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Introduction

Arriving from one's location at the desired destination has never been easier than it is today.

Navigation systems, often integrated into a body as small as a mobile phone, provide the means

to �nd shortest paths between two positions according to some metric like distance or travel

times with virtually no e�ort. These devices usually still use heuristics to compensate for their

lack of computational power and memory. Thus, they only provide very good but not necessarily

exact results. This suboptimality might be su�cient for simple route planning tasks in a road

network, but there are other applications, also applying shortest-path queries, that either need

exact results, or for which the improvements provided by the use of heuristics are still not enough.

For example, there are queries on timetable information systems, Internet route planners, and

optimization problems in logistics, just to name a few. All of them have to operate on more

complex graphs than a typical road network, and thus, are in need of either more computational

power and memory, or better algorithms.

A well-known solution for �nding exact shortest paths in a static graph is provided by Dijkstra

in [Dij59] and subsequently named after him. Many newer techniques built on Dijkstra's algo-

rithm and heuristically improve upon its performance while maintaining its correctness. They

usually exchange a shorter runtime for additional required preprocessing time and larger space

consumption. Applying the fastest of these techniques, Transit Node Routing, query times on

static road networks can be lowered by a factor of up to one million. But there is still room for

further improvements, especially since this speed-up comes at the cost a huge memory overhead.

Combining several techniques and trying to exploit their respective characteristics is a logical next

step. After some initial combinatorial studies in [SWW99, SWW00], Holzer et al. provided a

systematic overview of the possible combinations of speed-up techniques in [HSW04, HSWW06].

They observed that combinations of two di�erent approaches, goal-direction and hierarchies, are

most promising. They are usually fast and also robust with regards to the applied graphs. Since

then, many of the existing techniques have been improved and new ones have been devised. In

the recent years, only some isolated combinations of techniques have been introduced, like REAL

[GKW06a] and Highway Hierarchies* [DSSW06]. Now, this thesis revisits the idea of combining

speed-up techniques and builds upon the results by Holzer et al. The recent developments in this

�eld of research are accounted for and combinations of goal-directed and hierarchical techniques

are systematically analyzed. In particular, recent bidirectional techniques for routing on static

graphs are considered. Extensive experiments on multiple di�erent types of graphs are performed

for the introduced combinations of techniques and the obtained results are analyzed.
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1.1 Related Work

In the �eld of shortest-path techniques, there is a large number of contributors. Therefore, only

several recent works are highlighted here. The results mentioned below are based on the Euro-

pean road network with travel times and have been taken from [BD08], in general. Note that

the techniques have been evaluated on slightly di�erent machines; thus, a small deviation from

the results presented in this thesis is inevitable.

The term speed-up refers to the di�erences in query times between the presented technique to

Dijkstra's algorithm, and overhead denotes the additional memory required by the technique.

a) Goal-Directed Techniques:

ALT. Goldberg et al. revisited the A∗-search in 2004 [GH04]. This technique superimposes a

potential on the graph, yielding lower bounds for the distance from each node to the target, and

thus, giving a good sense of goal-direction for the query. They showed that its performance can

be improved signi�cantly by using landmark-based lower bounds instead of Euclidean ones. The

new technique was abbreviated with the term ALT (A∗-search, Landmarks, Triangle inequality).

With about 0:13 (h:min), it features a very short preprocessing time and yields speed-ups of

about 30 but at the expense of an overhead of 60 bytes/node.

ArcFlags. The original idea goes back to Lauther in 1997 [Lau97] and 2004 [Lau04]. It has

been improved later in [KMS05, MSS+05, MSS+06, HKMS06, Hil07], with special regards to the

performance of the preprocessing and the memory usage. The graph is partitioned into several

regions. Each arc has a �ag for every region that denotes, whether the arc is part of a shortest

path into that region. This information provides an excellent sense of direction during the query

and allows for pruning of large parts of the search space. With 4 000, speed-ups are in the same

general area as Highway Hierarchies and with 25 bytes/node, the overhead is even smaller but

the preprocessing times of over 36:00 are much higher.

b) Hierarchical Techniques:

Reach. Gutman �rst de�ned the notion of a vertex reach in 2004 [Gut04]. Figuratively speaking,

a node has a large reach if it is located near the middle of a long shortest path. This knowledge

can be used during a query to prune the search and to reduce the search space. This approach was

later improved by Goldberg et al. in [GKW06a] by providing a bidirectional version of the query

that uses implicit lower bounds for pruning, and by adding shortcuts to the graph, reducing the

vertex reaches. The improved Reach algorithm performs about 1 200 times faster than Dijkstra's

algorithm with an overhead of 12 bytes/node but also needs 1:20 for its preprocessing.
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Highway Hierarchies. Sanders and Schultes introduced Highway Hierarchies in 2005 [SS05].

This method is based on the observation that only a highway network, i. e. a very spare part of

the original graph, needs to be searched outside of a small neighbourhood around the source

and the target. This approach can be iterated to generate a hierarchy of highway networks. The

technique features very short preprocessing times of only 0:13 with an overhead of 48 bytes/node

and speed-ups of about 7 000.

Highway Node Routing. This approach was developed by Schultes and Sanders in 2007 [SS07].

It generalizes former multi-level methods like in [SWW00, SWZ02, HSW06]. These methods all

require graph separators to construct a hierarchy of overlay graphs. Highway Node Routing only

needs an arbitrary classi�cation of nodes, which can be computed e. g. by Highway Hierarchies

[SS05] or Contraction Hierarchies [Gei08]. A new graph with additional shortcuts is built in such

a way that, after entering a certain hierarchy level, the query will never encounter an arc to a

lower level. Thus, the search space is e�ectively reduced by entering each higher level. This

approach yields speed-ups of 5 000, while it usually has little to no e�ective overhead. Further-

more, it can be easily adapted for the use with dynamic graphs.

Transit Node Routing. In 2007, Bast et al. presented a fundamentally new approach for

�nding shortest paths [BFSS07]. They noted that each shortest path from about the same gen-

eral area to some distant location leaves this area via one of only a few so-called transit nodes.

These are interconnected by a sparse network that is only relevant for long-distance travel. Thus,

it is su�cient to precompute the distances between all possible sources and targets and their

respective transit nodes as well as the distances between the transit nodes themselves. Finding a

shortest path is then reduced to only a few table lookups. This method features huge speed-ups

of up to 700 000 with a moderate preprocessing time of 3:00, but unfortunately, it also has huge

space requirements with an overhead of 251 bytes/node. This large memory consumption can

be reduced by introducing a hierarchy of transit nodes. But this leads to more table lookups,

and thus, a longer query time.

Note that although Bast et al. were the �rst to explicitly formulate the central observations and

concepts of Transit Node Routing, Müller principally developed this type of algorithms before

in [Mül06]. He extended the separator-based multi-level method and used the already available

separator nodes as transit nodes, even though he did not use the same nomenclature.

c) Combinations:

Early Contributions. Initial studies in [SWW00] combined a special kind of geometric contain-

ers [WWZ05], the separator-based multi-level method [SWZ02], with the A* search [HNR68] to

speed-up a railway transport problem. Later, Holzer et al. systematically combined basic speed-

up techniques in [HSW04, HSWW06]. In particular, the A* search, the bidirectional search
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[Dan62], the separator-based multi-level method, and normal geometric containers have been

studied. One of their key observations was that it is most promising to combine hierarchical and

goal-directed techniques. However, since their initial publication in 2004, many powerful hierar-

chical speed-up techniques have been developed, goal-directed techniques have been improved,

and huge data sets have been made available to the community.

REAL. In 2005, Goldberg et al. improved the original Reach technique by Gutman, as already

mentioned above, and also integrated goal-direction in the form of the ALT algorithm. The new

technique was labeled REAL (Reach and ALT) [GKW06a]. Since then, it has been improved

several times, e. g. by the introduction of reach-aware landmarks, better utilization of caching

e�ects, and improved algorithms for the reach computation [GKW06b, GKW07]. The REAL

algorithm now achieves speed-ups of up to 4 000 with moderate preprocessing times of 2:21 and

space requirements of 32 bytes/node.

Highway Hierarchies*. Inspired by the REAL algorithm, Delling et al. combined Highway

Hierarchies with the ALT algorithm in 2006 [DSSW06]. They showed that these techniques

have some useful synergies. Landmark nodes can be selected, and landmark distances can be

stored more e�ciently by considering only a higher level of the highway hierarchy. Also, the ALT

algorithm provides an additional sense of direction for the query, so that the search space can be

pruned appropriately. But unfortunately, this algorithm performs only slightly better than normal

Highway Hierarchies due to its complex stopping condition, yielding a speed-up of 8 500 with

similar preprocessing times and an increased overhead of 69 bytes/node.

SHARC. Bauer and Delling introduced a new variant of the ArcFlags algorithm in 2007, which

they labeled SHARC Routing (Shortcuts and ArcFlags) [BD08]. It combines ArcFlags with con-

traction approaches taken from other hierarchical methods. Basically, the SHARC query is a

normal multi-level ArcFlags query, generalized from the two-level ArcFlags algorithm presented

in [MSS+06]. The preprocessing itself incorporates ideas from hierarchical approaches. The

graph is partitioned into regions on several levels. On each level, it is contracted by bypassing

unimportant nodes, and then, ArcFlags are computed. Subsequently, the graph is well sparsi�-

cated by removing arcs for which all �ags have been computed. With 3:12 the bidirectional

variant of this technique has a preprocessing time comparable to the other methods presented

above. Its speed-up of 48 500 is only surpassed by Transit Node Routing, which in turn has a

much higher memory overhead than the 20 bytes/node needed by the SHARC query.
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1.2 Overview

Outline of the contents of each chapter in this thesis:

Chapter 1. This chapter. At �rst, a motivation is given for the compilation of thesis at hand.

Then, various related work is presented. Following this, a short overview of the contents of the

thesis is given.

Chapter 2. Some information on the basics of this �eld of research is provided in this chapter.

At �rst, fundamental graph terms and de�nitions are introduced. Then, Dijkstra's algorithm for

exact shortest-path queries on static graphs is explained. Several previous speed-up techniques

are described subsequently. Promising combinations of these techniques are pointed out at the

end of the chapter and are noted for further analysis.

Chapter 3. Some basic and already existing combinations of speed-up techniques are discussed

here. The AALT algorithm is introduced as a new and simple technique, combining two goal-

directed approaches, ArcFlags and ALT. In addition, an outline is given on two recent techniques,

REAL and Highway Hierarchies*. Both take the ALT algorithm and add it to a hierarchical query,

Reach or, respectively, Highway Hierarchies.

Chapter 4. This chapter deals with the contraction of graphs. The principles of contracting a

graph are outlined, and a basic query, Contracted Dijkstra, is described for routing on a graph

that has been altered in this way. The main part of the chapter concentrates on adapting the

ALT algorithm for these contracted graphs. The resulting CALT technique shows similarities to

REAL and Highway Hierarchies*, described in the last chapter.

Chapter 5. The �fth chapter focuses on the application of ArcFlags to hierarchical techniques.

The Partial ArcFlags approach is introduced that applies ArcFlags only to the higher levels of an

existing hierarchy. Afterwards, two concrete implementations of this approach are presented. At

�rst, a combination with the Reach algorithm, called Reach-aware ArcFlags, is discussed. Then,

it is shown how ArcFlags can be added to the query of Highway Node Routing. The resulting

technique is labeled Hierarchy-aware ArcFlags. The queries of both of these techniques resemble

the query of the CALT algorithm.

Chapter 6. The experimental studies are elaborated on in this chapter. At �rst, the setup

used for performing the studies is explained, followed by the description of the di�erent types

of graphs that have been analyzed. Then, the results that have been obtained for the di�erent

combinations of speed-up techniques are presented and discussed thoroughly. Also, an overview

is given, comparing the introduced combinations to other recent techniques.
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Conclusion. The �nal chapter summarizes the results gained by the experimental studies. The

viability of the new speed-up techniques introduced in this thesis is also discussed, and an outlook

on possible future work in this �eld of research is given.

Appendices. Additional information, like an overview of the applied data structures, several

proofs and further results, are presented in the appendices. They are followed by the list of

�gure, the list of tables, and the bibliography. The German abstract and the acknowledgements

conclude the thesis.



Fundamentals

This chapter introduces the basic concepts and algorithms of graph theory that are used through-

out this thesis. At �rst, some basic graph terms are de�ned with more details being available in

virtually any textbook, e. g. [CLRS01]. Then, Dijkstra's algorithm for �nding exact shortest paths

in a static graph is explained, followed by a description of several recent speed-up techniques

for this task. At the end of the chapter, possible and existing combinations of the presented

algorithms are highlighted.

2.1 Graph Definitions

Let G = (V,E) be a graph with a set of vertices or nodes V and a set of edges or arcs with

E = {(u, v)|u, v ∈ V}. If G is a directed graph, (u, v) and (v, u) represent di�erent arcs. A weight

function w : E→ R assigns values to each arc. A graph layout L : N→ R
2 maps each node to

a set of coordinates. Fig. 2.1 illustrates a small sample graph.

For a directed graph G the reverse graph G = (V,E) is de�ned by the same set of nodes and

edges as the original graph, but all facing in the opposite direction: E = {(v, u)|(u, v) ∈ E}.
A sequence of connected edges in the form e1 = (n1, n2), e2 = (n2, n3), . . . , ek = (nk, nk+1) is

Figure 2.1: Illustration of a small directed graph. It consists of seven nodes and seven edges. There are two

paths from s to t, the upper one (red) has a length of 12, whereas the lower one (black) measures 20 units.
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called a path P = 〈n1, nk+1〉. The length of a path is de�ned as the sum of all edge weights

w(P) =
∑k

i=1 ei. Fig. 2.1 shows two paths from s to t, one of length 12 and one of length 20.

The distance between two nodes d(s, t) is de�ned to be the length of a shortest path between

those nodes. In the sample graph, d(s, t) = 12 holds and the corresponding path is drawn in red.

2.2 Shortest-Path Search

One basic solution for �nding shortest paths in a graph is called Dijkstra's algorithm [Dij59]. It

computes the distances from a speci�ed source to all other nodes in the graph.

For each node u the algorithm stores a tentative distance d(u) from the source as an additional

value. During a query all nodes are either unreached, reached, or settled. Unreached nodes have

yet to be encountered by the algorithm; reached ones have already been visited and are managed

in a priority queue Q according to their distance from the source. For settled nodes, the correct

distance has already been computed.

The algorithm is initialized by setting all distances to in�nity. The source node s is then assigned

a distance of zero and inserted into the priority queue. In each step, the minimal element u of

the queue is removed and becomes settled. If the condition d(u) + w(u, v) ≤ d(v) is true for

one of its neighbours v, their tentative distance is updated to d(v) = d(u) + w(u, v) and they

are inserted into the priority queue. If they are already in the queue, their priority key just gets

updated. The nodes v and their associated edges (u, v) are called touched.

The algorithm terminates if either the priority queue is empty, or the target node is about to

become settled if one was provided by the initial query. The distances from the source to all

settled nodes u can be accessed subsequently via d(u).

Algorithm 1: Dijkstra's algorithm

begin1

for v ∈ V \ {s} do d(v) =∞;2

u =∞;3

d(s) = 0;4

insert s in Q;5

while Q 6= 0 and u 6= t do6

remove minimal element u from Q;7

for e = (u, v) ∈ E do8

if d(u) + w(u, v) ≤ d(v) then9

d(v) = d(u) + w(u, v);10

if v /∈ Q then insert v in Q;11

else update d(v) in Q;12

end13
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Note that Dijkstra's algorithm only produces correct results for graphs without negative edge

weights. It has been shown in [Joh77] that a graph with negative edge weights can be converted

appropriately in polynomial time if it does not contain negative loops, i. e. paths with the same

source and target and a path length smaller than zero.

In general, the algorithm performs in O(|V|2). Depending on the graph and the data structure

of the priority queue, this can be improved. For example on sparse graphs with V� E, runtimes

are reduced to O(|E|log|V|) using a binary heap as priority queue, or O(|E|+ |V|log|V|) using

Fibonacci heaps. More on the runtimes of Dijkstra's algorithm can be found, e. g. in [CLRS01].

The algorithm can be easily modi�ed to not only compute distances from the source to other

nodes, but to also produce one associated shortest path tree. Every node needs to store its

predecessor in the shortest path. At the start of the query, the predecessors of all nodes are

unde�ned. If the tentative distance of a node v gets changed during the query, according to

d(v) = d(u) + w(u, v), its predecessor is set to u. After the search has ended, the shortest path

tree can be computed in reverse, starting from the leaf nodees (see Fig. 2.2 for a shortest path).

Figure 2.2: A more complex sample graph is shown. A shortest path tree, rooted at s, is highlighted in bold. In

addition, the distances from the source to each node are written below the respective nodes.

All nodes that are reached by a shortest-path query form the so-called search space. In case of

Dijkstra's algorithm, this can be illustrated by a sphere around the source that gets blown up

as more and more nodes are visited. Before a node with a certain distance from the source is

settled, all nodes closer to the source have to be settled. This is the worst-case scenario. Later,

it is shown that minimizing the search space is one of two basic ideas that is applied by the

speed-up techniques presented in this thesis. The other being the introduction of shortcuts so

that fewer nodes have to be settled, overall, to arrive at a certain target.

The nodes currently in the priority queue form the search front. It can be illustrated by the

surface of the sphere that represents the search space. The smaller it is, the smaller the impact

of using a slow data structure for the priority queue becomes.
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2.3 Speed-Up Techniques

Many techniques exist to enhance the performance of Dijkstra's algorithm. Here, �ve recent

methods are described in more detail. They are chosen in particular, because combinations of

them are studied later. The bidirectional search is also presented here, since it is a fundamental

technique used by all of the other algorithms in this thesis.

2.3.1 Bidirectional Search

The bidirectional approach is probably the most evident idea to speed-up a shortest-path query

from one source to one target [Dan62]. The query is performed by starting two Dijkstra searches,

one from the source and one from the target. The latter is performed on the reverse graph and

is labeled backward search in contrast to the forward search from the source. Both search direc-

tions are alternated according to some policy. Usually, they are either just alternated after each

step or the direction with the smallest queue element is chosen.

The algorithm terminates if a node is about to become settled in one direction that has already

been settled in the other direction. This node is called the meeting node. The resulting distance

from the source to the target is the sum of the distance from the source to the meeting node in

the forward direction and from the target to the meeting node in the backward direction.

This approach is applied by all other techniques presented in this thesis. So, strictly speaking,

all of them already are a combination, of the bidirectional search and their respective approach.

Regarding the illustration of the search space in Fig. 2.3, it can be perceived why a bidirectional

search is usually faster than a normal Dijkstra query. Instead of one huge sphere around the

source, there are now two smaller spheres, one around the target and one around the source.

Figure 2.3: Search space of a bidirectional Dijkstra query. The respective search spaces of both directions are

illustrated by a sphere around the source and the target. Only the source, the target, and the meeting node are

depicted for clarity. Note that the meeting node does not have to be located exactly in the middle.
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2.3.2 ALT

The ALT algorithm is based on the A* search, which originated from arti�cial intelligence studies

in [HNR68]. The basic concepts of this search and two bidirectional variants are explained at

�rst, before going into the particular details of the ALT algorithm.

A* search

The A* search is a modi�ed Dijkstra's algorithm that applies additional information to improve

the performance of the query. Let G = (V,E) be an arbitrary graph and π : V→ R an arbi-

trary potential function on the graph-nodes. Then, a reduced weight function can be de�ned by

wπ(u, v) = w(u, v) + π(v)− π(u). Note that the length of an arbitrary u-v path is only changed

by a constant value π(v)− π(u) when wπ(·) is applied. The potential function π(·) is called

feasible if the reduced edge weights wπ(·) are non-negative for all edges e ∈ E. The potential

π(u) is a lower bound on the distance d(u, t), if π(t) ≤ 0 holds and wπ(·) is feasible.
The A* search applies a feasible potential function π(·) to speed-up s-t queries. The basic struc-

ture of Dijkstra's algorithm is retained but priority keys are changed to key(u) = d(s, u) + π(u).

Thus, in each step the node u is settled with the shortest estimated path from the source to the

target via u. Figuratively speaking, nodes that potentially lead closer to the target are preferred,

whereas the other nodes are ignored.

This approach is equivalent to performing a normal Dijkstra search on a graph with the reduced

weight function wπ(u, v). Since the length of arbitrary u-v paths is only changed by a constant

value π(v)− π(u), the priority keys become key(u) = d(s, u) + π(u)− π(s). This yields the

same sorting as in priority queue above, since π(s) is a constant value. Furthermore, this implies

that shortest paths are maintained by this transformation. Therefore, running a shortest-path

search on the normal graph is equivalent to running one on the graph with reduced edge weights.

Note that if a graph layout is given, the Euclidian distance to the target node is a suitable choice

for a feasible potential function (see Fig. 2.4). However, this approach only yields viable lower

bounds if the weight function also applies a distance metric, as experimentally shown.

Using a bidirectional A* search, several particularities have to be addressed. Let πf be the

potential in the forward direction and πb the potential in the backward direction. The two

potentials are called consistent if the reduced weight function is the same for both. This is

true if πf + πb = const. holds. If they are not consistent, the search cannot be stopped when

the two search spaces meet since both directions use di�erent weight functions1. There are two

approaches to implement the bidirectional A* search. The symmetric approach proposed by Pohl

[Poh71] and the consistent approach used by Ikeda et al. [IHI+94]:

1Although the path from the source to the meeting node and from the meeting node to the target are shortest

paths on their own, a shortest path from the source to the target does not have to run via this meeting node.
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Figure 2.4: Graph with a feasible potential function. Potential values are written below the nodes and reduced

weights are given in brackets below the normal edge weights. The shortest path from s to t is shown in red and

the associated search space is drawn in bold.

Symmetric Approach. This approach uses two non-consistent potential functions. Thus, a

new stopping condition is required. Every time an edge e = (u, v) is touched by the query algo-

rithm with v already settled in the other direction, the length of the path from the source to the

target via e is computed. This is the tentative shortest path length, if no shorter one has been

encountered so far. The search is stopped if one node is about to be settled with a priority key

larger or equal to the tentative shortest path distance. Since the priority key is a lower bound

on the shortest path length from the source to the target, a shortest path has already been

encountered and no shorter one exists.

The query can be improved by pruning the search on nodes v that have already been settled in

the other direction [Kwa89]. Since a shortest path from v to the target is already known in the

other direction, no further information is gained by continuing the search from v.

The symmetric approach uses potential functions particularly suitable for each search direc-

tion. Thus, although the search has to continue well beyond the meeting node of both search

spaces, usually few nodes have to settled to arrive at this point, which improves the performance.

Consistent Approach. This approach uses consistent potential functions to avoid having to

use a more complicated stopping condition. Let πf and πb be two feasible potential functions.

Then, Ikeda et al. [IHI+94] propose to use their di�erences as consistent potentials according

to pf(u) = 1
2
(πf(u)− πb(u)) and pb(u) = 1

2
(πb(u)− πf(u)) = −pf(u). These are both feasible

and consistent even though their lower bounds are not very good compared to the single potential

functions. Usually, 1
2
πb(t) is added to the forward potential and, respectively, 1

2
πf(s) to the

backward potential to make them more comprehensible2. This does not change the feasibility or

the consistency of the potentials since only a constant value was added.

2The forward potential becomes zero at the target node pf(t) = 0 and, respectively, the backward potential

becomes zero at the source node pb(s) = 0. Note that these are the exact lower bounds for both directions.
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The consistent approach applies inferior potential functions compared to the symmetric approach.

Thus, usually more nodes have to be settled before the search spaces meet. But due the simpler

stopping criterion the search can be directly terminated. Thus, it is often the faster approach.

ALT algorithm

The ALT algorithm is an A* search with a far simpler potential function proposed in [GH04]. It

uses landmarks and the triangle inequality of graphs to produce feasible lower bounds. Further-

more it is not dependent on the availability of additional layout information.

In a preprocessing step, a small set of nodes is chosen and labeled as landmarks. Distances from

and to all other nodes are computed for them. During the query, a lower bound is computed

according to d(u, t) ≥ dL(u)− dL(t) with dL(·) denoting distances to L or d(u, t) ≥ dL(t)− dL(u)

with dL(·) denoting distances from L (see Fig. 2.5), both with respect to the forward search.

The backward search is handled respectively. These bounds yield a feasible potential as proven

in App. B. To obtain better lower bounds, the maximum of these two values over all landmarks

can be used. The potential stays feasible, as shown by Goldberg and Harrelson in [GH04].

Figure 2.5: Illustration to clarify the relations for �nding lower bounds with the aid of landmarks. Here,

the forward search is depicted. On the left side, distances to the landmark are used: d(u, t) + dL(t) ≥ dL(u).
On the right side, distances from the landmark are used: dL(u) + d(u, t) ≥ dL(t).

Active Landmarks. Instead of using all landmarks, only a subset is used at the start of the

query and adapted as necessary. In general, landmarks located behind the target node of the

respective search direction produce good lower bounds. This approach was introduced in [GW05].

Landmark Selection. The choice of the set of landmarks is crucial for the performance of

the ALT algorithm. Several approaches are discussed in [GW05]. The maxCover and the avoid

algorithms have shown to be two viable approaches with the former usually producing better and

more reliable results.
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2.3.3 Reach

The notion of reach in the context of graphs was �rst introduced by Gutman in [Gut04]. It can

be applied either to nodes or to edges, with the latter being more e�ective but also needing more

space. Here, the Reach algorithm is described using node-reaches, but most of the explanation

can be easily adapted for edge-reaches.

De�nition 1 The reach rP(u) of a node u with respect to a path P = 〈s, t〉 through u is the

minimum of the length of the sub-path 〈s, u〉 and the sub-path 〈u, t〉. The reach r(u) of u is

de�ned as the maximum of rP(u) over all shortest paths P containing u.

Thus, the reach value is a measure for the centrality of the node. A node with a high reach

value is more central to the graph in such a way that it is usually close to the middle of a long

shortest path, whereas low-reach nodes are located rather near the end of shortest paths. On a

road network this di�erentiation corresponds to important highway roads and non-relevant local

roads. In Fig. 2.6, a sample graph with precomputed reach values is depicted.

Figure 2.6: Graph with exact reach values written below the nodes. Note that reach values are larger in the

middle of the graph where the associated nodes are more likely to be part of a long shortest path.

Reach values for each node are computed in a preprocessing step and can be used during the

query to prune the search space. If r(u) < d(s, u) and r(u) < d(u, t) holds, v cannot be on a

shortest path from s to t and does not need to be touched or settled by the query algorithm.

Note that upper bounds on reaches r(u) and lower bounds on distances d(u, v) su�ce for the

condition to hold. This fact is utilized later.

Whereas reach values are precomputed and available during the query, and distances from the

source to a node v are automatically given by the query, the distance from v to the target is more

di�cult to be obtained. Gutman [Gut04] suggested using Euclidean distances to compute lower

bounds as is done by the A* search. But exactly the same limitations, as described previously

in Sect. 2.3.2, also apply here. A graph layout is required to compute the Euclidean distances
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and if the weight function is not based on a distance metric, this approach usually does not

produce good lower bounds. Goldberg et al. found a more promising way to obtain lower bounds

implicitly by using a bidirectional query together with reach-based pruning. They describe three

di�erent possible approaches for this purpose in [GKW06a], the bidirectional bound, the self-

bounding and the distance-balanced algorithm. They are explained below with regards to the

forward direction of a bidirectional s-t query (the backward distance works analogous):

Bidirectional Bound Algorithm. If a node u has already been settled in the backward direc-

tion, its distance to the target d(u, t) is automatically given by that direction. If not, the smallest

priority key in the backward queue can be used a lower bound on d(u, t) instead. Note that the

priority key of a node is equal to its tentative distance from the source of its search direction.

Thus, if u has not been settled in the backward direction, the distance of u to the target is at

least as large as the smallest priority key of the backward queue.

Self-Bounding Algorithm. The algorithm ignores the pruning condition on the lower bound

of d(u, t) and prunes the search at u just on behalf of r(u) < d(s, u). The node u can still be

settled by the backward search if d(u, t) ≤ r(u) holds. In other words, if a node is settled, it is

done so by the direction to whose source it is closest. This requires a new stopping condition:

The search in one direction is stopped if its priority queue is empty or if the smallest priority key

in its queue is at least half the length of the shortest path encountered so far.

Distance-Balanced Algorithm. The query alternates between the forward and the backward

search by selecting the node u with the smallest priority key, considering both directions. Equiv-

alent to the bidirectional bound algorithm, this key is a lower bound on the distance of u to the

target of its search direction, since v has not been settled in the opposite direction. Thus, the

search is only terminated if either one of the priority queues is empty, or the sum of the smallest

priority keys in each queue is equal to or greater than the shortest path encountered so far.

Pruning of a node is performed right before it is about to be settled. But this can already

be done much earlier when considering whether to insert the node into the priority queue or

not. Goldberg et al. call this approach early pruning [GKW06b]. In the forward direction after

settling u and before touching (u, v), the search can be pruned at v if r(v) < d(s, u) + w(u, v)

and r(v) < d(v, t) hold. Note that this is the same condition as for the basic case, only adapted

for the node v. One of the methods, described above, can be applied to deal with the lower

bound on the distance to the target d(v, t). Pruning in the backward search is done accordingly.

This approach can be further improved by sorting the edges (u, v) belonging to each node u in

decreasing order of upper bounds on reaches r(v). Thus, if the conditions r(v) < d(s, u) and

r(v) < d(v, t) hold for one node v, they are also true for all following neighbours of u, which can

be implicitly pruned in turn.
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Preprocessing times are the biggest drawback of the Reach algorithm on large graphs. The trivial

approach for computing reach values builds full shortest path trees for each node in the graph

and applies the reach de�nition on them to get exact reach values: The reach of u with regards

to all shortest paths starting at s can be directly computed as the minimum of the depth and

height of u in the shortest path tree rooted at s. Then, the reach of u is the maximum of this

value over all shortest path trees. Evidently, this approach is very suitable for large graphs since

the preprocessing times quickly increase for larger graphs.

As mentioned earlier, upper bounds on reach values are su�cient for the Reach algorithm.

Therefore, Gutman proposed an iterative approach that yields good upper bounds on node-

reaches [Gut04]. Goldberg et al. improved this algorithm by introducing shortcuts and using

edge-reaches during the preprocessing [GKW06a]. Later, they also introduced a new approach

to compute exact reach values [GKW07], which shows similarities to the boundary nodes approach

for computing ArcFlags by Möhring et al. [MSS+06], discussed in Section 2.3.4.

The approximate preprocessing algorithm by Goldberg tries to iteratively �nd upper bounds on

reaches. In each step, it tries to �nd upper bounds that are smaller than a certain threshold ε

by growing partial shortest path trees of a depth greater than 2ε. Reach values are computed

on the partial shortest path trees as described above for the trivial approach. The trees are

grown far enough to ensure that no false positives are found, i. e. reporting reach values of less

than ε even though the true value is higher. The algorithm can still produce false negatives

but this only degrades the quality of the approximation and does not invalidate it. Nodes with

reaches smaller than the threshold ε get bound and subsequently removed from the graph. To

accommodate for the deleted nodes and to be able to still compute correct upper bounds on

reaches, the neighbours of a deleted node are assigned penalty values, which are used during the

reach computation. Before the next step, the threshold is increased by a certain factor and the

iteration continues until all reaches are bound or until the iteration is stopped. In the latter case,

unbound reaches have to be set to in�nity.

Other than using edge-reaches during the preprocessing step and several further contributions,

the most notable improvement by Goldberg et al. to Gutman's preprocessing algorithm was the

introduction of shortcuts. In each step before starting to grow partial shortest path trees all

nodes are checked, whether they are bypassable or not. If a node u gets bypassed, shortcuts

are inserted leading around it and u and its adjacent edges are deleted from the graph. Since

this removal might alter the bypassability of the node's neighbours, they have to be rechecked

afterwards. Note that the order in which nodes are bypassed matters. The bypassability of

a node depends on several factors: The ratio of added edges to deleted ones when bypassing

the node, the in-degree and the out-degree of the node, the value of the largest reach of an

adjacent edge of the node, and the length of the longest shortcut that would be inserted. A

more thorough explanation of these criteria can be found in [GKW06b]. The basic notion of

bypassing nodes and adding shortcuts according to some criteria is also applied by several other

speed-up techniques like the highway networks by Sanders and Schultes [SS05, SS07, BFSS07]

and the contraction approach of this thesis.
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2.3.4 ArcFlags

ArcFlags, or edge labels as they are also called, have been �rst introduced several years ago

by Lauther [Lau97, Lau04]. They feature a basic concept that is pretty simple:

In a preprocessing step, the graph G = (V,E) is partitioned into several regions R = {R1, . . . ,Rn}
according to some strategy. For each region Ri and each edge e ∈ E, a �ag Ai(e) is added,

denoting whether e is part of any shortest path leading into Ri. If an edge e = (u, v) completely

lies in one region Ri (i. e. u ∈ Ri, v ∈ Ri), the �ag Ai(e) is also set (see Fig. 2.7). All ArcFlags

Ai(e) of an edge e together are also referred to as the ArcFlag label A(e) of e.

In addition to the preprocessing, Dijkstra's algorithm has to be modi�ed to make use of the

directional information provided by the ArcFlags. After settling a node u and before touching

each of its neighbours v, the �ag of the associated edge AT((u, v)) is checked with T denoting

the region of the target. If the edge is not on a shortest path into the region containing the

target of the query, the �ag is not set and the search space can be pruned at v.

Figure 2.7: The graph is divided into several regions denoted by di�erent colours. The boundary nodes of each

region are drawn in bold. ArcFlag labels for the forward direction are written below each edge in a binary notation

(digits denote regions, from right to left: blue, orange, green).

Since a query has to be only slightly modi�ed to encompass ArcFlags, this method can be

easily added to almost any other speed-up technique. In case of a bidirectional query, two

sets of ArcFlags are needed, one for the forward direction and one for the backward direction.

In addition, the search in the backward direction has to check �ags for the source region RS

instead for the target region RT. The bidirectional approach also decreases a problem of the

original ArcFlags implementation called coning : When the search gets closer to the target region

RT, the search space starts to fan out, forming a cone. This e�ect occurs since near RT usually

there are usually more edges that lie on a shortest path leading into that region, and after

entering the target region itself, no further directional information is available.
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Just as for the Reach algorithm, preprocessing times are the largest drawback of the ArcFlags

approach. Furthermore, ArcFlag labels also need a lot of additional space. But because of its

performance and of its ease of use, several improvements to the mentioned shortcomings have

been devised in the recent years: [KMS05, MSS+05, MSS+06, HKMS06, Hil07].

The basic approach to compute ArcFlags grows two shortest paths trees for each edge e = (u, v),

one rooted at u and the other one starting from v. For each node n ∈ V the length of e is com-

pared to the di�erence |d(u, n)− d(v, n)|. If these distances are equal, e lies on a shortest path

to n and the corresponding ArcFlag AN(e) with n ∈ RN can be set.

This approach is very slow since it has to grow two full shortest path trees for each edge of the

graph. But it can be improved signi�cantly by exploiting the following observation [MSS+06]:

Every shortest path into a region Ri has to enter this region via one of its boundary nodes. A

boundary node u ∈ Ri of a region Ri is de�ned as having at least one neighbour v not belonging

to this region v /∈ Ri. Therefore, it is su�cient to grow shortest path trees from each boundary

node of a region Ri in the reverse graph to obtain the corresponding ArcFlags for this region.

Since these trees encompass all shortest paths leading into Ri, regarding the forward direction,

Ai(e) can be set for each edge e belonging to them.

Hilger further improved this approach by using a centralized shortest-path search [Hil07]. As

above, only boundary nodes are considered when growing shortest path trees. But here, all trees

rooted at the boundary nodes of one region are grown at once. The centralized shortest-path

search capitalizes on the observation that shortest path trees grown from close neighbours often

share identical sub-trees to signi�cantly speed-up the preprocessing. But this also leads to several

new problems. One of them is the huge space consumption of the algorithm. An easy way to

avoid memory problems is to only use a part of the boundary nodes of a region at once. Thus,

only a smaller shortest path tree has to be kept in memory, but at the cost of some speed-up.

Further particularities of this preprocessing algorithm are elaborated in [Hil07].

To counteract the huge memory consumption of the algorithm, ArcFlags can be stored in a

compressed way. Instead of adding them directly to all edges, each unique ArcFlag label A(e) is

put into a separate array and at each edge only a reference to this array is stored, which takes

up less space for a su�ciently large number of used regions. This approach is already applied

by [Hil07]. Compressing can already be done during the preprocessing step. Thus, the only

additional overhead during the query is an extra table lookup. The query times might even pro�t

from this setup. If a large part of the ArcFlags table can be stored in the CPU cache, access

times are reduced signi�cantly in addition to the already accelerated priority queue operations

due to the smaller edge objects.

Finding a good partition is crucial for the performance of both, the preprocessing and the query,

as shown in [MSS+06]. The algorithm produces correct results independently of the partition

used. But in order to obtain good speed-ups, several requirements should be ful�lled by it:
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(a) rectangular partition

(35 regions)

(b) quad-tree partition

(34 regions)

(c) kd-tree partition

(32 regions)

(d) Metis partition

(32 regions)

Figure 2.8: Four possible graph partitions of the German road network. [Images by courtesy of Moritz Hilger].

Each region should be connected so that a search going into this region does not split up into

two di�erent directions. The size of the regions should be balanced so that each ArcFlag Ai(·) is
responsible for about the same amount of target nodes. The number of boundary nodes should

be low, overall as well as for each region, since this directly a�ects the preprocessing times.

More details on the partitioning of graphs can be found in [MSS+06]. Some basic techniques are

outlined below and the resulting partitions of the German road network are illustrated in Fig. 2.8:

Rectangular Partitions. This partitioning scheme requires a graph layout. From here on, it is

quite simple: The graph is just divided into n×m individual regions by an equidistant grid.

Quad-Trees. This approach also requires a graph layout. It starts much like the rectangular

partition by dividing the graph into four equally sized sub-regions. Now, grid cells containing

more than a certain threshold β of nodes are divided again. This is repeated recursively until

every cell has no more than β nodes. Thus, the actual graph geometry is re�ected better.

kd-Trees. This scheme is a generalization of quad-trees. Here, each division does not have to

yield equally sized sub-regions. It is performed alternately in horizontal or vertical direction. The

exact position of the cut is determined e. g. by the average of the coordinates of the nodes.

Multi-Way Arc Separators. A partition with all of the desired characteristics can be com-

puted by the multi-way arc separator algorithms presented in [KK98]. Several free and e�cient

implementations are available: METIS [Lab07], PARTY [MS04] and SCOTCH [Pel07].

Other recent improvements include the use of multi-layer partitions to save space, when storing

ArcFlag labels and to improve query times within otherwise much larger regions [HKMS06], the

introduction of shortcuts to speed-up queries [BD08], and the compression of ArcFlags to reduce

the memory consumption of the algorithm [Hil07].
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2.3.5 Highway Node Routing

The Highway Node Routing approach, presented by Schultes and Sanders in [SS07], takes ideas

from Highway Hierarchies [SS05] and Multi-Level Overlay Graphs [SWW00, SWZ02, HSW06]

and combines them into a new and e�cient shortest path algorithm. Basically, it uses the hier-

archical levels provided by Highway Hierarchies to construct multiple overlay graphs on which a

query subsequently can be run.

For a given graph Gi = (Vi,Ei) and a node set Vi+1 ⊆ Vi an overlay graph Gi+1 = (Vi+1,Ei+1)

of Gi can be implicitly de�ned by the condition di+1(u, v) = di(u, v) with u, v ∈ Vi+1, meaning

that all shortest paths between any two nodes u, v ∈ Vi+1 have the same distance in the original

graph Gi and in the overlay graph Gi+1.

Now, a multi-level overlay graph denoted by G = (G0,G1, . . . ,Gn) can be de�ned iteratively:

For a given hierarchy of node sets V0 ⊇ V1 ⊇ . . . ⊇ Vn the overlay graph of Gi = (Vi,Ei) is

given by Gi+1 = (Vi+1,Ei+1), with G0 = (V0,E0) denoting the original graph G = (V,E). The

level of a node v is de�ned by l(v) = max{i | v ∈ Vi}, and of an edge e by l(e) = max{i | e ∈ Ei}.

A set of edges Ei+1 that meets the demands made by the de�nition of overlay graphs, can be

computed in many ways. Schultes and Sanders propose the application of covering paths for this

purpose. By computing a covering-paths set Cu of a node u ∈ Vi+1 with respect to the node set

Vi+1 \ {u}, one also receives a set of covering nodes Cu ⊆ Vi+1 \ {u}, formed by the endpoints

v of the paths 〈u, . . . , v〉 ∈ Cu. By de�nition, every node n ∈ Vi+1 can be reached from u via a

shortest path in Gi containing at least one node v ∈ Cu (see Fig. 2.9). Therefore, it is su�cient

to compute a covering-node set Cu for each node u ∈ Vi+1. Then, the edge set of the overlay

graph Gi+1 is de�ned by Ei+1 = {(u, v) | u ∈ Vi+1, v ∈ Cu}. The corresponding edge weights are

given by w((u, v)) = d(u, v), with d(u, v) measured in Gi.

Figure 2.9: A sample graph is depicted with two hierarchical levels that are di�erentiated by the colour of their

nodes (level 0: blue, level 1: green). The covering-nodes set of u with respect to level 1 is highlighted in bold.
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The set of covering nodes Cu should be chosen as small as possible to increase the performance of

the algorithm and to reduce its memory consumption. On the other hand, the computation of Cu

should also be as fast as possible. These are two con�icting objectives that cannot be optimized

at the same time. Schultes and Sanders presented a generic local search algorithm to compute

covering-nodes sets and four di�erent implementations with varying trade-o�s between the two

objectives: The conservative approach, the aggressive approach, the stall-in-advance technique

and the stall-on-demand technique, with the latter apparently yielding the best trade-o�s. They

are elaborated more closely in [Sch07].

The generic local search algorithm computes a covering-paths set Cu of a node u ∈ Vi+1 with

regards to a node set Vi+1 \ {u} and then derives the associated covering-nodes set Cu. The

algorithm itself is a modi�ed Dijkstra search on Gi yielding canonical shortest paths3 with an

additional pruning condition: The search is stopped prematurely at covered nodes and at nodes

settled on a suboptimal path. Here, pruning implies that after the node is settled the search is

not continued from it. The search is terminated as soon as the current search tree is covered,

i. e. each tentative shortest paths to every leaf of the tree contains at least one node v ∈ Vi+1.

Then, the �rst node vc ∈ Vi+1 encountered on each of these shortest paths is the endpoint of a

covering-path 〈u, . . . , vc〉 ∈ Cu. Thus, the set of covering nodes Cu is given by the nodes vc.

The choice of the node sets V = V0 ⊇ V1 ⊇ . . . ⊇ Vn for each highway level is arbitrary in the

sense that it always produces correct queries. The actual choice, however, has a large impact

on the performance of the preprocessing and the query. Figuratively speaking, nodes that are

more important for the graph (like motorways are more important than rural roads in a road

network) should belong to a higher level. To obtain a good classi�cation of the importance of

the nodes, Schultes and Sanders applied their own Highway Hierarchies approach: The set of

level-i core nodes of the highway hierarchy of G is used as highway-node set Vi. More about the

construction of Highway Hierarchies can be found in [SS05, Sch07].

Recently, the newly developed Contraction Hierarchies [Gei08] have also been applied for classi-

fying nodes according to their importance. So far, this approach seems to yield even better results.

The highway nodes graph is given by H = (V,E0 ∪ . . . ∪ En). To perform the query, this graph

can be reduced to H by removing all edges not belonging to the forward or backward search

graph. In particular, this includes all edges leading from one highway level to a lower level. The

reduced highway nodes graph not only helps to save space, the query also gets simpler, and thus,

faster since highway levels no longer have to be veri�ed explicitly.

The query on the highway nodes graph is done bidirectionally, alternating between the forward

and the backward search after each step. When using the reduced graph H a simple Dijkstra's

3Consider two shortest paths P = 〈s, . . . , s′, . . . , t′, . . . , t〉 and P′ = 〈s′, . . . , t′〉 found by an algorithm that

computes canonical shortest paths. If there are multiple shortest paths from s′ to t′, the algorithm always yields

the same one, independent of the actual choice of s and t for the enclosing path P.
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algorithm can be performed in each direction. If the full graph H is used instead, it has to be

guaranteed that the search only moves to higher levels of the hierarchy and does not descend

to lower ones: For each node v that is about to be reached via u, l(v) ≥ l(u) has to be true or

the search is pruned at v. The query cannot be stopped when both search spaces meet, since a

shorter path might still be found (see Fig. 2.10). The search is continued in each direction until

the priority queue of the respective direction either is empty, or its smallest element has a tenta-

tive distance from the source larger than the shortest path encountered so far. This approach is

called asynchronous, aggressive variant by Schultes in contrast to the level-synchronized variant,

he also proposed in [SS07].

The stall-on-demand technique that has already been used for the preprocessing can also be

applied to the query. It identi�es nodes in the priority queue that will not be part of the �nal

shortest path tree, according to the current information, and marks them as stalled. If a stalled

node is settled, the search is not continued from it. On the other hand, if it is �rst reached via

another node, it is unstalled again. The stalling process works as follows:

When a node v is settled and one of its neighbours u has already been stalled or settled before,

the condition d(s, u) + w(u, v) < d(s, v) is checked. If true, v has not been settled on a shortest

path, since the path via u would have been shorter. Now, a stalling process is initiated to identify

other nodes, that would be settled via v and therefore would not be on a shortest path from s.

A breath �rst search on all reached nodes w is started from v. If their distance from the source

via the edge (u, v) is shorter than their tentative distance d(s,w), they are marked as stalled

and the search is continued from them. After the stalling process has �nished, the search is

continued and pruned at v, since it has been stalled, too.

Note that instead of resorting to the tentative distances d(s, ·) provided by the query, shorter

ones that have been encountered by a stalling process can be stored and used by subsequent

stalling processes to improve their performance.

Figure 2.10: A schematic view of an arbitrary path from s to t (black) and of a shortest path (red) is shown.

At u, the forward search has to continue on the upper level and cannot descend to the lower one, leading to a

suboptimal path via the �rst meeting node m. Thus, the query is dependent on the backward search to reach u

on the lower level even after a path via m has already been found.
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2.4 Combinations

The speed-up techniques described so far can be divided primarily into two di�erent approaches.

Some apply goal-directed strategies to push the search in the direction of the target, whereas

others try to exploit a hierarchical structure inherent to the graph to decrease the search space.

Several combinations of these techniques are studied in the thesis (see Fig. 2.11 for an overview).

Figure 2.11: Overview of the techniques and combinations presented in this thesis. Goal-directed approaches

are marked purple and hierarchical ones are drawn in yellow. The bidirectional search is omitted for clarity. Edges

denote combinations of techniques, black ones are already established and red ones are introduced in this thesis.

In general, any techniques could be combined with each other. This has already been studied

systematically in [HSW04, HSWW06] for the A* search, the bidirectional search, the separator-

based multi-level method, and geometric containers. It turns out that the combinations of some

techniques are more useful than of others. In particular, it has been observed that combing two

di�erent approaches is most promising whereas a combination of two similar techniques usually

does not yield viable results since they tend to exploit the same aspects of the graph. Considering

these results, a combination of the two hierarchical techniques Reach and Highway Hierarchies

is not very promising. Both apply similar preprocessing steps to gain further information of the

graph. Thus, the hierarchical structures obtained are not very distinct and do not support each

other much. These techniques have also become quite complex and combining them would not

only be unreasonably intricate, but probably yield a query algorithm with a large overhead.

Considering these thoughts, the thesis at hand focuses on studying the following combinations:

REAL, Highway Hierarchies*. Two combinations of ALT with hierarchical techniques have

already been studied previously, REAL and Highway Hierarchies*. They are presented brie�y in

Chap. 3 to draw comparisons with the newly introduced techniques and to round o� the review

of the combinatorial techniques.
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AALT. Even though the expectations are small for a combination of two goal-directed approach,

the combination of ALT and ArcFlags has still been studied in Chap. 3. And surprisingly, they

seem to exploit di�erent directional information of the graph since a measurable speed-up is

obtained, as the experiments have shown.

CALT. The basic contraction approach is a simple, recent hierarchical method that was inspired

by the preprocessing steps of other hierarchical techniques. A combination with ALT rather than

ArcFlags is studied with regard to a possible future application on dynamic graphs, for which

the ALT technique would be more suitable than ArcFlags. The resulting combination, CALT, is

presented in Chap. 4.

ReachFlags, HiFlags. After both, Reach and Highway Hierarchies, have been combined with

ALT, a logical next step is the study of their performance in combination with another potent

goal-directed technique, ArcFlags. The two developed techniques Reach-aware ArcFlags and

Hierarchy-aware ArcFlags are presented in Chap. 5.

Note that both, Highway Hierarchies and Highway Node Routing, originally used the same basic

construction algorithm to obtain hierarchical levels of a graph. Therefore, similar performances

were expected when combining them with ArcFlags. And thus, eventually, Highway Node Rout-

ing was chosen instead of Highway Hierarchies since it is much easier to implement and handle.

After the di�erent combinations, highlighted in Fig. 2.11, are described in the following chapters,

an extensive evaluation of their performance on di�erent types of graphs is given in Chap. 6.
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This chapter introduces a �rst basic combination of speed-up techniques, the AALT algorithm.

It adds ALT to the ArcFlags query in order to obtain better results for local queries. Note

that both applied techniques are goal-directed unlike the other combinations presented in this

thesis. Afterwards, two recent combinatorial techniques are presented to provide an insight

on their functionality that is re�ected by the other techniques introduced later in this thesis.

Both of them also use the goal-directed ALT algorithm and add it to hierarchical techniques.

REAL [GKW06a] applies the Reach algorithm [GKW06a] as basis for this purpose, and the

Highway Hierarchies* algorithm [DSSW06] uses the normal Highway Hierarchies [SS05]. They

also enhance the single techniques by exploiting synergy e�ects between them.

3.1 AALT

The AALT algorithm (ArcFlags & ALT) is an unusual combination of speed-up techniques, in

the context of this thesis, since two similar techniques are applied. Both, ALT and ArcFlags, are

goal-directed methods that try to push the search in the direction of the target. As explained

in Chapter 2, the ALT algorithm superimposes a potential function on the graph and uses it to

determine the order in which nodes are processed. The potential itself yields lower bounds on

the distance to the target node and is computed using distances from and to landmark nodes.

The ArcFlags method divides the graph into several regions and adds a �ag for each region to

all edges, stating whether the edge is on a shortest path into the respective region. The �ags

are then used to prevent the query from pursuing wrong directions.

One of the disadvantages of the ArcFlags algorithm is its weak performance for local queries.

Several di�erent approaches exist to remedy this shortcoming. Multi-level partitions [MSS+06]

and SHARC Routing [BD08] both apply smaller partitions to decrease the impact of these

queries. Here, the ALT algorithm is used instead, since it does not exhibit similar problems

with local queries. Another goal of this combination is to improve upon the additional costs of

both techniques. The ArcFlags algorithm has long preprocessing times and the ALT algorithm

a large memory overhead. By using smaller numbers of regions or landmarks, these costs can

be reduced, but the performance of the single techniques also degrades. It is expected from the

combination of ArcFlags and ALT that the drop in performance is less pronounced due to the

utilization of synergy e�ects between the two speed-up techniques.
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Preprocessing

The preprocessing step of the AALT algorithm consists of the individual preprocessing routines

required by the ALT algorithm (selection of landmarks, computation of landmark distances) and

the ArcFlags algorithm (partitioning of the graph, computation of the ArcFlags). These routines

do not have to be adapted for AALT. They can be used directly `out-of-the-box'.

Query

The query algorithm of the bidirectional ALT algorithm, as described in Sect. 2.3.2, is taken

as basis for the AALT query. It has only to be modi�ed at two positions: Before starting each

search, the regions, in which the source and target node are located, need to be determined.

During the query, after touching an edge e and before inserting its target node u into the priority

queue, the �ags of e are checked. In the forward direction, if the �ag for the target region is

not set, the search is pruned at u, since continuing in the direction of e would not lead to the

desired destination. The backward direction is handled respectively. The other aspects of the

bidirectional ALT query, such as the termination condition or the computation of the priority

keys, do not have to be changed.

Fig. 3.1 shows the search spaces of a query on the road network of the Netherlands using di�erent

algorithms. From left to right, an ALT query with 16 landmarks, an ArcFlags query with 16

regions and an AALT query with 2 regions and 4 landmarks are shown. Even though the AALT

algorithm uses much less additional information, the search space of the query is smaller than

for the other two algorithms. In addition, the positive impact of the AALT algorithm on local

queries can be observed in Fig. 3.2. The query using only ArcFlags information is reduced to a

bidirectional Dijkstra query, since the algorithm cannot bene�t from this data for queries within

one region. The AALT algorithm, on the other hand, can still pro�t from the bidirectional ALT

and also yields good performances on these local queries.

(a) ALT (16 landmarks) (b) ArcFlags (16 regions) (c) AALT (2 regions, 4 landmarks)

Figure 3.1: Comparison of the search spaces of ALT, ArcFlags and ALT for a query on the road network

of the Netherlands. The source is marked by a blue �ag, the target by red one. Black edges represent the

forward direction and blue edges the backward direction. The shortest path is drawn in bold. Diamonds indicate

landmarks with active ones in red. Here, the ALT query with 16 landmarks has to settle 4 442 nodes, ArcFlags

with 16 regions needs 1 049 nodes and the AALT query with 2 regions and 4 landmarks only requires 785 nodes.
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Further Optimizations

Since the preprocessing routines of the ALT algorithm and for computing ArcFlags do not have

to be modi�ed in order to be used with the AALT algorithm, all optimization methods that are

applicable for each individual preprocessing routine can still be used. In particular, the methods

proposed in Chap. 4 for the ALT preprocessing and in Chap. 5 for the computation of the Arc-

Flags can be also applied here.

Space Consumption. Since the AALT algorithm pro�ts of two speed-up techniques, the

parameters of each preprocessing routine can be tuned down to save time and space without

losing much of its performance, if any at all. For example, reducing the number of regions for

the ArcFlags algorithm to 16, whereas 128 would be normally used, is a reasonable measure. A

more drastic alternative would be to only compute ArcFlags for one direction or to only compute

landmark distances either from all nodes or to all nodes, but not for both directions. The former

suggestion would lead to an additional speed-up in only one direction; the latter would decrease

the quality of the lower bounds on the distances to the target.

Other Applications

A useful application for combining ArcFlags and ALT has been observed by Pajor in [Paj08].

Here, the problem of �nding shortest connections in timetable information systems is analyzed.

It is stated that the search space can be divided into two domains, a temporal one and a geo-

graphical one. Searches within each domain are independent of each other. ArcFlags are only

used for the geographical part of the timetable queries and the ALT algorithm is only applied to

the temporal part. Both of them are the best choice of speed-up techniques for their respective

task. Thus, they support each other nicely, and together, the performance on timetable networks

achieved by them is quite noteworthy.

(a) local ArcFlags query (b) local AALT query

Figure 3.2: Comparison of the search spaces of the ArcFlags algorithm and the AALT algorithm regarding local

queries within one region. The ArcFlags query acts like a bidirectional Dijkstra and has to settle 38 076 nodes.

The AALT query performs like the bidirectional ALT algorithm and settles only 5 736 nodes.
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3.2 REAL

When introducing the Reach algorithm in [Gut04], Gutman already stated that the A* search

could be naturally combined with it. When improving this speed-up technique, Goldberg et al.

also incorporated their enhanced version of the A* search, the ALT algorithm, and called the

new method the REAL (Reach and ALT) algorithm in [GKW06a, GKW06b, GKW07].

Preprocessing

The REAL speed-up technique requires two preprocessing algorithms. The preprocessing routine

for the Reach algorithm computes shortcuts and reach values, the ALT preprocessing selects

landmarks and computes distances between them and all the other nodes. The two preprocessing

routines can be performed independently of each other. Although the preprocessing of the

Reach algorithm changes the graph structure by adding shortcuts, distances are maintained.

Therefore, the landmarks and landmark distances computed for the original graph can still be

applied. However, it might be useful to use the additional information, obtained by the Reach

preprocessing, to improve the ALT preprocessing, as described later.

Query

As already mentioned, the Reach algorithm can be easily combined with the A* search. The

same is also true for the ALT algorithm, since it is just a variant of the A* search with a special

way of computing the potential function π(·). The general approach to combine the Reach and

the ALT algorithms is similar to the combination of ArcFlags and ALT, presented in the last

section. A normal ALT query is performed and nodes (or edges, if using edge-reaches instead of

node-reaches) are pruned according to the reach conditions, introduced in Sect. 2.3.3: When a

node u is touched, the search is pruned if its reach value r(u) is smaller than both, its distance

from the source d(u) and the lower bound on the distance to the target π(u). This approach

works out, since the ALT algorithm retains shortest-path distances, although edge lengths change

according to the potential function.

Usually, a bidirectional query is applied. In this case, appropriate potential functions are used for

the search in both directions. The algorithm alternates between the forward and the backward

search after each step to balance the load on the respective directions. Note that instead of

using implicit lower bounds as for the bidirectional Reach algorithm, lower bounds provided by

the potential function π(·) are used, since the priority keys no longer provide distances from the

source or target, respectively. The reach-based pruning does not a�ect the stopping condition

of the ALT algorithm. The query is terminated as soon as the two search spaces meet or if one

of the priority queues is empty.

Fig. 3.3 gives an impression of the search spaces of the ALT and Reach algorithms compared to

a REAL query, using the same preprocessing information as used for the ALT and Reach queries.
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Further Optimizations

Locality E�ects. The utilization of locality e�ects is a common optimization strategy. Since

reach values provide a very �ne hierarchy, simply sorting the nodes according to them might not

always prove to be advantageous. Furthermore, an already existent locality order, e. g. given

for many road networks, would also be not respected, and thus, be destroyed by this resorting.

Goldberg et al. proposed to sort the 1/α fraction of nodes with the highest reach values to the

front, retaining their original order within this fraction and continuing the sorting recursively on

the remaining nodes. In this way, both sources of locality e�ects are taken into account, the

initial node-order and the reach values.

Reach-Aware Landmarks. Goldberg et al. introduced the notion of reach-aware landmarks for

their REAL algorithm. By only storing landmark distances for nodes with a high reach value above

a certain threshold R and by only choosing landmarks from this set of nodes, the preprocessing

times and especially the memory overhead can be improved considerably. As experimentally

shown, the impact on the query performance is minimal, since the search has to process low-

reach nodes only for a short time at the beginning of the query.

The REAL query has to be modi�ed to accommodate for the reach-aware landmarks. This results

in the partial landmark algorithm. It starts as a bidirectional Dijkstra search with reach-pruning

until it either terminates or the priority keys in both queues become larger than R. From here

on, only nodes with a reach value larger than R have to be settled. Since landmark distances

are available for all of these nodes, the Dijkstra search can be switched to an ALT search by

�ushing the priority queues and reinserting all elements with modi�ed key values. Unfortunately,

the ALT algorithm also requires landmark distances for the source and target, which are not

always available. High-reach proxy nodes are introduced to solve this problem. More information

on the use of proxy nodes can be found in Sect. 4.3. Here, the CALT algorithm has to deal with

the same problem. The remainder of the query is performed like the normal REAL algorithm

until a shortest-path is found or the search terminates for another reason.

(a) ALT (16 landmarks) (b) Reach (c) REAL-(16, 1)

Figure 3.3: Comparison of the ALT, Reach and REAL algorithms on the road network of the Netherlands.

The REAL query applies the same preprocessing information as the two other queries. Here, the ALT query has

to settle 2 004 nodes, the Reach query needs to settle 2 833 nodes and REAL-(16, 1) only settles 151 nodes.



30 Basic and Existing Combinations

3.3 Highway Hierarchies*

The Highway Hierarchies* speed-up technique was introduced by Delling et al. in [DSSW06].

It is an extension of the Highway Hierarchies approach by Sanders and Schultes [SS05] similar

to how Goldberg et al. improved upon the Reach algorithm by Gutman [Gut04], which resulted

in the REAL speed-up technique [GKW06a]. In both instances, goal-direction in the form of the

ALT algorithm is added to a hierarchical speed-up technique in order to improve its performance.

Additionally, the hierarchical information provided by the base algorithm can be used to enhance

the ALT part of the combined algorithm.

Preprocessing

As with most combinations of speed-up techniques, the preprocessing required by the Highway

Hierarchies* algorithm also consists of two separate preprocessing steps. At �rst, the preprocess-

ing for Highway Hierarchies is performed to compute the highway structure of the graph and to

add shortcuts to the graph. Then, the preprocessing for the ALT algorithm is done by selecting

landmarks and computing landmark distances. If the optimization strategies described below are

not used, the preprocessing routines of Highway Hierarchies and ALT are independent of each

other, since only the former one alters the structure of the graph, but it also retains all nodes

and shortest-path distances between them. Thus, the actual data used by the ALT preprocessing

routine stays the same.

Query

The Highway Hierarchies* query is a modi�ed version of the normal Highway Hierarchies query.

The normal query is an altered bidirectional Dijkstra search that ascends a hierarchy of highway-

levels without going back to lower levels. A full distance table is used for the top-most level,

containing all distances between nodes of this level. When using Highway Hierarchies*, the

normal priority keys are replaced by priority keys computed with the ALT algorithm. Thus, the

order in which nodes are settled is modi�ed to usually prefer nodes closer to the target. As

experimentally shown, some path from the source to the target is found pretty quickly, but the

search cannot be stopped when both search spaces meet. The same problem exists for Highway

Node Routing and is discussed more closely in Sect. 2.3.5. This is an evident drawback of

Highway Hierarchies* compared to REAL, which can stop once a path is found. But because

of the altered stopping condition, non-consistent potential functions can be used that are often

easier to compute and that also often produce better lower bounds.

In addition, by having found one path between the source and the target, an upper bound on

the shortest-path distance is available. Thus, the search can be pruned at nodes and edges that

would yield a path with a longer distance than of the current tentative shortest-path. Note, if a

node is pruned that is about to become settled, the whole priority queue can be �ushed, since

the pruning condition will also be true for the following nodes with even higher key values.
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Note, it has been experimentally shown that selecting only one landmark in each direction is

su�cient for the query, since the search is concentrated on only a small area around the source

and target before the distance table can be applied. In particular, no additional landmarks have

to be activated during the query, which would produce a large computational overhead due to

both priority queues having to be rebuilt.

As experimentally shown, the actual speed-up gained by applying the ALT algorithm is quite

small if the underlying Highway Hierarchies already apply a distance table. If not, the added

technique has a much larger impact on the gain in performance of Highway Hierarchies*.

Further Optimizations

Space Consumption. Similar to the reach-aware landmarks approach previously introduced

by Goldberg et al. in [GKW07], the memory consumption and preprocessing times of Highway

Hierarchies* can also be reduced by storing landmark distances only for some subset of nodes.

Here, the highway levels are suitable attribute to decide for which subset of nodes landmark

distances should only be stored.

Naturally, the query has to be adapted if landmark information is only available for some higher

level L of the hierarchy. The modi�ed search starts as a normal Highway Hierarchies query until

either a shortest path has been found, or all entry points into level L have been encountered.

Now, the priority queues are �ushed and re�lled again using the modi�ed key values of the ALT

algorithm. Afterwards, the search is resumed on the highway level L, applying the goal-direction

of ALT. It is continued until the stopping criterion of Highway Hierarchies* is met.

Note that this approach also requires landmark distances for the source and target as does the

partial landmark algorithm for REAL. But here, the distances can be computed directly during

the query instead of using preselected proxy nodes.

Core Landmarks. Independently of computing landmark distances for only a certain level of

the hierarchy, the landmarks themselves can also be selected with regards to just some higher

level. Delling et al. call this approach `using core landmarks'. The corresponding core of such a

hierarchy level usually consists of a lot less nodes than the full graph, thus, landmarks normally

can be chosen much faster. The maxCover algorithm is usually applied for this purpose, since

the core is small enough for it to be a viable choice.

Locality E�ects. Taking advantage of locality e�ects, as described more closely in Sect. 4.2

for the CALT algorithm, is an obvious choice for optimizing the performance of the Highway

Hierarchies* query. Here, it is suitable to sort all nodes according to their highway level while

keeping their original order within the scope of one level. This retains the inherent locality of

the original graph, if existent, and improves upon it by incorporating the additional information,

provided by the highway levels, into the sorting.
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Contraction Approaches

This chapter deals with the contraction of graphs and how to utilize this technique for speeding-up

shortest-path queries. At �rst, the basic concepts of graph contraction will be laid out. Following

this introduction, it will be explained how a simple shortest-path query can be performed on a

contracted graph, leading to the Contracted Dijkstra (CD) speed-up technique. Finally, the

last section shows how this new technique can be combined with other speed-up techniques.

The ALT algorithm was chosen for this purpose, which results in the Contracted ALT (CALT)

speed-up technique.

4.1 Graph Contraction

The basic idea of contracting graphs was introduced by Sanders and Schultes for Highway

Hierarchies in [SS05] and later signi�cantly enhanced in [SS06]. The Reach algorithm by Goldberg

et al. [GKW06a, GKW07] also applies the contraction methods introduced by Sanders. Another

recent technique relying on contracting graph is Highway Nodes Routing [SS07].

A graph G = (V,E), as generally used in this �eld of research, contains a lot of nodes that

have very few connections to the other nodes. The goal of the contraction is to identify these

nodes and to remove them, but retaining shortest-path distances between the remaining nodes by

inserting additional shortcuts. The resulting contracted graph is also labeled core GC = (VC,EC)

of the graph G, since it represents the basic structure of the graph.

The contracted graph GC cannot be directly used for shortest-path queries. At �rst, it has to

be merged with the original graph. This results in the full graph with contraction shortcuts

GF = (VF,EF), which can subsequently be used to run queries on.

Contraction Process

The contraction of the graph is performed iteratively. Nodes are bypassed according to a certain

order until no further nodes are bypassable. A node n is bypassed by removing it from the graph

along with all of its ingoing edges EI(n) and outgoing edges EO(n). For each pair of removed

edges (u, n) ∈ EI(n) and (n, v) ∈ EO(n) with u 6= v, a shortcut (u, v) is inserted into the graph.

Its weight is set to the sum of the weights of the removed edges: w(u, v) = w(u, n) + w(n, v). If

there already was an edge e in the graph, connecting u and v, the shortcut is not inserted. But

if the weight of the shortcut would have been smaller than w(e), it is used instead.
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Bypassability Criterion

In principal, every node could be bypassed by executing the procedure outlined above. But

doing so is not always favourable. Generally speaking, the contraction should reduce a graph

to its more `important' nodes and decrease its overall size. But by removing a node with a lot

of neighbours the graph size might even increase, since too many shortcuts would have to be

inserted. In addition, using shortcuts that are too long has also been shown to be ine�cient for

shortest-path queries [GKW06a]: Since these shortcuts bypass large areas of the graph, a query

starting in the middle of such an area would need a long time to leave it and be able to use of

the shortcuts. The hop count of a shortcut is de�ned by the number of edges in the original

graph that are covered by it.

These considerations lead to several conditions that have to be met in order for a node u to be

deemed bypassable. In particular, the following four attributes of u are regarded and have to be

bound by certain threshold values:

� expansion factor e

The expansion factor is de�ned to be the quotient of the number of new shortcuts, that would

be added to the graph if u is bypassed and the sum of the current in- and out-degree of u. A

low expansion factor denotes that by removing u the graph will not be changed much.

� maximum hop count H

The maximum hop count is de�ned to be the maximum number of hops over all shortcuts,

that would be inserted into the graph by bypassing u. This parameter simply controls the

length of the shortcuts. As already explained above, very long shortcuts are not bene�cial for

shortest-path queries.

� in-degree i, out-degree o

The in-degree and the out-degree are de�ned to be the number of ingoing and outgoing edges

of u. This parameter is used to control the growth of the graph in order to prevent it from

getting to dense. A dense graph is inconvenient for a lot of preprocessing and query algorithms,

since they are usually designed and optimized for sparse graphs. Also, the contraction itself

would su�er, since a node with a high degree is less likely to be bypassed.

The contraction quality can be adjusted by tuning the threshold values of these attributes with the

following parameters of the contraction process: the contraction parameter c, the hopBound h

and the maxDegree d. Larger values usually lead to a greater contraction with fewer nodes and

more shortcuts. Note that choice of the values for c and h has an e�ect on each other. For

example, let h have a small value. Then, shortcuts are limited to a certain small maximum size.

Thus, no further nodes can be bypassed for su�ciently large values of c since by doing so at

least one shortcut would become too long. Therefore, further increasing c would not have any

e�ect on the contraction. Also, take note that the value of d is set to in�nity for all contractions

performed in this thesis.
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Bypassing Order

The order in which the nodes of a graph are bypassed is important: When a node is removed,

the in- and out-degree of its neighbours change and so does their bypassability. Therefore, the

contracted graph GC, resulting after all bypassable nodes have been processed, depends on the

order in which this is done. To determine a practical order, all nodes that are bypassable can be

managed by a heap structure, according to Goldberg et al. [GKW07]. The key of a node u in

the heap is de�ned as the product of the expansion factor e and the maximum hop count H of

u. Smaller key values denote a higher priority to bypass the node. The key is chosen in such a

way, that unimportant nodes that will not change the bypassability of a lot of other nodes are

more likely to be removed �rst and that the creation of long shortcuts is discouraged.

In order to improve the quality of the contraction, nodes are reevaluated during the contraction

process: After a node is bypassed, all of its current neighbours are determined and reinserted into

the heap with a newly computed key. If they are already in the heap, only their key is adjusted

according to the new conditions.

Contracted Graphs

The road network of Luxembourg and two contractions of this graph using di�erent parameter

sets are shown in Fig. 4.1. Figure (b) shows conservative contraction. Only degree-2 nodes or less

are bypassed and shortcuts are restricted to just 10 hops. A much more aggressive contraction

is depicted in Figure (c). Here, a lot of nodes have been removed but at the cost of a large

increase in added shortcuts.

In order to use these contracted graphs GC for shortest-path queries, they have to be incorporated

into the original graph G: All shortcuts are added to G and changed weights of already existing

edges are also carried over. In addition, every node and edge belonging to the core are marked

with a �ag coreNode or coreEdge, respectively. This results in the full graph with contraction

shortcuts GF = (VF = V,EF = E ∪ EC).

(a) full graph (no contraction) (b) contracted graph (c=0.5,

h=10)

(c) contracted graph (c=2.0,

h=30)

Figure 4.1: Road network of Luxembourg with di�erent contraction parameters. To the left, the original graph

is shown. In the middle, a conservative contraction can be seen. On the right, an aggressive variant is depicted.
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Optimizations

Removing Shortcuts. The contraction quality can be improved by removing unnecessary

shortcuts. Sometimes, shortcuts are added to the graph provide a longer connection between

two nodes than an already existent path between them. Removing these shortcuts does not alter

shortest paths but reduces the graph size and thus preprocessing and query times, too. The re-

moval is performed after the graph has been fully contracted: A Dijkstra search in the contracted

graph GC = (VC,EC) is started from each node u ∈ VC and continued until all neighbours v of u

with (u, v) ∈ EC are settled. If one of its neighbours v was settled via more than one edge, the

direct edge between u and v can be removed.

It is also bene�cial to detect such super�uous shortcuts directly during the contraction process

and remove them [Gei08]. This decreases the in- and out-degrees of the involved nodes, and thus,

increases their bypassability. Being able to bypass more nodes or to bypass them in a di�erent

order might improve the quality of the resulting contraction. But this approach also increases the

execution time of the contraction process because of the additional Dijkstra searches that have

to be performed to identify the shortcuts. Thus, the shortcut-removal step is only performed

some limited times during the contraction process and once afterwards.

Iterative Contraction. The management of candidate nodes is a large problem for the con-

traction algorithm. In the worst case, the heap has to hold ever node of the graph. This not

only requires a lot of memory, it also considerably slows down operations on the heap. In order

to decrease the memory consumption of the algorithm and the load on the heap structure, not

all bypassable nodes have to be inserted into the heap at once. The contraction process can be

performed iteratively in batches: Only a certain amount of nodes is inserted and processed, at

once, before the next batch of nodes is inserted, continuing until all have been processed.

Using an iterative contraction creates new problems. First, the contraction quality decreases

since the algorithm can no longer choose from all possible nodes when selecting the next node

to be bypassed. This can be alleviated by sorting all nodes according to their initial key values

and using this order to insert them into the heap, starting with the nodes with the smallest key

values. Note that this corresponds to the initial node order not using the iterative approach.

A second problem of the iterative contraction is the handling of neighbours of bypassed nodes

that have not been inserted into the heap, yet. There two extreme approaches: Inserting them,

but this might increase the heap size greatly, especially for aggressive contraction parameters.

Not inserting them, but maybe their key values are much smaller now, and thus, they could

easily be bypassed, bene�ting the whole contraction process. A good compromise between the

two approaches is to only insert them into the heap if their new key values are smaller than the

largest key value of a node already inserted into the heap.

Preliminary tests have shown that it is bene�cial for the performance of the contraction process

and the quality of the resulting contraction to not process all nodes of the current batch before

inserting the next one but to re�ll the heap if its size is reduced to about 10% of its initial size.
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4.2 Contracted Dijkstra

Speed-up techniques that also apply a graph contraction during their preprocessing step usually

only use it as a small part of their more complex approach, e. g. Reach (Sect. 2.3.3), Highway

Node Routing (Sect. 2.3.5).

In this section, a speed-up technique is introduced where preprocessing only consists of the

graph contraction stated above and whose query is a slightly modi�ed Dijkstra's algorithm. This

approach is called the Contracted Dijkstra (CD) algorithm. A brief experimental evaluation of

the algorithm that shows its good performance is given in Sect. 6.3.2.

Preprocessing

As mentioned above, the preprocessing steps needed by the Contracted Dijkstra algorithm only

consist of the graph contraction outlined in the previous section:

At �rst, a core GC = (VC,EC) is computed for a given graph G = (V,E). Then, both graphs,

G and GC, are merged into the full graph with contraction shortcuts GF = (VF,EF). Subsequently,

the coreNode �ag is set appropriately for every node in GF indicating whether it was also part

of the contracted graph GC. The same is performed for the edges of GF with the coreEdge �ag

denoting whether these edges also belonged to the core of the graph.

Query

The query of the Contracted Dijkstra algorithm is performed in a manner, similar to the High-

way Nodes Routing query in Sect. 2.3.5. The following two variants are possible, both of them

applying the full graph with contraction shortcuts GF:

Core-Synchronized Variant. This variant is a modi�cation of the bidirectional Dijkstra al-

gorithm and consists of two phases. The �rst phase tries to reach the core on all paths that

possibly contribute to a shortest path. The second phase then continues the search on the core.

The precise sequence of operation of the query is described below:

The �rst phase is initiated by starting a normal bidirectional Dijkstra search from the source and

the target. The search in both directions is continued until all entry points into the core have

been settled. The core entry points of a node u are de�ned as the set of core-nodes, that can be

reached from u without encountering any other core-nodes in between. A distinction is drawn

between the forward entry points of the source and the backward entry points of the target.

The search is pruned at core entry nodes, keeping track of the shortest distance to the entry

points in each direction. If the source or the target belongs to the core, the search is pruned

immediately and they become an entry point themselves. If both are core-nodes the �rst phase

can be skipped entirely. The �rst phase ends, if either the priority queues of both directions

are empty or if the sum of the minimum of the minimal forward priority key and the minimal

distance from the source to a forward entry point and the minimum of the respective values in
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the backward direction is larger than the current tentative shortest-path distance. In the latter

case, a shortest path has been found. Otherwise, phase 2 has to be started.

The second phase is initialized by re�lling the priority queues with the forward and backward

entry nodes encountered during the �rst phase, using their distances from the source or target as

priority keys. Then, the bidirectional Dijkstra search is resumed with these already �lled queues.

The search is now restricted to the core of the graph. Thus, only edges belonging to the core

will be relaxed when processing the neighbours of a settled node. The search is stopped, if either

one of the queries is empty, or if the sum of the minimal priority keys in both queues is larger

than the shortest path encountered so far.

Asynchronous Variant. This variant of the Contracted Dijkstra query does not require two

distinct phases. It is also initiated by starting a normal bidirectional Dijkstra search. But after

encountering a core node, the query just moves on, without pruning this core entry point, much

like the aggressive, asynchronous variant of the Highway Node Routing algorithm. After the core

has been entered in one direction, the search is continued only within the core itself. It will never

leave the core again. Therefore, only those neighbours of a settled core-node will be inserted

into the priority queue, that also belong the core. The query can be stopped, when the search

spaces of both directions meet.

This approach is much faster than the core-synchronized variant, since it does not have to

wait until all core entry points have been reached, before continuing the search within the

core. This usually proves to be very e�ective, since the entry points are normally reached in a

very asynchronous order by the forward search and the backward search. Unfortunately, when

combining the Contracted Dijkstra algorithm with other speed-up techniques, a lot of them

require a synchronized start of the search process in the core to function properly (e. g. ALT,

ArcFlags). Therefore, this variant only has an academic value.

Discussion

Sketch of the proof of correctness for the claim that the Contracted Dijkstra algorithm is correct:

Consider an arbitrary s-t query using the core-synchronized variant of Contracted Dijkstra. The

search ends either after the �rst phase, or after the second phase. If an s-t path was found, it is

supposed to be a shortest path.

Case 1: The query is terminated after the �rst phase. Thus, at least one path from s to t

has been found, the smallest of them being P with a length w(P). This path is a shortest

path between s and t, since the bidirectional Dijkstra that was performed is correct [Dan62].

By construction of the query, only edges belonging to the original graph have been used. The

stopping condition by Goldberg et al. [GH04] guarantees that no shorter path than P could have

been found afterwards. It has been modi�ed to include core entry points by counting them as

belonging to their respective priority queue, since the search could still be continued from them.
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Case 2: If all shortest paths contain more than one core-node, the query has to enter the second

phase, in order to determine one. In this case, a shortest path has the following principle struc-

ture w.l.o.g.: 〈s, . . . , u, . . . , v, . . . , t〉, with u being a forward entry point and v being a backward

entry point. The subpath 〈u, v〉 contains only core-nodes, whereas the other nodes do not be-

long to the core. Shortest paths found within the core are also correct in the original graph by

construction of the core, since shortest-path distances are maintained. Thus, the bidirectional

Dijkstra search in phase 2 �nds a shortest connection between one of the forward entry points

and one of the target entry points, with their initial keys as additional starting weights. This

connection is also a subpath 〈u′, v′〉 of a shortest s-t path. If none of the shortest paths between
the source and the entry point u′ contains another entry point u, u′ has already been settled

during phase 1 and equals u. Otherwise, the search was pruned at u and a shortest path between

u and u′ must be found during the second phase. If 〈u′, v′〉 is a shortest path from the forward

entry points to the backward entry points in the core with regards to their initial keys, one path

〈u, u′〉 must have also been settled during this query. The same holds true for v′ and the target.

Thus, a shortest s-t path has been found and Contracted Dijkstra is correct indeed.

The search space of a Contracted Dijkstra query on the roadmap of the Netherlands is shown

in Fig. 4.2, to the right. It can be compared to the search space of the same query performed

by the bidirectional Dijkstra algorithm, shown on the left side. At �rst glance, both seem to be

very similar, but upon taking a closer look, one can see that the structure of the Contracted

Dijkstra's search space is much courser than the one of the bidirectional Dijkstra. Whereas the

latter algorithm has to settle over 10 000 nodes, the former only needs to check about 4 000.

This disparity is mainly due to the fact that, instead of having to settle every single node on a

path from u to v as the bidirectional Dijkstra has to, only one shortcut (u, v) has to be settled

by the Contracted Dijkstra instead.

(a) bidirectional Dijkstra (b) Contracted Dijkstra

Figure 4.2: Comparison of the search spaces of the bidirectional Dijkstra and the Contracted Dijkstra. A local

query on the road map of the Netherlands is depicted. Contraction parameters c=0.5 and h=10 have been used

for building the core. This reduced the original graph size from 893 042 nodes and 2 279 606 edges to 358 498

nodes and 1 143 006 edges in the core, adding 250 509 new shortcuts.
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The Contracted Dijkstra algorithm can be easily adapted for dynamic graphs. This fact renders

the algorithm very interesting for further analysis. Especially combinations with other speed-up

techniques that can also be easily adjusted for the use with dynamic graphs might be promising.

The CALT algorithm presented in the next section is such a combination.

Optimizations

Early Pruning. This strategy was originally introduced by Goldberg et al. in [GKW07]. In order

to reduce the query times of Contracted Dijkstra, the edges at each node are sorted according

to their coreEdge �ag, starting with set �ags. Thus, when relaxing the edges of a node, the ones

belonging to the core are processed �rst. If the search has already entered the core, relaxing the

outgoing edges of a settled node can be stopped as soon as the �rst edge is encountered, that

does not belong to the core. All edges that would be touched afterwards do not belong to the

core and thus can be safely omitted. The same strategy can also be applied before entering the

core by relaxing the edges in the reverse order, starting with edges not belonging to the core.

Note that the target ID is usually used as secondary sorting criterion.

Locality E�ects. The caching mechanism of the CPU can also be exploited to speed-up

queries. In order to utilize this so-called locality e�ect, nodes that will probably be accessed in

short succession have to be stored close to each other in memory. Then, if one node is accessed,

the other ones near it will also be loaded into the cache, improving their subsequent access

times. Regarding the Contracted Dijkstra algorithm, sorting and storing the nodes of the graph

according to their coreNode �ag as primary sorting criterion and their index as secondary sorting

criterion seems to be most favourable. Thus, all nodes belonging to the core will be stored

together in one large area and the nodes not belonging to the core will also be stored together

in another area. Since nodes with a similar index are usually also close to each other in the

graph, the secondary sorting criterion guarantees that the nodes within on of these two areas

will also be stored in an appropriate order. Exploiting this locality e�ect leads to speed-ups of

about 10− 20% for the inputs used.

Search Graph. This approach is taken from Highway Node Routing [Sch07]: All edges that

are not part of any shortest path tree built by a Contracted Dijkstra query can be removed from

the graph with no negative impact on the query. In particular, all edges leaving the core can

be deleted. This simpli�es the query, since checks for edges leaving the core no longer have to

be performed. Also, fewer edges are touched in general, accelerating the query further. As an

additional side-e�ect, the graph gets smaller and thus requires less memory. Note however that

this reduction might be disadvantageous, if the Contracted Dijkstra algorithm is combined with

other shortest-path techniques. Mostly, at least their preprocessing routines would have to be

adapted to be aware of the missing edges. Alternatively, the edges could be added to the graph

again for the preprocessing step.
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4.3 CALT

The Contracted Dijkstra speed-up technique can be easily combined with almost any other

technique. An obvious approach would be to use the small hierarchy provided by the contraction

and to apply a second, preferably goal-directed, method only on the core of the graph. Thus,

this method is only used during the second phase of the query. Since the core is usually much

smaller than the original graph, the additional preprocessing time and space overhead, needed by

the new method, will be a lot smaller than if it would be performed on the full graph. Note that

the added speed-up technique will not lose much of its performance compared to an execution on

the original graph since the entry-points into the core are usually reached very fast (after about

13 hops for normal contraction parameters, see Tab. 6.16). The performance of the added

technique might even pro�t of the additional shortcuts inserted by the contraction step. Thus,

the combination becomes more than just the sum of its parts.

In principal, any of the established speed-up techniques (ALT, ArcFlags, Reach, . . . ) can be

combined with the Contracted Dijkstra. The ALT algorithm has been chosen, since it pro�ts

the most from a reduced memory overhead. It is also a very robust technique, yielding good

speed-ups on most types of graphs. Furthermore, both the Contracted Dijkstra and the ALT

algorithm can be easily modi�ed for dynamic graphs and probably also time-dependant graphs.

An adaptation of the ALT algorithm for dynamic graphs has been done by Bauer in [Bau06].

The combination of the hierarchical Contracted Dijkstra algorithm and the goal-directed ALT

algorithm is called Contracted ALT (CALT) algorithm and is explained in this section.

Preprocessing

The CALT algorithm requires two separate preprocessing steps, one for each speed-up technique

involved. At �rst, the preprocessing for the Contracted Dijkstra has to be performed, as shown

in the last section, building the core GC and the full graph with contraction shortcuts GF of the

original graph G. Then, the contracted graph GC is used as input for the preprocessing routines

of the ALT algorithm (see Sect. 2.3.2). Landmarks are chosen from within the core and distances

from and to all core-nodes and every landmark are computed.

Performing the ALT preprocessing only on the core GC instead of on the full graph has several

advantages. For example, computing landmark distances gets much faster since the applied

graph is a lot smaller, even considering the added shortcuts. The space consumption of the

query also decreases since landmark distances only have to be stored for core nodes. And, as

shown for REAL and Highway Hierarchies* (see Chap. 3), selecting landmarks also gets faster

since fewer nodes have to be considered. Furthermore, the impact on quality of the preprocessing

is apparently minimal. In particular, since now, more sophisticated landmark selection strategies

can be applied and more landmarks can be stored to improve the performance of the query

without increasing the preprocessing times and the memory overhead too much.
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Proxy Nodes

The ALT algorithm has to compute lower bounds on distances d(s, v) from the source to nodes

in the core of the graph and lower bounds on distances d(u, t) from core-nodes to the target.

For this, distances between the source and target and the landmarks are required. But since

these distances are only computed for core-nodes, they are usually not available for the source

and target. Therefore, proxy-nodes are introduced, similar to the approach Goldberg et al. used

for reach-aware landmarks in [GKW07]:

A proxy-node s′ ∈ VC of the source s ∈ VF \ VC is de�ned to be the node in the core with a

minimal distance from the source. In principal there are two choices for the proxy-node, one with

d(s, s′) minimal and one with d(s′, s) minimal. As shown below, knowing only one of them is

su�cient to compute the lower bounds. Landmark distances from and to s′ can be used together

with the distance d(s′, s) between the source and its proxy to compute lower bounds on the

distance d(s, v) from the source s to an arbitrary node v ∈ VC in the core (see Fig. 4.3).

Figure 4.3: Illustration of the relations used to obtain lower bounds on d(s, v), if a source-proxy s ′ is present,

using distances to (left �gure) and from (right �gure) a landmark L in the core of the graph (confer to Fig. 4.4).

The resulting inequations to compute the lower bound on d(s, v) are:

d(s′, v) + dL(v) ≥ dL(s
′) , triangle inequation in the core

d(s′, s) + d(s, v) ≥ d(s′, v) , new triangle inequation to obtain d(s, v)

⇒ d(s, v) ≥ dL(s
′)− dL(v)− d(s′, s) , resulting lower bound

with dL(·) denoting distances to the landmark L; and

dL(s
′) + d(s′, v) ≥ dL(v) , triangle inequation in the core

d(s′, s) + d(s, v) ≥ d(s′, v) , new triangle inequation to obtain d(s, v)

⇒ d(s, v) ≥ dL(v)− dL(s
′)− d(s′, s) , resulting lower bound

with dL(·) denoting distances from the landmark L.
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The lower bounds yield a feasible potential, as proven in App. B. The maximum of both bounds

can be used to obtain a better lower bound. Note, that in both cases only the distance d(s′, s)

from the proxy to the source node is required to compute the lower bounds on d(s, v).

Lower bounds on distances from a core-node u ∈ VC to the target t ∈ VF \ VC are computed

accordingly. Here, distances from the target to the proxy d(t, t′) are required, as seen in Fig. 4.4:

Figure 4.4: Illustration of the relations used to obtain lower bounds on d(u, t), if a target-proxy t ′ is present,

similar to Fig. 4.3, using distances to (left �gure) and from (right �gure) a landmark L in the core of the graph.

The resulting inequations to compute the lower bound on d(u, t) are:

d(u, t) ≥ dL(u)− dL(t
′)− d(t, t′) , using distances to L

d(u, t) ≥ dL(t
′)− dL(u)− d(t, t′) , using distances from L

The source-proxy s′ can be computed by a normal Dijkstra search in the reverse graph GF, starting

from the source s. The query is terminated, as soon as the �rst node u belonging to the core is

settled. The node u becomes the source-proxy s′ and the distance d(s′, s) gets saved. The same

is performed accordingly on GF to obtain the target-proxy t′ and its proxy-distance d(t, t′).

Proxies have only to be computed for nodes not belonging to the core. This can be performed for

all of them as an additional preprocessing step. Alternatively, the proxies of the source and target

can be computed during the query. Since the core is reached with only few hops for reasonable

contraction parameters, the two additional Dijkstra searches require little extra time, compared

to the total running time of the query. Furthermore, by computing the proxy-nodes on-demand,

they and their distances do not have to be stored for all non-core nodes, which would produce

a large memory-overhead.

There are graphs that do not contain a path from the core to the source node or from the target

to the core. In this case, a dummy node with distances to and from all landmarks set to zero is

used as proxy, with the proxy-distance also set to zero. This yields acceptable lower bounds, if

only one dummy node has to be used. But if both proxies cannot be determined, the search will

be reduced to a normal Dijkstra search.
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Query

The query of the CALT algorithm is based on the core-synchronized variant of the Contracted

Dijkstra speed-up technique with some additions and alterations concerning the ALT algorithm

in the second phase of the query:

The �rst phase of the CALT query is performed in exactly the same way as for the Contracted

Dijkstra, described above. It is terminated if both queues are empty, which denotes that the

graph has been searched exhaustively up to all entry points and that the query has to continue

in the core. It is also stopped, if the sum of the minimum between the minimal forward priority

key and the minimal distance from the source to a forward entry point and the minimum of

the respective values in the backward direction is larger than the current tentative shortest-path

distance. This implies, that a shortest path has been found and that the query does not need to

be resumed.

If a shortest path has not been found in the �rst phase, the search is continued on core of the

graph in the second phase. It has to be initialized in a more complex manner than phase 2 of

the Contracted Dijkstra algorithm: At �rst, the proxy nodes of the source and target have to

be computed. Then, the queues are rebuilt, using the ALT potential functions as key values.

Depending on the particular landmark management, further tasks have to be performed. The

subsequent query only considers nodes and edges belonging to the core of the graph. Otherwise,

it is performed just like a normal bidirectional ALT query, albeit using proxies for the source and

target, when needed. The search terminates if the priority queue in one direction is empty or if

the sum of the minimal priority keys in both queues is larger than shortest path found so far,

modi�ed by the potentials. This is the same stopping condition as of the ALT algorithm.

Figure 4.5: Basic structure of a search space on contracted graphs, as generated by the Contracted Dijkstra or

the CALT algorithm. Areas of the graph within and out of the core are di�erentiated by their respective colours,

core entry points are drawn in bold. The meeting node of the search spaces in both directions is labeled with m.
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Discussion

The CALT algorithm �nds correct shortest path just as the plain Contracted Dijkstra does. The

basic reasonings stay the same as in Sect. 4.2. Only, instead of applying the correctness of the

bidirectional Dijkstra for the search within the core, the correctness of the bidirectional ALT

algorithm is used.

In Fig. 4.6 the search spaces generated by the bidirectional ALT and the CALT algorithm are

shown, using the same query as in Fig. 4.2. Comparing both search spaces, the same principal

characteristics as before stand out: The search space of the contract query looks similar to the

one of the normal query, only much courser. This is again due to the fact, that the CALT

algorithm can use shortcuts to hop between nodes and does not have to check every outgoing

edge in-between.

(a) bidirectional ALT (b) CALT

Figure 4.6: Comparison of the search spaces of the bidirectional ALT and the CALT algorithm, using the same

query as in Fig. 4.2. The bidirectional ALT has to settle 4673 nodes, the CALT only needs 1818. Both queries

have been performed using 16 maxCover landmarks and contraction parameters c=0.5 and h=10 have been used.

The Contracted ALT is similar to Highway Hierarchies* (see Sect. 3.3) in many respects. Both of

them are based on a hierarchical query, Contracted Dijkstra (Sect. 4.2) or, respectively, Highway

Hierarchies (Sect. 1.1) and both apply the goal-directed ALT to improve the query. Whereas

Contracted Dijkstra only o�ers a very basic hierarchical structure with just two levels, Highway

Hierarchies applies a much more complex structure. But because of its simplicity Contracted

Dijkstra pro�ts more from the addition of ALT than does Highway Hierarchies. In particular,

the CALT query can apply a more simple stopping condition than Highway Hierarchies*, but

nevertheless CALT stay slower than even normal Highway Hierarchies. Then again, CALT requires

much less additional memory than Highway Hierarchies* and an adaptation to dynamic graphs

should also be feasible more easily.

Note that the memory optimization strategy of Highway Hierarchies* is the basic case for CALT.

Here, landmark distances are only stored for some higher level of the hierarchy. In this case, the

query algorithms of both techniques also become quite similar with two phases, the �rst applying

the basic search algorithm to �nd entry points into the core and the second also applying ALT.
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Optimizations

The same basic optimization strategies that have been used for the graph contraction and the

Contracted Dijkstra algorithm can also be applied to the CALT algorithm. In addition, all im-

provements of the ALT algorithm can be used to enhance the second phase of the CALT query.

There are also optimizations unique to the CALT algorithm, coming from synergy e�ects between

the individual techniques.

Landmarks. As already mentioned before, the number of landmarks can be increased from typ-

ically 16 to 64, 128 or even more, without generating too much overhead, since only distances

to and from nodes belonging to the core have to be stored. Furthermore, the superior maxCover

landmark selection strategy can also be used on larger graphs instead of the avoid algorithm,

since only the core has to be processed and thus execution times will stay small.

Active Landmarks. Landmarks can be managed by an active landmarks approach as shown

in [GW05]: At the beginning of the query, only two landmarks are used, one that provides the

best lower bounds at that time, using distances from landmarks and one that uses distances

to landmarks. During the query the number of active landmarks is increased up to a certain

limit. Adding new landmarks is expensive, since the potentials of the nodes change and both

priority queues have to be rebuilt. Therefore, new landmarks are only added after the query has

proceeded at least certain distance since the last activation of a landmark. Additionally, a certain

minimum number of nodes have to be settled before trying to add an additional landmark. These

conditions are checked separately for both search directions.

Proxy Computation. The computation of the source and target proxy nodes can also be

moved in front of the �rst phase. If source or target is encountered during one of the Dijkstra

searches needed to determine the proxies, the search can already be aborted before it actually

began. If not, the search probably has to enter the core and the proxies would have been com-

puted anyways. It has to be decided from case to case, which approach will be more useful.

Memory Usage. Usually, additional mapping information has to be stored to convert node

IDs in the full graph to node IDs in the contracted graph for accessing the correct landmark

distance information. If the distances are stored at each node, this overhead can be saved on.

Alternatively, if the locality optimization is used, the core nodes are all stored together. Thus,

by sorting the landmark information in the same order, the same index can be used to access

the nodes and its landmark information, also rendering the mapping information super�uous.
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The combination of the powerful goal-directed ArcFlags algorithm with hierarchical speed-up

techniques promises to yield interesting results. In particular, a fair improvement in query times

is expected compared to the single algorithms. By restricting the use of ArcFlags to only some

subgraph of the hierarchy, its preprocessing times and space consumption should also decrease.

At �rst, this so-called Partial ArcFlags approach is explained. Then, two combinations with

hierarchical techniques are discussed, Reach-aware and Hierarchy-aware ArcFlags that are based

on Reach and Highway Nodes Routing, respectively.

5.1 Partial ArcFlags

Both, REAL and Highway Hierarchies* (see Chap. 3), add the goal-directed ALT to hierarchical

techniques with great success. With ArcFlags being another potent goal-directed technique,

applying it instead of ALT is an obvious choice for further studies. The bene�ts of ArcFlags

are an excellent sense of direction and the ease of use. These should be exploited as much

as possible to enhance the hierarchical techniques. In turn, the drawbacks of ArcFlags, long

preprocessing times and a large memory overhead, should be compensated as much as possible

by the other techniques. There are two approaches to deal with the shortcomings of ArcFlags

that both have already been used, in principal, for the combinations of ALT with hierarchical

techniques: Either the parameter values, i. e. the number of regions, can be decreased, or the

preprocessing is only done for a certain subgraph. Usually, both approaches encompass a decline

in performance, regarding ArcFlags alone. The former approach has already been applied for

AALT (see Sect. 3.1). The latter approach is denoted Partial ArcFlags technique. It is suited

especially well for a combination with hierarchical speed-up techniques since they already provide

subgraphs that can be used. The requirements on the subgraph are that it has to be connected,

and that no shortest path has to enter the subgraph more than once. Such subgraphs are called

cores, subsequently. The Reach-aware and Hierarchy-aware ArcFlags algorithms, described later

in this chapter, apply the Partial ArcFlags technique to improve the performance of the Reach

algorithm and Highway Nodes Routing, respectively.

Note that the Partial ArcFlags technique tries to retain the preprocessing routines of the normal

ArcFlags algorithm (partitioning, computation of ArcFlags) and the functionality of the query,

even if ArcFlags are only used on a subgraph. Important particularities are described below.
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Partitioning

As described in Sect. 2.3.4, there are many di�erent techniques to partition a graph. For

the studied graphs, the best results are usually obtained with the multi-way arc separator al-

gorithm. Currently, there are three free implementations of this algorithm: METIS [Lab07],

PARTY [MS04] and SCOTCH [Pel07]. The METIS implementation has been used for a long

time, but it has two distinct disadvantages: Regions are not always connected and the number

of boundary nodes is quite high. The PARTY implementation guarantees the connectivity of the

regions, but the number of boundary nodes even increases. SCOTCH does not always produce

connected regions, but it has the lowest number of boundary nodes. Since this value is directly

related to the expected preprocessing times of the ArcFlags algorithm, the SCOTCH partitioning

algorithm is subsequently applied.

To improve the quality of the partition, a local optimization run is performed once the ini-

tial partition has been determined. In a �rst step, each node u of the graph is analyzed. If there

are more of its neighbours in a single di�erent region than there are neighbours belonging to

the same region as u, it is shifted to that region. All of the neighbours of u that have already

been checked are requeued to be analyzed again. This usually decreases the number of boundary

nodes, overall. After this step, regions that are not connected are determined. It is assumed

that such regions only consist of two separate components. The smaller one is then added to

an adjacent region. The region featuring the longest common border with this component is

chosen, since thus, the number of boundary nodes is reduced the most. Note that on small

graphs with a large number of regions a local optimization run could eliminate single regions.

Computation of ArcFlags

After a partition has been found, ArcFlags can be computed using one of the techniques described

in Sect. 2.3.4. In particular, there are currently two viable variants for this task: the bounding

nodes preprocessing [HKMS06] and the Centralized ArcFlags preprocessing [Gei08]. The latter

one is usually much faster but also requires a lot more memory, especially for regions with a lot

of boundary nodes. This is of little concern for the Partial ArcFlags technique since the cores,

for which ArcFlags are computed, are usually much smaller than the full graph. Therefore, the

Centralized ArcFlags preprocessing is applied, subsequently.

If a graph contains a pair of nodes, for which there exists more than one shortest path, special

precautions have to be taken. It has to be guaranteed that both individual speed-up techniques

do not interfere with each other by trying to �nd a di�erent shortest path. In the worst case,

there is found none at all if the necessary edges are pruned by the respective other technique. An

easy solution is to �ag all shortest paths from a node into a region. This usually decreases the

performance only slightly, since for sparse graphs there are not a lot of di�erent shortest paths.

Note that the Centralized ArcFlags preprocessing is already implemented in this way.
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To further improve the space consumption of the Partial ArcFlags approach, an ArcFlags com-

pression can be performed [Hil07]. Here, each unique ArcFlag label is saved once in a look-up

table. Then, the edges only have to hold an index to this table. This usually reduces the memory

overhead considerably at the cost of only a slight decrease in query performance.

Query

Since Partial ArcFlags are only available for a certain subgraph, they cannot simply be added to

an existing speed-up technique as an additional pruning step. At �rst, the technique has to be

modi�ed: Its query is initially performed as usual. As soon as no further nodes not belonging to

the core of the graph will be touched, the ArcFlags-pruning can be enabled. This is e. g. done

similarly to Contracted Dijkstra in Sect. 4.2 by stopping the search at nodes belonging to the

core, so-called entry nodes, until all of them have been found in both directions, before continuing

the search from them. Thus, the search in the core is essentially a multi-source, multi-target

query, seeking a shortest path from one of the forward entry points to one of the backward entry

points with regards to their distance from the source or, respectively, the target. Since the source

and the target usually do not belong to the core, they cannot provide region information for the

pruning step. Thus, the regions of all entry points in the forward direction are taken as source

regions, respectively for the target regions. If not all of these regions are used or not all entry

points are found, the shortest paths might be missed, as illustrated in Fig. 5.1.

Note that the Partial ArcFlags approach requires an underlying bidirectional query. Only in this

way, the regions needed for the ArcFlags-pruning can be determined without further di�culties.

Figure 5.1: Graph with a highlighted core. The core itself is partitioned into four regions, denoted by di�erent

colours. The shortest path from s to t is drawn in red. Entry points are drawn in bold. If e. g. the region of u

would not be used, the backward search could not be directed into region I coming from node w and thus, it

would not �nd the shortest path. Here, the forward search still yields the correct shortest path, but relying on

only one search direction is not always an option and also defeats the purpose of using a bidirectional query.
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5.2 Reach-Aware ArcFlags (ReachFlags)

The Reach-aware ArcFlags (ReachFlags) shortest-path technique combines the hierarchical in-

formation of the graph provided by the reach values with the goal-direction of the ArcFlags.

The latter technique is incorporated into the Reach algorithm according to the Partial ArcFlags

approach introduced in the last chapter, applying ArcFlags only to the higher levels of the

graph-hierarchy, i. e. to the subgraph with high reach values.

Preprocessing

The additional information required by the Reach-aware ArcFlags algorithm is provided by two

separate preprocessing algorithms. At �rst, node-reach values are computed for the whole graph.

Here, shortcuts are also added to the graph. Then, ArcFlags are computed for a certain sub-

graph, de�ned by the reach values.

The Reach preprocessing is performed with the approximate bounding algorithm introduced by

Gutman in [Gut04] and improved later by Goldberg et al. in [GKW06a]. This technique computes

reach values for edges by iteratively bounding them up to a threshold ε that gets increased in

each iteration. The initial value of ε is determined as outlined by Goldberg et al. Edges with

bound reaches are removed at the end of each iteration step. At the beginning of the next step,

additional shortcuts are incorporated into the graph. After the preprocessing ends, the edge-

reaches are converted into node-reaches. The original preprocessing algorithm is modi�ed in the

following way: Instead of always computing an initial threshold with a random component, an

average threshold value is determined beforehand for each graph and used subsequently to gain

results that are easier to compare. Also, the preprocessing is only performed for a certain number

of iterations before it is stopped. The shortcuts that would be computed at the beginning of

the next step are also included into the graph. After the edge-reach values are converted to

node-reach values, all of them that have not been bound yet, i. e. that are equal to or above

the current threshold value ε, are set to in�nity, e�ectively removing them. The re�nement step

introduced by Goldberg et al. is omitted if the preprocessing is terminated prematurely.

The obtained reach values de�ne a hierarchy on the graph with larger reach values denoting

higher levels of the hierarchy. The core of the graph is induced by the nodes, featuring a reach

value equal to or above the threshold value ε of the �nal iteration of the Reach preprocessing,

and their adjacent original edges and shortcuts.

The core de�ned by the reach values is subsequently used for the ArcFlags preprocessing. It is

partitioned according to one of the approaches outlined above. Then, the Centralized ArcFlags

preprocessing algorithm by Hilger [Hil07] is used to compute. It computes ArcFlags by growing

shortest paths from all boundary nodes of a region at once, taking advantage of identical sub-

graphs. More information about this technique can be found e. g. in Sect. 2.3.4.

Note that the whole graph with all of the additional shortcuts is applied for the query algorithm.
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Query

As outlined in the last section, a query algorithm applying Partial ArcFlags consists of two phases.

Here, the query of the Reach-aware ArcFlags algorithm is based on a bidirectional Dijkstra with

reach-pruning. During the �rst phase, only this base algorithm is performed. When the second

phase starts, pruning according to the available ArcFlags is applied, too. The actual implemen-

tation of this two-tiered query is a bit simpler than for the Contracted Dijkstra algorithm in the

last section. In detail, an s-t shortest-path query is performed as follows:

In an initialization step, the edges of each node are rearranged according to the node-reach value

of their respective targets, sorting larger values to the front. This is done to apply early pruning

during the query. Afterwards, the search is commenced. It is performed as a normal bidirectional

Dijkstra query with reach-pruning and also applies early pruning as explained in Sect. 2.3.3. If

a node u is settled and its reach value is smaller than its key value key(u), the search pruned.

Otherwise, its edges are processed. If the reach value of the target v of one of these edges is

smaller than key(u) + w(u, v) the search is pruned at that edge. If it is even smaller than key(u),

the remaining edges are also skipped. In each step, the search direction with the minimal priority

key value is chosen. The �rst phase is terminated if one of three conditions is true: Either one

the priority queue has to be empty, or the sum of the minimal elements in both queues has to

be equal to or larger than the current tentative shortest path, or the smallest priority key over

both queues has to be equal to or larger than the �nal value of the threshold ε during the pre-

processing. In the �rst two cases, the whole search is stopped since they represent the stopping

condition of the normal Reach query. Otherwise, the search is continued with the second phase,

since now, all remaining nodes belong to the core. Note that because of the way the search

directions are alternated, no core-node is settled beforehand.

The second phase is initialized simply by noting the regions of all nodes remaining in the forward

queue, which become the set of source regions and respectively for the target regions. The

search is then continued as before but with ArcFlags- pruning in addition to the reach-pruning.

When considering the ArcFlags of an edge, the search is only pruned at that edge if no �ag is set

for any of the possible target regions in the forward direction, respectively for the other search

direction. The search terminates either if one of the priority queues is empty, or if the sum of the

minimal keys in both queues is equal or larger than the current tentative shortest path. Then,

the search yields a shortest path between s and t if any such path exists.

Note that the reach-pruning during the second phase is only required in order to restrain the

search to core-nodes. Here, comparing reach values to in�nity is su�cient since all core-nodes

have a reach value of in�nity according to the preprocessing. Thus, if a reach value is less than

in�nity, the search can be pruned at that edge or that node. Also, the condition for switching

to the second phase could be simpli�ed accordingly to a comparison to in�nity instead of to the

�nal value of threshold ε during the preprocessing.
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Further Optimizations

In principal, most of the optimization techniques used for the Reach algorithm and for ArcFlags

alone can also be used for Reach-aware ArcFlags either directly, or at least after adapting them

slightly for this speed-up technique. There are also some further optimization ideas that require

both individual algorithms. The following techniques seem to be particularly noteworthy.

Locality E�ects. The nodes of the graph can be rearranged so that nodes that probably are

accessed consecutively are stored near each other in memory. In this way, cache locality e�ects

can be exploited to speed-up the access times, and thus, the whole query. For Reach-aware

ArcFlags, it is suitable to group nodes that belong to the core and nodes not belonging to it,

separating low-reach nodes from high-reach ones. The initial order of the nodes is retained within

both areas in case that they have already been ordered to pro�t from locality e�ects.

Non-Core ArcFlags. If requests for ArcFlags of edges not belonging to the core are adapted to

always return an empty ArcFlag label, i. e. all regions are not set, reach-pruning can be omitted

entirely during the second phase of the query. This is due its primary function, keeping the search

within the core, being taken over and done implicitly by the ArcFlags-pruning. This simpli�es and

possibly speeds-up the query. But note that further speed-up techniques like the early pruning

have to be adapted accordingly.

Full Reach Processing. Instead of stopping the Reach preprocessing after several iterations, it

can also be done in full. This requires more time and memory but also yields additional shortcuts

and reach values, of which the query might pro�t. The core is still de�ned by a certain threshold

on the node-reach values and ArcFlags are only computed for this subgraph. But now, actual

reach values are available during the second phase of the query and can be used to prune search.

Space Consumption. In order to reduce the space consumption of Reach-aware ArcFlags,

several optimizations can be applied. Obviously, an ArcFlags compression or even a reach com-

pression can be used to reduce the memory overhead. In addition, if reach values are only used

in the �rst phase, their reserved space can be used to store the node-regions in the core. Only

an additional �ag is required to di�er between core-nodes and non-core nodes. For the typically

small core-sizes used, the additional memory should decrease by about 1 to 2 bytes/node.

Edge-Reaches. Instead of using node-reach values, edge-reach values can be applied during

the query. They are readily available since the preprocessing algorithm actually computes edge-

reach values. They give better bounds, and thus, improve the query performance. But they also

require more memory since they have to be stored for all edges and in both search directions.

Note that the early pruning strategy can only be easily applied for one search direction. The

required edge-sorting either can be done for the forward reach values, or for the backward reach

values. Thus, the e�ective speed-up of using edge-reach values gets less pronounced.
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5.3 Hierarchy-Aware ArcFlags (HiFlags)

The Hierarchy-aware ArcFlags (HiFlags) algorithm is a combination of Highway Node Routing

and ArcFlags. The former technique is used as the basis of the algorithm with ArcFlags being

added to some higher level L of the hierarchy according to the Partial ArcFlags approach. The

hierarchical information required by Highway Node Routing as well as additional shortcuts are

provided by the recent Contraction Hierarchies algorithm by Geisberger [Gei08].

Preprocessing

The HiFlags algorithm requires two interdependent preprocessing steps. At �rst, the hierarchy

of the graph has to be determined, followed by the computation of the ArcFlags for some level

of that hierarchy:

In the �rst step, hierarchical levels are computed and shortcuts are added to the graph G. This

is currently done by the Contraction Hierarchies algorithm [Gei08]. Basically, a unique level is

determined for each node. Then, the nodes are sorted according to this hierarchy level and sub-

sequently removed from the graph, starting at lower levels. When a node is removed, shortcuts

are added to ensure that distances between the remaining nodes are maintained. Note that the

initially determined node-levels may change during the preprocessing. After all nodes have been

removed, the complete hierarchical structure of the graph is given by the node-levels and the

shortcuts that have been computed during this process.

For the second step of the preprocessing, the full graph with shortcuts GF is reduced by removing

all nodes and their adjacent edges with a hierarchy level below a certain threshold value L. The

resulting subgraph is called level-L core of the graph. This core is partitioned into regions and Ar-

cFlags are computed for it. Here, the Centralized ArcFlags algorithm by Hilger [Hil07] is applied.

Recall that the shortest path trees of all boundary nodes are computed at once for each region and

synergy e�ects due to identical subgraphs are exploited to speed-up the preprocessing. If there

is more than one shortest path from a node into a certain region, all paths into that region are

�agged. This is important with regards to the canonical shortest paths of Highway Node Routing.

With Contraction Hierarchies having as many hierarchy levels as nodes, it is inconvenient to

denote the core by the threshold level. Instead, the percentage of nodes remaining in the core is

also used to label the core-size. For example, a core-size of 5.0% implies that the core encom-

passes the 5.0% of nodes with the highest level.

Regarding the actual implementation for the query, GF is reduced to a search graph by removing

all edges leading to a lower level of the hierarchy (see Sect. 2.3.5). This improves the query

performance since fewer edges have to be touched and also decreases the space consumption.

In addition, ArcFlags also do not have to be saved for these removed edges further decreasing

the memory usage. Note that the full graph is still needed to compute the ArcFlags.
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Query

The query of Hierarchy-aware ArcFlags is based on the query of Highway Node Routing, which

is described more closely in Sect. 2.3.5. Its query algorithm is modi�ed to incorporate the two-

tiered approach of Partial ArcFlags: During the �rst phase of the query, only Highway Node

Routing is applied. Then, the second phase adds ArcFlags information. A detailed sequence of

operation for this single-source, single-target query is given below:

When the query is started, a normal bidirectional Highway Node Routing search is performed.

After each step, the search is alternated between the forward and the backward direction. The

search is pruned at nodes with a hierarchy level of L or above. These nodes are called entry

nodes and their distances from the source or the target are called entry distances. They are

stored to be used later. The search in one direction is stopped either if the respective priority

queue is empty, or if the minimum of the key values in that queue and the entry distances in that

direction is equal to or larger than the shortest path found so far. The �rst phase ends when

the search in both directions has been stopped. The whole search can be stopped after the �rst

phase either if no entry points have been found in one direction, or if the tentative shortest-path

distance is smaller than all entry distances and all key values remaining in the queues. In the

latter case, a shortest path has been found since the remaining nodes in the priority queues and

entry points, from which the search could be continued, have a distance from the source or the

target, longer than the currently shortest path. Thus, they cannot be part of a shorter path. In

the former case, no shortest path exists since if one still exists, it would have to be routed over

the core of the graph, which is not entered in at least one direction.

If the search is not terminated after the �rst phase, the second phase is initialized. The remaining

elements in both priority queues are �ushed and the entry points that have been stored previously

are reinserted into their respective queues. The regions of these entry points are noted separately

for each direction to be used as a set of source or target regions, later. After the initialization,

the search is continued on the core of the graph as before, but with ArcFlags-pruning enabled:

When touching an edge, its ArcFlags are checked. If no �ag is set for at least one of the source

or target regions in the respective direction, the search is pruned. Note that the search never

leaves the core again. Thus, ArcFlags are always available during the second phase of the query.

The search terminates if one of the two following conditions is met for each search direction:

Either its priority queue is empty, or the distance of the shortest path found so far is smaller than

the smallest key in that queue. If any path exists between the source and the target, a shortest

one has been found.

Note that the source and the target of a query might already have a hierarchy level of L or above.

In this case, they already belong to the core of the graph. If this is true for both nodes, the

query directly starts with the second phase, only using their regions for the ArcFlags-pruning in

the respective direction. If it is true for only one of them, the search in that direction is directly

pruned at the start and only the search in the other direction is pursued further.
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Discussion

A comparison of the search spaces of Hierarchy-aware ArcFlags and of its two constituting speed-

up techniques, ArcFlags and Highway Node Routing, is shown in Fig. 5.2. For each algorithm,

the same query is performed on the road network of the Netherlands and the resulting search

spaces are visualized:

Note that although the visualization of the search space of the ArcFlags query appears to be

almost optimal, about twice as much nodes have to be settled compared to Highway Node

Routing. This is due to the shortcuts introduced by Highway Node Routing. They bypass larger

parts of the graph and are drawn as long paths. Thus, the visualization of the search space of

Highway Node Routing appears to be much larger than it actually is.

Near the source and target, the search space of the Hierarchy-aware ArcFlags query is identical to

the one of Highway Node Routing. Further away, where the core has been entered, the ArcFlags

dominate the query and the search space looks more like the one of the ArcFlags query. Since

the HiFlags technique also applies shortcuts, the ArcFlags component of the algorithm can also

pro�t from them and the number of settled nodes decreases even further.

Further Optimizations

The principal optimization strategies used for ArcFlags can also be applied to Hierarchy-aware

ArcFlags. The same is true for Highway Node Routing. Further optimizations, especially regard-

ing synergy e�ects between the two speed-up techniques, are explained below.

Contraction Hierarchies. Optimizing Contraction Hierarchies for di�erent types of graphs or

even just for di�erent metrics is a complex task since there are a lot of parameters that can

be adjusted to improve the performance of the algorithm with regards to execution times or

contraction quality. An overview of the di�erent parameters is provided by Geisberger in [Gei08].

(a) bidirectional ArcFlags

(16 regions)

(b) Highway Node Routing

(Contraction Hierarchy)

(c) Hierarchy-aware ArcFlags

(16 regions, core-size 0.5%)

Figure 5.2: Comparison of the search spaces of ArcFlags, Highway Node Routing and Hierarchy-aware ArcFlags.

The latter two use the same hierarchy information and the same shortcuts. Both ArcFlags queries use 16 regions

for their graph partition. HiFlags applies this to the subgraph of the 0.5% nodes with highest-level, ArcFlags to

the whole graph. The ArcFlags query settles 454 nodes, Highway Node Routing 278 and HiFlags only 81.
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Dense Graphs. As has been observed during the experimental studies, the preprocessing of

Contraction Hierarchies on dense graphs slows down considerably towards the end when only few

nodes with a high degree remain to be removed. Thus, it might prove to be advantageous to

stop the preprocessing at a certain point well before all nodes have been removed and consider

these nodes as all having the same highest hierarchical level. The preprocessing becomes faster

but the performance of the Highway Node Routing query probably decreases. However, this

e�ect is alleviated for the HiFlags query since ArcFlags are available on this hierarchy level to

support the query.

Partitioning. As expected, using a partition based directly on the core of the graph usually

yields the best results with regards to the typical requirements on graph partitions, like the dis-

tribution of the regions or the number of boundary nodes. This normally also translates to a

shorter execution times and less memory consumption of the Centralized ArcFlags preprocessing

routine. But apparently, it is sometimes more favourable to use a partition based either on the

original graph, on the graph with shortcuts, or just on the core without shortcuts. Here, shorter

preprocessing times are obtained even though the number of boundary nodes is increased. These

�uctuations depend on how much the preprocessing routine is able to pro�t from identical sub-

graphs and are di�cult to be quanti�ed in advance.

Locality E�ects. The performance of the Hierarchy-aware ArcFlags query can be improved

further by utilizing cache locality e�ects. Nodes that are near each other in the graph and that

have similar hierarchy levels are probably accessed in short succession and thus should be stored

near each other in memory to pro�t from caching e�ects. The original node-order often already

places nodes close together that are near each other in the graph. This order can be improved

further by also incorporating the level of the nodes into the sorting. Here, the following order is

suggested: The 50% of nodes with the lowest hierarchy levels are sorted to the front, followed

by the next higher 30%, 10%, 5%, 3%, 1%, 0.5% and the �nal 0.5% of nodes with the highest

level. Looking at these numbers from the other direction, starting from the highest level, they

specify sets of nodes containing the highest 0.5%, 1%, 2%, 5%, 10%, 20%, 50% and 100% of

the hierarchy levels. Incidentally, these are also the core-sizes used later for the experiments.

Stall-On-Demand Technique. This technique has been introduced for Highway Node Routing

by Schultes [Sch07]. Thus, it can also be applied to HiFlags. Basically, the technique works

as follows: If a shortest-path search reaches a node that has already been settled, this node is

`woken up' and a local search is started from it in order to �nd and stall other nodes that will

not be part of a shortest path, according to the currently available information. The additional

overhead of the stalling process makes this technique only useful if a certain minimum number

of nodes can be removed from the query in this way, compared to the total number of nodes

that are settled. Further details on the stall-on-demand technique can be found in Sect. 2.3.5.
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Section 2.4 introduced a variety of possible combinations of speed-up techniques. These have

been discussed in the previous section with regards to their functionality. Now, their actual

performance is evaluated in this chapter. At �rst, the experimental setup that is used to compile

and test the algorithms is described. Then, the di�erent types of graphs that are studied and the

actual graph instances that are applied are presented. Afterwards, the experimental results for

each technique are shown. They are evaluated extensively and the e�ects of choosing di�erent

preprocessing parameters are discussed. In conclusion, a summery of the obtained results is given

and put into the context of other recent techniques.

6.1 Experimental Setup

The algorithms presented in this thesis are implemented in C++, solely using the Standard Tem-

plate Library (STL) as additional provided code. A binary heap is used as data structure for the

priority queue (see App. A for more details). The experiments are performed on one core of an

AMD Opteron 2218 running SUSE Linux 10.1, unless otherwise noted. The machine is clocked

at 2.6 GHz, has 16 GB of RAM and 2x 1 MB of L2 Cache. The code is compiled with GCC 4.1,

using optimization level 4 and unrolling of loops as compiler �ags.

Two setups are used to analyze the performance of the algorithms:

Random Queries. 10 000 random pairs of source and target nodes are selected for each graph

and used for the queries. All 10 000 queries are performed to measure the performance of a

speed-up technique. The relevant values such as the execution time and the number of settled

nodes are logged for each individual query and the arithmetic mean over all queries is used as

result. This setup is applied to all graphs and all speed-up techniques.

Local Queries. Here, 1 000 (s, t) pairs are chosen for each Dijkstra rank [SS05]. Starting a

query from s, the rank of t is denoted by the number of settled nodes before t is settled. It is

given for 20, 21, . . . , 2log|V|. This setup is applied to some speed-up techniques in order to gain

further insights into their performance on a particular graph depending on the length of a query.

The results are presented in the form of a box-and-whisker plot [Tea04].
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The queries that are performed in this chapter only provide a distance between the two nodes.

A contracted shortest path, still containing shortcuts if existing, can be rebuilt according to the

outline given in Sect. 2.2. Already available unpack techniques can be directly applied to the

shortcuts in order to obtain the original edges [DSSW06, BFSS07, GKW07].

6.2 Graphs

In order to evaluate the individual strengths and weaknesses of the introduced combinations

of speed-up techniques, a wide variety of graph types is applied to measure their performance.

There are four principal categories of graphs that are studied: road networks, sensor networks,

timetable information systems and grid graphs. The basic attributes of the analyzed instances of

these graph types, the number of nodes and the number of edges, are given in Table 6.1. Note

that the listed number of edges refers to the number of edge objects that have to stored for a

bidirectional query. See App. A for further details.

Road Networks. The European road network, provided by the PTV AG [PTV79] for scienti�c

use, and the road network of the USA, as taken from the DIMACS website [tDIC06], are chosen

as representatives of this graph category. The largest strongly connected component of both of

them is used as an input for the query algorithms. The provided graphs all use a distance metric.

Two variants, one with travel times and another one with a unit metric, i. e. each weight is set

to 1, are also generated and applied. To compute travel times, the also provided road categories

of each edge are used and assigned reasonable �xed travel speeds.

nodes edges

Road Networks

Europe � all metrics 18 010 173 44 436 348

USA � all metrics 23 947 347 57 708 624

Sensor Networks

Unitdisk Graph, Deg. 5 994 980 5 101 842

Unitdisk Graph, Deg. 7 996 394 6 986 092

Unitdisk Graph, Deg. 10 999 887 9 987 286

Timetable Information Systems

Timetable � Railway EU 1 192 736 3 578 168

Timetable � VBB 2 599 953 7 799 430

Timetable � RMV 2 277 812 6 833 104

Grid Graphs

2-dim. Grid Graph 250 000 998 000

3-dim. Grid Graph 250 047 1 476 468

4-dim. Grid Graph 244 904 1 871 144

Table 6.1: Listing of the basic attributes of all graphs, used in the experimental studies of the thesis at hand.
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Sensor Networks. The research activity in the �eld of sensor networks has increased tremen-

dously over the past years. Routing in these distributed networks shows similar properties to

routing in normal road networks. Therefore, speed-up techniques for shortest-path queries have

become a point of interest in this �eld of research and are tested on sensor networks. To evaluate

algorithms on this kind of networks, unitdisk graphs are often applied [KWZ03]. These synthetic

graphs provide a good model of the typical structure of sensor networks. They are constructed

by distributing nodes randomly on a plane and connecting nodes with a distance below a certain

threshold. These distances are also used for the edge-weights. By applying di�erent threshold

values, the average degree of the nodes can be varied, leading to graphs that are rather dense

or sparse. Here, graphs with an average node-degree of 5, 7 and 10 are used.

Timetable Information Systems. Timetables can be represented as static graphs. Each sta-

tion at each relevant time step becomes one node of the graph and connections between them

are described by the graph-edges (see [MHSWZ07] for details). Normal shortest-path queries

can be used to obtain shortest connections in these time-expanded networks. The long-distance

connections of the European railway network and the local tra�cs of Berlin/Brandenburg (VBB)

and the Rhein-Main-Verkehrsverbund (RMV) are used as examples of this type of graphs. Note

that only random queries are performed to gain preliminary results on the performance of the

studied algorithms. In particular, the earliest arrival problem is not solved by the applied queries.

For more information on this speci�c problem see e. g. [Paj08].

Grid Graphs. These synthetic graphs are often used to evaluate the in�uence of di�erent graph

diameters on the performance of shortest-path algorithms [BDW07]. The nodes are ordered in

the form of a grid of the proper dimension and connected appropriately by bidirectional edges.

The edge weights are distributed uniformly at random from 1 to 1 000. Smaller diameters are

obtained by increasing the number of dimensions of the grid and, at the same time, keeping the

number nodes constant. Note that this also increases the number of edges and therefore the

degree of each node, leading to a denser graph. In this thesis, grids with two, three, and four

dimensions are discussed.

6.3 Results

The four combinations of speed-up techniques for exact shortest-path queries that have been

introduced in this thesis (AALT, CALT, Reach-aware ArcFlags, and Hierarchy-aware ArcFlags)

are evaluated below as outlined in Sect. 6.1 on the graphs described in the previous section.

The experimental results are presented and subsequently discussed. At the end of the chapter

in Sect. 6.4, a comparison of these techniques among each other and compared to previous ones

is given to determine their individual strengths and weaknesses on di�erent graphs.
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6.3.1 AALT

The AALT algorithm, an ALT algorithm enhanced by ArcFlags-pruning, is a somewhat exotic

combination since both of its constituents are goal-directed algorithms. Thus, the possible gain

in performance is probably less than for a combination of a goal-directed and a hierarchical

technique, since both of them presumably try to exploit similar aspects of the graph. Therefore,

only a brief analysis is performed for AALT, but with some interesting results.

Experimental Setup. A slightly di�erent experimental setup than before is applied for com-

puting the ArcFlags of the European road network. Here, a system with two AMD Opteron

2218 and 32 GB RAM is used. The other speci�cations stay the same. This setup usually

performs about 10 to 20% slower than the system with only one CPU, since both CPUs share

the same memory controller and thus wait states can ensue. The partitioning is performed with

the SCOTCH algorithm [Pel07], using one local optimization run, as explained in Sect. 5.1. Ar-

cFlags are computed with the boundary algorithm by Köhler [HKMS06]. The preprocessing data

of the other graphs is taken from [BDW07]. They used the same experimental setup as initially

described in Sect. 6.1 and the same preprocessing algorithm but only applied the METIS parti-

tioning [Lab07] with no local optimization runs. ALT applies active landmarks (see Sect. 2.3.2)

during the query. No further optimizations are applied.

The listed preprocessing times consist of the preprocessing required by ArcFlags (partitioning

the graph, computing ArcFlags) and ALT (selecting landmarks, computing landmark distances).

The memory overhead is composed of the costs of the ArcFlags (16 byte/edge), the node-regions

(2 byte/node), the landmarks (4 byte each), and the landmark distances (4 byte each).

AALT (128 regions, 16 landmarks) AALT (128 regions, 64 landmarks) ArcFlags (128 regions)
� Prepro � � Query � � Prepro � � Query � � Prepro � � Query �
[s] [B/n] settled [ms] [s] [B/n] settled [ms] [s] [B/n] settled [ms]

Europe

travel times 712 427 209 1 757 0.95 713 196 593 1 613 0.85 707 338 81 2 764 0.80

distances 472 169 209 9 383 4.74 472 313 593 5 966 3.13 467 869 81 31 234 9.14

unit metric 746 663 209 1 454 0.68 746 917 593 1 244 0.68 741 849 81 2 385 0.70

Unitdisk Graphs

degree 5 6 795 294 1 147 0.90 6 664 678 975 0.77 6 300 166 2 091 1.01

degree 7 36 404 354 1 549 1.47 36 281 738 920 0.78 35 880 226 4 761 2.56

degree 10 96 694 450 2 254 2.05 96 575 834 1 034 0.98 96 120 322 7 019 4.13

Timetables

Railway EU 121 255 226 4 564 1.78 121 275 610 3 263 1.56 120 960 98 10 560 2.35

VBB 269 357 226 9 005 4.05 269 367 610 6 783 3.26 268 740 98 24 004 5.85

RMV 279 324 226 10 139 4.22 279 337 610 7 091 3.59 278 760 98 28 448 6.92

Grid Graphs

2-dimensional 5 406 258 602 0.26 5 396 642 495 0.25 5 340 130 1 340 0.35

3-dimensional 49 902 319 461 0.31 49 890 703 297 0.24 49 800 191 1 685 0.62

4-dimensional 187 155 374 575 0.53 187 146 758 372 0.41 187 020 246 2 799 1.42

Table 6.2: Results of the AALT algorithm with 128 regions, using 16 maxCover and 64 avoid landmarks,

respectively. Results of the bidirectional ArcFlags algorithm with 128 regions are also shown for reference.
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� Parameters � � Prepro � � Query �
regions landmarks [s] [B/n] settled [ms]

EU � distance metric

AALT (128 regions, 64 landmarks) 472 313 593 5 966 3.13

AALT (128 regions, 16 landmarks) 472 169 209 9 383 4.74

AALT (16 regions, 64 landmarks) 110 025 524 13 101 8.06

AALT (16 regions, 16 landmarks) 109 859 140 29 931 16.82

ArcFlags (128 regions, ) 467 869 81 31 234 9.14

ArcFlags (16 regions, ) 105 573 12 251 007 81.01

ALT ( 64 landmarks) 4 203 512 67 150 42.03

ALT ( 16 landmarks) 4 226 128 218 420 127.70

EU � travel time metric

AALT (128 regions, 64 landmarks) 713 196 593 1 613 0.85

AALT (128 regions, 16 landmarks) 712 417 209 1 757 0.95

AALT (16 regions, 64 landmarks) 153 817 524 2 999 1.84

AALT (16 regions, 16 landmarks) 153 062 140 4 932 2.82

ArcFlags (128 regions, ) 707 338 81 2 764 0.80

ArcFlags (16 regions, ) 147 972 12 37 404 14.42

ALT ( 64 landmarks) 5 521 512 26 630 18.37

ALT ( 16 landmarks) 4 986 128 76 621 50.76

Table 6.3: Comparison of the results of the ArcFlags, ALT and AALT algorithms using several di�erent parameter

sets on the European road network with a distance metric and a travel time metric, respectively.

General Results. Table 6.2 lists the results of the AALT algorithm with 128 regions, either

using 16 maxCover, or, respectively, 64 avoid landmarks (refer to [GW05] for an explanation

of the di�erent landmark selection strategies). The experimental results of the bidirectional

ArcFlags algorithm using the same 128 regions are also shown for reference.

As can be seen, the additional preprocessing time required to compute landmarks and landmark

distances is insigni�cant compared to the time required for the ArcFlags preprocessing, which can

take up to almost one week. The memory consumption, on the other hand, rises considerably

if landmark distances have to be stored in addition to the ArcFlags, by a factor of about 1.5 to

2.5 for 16 landmarks and about two to three times more than that for 64 landmarks. The query

times on all graphs decrease compared to the ArcFlags algorithm using either 16 or 64 landmarks,

with the exception of the European road network with travel times or a unit metric. Since the

number of settled nodes decreases considerably for all instances, the increased computational

overhead of the ALT query, on which AALT is based, probably outweighs the speed-up for these

two graphs. The speed-up on the other graphs is generally the more pronounced the denser

the graphs become. This is due to the ALT algorithm rearranging the order in which nodes are

visited, providing the ArcFlags algorithm with a more direct way to the target if there are a lot

of possible paths that can be taken, which is usually true for dense graphs. Switching from 16

to 64 landmarks, considerable improvements are only observed for sensor networks with a high

node-degree. Here, the query times decrease by a factor of about two. This is probably due

to the query still having to settle a lot of nodes compared to the other graphs, rendering the

rearrangement of the nodes to be more bene�cial.



62 Experiments

Further Parameter Values. A more extensive analysis of the di�erent contributing speed-up

techniques is shown in Table 6.3, also comparing the results on the European road network with

travel times to the results with a distance metric. The AALT algorithm, the ArcFlags algorithm

and the ALT algorithm are listed, using 16 or 128 regions and 16 maxCover or 64 avoid land-

marks, respectively. The Arc-Flags preprocessing takes about 1.5 times longer on the graph with

travel times than for the same one with the distance metric. This is due to the plain Dijkstra

applied for the preprocessing being much faster for the distance metric. Regarding query times,

they are up to 10 times faster for travel times graph than for the distance graph, applying the

same algorithm and parameter values. Furthermore, only the distance graph pro�ts by adding

landmarks to the ArcFlags query, whereas queries on the other graph even get slower. Observing

the number of settled nodes and the average number of hops over all shortest paths, which is

889.2, it seems that only the query on the distance graph visits enough nodes to pro�t from

their rearrangement by the ALT algorithm. Probably, there are more potential shortest paths

with the same distance than there are with the same travel time (e. g. a motorway and a rural

road running next to each other have the same distances but di�erent travel times). Thus, a

query on the graph with a distance metric has to settle more nodes.

Summary. It was originally expected that AALT receives its primary bene�t compared to

ArcFlags alone from local queries within one region. For these queries, bidirectional ArcFlags

performs like a bidirectional Dijkstra whereas AALT performs like bidirectional ALT. Surprisingly,

the AALT algorithm shows the highest increase in performance for medium-long queries as can

be observed in Fig. 6.1. For very short queries it is even slower than ArcFlags. The additional

computational overhead probably outweighs the gains of the goal-direction. Thus, it seems as if

ALT and ArcFlags exploit di�erent aspects of the graph structure to improve their queries. In

particular, the speed-up for medium-long queries can be explained by two e�ects: The search

space of the bidirectional ArcFlags algorithm tends to split up, forming a cone towards the middle

where both search directions meet, and thus, decreasing the performance of the query since more

paths have to be tracked. On the other hand, the bounds of the ALT algorithm are particularly

good far away from the source and target, as experiments have shown. Both e�ects seem to

add up constructively, increasing the query performance.

6.3.2 CALT

The evaluation of the Contracted ALT algorithm is divided into two parts. At �rst, the graph

contraction and the impact of using several di�erent sets of contraction parameters are analyzed.

Then, the performance of CALT queries on these graphs is studied. The queries are performed

with several di�erent landmark-sets. Additional attention is given to the transition between the

�rst and the second phase of the query and the related measurement values.
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Figure 6.1: Comparison of the performance of ArcFlags and AALT. Both algorithms use the same �ags, computed

for 128 regions. AALT also applies 64 avoid landmarks. The query times have been measured on the European

road network with travel times. The results are presented using the Dijkstra rank methodology [SS05]. They are

shown as box-and-whisker plot [Tea04]: each box spreads from the lower to the upper quartile and contains the

median, the whiskers extend to the minimum and maximum value omitting outliers, which are plotted individually.

Contraction

The contraction step is the most important part of the whole CALT algorithm. If the com-

puted cores are not viable, the performance and the quality of the subsequent preprocessing

steps (landmark selection, computation of landmark distances) and of the query su�er. If the

graph is not contracted enough, the core remains quite large and the preprocessing cannot pro�t

from a small input. Also, the query cannot pro�t of a search restricted to a small core and its

performance will be similar to a bidirectional ALT. On the other hand, if the graph is contracted

too much, the query stays in the �rst phase for the better part of the whole search process,

only performing like a bidirectional Dijkstra search and the precomputed landmark information

is virtually wasted. Furthermore, the contracted graph should not become too dense; otherwise

the performance of the query su�ers by having to touch too many unnecessary edges. As shown

later, the average number of hops from the source and the target to their respective entry points

into the core provides a �rst estimation of the contraction quality.

Setup. Tables 6.4 - 6.8 show the results of the contraction step for each of the types of graphs

that are studied. The contractions have been performed using three di�erent sets of parameter

values: a conservative one (c = 1.5, h = 10), a normal one (c = 3.0, h = 30) and an aggressive

one (c = 5.0, h = 100). The contraction parameters are explained in more detail in Sect. 4.1.

The tables list the number of nodes and edges of the contracted graphs, the added shortcuts

and the time needed for the contraction. Additionally, the row full graph lists the size of the

full graph for reference. Note that the number of shortcuts does not always match the listed

memory requirements due to edge compression (see App. A).
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nodes edges shortcuts [s]

EU � distance metric

full graph 18 010 173 44 436 348

c =1.5, h = 10.0 1 562 171 12 670 804 10 155 111 223

c =3.0, h = 30.0 509 824 10 127 508 7 245 085 690

c =5.0, h = 100.0 146 717 7 933 412 5 040 746 1 787

EU � travel time metric

full graph 18 010 173 44 436 348

c =1.5, h = 10.0 1 579 519 12 762 794 10 207 571 222

c =3.0, h = 30.0 530 891 10 361 592 7 343 081 658

c =5.0, h = 100.0 156 466 8 437 280 5 198 747 1 798

EU � unit metric

full graph 18 010 173 44 436 348

c =1.5, h = 10.0 1 502 070 12 129 516 9 916 081 225

c =3.0, h = 30.0 457 283 9 314 878 6 912 870 761

c =5.0, h = 100.0 118 852 6 780 910 4 589 877 1 954

Table 6.4: Experimental results of the contraction step of the CALT algorithm on the European road network.

Three di�erent sets of contraction parameters are used for each of the three di�erent metrics, that are analyzed.

Road Networks. As can be observed in Table 6.4 and 6.5, the contraction performs �ne on the

road networks of Western Europe and the USA for all metrics and all contraction parameters, that

are considered. The size of the core decreases substantially with each more aggressive parameter

set, although the ratio of edges to nodes increases. Note, that the number of core-edges and

the number of added shortcuts is almost identical for each contraction, meaning that the core

primarily consists of new edges. As expected, the time required for performing the contraction

increases for more aggressive contraction parameters. The preprocessing times and core-sizes are

virtually independent of the underlying metric of the graph. Thus, similar values are obtained

for all metrics.

Sensor Networks. The algorithm also yields good results on sensor networks as shown in

Table 6.6, even though they get worse on the graphs with a higher average node-degree. For

example, the aggressive contraction of the unitdisk graph with degree 10 still retains about one

tenth of the nodes of the original graph and about half of its edges, whereas the graph with a

degree of 5 can be reduced by 10 to 20 times more, using the same contraction parameters. The

preprocessing times also grow several times longer, the worse the graph can be contracted. This

indicates that the algorithm has problems with this type of graphs where a lot of nodes have a

large degree and thus are not very suited for being bypassed.

Timetable Systems. The same behaviour as for sensor networks can also be seen in Table 6.7

for the timetable information systems, but even more pronounced. The conservative variant

yields good results but the number of core-edges already increases by large amount using the

normal contraction variant and even surpasses the number of edges in the original graph in two

of three instances for the aggressive contraction. This is probably caused by the fairly dense
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nodes edges shortcuts [s]

USA � distance metric

full graph 23 947 347 57 708 624

c =1.5, h = 10.0 2 137 049 15 678 376 15 228 860 361

c =3.0, h = 30.0 719 906 11 119 092 11 049 760 658

c =5.0, h = 100.0 212 693 6 847 852 6 834 922 1 728

USA � travel time metric

full graph 23 947 347 57 708 624

c =1.5, h = 10.0 2 139 942 15 683 760 15 234 892 360

c =3.0, h = 30.0 721 444 11 080 528 11 010 090 984

c =5.0, h = 100.0 217 095 6 922 236 6 909 684 1 745

USA � unit metric

full graph 23 947 347 57 708 624

c =1.5, h = 10.0 2 091 465 15 493 224 15 057 194 367

c =3.0, h = 30.0 672 297 10 693 874 10 628 886 659

c =5.0, h = 100.0 190 266 6 466 056 6 454 152 1 197

Table 6.5: Experimental results of the contraction step of the CALT algorithm on the road network of the USA.

Three di�erent sets of contraction parameters are used for each of the three di�erent metrics, that are analyzed.

structure of these graphs as described above. One can also observe that the execution time of

the aggressive variant is much longer than of the other two variants. This also indicates that the

contracted graph is getting too dense and that the parameter values are probably chosen too

large for the size of this graph.

Grid Graphs. The experimental results for �nal type of analyzed graph categories, grid graphs,

are presented in Table 6.8. These graphs tend to cause the most problems for all of the studied

nodes edges shortcuts [s]

Unitdisk Graph, Deg. 5

full graph 994 980 5 101 842

c =1.5, h = 10.0 49 368 317 286 295 936 27

c =3.0, h = 30.0 11 794 95 586 94 328 28

c =5.0, h = 100.0 2 622 35 096 35 010 30

Unitdisk Graph, Deg. 7

full graph 996 394 6 986 092

c =1.5, h = 10.0 150 768 1 883 622 1 612 900 61

c =3.0, h = 30.0 42 257 959 514 934 780 116

c =5.0, h = 100.0 19 669 752 674 745 012 171

Unitdisk Graph, Deg. 10

full graph 999 887 9 987 286

c =1.5, h = 10.0 411 824 6 572 440 4 087 128 103

c =3.0, h = 30.0 195 002 5 141 664 4 612 652 401

c =5.0, h = 100.0 106 114 4 268 468 4 070 606 758

Table 6.6: Experimental results of the contraction step of the CALT algorithm on sensor networks with varying

average node-degrees. Each of the three networks is analyzed using three di�erent sets of contraction parameters.
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nodes edges shortcuts [s]

Timetable � Railway EU

full graph 1 192 736 3 578 168

c =1.5, h = 10.0 212 906 1 852 640 920 209 17

c =3.0, h = 30.0 105 672 2 602 604 1 300 138 32

c =5.0, h = 100.0 62 703 4 971 266 2 485 049 200

Timetable � VBB

full graph 2 599 953 7 799 430

c =1.5, h = 10.0 403 022 2 535 500 1 247 979 27

c =3.0, h = 30.0 179 115 3 093 936 1 545 064 43

c =5.0, h = 100.0 95 744 6 414 774 3 206 761 228

Timetable � RMV

full graph 2 277 812 6 833 104

c =1.5, h = 10.0 413 536 3 795 694 1 878 006 32

c =3.0, h = 30.0 214 478 5 734 114 2 863 597 75

c =5.0, h = 100.0 133 543 11 699 762 5 848 157 794

Table 6.7: Experimental results of the contraction step of the CALT algorithm on timetable information systems.

Three di�erent sets of contraction parameters are used for each of the three di�erent timetables, that are analyzed.

algorithms, as the experiments have shown. While the contraction works perfectly �ne for the

two-dimensional grid, the algorithm breaks down for the higher-dimensional graphs. Either the

graph is not contracted at all, using the conservative parameters, or it gets considerably expanded

by a large amount of additional shortcuts, using one of the two other variants. The time required

for the contraction also increases tremendously for more aggressive parameter values. As with

the timetable information systems, the contraction of the grid graphs su�ers from their dense

structure and of contraction parameter values that are too large for the size of the graphs.

nodes edges shortcuts [s]

2-dim. Grid Graph

full graph 250 000 998 000

c =1.5, h = 10.0 134 475 1 209 516 1 079 922 5

c =3.0, h = 30.0 73 559 1 918 488 1 890 350 34

c =5.0, h = 100.0 53 674 2 204 120 2 186 034 95

3-dim. Grid Graph

full graph 250 047 1 476 468

c =1.5, h = 10.0 249 749 1 477 628 3512 1

c =3.0, h = 30.0 143 937 3 130 248 2 847 770 24

c =5.0, h = 100.0 118 410 5 808 322 5 676 232 143

4-dim. Grid Graph

full graph 244 904 1 871 144

c =1.5, h = 10.0 244 888 1 871 208 192 1

c =3.0, h = 30.0 219 730 2 375 042 845 246 5

c =5.0, h = 100.0 146 991 5 750 394 5 313 934 82

Table 6.8: Experimental results of the contraction step of the CALT algorithm on grid graphs of varying

dimensions. Each of the three di�erent graphs is analyzed using three di�erent sets of contraction parameters.
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Summary. The contraction works well for sparse graphs. Dense graphs tend to produce too

many shortcuts for more aggressive parameter values and an insu�cient reduction otherwise.

Also, the contraction parameters have to be adjusted with respect to the graph size, e. g. smaller

graphs require smaller values and vice versa. In general, if the preprocessing time gets too long,

the resulting contraction is usually not viable. The parameter set (c = 3.0, h = 30), labeled as

normal variant, seems to yield promising contraction results for all types of graphs.

Query

The performance of the CALT query is analyzed for each graph with each set of contraction

parameters mentioned above, using two di�erent sets of landmarks. One uses 16 landmarks gen-

erated by the maxCover algorithm, the other uses 64 landmarks chosen by the avoid algorithm.

Both sets are selected considering only the core of the graphs. Tables 6.9 - 6.13 list the obtained

results for each type of graphs. The average execution time and number of settled nodes of one

query is listed for both sets of landmarks. The time required for all of the preprocessing steps

(contracting the graph, computing the landmarks, sorting the edges) and the space consump-

tion of the additional information (8 byte/shortcut, 4 byte/landmark, 4 byte/landmark distance)

is shown as well. The respective information for a bidirectional ALT query using the same selec-

tion method and number of landmarks is also listed for each graph as reference.

Proxy nodes of the source and the target are computed on-the-�y at the beginning of each query.

Active landmarks are used to reduce the number of landmarks that have to be considered during

the query. Each time after having settled ten percent of the initially projected distance from the

source to the target, a checkpoint is reached and additional landmarks can be added to the active

set up to a maximum of six active landmarks. This is only done if more nodes have been set-

tled since reaching the last checkpoint than four times the number of available landmarks. Early

pruning is also applied during the second phase of the query. No further optimizations are applied.

Road Networks. The algorithm works �ne on both road networks with all contraction variants

and metrics as shown in Tables 6.9 and 6.10. The preprocessing times always stay far below

the time needed to compute the same number of landmarks for the bidirectional ALT. The

memory requirements are also lowered by a considerable amount, especially for the variant using

64 landmarks, where the landmark distances constitute most of the overhead. Speed-ups of

up to a factor of 10 to 20 depending on the graph and metric are gained using the aggressive

contraction. The distance metric delivers a bit higher speed-ups as do the road maps of the USA

overall, probably due the problematic long-distance ferry connections in Europe. The number of

settled nodes grows for some graphs going from the normal contraction variant to the aggressive

one. This signi�es that the core is getting too small and that the search is restricted to the �rst

phase for too long. Since the query times mostly still decrease this is alleviated by the fast ALT

search in the core, but using even larger contraction parameters should be avoided.
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16 maxCover landmarks 64 avoid landmarks
� Prepro � � Query � � Prepro � � Query �
[s] [B/n] settled [ms] [s] [B/n] settled [ms]

EU � distance metric

bidirected ALT 4 226 128 218 420 127.7 4 203 512 67 150 42.0

c =1.5, h = 10.0 841 17 20 804 20.7 630 50 7 540 8.3

c =3.0, h = 30.0 1 030 8 6 453 9.0 861 19 2 958 4.6

c =5.0, h = 100.0 2 044 5 4 930 5.9 1 867 8 3 850 3.7

EU � travel time metric

bidirected ALT 4 986 128 76 621 50.8 5 521 512 26 630 18.4

c =1.5, h = 10.0 785 17 7 559 8.6 704 50 2 999 3.7

c =3.0, h = 30.0 960 8 2 878 4.6 855 20 1 394 2.4

c =5.0, h = 100.0 1 977 5 3 473 3.5 1 886 8 3 079 2.6

EU � unit metric

bidirected ALT 4 750 128 121 480 74.3 4 844 512 33 420 21.5

c =1.5, h = 10.0 1 042 16 10 758 12.5 757 48 3 369 4.2

c =3.0, h = 30.0 1 092 7 4 211 7.2 966 17 1 629 2.8

c =5.0, h = 100.0 2 186 4 6 010 5.1 2 029 6 5 304 3.2

Table 6.9: Experimental results of the CALT algorithm with 16 maxCover and 64 avoid landmarks on the

European road network. Three di�erent sets of contraction parameters have been analyzed for each metric.

Sensor Networks. The performance on sensor networks also seems to be quite good as can be

seen in Table 6.11. The decreasing quality of the contraction on the unitdisk graphs with a higher

node-degree directly translates to a decrease in the query performance and memory overhead

of the algorithm. Overall, it stays a lot faster than the bidirectional ALT and uses much less

additional memory, even down to only one additional byte per node. But these bene�ts dwindle,

the denser the graphs become. On the degree-10 graph, the CALT preprocessing even takes

16 maxCover landmarks 64 avoid landmarks
� Prepro � � Query � � Prepro � � Query �
[s] [B/n] settled [ms] [s] [B/n] settled [ms]

USA � distance metric

bidirected ALT 6 698 128 278 055 166.9 6 128 512 93 154 60.2

c =1.5, h = 10.0 1 233 17 26 267 25.1 926 51 9 739 10.7

c =3.0, h = 30.0 1 227 8 9 034 11.9 888 19 4 015 6.2

c =5.0, h = 100.0 1 982 3 5 130 6.4 1 823 7 3 735 4.0

USA � travel time metric

bidirected ALT 7 141 128 179 178 113.3 6 983 512 71 880 48.9

c =1.5, h = 10.0 1 331 17 17 932 18.5 976 51 7 381 9.3

c =3.0, h = 30.0 1 551 8 7 093 10.3 1 232 19 3 240 5.8

c =5.0, h = 100.0 2 084 3 4 447 5.6 1 845 7 3 429 4.0

USA � unit metric

bidirected ALT 6 374 128 245 125 148.8 6 506 512 75 836 50.1

c =1.5, h = 10.0 1 211 16 21 279 22.6 945 50 7 057 8.8

c =3.0, h = 30.0 1 216 7 8 585 13.1 886 18 3 024 5.3

c =5.0, h = 100.0 1 523 3 5 927 7.4 1 286 6 4 401 4.4

Table 6.10: Experimental results of the CALT algorithm with 16 maxCover and 64 avoid landmarks on the road

network of the USA. Three di�erent sets of contraction parameters have been analyzed for each metric.
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16 maxCover landmarks 64 avoid landmarks
� Prepro � � Query � � Prepro � � Query �
[s] [B/n] settled [ms] [s] [B/n] settled [ms]

Unitdisk Graph, Deg. 5

bidirected ALT 490 128 10 051 9.3 344 512 3 946 4.5

c =1.5, h = 10.0 50 9 795 0.8 42 28 570 0.6

c =3.0, h = 30.0 34 2 726 0.5 32 7 689 0.5

c =5.0, h = 100.0 32 1 3 363 1.9 31 2 3 348 1.9

Unitdisk Graph, Deg. 7

bidirected ALT 514 128 10 327 11.8 378 512 3 194 4.3

c =1.5, h = 10.0 161 32 1 853 2.7 121 90 799 1.4

c =3.0, h = 30.0 166 13 927 1.4 135 29 670 1.0

c =5.0, h = 100.0 206 9 1 792 1.8 182 16 1 673 1.5

Unitdisk Graph, Deg. 10

bidirected ALT 566 128 11 704 15.5 428 512 3 213 5.2

c =1.5, h = 10.0 479 85 5 136 9.0 301 243 1 699 3.6

c =3.0, h = 30.0 658 62 2 523 5.5 511 137 992 2.6

c =5.0, h = 100.0 980 46 1 650 4.2 827 87 849 2.3

Table 6.11: Experimental results of the CALT algorithm with 16 maxCover and 64 avoid landmarks on sensor

networks. The algorithm has been analyzed with three di�erent sets of contraction parameters for each network.

longer than for the ALT algorithm. This graph is also the only one actually bene�ting from

using 64 landmarks, probably due to the large cores on which landmarks can be distributed more

evenly. The performance on the other two graphs decreases by switching from the normal to

the aggressive contraction. Here, more nodes have to be settled since the core does not cover

enough of the whole graph. The query times also become longer because of the large number

of edges still in the core.

16 maxCover landmarks 64 avoid landmarks
� Prepro � � Query � � Prepro � � Query �
[s] [B/n] settled [ms] [s] [B/n] settled [ms]

Timetable � Railway EU

bidirected ALT 291 128 30 021 14.4 301 512 16 245 9.8

c =1.5, h = 10.0 123 35 5 385 6.3 93 104 3 573 5.0

c =3.0, h = 30.0 158 29 3 335 7.1 87 63 2 088 5.3

c =5.0, h = 100.0 396 40 2 394 10.1 260 60 1 819 8.5

Timetable � VBB

bidirected ALT 604 128 5 6404 27.3 600 512 31 866 19.2

c =1.5, h = 10.0 173 28 8 396 9.4 154 87 5 309 7.0

c =3.0, h = 30.0 174 18 4 622 8.8 123 45 2 830 6.3

c =5.0, h = 100.0 440 24 2 890 11.0 308 39 2 264 9.6

Timetable � RMV

bidirected ALT 556 128 60 004 30.9 552 512 34 551 22.2

c =1.5, h = 10.0 252 36 11 708 15.1 181 106 6 974 10.7

c =3.0, h = 30.0 377 32 7 107 15.8 191 68 4 247 11.3

c =5.0, h = 100.0 1 270 49 5 064 22.2 929 71 3 630 17.9

Table 6.12: Experimental results of the CALT algorithm with 16 maxCover and 64 avoid landmarks on timetable

information systems. Three di�erent sets of contraction parameters have been analyzed for each timetable.
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16 maxCover landmarks 64 avoid landmarks
� Prepro � � Query � � Prepro � � Query �
[s] [B/n] settled [ms] [s] [B/n] settled [ms]

2-dim. Grid Graph

bidirected ALT 65 128 2 362 1.5 54 512 1 093 0.9

c =1.5, h = 10.0 61 103 1 298 1.4 40 310 650 0.9

c =3.0, h = 30.0 113 98 798 1.5 60 211 458 1.1

c =5.0, h = 100.0 192 97 646 1.4 119 180 436 1.1

3-dim. Grid Graph

bidirected ALT 100 128 1 759 2.1 82 512 710 1.2

c =1.5, h = 10.0 102 128 1 835 2.5 83 512 818 1.4

c =3.0, h = 30.0 202 165 1 057 3.0 101 386 557 1.9

c =5.0, h = 100.0 410 242 963 4.2 244 424 511 2.6

4-dim. Grid Graph

bidirected ALT 133 128 1 335 2.6 118 512 662 1.8

c =1.5, h = 10.0 139 128 1 228 2.7 119 512 799 2.1

c =3.0, h = 30.0 171 142 1 275 3.1 129 487 774 2.2

c =5.0, h = 100.0 419 250 843 5.1 251 481 570 3.6

Table 6.13: Experimental results of the CALT algorithm with 16 maxCover and 64 avoid landmarks on grid

graphs. The algorithm has been analyzed with three di�erent sets of contraction parameters for each gird.

Timetable Systems. Table 6.12 shows the experimental results for timetable information sys-

tems. The conservative contraction seems to yield the best results, running about two to three

times faster than the bidirectional ALT and requiring only about one �fth of its space. The nor-

mal contraction reduces the memory overhead further but the query times increase slightly even

though the number of settled nodes decreases. This is caused by the large number of additional

shortcuts in the core that are touched by the query. The aggressive variant increases the query

times further even though they are still well below the query times of the bidirectional ALT. The

memory overhead also starts to increase again. This is caused by the large number of shortcuts

that are stored and that cannot be compensated by the reduced number of landmark distances.

Note that although the number of settled nodes is about 10 times less for CALT compared to

ALT, the query times only decrease by two times. This is due to the extremely large number of

edges the query has to touch.

Grid Graphs. As can be seen in Table 6.13, the CALT algorithm is not very suited for grid

graphs. Viable results can be obtained for two dimensional grids. Even though the query times do

not improve, the memory overhead is lowered, especially when using 64 landmarks. The reason

for the constant query times even with the number of settled nodes decreasing considerably is,

that a lot more edges have to be touched. This is caused by the normal and the aggressive

contraction both yielding about twice as much edges as the original graph. The three and four

dimensional grids do not produce any useful results. The preprocessing and query times are

longer than for the bidirectional ALT and the space saved by having to store fewer landmarks is

compensated by the memory required for saving the additional landmarks.
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Figure 6.2: Comparison of the bidirectional ALT algorithm with 16 maxCover landmarks and the CALT algorithm

with 64 avoid landmarks on the European road network. The results are shown as a Dijkstra rank plot [SS05].

Local Queries. A direct comparison of the ALT algorithm and the CALT algorithm on queries

with di�erent lengths is shown in Fig. 6.2. The European road network with travel times and

contraction parameters of (c = 3.0, h = 30) are used for this analysis. The ALT query with

16 maxCover landmarks yields faster results for shorter queries, since it does not have to deal

with two distinct phases and thus has less computational overhead. But, starting at a Dijkstra

rank of about 210, the CALT algorithm with 64 avoid landmarks prevails by up to and more than

one order of magnitude, regarding the longest queries. Figure 6.3 also indicates, that the CALT

algorithm does not best the ALT algorithm solely because of the larger number of landmarks.

For this comparison both algorithms use 64 landmarks and the results stay principally the same,

only the di�erences between them get marginally less pronounced.
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Figure 6.3: Comparison of the bidirectional ALT algorithm and the CALT algorithm on the European road

network, both using 64 avoid landmarks. The results are presented in the form of a Dijkstra rank plot [SS05].
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Number of Landmarks. Additional analyses have been performed on the European road

network with a travel time metric. Table 6.14 lists the results of varying the set of landmarks. As

can be seen, using the maxCover algorithm for choosing landmarks instead of the avoid algorithm

does not improve the query, only the preprocessing times get longer. Increasing the number of

landmarks generally improves the performance of the query at the cost of a larger memory

overhead and longer preprocessing times. The duration of the landmark computation even

starts to dominate over the time needed for contraction step, which happens sooner for smaller

contraction parameter values. The results scale best using the normal contraction parameters.

Here, even using 512 landmarks, the preprocessing time and the additional space consumption

stay below the requirements of the normal bidirectional ALT algorithm with only 16 landmarks,

but the resulting CALT query times are more than 30 times faster than for bidirectional ALT.

Regarding the number of settled nodes, the conservative approach also seems to pro�t greatly

from an increased number of landmarks, but the query times do not scale as well. This e�ect is

probably due to a larger computational overhead when selecting new landmarks and rebuilding

the priority queues on a larger core and for more queued nodes. The aggressive variant has

exactly the opposite problem: The core obtained by the contraction is too small to really bene�t

from additional landmarks.

Thus, it can be concluded that the choice of the contraction parameter values has a large impact

on how much a CALT query can possibly pro�t from increasing the number of landmarks. A

normal contraction with (c = 3.0, h = 30) seems to yield the most promising and �exible results.

� Prepro � � Query �
[s] [B/n] settled [ms]

EU � travel time metric

c = 1.5, h = 10

64 maxCover landmarks 7 361 50 3 068 4.0

64 avoid landmarks 704 50 2 999 3.7

128 avoid landmarks 1 415 95 2 105 2.6

256 avoid landmarks 3 539 185 1 636 2.0

512 avoid landmarks 10 648 365 1 338 1.9

c = 3.0, h = 30

64 maxCover landmarks 5 406 20 1 378 2.4

64 avoid landmarks 855 20 1 394 2.4

128 avoid landmarks 1 120 35 1 163 2.0

256 avoid landmarks 1 941 65 1 051 1.7

512 avoid landmarks 4 390 125 903 1.4

c = 5.0, h = 100

64 maxCover landmarks 4 912 8 3 049 2.6

64 avoid landmarks 1 886 8 3 079 2.6

128 avoid landmarks 1 986 13 2 992 2.3

256 avoid landmarks 2 257 22 2 953 2.2

512 avoid landmarks 3 070 39 2 909 2.1

Table 6.14: Results, varying the set of landmarks used.
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16 maxCover landmarks
� Prepro � � Query �
[s] [B/n] settled [ms]

EU � travel time metric

c = 5.0, h = 100 1 977 5 3 473 3.5

c = 5.0, h = 200 2 742 4 9 919 5.0

c = 5.0, h = 500 2 948 3 29 084 11.6

c = 5.0, h = 1000 2 948 3 34 700 14.0

c = 10.0, h = 100 2 279 5 3 755 4.0

c = 20.0, h = 100 2 362 5 3 679 3.8

c = 50.0, h = 100 2 307 5 3 670 3.7

Table 6.15: Results, varying the contraction parameters.

Further Contraction Rates. Table 6.15 shows the results of using even larger contraction

parameters than for the aggressive approach with (c = 5.0, h = 100). Using only 16 landmarks,

the preprocessing time is dominated by the contraction step for all analyzed parameters sets.

Increasing the contraction factor c does not alter the results by much, since the graph cannot

be contracted substantially further without having the shortcuts to cover more than 100 hops.

However, by increasing the maximum hop count h, the graph can be contracted even further.

But this signi�cantly decreases the performance of the query, since it is stuck in the �rst phase

for a long time, only performing a normal bidirectional Dijkstra search and not pro�ting from

the shortcuts of the core and the ALT search used in the second phase. Thus it is safe to say,

that on a road map the size of Western Europe the contraction is saturated using the aggressive

parameter set. Graphs of a di�erent size or structure naturally require other parameters for the

contraction to become saturated.

Proxy Nodes and Entry Points. The impact of computing proxy nodes for the source and

target on-the-�y has also been studied on the European road network with a travel time metric.

As shown in Table 6.16, the time that is required and the number of nodes that have to be settled

in order to �nd the proxies is several orders of magnitude less than needed for the whole query.

Therefore it is not an issue to compute them on-the-�y instead of beforehand. The number

of hops denotes the average distance of the source and target to their respective proxy nodes,

� Proxy Nodes � � Entry Points �
[µs] settled hops count settled hops

EU � travel time metric

c = 1.5, h = 10 9.2 19.4 3.2 6.7 54.5 4.7

c = 3.0, h = 30 20.7 64.8 6.6 14.0 295.8 13.2

c = 5.0, h = 100 109.8 359.1 15.5 34.0 2 617.4 40.5

Table 6.16: Additional measurement results of the CALT algorithm on the European road network with a travel

time metric concerning the computation of the proxy nodes and the query up to the entry points into the core.
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measured with unit edge weights. Since these values are very low, the distance approximation

does not su�er much from the use of proxy nodes.

Table 6.16 also provides additional information concerning the application of a two-tiered query.

The average number of nodes that are settled in the �rst phase is shown, as are the number

of entry points into the core that are found and their average hop-distance from the source or,

respectively, the target. These numbers increase as the cores get smaller due to more aggressive

contraction parameters. Note that for the aggressive parameter set, the query spends most of its

time in the �rst phase with regards to the number of settled nodes. But it is still about as fast

as or even a bit faster than the query using normal contraction parameters. This indicates that

the ALT query on the smaller core can just about compensate for the long search in the �rst

phase. Note that the hop-distance can be used as an initial estimate of the contraction quality.

� Prepro � � Query �
[s] [B/n] settled [ms]

EU � travel time metric

bidirectional Dijkstra 0 0.0 5 003 642 2 605.0

c = 1.5, h = 10 232 5.5 448 701 395.8

c = 3.0, h = 30 668 4.6 151 698 183.9

c = 5.0, h = 100 1 809 3.7 48 052 92.6

Table 6.17: Experimental results of the bidirectional Dijkstra and the Contracted Dijkstra algorithms on the

European road network with travel times. Three di�erent sets of contraction parameters have been analyzed.

Contracted Dijkstra. To conclude the analysis of the CALT algorithm, Table 6.17 lists the

results of the Contracted Dijkstra algorithm alone without using the ALT speed-up technique

in the second phase. The performance of the bidirectional Dijkstra is also shown for reference.

Again, the European road network with travel times is used. As can be observed the Contracted

Dijkstra is about one order of magnitude faster than the bidirectional Dijkstra at the expense of

additional preprocessing time and a little memory overhead. This is about the same amount by

which the CALT algorithm surpasses the bidirectional ALT algorithm. Thus, the speed-ups of

both techniques act multiplicative when the algorithms are combined, meaning that they exploit

disjunctive properties of the graphs to obtain their goal.

Summary. As already been reckoned in Sect. 4.3, this combination of a simple hierarchical

technique and a goal-directed one turns out to be a signi�cant step up from its constituting

speed-up techniques in all relevant respects: Preprocessing times, memory overhead and query

times. As already observed for the graph contraction, the parameter values (c = 3.0, h = 30)

seem to be most promising. They yield the most reliable results but can still be tweaked further

for individual graphs. Using 64 avoid landmarks is a good compromise between the gained

speed-up and the additional memory overhead. If space is an issue, using only 16 landmarks still

delivers very good results. If not, using even more landmarks can improve the query performance

further depending on the underling contraction.
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6.3.3 ReachFlags

Considering the performance of the REAL algorithm, that combines the Reach algorithm with

the goal-direction of ALT, it is expected, that the Reach-aware ArcFlags algorithm will perform

similarly, yielding equally good or even better results. It applies the Partial ArcFlags technique

instead of the ALT algorithm, which usually performs a lot better, when applied to the full

graph. It is attempted to reduce the higher preprocessing costs for the ArcFlags by running the

preprocessing of the approximate reach values only for some few iterations, thus bounding and

having to store only low reach values and by using just partial ArcFlags.

Setup. The approximate Reach preprocessing by Goldberg et al. [GKW07] is used to compute

node-reach values and shortcuts. The graph is partitioned with the SCOTCH algorithm [Pel07],

using one local optimization run (see Sect. 5.1). Here, the full graph with shortcuts is partitioned

and the resulting node-regions are used for the core, since this yields shorter preprocessing times

for some unknown reason. ArcFlags are computed with the Centralized ArcFlags algorithm. The

query only applies early pruning to speed-up the search.

Tables 6.18 - 6.22 list the results of the Reach-aware ArcFlags algorithm on di�erent types of

graphs. For each graph two di�erent core-sizes are analyzed, one obtained by running two iter-

ations of the approximate Reach preprocessing algorithm, the other by running three iterations.

The results of the normal Reach algorithm are also shown for reference. The number shortcuts

added by the Reach preprocessing is listed as well as the respective core-sizes. The maximum

reach value bound, when stopping the preprocessing after several iterations, is also given. In

case of the Reach algorithm, the initial bound value is listed. The preprocessing times sum

up the times needed to compute the reach values and shortcuts, to partition the graph and to

compute the ArcFlags on the core. The overhead consists of the additional space required by the

shortcuts (8 byte each), the reach values (4 byte/node), the node-regions (2 byte/core-node)

and the ArcFlags (16 byte/core-edge in each search direction).

Road Networks. The road networks of Europe and of the USA have been analyzed for the

three available metrics: distance, travel times and unit. The experimental results are shown in

Table 6.18 and 6.19. As can be observed, the preprocessing times increase using the Partial

ArcFlags approach. Apparently, stopping the Reach preprocessing after the second or the third

iteration cannot compensate the additional time required to partition the graph and to compute

ArcFlags. With an even smaller core, the preprocessing times decrease again. The memory

overhead acts in a similar fashion. Both values are directly related to the core-sizes. Apparently,

the unit metric yields the smallest core-sizes and the travel time metric the largest ones after a

�xed number of iterations of the Reach preprocessing. This discrepancy is more pronounced for

the European road network. Here, the core-sizes are even larger than for the USA regarding the

ratio of core-nodes to the total number of nodes. The query times of ReachFlags are usually

a lot faster than for Reach alone. The speed-up is more pronounced the larger the core is,
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reach � Core � � Prepro � � Query �
bound shortcuts nodes edges [s] [B/n] settled [ms]

EU � distance metric

Reach algorithm 3 000 45 428 342 4 656 24 18 644 22.08

2 iterations 9 000 39 557 344 627 069 7 119 838 73 554 34 5 280 3.43

3 iterations 27 000 42 675 512 288 537 4 646 592 31 687 31 5 224 4.05

EU � travel time metric

Reach algorithm 2 500 38 045 564 4 200 21 7387 6.24

1 iterations 2 500 27 058 950 2 678 156 11 065 316 24 020 36 1149 0.62

2 iterations 7 500 34 366 006 958 618 5 955 840 13 756 30 1168 0.76

3 iterations 22 500 37 263 178 261 801 2 385 494 6 425 25 2797 2.24

4 iterations 67 500 37 897 178 35 674 395 604 4 152 22 5718 5.34

EU � unit metric

Reach algorithm 20 30 373 276 3 918 17 6 637 5.97

2 iterations 60 29 698 866 272 501 2 856 382 6 606 22 1 605 1.16

3 iterations 180 30 216 408 33 472 415 612 3 954 18 4 699 4.41

Table 6.18: Results of the Reach-aware ArcFlags algorithm with 128 regions on the European road network

with travel times, a distance metric and a unit metric. Several di�erent core sizes have been analyzed.

ranging anywhere between a factor of 3.7 to 8.2 for iteration-2 cores. Switching from two to

three iterations only really a�ects the query times of the graphs with a unit metric and of the

European road network with travel times. Overall, the query times are a lot slower for the graphs

with a distance metric than for the other ones. For the European road network with travel times,

two additional core-sizes are also analyzed, one obtained after the �rst iteration of the Reach

preprocessing, the other after four iterations. As can be seen, increasing the core-size does not

improve the query times by much but requires a lot more preprocessing time and additional

memory. Further decreasing the core-size, on the other hand, reduces both values to be similar

to the Reach algorithm, but the query time increases considerably.

reach � Core � � Prepro � � Query �
bound shortcuts nodes edges [s] [B/n] settled [ms]

USA � distance metric

Reach algorithm 43 000 51 546 204 5 462 21 18 233 20.31

2 iterations 129 000 45 565 848 768 219 7 305 646 214 769 29 7 417 4.45

3 iterations 387 000 48 643 866 367 416 4 787 388 113 815 27 6 849 4.69

USA � travel time metric

Reach algorithm 80 000 42 905 650 3 729 18 4 261 3.90

2 iterations 240 000 39 554 808 794 747 5 743 420 19 065 25 1 636 1.02

3 iterations 720 000 42 070 634 261 070 2 398 608 7 351 21 1 844 1.33

USA � unit metric

Reach algorithm 27 37 881 910 3 635 17 6 533 6.60

2 iterations 81 36 702 490 260 876 2 538 138 10 345 20 2 590 1.78

3 iterations 243 37 580 146 64 626 807 114 4 690 18 3 366 2.85

Table 6.19: Experimental results of the Reach-aware ArcFlags algorithm with 128 regions on the road network

of the USA with three di�erent metrics. Using a larger and a smaller core size has been analyzed for these graphs.
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reach � Core � � Prepro � � Query �
bound shortcuts nodes edges [s] [B/n] settled [ms]

Unitdisk Graph, Deg. 5

Reach algorithm 1 700 1 946 524 175 20 1 185 0.88

2 iterations 5 100 1 897 758 9 438 77 320 202 22 616 0.44

3 iterations 15 300 1 928 974 3 006 33 180 196 21 926 0.76

Unitdisk Graph, Deg. 7

Reach algorithm 1 145 4 767 202 2 541 42 13 790 15.88

2 iterations 3 435 4 271 928 72 609 924 938 2 849 68 4 301 3.68

3 iterations 10 305 4 479 856 38 336 481 428 2 156 56 9 190 9.22

Unitdisk Graph, Deg. 10

Reach algorithm 890 8 775 562 112 806 74 56 910 83.69

2 iterations 2 670 6 598 278 265 246 4 074 898 55 823 188 15 605 14.45

3 iterations 8 010 7 440 600 159 660 2 346 450 31 430 139 36 224 41.64

Table 6.20: Experimental results of the Reach-aware ArcFlags algorithm with 128 regions on a sensor network

with average node-degrees of 5, 7 and 10. Two core sizes have been analyzed for a graph with each degree.

Sensor Networks. The experimental results for sensor networks are shown in Table 6.20. All

relevant measurement values increase with a growing density of the graph, up to several orders

of magnitude. This increase is also re�ected in the core-sizes. For the degree-5 senor network,

the cores contain just about 0.9% or, respectively, 0.3% of all nodes, whereas the degree-10

graph has core-sizes of about 25.0% or, respectively, 15.0%. Stopping the Reach preprocessing

after the second or after the third iteration and computing ArcFlags for the core increases the

memory overhead but does not change the preprocessing times by much for the two sparser

graphs. For the degree-10 graph, the preprocessing even becomes faster since the largest part of

the Reach preprocessing is skipped, but it also has the highest memory overhead due to many

shortcuts. Using Partial ArcFlags, the query times get considerably faster on all graphs. This is

more pronounced for applying only two iterations of the preprocessing than three.

reach � Core � � Prepro � � Query �
bound shortcuts nodes edges [s] [B/n] settled [ms]

Timetable � Railway EU

Reach algorithm 180 5 784 656 3 516 43 9 061 9.67

2 iterations 540 2 796 940 563 846 2 405 312 81 392 88 7 617 3.57

3 iterations 1 620 4 292 272 286 805 1 783 622 74 608 81 4 856 3.04

Timetable � VBB

Reach algorithm 60 11 324 398 10 755 39 26 951 29.03

2 iterations 180 6 952 968 864 733 3 602 444 - 70 - -

3 iterations 540 8 720 498 508 571 2 595 400 - 63 - -

Timetable � RMV

Reach algorithm 50 11 756 266 16 765 45 38 631 44.96

2 iterations 150 5 752 322 1 123 066 4 980 590 - 95 - -

3 iterations 450 8 368 332 653 895 3 887 410 - 89 - -

Table 6.21: Experimental results of the Reach-aware ArcFlags algorithm with 128 regions on three di�erent

timetable information systems. Two core sizes have been analyzed for each of these timetable networks.
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reach � Core � � Prepro � � Query �
bound shortcuts nodes edges [s] [B/n] settled [ms]

2-dim. Grid Graph

Reach algorithm 1 750 1 190 342 159 42 3 691 2.98

2 iterations 5 250 1 052 908 22 567 247 656 234 70 1 977 1.27

3 iterations 15 750 1 144 232 7 210 99 354 156 53 3 365 2.85

3-dim. Grid Graph

Reach algorithm 500 1 605 636 13 041 55 21 832 22.45

2 iterations 1 500 777 746 148 002 1095086 14 403 170 13 718 8.80

3 iterations 4 500 1 367 374 35 089 387430 13 444 98 21 834 25.17

4-dim. Grid Graph

Reach algorithm 270 1 398 310 124 307 50 20 097 28.09

2 iterations 810 83 312 206 586 1 412 586 73 093 193 16 623 14.35

3 iterations 2 430 656 838 111 512 877 412 124 006 141 20 097 26.54

Table 6.22: Experimental results of the Reach-aware ArcFlags algorithm with 128 regions on two-, three- and

four-dimensional grid graphs. The impact of two di�erent core sizes have been analyzed for each of these graphs.

Timetable Systems. Regarding the timetable information systems in Table 6.21, only the long-

distance connections of the European railway network are analyzed completely. The ArcFlags

computation on the two other graphs terminated prematurely due to memory constraints. This

is a known problem of the current implementation of the Centralized ArcFlags algorithm used.

As can be observed from the remaining data, the Reach preprocessing creates more shortcuts

than for any of the previous types of graphs, with regards to number of edges in the original

graph. After two iterations there are almost as much shortcuts as original edges and for the full

Reach preprocessing, there are two times more shortcuts than original edges. This is re�ected in

the large memory overhead of the Reach algorithm with about 40 bytes/node. Adding ArcFlags

doubles this amount, approximately. The actual core-sizes after the second iteration are about

one third to one half of the original graph, regarding the number of nodes. The third iterations

shrinks them by an additional factor of 1.5 to 2.0. The query times on the European railway

network decrease by about a factor of three, using the Partial ArcFlags approach, with three

iterations being the overall better choice for the Reach-aware ArcFlags algorithm.

Grid Graphs. Table 6.22 lists the experimental results of the Reach-aware ArcFlags algorithm

on grid graphs. As can be seen, using an iteration-2 core speeds-up the query times by about

a factor of two on all grids graphs, but at the cost of a large increase in memory consumption.

Switching to an iteration-3 core, this overhead is reduced, but it is still much larger than for

the Reach algorithm. Furthermore, the queries are no longer faster than simply using the Reach

algorithm. At least, their preprocessing times also stay similar to the ones of the Reach algorithm.

Interestingly, using the iteration-2 cores, the preprocessing times increase for the two- and three-

dimensional grids, albeit only slightly for the latter one, whereas they decrease substantially for

the four-dimensional grid graph. This is due to the two initial iterations taking most of the Reach

preprocessing time for the 2D- and 3D-grids.
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Summary. Overall, Reach-aware ArcFlags produces substantial speed-ups compared to Reach

alone, up to a factor of about 10. But this comes at the cost of usually much longer prepro-

cessing times and an increased memory overhead. The assumption that the shortened Reach

preprocessing would compensate for the additional ArcFlags preprocessing did only prove true for

dense graphs and using two iterations. However, the main disadvantage of this technique is the

di�culty to estimate its performance in advance given the parameter values. The performance is

directly dependent on the size of the core, which in turn depends on the number of iterations of

the Reach preprocessing and the initial reach bound. But the core-size cannot be easily derived

from these two values. In particular, applying the same values to di�erent graphs yields widely

varying core-sizes.

To deal with this problem, an alternative approach to the one studied here could be taken: The

Reach preprocessing is performed until after an iteration step, the reach values for a �xed number

of nodes, or more, are bound. ArcFlags are only computed for the intended core-size; additional

bound reach values are either discarded or can still be applied to improve the query.

6.3.4 HiFlags

The Hierarchy-aware ArcFlags algorithm appears to be a very potent speed-up technique for

�nding exact shortest paths. Its performance depends on two factors, the quality of the search

graph built with the Contraction Hierarchy algorithm and the size of the subgraph for which Ar-

cFlags are computed. The former algorithm and a set of aggressive parameters are provided by

Geisberger and applied `out of the box'. Further explanations of this algorithm and its parameters

can be found in [Gei08]. All search graphs but the one for the four-dimensional grid have been

built using the same set of parameters. This is not optimal, since the aggressive parameters are

optimized for road networks with a travel time metric, but very short query times are obtained,

nonetheless. More conservative parameters had to be used for the four-dimensional grid graph,

since otherwise, the preprocessing has taken too long (aborted after two weeks). The impact of

varying the core-size is analyzed in greater detail for the European road network with travel times,

after presenting an overview of all graph types. For all graphs, ArcFlags are computed using

a graph partition of 128 regions, generated on the graph-cores with the SCOTCH partitioning

algorithm [Pel07] and applying one local optimization run.

Setup. Tables 6.23 - 6.27 show the results of the Hierarchy-aware ArcFlags algorithm on several

di�erent types of graphs. The results of Highway Node Routing, using the same search graph are

also given for reference. Two di�erent core-sizes are analyzed, one using 0.5% of the nodes of the

full search graph (economic variant) and one using 5.0% of the nodes (generous variant). The

sizes of the di�erent cores are listed for each graph. In case of Highway Node Routing, the size of

the whole search graph, on which the queries are performed, is given instead. Note, that this size

is usually smaller than the size of the original graph, due to the removal of unnecessary edges.

The preprocessing time listed for each variant consists of the time to build the search graph with
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the Contraction Hierarchy algorithm, the time to divide the core into partitions and the time

to compute the ArcFlags. For Highway Node Routing, only the construction time of the search

graph is relevant. The speci�ed overhead values consist of the savings due to a decrease in the

number of graph edges (8 byte/edge) and the costs for storing the regions (2 byte/node) and the

ArcFlags (8 byte/edge in each search direction) for the core. The overhead can reach negative

values since only a search graph is saved with all unnecessary edges removed (see Sect. 2.3.5).

Note that the actual number of edge objects that have to be saved varies slightly due to edge

compression (see App. A). The average number of settled nodes and the average search times

that are listed have been obtained with a query using the stall-on-demand technique and no

further optimizations.

Road Networks. The algorithm performs extremely well on road networks as can be seen in

Table 6.23 for Europe and in Table 6.24 for the USA. As expected, the Contraction Hierarchy

algorithm produces the best results for graphs with the travel time metric. The worst ones are

obtained for graphs with the distance metric. This is re�ected in all relevant values, like the

preprocessing time, the size of the core and the performance of the Highway Node Routing query.

Interestingly, this discrepancy is much more pronounced for Europe than for the USA. By using

Hierarchy-aware ArcFlags the performance of the query can be increased even further. The query

times for all metrics stay well below 100 µs, using a core-size of 5.0%. The large discrepancy

between travel times and the distance metric also becomes smaller. But this comes at the cost

that the graphs with a distance metric require the most additional preprocessing time and space.

This is due to their cores being a lot larger compared to the others with regards to the number

of edges. Here, the economic variant with a core-size of 0.5% could be a good compromise,

yielding query times of only about a factor of three worse, still below 220 µs, but requiring about

�ve times less additional costs.

� Core � � Prepro � � Query �
nodes edges [s] [B/n] settled [µs]

EU � distance metric

Highway Node Routing 18 010 173 44 285 842 5 335 -0.07 1 650 4 188.9

core-size 0.5% 90 051 3 935 856 13 486 6.96 175 218.2

core-size 5.0% 900 509 15 187 782 61 342 27.11 67 86.4

EU � travel time metric

Highway Node Routing 18 010 173 38 317 936 1 515 -2.72 355 249.3

core-size 0.5% 90 051 1 501 868 1 888 -0.03 86 64.0

core-size 5.0% 900 509 8 239 136 7 449 12.07 43 28.2

EU � unit metric

Highway Node Routing 18 010 173 40 601 813 1 339 -1.70 402 304.3

core-size 0.5% 90 051 1 643 670 1 968 1.32 119 94.3

core-size 5.0% 900 509 9 951 976 11 003 16.54 50 34.4

Table 6.23: Experimental results of the Hierarchy-aware ArcFlags algorithm on the European road network with

three di�erent metrics. An economic variant (0.5% core) and a generous variant (5.0% core) are presented.
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� Core � � Prepro � � Query �
nodes edges [s] [B/n] settled [µs]

USA � distance metric

Highway Node Routing 23 947 347 54 055 295 3 421 -1.22 953 1 496.5

core-size 0.5% 119 737 2 768 598 11 135 2.49 148 153.3

core-size 5.0% 1 197 368 14 572 886 67 965 18.35 63 63.1

USA � travel time metric

Highway Node Routing 23 947 347 50 910 897 1 633 -2.27 278 185.3

core-size 0.5% 119 737 1 122 592 2 158 -0.76 93 67.7

core-size 5.0% 1 197 368 9 893 012 13 709 11.05 46 29.8

USA � unit metric

Highway Node Routing 23 947 347 49 155 721 1 718 -2.86 480 434.0

core-size 0.5% 119 737 1 488 734 3 092 -0.86 98 78.6

core-size 5.0% 1 197 368 9 616 862 16 094 10.09 50 37.1

Table 6.24: Experimental results of the Hierarchy-aware ArcFlags algorithm on the road network of the USA

with three di�erent metrics. An economic variant (0.5% core) and a generous variant (5.0% core) are presented.

Sensor Networks. The results obtained for sensor networks vary greatly with the average node-

degree, as can be observed in Table 6.25. In general, the performance gets worse the denser

the graphs become. The construction of the search graph takes substantially longer for higher

average node-degrees and the memory savings become less, since more shortcuts are added. The

preprocessing times probably `explode' since after each node removal all neighbours of this node

have to be considered and updated. And, because of the high average node-degree this results

in many additional operations. The query times of Highway Nodes Routing are only good for

the degree-5 network with 136.5 µs. For the two other networks only 1.8 ms or, respectively,

11.5 ms are achieved, which is in the same general area as ALT or even slower (see Table 6.11).

By using economic HiFlags, the query times are reduced to about one third with virtually no

additional preprocessing time, only the memory overhead increases slightly. This increase is more

� Core � � Prepro � � Query �
nodes edges [s] [B/n] settled [µs]

Unitdisk Graph, Deg. 5

Highway Node Routing 994 980 3 446 761 94 -13.31 236 136.5

core-size 0.5% 4 975 58 862 103 -11.40 66 43.2

core-size 5.0% 49 749 362 322 183 -1.55 43 26.2

Unitdisk Graph, Deg. 7

Highway Node Routing 996 394 5 629 942 1 249 -10.89 1 089 1 800.2

core-size 0.5% 4 982 244 048 1 368 -3.04 424 568.1

core-size 5.0% 49 820 1 187 948 3 150 27.36 112 117.9

Unitdisk Graph, Deg. 10

Highway Node Routing 999 887 9 512 599 34 274 -3.80 2 475 11 515.0

core-size 0.5% 5 000 599 222 34 847 15.39 1 457 4 702.9

core-size 5.0% 49 995 2 765 204 55 429 84.80 293 525.6

Table 6.25: Experimental results of the Hierarchy-aware ArcFlags algorithm on three di�erent sensor networks

with varying densities. An economic variant (core-size 0.5%) and a generous variant (core-size 5.0%) are shown.
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pronounced for denser networks since their cores contain more edges, for which ArcFlags have to

be stored. For example, the degree-10 graph has about ten times as much edges as the degree-5

graph. The huge di�erences in query times that are observed for Highway Node Routing, about

two orders of magnitude, can be reduced to a factor of about 20 by using the generous HiFlags.

Even on the on the degree-10 network, query times well below 1 ms are obtained. But this boost

in performance comes at the cost of an additional �ve hours of preprocessing time and a memory

overhead of about 85 bytes/node. The gain in speed-up by switching from the economic variant

to the generous variant is less pronounced for the other two graphs but the additional costs also

stay a lot smaller. The search graph for the degree-5 sensor network even still retains an e�ective

negative memory overhead compared to the original graph size.

Timetable Systems. As shown in Table 6.26, the performance of Highway Node Routing

is already quite good on timetable information systems with query times of 0.3 ms to 0.6 ms,

depending on the actual graph. Preprocessing times also stay short, between 10 to 40 min.

There is a small e�ective memory overhead since the number of edges cannot be reduced below

their number in the original graph. There are only relatively few shortcuts added to the search

graph, but there are also only few unnecessary edges that can be removed. The performance is

further increased by using Hierarchy-aware ArcFlags, but the impact of adding ArcFlags to the

query is smaller than for the previous types of graphs. This is probably due to a large search

space in the �rst phase of the query. This becomes even more pronounced for grid graphs as

shown in the next paragraph. The economic variant of HiFlags decreases the query times by a

factor of about two to three without increasing the preprocessing time and memory requirements

by much. By using the generous variant, query times can be improved by about one order of

magnitude but the preprocessing times also increase substantially by about 10 to 20 times, as

does the space consumption by about seven to ten additional bytes per node.

� Core � � Prepro � � Query �
nodes edges [s] [B/n] settled [µs]

Timetable � Railway EU

Highway Node Routing 1 192 736 3 954 967 486 2.53 376 310.4

core-size 0.5% 5 964 151 552 536 6.60 229 196.1

core-size 5.0% 59 637 791 750 1 743 23.87 71 45.6

Timetable � VBB

Highway Node Routing 2 599 953 7 737 971 1 636 -0.19 416 402.3

core-size 0.5% 13 000 391 660 2 008 4.64 125 120.6

core-size 5.0% 129 998 1 554 216 10 456 19.04 49 37.7

Timetable � RMV

Highway Node Routing 2 277 812 7 894 162 2 584 3.73 546 583.2

core-size 0.5% 11 390 402 816 2 863 9.40 244 246.8

core-size 5.0% 113 891 1 834 072 11 946 29.59 77 62.7

Table 6.26: Experimental results of the Hierarchy-aware ArcFlags algorithm on three di�erent time-expanded

timetable information systems. An economic variant (0.5% core) and a generous variant (5.0% core) are shown.
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� Core � � Prepro � � Query �
nodes edges [s] [B/n] settled [µs]

2-dim. Grid Graph

Highway Node Routing 250 000 995 373 70 -0.08 418 293

core-size 0.5% 1 250 28 226 73 3.54 274 213

core-size 5.0% 12 500 184 876 124 23.68 101 69

3-dim. Grid Graph

Highway Node Routing 250 047 1 939 138 13 567 14.80 2 177 6 603

core-size 0.5% 1 251 114 610 13 585 29.48 2 836 10 165

core-size 5.0% 12 503 764 222 14 632 112.70 772 1 292

4-dim. Grid Graph

Highway Node Routing 244 904 2 762 507 133 734 29.12 14 501 60 049

core-size 0.5% 1 225 42 002 133 741 34.62 30 848 130 996

core-size 5.0% 12 246 585 688 135 630 105.75 29 811 124 801

Table 6.27: Experimental results of Hierarchy-aware ArcFlags on two-, three- and four-dimensional grid graphs.

Two variants, an economic one (core-size 0.5%) and a generous one (core-size 5.0%) have been analyzed.

Grid Graphs. As can be seen in Table 6.27, the performance of HiFlags on grid graphs is not

very good. Useful results are only obtained for the two-dimensional grid. The main problem of

the two other graphs seems to be a de�cient search graph. The Contraction Hierarchy algorithm

apparently is not able to produce viable results for higher-dimensional grids, at least for the

applied parameter set. Furthermore, the preprocessing slows down considerably towards the end

of the contraction. The resulting search graphs are even larger than the original graphs with

regards to the number of edges. This is re�ected in the extremely long query times of Highway

Nodes Routing. Using the HiFlags algorithm instead does not increase the preprocessing times

by much, but the query times do not always improve. In particular, the results are very bad for

the four-dimensional grid, since the query takes about twice as long with Hierarchy-aware Ar-

cFlags than by using Highway Node Routing. This is due to the �rst phase of the HiFlags query

having to exhaustively settle all entry points into the core before continuing with the second

phase. On dense graph, this can easily amount to a lot of nodes that have to be settled. For

the four-dimensional graph, 27 195 nodes are settled and 9 383 entry points are found during the

�rst phase of the query.

Local Queries. A comparison of Highway Node Routing and the generous variant of Hierarchy-

aware ArcFlags on the European road network with travel times is shown in Fig. 6.4 and 6.5,

using the Dijkstra Rank representation. A locality optimization is used for the queries of both

algorithms. Up to a Dijkstra Rank of about 215 both speed-up techniques perform similarly with

HiFlags being a bit slower due to its additional overhead. For even longer queries the impact

of using ArcFlags on the core begins to show. The longer they get, the larger the fraction

of the query becomes on which ArcFlags are used. Thus, the e�ect of the ArcFlags gradually

increases and the query times become shorter and shorter. The Fig. 6.5 further emphasizes the

growing speed-up of the HiFlags algorithm compared to Highway Node Routing. Here, it can
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Figure 6.4: Comparison of the performance of Highway Node Routing and Hierarchy-aware ArcFlags (5.0% core)

on the road network of Europe with a travel time metric, using the Dijkstra rank methodology [SS05].

also be observed, that the variance in the query times becomes considerably smaller and the

outliers get less pronounced, the more the ArcFlags take e�ect, resulting in a more reliable query

performance.

In addition, the performance of the economic and the generous variant of the Hierarchy-aware

ArcFlags algorithm are compared in Fig. 6.6 and 6.7. For small query distances both variants

need about the same average amount of time. More time is needed with growing distances

until the ArcFlags start to contribute. This happens at smaller Dijkstra Ranks for the generous

variant, since its core is larger and ArcFlags can be used earlier. The generous variant stays

faster than the economic one, but the di�erence in query times becomes almost constant for the

longest query distances. This is due to both variants performing equally well in each phase of

the query, but the economic one staying longer in the �rst phase, which takes more time.
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Figure 6.5: Same data set as in Figure 6.4 but using a linear scale for the query time axis.
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Figure 6.6: Comparison of two variants of the HiFlags algorithm. One uses a core-size of 0.5% (economy variant)

and the other one a core-size of 5.0% (generous variant). The results are presented as a Dijkstra rank plot [SS05].

Core Sizes. Table 6.28 lists additional results of the HiFlags algorithm, concentrating on the

impact of using di�erent core-sizes on the query. The European road network with a travel time

metric has been chosen for these analyses since the parameters provided for the Contraction

Hierarchies algorithm are optimized for this type of graph. The queries have been performed

using a locality optimization, switching o� the unroll-loops compiler �ag and applying further

optimizations to the query code (smaller data types, extensive use of call-by-reference, . . . ).

Two sets of data have been taken, one using stall-on-demand (see Sect. 2.3.5) and one with

this technique switched o�. As shown, the query performance can be adjusted precisely to one's

needs by varying the core-size. Additional speed-up comes at the cost of longer preprocessing

times and a larger memory overhead. Only up to a core-size of about 0.5% the required space

stays less than needed for the full graph without preprocessed information and with just two
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Figure 6.7: Same data set as in Figure 6.6 but using a linear scale for the query time axis.
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� Core � � Prepro � � Query � � Query �
(with s.o.d.) (without s.o.d.)

nodes edges [s] [B/n] settled [µs] settled [µs]

EU � travel time metric

Highway Node Routing 18 010 173 38 317 936 1 515 -2.72 355 180.0 931 286.5

core-size 0.5% 90 051 1 501 868 1 888 -0.03 86 48.8 111 44.2

core-size 1.0% 180 102 2 579 634 2 442 1.90 67 36.4 78 30.6

core-size 2.0% 360 204 4 271 378 3 704 4.94 54 28.9 59 22.9

core-size 5.0% 900 509 8 239 136 5 934 12.07 43 22.8 45 17.4

core-size 10.0% 1 801 018 13 859 566 14 659 22.16 37 19.6 39 14.8

core-size 20.0% 3 602 035 23 509 130 32 148 39.52 34 17.4 35 12.9

Table 6.28: Further results of the Hierarchy-aware ArcFlags algorithm on the European road network with travel

times. The e�ects of additional core sizes and the impact of the stall-on-demand (s.o.d.) technique are analyzed.

Locality optimization and further code tuning have also been applied to increase the query performance.

hours the preprocessing time stays reasonable up to a core-size of about 5.0%. If necessary,

the query performance can be improved down to just 12.9 µs on average using a core-size of

20%, making the Hierarchy-aware ArcFlags algorithm the fastest traditional technique for �nding

shortest-paths in road networks. It can also be observed, that the stall-on-demand technique

is actually impeding the performance of the query due to the additional overhead. Thus, on

queries with very few settled nodes, it is better to switch o� stall-on-demand even though the

overall number of settled nodes increases slightly. Apparently, it does not pay o� to apply the

stall-on-demand technique to Hierarchy-aware ArcFlags. The number of nodes of the contracted

shortest paths that are computed averages to about 21.8. This implies, that the most aggressive

variant of the HiFlags algorithm has to visit only 12 nodes or about one third more nodes than

absolutely necessary.

Entry Points. Further information about the �rst phase of the query for all analyzed core-sizes

can be found in Table 6.29. The number of entry points into the core and number of nodes

that are settled in this phase are listed. As expected, both values decrease with larger core-sizes.

� Query � � Query �
(with stall-on-demand) (without stall-on-demand)

settled settled entry settled settled entry
overall phase 1 points overall phase 1 points

EU � travel time metric

core-size 0.5% 86 60 21 111 76 30

core-size 1.0% 67 41 14 78 47 18

core-size 2.0% 54 29 10 59 31 12

core-size 5.0% 43 18 7 45 19 8

core-size 10.0% 37 13 5 39 13 6

core-size 20.0% 34 8 4 35 8 4

Table 6.29: Additional information about the �rst phase of the HiFlags query, regarding the number of settled

nodes and the number of entry points into the core. Results are shown with and without using stall-on-demand.
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Surprisingly, the number of nodes that are settled in the second phase almost stays constant, at

least when using stall-on-demand. This implies that a reasonable lower bound for the number of

settled nodes for even larger core-sizes than 20% is given by their di�erence in the �rst phase and

for the whole query. Here, this amounts to 26 nodes (only four nodes short of the optimum),

meaning that the performance of the query can be increased by about an additional 25% at most.

Number of Regions. By using less than 128 regions to compute the ArcFlags, the query

performance should not deteriorate by much, since the graph-cores are small, in general, but the

memory usage improves considerably. Preliminary experiments indicate query times of 47.9 µs

and 31.4 µs on the European road network with travel times, using the generous contraction

and 16 or 64 regions, respectively. For the VBB timetable network 82.1 µs and 45.6 µs are

obtained. The results for 64 regions are only slightly worse than with 128 and using only 16

regions still performs better than the economic variant with 128 regions. The main bene�t,

however, is the small memory overhead of -1.7 and 1.1 bytes/node for Europe and 4.7 and 1.1

bytes/node for the VBB timetable network. Unfortunately, the preprocessing times increase in

all cases. This is due to the concrete implementation of the centralized ArcFlags preprocess-

ing routine used, which has problems with regions that feature a large number of boundary nodes.

ArcFlags Compression. Another way to improve the memory usage of the algorithm is to

apply an ArcFlags compression strategy, as described in Sect. 5.3 and applied by [Hil07, BD08].

Preliminary analyses for HiFlags indicate an average increase in query times by about 10%. Note

that the query times even improve on small graphs like on the road network of the Netherlands.

This is probably due to the small number of di�erent ArcFlag labels. Thus, the whole ArcFlags

lookup-table can be stored in the cache, reducing access times by a large amount.

Summary. Hierarchy-aware ArcFlags turns out to be an extremely potent speed-up technique

for sparse graphs. Not only are the query times among the fastest currently achieved, the pre-

processing times and the memory overhead are also extremely low. Comparing the performance

of Highway Node Routing to HiFlags, while both of them use the same hierarchy, HiFlags turns

out to be more robust. Whereas the query times of Highway Node Routing vary greatly by

just applying di�erent metrics, the results of Hierarchy-aware ArcFlags stay closer together (see

Table 6.23). One major drawback of Hierarchy-aware ArcFlags on dense graphs is the expen-

sive computation of the hierarchy. To improve upon this bottleneck, the applied Contraction

Hierarchies could be terminated prematurely if the contraction steps get to slow. This usually

happens for the last 10 - 20% of nodes on dense graphs. ArcFlags are then applied at least these

remaining nodes to speed-up the search on the top-most level.

A particularly noteworthy advantage of Hierarchy-aware ArcFlags is the potential to precisely

adjust the memory overhead and the preprocessing times of the algorithm through the core-size,

leading either to a faster query or to a more economic one. Core-sizes of 0.5% and 5.0% have

turned out to be good values for these particular goals.
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6.4 Comparison

An overview of the performances of the speed-up techniques introduced in this thesis is given

in Table 6.30. Here, they are compared to several existing techniques, grouped by hierarchical

methods, goal-directed methods and previous combinations. Where applicable, the performance

of the actual implementation used in this thesis is given as well as the results of the original

publication. As previous comparisons have shown, the di�erent experimental setups perform

about equally so that the obtained times can be roughly compared to each other. Note that the

presented results for this thesis have been obtained without applying further optimizations like

exploiting locality e�ects. This would increase the listed performances by an additional 10 - 20%

as shown for Hierarchy-aware ArcFlags in Sect. 6.3.4.

The table only lists the results for the road networks of Europe and the USA using travel times,

or more generally speaking, for sparse graphs with an underlying hierarchy. The performance of

the algorithms varies considerably for other types of graphs as can be seen in the previous tables

in this chapter. As a rule of thumb, one can say that Transit Node Routing performs best on

road networks, Hierarchy-aware ArcFlags on other sparse graphs and CALT on dense graphs up

to a certain point, where simpler algorithms are to be preferred.

General Findings. A more general but still noteworthy observation concerns the query times

on the European road network, on the one hand, and the road network of the USA, on the

other. Goal-directed techniques seem to produce better results on the European road network,

whereas the hierarchical techniques favour the road network of the USA. One particular di�er-

ence between these two graphs are long-distance connections that only exist for Europe, in the

form of ferry crossings. Apparently, hierarchies have problems incorporating them into their level

structure, while goal-direction can directly exploit such edges that cover large parts of the graph.

Regarding combinations of the two approaches, no clear statement can be made. Some favour

the one graph, some the other.

CALT. Both variants of the CALT algorithm take a remarkable position in this �eld of speed-up

techniques. Although they only surpass some of the older techniques and are surpassed by all of

the newer ones and all combinations, their performance is still noteworthy. In particular, if the

required preprocessing time and the memory overhead of CALT is considered. For example, REAL

is about two times faster than CALT-a64 but its preprocessing takes about nine times longer and

its memory usage is about four times higher. Regarding memory consumption in general, only

speed-up techniques based on Highway Node Routing require less additional memory. This is due

to them not storing the whole graph with all edges, but only a smaller search graph. Note that

this technique could also be applied to CALT, reducing its space consumption further. Finally,

consider that CALT will probably be easily adaptable for dynamic graph. In total, this makes

CALT a quite remarkable technique.
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Partial ArcFlags. Comparing the two introduced implementations of the Partial ArcFlags ap-

proach, Reach-aware and Hierarchy-aware ArcFlags, it can be observed, that the possible speed-

ups gained by adding ArcFlags to another technique are smaller for the Reach algorithm than

they are for Highway Node Routing. Regarding the economic variant, the respective speed-ups

are 2.79 and 3.91. Regarding the generous variant, they amount to 8.21 and 8.93, respectively.

These observations are inverted when analyzing the impact of adding ALT to these techniques

instead of ArcFlags. The REAL algorithm yields a speed-up of 3.13 compared to only applying

the Reach algorithm, whereas Highway Hierarchies* only performs about 1.24 times better than

Highway Hierarchies alone. The given ratios are based on the query times on the European road

network with travel times.

The combination of Highway Hierarchies and ALT yields only small speed-ups compared to

Highway Hierarchies alone for several reasons. The most signi�cant one is its complex stopping

condition. In principal, both Highway Hierarchies and Highway Node Routing require the search

to continue well after the search spaces in both directions have met. But apparently, this is more

detrimental for ALT than ArcFlags, since the latter bene�ts from pruning edges to considerably

decrease the search space.

Regarding the speed-ups of Reach-aware and Hierarchy-aware ArcFlags compared to their re-

spective hierarchical base algorithms, the di�erences between both approaches become less the

more ArcFlags can contribute, i. e. the larger the core gets. This e�ect has also been noted for

a single combination with regards to di�erent graphs in Sect. 6.3.4. By applying ArcFlags to a

(hierarchical) query the existing di�erences in query times become less pronounced.

HiFlags vs. SHARC. Note that even the economic variant of HiFlags clearly outperforms the

bidirectional implementation of the recent SHARC Routing technique in every single respect:

Preprocessing and queries are faster and the memory overhead is smaller. But take note that the

special strength of SHARC Routing is its unidirectional variant that is only about two to three

times slower than the bidirectional variant.

HiFlags vs. Transit Node Routing. Hierarchy-aware ArcFlags also closes the gap to the

di�erent variants of Transit Node Routing. Economic HiFlags is about as fast as the grid-based

implementation of Transit Node Routing but has considerably lower preprocessing e�orts. The

generous variant even is about twice as fast, still retaining lower preprocessing e�orts. Note

that the best implementation of generous HiFlags is about another 50% faster than the numbers

shown here (see Sect. 6.3.4 for reference). Thus, Hierarchy-aware ArcFlags is the fastest speed-

up technique for road networks with the exception of the two hierarchy-based implementations

of Transit Node Routing (HH-TNR, CH-TNR). But their advance in performance comes at high

preprocessing costs whereas Hierarchy-aware ArcFlags only has very moderate preprocessing

requirements in comparison.
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Implementation Di�erences. Comparing the presented measurement results, the following

di�erences can be noted between the original implementations and the applied implementations

of several speed-up techniques:

� The Reach implementation by Goldberg et al. performs about 1.5 to 2.0 times faster than

the implementation used here. This also a�ects the performance of the Reach-aware ArcFlags

algorithm, which builds upon this inferior implementation of the Reach algorithm.

� Two e�ects add up and produce a large discrepancy in query times between CH-HNR by

Geisberger et al. and CH-HNR of this thesis. In particular, their experimental setup performs

about 10% faster than the one used here and they applied further optimization techniques

which adds another performance gain by 10 - 20%.

� The di�erence in query times between ALT-m16 by Delling and ALT-m16 analyzed here pri-

marily results from an upgrade of the experimental setup. The actual implementation is exactly

the same for both experiments. The small deviation in the number of settled nodes is due to

di�erent sets of landmarks that have been produced by the maxCover algorithm.

� The preprocessing times of the ArcFlags algorithm by Hilger di�er greatly from the ones

obtained in this thesis. This is due to him applying the more potent Centralized ArcFlags

algorithm, while here; the older boundary algorithm had to be used for the preprocessing. The

available implementation of the Centralized ArcFlags algorithm still has some problems with

memory consumption on large graphs. Hilger's space overhead is also smaller, even though he

is using 1 000 regions instead of only 128 since he already applies an ArcFlags compression.
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Europe � travel times USA � travel times
� Prepro � � Query � � Prepro � � Query �
[min] [B/n] settled [ms] [min] [B/n] settled [ms]

Hierarchical Techniques

RE [GKW07] 83 17 4 643 3.47 44 20 2 317 1.81

RE Sect. 6.3.3 70 21 7 387 6.24 62 18 4 261 3.90

HH [Sch07] 13 48 709 0.61 15 34 925 0.67

HH-HNR [Sch07] 15 2.4 981 0.85 16 1.6 784 0.45

CH-HNR [GSSD08] 30 -2.7 368 0.16 32 -2.3 303 0.11

CH-HNR Sect. 6.3.4 25 -2.7 355 0.25 27 -2.3 278 0.19

grid-TNR [BFM+07] - - - - 1200 21 n/a 0.063

HH-TNR [BFM+07] 164 251 n/a 0.0056 205 244 n/a 0.0049

CH-TNR [GSSD08] 112 204 n/a 0.0034 90 220 n/a 0.0030

Goal-Directed Techniques

ALT-a16 [GKW07] 13 70 82 348 160.34 19 89 187 968 400.51

ALT-m16 [DW07] 85 128 74 669 53.6 103 128 180 804 129.3

ALT-m16 Sect. 6.3.2 83 128 76 621 50.8 119 128 179 178 113.3

ALT-a64 Sect. 6.3.2 92 512 26 630 18.4 116 512 71 880 48.9

AF-1000 [Hil07] 2 156 25 1 593 1.1 1 419 21 5 522 3.3

AF-128 Sect. 6.3.1 11 789 81 2 764 0.80 - - - -

Previous Combinations

REAL [GKW07] 141 36 679 1.11 121 45 540 1.05

HH* [Sch07] 14 72 511 0.49 18 56 627 0.55

SHARC [BD08] 192 20 145 0.091 158 21 350 0.18

TNR + AF [BDS+08] 229 321 n/a 0.0019 157 263 n/a 0.0017

New Combinations

AALT eco. Sect. 6.3.1 2 551 140 4 932 2.82 - - - -

AALT gen. Sect. 6.3.1 11 887 593 1 613 0.85 - - - -

CALT-m16 Sect. 6.3.2 16 8 2 878 4.6 26 8 7 093 10.3

CALT-a64 Sect. 6.3.2 14 20 1 394 2.4 21 19 3 240 5.8

ReachFlags eco. Sect. 6.3.3 107 25 2 797 2.24 123 21 1 844 1.33

ReachFlags gen. Sect. 6.3.3 229 30 1 168 0.76 318 25 1 636 1.02

HiFlags eco. Sect. 6.3.4 32 0.0 86 0.064 36 -0.8 93 0.067

HiFlags gen. Sect. 6.3.4 99 12.0 43 0.028 228 11.1 46 0.030

Table 6.30: Overview of the performance of several recent speed-up techniques on the road network of Western

Europe and the USA, both using a travel time metric. They are grouped by hierarchical methods [ Reach (RE),

Highway Hierarchies (HH), Highway Node Routing applying Highway Hierarchies (HH-HNR) or Contraction

Hierarchies (CH-HNR), grid-based Transit Node Routing (grid-TNR), Transit Node Routing applying Highway

Hierarchies (HH-TNR) or Contraction Hierarchies (CH-TNR) ], goal-directed methods [ A*-search with 16 or

64 avoid landmarks (ALT-a16, ALT-a64) and 16 maxCover landmarks (ALT-m16), ArcFlags with 128 or 1 000

regions (AF-128, AF-1000) ], previously established combinations [ REAL, Highway Hierarchies* (HH*), SHARC

Routing (SHARC), Transit Node Routing with ArcFlags (TNR + AF) ] and the new combinations introduced in

the thesis at hand.

The economic AALT variant uses 16 regions and 16 landmarks (AALT eco.), whereas the generous variant uses

128 regions and 64 landmarks (AALT gen.). Both CALT queries use (c = 3.0, h = 30) as contraction parameters

and 16 maxCover (CALT-m16) or, respectively, 64 avoid landmarks (CALT-a64). For Reach-aware ArcFlags,

using two iterations of the Reach preprocessing is denoted as economic variant (ReachFlags eco.) and three

iterations as generous variant (ReachFlags gen.). Both variants of the Hierarchy-aware Arc�ags algorithm use

128 regions and a core-size of 0.5% (HiFlags eco.) or 5.0% (HiFlags gen.), respectively.
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Conclusion and Outlook

This �nal chapter gives a short conclusion on the most important results obtained by the exper-

imental studies that have been performed within the scope of this thesis. Also, a perspective for

further work in this �eld of research is presented, trying to suggest possible directions that are

worth to be taken in the future.

Conclusion

As already stated by Holzer et al. in [HSW04], a combination of goal-directed techniques and

hierarchical methods leads to a considerable speed-up of the resulting query compared to the

individual algorithms, whereas combining similar techniques does not turn out to be very viable.

Using goal-direction is usually better for dense graphs, while hierarchies typically perform better

on sparse graphs. By combining both approaches, the di�erent capabilities of both of them can

be exploited, sometimes leaning more towards denser graphs and sometimes more towards the

other direction. Furthermore, the experimental results show that applying the goal-direction just

to some higher level of the hierarchy is not only feasible but also proves to be very bene�cial.

Preprocessing times and memory overhead of the goal-directed technique are cut down by a

considerable amount while the query times of the combined algorithm stay short.

It turned out that all of the presented speed-up techniques that combine hierarchical and goal-

directed methods apply the same general approach to their query algorithms. Each of them uses

a two-tiered setup of some kind. In the �rst phase of the query, they try to �nd paths into a

core of some sort, applying only the hierarchical approach. Goal-direction is then added only to

the second phase, which is performed on said core.

Regarding REAL and Reach-aware ArcFlags on the one hand, and Highway Hierarchies* and

Hierarchy-aware ArcFlags on the other, it has been experimentally shown that the ALT algo-

rithm performs better in combination with the Reach algorithm than together with the other

hierarchical techniques. This observation is reversed for the ArcFlags algorithm, which yields

much better results together with hierarchical techniques based on highway structures (or more

recently contraction-based hierarchies) than based on reach values.
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Overall, two of the combinations analyzed in this thesis stand out in particular. First, there is

Hierarchy-aware ArcFlags, which is one of the fastest known speed-up techniques. Especially on

sparse graphs with an underlying hierarchy, i. e. road networks, its combined performance in both

�elds, preprocessing costs and query times is superior to any other technique currently available.

Secondly, there is the CALT algorithm, which is a quite simple technique but turned out to be

surprisingly fast for its complexity and required preprocessing costs. Furthermore, CALT is also

very robust, and thus, more suited for dense graphs than Hierarchy-aware ArcFlags.

Outlook

All of the introduced speed-up techniques could probably be tuned a little further, but the fol-

lowing directions seem to be much more interesting and promising for future research projects:

Although the results obtained by the AALT algorithm did not turn out to be very good overall,

they have shown some promise, especially with regards to denser graphs. The fact that ALT

supports the ArcFlags query in the middle, where the search spaces in both directions meet

and vice-versa could be exploited further, e. g. by introducing ArcFlags to the CALT algorithm.

Here, its two main drawbacks, long preprocessing times and a large memory overhead, would be

alleviated due to the smaller core, on which the data is processed. Furthermore, initial studies

in [Paj08] have shown very promising results for applying the basic ideas of the AALT algorithm

to queries on timetable networks in a more sophisticated manner. Thus, additional work in this

area might prove to be worthwhile, yielding further useful insights.

The CALT algorithm might not be the fastest combination introduced but, as has already been

stated, it is a very robust and very simple technique. These two attributes render CALT to be

very promising for several other applications that require shortest paths. In particular, queries

on dynamic or time-dependent graphs could probably pro�t from this new technique. Goldberg

already showed in [GH04] that the ALT algorithm can be easily adapted for the use with dynamic

graphs and the outlook for also adapting the graph contraction is optimistic. Further enhance-

ments to the already good performance on static graphs could possibly be gained by revisiting

the preprocessing, i. e. the contraction step, and trying to improve it.

The development of Hierarchy-aware ArcFlags is probably near the end of the line. But as the

transition from using Highway Hierarchies to Contraction Hierarchies for building hierarchy levels

of a graph has shown, there is still room for further improvement in this area. In particular, trying

to devise hierarchies that perform more evenly for di�erent types of graphs, without having to

adjust many parameters, would provide a nice boost. In a �rst step, it could be attempted to

carry over some of the performance on sparse graphs to denser graphs by stopping the contraction

before it gets too slow and only using ArcFlags to speed-up the search on the remaining graph.
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Furthermore, using hierarchies that are aware of the graph partition used by ArcFlags might also

prove to be bene�cial for the preprocessing and the query. Finally, adapting SHARC Routing for

this approach instead of just ArcFlags could also be a worthwhile study.

To summarize, adapting the discussed speed-up techniques for new tasks and revisiting the

contraction algorithms seem to be the two most promising directions to take. While examining

further combinations might also yield some interesting results, this should not be given the same

priority as the two directions stated before.
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Data Structures

This appendix gives an overview of the data structures used by the algorithms. Static graphs

are used throughout the query phase and for some of the preprocessing routines, since here,

the graph stays constant. During the preprocessing, dynamic graphs are also used whenever the

graph structure needs to be changed by the algorithm. At the end, the core of each shortest

path algorithm based on Dijkstra's approach, the priority queue, is presented.

The contents of this appendix is primarily based on previous working notes by Delling [Del07].

A.1 Static Graph

The graph format is based on the forward star representation of a graph [BBK03]. Basically,

there are two arrays of structs, one representing nodes, the other edges. Enumeration is started

at zero. The edge entries are ordered by their source nodes; thus, all outgoing edges of a node

are stored in succession. Each node stores the index to its �rst outgoing edge, providing an easy

access to them. A dummy node is also saved at the end of the node-array to provide a pointer

to the �rst invalid element of the edge-array. Edges store their weight and their targetNode.

This representation has the disadvantage that no easy access to the incoming edges of a node

exists. Since iterations over all incoming edges occur frequently when performing a Dijkstra

search, this shortcoming has to be remedied. Therefore, each edge is stored twice: Once at its

source node and once at its target node. Additional Boolean �ags indicate whether an edge is

incoming or outgoing with respect to its target node. A small form of edge compression is used

for undirected edges that would otherwise have to be stored four times (twice at both nodes,

as incoming and as outgoing edge): Both directional �ags are set, and the edge is only stored

once at each node. A small sample graph and its associated data structure are shown in Fig. A.1.

Since di�erent speed-up techniques use di�erent additional data, the entries of the arrays are

implemented by template structs. The basic data structures for this purpose are basicNode and

basicEdge. If further information is needed at a node or at an edge, it can be directly added by

extending the respective template. Be careful though, adding too much data to the structs does

have a negative impact on the performance. Smaller entries can be stored and retrieved faster.

They also pro�t more from caching e�ects since further entries �t into the CPU cache.
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Figure A.1: A sample graph, covering all possible sorts of edges, is depicted above. The corresponding data

structure, in the form of a node array and an edge array, is shown below. The indices of both arrays are written

above each element. The entries of each element are arranged vertically in columns. The entries t indicate a

true value, f indicates a false value, respectively. The abbreviation n/a denotes that this element is not valid.

The staticGraph template class provides some means to manage this data structure. Mainly,

access methods for and iterator methods on the nodes and edges are made available. The user

stays responsible for providing and maintaining a consistent representation of the graph. To

ease this task, an external function is available in /shortestPathBase/algorithms to check the

consistency of a graph.

File Format. Parsing the standard GraphML format takes much too long on large graphs.

Therefore, a better �le format, binary graph (bgr), has been devised. Using this format, it only

takes several seconds to read and write even a huge graph with several millions of nodes and

edges. Note that edges are also stored twice on disk as they are in memory. Several converters

are provided in /ssspTools/converters to allow for transformations between various graph formats

(bgr, graphml, . . . ).
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A �le, written in the binary graph format, is structured as follows:

� 31 bit: 0

� 1 bit: 1

� 32 bit: number of nodes

� 32 bit: number of edges

� n · 64 bit: n nodes:

� 32 bit: x coordinate

� 32 bit: y coordinate

� m · 96 bit: m edges:

� 31 bit: ID of source node

� 1 bit: forward �ag

� 31 bit: ID of target node

� 1 bit: backward �ag

� 32 bit: edge weight

The leading 32 bits represent the header of the �le format. It can be altered to indicate future

revisions. IDs of nodes and edges correspond to their indices in the array, and thus, are given

implicitly. The forward and backward �ag indicate whether the edge runs from the source node

to the target node, or the other way round. The x and y coordinates represent the graph layout.

If no graph layout is given, they can be �lled with zeros.

Note that the bgr-format currently does not use any form of data-compressing techniques.

A.2 Dynamic Graph

The data structure for static graphs, described above, is extended by dynamic aspects with the

goal to eventually switch to this data structure for all graphs. In principal, the edge array is made

larger than necessary for holding all edges and �lled with empty slots. By default, the array is

made twice as large and empty slots are inserted after the �lled slots of each node (the same

number of empty slots is inserted as there are �lled slots at each node). The actual overhead can

be controlled by the variable slotFactor and can be changed whenever necessary. Furthermore,

the exact number of empty slots of each node can also be adjusted directly. If there are no

empty slots left at a node, the complete array is automatically reallocated, which may take a

long time. Thus, one should know in advance how much overhead is needed at every node and

allocate an appropriate amount.

In addition to the methods already provided by the staticGraph class, further ones to aid in

altering the graph structure (removing nodes and edges, inserting edges, bypassing nodes) and

to compress the data structure are provided by the dynamicGraph class.
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A.3 Priority Queue

A binary heap is used as data structure for the priority queue. The current implementation was

originally provided by Dominik Schultes. The heap is realized as an array. It functions as static

storage space for all elements ever added to the data structure. No element is ever removed,

only marked as deleted. Heap elements are implemented as structs that can hold additional

data. Usually, a heap element contains a nodeID, the index of stored node, and a preNodeID,

the index of the predecessor of the node in the current search graph. The latter can be used

to reconstruct one shortest path after a search has �nished since all nodes added to the priority

queue during the query are still stored in the heap array.

The keys of the elements are stored separately. Only they are reordered according to the heap

condition; the ordering of the elements never changes. This improves the execution time of

operations on the heap since only a small key instead of the whole element has to be moved in

memory. But because of this separation, the index of an element within the heap array has to

be known prior to being able to access it. This index is called the count of a node and is stored

within the node-array of the graph data structure. It has to be updated every time the priority

key of the node changes.

Recently, the binary heap has been extended by Delling to a fourary heap. This implementation

yields improvements for queries with larger heap sizes. But for smaller ones, the gain is out-

weighed by the additional overhead. A bucket heap, as suggested by Goldmann in [GS95] and

used ever since, is currently also being implemented by Karch.
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This appendix provides further proofs regarding the feasibility of the potentials, de�ned by the

lower bounds that have been introduced for the ALT algorithm and the CALT algorithm.

B.1 ALT

Assumption:

Lower bounds, obtained by using one landmark and the triangle inequality for graphs as described

in Sect. 2.3.2, yield a potential function that is feasible.

Proof:

Let G = (V,E) be a graph with a node-set V and an edge-set E. A weight function w(·) assigns
values to each edge. Let (u, v) be an arbitrary edge e ∈ E with u, v ∈ V. Furthermore, let t be

an arbitrary node ∈ V.

A potential function π(·) is called feasible if the reduced edge weight wπ(·) is equal to or larger

than zero. It is de�ned as follows, with w(u, v) being the normal edge weight of (u, v):

wπ(u, v) = w(u, v)− π(u) + π(v) ≥ 0

The potential function is de�ned by the lower bounds, obtained with an arbitrary landmark L ∈ V,

as de�ned in Sect. 2.3.2. Here, landmark distances to L are used w. l. o. g.:

d(u, t) ≥ d(u, L)− d(t, L) = π(u)

d(v, t) ≥ d(v, L)− d(t, L) = π(v)

Inserting them into the equation above yields:

w(u, v)− π(u) + π(v) ≥ 0

⇔ w(u, v)− d(u, L) + d(t, L) + d(v, L)− d(t, L) ≥ 0

⇔ w(u, v)− d(u, L) + d(v, L) ≥ 0

⇔ w(u, v) + d(v, L) ≥ d(u, L)

With w(u, v) ≥ d(u, v), this is the triangle inequality for graphs, which is proven to be true.

q.e.d.
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B.2 CALT

Assumption:

Lower bounds, obtained by using a proxy-node in addition to one landmark and the triangle

inequality for graphs as described in Sect. 4.3, yield a potential function that is feasible.

Proof:

Note, that the proof is performed in a similar way to the one for the ALT algorithm in App. C.

Let G = (V,E) be a graph with a node-set V and an edge-set E. A weight function w(·) assigns
values to each edge. Let (u, v) be an arbitrary edge e ∈ E with u, v ∈ V. Furthermore, let t be

an arbitrary node ∈ V an let t′ ∈ V be its proxy-node.

A potential function π(·) is called feasible if the reduced edge weight wπ(·) is equal to or larger

than zero. It is de�ned as follows, with w(u, v) being the normal edge weight of (u, v):

wπ(u, v) = w(u, v)− π(u) + π(v) ≥ 0

The potential function is de�ned by the lower bounds, obtained with an arbitrary landmark L ∈ V,

as de�ned in Sect. 4.3. Here, landmark distances to L are used w. l. o. g.:

d(u, t) ≥ d(u, L)− d(t′, L)− d(t, t′) = π(u)

d(v, t) ≥ d(v, L)− d(t′, L)− d(t, t′) = π(v)

Inserting them into the equation above yields:

w(u, v)− π(u) + π(v) ≥ 0

⇔ w(u, v)− d(u, L) + d(t′, L) + d(t, t′) + d(v, L)− d(t′, L)− d(t, t′) ≥ 0

⇔ w(u, v)− d(u, L) + d(v, L) ≥ 0

⇔ w(u, v) + d(v, L) ≥ d(u, L)

With w(u, v) ≥ d(u, v), this is the triangle inequality for graphs, which is proven to be true.

q.e.d.



Additional Results

Further results of the previously analyzed combinations of speed-up techniques are shown in this

appendix. Dijkstra rank plots, comparing the performance of di�erent algorithms, are presented.

C.1 AALT
The following Dijkstra rank plots are derived from the experiments presented in Tab. 6.3.
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Figure C.1: Comparison of ArcFlags, ALT and AALT on the European road network with a travel time metric.
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Figure C.2: Comparison of ArcFlags, ALT and AALT on the European road network with a distance metric.
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C.2 CALT
Additional Dijkstra rank plots for the experimental results shown in Tab. 6.15 and 6.14.
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Figure C.3: Comparison of the ALT algorithm and the CALT algorithm, varying the contraction parameters.
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Figure C.4: Comparison of the performance of the CALT algorithm using di�erent numbers of landmarks.
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C.3 HiFlags
Further Dijkstra rank plots for the Hierarchy-aware ArcFlags experiments presented in Chap. 6.3.
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Figure C.5: Comparison of HiFlags and Highway Node Routing on the European road map with a distance metric.
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Figure C.6: Comparison of HiFlags and Highway Node Routing on the European road network with travel times.
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Deutsche Zusammenfassung

Seitdem Dijkstra 1959 den nach ihm benannten Algorithmus zum Finden kürzester Wege in

einem statischen Graph vorgestellt hat, sind zahlreiche neue Techniken eingeführt worden, um

diese Suche beschleunigen. Die meisten beruhen auf einem von zwei grundlegenden Ansätzen, um

den Suchraum zu verkleinern und damit die Suche zu beschleunigen: Entweder wird versucht, eine

Hierarchie im Graphen zu erkennen (z. B. Landstraÿen und Autobahnen) und diese auszunutzen,

oder es wird versucht möglichst zielgerichtet die Suche voranzutreiben. Vertreter der ersten

Art sind z. B. der Reach�Algorithmus, Highway Hierarchies und Highway Node Routing. Zur

zweiten Gruppe zählen u. a. der ALT�Algorithmus sowie ArcFlags. Da hier jeweils vollkom-

men unterschiedliche Eigenschaften des Graphen ausgenutzt werden, ist zu vermuten, dass eine

Kombination beider Arten von Techniken besonders gut funktioniert. Dies wurde bereits für

die Kombination des ALT�Algorithmus mit dem Reach�Algorithmus sowie Highway Hierarchies

durchgeführt. Die sich ergebenden neuen Techniken wurden REAL bzw. Highway Hierarchies*

genannt. Zudem können unter Umständen Synergien zwischen den Techniken genutzt werden,

um die nötigen Vorberechnungen zu verbessern und zu beschleunigen.

Die vorliegende Arbeit stellt vier weitere Kombinationen bestehender Beschleunigungstechniken

zum Finden kürzester Wege vor. Auÿerdem werden ausführliche Experimente auf mehreren unter-

schiedlichen Graphtypen durchgeführt und die Ergebnisse präsentiert. Im Einzelnen handelt es

sich hierbei um die folgenden Algorithmen:

Zunächst wird der ALT�Algorithmus mit ArcFlags kombiniert, da dies sehr einfach möglich ist.

Der sich ergebende AALT�Algorithmus ist insofern besonders, da er aus zwei zielgerichteten

Techniken zusammengesetzt ist. Entsprechend sind auch die Erwartungen an die zu erzielende

Beschleunigung gegenüber den Einzelverfahren gering. Diese Vermutung wurde auch experi-

mentell bestätigt. Zudem addiert sich der Speicheraufwand sowie die Vorberechungszeit beider

Techniken direkt, was dieses Verfahren eher uninteressant macht.

Der CALT�Algorithmus verwendet eine sogenannte Kontraktionstechnik, um den Graph auf

einen Kern wichtiger Knoten zu reduzieren. Kürzeste Wege zwischen diesen werden durch das

Einbringen neuer Kanten, die die entfernten Knoten umgehen, erhalten. Die Suche versucht nun

möglichst schnell diesen Kern zu erreichen und wendet auf ihm den ALT�Algorithmus an. Die neu

eingeführten Kanten sorgen für eine zügige Suche, und die Beschränkung des ALT�Algorithmus

auf einen kleineren Teilgraph sorgt für eine schnellere Vorberechnung und weniger Speicherver-
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brauch. Es hat sich gezeigt, dass dieser Algorithmus sehr gute Ergebnisse auf jeglichem Graphtyp

erzielt bei gleichzeitig geringem zusätzlichen Rechenaufwand und Speicherbedarf. Obwohl er

nicht mit den schnellsten Beschleunigungstechniken konkurrieren kann, erlaubt seine Einfachheit

ihn auch für andere Anwendungen, wie z. B. dynamische Graphen, einzusetzen.

Die folgenden zwei Techniken nutzen beide das Partial ArcFlags Verfahren und kombinieren es

mit dem Reach�Algorithmus bzw. Highway Node Routing. Dieses Verfahren ist eine Variante des

normalen ArcFlags-Algorithmus, das diese Beschleunigungstechnik nur auf einen Teilgraphen an-

wendet. Hierbei wird versucht, einen Teilgraphen auszuwählen, über den möglichst viele kürzeste

Wege laufen. Diese Wahl wird durch die Bildung von Hierarchien durch die anderen beiden

Techniken unterstützt und erleichtert. Die Kombination mit dem Reach�Algorithmus wird als

Reach-aware ArcFlags bezeichnet. Die mit diesem Verfahren erzielten Ergebnisse waren eher

gemischt. Es hat sich v. a. als nachteilig erwiesen, dass sich die erzielbaren Ergebnisse nur be-

dingt aus der Wahl der Parameterwerte ableiten lassen. Die Kombination mit Highway Node

Routing heiÿt Hierarchy-aware ArcFlags und verwendet, um die benötigte Einteilung des Graphen

in Hierarchiestufen zu erhalten, zudem das Contraction Hierarchies Verfahren. Die erhaltenen

Experimente haben das erstaunliche Potential o�enbart, dass diese Kombination besitzt. Sie ist

nicht nur schneller als fast jede andere Beschleunigungstechnik, die benötigte Vorberechnugszeit

und der Speicheraufwand sind für die gebotene Leistung auch äuÿerst gering.

Die vorgestellten Techniken haben gezeigt, dass eine Kombination von hierarchischen Methoden

mit zielgerichteter Suche auÿerordentlich gute Ergebnisse erzielt, sogar dann, wenn letztere nur

auf den höheren Ebenen der Hierarchie angewandt wird. Dies verringert auÿerdem die anfal-

lenden Kosten der Beschleunigungstechnik, teilweise sogar beträchtlich. Alle Techniken weisen

Gemeinsamkeiten in Bezug auf den verwendeten zweistu�gen Algorithmus auf. Dies verbindet

sie auch mit früheren Methoden wie REAL oder Highway Hierarchies*.

Abschlieÿend lässt sich sagen, dass diese Arbeit zwei sehr vielversprechende Techniken hervor-

gebracht hat. Zum einen den CALT�Algorithmus, der ein relativ einfaches, aber dennoch

schnelles und v. a. robustes Verfahren darstellt, dass sich voraussichtlich auch sehr gut für den

Einsatz mit dynamischen oder sogar zeitabhängigen Graphen eignen wird. Zum anderen die

HiFlags�Beschleunigungstechnik, die gerade auf dünnen Graphen, insbesondere wenn sie eine

hierarchische Struktur besitzen, das derzeit schnellste Verfahren darstellt, mit Ausnahme von

Transit Node Routing. Zudem zeichnet sie sich durch einen wesentlich geringeren Speicher-

bedarf sowie eine kürzere Vorberechnungszeit gegenüber dem anderen Verfahren aus.
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