b jets stem from the Higgs decay in

case of a signal event. To determine the correct association of these jets to the original partons

of the process, every possible combination has to be evaluated by the neural network. Altogether

there are 6! = 180 possible pairings that have to be analysed. To reduce this number it is at first

assumed that a perfect identification exists for the b jets, reducing the number of combinations

to 4! · 2! = 48. This can be further reduced by a factor of two, since the b jets from the Higgs

boson are indistinguishable and once more by a factor of two, since the two light quark jets from

the hadronically decaying W boson are indistinguishable, too. This leads to a final number of 12

possible jet matchings that have to be tested.

Since an event also contains a neutrino represented by the missing energy, the number of

pairings is increased again by a factor of about two, because the missing energy cannot be

reconstructed unambiguously, as explained in chapter 2. Two possibilities usually remain that

have to be taken into account.

5.3 Description of the Analysis Methods 55

An event normally contains more jets than the ones described above. These additional jets

are the result of initial state radiation, final state radiation or caused by the pile-up of events in

the detector. A realistic analysis has to take them into account, too, increasing the combinatorics

by a large factor, especially if b jets cannot be identified perfectly. The analysis presented here

uses only the partons inherent to the clean decay tree as shown in chapter 2.3.3 and assumes

that a perfect identification of b jets exists, unless otherwise noted.

5.3 Description of the Analysis Methods

An analysis with a neural network can be divided into two phases. At first there has to be

a training phase, in which the network gets tuned to the problem, followed by an application

phase, in which new data is passed to the network for analysis. Both steps include several similar

proceedings that are fully discussed in the training phase.

Training of the Network

The analysis loops over all events intended for the training. These get passed to the actual

training method, where all possible jet combinations, according to the restrictions mentioned

in the last section are created. For each pairing the whole decay tree is reconstructed and

the input variables for the network training are calculated. Subsequently, these input patterns

are passed to the neural network in an arbitrary order. Depending on the number of possible

reconstructions of the missing energy for each combination, there are about eleven times more

wrong jet combinations than there are correct ones. To compensate this inequality, varying

weights are applied to the input patterns for the training: weightsig = 11 and weightbkg = 1.

After all events have been processed by the training method and the neural network has been

filled with all input patterns for each jet matching, the actual network training is initiated.

Application of the Network

Like for the training, each event designated for investigation is passed to the application method

where all jet combinations and subsequently all input patterns are generated. For each event

every input pattern is then passed to the neural network and an output value in the range of

[0, 1] is generated. This value describes how good each combination is in relation to the truth,

higher values indicating a better jet matching.

All combinations for each event are sorted according to their associated network output,

whereas the combination with the best output is chosen as correct. During this step, further

information is produced including the impact of restrictions on the minimal network output for

the best jet matching, on which will be referred later in section 5.5.1. In addition the actual jet

matching that produced the best network output is recorded for each event.

56 Jet Pairing

5.4 Analysis of Generator Events

The aim of this analysis is to train a neural network that will state whether a certain pairing of

jets is the correct one or not. It is first performed on generator events since these exhibit clearer

signals. Therefore discriminating variables are easier to be determined. In the following, correct

combinations are also named signal patterns and wrong pairings are called background patterns.

Variables

In this early phase of the analysis, five variables were used to differentiate correct jet combinations

from false pairings. These variables, used as input pattern for the neural network, are the same

as for the likelihood approach in [1]. To understand the meaning of them, the physical values

they are based on, are introduced at first:

• geometry:

The geometry of an event including the axis and angles is visualised in fig. 5.1. In CMS

the direction of the z axis is defined by the direction of the beam line.

• rapidity r: r = 1
2
ln
(

E+pz

E−pz

)
= tan−1

(
v
c

)
The rapidity r is a kinematic variable of a particle, with c being the velocity of light and E,

pz and v describing the particle’s energy, momentum in z direction and velocity.

• pseudo-rapidity η: η = −ln(tanΘ/2)

The pseudo-rapidity η is a good approximation of the true rapidity r for large particle

momenta (p2 � m2). This is useful since η can still be measured, even if the mass and

momentum of the particle is unknown.

• distance in phase space ∆R: ∆R =
√

∆η2 + ∆Φ2

The direction of an outgoing particle is defined by η and φ. Particles travelling in the same

direction lie near to each other in the η − φ space. Therefore ∆R is a good measurement

for the actual distance of two jets.

Some of these physical values are not used until in the next chapter, but they are presented here

already for the sake of completeness. The input variables for the neural network are listed below.

Their distributions for reconstructed events can be seen in appendix B:

1. tWhadronic mass:

Mass of the top quark with a hadronically decaying W boson daughter.

2. tWleptonic mass:

Mass of the top quark with a leptonically decaying W boson daughter.

3. Whadronic mass:

Mass of the hadronically decaying W boson.

5.4 Analysis of Generator Events 57

Figure 5.1: Visualisation of the event geometry with the coordinate axis and the angles Φ and Θ. On the left, a
three-dimensional view of the coordinate system is given. The other two images show projections on the xy- and
the xz-plane. The z axis is defined by the beam line.

4. ∆R(Whadronic, bWhadronic):

Distance in phase space between the hadronically decaying W boson and the b quark coming

from the same top decay as the W boson.

5. ∆R(µ, bWleptonic):

Distance in phase space between the muon produced by the W boson decay and the b

quark coming from the same top decay as the W boson.

The top quarks are reconstructed from jets, for which the correct matching is determined

by the neural network. If misidentified jets are used for the reconstruction, it is not likely that

the correct top mass will be reconstructed. Therefore these masses are appropriate variables for

distinguishing signal and background patterns. The same is true for the mass of the W boson.

But since a perfect identification of b jets is assumed, the jets contributing to the W boson

are always paired correctly, leading to the same W mass distribution for signal and background

events. Therefore, this variable is excluded from the analysis.

When the top quark decays, most of its inner energy is used in the production of the W boson

and the b quark. The remaining energy is used for boosting these two decay products back-to-

back in the top quark rest frame. The longitudinal momentum of the top quark is transferred

to its two daughter partons, leading to a longitudinal boost of the W boson and the b quark

that is much larger than their transversal boost. Therefore, the distance in phase space between

these two partons is rather small compared to the distance between one of them and an arbitrary

parton. ∆R(Whadronic, bWhadronic) attempts to use this information. The same argumentation

holds true for the input variable ∆R(µ, bWleptonic).

58 Jet Pairing

Results

The neural network is trained with 60,000 of the generator events using the true missing energy

information from the generator. The evaluation of the quality of the trained network is done twice,

using the remaining events, once with the full missing energy information from the generator and

once with the reconstructed missing energy1. When using the true missing energy information,

the results are naturally almost perfect, yielding a correct pairing in 92.7% of all events. The

more realistic analysis with areconstructed missing energy yields 71.7% events with a correct jet

matching (fig. 5.2).

As can be seen, the signal patterns also exhibit a large amplitude for small network output

values. This is easily explained: for each correct pairing about two signal patterns are submitted

to the neural network since there are almost always two possibilities for the reconstructed missing

energy. Because only one of them is correct – which one cannot be determined – there are

essentially false combinations classified as signal patterns in the testing phase leading to this

additional peak at small values of the network output.

If the jet matching with the best network output per event is not the correct combination,

it is most often a combination in which one b quark from the Higgs decay was associated to a

top quark instead and vice-versa. In this case the top quark is most often the top quark with

the leptonically decaying daughter W boson. This behaviour has to be verified for reconstructed

events and suppressed if possible.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

50

100

150

200

250

300
310ℜ×

Generated Events - Pairing Network I

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: On the left-hand side, the network output using generator signal events with a reconstructed missing
energy is shown (correct combinations: green, wrong combinations: red). For visualisation purposes, the number
of signal samples is scaled accordingly to the number of background samples. On the right, the efficiency plots
can be seen for generator signal events with both, reconstructed (pink) and true missing energy (blue).

1The calculations of the missing energy are done by the class TtHMEzCalculator provided by A. Schmidt.

5.5 Analysis of Reconstructed Events 59

5.5 Analysis of Reconstructed Events

Having achieved adequate results with generator events, the same analysis is applied to recon-

structed events. It will naturally deliver worse results, since the whole reconstruction process

entails various imprecisions: the detector resolutions are finite, the reconstruction methods are

imperfect and the actual event geometry might pose problems, e.g. if jets are headed along the

beam pipe. All of these problems lead to less clear distributions of the variables that are used

for separating signal from background patterns. Therefore the resulting network performance is

worse than for generator events (fig. 5.3).

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

Reconstructed Events - Pairing Network I

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.3: On the left-hand side, the network output using reconstructed signal events is shown (correct
combinations: green, wrong combinations: red). For visualisation purposes, the number of signal samples is
scaled accordingly to the number of background samples. On the right, the efficiency plots can be seen for
reconstructed signal events (pink) and generator signal events with a reconstructed missing energy (blue).

The reconstructed events that can be used for the training of the network and for testing its

performance are limited to good matched events – events for which the true jet identities can

be retrieved. Without this information available, there is no criterion for the correctness of a jet

combination. Therefore neither an input pattern with a target output value can be created nor

the network output can be evaluated with respect to its correctness. Like for generator events,

about 70% of the available events are used for training and the remaining for the performance

test. A perfect identification of b jets is assumed again, thus only the four b jets have to be

paired correctly.

The network output looks good and especially the efficiency plot is not much worse when

compared to the network with generator events. Unfortunately the amount of events for which

the correct jet combination is found drops to 30.7%. For the remaining events, mostly one of the

b jets from a top decay is correctly associated to its mother particle and the other to the Higgs

boson, just as with generator events.

60 Jet Pairing

5.5.1 Improving the Analysis

In order to improve the results of the pairing network achieved so far, several steps are taken. At

first, additional variables are introduced helping the neural network to discriminate signal from

background patterns. Taking only events, whose best network output is above a certain threshold

is also discussed as another possibility to increase the amount of correctly paired events. At last,

network adjustments are tested to improve the analysis further.

Additional Variables

If the correct jet combination is not found by the network, pretty frequently a combination where

one b jet is falsely associated to a wrong branch of the t̄tH decay tree is chosen instead – with

the hadronically decaying top, the leptonically decaying top and the Higgs each being the origin

of one branch. Decreasing the network output of these combinations should lead to an overall

improvement in the network performance. The following variables are determined as useful:

1. ∆R(bhiggs1, bhiggs2)

2. ∆R(bWleptonic, tWhadronic)

3. ∆R(Wleptonic, bWhadronic)

4. ∆R(bWhadronic, tWleptonic)

5. ∆R(Whadronic, bWleptonic)

6. ∆R(q1, bWleptonic)

7. ∆R(tWhadronic, tWleptonic)

The distributions of these seven variables are plotted in appendix B, separated for signal and

background patterns.

In contrast to the previous section, two jets from different decay branches are chosen for the

∆R variables. These will only exhibit a small ∆R value if a wrong jet combination is chosen and

their constituting partons belong to the same decay branch. For ∆R(bhiggs1, bhiggs2) the same

explanation as in section 5.4 holds true, although to a lesser extent since the two b jets together

are not as heavy compared to their Higgs mother as the W boson and the b quark are compared

to the top quark.

5.5 Analysis of Reconstructed Events 61

Some more variables have been suggested in being useful and included in the neural network

for testing their ability to improve the performance of it. But since they contribute only negligible

improvements, these five variables are omitted in the further analysis. They are listed below:

1. |φ(bhiggs1)− φ(bhiggs2)|

2. ∆R(tWhadronic, higgs)

3. ∆R(tWleptonic, higgs)

4.](bhiggs1, bhiggs2)

5. |cos(Θhiggs)|

The denotation of the individual partons is visualised in fig. 5.4 for a signal event. There are

essentially three different branches in the t̄tH decay tree. One originating from each top quark

and the third starting at the Higgs boson. The partons in each branch are subscripted according

to the defining property of this branch – either a hadronically or leptonically decaying W boson

or a Higgs boson. In case of a background event the two b quarks labelled bhiggs1 and bhiggs2 do

not come from a Higgs decay but directly from the proton-proton collision. The jets q1 and q1

as well as bhiggs1 and bhiggs2 are sorted in ascending order according to their masses.

���������	��
	�� �

����� ������
	�� �

���������

� �����	��
	�� �

� � ������
 �� �

! �� "#"�$&%

! �� "#"�$('

) %

) '

*

+-,

! ���.��� ��
	�� �

! ��� ������
	�� �

Figure 5.4: Denotation of the partons in the t̄tH decay channel.

62 Jet Pairing

Application of Cuts

The network output is an estimation for the correctness of the analysed jet pairing. Therefore

only events whose best jet combination has a network output above a certain threshold are

considered. In table 5.2 the resulting percentages of correct pairings are listed as well as the

remaining fraction of the overall events.

Threshold 0.0 0.5 0.6 0.7 0.8 0.85
Correct Pairings 30.7% 31.3% 32.7% 37.2% 45.2% 49.3%
Efficiency 100.0% 95.3% 81.2% 52.3% 24.5% 12.2%

Table 5.2: Observing only events whose best combination has a better network output than the threshold. The
percentage of correct pairings for all considered events and the overall percentage of events considered is shown.

As can be seen, the percentage of correct pairings increases slightly with a higher threshold

but the efficiency drops by a huge amount since more events get rejected. Only about 10,000 t̄tH

events will be detected at CMS in the low-luminosity phase each year [19]. Therefore reducing

them by 75% for a small improvement of only 15% in the jet pairing by using a threshold of 0.8

is not recommended.

Further Possibilities

The training of the neural network can also be improved by altering the network preprocessing and

the manner in which the input variables are presented to the network. These are essentially only

technical measures in the application of the neural network and thus have no physical background,

but they might help in obtaining more correctly paired events.

At first, strongly correlated variables have been systematically scheduled for decorrelation

instead of just trusting the automatical decorrelation routines. This has already led to a better

network performance.

Furthermore the mass variables have been presented twice to the network with different

preprocessing options once altering the input by using a Gaussian transformation (preprocessing

flag 12) and once using a regularised spline fit on the mass variables (preprocessing flag 14).

Since this has not produced noticeable improvements, only one preprocessing will be used in the

further analysis.

Finally three different possibilities for weighing the signal and background patterns have been

checked – not weighing them at all, weighing signal patterns with 11 and background patterns

with 1 or weighing signal patterns with 1 and background patterns with 11−1. Here the second

alternative yields the best results and is used subsequently.

5.5 Analysis of Reconstructed Events 63

Results

The presented modifications lead to an improvement of about 3% in the ability of the network

to find the correct jet combination for each event – 33.4% are paired correctly. The results of

the improved network are shown in fig. 5.5 and table 5.3. It can be seen that the efficiency stays

about the same but the network output looks much better with a clearer separation between the

maximum of the signal and background patterns.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

1000

2000

3000

4000

5000

6000

7000

8000

Reconstructed Events - Pairing Network II

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: Performance of the improved network on signal events. On the left, the network output is shown.
On the right, its efficiency is shown (pink) as well as the efficiency of the previous network (blue).

Threshold 0.0 0.5 0.6 0.7 0.8 0.85
Correct Pairings 33.4% 33.8% 34.4% 35.8% 40.2% 45.5%
Efficiency 100.0% 96.0% 90.9% 77.8% 48.8% 26.6%

Table 5.3: Results of applying a threshold on the output of the improved neural network using signal events.

5.5.2 Analysis of Background Events

The neural network has also to deliver good results when confronted with background events.

There are two desired behaviours, either the network output is low for every jet combination of

the background events or the pairing efficiency is high. In the first case an event can be easily

rejected, reducing the number of background events in this stage already. In the second case,

the correct jet matching is often found, facilitating the classification task of the background

suppression network that receives this information subsequently.

Modifications to the Analysis

As already mentioned above, background events lack the two b jets coming from a Higgs decay.

Therefore two other b jets not coming from top decays are chosen instead. For compensating the

Higgs boson, all calculations are applied to this bb̄ system in the background samples instead.

64 Jet Pairing

Results

Like for signal events, only good matched events can be used. 70% of them have been used in the

training and the remaining ones are taken for testing purposes with a perfect b jet identification

assumed. The network output and the associated efficiency plot can be seen in fig. 5.6.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

1000

2000

3000

4000

5000

6000

7000

8000

Reconstructed Events - Pairing Network III

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.6: On the left, the final network output using reconstructed background events is shown (correct
combinations: green, wrong combinations: red). On the right, the efficiency plots can be seen for reconstructed
background events (pink) and for reconstructed signal events (blue).

The application of the neural network on background events leads to a similar distribution of

the network output in the same range as for signal events. Thus, the pairing network can not

be used for rejecting background events based on the network output. The efficiency plots are

also almost identical for signal and background events, leading to a similar number of correctly

paired events. In fact, the correct jet combination is found for 31.6% of the background events

compared to 33.4% of the signal events.

Application of Cuts

By using a threshold value on the network output for accepting events, this result can be further

improved and the number of correctly paired events increased. But this again happens at the

cost of the overall number of events (see table 5.4):

Threshold 0.0 0.5 0.6 0.7 0.8 0.85
Correct Pairings 31.6% 32.4% 32.8% 34.1% 37.2% 38.8%
Efficiency 100.0% 90.5% 81.7% 66.0% 38.4% 21.4%

Table 5.4: Observing only events whose best combination has a better network output than the threshold. The
percentage of correct pairings for all events considered and the overall percentage of events considered is shown.

5.5 Analysis of Reconstructed Events 65

The background events behave similar to signal events with increasing the threshold value.

Considering these numbers, the recommended approach for the further analysis is to take the

best jet matching the neural network delivers for each event as correct combination and continue

the analysis with all events. As mentioned above, large thresholds to improve the jet matching

would yield an insufficient number of remaining events.

After several years of data taking at CMS this approach could be reconsidered taking the

large luminosity and thus the available number of signal events into account. If this will be done,

it is important to verify that the rejection of events does not lead to biased remaining events.

To check whether this is happening, distributions of certain variables can be compared before

and after events have been discarded, in order to determine whether their shapes have changed.

Here, the invariant Higgs mass and the invariant bb̄ mass are examined for signal and background

events, respectively (fig. 5.7). The Higgs mass is chosen since the main purpose of CMS is to

determine its value. If its distribution would get shifted, the resulting reconstructed Higgs mass

would not represent the true Higgs mass. The bb̄ mass is also inspected since it is the equivalent

of the Higgs mass for background events. Its shape should not change either for the same reasons

as the Higgs mass.

As shown in these figures, a threshold for accepting events does not alter the shape of the

Higgs and bb̄ mass. A comparison of the generator and the reconstructed Higgs mass after the

pairing has been done, shows that there will be no clear peak. This results due to the fact that

more than half of the events have been paired incorrectly, which leads to a smearing of the Higgs

mass towards values. In case of a wrong jet matching most often one of the b jets from the top

decays is used for reconstructing the Higgs boson instead of its more energetic daughter b jet,

resulting in a smaller Higgs mass.

Higgs mass [GeV/c^2]
0 20 40 60 80 100 120 140 160 180 200

S
am

pl
es

0

50

100

150

200

250

Reconstructed Events - Pairing Network IV

 mass [GeV/c^2]bb
0 20 40 60 80 100 120 140 160 180 200

S
am

pl
es

0

20

40

60

80

100

120

140

160

180

Figure 5.7: Distributions of the Higgs mass (left) and of the bb̄ mass (right), calculated with reconstructed
events, before (light) and after (dark) rejecting events with a best network output for the jet pairing below 0.8.

66 Jet Pairing

5.6 Comparison of Neural Network Packages

The relevant analyses in this thesis are all done with the neural network package NeuroBayes r© by

< Phi− T >. In addition the performance of the TMultiLayerPerceptron neural network

class of ROOT is also evaluated as a free alternative to the commercial NeuroBayes r© package.

A common interface for both neural networks has been developed in the scope of this thesis and

is explained in appendix A.

Both neural networks are in principal multilayer feed-forward networks with a backpropagation

learning algorithm. The major difference is that NeuroBayes r© deploys massive preprocessing to

simplify the input patterns and intelligent pruning for improving the network structure. On the

other hand, the ROOT network just normalises the input variables. Thus one expects that

NeuroBayes r© will perform better on strongly correlated or otherwise suboptimal input data

compared to the TMultiLayerPerceptron class.

For this comparison both neural networks receive the same input patterns and the same

settings for training and testing. Since TMultiLayerPerceptron does not have the same

preprocessing capabilities as NeuroBayes r©, these settings are only applied to the latter network.

The network comparison is done on reconstructed events instead of generator events since they

are more important for the analysis.

As shown in the comparison diagram (fig. 5.8) NeuroBayes r© is able to separate signal

from background patterns. However the separation is not perfect. On the other hand, the

TMultiLayerPerceptron completely fails at this task. Consulting the correlation matrix of

the input variables in appendix B explains this result quite well, since most of them are strongly

correlated, a condition that TMultiLayerPerceptron apparently cannot handle well.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

1000

2000

3000

4000

5000

6000

7000

8000

NeuroBayes

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

5000

10000

15000

20000

25000

30000

35000

40000

TMultiLayerPerceptron

Figure 5.8: The output of the network for the pairing analysis is shown with signal samples in green and
background samples in red. The number of signal samples has been scaled to the number of background samples.
On the left, the results of NeuroBayes r© are shown. On the right, the TMultiLayerPerceptron output is displayed.

5.7 Comparison to the Likelihood Analysis 67

5.7 Comparison to the Likelihood Analysis

The likelihood analysis implemented by Alexander Schmidt [1] delivers about the same results as

the analysis of the pairing problem with a neural network – 35% compared to 33%. However his

analysis considers all jets in an event whereas the analysis with the neural network is limited to

only match the four interesting b jets correctly, the other ones are not considered.

A quick feasibility study at the end of the diploma thesis showed that the current neural

network is unable to handle all jets. The sheer number of possible combinations leads to uniformly

distributed network output values instead of a clear maximum for the correct jet matching, since

many combinations are almost correct. Most frequently, the correct combination is found within

the top five ones, but using all of them would decrease the performance again.

The deficit of the neural network could be compensated by using the likelihood output as one

input for the network along with further input variables. Thus the neural network can exploit

the good separation capabilities of the likelihood analysis and further improve it by using the

information inherent to the additional variables. This approach is a future task and not part

of this diploma thesis. Until then it is proposed to use the output of the likelihood analysis

for the pairing task. This proposal is supported by the fact that the free neural network class

TMultiLayerPerceptron included in ROOT performs even worse than the commercial

NeuroBayes r© package, as shown in the previous section.

68 Jet Pairing

Background Suppression

Only few events generated in a proton-proton collision at the LHC are actually of interest. After

an initial preselection by the trigger system (see chapter 1.2.4), it is the task of the respective

analysis software to separate these signal events from all unwanted background events creating

a clearer data sample for the further analysis.

This thesis focuses on the t̄tH signal channel, which has several prominent background chan-

nels like t̄tbb̄, t̄tjj and t̄tZ. All of them feature similar final states like the signal channel and

therefore cannot be suppressed easily. In particular, the background channel t̄tbb̄ is studied in

this thesis. This poses a challenge for traditional analysis software, since it has the exact same

final state partons with similar kinematics as the signal channel. Thus, a neural network is used

to take advantage of as much information as possible to best separate the t̄tH signal events from

the t̄tbb̄ background.

The signal and background data sets used for the analysis in this chapter are the same as

described and used in the previous chapter for the jet pairing task. The same nomenclature is

applied for denoting the individual jets of an event.

6.1 Description of the Analysis Methods

The analysis for the background suppression is again divided into two phases, the training and

the performance test of the neural network. In both phases, signal and background events are

passed to the appropriate training or testing method in an arbitrary order. Here, the whole decay

tree is reconstructed from the final state particles in each event. At this stage, the true particle

identity from the generator is used. Subsequently, the necessary variables for the neural network

are calculated and the input pattern is passed to the network, either for training or for evaluation.

The same number of signal and background patterns is passed to the neural network. There-

fore the same weight is applied to both. Another approach would be to pass a number of signal

and background patterns according to their expected real number in the experiment to the neu-

ral network and weight them accordingly (e.g. weightsig = 1, weightbkg = signal events
background events

). This

approach is not attempted in this thesis.

70 Background Suppression

The t̄tbb̄ background events do not contain a Higgs boson decaying in two b quarks. Therefore

the two jets with the highest b probability1 not coming from a top decay are used instead as

substitute for this Higgs decay chain. They form a system called bb̄. In contrast to generator

events, where exactly two additional jets exist, usually more than two jets can be found in

reconstructed events.

6.2 Analysis of Generator Events

A first study of the t̄tH channel at CMS was made in [2]. Here, it was stated that the t̄tbb̄

background channel will pose the most problems for the analysis. The other two channels can be

effectively suppressed by the preselection described inside this note. There are several variables

mentioned that could turn out to be useful in discriminating the t̄tbb̄ background from the t̄tH

signal. They are used as input variables for a first performance check of the neural network

with generator events.

The Higgs boson in the signal event is considered to be coming from the decay of a virtual t∗.

As explained in chapter 2.3.1, this is only true for one of the two possible Higgs production

processes for this channel, with the other process being a top-top fusion. Since both processes

are inseparable, it is not clear how much contribution comes from which one. Furthermore it can

not always be determined which of the two reconstructed top quarks has to be associated to the

Higgs boson in order to reconstruct the virtual t∗. The top quark, that is nearest in angle to

the bb̄ named tnear is used for this purpose.

The bb̄ in the background events generally comes from the decay of a virtual gluon as opposed

to the Higgs boson in a signal event. These b jets are not strongly associated to the top quarks

of the decay, since any intermediate coloured particle could have radiated the gluon. Because

of the stronger association of the Higgs boson to one of the top quarks and the fact that

the spin of the Higgs and the gluon is different (spin-0 and spin-1, respectively), the angular

and momentum distributions of the t∗ and the bb̄ might be exploited to discriminate signal from

background events.

The variables chosen in [2] due to their described physical properties are listed below. Plots

of their distributions for reconstructed events can be found in appendix B:

1. t∗ mass:

Invariant mass of the virtual t∗ that radiates the Higgs boson in case of a signal event. It

is generated by combining the bb̄ with the reconstructed top quark tnear nearest in angle.

2.](bb̄, tnear):

The actual angle between the bb̄ system and the tnear quark.

1The b probability is a value generated by the CMS reconstruction software that indicates the probability of a
jet containing a b quark. It is a logarithmic variable and higher values denote a greater probability.

6.2 Analysis of Generator Events 71

3. ∆r(bb̄, tnear):

Rapidity difference between the bb̄ system and the associated top quark.

4. ∆R(bb̄, tnear)1:

Distance in phase space using pseudo-rapidity for the calculation.

5. ∆R(bb̄, tnear)2:

Distance in phase space using rapidity for the calculation.

6. Θ(b,bb̄):

The angle Θ between the b quark and the bb̄ direction in the bb̄ restframe.

The second to fifth variables are all similar and attempt to exploit the information inherent

to the nature of the Higgs radiation from the top quark. The angle Θ tries to utilise the different

angular distributions of the Higgs boson and the virtual gluon, i.e. of the mother particle of

the bb̄ in a signal or background event. It is only listed for the sake of completeness since this

variable does not contribute to a better signal to background discrimination as stated in [2]. Its

distribution shows no distinct difference for signal and background events and it does not have

got relevant correlations to the other variables. Therefore it is omitted from the neural network.

The training is performed on 60,000 signal and 60,000 background events. The resulting separa-

tion performance of the background suppression neural network using variables 1 to 5 calculated

from generator events as input pattern is shown in fig. 6.1 below.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Generator Events - Background Suppression Network I

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.1: On the left-hand side, the network output using generator events is shown (signal events: green,
background events: red). On the right, the efficiency plot for this trained neural network is displayed.

72 Background Suppression

t* mass [GeV/c^2]
200 300 400 500 600 700 800 900 1000

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Generator Events - t* mass

Figure 6.2: Distribution of the invariant t∗ mass

(signal: green, background: red).

The invariant mass of the virtual t∗ is the

primary discriminating variable of the network.

Its distribution is depicted in fig. 6.2 to the

right. This variable depends on the mass of the

Higgs boson since the bb̄ system corresponds to

the Higgs boson in case of signal events. This is

a problem, since the Higgs mass is to be deter-

mined by the analysis and not just a parameter

passed to it. If an input variable is dependant

on the Higgs mass the network will learn this

mass as defined by the event generator and will

be more sensitive to such events, even if the

real mass is different. Furthermore the distri-

bution of the invariant t∗ mass is disadvanta-

geous for the training of the network. Masses

below about 300 GeV/c2 generally only occur

for background events. Therefore, the network will use this input variable as the sole discrimi-

nator in this mass range, disregarding other available information. Examining the distribution of

the invariant bb̄ mass for background events (fig. 6.3), it is evident, that its shape is shifted to

higher masses in the direction of the Higgs mass used by the event generator if the the t∗ mass

is used as input variable. This bias on the background events remaining after all events with

a network output of less than 0.8 have been rejected is an unwanted behaviour. Therefore the

invariant t∗ mass is not a good input variable for the neural network.

 mass [GeV/c^2]bb
0 50 100 150 200 250 300

S
am

pl
es

0

100

200

300

400

500

600

700

800

900

with t* parameter

 mass [GeV/c^2]bb
0 50 100 150 200 250 300

S
am

pl
es

0

100

200

300

400

500

600

700

800

900

without t* parameter

Figure 6.3: On the left, the distribution of the bb̄ mass for background events is shown, using a network that was
trained with the t∗mass variable. The light area comprises all background events and the dark area only events
with a network output greater than 0.8. On the right, the same is shown for a network without the t∗ variable.

6.3 Analysis of Reconstructed Events 73

The performance of the neural network trained with the remaining four variables is shown in

fig. 6.4. As expected its ability to separate signal from background events is worse than before.

However, the resulting network performance is still good.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

200

400

600

800

1000

1200

Generator Events - Background Suppression Network II

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: On the left-hand side, the network output using only four input variables is displayed (signal events:
green, background events: red). On the right, the efficiency plot for the current neural network (pink) and for
the network with the invariant mass of the t∗ (blue) is shown.

6.3 Analysis of Reconstructed Events

After a set of variables producing a good separation on generator events has been chosen for the

network, the analysis has to be tested on more realistic data before continuing. For this purpose,

the reconstructed events are used for the same analysis as before. Because the true jet identities

are still needed only good matched reconstructed events can be used for this purpose. The

training is performed on the good matched fraction of the events used in the previous section.

The resulting performance of the neural network is depicted in fig. 6.5 on the next page.

As can be seen, the network performance is roughly the same as for generator events even

though the actual distribution of the network output appears to be much worse. This result is

slightly unexpected, as a more pronounced decrease in the performance like for the jet pairing

network should have happened. The reason for this behaviour could be the fact that the events for

training and testing are already biased since only good matched events are taken. Unfortunately

at this stage there is no possibility to verify or falsify this assumption by not using good matched

events, since the neural network needs to know the identity of the particles for its training.

74 Background Suppression

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

50

100

150

200

250

300

Reconstructed Events - Background Suppression Network I

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.5: On the left, the network output using reconstructed events is shown (signal events: green, background
events: red). On the right-hand side, the efficiency plot using reconstructed events (pink) and generator events
(blue) can be seen.

6.3.1 Improving the Analysis

In order to further improve the analysis, additional variables are added to the neural network

to increase its discriminating capabilities. The following three variables seem to be the most

promising ones:

1. ∆R(bhiggs1, bhiggs2)

2. |η(bhiggs1)|

3. |η(bhiggs2)|

They try to further utilise the information inherent to the differences in the production of

the bb̄ system for signal and background events. The distance in phase space ∆R between

the two b jets of the bb̄ system is generally smaller for signal events than for background events,

i.e. the Higgs decay products leave the interaction in closer vicinity. The η distribution is uniform

for the two background b jets with a peak in the very forward direction, whereas the daughter

jets of the Higgs boson rather travel transversal to the beam line.

These three variables have been primarily chosen because their distributions exhibit noticeable

differences for signal and background events as described above, thus an improvement in the

performance of the neural network can be expected. Their distributions are shown in appendix B,

separated for signal and background events.

In addition, some technical improvements similar to those mentioned in chapter 5.5.1 have

been applied to the neural network for the final analysis run on reconstructed events.

6.3 Analysis of Reconstructed Events 75

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

20

40

60

80

100

120

140

160

180

Reconstructed Events - Background Suppression Network II

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6: On the left, the network output using reconstructed events is shown (signal: green, background: red).
On the right, the efficiency plot for the improved network (pink) and for the previous one (blue) are presented.

Results

The network performance has been increased by a large amount due to introducing the afore

mentioned improvements (fig. 6.6). Taking a signal efficiency of 0.9 for example leads to a

corresponding background efficiency of 0.4, decreasing the number of background events by

more than 50%. The signal to square root of background ratio after one year of data taking at

CMS in the low-luminosity phase yields to:

NS√
NB

≈ 11.7 instead of ≈ 9.2 previously.

Higgs mass [GeV/c^2]
0 20 40 60 80 100 120 140 160 180 200

S
am

pl
es

0

50

100

150

200

250

300

Reconstructed Higgs mass

Figure 6.7: Distribution of the Higgs mass

(simulated: dark, reconstructed: light).

The working point for the following analysis

was chosen at a signal efficiency of 0.9 which is

directly correlated to rejecting all events with a

network output of less than 0.4. The recon-

structed Higgs mass of the remaining events

(signal as well as background) is plotted in fig.

6.7 along with its true distribution from all sig-

nal events used. The plots have been scaled to

the same number of events for an easier com-

parison.

Here, the Higgs mass is reconstructed quite

well. The peak is at the same mass value for

both distributions, only the reconstructed Higgs

mass plot features more entries at lower values,

76 Background Suppression

caused by the remaining background events. Using a Gaussian fitting function to approximate the

presented curves yields a Higgs mass of mHiggs = 100.0± 0.5 GeV/c2 with a standard deviation of

σHiggs = 30.7± 0.4 GeV/c2 compared to the reconstructed values mHiggs = 105.1± 0.4 GeV/c2

and σHiggs = 23.0± 0.3 GeV/c2 in the signal events after the detector simulation. The mean of

this Higgs mass does not equal mHiggs = 120 GeV/c2, set by the event generator, due to detector

and reconstruction effects. For example, not the entire jet energy was measured by the detector

hardware or the jet reconstruction software has not taken into account a large enough area of

the calorimeter for a correct jet energy measurement.

6.4 Comparison of Neural Network Packages

The pairing neural network presented in the previous chapter has been implemented with the

NeuroBayes r© package and the TMultiLayerPerceptron class of ROOT. Both variants

have been trained on the same data and their performances have been compared, resulting in a

clear recommendation for NeuroBayes r©. The same procedure is repeated for the background

suppression network using the same methods and conditions as for the pairing network.

As can be seen in fig. 6.8, both neural network packages are capable of solving this separation

task. Due to its more sophisticated methods, NeuroBayes r© has some advantages and achieves a

slightly better result than the TMultiLayerPerceptron. The discrepancy in the networks’

performances for the jet matching and the background suppression task are again explained by

the correlations of the input variables. Appendix B shows, that the variables of the background

suppression network are only weakly correlated. This is an indication that the neural network

provided by ROOT might perform similar to the NeuroBayes r© package.

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

20

40

60

80

100

120

140

160

180

NeuroBayes

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

100

200

300

400

500

600

700

TMultiLayerPerceptron

Figure 6.8: The output of the network for the background suppression analysis is shown with signal samples in
green and background samples in red. On the left, the results of NeuroBayes r© are shown. On the right, the
TMultiLayerPerceptron output is displayed.

6.5 Combination of both Analyses 77

6.5 Combination of both Analyses

In the previous chapters, two neural networks have been analysed. The first one is used for

identifying the correct jet matching in a given event and the second one separates t̄tH signal

events from t̄tbb̄ background events. This has been a rather academic task so far, since jet

identities supplied by the event generator have been used for the background suppression task.

In order to arrive at a more realistic analysis, both networks are now connected, resulting in the

analysis chain described below:

1. Event samples are produced by a Monte Carlo generator.

2. These are passed through the CMS reconstruction software and enriched with additional

information like the b probability.

3. The jet pairing network and the background suppression network are both trained with the

reconstructed data using the jet identities supplied by the event generator.

4. A new event is passed to the background suppression network for classification.

5. The jet pairing network is applied to deliver an estimation of the jet identities of the event.

6. The determined pairing is used by the background suppression network to decide whether

an event is a t̄tH signal or a t̄tbb̄ background.

The first three steps illustrate the training phase of the neural networks followed by the com-

bination of jet pairing and background suppression in steps four to six, leading to the results

presented here.

Results

The analysis chain as described above has been implemented and trained with the good matched

fraction of 60,000 signal and 60,000 background events as before. For evaluating the network

performance, an independent sample of 8,766 good matched events was used.

The network output of the combined analysis is shown in fig. 6.9. As expected, the results

turn out worse since an imperfect jet matching was applied. For receiving a signal efficiency of

0.9 a remaining fraction of 66% of background events has to be accepted. In this case, the signal

to square root of background ratio after one year of data taking is 8.4 compared to 10.8 before.

Nevertheless, a working point at a signal efficiency of 0.9 was chosen again in order to

reconstruct the invariant mass of the Higgs boson. The resulting mass distribution is shown

in fig. 6.10. As described earlier in chapter 5.5.1, the imperfect jet matching done by the

pairing network yields a Higgs mass that is shifted to lower values. The same effect occurs here

delivering a Higgs mass of mHiggs = 94.7± 0.8 GeV/c2 with an associated standard deviation of

σHiggs = 36.3± 0.5 GeV/c2, by using a Gaussian approximation.

78 Background Suppression

Network output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
am

pl
es

0

10

20

30

40

50

60

70

80

90

Combined Network Analysis

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
- b

ac
kg

ro
un

d
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.9: On the left, the network output for the combined analysis is shown (signal events: green, background
events: red). On the right-hand side, the corresponding efficiency plot (pink) and for the analysis using jet
identities provided by the generator (blue) is shown.

It is interesting to note, that this distribution still has a peak at the same value like the Higgs

mass distribution for the signal events even though it is superposed by an additional peak of the

same order of magnitude at about 60 GeV/c2, caused by the incorrectly paired b jets. Also shown

as a dashed line in fig. 6.10 is the distribution of the Higgs mass for signal events after the jet

matching. It represents the best possible reconstruction that the network analysis (shown in light

grey) can achieve. In fact both distributions are similar, therefore the background suppression

has been very successful.

Higgs mass [GeV/c^2]
0 20 40 60 80 100 120 140 160 180 200

S
am

pl
es

0

50

100

150

200

250

300

350

Reconstructed Higgs mass

Figure 6.10: Distributions of the Higgs mass

(simulated: dark, after jet matching: dashed,

reconstructed: light).

Problems

While performing this combined analysis, some

problems arose that had to be dealt with and

that have an impact on the previous analyses.

The most important problem was the existence

of physical unreasonable reconstructed jets with

E < pz for several jet matchings. In such a

case, e.g. the rapidity cannot be calculated.

The cause of this behaviour is a wrong jet com-

bination paired with a wrong missing energy cal-

culation. This problem has not been detected

while studying the pairing network since none

of its parameters is sensitive to this energy con-

straint. The perfect jet matching used for the

6.5 Combination of both Analyses 79

background suppression network resulted in not detecting this either. To compensate for this

behaviour, all such jet pairings are considered as being wrong. This leads to a decrease in the

number of useable events by about 50%. The appropriate changes have retrospectively been

applied to the other analyses and the results presented in this thesis already reflect them.

Another alternative to deal with this problem is using NeuroBayes r©’ ability to handle input

variables that are not defined for all input patterns. This would allow to also use events for

which the rapidity cannot be calculated due to their energy being smaller than the momentum in

z direction for all jet matchings. Jet pairings would not automatically be declared wrong because

of this energy constraint and the efficiency decrease of 50% could be avoided. This approach

seems promising but has yet to be studied.

80 Background Suppression

Conclusion and Outlook

Large physical experiments like CMS at CERN yield a lot of complex data that have to be

inspected thoroughly. Powerful analysis tools and methods are required for this task. Neural

networks are one possible solution, providing the means for such a data challenge. The purpose

of this thesis was to research the potential of these techniques in the field of CMS analyses and

to apply them on one concrete problem.

The t̄tH channel with its associated background channel t̄tbb̄ was chosen as target of this

study. Previous analyses had already identified the difficulties that this channel possesses. In this

work, the performance of neural networks was probed with it. In particular the NeuroBayes r©
package and the TMultiLayerPerceptron class of ROOT have been examined.

At first, a network was developed to correctly match the final state particles to the actual

partons of the process. This is an important task, since before starting any further analysis the

identities of the particles that are examined have to be well known. An existing analysis [1] has

been transferred for the usage of neural networks and expanded. The resulting network yields

the correct jet pairing for 33.4% of all signal events and for 31.6% of all background events.

This is about the same performance as in the previously mentioned analysis. The neural network

approach has still to be expanded to include an imperfect identification of b jets and also to

consider all jets contained within an event instead of only the jets corresponding to the final state

particles. Interfacing the existing likelihood analysis and exploiting its pairing information for the

neural network could be useful, too.

Afterwards, another neural network was designed for the actual physics analysis presented in

this thesis. It should separate t̄tH signal events from the t̄tbb̄ background. Based on an existing

CMS note [2], discriminating variables have been identified and a network has been devised. It

yields a good performance by rejecting 60% of the background events while still keeping 90%

of the signal. It also offers a good reconstruction of the Higgs mass similar to the signal events

after the detector simulation. Another promising approach to the background suppression would

be using two different neural networks, one aimed at identifying signal events and the other one

for the background events.

Combining both neural networks was the final step in the analysis. The pairing network

delivers the supposedly correct jet matching used in the background suppression network. The

resulting combined network could still perform its discrimination task, within the given scope, but

it got evident, that the imperfect jet identification was the main limiting factor for the analysis.

This can be seen in the distribution of the reconstructed Higgs mass in the signal events, which

82 Conclusion and Outlook

is already shifted to lower values after the jet pairing. Therefore it is recommended to give full

attention to improving the jet matching. The proposed analysis chain is depicted in fig. 7.1.

This thesis has shown that neural networks are a useful and powerful tool for analysing

high energy physics data in the CMS context that can match or even surpass more traditional

approaches. The possibilities of the two developed neural networks have yet to be exhausted.

There are still input variables that have to be investigated and technical means that can be further

exploited for a better network training.

In addition a framework has been developed within the scope of this thesis in order to obtain

independence from the actual underlying network package. An interface for each package applied

in this thesis was created, making analyses using either of them easily comparable. In the future

this framework could be expanded to include further neural networks, thus always using the best

one appropriate for the current task. Furthermore, additional analysis functionality could be

integrated into the framework, endowing weaker networks with more performance.

Figure 7.1: Proposed analysis chain for the suppression of background events. The neural networks for jet
matching and background suppression are trained with reconstructed Monte Carlo events as input. The first one
also receives additional information from the likelihood pairing analysis. In application, the background suppression
network receives real CMS data to analyse and then employs the pairing network to deliver jet identifications for
real detector events.

Framework for Neural Network Packages

There is a great variety of neural network packages, free as well as commercial, e.g. NeuroBayes r©,

TMultiLayerPerceptron, JETNET, etc. . Each offers a different user interface. Trans-

ferring an analysis from one of these neural network packages to another one can be quite a

challenge because of the diversity of their interfaces. Thus an easy comparison of multiple neural

networks for a certain analysis task becomes impracticable at the very least.

To solve this problem, a neural network framework has been devised in the scope of this

diploma thesis to easily wrap the functionality of different neural network packages under the

same interface, thus unifying the access to the analysis potential of these tools. This framework

represents a new layer of abstraction between the actual analysis code and the neural networks,

rendering the analysis independent of the underlying neural network package.

Apart from the abstract base class (PaxNeuralNet) that defines the principal function-

ality all network wrappers have to provide, two concrete classes have been implemented. They

wrap the functionality provided by the NeuroBayes r© package (PaxNeuroBayesNet) and the

TMultiLayerPerceptron class of ROOT (PaxRootMLP). Some further improvements,

especially for the NeuroBayes r© interface are planned but have not be implemented within the

scope of this thesis.

The structure of the neural network framework is shown in the UML1-diagram in fig. A.1.

Figure A.1: UML diagram for the neural network framework. An abstract base class (PaxNeuralNet) gets derived
by two concrete classes that wrap the functionality of NeuroBayes r© (PaxNeuroBayesNet) and TMultiLayer-
Perceptron (PaxRootMLP), respectively.

1Unified Modeling Language

84 Framework for Neural Network Packages

A.1 PaxNeuralNet Class

This abstract class acts as the general foundation for all other network classes that will be derived

from it. All functionality that has to be provided by every network wrapper is defined here.

Network training and the subsequent application of the trained network using this framework

usually takes place in the following steps: At first the desired neural network class is instantiated.

For training purposes the trainer is initialised, followed by adjustments to the preprocessing and

training parameters, if needed. After this setup step, the input patterns are passed to the network

which is in turn trained. Having finished the training the expert mode of the neural network has

to be initialised and then new samples can be passed to the network for analysing.

The methods responsible for the outlined procedure are introduced below:

• PaxNeuralNet(int inputs):

A general constructor, receiving the number of network inputs.

• virtual void InitTrainer(): (abstract)

This method has to be called before anything concerning network training takes place.

Variables get initialised, classes instantiated and files created necessary for training.

• virtual void FillNet(float* input, float target, float weight=1.0): (abstract)

Here input patterns can be passed to the neural network for training. Along with the actual

pattern its designated target value and optionally a weight for this event get passed.

• virtual void TrainNet(int iterations=30): (abstract)

This method starts the training process with the specified number of training iterations.

At the end of the training a file containing the resulting network should be written to disk.

This duty rests with the concrete classes.

• virtual void InitExpert(): (abstract)

Before the usage of a neural network this method has to be called. It restores the network

description from file and initialises the needed variables.

• virtual float UseNet(float* input): (abstract)

This method uses the trained neural network with the passed input pattern. The network

output is then returned by this function, scaled to a region of [0, 1].

• virtual void SetTrainingFraction(double fraction): (abstract)

With this method the fraction of input samples used for training can be defined. The

remaining input samples will be used for performance tests during the training phase if the

underlying neural network supports this functionality.

• virtual void SetInnerNodes(int inner): (abstract)

Here the number of neural nodes in the hidden layer is defined. Currently only a three-layer

network is supported, thus only one hidden layer exists.

A.2 PaxRootMLP Class 85

• virtual void Analyse(): (abstract)

This method starts an analysis of the training and the resulting network. What happens

exactly is subject to the concrete derived class.

• int GetInputs():

Returns the number of network inputs defined for this network.

Notice: This interface was designed with three-layer feed-forward neural networks in mind.

A.2 PaxRootMLP Class

This class wraps the functionality of the TMultiLayerPerceptron class of the ROOT frame-

work. It retains and implements all methods defined by its base class PaxNeuralNet and adds

one public method, explained below.

Upon completion of the network training, the network structure is saved in a directory named

results. This information is loaded when the expert part of the neural network gets initialised.

The Analyse() method – using the TMLPAnalyzer class for its purposes – also stores a

ROOT file in the results directory.

The network output of the TMultiLayerPerceptron neural network is not confined to

the range that the training target values set. In order to solve this unwanted behaviour, the

neural network of ROOT was modified: the output functions of the output neurons were set to a

sigmoid function instead of a linear function. Therefore the TMultiLayerPerceptron class

and its associated classes had to be extracted from the ROOT package and compiled on their

own – with this change built in.

• PaxRootMLP(int in, string file, string directory=””):

This constructor expects the number of input variables the neural network is going to have,

the name for the analysis- and network description-file and optionally a directory name,

where the results directory will be created.

A.3 PaxNeuroBayesNet Class

The PaxNeuroBayesNet class is a wrapper for the neural network provided by the NeuroBayes r©
package. In addition to the functionality given by the base class, several other methods are avail-

able to utilise the preprocessing abilities of the package and to steer the training.

During the training a file containing the Expertise as well as a ROOT file containing vari-

ous analysis data about the network and the training are written to the results directory. The

Analyse() method can then be used to convert this information into a more visual postscript

file, stored in the results directory, too. The functionality of the Analyse() method is provided

by an external compilation of functions in the file NbAnalysis.cc, originally developed at the

IEKP by Claudia Lecci.

86 Framework for Neural Network Packages

• PaxNeuroBayesNet(int in, string file, string directory=””):

This constructor expects the number of input variables the neural network is going to have,

the name for the analysis- and network description-file and optionally a directory name,

where the results directory will be created.

• void SetIndividualPrepro(int var, int prepro):

The individual preprocessing method for each input variable can be set by this method.

In general 34 and 14 are good settings for continuous variables with or without a delta-

function, respectively. All preprocessing possibilities and their assigned number can be

found in [64].

• void SetIndividualPreproParam(int var, int paramNum, int param):

This method is used to force the preprocessor in the decorrelation step to especially at-

tempt to decorrelate certain variables. Currently this method is exactly the same as the

SetIndividualPreproParameter function in NeuroBayes r©, leading to a some-

what complicated employment. It is planned to be improved in the future.

In order to tell the preprocessor to decorrelate an input variable A with some other input

variables Bi the following method calls are required: On the first call the number of input

variables Bi is passed to the method as third parameter and on the subsequent calls the

individual variables are passed. The first parameter is always variable A and the second

parameter is a counting parameter incremented by one for each method call with the same

input variable A, starting with zero.

Due to the internal structure of the preprocessor, variable A has always to be larger than

the Bi pertaining to their numbering. In addition the variables Bi are numbered starting

with 2 instead of 0; this does not affect the afore mentioned constraint.

• void SetTrainingParams(int speed, int learn, int epoch):

General training parameters can be set by this method, namely the training speed, the learn

rate and the number of training epochs before the weights are updated. The speed value

should be chosen to be higher than the value of the learn rate. Good values for the training,

figured out in the course of this thesis, encompass a training speed of 300, a learning rate

of 150 and a weight update after 100 training epochs. If the network training aborts, the

training speed and learning rate have to be reduced.

• void SetTrainingPrepro(string task, int pre, string reg, string loss, string shape):

This method is used to alter further network settings. The network task (DENSITY, RE-

GRESSION; default: CLASSIFICATION), the preprocessing shape for all variables (default:

11) and the regularisation method (OFF, REG, ASR, ALL; default: ART) can be changed.

The error function (QUADRATIC; default: ENTROPY) can be chosen and direct connec-

tions between the input and output layer can be toggled (INC, TOT; default: OFF). A

detailed explanation of the parameters is given in [64].

A.4 Applying the Neural Network Framework 87

A.4 Applying the Neural Network Framework

To apply the neural network framework at the IEKP the following steps have to taken:

ROOT

ROOT has to be installed in order to use the PaxRootMLP class; it is also required for

NeuroBayes r©. In general a ROOT environment is set up at every desktop machine. If not,

this can be easily done by adding the following environment variables:

setenv ROOTSYS /usr/users/software/root-versions/4.02.00

setenv PATH "$ROOTSYS/bin:"$PATH

setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":"$ROOTSYS/lib"

When compiling a program using ROOT functionality, the following libraries have to be added:

LIBS += -lMLP -lTreePlayer

NeuroBayes r©

To use the PaxNeuroBayesNet class, NeuroBayes r© has to be prepared for each machine it

will run on. At first a local software license for the NeuroBayes r© package has to be acquired

from < Phi− T > – the IEKP is provided with free licenses. The license path and the installation

path have to be added to the environment variables.

setenv PHIT_LICENCE_PATH ˜phit/Licences

setenv NEUROBAYES /usr/users/kerzel/NeuroBayes/NB-C++/v1_3

setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":"$NEUROBAYES/lib"

When compiling a program using this functionality, the following libraries have to be added:

LIBS += -L$(NEUROBAYES)/lib -lNeuroBayesRoot -lNeuroBayesTeacherCPP

Neural Network Framework

After ROOT and NeuroBayes r© have been set up, the neural network framework can simply be

used by including the appropriate header files in the analysis code and then compiling and linking

the source files. If the altered TMultiLayerPerceptron is going to be used, these files have

to compiled and linked as well.

88 Framework for Neural Network Packages

Notice:

When using PaxNeuroBayesNet-specific methods for preprocessing or training adjustments,

they should be capsuled in an if-query so that this code only gets executed when really using a

PaxNeuroBayesNet object.

Network Parameters and Input Variables

This chapters is intended to give an overview of the training parameters and the input variables

used for training both neural networks developed in this thesis. The distributions and correlations

of the input variables to each other and to the target value are shown in the following sections as

well as their preprocessing parameters. In addition the general settings for the neural networks

are listed.

B.1 Jet Pairing

The jet pairing network is intended to identify the correct matching of final state particles to

the original partons of a process. This is done by returning a probability value for each possible

combination passed to the network. The matching with the highest probability is then chosen as

true for the following analysis.

Network Settings

The following settings – deviating from the default settings – have been applied to the NeuroBayes r©
network to adjust the training:

Number of inner nodes: 20

Training iterations: 200

Training fraction: 1.0

Training speed: 150

Learn rate: 100

The training has been performed on the good matched fraction of 60,000 signal events. For

each event 12 possible jet matchings have been generated and for each of them one or two input

patterns have been passed to the neural network, depending on the possible reconstructions of

the missing energy. Particulars about the jet pairing network are explained in chapter 5.

90 Network Parameters and Input Variables

Variables Used

The following variables are used as input for the training of the jet pairing network. The hadroni-

cally decaying W boson is labelled Whadronic and its associated b and t quark are named bWhadronic

and tWhadronic. A corresponding denotation is chosen for the leptonically decaying W boson

(Wleptonic) and its associated bottom (bWleptonic) and top quark (tWleptonic). The heaviest decay

product of the Whadronic deacy is called q1 and the muon µ is a daughter of the Wleptonic boson.

The value ttheory = 175 GeV/c2 denotes the current rough assumption of the top mass [14]. The

applied preprocessing setting is indicated in the brackets.

1. ∆R(Whadronic, bTWhadronic) (14)

2. ∆R(µ, bTWleptonic) (14)

3. ∆R(bhiggs1, bhiggs2) (14)

4. ∆R(bWleptonic, tWhadronic) (14)

5. ∆R(Wleptonic, bWhadronic) (14)

6. ∆R(bWhadronic, tWleptonic) (14)

7. ∆R(Whadronic, bWleptonic) (14)

8. ∆R(q1, bWleptonic) (14)

9. ∆R(tWhadronic, tWleptonic) (14)

10. (tWhadronic − ttheory) mass (14)

11. (tWleptonic − ttheory) mass (14)

Distributions

All input variables described in the previous subsection are shown on the following two pages

(fig. B.1, B.2). Each variable is separately plotted for signal (green) and background (red)

patterns.

B.1 Jet Pairing 91

) [1]Whadronic, bhadronic R(W∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

)Whadronic, bhadronic R(W∆(1) Jet Pairing -

) [1]Wleptonic, bµ R(∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

)Wleptonic, bµ R(∆(2) Jet Pairing -

) [1]higgs2, bhiggs1 R(b∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

)higgs2, bhiggs1 R(b∆(3) Jet Pairing -

) [1]Whadronic, tWleptonic R(b∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

4500

)Whadronic, tWleptonic R(b∆(4) Jet Pairing -

) [1]Whadronic, bleptonic R(W∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

)Whadronic, bleptonic R(W∆(5) Jet Pairing -

) [1]Wleptonic, tWhadronic R(b∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

4500

)Wleptonic, tWhadronic R(b∆(6) Jet Pairing -

Figure B.1: Distributions of the input variables used in the training of the jet pairing neural network, separated
for signal (green) and background (red) patterns - Part I.

92 Network Parameters and Input Variables

) [1]Wleptonic, bhadronic R(W∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

)Wleptonic, bhadronic R(W∆(7) Jet Pairing -

) [1]Wleptonic R(q_1, b∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

500

1000

1500

2000

2500

3000

3500

4000

)Wleptonic R(q_1, b∆(8) Jet Pairing -

) [1]Wleptonic, tWhadronic R(t∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

1000

2000

3000

4000

5000

6000

7000

)Wleptonic, tWhadronic R(t∆(9) Jet Pairing -

 mass) [GeV/c^2]theory - tWleptonic(t
-200 -150 -100 -50 0 50 100 150 200 250 300

S
am

pl
es

0

1000

2000

3000

4000

5000

 mass)theory - tWleptonic(10) Jet Pairing - (t

 mass) [GeV/c^2]theory - tWhadronic(t
-200 -150 -100 -50 0 50 100 150 200 250 300

S
am

pl
es

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 mass)theory - tWhadronic(11) Jet Pairing - (t

Figure B.2: Distributions of the input variables used in the training of the jet pairing neural network, separated
for signal (green) and background (red) patterns - Part II.

B.1 Jet Pairing 93

Correlations

The correlations between the input variables and between the input variables and the target value

are shown in fig. B.3. The value of the correlation is colour-coded as depicted on the right.

The target value is marked with a T, the input variables are numbered serially, starting with one.

Strongly correlated variables are decorrelated in particular, using NeuroBayes r©’ capabilities.
 TeacherNeuroBayes

-1

-0.5

0

0.5

1

T 1 2 3 4 5 6 7 8 9 10 11

11

10

9

8

7

6

5

4

3

2

1

T

correlation matrix of input variablescorrelation matrix of input variables

Figure B.3: Correlations between the input variables (1 - 11) and between the input variables and the target
variable (T). The value of the correlation is colour-coded, as shown on the right.

94 Network Parameters and Input Variables

B.2 Background Suppression

The background suppression network analyses events and gives an estimation whether they are

t̄tH signal or t̄tbb̄ background events. The latter can then be removed for the following analysis.

Network Settings

The following settings – deviating from the default settings – are applied to the NeuroBayes r©
network to adjust the training. These values are also used for the combined analysis:

Number of inner nodes: 20

Training iterations: 500

Training fraction: 1.0

Training speed: 50

Learn rate: 20

The training is performed on the good matched fraction of 60,000 signal and 60,000 back-

ground events. Particulars about the neural network for background suppression are explained in

chapter 6.

Variables Used

The following variables are used for the training of the background suppression network. The

two b jets from the Higgs decay are labelled bhiggs1 and bhiggs2 and form a bb̄ system. In case

of background events two arbitrary b jets not coming from a top decay are chosen instead. The

top jet nearest in angle to the bb̄ system is labelled tnear. The applied preprocessing setting is

indicated in the brackets.

1.](bb̄, tnear) (12)

2. ∆r(bb̄, tnear) (12)

3. ∆R(bb̄, tnear), using pseudo-rapidity for the calculation (12)

4. ∆R(bb̄, tnear), using rapidity for the calculation (12)

5. ∆R(bhiggs1, bhiggs2) (12)

6. |η(bhiggs1)| (12)

7. |η(bhiggs2)| (12)

Distributions

All input variables described above are shown on the following two pages (fig. B.4, B.5). Each

variable is separately plotted for signal (green) and background (red) events.

B.2 Background Suppression 95

) [rad]near, tb(b℘�
0 0.5 1 1.5 2 2.5 3 3.5

S
am

pl
es

0

50

100

150

200

250

300

350

400

450

)near, tb(b℘�(1) Background Suppression -

) [1]near, tb r(b∆
-3 -2 -1 0 1 2 3

S
am

pl
es

0

100

200

300

400

500

600

)near, tb r(b∆(2) Background Suppression -

)_1 [1]near, tb R(b∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

100

200

300

400

500

)_1near, tb R(b∆(3) Background Suppression -

)_2 [1]near, tb R(b∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
am

pl
es

0

100

200

300

400

500

)_2near, tb R(b∆(4) Background Suppression -

) [1]higgs2, bhiggs1 R(b∆
0 1 2 3 4 5 6

S
am

pl
es

0

100

200

300

400

500

600

)higgs2, bhiggs1 R(b∆(5) Background Suppression -

)| [1]higgs1(bη|
0 0.5 1 1.5 2 2.5 3 3.5

S
am

pl
es

0

50

100

150

200

250

300

350

400

)|higgs1(bη(6) Background Suppression - |

Figure B.4: Distributions of the input variables used for the training of the background suppression neural
network, separated for signal (green) and background (red) events- Part I.

96 Network Parameters and Input Variables

)| [1]higgs2(bη|
0 0.5 1 1.5 2 2.5 3 3.5

S
am

pl
es

0

50

100

150

200

250

300

350

400

450

)|higgs2(bη(7) Background Suppression - |

Figure B.5: Distributions of the input variables used for the training of the background suppression neural
network, separated for signal (black) and background (red) events - Part II.

Correlations

The correlations between the input variables and between the input variables and the target value

are shown in fig. B.6. The value of the correlation is colour-coded as depicted on the right.

The target value is marked with a T, the input variables are numbered serially, starting with one.

Strongly correlated variables are decorrelated in particular by NeuroBayes r©.
 TeacherNeuroBayes

-1

-0.5

0

0.5

1

T 1 2 3 4 5 6 7

7

6

5

4

3

2

1

T

correlation matrix of input variablescorrelation matrix of input variables

Figure B.6: Correlations between the input variables (1 - 7) and between the input variables and the target
variable (T). The value of the correlation is colour-coded, as shown on the right.

List of Figures

1.1 The Large Hadron Collider (LHC) . 3

1.2 The Compact Muon Solenoid (CMS) detector 5

1.3 The CMS detector - Schematic cuts . 7

1.4 The CMS detector - Particle tracks . 8

1.5 The CMS detector - Trigger and data acquisition system 9

2.1 A Higgs potential like function . 13

2.2 Cross-sections of the main Higgs production processes at the LHC 15

2.3 Gluon-gluon fusion process for Higgs production 16

2.4 Weak gauge boson fusion process for Higgs production 16

2.5 Higgs production process through Higgs radiation 17

2.6 Associated Higgs Production with a top quark pair 17

2.7 Branching ratios of the main decay channels of the Higgs boson 18

2.8 Massive Higgs boson decay modes . 19

2.9 Massless Higgs boson decay modes . 19

2.10 The t̄tH decay channel . 20

2.11 The associated background channels for the t̄tH channel 21

3.1 Schematic view of a biological neuron . 24

3.2 Schematic view of an artificial neuron . 25

3.3 Feed-forward network topology . 27

3.4 Various other network topologies . 27

3.5 Schematic view of a perceptron . 28

3.6 Linear separation with the perceptron . 30

3.7 Limits of the perceptron . 30

3.8 Multi-layer perceptron . 31

3.9 Logical XOR function with a multi-layer perceptron 31

3.10 Network overfitting . 36

3.11 Usage of input training and test samples . 37

3.12 Network output visualisation . 38

3.13 Network purity vs. network output . 39

3.14 Section of a Kohonen map . 41

98 List of Figures

3.15 Hopfield Network with three neurons . 43

4.1 PaxEventInterpret class structure . 48

4.2 PaxRelationManager class structure . 49

5.1 Visualisation of the event geometry . 57

5.2 Network output for generator signal events . 58

5.3 Network output for reconstructed signal events 59

5.4 Denotation of the partons in the t̄tH channel 61

5.5 Final network output for reconstructed signal events 63

5.6 Network output for reconstructed background events 64

5.7 Impact of cuts on the distribution of the Higgs- and bb̄-mass 65

5.8 Network output comparison for the pairing task 66

6.1 Network output for generator events I . 71

6.2 Distribution of the invariant t∗ mass . 72

6.3 Effects of the invariant t∗ mass variable on the bb̄ mass distribution 72

6.4 Network output for generator events II . 73

6.5 Network output for reconstructed events . 74

6.6 Final network output for reconstructed events 75

6.7 Distribution of the reconstructed Higgs mass - I 75

6.8 Network output comparison for the background suppression task 76

6.9 Network output for the combined analysis . 78

6.10 Distribution of the reconstructed Higgs mass - II 78

7.1 Proposed analysis chain . 82

A.1 UML diagram for the neural network framework 83

B.1 Input variable distributions for the jet pairing network - I 91

B.2 Input variable distributions for the jet pairing network - II 92

B.3 Input variable correlations for the jet pairing network 93

B.4 Input variable distributions for the background suppression network - I 95

B.5 Input variable distributions for the background suppression network - II 96

B.6 Input variable correlations for the background suppression network 96

List of Tables

2.1 The fundamental fermions . 12

2.2 The fundamental bosons . 12

2.3 Selected branching ratios of the W and WW decay 20

2.4 Cross-sections of the t̄tH channel and its background channels 21

4.1 Software versions used in this thesis . 52

5.1 Event sample sizes . 54

5.2 Cuts on the output of the jet pairing network for signal events 62

5.3 Cuts on the output of the jet pairing network for signal events - II 63

5.4 Cuts on the output of the jet pairing network for background events 64

100 List of Tables

Bibliography

[1] A. Schmidt, Studies of the tt̄H channel at CMS

CMS Note in preparation (2006). II, 53, 56, 67, 81

[2] W. Weimin et al., A Study of tt̄ + Higgs at CMS

CMS Note 2001/039 (2001). III, 70, 71, 81

[3] The CMS Collaboration, CMS: ECAL Technical Design Report

CERN/LHCC 97-33 (1997). 3

[4] The CMS Collaboration, CMS: The Hadron Calorimeter Technical Design Report

CERN/LHCC 97-31 (1997).

[5] The CMS Collaboration, CMS: The Magnet Project Technical Design Report

CERN/LHCC 97-10 (1997).

[6] The CMS Collaboration, CMS: MUON Technical Design Report

CERN/LHCC 97-32 (1997).

[7] The CMS Collaboration, CMS: The Tracker Project Technical Design Report

CERN/LHCC 98-6 (1998).

[8] The CMS Collaboration, CMS: The TriDAS Project Technical Design Report

CERN/LHCC 2000-38 (2000).

[9] The CMS Collaboration, CMS: Data Acquisition and High-Level Trigger TDR

CERN/LHCC 2002-26 (2002). 3

[10] CERN – European Organization for Nuclear Research, LHC Design Report

http://ab-div.web.cern.ch/ab-div/Publications/LHC-DesignReport.html. 3

[11] Compact Muon Solenoid Outreach Activities

http://cmsinfo.cern.ch. 3, 5, 7, 8, 9

[12] D. Griffiths, Introduction to Elementary Particles

ISBN 0-471-60386-4 (1987). 12

102 Bibliography

[13] D. Perkins, Introduction to High Energy Physics

ISBN 0-521-62196-8 (2000). 12

[14] S. Eidelman, et. al, Review of Particle Physics

ISSN 0-370-2693 (2004). 13, 20, 90

[15] Higgs Mechanism – Wikipedia

http://en.wikipedia.org/wiki/Higgs mechanism. 13

[16] S. Weinberg, A Model of Leptons

Phys. Rev. Lett. 19 (1967). 14

[17] H. Spiesberger, et al., The Standard Model: Physical Basis and Scattering Experiments

hep-ph/0011255 (2000). 15

[18] A. Djouadi, et al., HDECAY: A Program for Higgs Boson Decays in the Standard Model

and its Supersymmetric Extension

hep-ph/9704448 (1997). 18

[19] S. Kappler, Higgs Search Studies in the Channel tt̄H with the CMS Detector at the LHC

IEKP-KA/2004-17 (2004). 21, 62

[20] R. Rojas, Theorie der Neuronalen Netze

ISBN 3-540-56353-9 (1993). 23

[21] D. Patterson, Kuenstliche neuronale Netze

ISBN 3-827-29531-9 (1997).

[22] M. Berthold, Intelligent Data Analysis

ISBN 3-540-43060-1 (2000).

[23] A. Zell, Simulation neuronaler Netze

ISBN 3-486-24350-0 (1994). 23

[24] W. McCulloch and W. Pitts, A logical Calculus of the Ideas immanent in nervous Activity

Bulletin of Mathematical Biophysics 5 (1943). 25, 29

[25] S. Haykin, Neural Networks, a comprehensive Foundation

ISBN 0-132-73350-1 (1998). 25

[26] J. Hertz, et al., Introduction to the Theory of Neural Computation

ISBN 0-201-51560-1 (1991). 25, 35, 36

[27] F. Rosenblatt, The Principles of Neurodynamics

ASIN B-000-6AXUI-I (1962). 28

Bibliography 103

[28] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the behavioral

Sciences

Ph.D. thesis (Harvard University, Cambridge) (1974). 32

[29] A. Weigend et al., Generalization by Weight Elimination with Application to Forecasting

Advances in Neural Information Processing Systems 3 (1991). 33

[30] G. Orr and K. Mueller, Neural Networks: Tricks of the Trade

ISBN 3-540-65311-2 (1999). 33

[31] J. Zurada, Introduction to Artificial Neural Network Systems

ISBN 0-314-93391-3 (1992). 34

[32] C. Bishop, Neural Networks for Pattern Recognition

ISBN 0-198-53864-2 (1996). 34, 36, 40

[33] M. Riedmiller and H. Braun, A direct adaptive Method for faster backpropagation

Learning: The RPROP Algorithm

Proceedings of the IEEE International Conference on Neural Networks (1993). 34

[34] G. Cybenko, Approximation by Superpositions of a sigmoidal Function

Mathematics of Control, Signals and Systems 2 (1989). 36

[35] R. Reed, Pruning Algorithms: a Survey

Proceedings of the IEEE International Conference on Neural Networks (1993). 36

[36] M. Feindt, A Neural Bayesian Estimator for Conditional Probability Densities

IEKP-KA/04-05 (2005). 38

[37] J. Mason and M. Cox, Algorithms for Approximation

ISBN 0-198-53612-7 (1987). 40

[38] T. Poggio and F. Girosi, A Theory of Networks for Approximation and Learning

ASIN B-000-72YCX-W (1989). 40

[39] J. Moody and C. Darken, Fast Learning in Networks of locally tuned Processing Units

Neural Computation 1 (1989). 40

[40] T. Kohonen, Self-Organizing Maps

ISBN 3-540-67921-9 (2000). 41

[41] T. Kohonen et al., SOM-Pak, the Self-Organizing Map Program Package. 42

[42] J. Hopfield, Neural Networks and Physical Systems with emergent collective computational

Abilites

Proceedings of the National Academy of Sciences Vol. 79 (1982). 43, 44

104 Bibliography

[43] J. Hopfield, Neurons with graded Response have collective computational Properities like

those of two-state Neurons

Proceedings of the National Academy of Sciences Vol. 81 (1984). 43

[44] D. Amit et al., Statistical Mechanics of Neural Networks

Annals of Physics 173 (1987). 44

[45] CMKIN Release Area

http://cmsdoc.cern.ch/Releases/CMKIN. 45

[46] CompHEP

http://www.ifh.de/ pukhov/comphep.html. 45

[47] PYTHIA (and JETSET) Webpage

http://www.thep.lu.se/ torbjorn/Pythia.html. 46

[48] CMSIM Main Page

http://cmsdoc.cern.ch/cmsim/cmsim.html. 46

[49] GEANT - Detector Description and Simulation Tool

http://wwwasd.web.cern.ch/wwwasd/geant. 46

[50] The CMS Simulation Project – OSCAR

http://cmsdoc.cern.ch/cmsoo/projects/OSCAR. 46

[51] CMS OO Reconstruction

http://cmsdoc.cern.ch/orca. 46

[52] COBRA

http://cobra.web.cern.ch/cobra. 46

[53] CMS Fast Simulation

http://cmsdoc.cern.ch/famos. 46

[54] SCRAM Page

http://cmsdoc.cern.ch/Releases/SCRAM/current/cgi/scrampage.cgi. 46

[55] XCMSInstall

http://cmsdoc.cern.ch/cms/oo/repos standalone/download/index.php. 46

[56] CMS Software Page

http://cmsdoc.cern.ch/cms/cpt/Software/html/General. 47

[57] The ROOT System Homepage

http://root.cern.ch. 47

Bibliography 105

[58] Physics Analysis Workstation – PAW

http://wwwasd.web.cern.ch/wwwasd/paw. 47

[59] R. Brun, et al., ROOT: Users Guide 4.08 (2004). 47

[60] M. Erdmann, et al., Physics Analysis eXpert Users Guide (2003). 47

[61] CLHEP – A Class Library for High Energy Physics

http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep. 48

[62] E. Gamma, et al., Design Patterns

ISBN 0-201-63361-2 (1994). 48

[63] PAX Home

http://cern.ch/pax. 49

[64] < phi− t >, NeuroBayes User’s Guide (2004). 49, 50, 51, 86

[65] < phi − t > Physics Information Technologies GmbH

http://www.phi-t.de. 49

[66] V. Buege, Aufbau eines Grid-Standorts zum Einsatz der CMS-spezifischen Software und

Messung von Parametern des W- und Z-Bosons am LHC

IEKP-KA/2005-21 (2005).

[67] U. Kerzel, Erste inklusive Messung der b-Quark-Fragmentation f(Z) in Z0-Zerfllen mit dem

DELPHI-Detektor bei LEP I

IEKP-KA/2002-3 (2002).

[68] A. Schmidt, Entwicklung von Analyse-Software und Bestimmung von Parametern des

W-Bosons am LHC durch Vergleich mit Z-Bosonen

IEKP-KA/2004-2 (2004).

[69] M. Weber, Vergleich von Monte Carlo Generatoren zur Higgs-Suche am LHC

IEKP-KA/2005-22 (2005).

Danksagung

Zuerst möchte ich mich bei Herrn Prof. Dr. Günter Quast für die großartige Betreuung meiner

Diplomarbeit bedanken. Er hatte stets ein offenes Ohr für meine Fragen und stand mir mit Rat

und neuen Ideen zur Seite. Ebenso danke ich Herrn Prof. Dr. Michael Feindt für die Übernahme

des Korreferats und die nützlichen Ratschläge zur Verwendung von neuronalen Netzen.

Des Weiteren möchte ich mich bei den Mitgliedern der CMS Arbeitsgruppe bedanken, die mir im

Laufe des Jahres bei Problemen und vor allem zum Ende der Diplomarbeit beim Korrekturlesen

sehr geholfen haben. Besonders bedanke ich mich bei Herrn Dr. Christian Weiser und Alexander

Schmidt für die fachliche Unterstützung. Außerdem gebührt mein Dank natürlich auch Volker

Büge, Christopher Jung, Andreas Öhler, Christian Piasecki, Dr. Klaus Rabbertz, Christophe

Saout, Armin Scheurer, Dr. Anja Vest und Markus Weber.

Zudem möchte ich den Systemadministratoren und den weiteren Personen danken, die die rei-

bungsfreie Arbeit an diesem Institut ermöglicht haben.

Außerdem danke ich den restlichen Mitgliedern des Instituts und der Arbeitsgruppe, die für eine

angenehme Atmosphäre gesorgt haben, so dass ich mich im letzten Jahr hier sehr wohl gefühlt

habe.

Insbesondere möchte ich mich noch bei meinen Eltern bedanken, die mich während des gesamten

Studiums in jeder erdenklichen Hinsicht immer unterstützt haben.

Hiermit versichere ich, die vorliegende Arbeit selbständig verfasst

und nur die angegebenen Hilfsmittel verwendet zu haben.

Dennis Schieferdecker

Karlsruhe, den 1. Februar 2006

	Contents
	Introduction
	The LHC and the CMS Experiment
	The Large Hadron Collider (LHC)
	The Compact Muon Solenoid (CMS)
	Tracking System
	Calorimeters
	Muon System
	Trigger and Data Acquisition

	Physics of the Higgs Boson
	The Standard Model of Particle Physics
	Theory of the Higgs Boson
	Higgs Boson
	Higgs Mechanism

	The Search for the Higgs Boson
	Higgs Production at the LHC
	Higgs Decay Modes
	The tH Channel
	Analysis Challenges

	Neural Networks
	Fundamentals
	The Biological Model
	The Artificial Neuron
	Training Methods

	Feed-Forward Networks
	Topology
	The Perceptron
	Multilayer Networks

	Training Optimisations
	Regularisation
	Preprocessing
	Learning Rate
	Other Error Functions
	Further Optimisations

	Network Design and Interpretation
	Design Criteria for Neural Networks
	Interpretation of the Neural Network Output

	Other Neural Network Models
	Radial Basis Function Networks
	Kohonen Maps
	Hopfield Networks

	Simulation and Analysis Tools
	The CMS Software Framework
	ROOT
	PAX
	NeuroBayes®
	Software Versions

	Jet Pairing
	Data Samples
	Ambiguities in the Final State
	Description of the Analysis Methods
	Analysis of Generator Events
	Analysis of Reconstructed Events
	Improving the Analysis
	Analysis of Background Events

	Comparison of Neural Network Packages
	Comparison to the Likelihood Analysis

	Background Suppression
	Description of the Analysis Methods
	Analysis of Generator Events
	Analysis of Reconstructed Events
	Improving the Analysis

	Comparison of Neural Network Packages
	Combination of both Analyses

	Conclusion and Outlook
	Framework for Neural Network Packages
	PaxNeuralNet Class
	PaxRootMLP Class
	PaxNeuroBayesNet Class
	Applying the Neural Network Framework

	Network Parameters and Input Variables
	Jet Pairing
	Background Suppression

	List of Figures
	List of Tables
	Bibliography
	Acknowledgement

