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Abstract – Recursive processing of Gaussian mixture
functions inevitably leads to a large number of mixture
components. In order to keep the computational complexity
at a feasible level, the number of their components has
to be reduced periodically. There already exists a variety
of algorithms for this purpose, bottom-up and top-down
approaches, methods that take the global structure of the
mixture into account or that work locally and consider
few mixture components at the same time. The mixture
reduction algorithm presented in this paper can be catego-
rized as global top-down approach. It takes a clustering
algorithm originating from the field of theoretical computer
science and adapts it for the problem of Gaussian mixture
reduction. The achieved results are on the same scale as the
results of the current “state-of-the-art” algorithm PGMR,
but, depending on the input size, the whole procedure
performs significantly faster.

Keywords: Gaussian mixture reduction, nonlinear opti-
mization, clustering

1 Introduction
Gaussian mixture functions can be applied for a lot of

different tasks. They are often used to model probability
density functions (PDFs) in estimation algorithms such as
for machine learning [3], speaker recognition [10] or target
tracking [2], to name a few. As the set of all Gaussians
forms a complete base system, i.e., every function can be
approximated by a Gaussian mixture with arbitrary accuracy
[9], they are a very potent tool for these applications.

A general drawback of these mixture functions is their
tendency to grow at an exponential rate when processed in
recursion. Therefore, the mixture has to be reduced after
several computation steps before the number of components
grows too large. This mixture reduction step should be com-
putationally cheap and the reduced density should only have
a small deviation from the original one.

Previous approaches dealing with the problem of Gaus-
sian mixture reduction can be classified into two fields.
First, there are some bottom-up approaches that start with
a single Gaussian function and iteratively add additional
components until the original mixture density is approx-
imated appropriately. The PGMR algorithm [5] uses this

approach. Then, there are a lot of top-down or classical
approaches. They take the original Gaussian mixture
density and iteratively decrease the number of mixture
components, either by removing single “unimportant”
components or by merging similar ones. These algorithms
can be further divided into local and global methods. The
joining and clustering algorithms by Salmond [12], West’s
algorithm [15] and IPRA by Scott and Szewczyk [14]
belong to the former. They consider only few characteris-
tics of the overall mixture function or even just individual
mixture components independently from the remaining
ones. Global methods, like Williams’ algorithm [16], take
the whole Gaussian mixture into account when selecting
components for removal or merging. They usually provide
better approximation results but also take much longer
to finish. Runnalls [11] tries to incorporate elements
from both the local and the global approach. He takes
a complex global quality measure, the Kullback-Leibler
divergence, and then tries to optimize a computational
cheap, localized upper-bound, when removing or merging
cluster components.

The approach presented in this paper can be classified as a
top-down algorithm using global information. The original
idea comes from the field of theoretical computer science.
Here, clustering is one of the classic problems in machine
learning and computational geometry. Given a number of
fixed locations, so-called sites, and an integer L as input,
one tries to find L other locations, cluster centers, so that a
distance measure between the sites and the cluster centers
is minimized. This idea is transfered to the problem of re-
ducing Gaussian mixtures by interpreting each component
of the original mixture as a site and each component of the
reduced one as a cluster center. This is different to existing
clustering approaches for Gaussian mixture reduction like
Salmond’s clustering algorithm. Instead of computing only
one cluster per step for merging the associated components,
we distribute all mixture components into multiple clusters
in order to find an appropriate cluster representation of the
(true) mixture. Computing a good reduced Gaussian mix-
ture becomes equal to finding good cluster centers using an
appropriate distance measure. By means of simulation, it
is demonstrated that our proposed algorithm for Gaussian
mixture reduction yields results with a quality on the same
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scale as those obtained by the current “state-of-the-art” al-
gorithm PGMR but, depending on the input size, it performs
significantly faster.

The remainder of the paper is structured as follows: In the
next section we formally define the Gaussian mixture reduc-
tion problem. Then, Section 3 describes our proposed algo-
rithm and how a clustering technique can be used to reduce
Gaussian mixtures. Subsequently in Section 4, we compare
the performance of our algorithm and the quality of its re-
sults to existing algorithms. Finally, we give conclusions
and provide an outlook to future work.

2 Problem Formulation
We assume that a density function

f̃(x; η̃) =
N∑

i=1

ω̃i · N (x; µ̃i, σ̃
2
i )

of a random variable x is given in the form a Gaussian
mixture with N components, non-negative weights ω̃i with∑

i ω̃i = 1 and N (x; µ̃, σ̃2) denoting a Gaussian function
with mean µ̃ and variance σ̃2. The parameters of the
mixture density are represented by the parameter vector

η̃ = [η̃T
1
, η̃T

2
, . . . , η̃T

N
]T, η̃T

j
= [ω̃j , µ̃j , σ̃

2
j ].

Given this density function and an integer value L, we want
to compute a reduced Gaussian mixture density

f(x; η) =
L∑

j=1

ωj · N (x; µj , σ
2
j )

with L ¿ N components that is close to the original den-
sity according to some distance measure D(f̃(x), f(x)). Its
parameter vector η is defined accordingly to η̃.

Gaussian mixture densities are described completely by
their parameter vectors η. Therefore, we subsequently refer
to η as the whole mixture and to η

j
as mixture component j

of η for brevity’s sake. To distinguish between a reduced
mixture and the original one we indicate the parameters of
the latter by a tilde.

When evaluating the quality of a reduced density f(x)
compared to the original density f̃(x), the Integrated
Squared Distance (ISD) [6] is often used as distance
measure. We apply the normalized ISD

D(f̃(x), f(x)) =

∫
R

(
f̃(x)− f(x)

)2

dx∫
R f̃(x)2dx +

∫
R f(x)2dx

(1)

instead, since its constant range D ∈ [0, 1] is convenient
for comparison. A different deviation measure such as the
Kullback-Leibler (KL) divergence [7] could have also been
applied. In fact, it would have been the natural deviation
measure for mixture reduction in a maximum likelihood
sense [11, 16]. The normalized ISD was chosen instead
since it can be computed in closed-form, resulting in a
faster algorithm, and because of its constant range.

3 Clustering Algorithm
The mixture reduction approach presented in this paper,

Gaussian Mixture Reduction via Clustering (GMRC), is a
three step algorithm as outlined by Algorithm 1.

Algorithm 1 Basic Algorithm: η ← GMRC(η̃, L)

1: η ← Preprocessing(η̃, L)
2: η ← Clustering(η̃, η)
3: η ← Refinement(η̃, η)

A preprocessing step takes the original Gaussian mixture
η̃ and computes a preliminary solution η with L compo-
nents of the reduction problem. The mixture components
η

j
are then used as initial cluster centers for the clustering

step. Here, the current solution is iteratively improved by a
clustering approch, greedily optimizing the associations of
mixture components η̃

i
to cluster centers η

j
. Afterwards, a

refinement step further improves the current result via nu-
merical optimization.

Subsequently, we analyze each of the three steps in more
detail. Later in the simulation section, we show that none of
them are mandatory but that each of them contributes to the
quality of the reduced Gaussian mixture.

3.1 Preprocessing Step
We apply Runnalls’ algorithm [11] to compute an initial

solution η. This algorithm was chosen since it yields a
good compromise between approximation quality and
overall computation time. It applies a top-down approach
where in each step the two mixture components η

i
and

η
j

with the smallest dissimilarity are replaced by their

moment-preserving merging η
m

= [ωm, µm, σ2
m]T with

ωm = ωi + ωj ,

µm =
1

ωm
· (ωiµi + ωjµj) , (2)

σ2
m =

1
ωm
·
(

ωiσ
2
i + ωjσ

2
j +

ωiωj

ωm
(µi − µj)2

)
.

To determine the dissimilarity of two components η
i

and η
j
,

Runnalls employs the deviation measure

B(η
i
, η

j
) = 1

2 (ωm log σ2
m − ωi log σ2

i − ωj log σ2
j ) (3)

with ωm, σ2
m according to (2). This is an upper bound on

the Kullback-Leibler divergence between a Gaussian mix-
ture with the components η

i
and η

j
and a mixture with the

Gaussian η
m

.
In the simulation section we will also focus on the impact of
using different algorithms to find an initial solution, West’s
algorithm [15] and a random initialization, in particular.



3.2 Clustering Step
To improve Runnalls’ initial solution, we reinterpret the

task of finding a reduced mixture as clustering problem and
adapt the well-known k-means algorithm for this task.

Clustering. In general, a clustering problem can be de-
scribed by a set S ⊂ Rd of N sites and an integer L. A
clustering algorithm tries to find L centers C so that a devi-
ation measure, i.e.,

D(S, C) =
∑
si∈S

min
cj∈C
||si − cj ||2

is minimized. The clustering is defined implicitly by the
centers. A site si belongs to cluster j, if the distance to its
cluster center cj ∈ C is smaller than to any other cluster
center ck with k 6= j. Note that this problem is NP-hard and
stays so, even for only two clusters [4].

K-means Algorithm. The k-means algorithm is a popular
clustering approach by Lloyd [8]. Its basic procedure can be
summarized as follows:

1. Choose L initial cluster centers C at random from Rd,

2. for each i ∈ {1, . . . , L}, let cluster Ci be the set of
sites in S closer to center ci than to any other center cj

with j 6= i f.a. j ∈ {1, . . . , N},
3. for each i ∈ {1, . . . , L}, set ci to be the center of mass

of all sites in cluster Ci,

4. repeat steps 2 and 3 as necessaery.

Our clustering approach is outlined in Algorithm 2. It makes
several modifications to the k-means algorithm, in particular
concerning the applied deviation measures, as shown below.

Algorithm 2 Clustering Step: η ← Clustering(η̃, η)

1: C ← InitialClustering(η̃, η)
2: η ← ComputeCenters(η̃, C)
3: for all sites η̃

i
∈ η̃ do

4: for all clusters Cj ∈ {1, . . . , L} do
5: Ctmp ← reassociate site η̃

i
to cluster Cj

6: η
tmp
← ComputeCenters(η̃, Ctmp)

7: distj ← d(η̃, η
tmp

)
8: end for
9: C ← reassociate site η̃

i
to cluster Cj

for Cj ∈ {1, . . . , L} with distj minimal
10: η ← ComputeCenters(η̃, C)
11: end for

In terms of clustering, the parameter vector of the original
Gaussian mixture η̃ corresponds to the set of sites S and the
the parameter vector of the reduced mixture η to the set of
cluster centers C. Accordingly, η̃

i
and η

j
correspond to one

site si or one cluster center cj , respectively.

InitialClustering. Before commencing the clustering pro-
cess, each of the original mixture components in η̃ has to be
associated with one of the cluster centers in η that have been
computed during the preprocessing step. This association is
described by a cluster allocation C with

Ci,j =

{
1 component η̃

i
is associated with cluster Cj ,

0 otherwise.

A mixture component η̃
i

is associated to the center cj =̂ η
j

of the cluster Cj ∈ {1, . . . , L}, for which the Kullback-
Leibler divergence

D(η̃
i
, η

j
) =

∫
R
Ñi log

Ñi

Nj

=
1

2σ2
j

(
(σ̃2

i − σ2
j ) + (µ̃i − µj)2

)
+ log

σj

σ̃i

between them, with Ni = N (x; µi, σ
2
i ), is minimal. Thus,

each component is associated with exactly one cluster cen-
ter. Weights are omitted in the KL divergence we use, since
only similarity of the general shape of the two Gaussians is
to be compared.

ComputeCenters. After a cluster allocation C has been
determined, it can be used to compute cluster centers. For
each cluster Cj ∈ {1, . . . , L} the weight ωj , the mean µj

and the variance σ2
j of the sum of all mixture components

η̃
i
∈ {1, . . . , N | Ci,j = 1} associated with this cluster are

computed according to

ωj =
∑
Ci,j=1

ω̃i

µj =
∑
Ci,j=1

ω̃iµ̃i

σ2
j =

∑
Ci,j=1

ω̃i(σ̃2
i + µ2

i )/ωj − µ2
j

and used as cluster center η
j

= [ωj , µj , σ
2
j ]T.

Step 1 of the k-means algorithm corresponds to our pre-
processing step and the first two lines of the clustering step.
But instead of using a random initialization, we apply a
more sophisticated initial solution calculated by means of
Runnalls’ algorithm.

Clustering Loop. The central part of the clustering step,
lines 3 – 11, corresponds to steps 2 and 3 of the k-means
algorithm. For each site si or component of the original
mixture η̃

i
, the association to a cluster Cj ∈ {1, . . . , L} is

determined that minimizes a deviation measure d (line 7).
Ambiguities are resolved arbitrarily. The cluster centers are
updated when each site has been associated with a new clus-
ter. This is unlike to the k-means algorithm that updates the
cluster centers when all sites have been processed.



We apply the normalized ISD (1) as deviation measure
d, because it is the actual value we want to optimize. This
is a further difference to the k-means algorithm, where a lo-
cal deviation measure, the Euclidean distance between a site
and a cluster center is used. Section 4 provides additional re-
sults for a local deviation measure (3), the upper bound on
the KL divergence, also used in the preprocessing step.

The greedy approach taken by the algorithm ensures that
in each step an allocation of a site to a cluster is determined
that is at least as good as the current solution. Thus, if the
algorithm is performed long enough, the result converges
to a local optimum. But it also can be stopped at any time
after one iteration of the outer loop has finished (line 11)
and will yield a proper result. It is evident that the choice
of the initial solution is important. Choosing a starting point
for the clustering algorithm close to a good local optimum
yields a faster convergence.

Since only one cluster association is changed during each
execution of the inner loop, the computation of the new clus-
ter centers and of the deviation measure can be accelerated
by a considerable amount if only the parts that have been
changed are recomputed.

In principal, clusters could become empty, i.e., no sites
are associated to a cluster. But in our experience this hap-
pens only rarely, usually if the initial solution is chosen im-
properly and the number of sites N and clusters L is close
together.

Note that the clustering step conserves the mean and the
variance of the original Gaussian mixture, independently of
the implementation of the preprocessing step.

Further Improvements. The clustering algorithm can be
enhanced in several ways. These approaches either focus
on improving quality of the results or on accelerating the
compuation, which are in general conflicting goals. Some of
these strategies can be combined to achieve an improvement
for both aspects. Several of the possibilities listed below
are evaluated later on their own and are combined in the
simulation section.

The clustering quality can be improved by repeating the
iteration over all mixture components in η̃ several times. In
fact, this is the usual procedure of the k-means clustering
algorithm (see step 4 of the algorithm in Section 3). How-
ever, it is omitted in our initial algorithm because of the high
computational cost of a single iteration and since the results
are typically very good after only one iteration.

Since the algorithm greedily optimizes the associations of
sites to clusters, one after the other, the order in which the
sites are processed is important for the final results. Thus,
a more sophisticated ordering, like considering sites with a
higher weight first, might improve the results. So far, no
special ordering is employed.

When iterating over the mixture components in η̃, the
components with a small weight ω̃i below some threshold

ω̃max can be skipped to save processing time. Assuming
that componentes with a small weight do not contribute
much to the expected deviation, improving their cluster
allocation does only yield a small gain in approximation
quality. Thus, skipping them has only little impact on the
quality of the clustering results.

As shown in the simulation section, the initial solution
seems to have a considerable impact on the local optimum
the remaining parts of the algorithm are able to find. Thus,
applying restarts and choosing the best of the results is a
viable strategy to improve the results unless restarts are too
expensive.

3.3 Refinement Step
In general, a simple greedy merging of mixture compo-

nents does not yield optimal results when trying to minimize
a global distance measure between a Gaussian mixture f̃(x)
and a reduced one f(x). Therefore, a refinement step is
added to improve the quality of the reduced Gaussian mix-
ture f(x; η) with parameter vector η. Here, we apply two
optimization routines as described below. Both of them try
to optimize the ISD between the original and the reduced
Gaussian mixture instead of the normalized ISD since it is
much easier to compute, yielding a faster algorithm.

Newton approach. At first, we try to optimize η by deter-
mining the roots of the derivative of the ISD

M(f̃(x; η̃), f(x; η)) =
∫

R

(
f̃(x; η̃)− f(x; η)

)2

dx

between the original and the reduced Gaussian mixture with
respect to η. This is done with the Newton approach

∂2M

∂η2

∣∣∣∣
η=η

k

·∆η = −∂M

∂η

∣∣∣∣
η=η

k

, (4)

as described in [5]. The change ∆η = η
n+1
− η

n
in the

parameter vector η is determined by solving the system of
linear equations (4). The iteration

η
n+1

= η
n

+ ∆η

is initialized with η
0

= η and repeated until ∆η < 10−5

or at most 100 times, whichever happens first. In the latter
case, the result of the last iteration step is returned.

Weight Optimization. After the Newton approach, we
renormalize the weights according to

∑
i ωi = 1. Then,

we perform a further improvement step by optimizing
the weights ω = [w1, . . . , ωL]T of the reduced Gaussian
mixture. For this purpose, we determine the minimum of
the ISD between the original and the reduced Gaussian
mixture with regard to the weights ω. The system of linear



Figure 1: EXECUTION TIMES AND NORMALIZED ISDS FOR THE ANALYZED APPROXIMATION ALGORITHMS.
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 ,

with Ni = N (x; µi, σ
2
i ), has to be solved (for a full deriva-

tion see Appendix A). The resulting weights w are used as
weights for the reduced Gaussian mixture η.

Note that in general, the refinement step will not conserve
the mean and the variance of the original Gaussian mixture
without applying further modifications to the optimization
routines such as Lagrangian multipliers.

4 Simulation Results
Our simulation setup consists of an office PC with an Intel

Core2 Duo E8400 processor running OpenSUSE 11.0. The
algorithms are implemented in Mathlab 7.7.0 (R2008b). All
simulations are performed 1 000 times. For improved read-
ability, the square root of the normalized ISD, multiplied by
100, is listed in the respective tables.

4.1 Comparison to Other Algorithms
We evaluate the performance of our proposed algorithm,

GMRC, by comparing it to several recent other algorithms.
In particular, we provide results for both West’s and
Williams’ algorithms as representatives for the local and
global top-down approaches as well as for the bottom-up
approach PGMR. In addition, Runnalls’ algorithm is also
listed as it provides the preprocessing for our algorithm.

For an easier comparison to [5], we apply the
same basic test cases. True Gaussian mixtures with
N ∈ {40, 120, 200, 500, 1000} components are used for
evaluation. The mixture parameters are drawn uniformally
at random from the intervals

ω ∈ [0.05, 0.5] ,
µ ∈ [0, 3] , (5)
σ ∈ [0.09, 0.5] .

Note that we did not evaluate Williams’ algorithm for N ∈
{500, 1000} due to the extremely long execution times.

The algorithms reduce the Gaussian mixtures to L = 10
components (or less in case of PGMR). In addition, for
PGMR a maximum error with respect to the normalized
ISD of Mmax = 1 is selected. The resulting mean values of
the execution time t and of the normalized ISD are shown in
Fig. 1. More detailed results including standard deviations
can be found in Tab. 4 in Appendix B 1.

As can be seen, West’s algorithm is the fastest one by a
large margin, but the quality of its results is mostly inferior
to the other algorithms. The improvement of the approxima-
tion quality for larger values of N can be explained by our
simulation setup where Gaussian mixtures with more com-
ponents tend to produce “nicer” curves. Williams’ algorithm
produces better results but takes much too long to be of any
practical value. PGMR and GMRC both deliver the best re-
sults among all of the studied algorithms with comparable
approximation qualities. But whereas GMRC always re-
duces the Gaussian mixture to 10 components, PGMR only
adds components until the normalized ISD is below a given
threshold. For the smaller input sizes this results in about 7
components and for the largest input size in only 5 compo-
nents on average. Therefore, the approximation quality of
PGMR also seems to degrade for larger values of N , which
acutally is not true. Regarding the execution times, GMRC
is faster for small input sizes and PGMR performs better on
larger inputs.

As can be further deduced from the simulational results,
the leading term of the computational time complexity
of PGMR seems to be O(N2), whereas for GMRC it is
O(N3). The acutal execution times are in favor for GMRC
up until about N ≈ 150 components. Runnalls’ algorithm
also exhibits a time complexity of O(N3). Since our
approach uses this algorithm during the preprocessing step,
it is not surprising that GMRC also requires at least O(N3)
time. Considering only the execution time of the clustering
step and the refinement step by subtracting the running time
of Runnalls’ algorithm from the running time of GMRC,
we see that the computational time complexity of these
steps is the same as for PGMR, O(N2).

1Note that we apply the most recent version of PGMR. We have also
discovered an inconsistency in the existing evaluation procedures that has
been corrected. This leads to considerably different results than provided
in a previous publication [5].



Since the time complexity of these results is not convinc-
ing, we also evaluated the impact of using West’s algorithm
as a faster preprocessing step for GMRC. As can be seen,
the actual running time is always well below PGMR and the
asymptotic time complexity of GMRC+West is the same as
of PGMR, O(N2). For small input sizes, the approxima-
tion quality is inferior to both PGMR and GMRC but al-
ready better than any of the former top-down approaches. At
about N ≈ 300, the approximation quality of GMRC using
West’s algorithm reaches the results of PGMR and GMRC
using Runnalls’ algorithm.

In addition to the normal GMRC algorithm, we have also
evaluated a variant called GMRC local. This variant em-
ployes the upper bound (3) on the KL divergence between
a component of the original mixture and the reduced one
as deviation measure d for the clustering step (see line 7 of
Algorithm 2). The approximation quality is worse than for
the normal algorithm but it improves for larger input sizes.
Also, the standard deviation of its normalized ISD is a lot
higher, being in the same region as the normalized ISD it-
self. When comparing the results to Tab. 2, we see that the
quality of the results is only slightly better than if the cluster-
ing step would have been completely omitted. Thus, using
this local deviation measure is not beneficial.

We want to ensure that our algorithm not only optimizes
the value of the normalized ISD, but also provides an im-
provement with regards to other deviation measures. There-
fore, we determined the KL divergence for the approxima-
tion results of our analyzed algorithms (using N = 200 and
L = 10 components). The KLD was computed by means
of numerical integration. The results can be found in Tab. 1.
Again, PGMR and GMRC provide the best choices among
all of the analyzed algorithms. Thus, we can state that even
though GMRC applies the normalized ISD for its optimiza-
tion process, the resulting mixtures also yield small values
for the KL divergence as deviation measure.

4.2 Evaluation of GMRC steps
We have performed further simulations to evaluate the

importance of each of the three steps of the GMRC algo-
rithm. At first, we effectively skip the preprocessing step by
using random cluster centers with parameters chosen from
the same intervals as in (5). With this setup, we want to
study the impact of the quality of the inital solution. The
next simulation omits the whole clustering step and just ap-
plies our refinement routines to the solution found by Run-

Table 1: KLD AND NORMALIZED ISD FOR THE APPROX-
IMATION RESULTS OF SEVERAL OF THE ALGORITHMS.

ALGORITHM KLD × 10−3 normalized ISD
Runnals’ algorithm 2.283± 0.920 3.606± 0.752
West’s algorithm 3.002± 1.071 3.851± 0.790

Williams’ algorithm 0.764± 0.465 2.257± 0.524
PGMR algorithm 0.388± 0.562 0.696± 0.204
GMRC algorithm 0.292± 0.494 0.658± 0.494

nalls’ algorithm. This is done to estimate the actual value
of the clustering process. Finally, we study the effect of
not using a refinement step. All simulations have been per-
formed for N = 200 original components that are reduced
to L = 10. The results of the simulations are summarized in
Tab. 2. For comparison, the results of the complete GMRC
algorithm and of Runnalls’ algorithm are also provided.

As can be deduced from the results, the preprocessing
step, namely Runnalls’ algorithm, requires more than half
of the overall running time whereas the refinement step only
takes about 10% of the time. Apparently, the quality of the
initial solution has a large influence on the overall results.
Also, the refinement step appears to play a crucial part in
obtaining good approximations. Without using the Newton
approach and the weight optimization, the quality of the re-
sults is degraded by a large degree but it is still better than
West’s, Wiliams’ and Runnalls’ algorithms. As can be seen
by omitting the clustering step, it is also responsible for the
approximation quality. Without the clustering step the mean
of the normalized ISD becomes about 15% larger and its
standard deviation gets more than twice as large.

Thus, we conclude that, given a good initial solution, the
clustering step pushes it further towards a good local opti-
mum that is finally reached by the Newton approach. But if
the initial solution is inappropriate, it is unable to improve
the original solution by much.

4.3 Evaluation of Clustering Improvments
The impact of several improvements of the clustering step

that have been proposed in Section 3.2 is studied here. The
respective results are listed in Tab. 3. As in the previous
sections, reductions from N = 200 to L = 10 components
are evaluated.

At first, we regard the reallocation of sites to clusters,
i.e., the outer loop of Algorithm 2 (lines 3 – 11), and re-
peat it 2 and 10 times, respectively, instead of only once.
This has a large impact on the average running time but, in
turn, the quality of the approximation improves as well. Un-
fortunately, this improvement is not enough to warrant the
increased running time.

Then, we take the importance of single sites into account
and only consider a fraction of all sites with the highest
weights and try to reallocate them to a better cluster cen-
ter. We use fractions of W = 80%, 50% and 30%. Sur-
prisingly, this has only a small impact on the normalized
ISD. For W = 80% the approximation quality even im-

Table 2: RESULTS OF VARIANTS FOR GMRC, EACH WITH
ONE STEP OF THE ALGORITHM SWITCHED OFF/ALTERED.

ALGORITHM time t normalized ISD
GMRC w. random init. 1.136± 0.045s 1.272± 1.561
GMRC w/o clustering 1.742± 0.043s 0.774± 0.872
GMRC w/o refinement 2.737± 0.036s 1.697± 0.432

Runnals’ algorithm 1.678± 0.024s 3.606± 0.752
GMRC algorithm 2.793± 0.052s 0.658± 0.494



proves. Here, the refinement step probably reaches another
local mimimum that is nearby.

Finally, we combine both improvement strategies and
perform several iterations on a reduced amount of all sites.
In each iteration the fraction of sites that is considerd, has
been reevaluated again. The results indicate that using 10
iterations still takes inappropriately long but a combination
of only 2 iterations and a smaller fraction of sites yields a
good compromise between a decrease in running time and
an improvement in approximation quality.

5 Conclusions and Future Work
The GMRC algorithm represents a top-down approach

for Gaussian mixture reduction taking into account global
information of the whole density function. It incorporates
knowledge from theoretical computer science into this field
of research. Our current implementation of the GMRC algo-
rithm places itself ahead of previous top-down approaches
like West and Williams and poses an interesting alternative
to the PGMR algorithm.

Due to its modularity, different algorithms can be eas-
ily applied for the individual steps of GMRC. In doing so,
different requirements (computational complexity, approx-
imation quality, complexity of implementation, ...) on the
reduction task can be met. By using Runnalls’ algorithm
during the preprocessing, similar results in terms of approx-
imation quality as PGMR are achieved and the algorithm is
considerably faster for input sizes of up to N ≈ 150 compo-
nents. By using West’s algorithm instead, the running times
are always well below PGMR and starting at N ≈ 300 the
approximation quality becomes similar or even better.

We are currently investigating further approaches to ob-
tain good initial approximations on a faster timescale. Here,
the preprocessing of the k-means++ algorithm as described
in [1] is already looking very promising by delivering appro-
priate solutions very fast. We are also in the process of ex-
tending our clustering algorithm for multivariate Gaussian
mixture density functions to evaluate realistic problems. In
addition, an adaptive variant of GMRC that uses a variable

Table 3: RESULTS FOR VARIANTS OF GMRC, USING DIF-
FERENT IMPROVEMENT STRATEGIES OR COMBINATIONS.

ALGORITHM time t normalized ISD
GMRC w. 2 iterations 03.820± 0.046s 0.591± 0.407

GMRC w. 10 iterations 12.160± 0.050s 0.562± 0.361

GMRC w. 30% 02.051± 0.040s 0.680± 0.571
GMRC w. 50% 02.259± 0.041s 0.652± 0.536
GMRC w. 80% 02.566± 0.037s 0.637± 0.484

GMRC w. 30%, 2 it. 02.361± 0.041s 0.654± 0.504
GMRC w. 50%, 2 it. 02.771± 0.040s 0.619± 0.477
GMRC w. 80%, 2 it. 03.395± 0.042s 0.607± 0.455

GMRC w. 30%, 10 it. 04.851± 0.041s 0.633± 0.487
GMRC w. 50%, 10 it. 06.930± 0.042s 0.618± 0.460
GMRC w. 80%, 10 it. 10.090± 0.086s 0.594± 0.420

GMRC algorithm 02.793± 0.052s 0.658± 0.494

number of reduced mixture components L is also currently
being developed and already shows promising results.

Replacing the clustering step by other effective clustering
approaches such as neural clustering [13] which has a lower
computational complexity than the k-means algorithm could
provide interesting insights and further strengthen the mod-
ularity of GMRC by providing an additional option.
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A Detailed Computations
Weight Optimization. A system of linear equations has
to be solved in order to compute the weight optimization in
Section 3.3. It is derived as follows.

To obtain weights ω for the reduced Gaussian mixture η
minimizing the ISD between the original and the reduced
mixture density, we have to compute the first derivative of
the ISD with respect to these weights

∂D
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∂
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1
2
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ωiNi −
N∑

j=1

ω̃iÑj
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with ek denoting the kth unit vector andNi = N (x; µi, σ
2
i ).

This term can be further transformed into a matrix notation
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1 dx

. . . ∫
RN 2

Ldx

 ω

−
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ω̃j


∫

R ÑjN1dx
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R ÑjNLdx

 .

Now, we can compute the roots of this derivative with re-
spect to ω by solving the system of linear equations,

∫
RN 2

1 dx
. . . ∫

RN 2
Ldx

 ω =
N∑

j=1

ω̃j


∫

R ÑjN1dx
...∫

R ÑjNLdx

 .

The solution is a set of optimized weights ω for the reduced
Gaussian mixture density η.



B Detailed Results

Table 4: EXECUTION TIMES AND NORMALIZED ISDS FOR THE ANALYZED APPROXIMATION ALGORITHMS.

N = 1000 N = 500 N = 200
ALGORITHM time t normalized ISD time t normalized ISD time t normalized ISD

Runnalls 47.248± 0.375s 3.347± 0.693 10.813± 0.575s 3.425± 0.656 01.678± 0.024s 3.606± 0.752
West 00.482± 0.038s 2.367± 0.367 00.168± 0.018s 2.820± 0.496 00.046± 0.001s 3.851± 0.790

Williams – – – – 42.333± 0.335s 2.257± 0.524
PGMR 18.438± 5.126s 0.721± 0.182 05.717± 2.817s 0.725± 0.182 02.356± 1.372s 0.696± 0.204

GMRC 59.302± 0.681s 0.428± 0.186 14.763± 0.256s 0.501± 0.256 02.793± 0.052s 0.658± 0.494
GMRC+West 10.839± 0.233s 0.448± 0.195 04.146± 0.490s 0.558± 0.322 01.181± 0.044s 0.863± 0.694
GMRC local 49.218± 0.488s 0.407± 0.407 11.033± 0.138s 0.512± 0.526 01.762± 0.042s 0.742± 0.853

N = 120 N = 40
ALGORITHM time t normalized ISD time t normalized ISD

Runnalls 00.606± 0.012s 3.603± 0.770 00.068± 0.002s 3.214± 0.926
West 00.025± 0.001s 4.611± 1.040 00.007± 0.000s 6.598± 1.765

Williams 09.704± 0.115s 2.360± 0.540 00.750± 0.011s 2.026± 0.639
PGMR 01.896± 1.276s 0.671± 0.217 01.805± 1.585s 0.569± 0.247

GMRC 01.240± 0.038s 0.754± 0.653 00.279± 0.027s 0.552± 0.723
GMRC+West 00.658± 0.037s 1.235± 1.041 00.226± 0.030s 1.780± 1.704
GMRC local 00.675± 0.034s 0.847± 0.997 00.120± 0.027s 0.687± 1.104
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