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Abstract

We consider a Poisson process η on a measurable space (Y,Y) equipped with
a partial ordering, assumed to be strict almost everwhwere with respect to the
intensity measure λ of η. We give a Clark-Ocone type formula providing an explicit
representation of square integrable martingales (defined with respect to the natural
filtration associated with η), which was previously known only in the special case,
when λ is the product of Lebesgue measure on R+ and a σ-finite measure on another
space X. Our proof is new and based on only a few basic properties of Poisson
processes and stochastic integrals. We also consider the more general case of an
independent random measure in the sense of Itô of pure jump type and show that
the Clark-Ocone type representation leads to an explicit version of the Kunita-
Watanabe decomposition of square integrable martingales. We also find the explicit
minimal variance hedge in a quite general financial market driven by an independent
random measure.
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1 Introduction

Any square integrable martingale with respect to a Brownian filtration can be written as
a stochastic integral, see [9] and Theorem 18.10 in [14]. This martingale representation

theorem is an important result of stochastic analysis. Similar results are available for
marked point processes (see e.g. [17, 11] and the references given there) and for general
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semimartingales, see Section III.4 in [11]. For some Brownian martingales Clark [3] found
a more explicit version of the integrand in the representation. Ocone [21] revealed the
relationship of Clark’s formula to Malliavin calculus.

The topic of the present paper is a Clark-Ocone type martingale representation for-
mula when the underlying filtration is generated by a Poisson process η on a measurable
space (Y,Y) equipped with a partial ordering. Our main result (Theorem 1.1) provides
a representation of square integrable martingales as a (stochastic) Kabanov-Skorohod in-
tegral with respect to the compensated Poisson process. In the case Y = R+ × X is the
product of R+ := [0,∞) and a Borel space X, special cases of this formula are well-known.
Stationary Poisson processes on R+ were treated in Picard [23], while [1] considered the
more general case of a finite set X. In [26] it was shown how to use the Malliavin calculus
for Poisson processes developed in [22, 12, 20] and the results in [4] to get the Clark-Ocone
formula under an additional integrability assumption in the case where the intensity mea-
sure of η is the product of Lebesgue measure and a σ-finite measure on X. This is also the
approach taken in [19] and [6] when treating pure jump Lévy processes (without refer-
ing to [26]). Translated to our setting, this is again the special case where the intensity
measure has product form. Our proof of Theorem 1.1 is based on the explicit Fock space
representation of Poisson functionals [18, Theorem 1.5] and the basic isometry properties
of stochastic integrals, and is distinct from the proofs of related results that we have
seen in the literature. In particular we are not using any other martingale representation
theorem for Poisson spaces.

We apply Theorem 1.1 to derive the explicit Kunita-Watanabe projection of square
integrable martingales onto the space of stochastic integrals against an independent ran-
dom measure (in the sense of Itô [10]) without Gaussian component. We also find the
explicit minimal variance hedge in a quite general market driven by an independent ran-
dom measure.

We now describe the contents of this paper in more detail. Throughout the paper we
consider a Poisson process η on a measurable space (Y,Y) with σ-finite intensity measure
λ. The underlying probability space is denoted by (Ω,F , P). We can interpret η as a
random element in the space N := N(Y) of σ-finite integer-valued measures µ on Y

equipped with the smallest σ-field making the mappings µ 7→ µ(B) measurable for all
B ∈ Y . We assume that Y is equipped with a transitive binary relation < such that
{(y, z) : y < z} is a measurable subset of Y

2 and such that for any y, z ∈ Y at most one
of the relations y < z and z < y can be satisfied. We also assume that < strictly orders
the points of Y λ-a.e., that is

λ([y]) = 0, y ∈ Y, (1.1)

where [y] := Y \ {z ∈ Y : z < y or y < z}. For any µ ∈ N let µy denote the restriction of
µ to y↓ := {z ∈ Y : z < y}. Our final assumption on < is that (µ, y) 7→ µy is a measurable
mapping from N × Y to N.

For y ∈ Y the difference operator Dy is given as follows. For any measurable f : N → R

the function Dyf on N is defined by

Dyf(µ) := f(µ + δy) − f(µ), µ ∈ N, (1.2)

where δy is the Dirac measure located at a point y ∈ Y. We need a version of the
conditional expectation E[Dyf(η)|ηy] that is jointly measurable in all arguments. Thanks
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to the independence properties of a Poisson process we can and will work with

E[Dyf(η)|ηy] :=

∫

Dyf(ηy + µ)Πy(dµ), (1.3)

where Πy is the distribution of the restriction of η to Y \ y↓. We use this definition only if
the right-hand side is well defined and finite. Otherwise we set E[Dyf(η)|ηy] := 0. Note
that E[Dyf(η)|ηy] = h(η, y), where h : N × Y → R is defined by

h(µ, y) :=

∫

Dyf(µy + ν)Πy(dν). (1.4)

Since (µ, y) 7→ µy is assumed measurable, the function h is measurable as well. Moreover,
it satisfies

h(µ, y) = h(µy, y), (µ, y) ∈ N × Y. (1.5)

Justified by Proposition 3.3 we call a measurable function h with the property (1.5)
predictable, see Remark 3.6. This notion depends on the ordering <. The fact that this
dependence is not reflected in our terminology, will not lead to confusion.

If h : N × Y → R is a measurable function then we denote by δ(h) ≡
∫

h(η, y)η̂(dy)
the stochastic Kabanov-Skorohod integral of h with respect to the compensated Poisson
process η̂ := η − λ [12, 25, 13]. This integral is well defined only, if the integrability
condition (2.8) on h holds. If, in addition, h ∈ L1(Pη ⊗ λ) ∩ L2(Pη ⊗ λ), then Theorem
3.5 in [18] provides a pathwise interpretation of δ(h):

δ(h) =

∫

h(η − δy, y)η(dy) −

∫

h(η, y)λ(dy) P-a.s. (1.6)

In fact, if h ∈ L2(Pη ⊗ λ) is predictable (i.e. (1.5) holds), then δ(h) is well defined and we
have the isometry relation

Eδ(h)2 = E

∫

h(η, y)2λ(dy). (1.7)

We prove these facts in Section 2, see Propositions 2.2 and 2.4. For predictable functions
h equation (1.7) can be used to extend (1.6) from L1(Pη⊗λ)∩L2(Pη⊗λ) to L2(Pη⊗λ). If
h ∈ L2(Pη ⊗λ) is predictable and A ∈ Y , then we can define

∫

A
h(η, y)η̂(dy) := δ(1N×Ah).

Let Pη denote the distribution of η. For f ∈ L2(Pη) (i.e. for measurable f : N → R with
Ef(η)2 < ∞) we have the following representation of f(η).

Theorem 1.1. Let η be a Poisson process on Y with an intensity measure λ satisfying

(1.1) and let f ∈ L2(Pη). Then

E

∫

E[Dyf(η)|ηy]
2λ(dy) < ∞ (1.8)

and we have P-a.s. that

f(η) = Ef(η) +

∫

E[Dyf(η)|ηy]η̂(dy). (1.9)

Moreover, we have for any y ∈ Y that P-a.s.

E[f(η)|ηy] = Ef(η) +

∫

y↓

E[Dzf(η)|ηz]η̂(dz). (1.10)
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Define My := E[f(η)|ηy], y ∈ Y, where f is as in (1.10). If z < y then the σ-field σ(ηz)
is contained in σ(ηy) and we have the martingale property E[My|ηz] = Mz a.s. Equation
(1.10) provides an explicit representation of the martingale (My) as stochastic integral of
an explicitly known integrand.

In the remainder of this introduction we assume that Y = R+ × X, where (X,X ) is a
Borel space and that (s, x) < (s′, x′) if and only if s < s′. Assumption (1.1) means that

λ({t} × X) = 0, t ≥ 0. (1.11)

We do not assume λ to be of product form. In Section 3 we first discuss Theorem
1.1 in this case. Then we show that a function is predictable essentially if and only if
it is predictable in the standard sense of stochastic analysis. Theorem 3.5 shows that
the Kabanov-Skorohod integral of a predictable function coincides with the (standard)
stochastic integral. This extends results in [12] and [20] for Poisson processes on R+.

In Section 4 we consider instead of the compensated Poisson process η̂ a more general
centred independent random measure ζ (in the sense of [10]) on R+ ×X. We assume that
ζ has no Gaussian part and a σ-finite variance measure with diffuse projection onto the
first coordinate. Then ζ can be represented in terms of a Poisson process η as above on
Y := R+ × X × (R \ {0}). Consequently we can apply our Clark-Ocone type formula to
obtain an explicit formula for the orthogonal projection of a square integrable function of η
onto the space of all stochastic integrals against ζ, see Theorem 4.1. Such projections were
first considered by Kunita and Watanabe [16] in the setting of continuous martingales.
Later these ideas were extended to semimartingales, see e.g. Schweizer [24]. Using a
different approach (and allowing for a Gaussian component) Di Nunno [5] proved a version
of Theorem 4.1 for special (“core”) functions of η. In fact we prove our results in the
more general case of an independent random measure ζ on a Borel space (Y′,Y ′) with
a diffuse and σ-finite variance measure β such that Y

′ is ordered almost everwhere with
respect to β.

In Section 5 we consider a quite general financial market with a continuum of as-
sets, driven by an independent random measure without Gaussian component. Again all
processes can be represented in terms of a Poisson process η on a suitable state space.
A function f ∈ L2(Pη) can then be interpreted as a contingent claim. Minimizing the
L2-distance between f(η) − Ef(η) and a certain space of stochastic integrals against the
assets, yields the minimal variance hedge of f(η). Theorem 5.4 finds this hedge explicitly,
while Theorem 5.5 identifies the claims that can be perfectly hedged. These theorems
extend the main results in [2], which treats the case of a market driven by a finite number
of independent Lévy processes.

2 Representation of Poisson martingales

In this section we prove Theorem 1.1, starting with some definitions and preliminary
observations. Let f : N → R be a measurable function. For n ≥ 2 and (y1, . . . , yn) ∈ Y

n

we define a function Dn
y1,...,yn

f : N → R inductively by

Dn
y1,...,yn

f := D1
y1

Dn−1
y2,...,yn

f, (2.1)
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where D1 := D and D0f = f . For f ∈ L2(Pη) it was proved in [18] that Dn
y1,...,yn

f(η) is
integrable for λn-a.e. (y1, . . . , yn) and that

Tnf(y1, . . . , yn) := EDn
y1,...,yn

f(η), (y1, . . . , yn) ∈ Y
n, (2.2)

defines a symmetric function in L2(λn). Moreover, we have the Wiener-Itô chaos expansion

f(η) =
∞

∑

n=0

1

n!
In(Tnf), (2.3)

where the series converges in L2(P). Here In(g) denotes the nth multiple Wiener-Itô

integral of a symmetric g ∈ L2(λn), see [10]. These integrals satisfy the orthogonality
relations

EIm(g)In(h) = 1{m = n}m!〈g, h〉n m,n ∈ N0, (2.4)

where 〈·, ·〉n denotes the scalar product in L2(λn).
Let h ∈ L2(Pη ⊗ λ). Then h(·, y) ∈ L2(Pη) for λ-a.e. y and we may consider the chaos

expansion

h(η, y) =
∞

∑

n=0

In(hn(y)), (2.5)

where hn(y) ∈ L2(λn), n ∈ N, are given by

hn(y)(y1, . . . , yn) := EDn
y1,...,yn

f(η, y). (2.6)

Let h̃n be the symmetrization of this function, that is

h̃n(y1, . . . , yn+1) =
1

n + 1

n
∑

i=1

hn(yi)(y1, . . . , yi−1, yi+1, . . . , yn+1).

From (2.5) and (2.4) we obtain that h̃n ∈ L2(λn+1) and we can define the Kabanov-

Skorohod integral [7, 12, 25, 13, 18] of h, denoted δ(h), by

δ(h) :=
∞

∑

n=0

In+1(h̃n), (2.7)

which converges in L2(P) provided that

∞
∑

n=0

(n + 1)!

∫

h̃2
ndλn+1 < ∞. (2.8)

We need the following duality relation from [20], see also Proposition 3.4 in [18]. We let
‖ · ‖n denote the norm in L2(λn).
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Proposition 2.1. Assume that g ∈ L2(Pη) satisfies

∞
∑

n=1

1

(n − 1)!
‖Tng‖2

n < ∞. (2.9)

Let h ∈ L2(Pη⊗λ) with a chaos expansion satisfying (2.8). Then E
∫

(Dyg(η))2λ(dy) < ∞
and

E

∫

Dyg(η)h(η, y)λ(dy) = Eg(η)δ(h). (2.10)

Proposition 2.1 easily shows that δ is closed, see [12] and [20]. This means that if
hk ∈ L2(Pη ⊗ λ), k ∈ N, satisfy (2.8), hk → h in L2(Pη ⊗ λ) and δ(hk) → X in L2(P),
then h satisfies (2.8) and δ(h) = X a.s. We shall use this fact repeatedly in the sequel.

The next result shows that the Kabanov-Skorohod integral of a predictable h is defined,
if h is square integrable with respect to Pη ⊗ λ.

Proposition 2.2. Let h ∈ L2(Pη ⊗ λ) be predictable. Then (2.8) holds.

Proof: Consider the functions defined by (2.6). Since h is predictable, we have that
hn(y)(y1, . . . , yn) = 0 whenever yi > y for some i ∈ {1, . . . , n}. This implies that

1∆n+1
(y1, . . . , yn+1)h̃n(y1, . . . , yn+1) = 1∆n

(y1, . . . , yn)
1

n + 1
hn(yn+1)(y1, . . . , yn),

where

∆n := {(y1, . . . , yn) ∈ Y
n : y1 < . . . < yn}. (2.11)

In view of (1.1) it follows that

‖h̃n‖
2
n+1 = (n + 1)!‖1∆n+1

h̃n‖
2
n+1

=
(n + 1)!

(n + 1)2

∫

‖1∆n
hn(y)‖2

nλ(dy) =
1

n + 1

∫

‖hn(y)‖2
nλ(dy).

Hence we obtain from (2.4) and (2.5) that

∞
∑

n=0

(n + 1)!‖h̃n‖
2
n+1 =

∞
∑

n=0

∫

n!‖hn(y)‖2
nλ(dy)

=
∞

∑

n=0

∫

EIn(hn(y))2λ(dy) =

∫

Eh(y)2λ(dy) < ∞.

Therefore (2.8) holds.

Let h ∈ L2(Pη ⊗ λ) be predictable and B ∈ Y . Then 1N×Bh ∈ L2(Pη ⊗ λ) is also
predictable. Moreover, we have from (2.10) that

δ(1N×Bh) = 0 P-a.s. if λ(B) = 0. (2.12)

The following proposition implies a part of Theorem 1.1.
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Proposition 2.3. Let h ∈ L2(Pη ⊗ λ) be predictable. Then, for any y ∈ Y,

E

[

∫

h(η, z)η̂(dz)
∣

∣

∣
ηy

]

=

∫

y↓

h(η, z)η̂(dz) P-a.s. (2.13)

Proof: The right-hand side of (2.13) can be chosen σ(ηy)-measurable. This fact can
be traced back to (2.4): if f ∈ L2(λn) is symmetric and vanishes outside Bn for some
B ∈ Y and IB

n denotes the nth Wiener-Ito integral with respect to the restriction of η to
B, then In(f) = IB

n (f) P-a.s.
To prove (2.13), we take y ∈ Y and a measurable function g : N → R such that the

function gy defined by gy(µ) := g(µy) satisfies (2.9). Since Dzgy = 0 for y < z we obtain
from Proposition 2.1 that

0 = Eg(ηy)

∫

1{y < z}h(η, z)η̂(dz).

From (2.12) and (1.1) we have
∫

1[y](z)h(η, z)η̂(dz) = 0 P-a.s. (2.14)

Hence we obtain from the linearity of δ that

Eg(ηy)

∫

h(η, z)η̂(dz) = Eg(ηy)

∫

y↓

h(η, z)η̂(dz). (2.15)

Now we consider a function g of the form g(µ) := exp[−
∫

hdµ], where h : Y → R+ is
measurable and vanishes outside a set C ∈ Y with λ(C) < ∞. It can be easily checked,
that gy satisfies (2.9) (cf. also the proof of Theorem 3.3 in [18]). Hence (2.15) holds for
all linear combinations of such functions. A monotone class argument shows that (2.15)
holds for all bounded measurable g : N → R (cf. the proof of Lemma 2.2 in [18]). This is
enough to deduce (2.13).

Proof of Theorem 1.1: Let f ∈ L2(Pη) and define h : N × Y → R by (1.4). Then h
is predictable. Moreover, Theorem 1.5 in [18] implies that h ∈ L2(Pη ⊗ λ), that is (1.8)
holds. By Proposition 2.2, the Kabanov-Skorohod integral δ(h) is well defined. We have
to show that

f(η) = Ef(η) + δ(h) P-a.s. (2.16)

Let g ∈ L2(Pη) satisfy (2.9). By Proposition 2.1,

Eg(η)δ(h) = E

∫

Dyg(η)E[Dyf(η)|ηy]λ(dy)

=

∫

E[E[Dyg(η)|ηy]E[Dyf(η)|ηy]]λ(dy),

where the second equality comes from Fubini’s theorem and a standard property of con-
ditional expectations. Applying Theorem 1.5 in [18], we obtain that

Eg(η)δ(h) = Eg(η)f(η) − (Eg(η))(Ef(η)),
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that is Eg(η)(Ef(η) + δ(h)) = Eg(η)f(η). Since the set of all g ∈ L2(Pη) satisfying (2.9)
is dense in L2(Pη), we obtain (2.16). The remaining assertion follows from Proposition
2.3.

We finish this section with a standard property of stochastic integrals.

Proposition 2.4. Let h, h̃ ∈ L2(Pη ⊗ λ) be predictable. Then

Eδ(h)δ(h̃) = E

∫

h(η, y)h̃(η, y)λ(dy). (2.17)

Proof: By linearity and polarization we may assume that h = h̃. Let us first assume
that h is bounded and that h(µ, x) = 0 for x /∈ C ∈ Y , where λ(C) < ∞. In particular,
h ∈ Lp(Pη ⊗ λ) for any p > 0. By (1.6),

Eδ(h)2 =E

(
∫

h(η − δy, y)η(dy)

)2

− 2E

(
∫

h(η − δx, x)η(dx)

∫

h(η, y)λ(dy)

)

+ E

(
∫

h(η, y)λ(dy)

)2

. (2.18)

Our assumptions on h guarantee that all these expectations are finite. We are now
performing a fairly standard calculation based on the Mecke equation, see e.g. (2.10) in
[18]. The first term on the right-hand side of (2.18) equals

E

∫

h(η, y)2λ(dy) + E

∫∫

h(η + δy, x)h(η + δx, y)λ(dy)λ(dx)

=E

∫

h(η, y)2λ(dy) + 2E

∫∫

1{x < y}h(η, x)h(η + δx, y)λ(dy)λ(dx),

where we have used symmetry, (1.1) and (1.5), to obtain the equality. The second term
on the right-hand side of (2.18) equals

−2E

∫∫

1{x < y}h(η, x)h(η + δx, y)λ(dy)λ(dx)

− 2E

∫∫

1{y < x}h(η, x)h(η, y)λ(dy)λ(dx).

Summarizing, we obtain that (1.7) holds, as required.
In the general case we define, for k ∈ N,

hk(µ, x) := 1{|h(µ, x)| ≤ k}1{x ∈ Ck}h(µ, x), (µ, x) ∈ N × Y,

where Ck ↑ Y and λ(Ck) < ∞. The functions hk are predictable and satisfy the assump-
tions made above. From dominated convergence we have E

∫

(h(η, x)−hk(η, x))2λ(dx) → 0
as k → ∞. Then (1.7) implies that δ(hk) is a Cauchy sequence in L2(P) and hence con-
verges towards some X ∈ L2(P). Since δ is closed, we obtain X = δ(h) and hence the
assertion.
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3 Martingales and stochastic integration

Assume that Y = R+ ×X, where (X,X ) is a measurable space. We define (s, x) < (s′, x′)
if and only if s < s′. Throughout this section we consider a Poisson process η on Y

whose intensity measure λ is σ-finite and satisfies (1.11). We discuss Theorem 1.1 and
the Kabanov-Skorohod integral of predictable functions.

For any s ≥ 0 and µ ∈ N we denote by µs (resp. µs−) the restriction of µ to [0, s]×X

(resp. [0, s) × X). Theorem 1.1 takes the following form.

Theorem 3.1. Let f ∈ L2(Pη). Then

E

∫

E[D(s,x)f(η)|ηs−]2λ(d(s, x)) < ∞ (3.1)

and we have for any t ≥ 0 that P-a.s.

E[f(η)|ηt] = Ef(η) +

∫

1[0,t](s)E[D(s,x)f(η)|ηs−]η̂(d(s, x)). (3.2)

Proof: Relation (3.1) follows directly from Theorem 1.1. For any t ≥ 0 we have
P-a.s. that

E[f(η)|ηt] =

∫

f(ηt + µ)Πt(dµ)

where Πt is the distribution of the restriction of η to (t,∞) × X, compare with (1.3). By
(1.11), Πt is also the distribution of the restriction of η to [t,∞) × X and ηt = ηt− a.s.
Hence E[f(η)|ηt] = E[f(η)|ηt−] and (3.2) follows from (1.10) and (2.14).

Remark 3.2. Let h ∈ L2(Pη ⊗ λ) be predictable and define

Mt :=

∫

1[0,t](s)h(η, s, x)η̂(d(s, x)), t ∈ [0,∞].

Proposition 2.3 and (2.14) imply for any t ∈ [0,∞] that E[M∞|ηt−] = Mt P-a.s. In the
proof of Theorem 3.1 we have seen that E[M∞|ηt−] = E[M∞|ηt] P-a.s. Hence (Mt)t∈[0,∞] is
a martingale with respect to the filtration (σ(ηt))t∈[0,∞], where η∞ := η. This martingale
is square integrable, that is M∞ ∈ L2(P).

Our next aim is to clarify the meaning of the predictability property (1.5) and to
discuss the Kabanov-Skorohod integral of predictable functions. To do so, we introduce a
measurable subset N∗ of N as follows. Let C1, C2, . . . be a sequence of disjoint measurable
subsets of Y with union Y. We let N∗ be the set of all µ ∈ N having the properties
µ({0} × X) = 0 and µ(Cn) < ∞ for all n ∈ N. For any t ∈ [0,∞] let Nt the smallest
σ-field of subsets of N∗, making the mappings µ 7→ µ(B ∩ ([0, t] × X)) measurable for
all B ∈ Y . Here µ∞ := µ. The predictable σ-field P (see [11]) is the smallest σ-field
containing the sets

A × (s, t] × B, s < t,A ∈ Ns, B ∈ X . (3.3)

The next proposition provides a useful characterization of the predictable σ-field. We
have to assume that (X,X ) is Borel isomorphic to a Borel subset of [0, 1]. Such a space
is called Borel space, see [14].
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Proposition 3.3. Assume that (X,X ) is a Borel space. Let h : N∗ × R+ × X → R be

measurable. Then h is P-measurable if and only if (1.5) holds, that is

h(µ, s, x) = h(µs−, s, x), (µ, s, x) ∈ N∗ × X × R+. (3.4)

Proof: The filtration (Nt)t≥0 is not right-continuous, but has otherwise many of the
properties of a point process filtration as studied in Section 2.2 of [17]. To make this more
precise, we introduce Nn, n ∈ N, as the set of all finite integer-valued measures µ on Cn

such that µ(({0} × X) ∩ Cn) = 0. Any µ ∈ Nn can be written as

µ(B) =
m

∑

i=1

∫

1B(si, x)µi(dx), (3.5)

where m ≥ 0, 0 < s1 < . . . < sm, and µ1, . . . , µm, are finite non-trivial integer-valued
measures on X. (Here we use the Borel structure of X.) It is convenient to identify µ
with the infinite sequence (si, µi), i ∈ N, where (si, µi) := (∞, 0) for i > m, and 0 denotes
the zero measure. Let Nf (X) be the space of all finite counting measures on X. It is not
difficult to see the this is a Borel space. Moreover, the quantities m, s1, . . . , sm, µ1, . . . , µm

in (3.5) depend on µ in a measurable way. (This does require the Borel structure of X

and Nf (X)). Therefore we can identify Nn with a measurable subset N′
n of the space M

defined as the set of all sequences ((si, µi))i∈N ∈ ((0,∞] × Nf (X))∞ with the following
properties. If si < ∞, then si < si+1 and µi 6= 0. If si = ∞, then si+1 = ∞ and
µi = 0. The space N′

n ⊂ M can be equipped with the product topology inherited
from ([0,∞] × Nf (X))∞. Now we indentify the whole space N∗ with N′

1 × N′
2 × . . .,

again equipped with the product topology. The crucial property of this topology is that
the mappings s 7→ µs and s 7→ µs− are right-continuous respectively left-continuous.
Therefore it is not difficult to check that Theorem 2.2.6 in [17] applies to the filtration
(Nt).

Remark 3.4. The assumption µ({0}×X) = 0 for µ ∈ N∗ has been made for convenience.
Without this condition the σ-field N0 becomes non-trivial, and we have to include the
sets A × {0} × B (A ∈ N0, B ∈ X ) into the σ-field P . If we then redefine µ0− as the
restriction of µ to {0} × X, Proposition 3.3 remains valid.

We now assume that the sets Cn, n ∈ N, are chosen in such a way, that the intensity
measure λ of η is finite on these sets. Let η∗ be the random element in N∗, defined by
η∗ := η if η ∈ N∗ and η∗ := 0, otherwise. The second case has probability 0. Let F ∗

1 and
F ∗

2 denote the P-measurable elements of L1(Pη∗ ⊗ λ) and L2(Pη∗ ⊗ λ) respectively. For
h ∈ F ∗

2 we can define the stochastic integral δ∗(h) of h against the compensated Poisson
process η∗ − λ in the following standard way, see e.g. [8]. If h ∈ F ∗

1 ∩ F ∗
2 we define

δ∗(h) :=

∫

h(η∗, s, x)η∗(d(s, x)) −

∫

h(η∗, s, x)λ(d(s, x)). (3.6)

In particular,

δ∗(1A×(s,t]×B1N∗×Cn
) = 1A(η∗)(η∗(((s, t] × B) ∩ Cn) − λ(((s, t] × B) ∩ Cn), (3.7)

10



where s < t, A ∈ Ns, n ∈ N, and B ∈ X . Let h ∈ F ∗
1 ∩ F ∗

2 and define h̃ : N × Y → R

by h̃ := h on N∗ × Y and h̃ := 0, otherwise. By Proposition 3.3, h̃ is predictable. Since
P(η ∈ N∗) = 1 we obtain from (1.6) that δ∗(h) = δ(h̃) P-a.s. Therefore (1.7) implies the
isometry relation

Eδ∗(h)2 = E

∫

h(η∗, s, x)2λ(d(s, x)) (3.8)

for any h ∈ F ∗
1 ∩ F ∗

2 . Since F ∗
1 ∩ F ∗

2 is dense in F ∗
2 we can extend δ∗ to a linear operator

from F ∗
2 to L2(P). Equation (3.8) remains valid for arbitrary h ∈ F ∗

2 .
We now prove that δ extends the stochastic integral δ∗. Special cases of this result

can be found in [12] and [20]. For h : N×Y → R, the function h∗ : N∗ ×Y → R denotes
the restriction of h to N∗ × Y.

Theorem 3.5. Let h ∈ L2(Pη ⊗ λ) such that h∗ is P-measurable. Then δ(h) = δ∗(h∗)
P-a.s.

Proof: Since P(η ∈ N∗) = 1, we have from Proposition 2.2 that δ(h) is defined.
By (1.6) and (3.6) (and Proposition 3.3) the assertion holds for any h ∈ F ∗

1 ∩ F ∗
2 . In

the general case we may choose hk ∈ F ∗
1 ∩ F ∗

2 , k ∈ N, such that hk → h as k → ∞ in
L2(Pη ⊗ λ). Then δ∗(h∗

k) = δ(hk) converges to δ∗(h∗) in L2(P). Since δ is closed, this
yields the assertion.

Remark 3.6. Proposition 3.3 justifies our terminology for measurable functions h on
N × Y satisfying (1.5). By this proposition, if h is predictable then h∗ is P-measurable.
Conversely, if h∗ is P-measurable then there exists predictable h̃ with h̃∗ = h∗. If h ∈
L2(Pη ⊗ λ) is predictable then our notation

∫

hdη̂ := δ(h) is justified by Theorem 3.5.

Remark 3.7. A standard assumption in the stochastic analysis literature is completeness
of the underlying filtration. Quite often one can find no further comment on this technical
(and sometimes annoying) hypothesis. In this paper we do not make this completeness
assumption, which is rather alien to point process theory.

4 Independent random measures

Let (Y′,Y ′) be a Borel space and β be a σ-finite measure and diffuse measure on Y
′.

Let Y ′
0 denote the system of all sets B ∈ Y ′ such that β(B) < ∞. In this section we

consider an independent random measure on Y
′ (see [10]) with variance measure β. This

is a family ζ ′ := {ζ ′(B) : B ∈ Y ′
0} with the following three properties. First, Eζ ′(B) = 0

and Eζ ′(B)2 = β(B) for any B ∈ Y ′
0. Second, if B1, B2, . . . ∈ Y ′

0 are pairwise disjoint,
then ζ ′(B1), ζ

′(B2), . . . are independent. Third, if B1, B2, . . . ∈ Y ′
0 are pairwise disjoint

and B := ∪Bn ∈ Y ′
0 then ζ ′(B) =

∑

n ζ ′(Bn) in L2(P). By [14, Theorem 4.1] the series
also converges almost surely. Since β is diffuse, it follows that the distribution of ζ ′(B)
is infinitely divisible for any B ∈ Y ′

0, see [15, p. 81] for a closely related argument. The
Lévy-Khinchin representation (see [14, Corollary 15.8]) implies that

log Eeiuζ′(B) = −aBu2 +

∫

(eiuz − 1 − iuz)λ(B, dz), u ∈ R, (4.1)
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where aB ∈ R and λ(B, ·) is a measure on R
∗ := R \ {0} satisfying

∫

z2λ(B, dz) = β(B).
The measure λ(B, ·) is the Lévy measure of ζ ′(B) and is unique. We assume that aB = 0,
so that ζ has no Gaussian component. If B ∈ Y ′

0 is the disjoint union of measurable sets
Bn, n ∈ N, then the independence of the ζ ′(Bn) and the uniqueness of the Lévy measure
implies that λ(B, ·) =

∑∞

n=1 λ(Bn, ·). By a well-known result from measure theory (see
[15, p. 82]) there is a unique measure λ on Y

′ × R
∗ such that λ(B × C) = λ(B,C) for all

B ∈ Y ′
0 and all measurable C ⊂ R

∗. Hence equation (4.1) can be rewritten as

log Eeiuζ′(B) =

∫

1B(x)(eiuz − 1 − iuz)λ(d(x, z)), u ∈ R, (4.2)

whenever β(B) < ∞. By definition,

∫

z21{x ∈ ·}λ(d(x, z)) = β(·). (4.3)

In particular, λ is σ-finite.
Let us now consider a Poisson process η on Y := Y

′ × R
∗ with intensity measure λ.

For any B ∈ Y ′
0 we define the Wiener-Itô integral

ζ(B) :=

∫

z1B(y)η̂(d(y, z)). (4.4)

Then ζ := {ζ(B) : B ∈ Y ′
0} is an independent random measure with variance measure

β. We might think of a point of η as being a point in Y
′ with the second coordinate

representing its weight. Then the integral (4.4) is the weighted sum of all points lying in
B, suitably compensated. It follows from (4.2) and basic properties of η (cf. [14, Lemma
12.2] or [15, Section 3.2]) that ζ(B) and ζ ′(B) have the same distribution for any B ∈ Y ′

0.
Henceforth it is convenient to work with ζ and the Poisson process η.

We now assume that <′ is a partial ordering on Y
′ satisfying the assumptions listed

in the introduction, where in (1.1) the measure λ has to be replaced with β. (If y ∈ [y]
for all y ∈ Y

′ this is strengthening the diffuseness assumption on β.) Then we can
define a binary relation < on Y = Y

′ × R
∗ by setting (y, z) < (y′, z′) if y <′ y′. This

relation also satisfies our assumptions, where (1.1) comes from (4.3) and the assumption
on β. The measurability of (µ, y) 7→ µy can be proved using a measurable disintegration
µ(d(y, z)) = K(µ, y, dz)µ∗(dy), where K is a kernel from N × Y

′ to R
∗ and µ 7→ µ∗ is a

measurable mapping from N = N(Y) to N(Y′) such that µ(· ×R
∗) and µ∗ are equivalent

measures for all µ ∈ N.
The stochastic integral of a predictable function h : N × Y

′ → R against ζ is defined
by

∫

h(η, y)ζ(dy) :=

∫

zh(η, y)η̂(d(y, z)) (4.5)

provided that

E

∫

h(η, y)2β(dy) = E

∫

z2h(η, y)2λ(d(y, z)) < ∞. (4.6)
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Let M2
ζ ⊂ L2(P) be the space of all square integrable random variables X given by

X =

∫

h(η, y)ζ(dy), (4.7)

where the predictable function h satisfies (4.6). It follows from Proposition 2.4 that M2
ζ

is a closed linear space. Hence any Y ∈ L2(P) can be uniquely written as Y = X + X ′,
where X ∈ M2

ζ and X ′ ∈ L2(P) is orthogonal to M2
ζ . Decompositions of this type

were first considered by Kunita and Watanabe [16]. The following theorem makes this
decomposition more explicit. We use a stochastic kernel J(y, dz) from Y

′ to R
∗ such that

z2λ(d(y, z)) = J(y, dz)β(dy). (4.8)

Such a kernel exists by a standard disintegration result (cf. [14, Theorem 6.3] for a special
case).

Theorem 4.1. Let f ∈ L2(Pη) and define a predictable hf : N × Y
′ → R by

hf (η, y) = E

[

∫

z−1D(y,z)f(η)J(y, dz)
∣

∣

∣
ηy

]

. (4.9)

Then hf satisfies (4.6) and we have P-a.s. that

f(η) = Ef(η) +

∫

hf (η, y)ζ(dy) + X ′, (4.10)

where X ′ ∈ L2(P) is orthogonal to M2
ζ.

Proof: By Fubini’s theorem applied to kernels we have

E

∫

hf (η, y)2β(dy) =

∫

E

(

∫

E[z−1D(y,z))f(η)|ηy]J(y, dz)
)2

β(dy).

Applying Jensen’s inequality to the stochastic kernel J(y, dz) and using (4.8) and (1.8)
gives (4.6). We now define X ′ ∈ L2(P) by

X ′ :=

∫

(E[D(y,z)f(η)|ηy] − zhf (η, y))η̂(d(y, z)). (4.11)

Theorem 3.1 implies (4.10). It remains to show that X ′ is orthogonal to M2
ζ . To this end

we consider a random variable X as given in (4.7). By Proposition 2.4,

EXX ′ = E

∫

zh(y)(E[D(y,z)f(η)|ηy] − zhf (η, y))λ(d(y, z)). (4.12)

We have

E

∫

z2h(y)hf (η, y)λ(d(y, z)) = E

∫

h(y)hf(η, y)β(dy)

= E

∫∫

h(y)E[z−1D(y,z)f(η)|ηy]J(s, x, dz)β(d(s, x))

= E

∫

zh(y)E[D(y,z)f(η)|ηy]λ(d(y, z)).
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Hence (4.12) implies EXX ′ = 0, as claimed.

Di Nunno [5] proved Theorem 4.1 for special (“core”) functions f (and allowing also
for a Gaussian part of ζ) in case Y

′ = R+ × X, with <′ given as in Section 3. In the case
where J(y, ·) = δ1 for β-a.e. y (that is that ζ has only atoms of size 1), (4.10) reduces to
the Clark-Ocone type formula (1.9).

The following result characterizes the class of square-integrable stochastic integrals
against ζ.

Corollary 4.2. Let f ∈ L2(Pη) such that Ef(η) = 0. Then f(η) ∈ M2
ζ if and only if

there is some predictable h : N × Y
′ → R satisfying (4.6) such that

E[D(y,z)f(η)|ηy] = zh(η, y) λ-a.e. (y, z), P-a.s. (4.13)

Proof: Assume that (4.13) holds. Then h = hf and the random variable X ′ defined
by (4.11) vanishes almost surely. Therefore Theorem 4.1 shows that f(η) can be written
as a stochastic integral against ζ.

Assume conversely that f(η) ∈ M2
ζ and consider the decomposition (4.10). Since the

orthogonal projection onto M2
ζ is unique, it follows that X ′ = 0 P-a.s. By definition

(4.11) this means that (4.13) holds with h := hf .

5 Minimal variance hedging

We consider a Poisson process η on Y := R+ × X × X
′, where (X,X ) and (X′,X ′) are

Borel spaces. The partial ordering on Y is defined by (s, x, z) < (s′, x′, z′) if s < s′. As
always, the intensity measure λ of η is assumed to satisfy (1.1). Our aim in this section is
to extend the results of Section 4 for the case Y

′ = R+ ×X. We replace R
∗ by the general

space X
′ and the independent random measure ζ by a more general L2-valued signed

random measure. The special structure of Y
′ (and Y) allows for a financial interpretation

of our results. We consider a point (s, x, z) of η as representing a financial event at time
s of (asset) type x and with mark z. We let κ : N×Y → R be a predictable function and
interpret κ(η, s, x, z) as the size of the event (s, x, z). We assume that

β̄(·) := E

∫

κ(η, s, x, z)21{(s, x) ∈ ·}λ(d(s, x, z)) (5.1)

is a σ-finite measure. The system of all measurable B ⊂ R+ × X such that β̄(B) < ∞ is
denoted by Y ′

0. For any B ∈ Y ′
0 we define by

ζ(B) :=

∫

κ(η, s, x, z)1B(s, x)η̂(d(s, x, z)) (5.2)

a square integrable random variable having Eζ(B) = 0. The stochastic integral of a
predictable h : N × R+ × X → R (here (s, x) < (s′, x′) if s < s′) against ζ is defined by

∫

h(η, s, x)ζ(d(s, x)) :=

∫

h(η, s, x)κ(η, s, x, z)η̂(d(s, x, z)) (5.3)
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provided that

E

∫

h(η, s, x)2κ(η, s, x, z)2λ(d(s, x, z)) < ∞. (5.4)

We denote by A the set of all such predictable functions h.

Remark 5.1. Let X0 denote the system of all B ∈ X such that [0, t] × B ∈ Y ′
0 for all

t ≥ 0. For B ∈ X0 we can define the square integrable martingale (see Remark 3.2)

ζt(B) :=

∫

κ(η, s, x, z)1[0,t](s)1B(x)η̂(d(s, x, z)), t ∈ [0,∞].

We interpret ζt(B) as the (discounted) price of the assets in B at time t. Note that ζt(·) is
a signed measure on X0 in a L2-sense. An element h ∈ A can be interpreted as admissable
portfolio investing the amount h(η, s, x) in asset x at time s. Accordingly, if the bond
price is constant, and V0 ∈ R then

Vt := V0 +

∫

1[0,t](s)h(η, s, x)ζ(d(s, x)), t ∈ [0,∞],

is the value process of the self-financing portfolio associated with h and an initial value
V0.

Let f ∈ L2(Pη). We interpret f(η) as a claim to be hedged (or approximated) by a
random variable of the form Ef(η)+

∫

h(η, s, x)ζ(d(s, x)) with h ∈ A. A minimal variance

hedge of f(η) is then a portfolio hf ∈ A satisfying

E

(

f(η) − Ef(η) −

∫

hf (η, s, x)ζ(d(s, x))
)2

= inf
h∈A

E

(

f(η) − Ef(η) −

∫

h(η, s, x)ζ(d(s, x))
)2

. (5.5)

Remark 5.2. Problem (5.5) requires us to minimize the quadratic risk among all self-
financing portfolios with initial value Ef(η). We might also be interested in minimizing

E

(

f(η) − c −

∫

h(η, s, x)ζ(d(s, x))
)2

. (5.6)

in c ∈ R and h ∈ A. However, if hf ∈ A solves (5.5) then the pair (Ef(η), hf ) minimizes
(5.6).

To solve (5.5) we need to generalize the disintegration (4.8). A kernel J from N×R+×X

to X
′ is called predictable, if (µ, s, x) 7→ J(µ, s, x, C) is predictable for all C ∈ X ′. In

the next proof and also later we use the generalized inverse a⊕ of a real number a. It is
defined by a⊕ := a−1 if a 6= 0 and a⊕ := 0 if a = 0.

Lemma 5.3. There exists a predictable stochastic kernel J from N× R+ × X to X
′ such

that

κ(η, s, x, z)2λ(d(s, x, z)) = J(η, s, x, dz)β(d(s, x)) P-a.s., (5.7)

where the random measure β on R+ × X is defined by

β(·) :=

∫

1{(s, x) ∈ ·}κ(η, s, x, z)2λ(d(s, x, z)). (5.8)
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Proof: Define a measure λ̄ on Y by

λ̄(d(s, x, z)) := κ̄(s, x, z)λ(d(s, x, z)),

where κ̄(s, x, z) := Eκ(η, s, x, z)2. Because the measure β̄ = λ̄(·×X
′) (see (5.1)) is assumed

σ-finite and X
′ is Borel, there is a stochastic kernel J̄ from R+ × X to X

′ such that

λ̄(d(s, x, z)) = J̄(s, x, dz)β̄(d(s, x)).

It follows that

κ(η, s, x, z)2λ(d(s, x, z)) = κ̄(s, x, z)⊕κ(η, s, x, z)2J̄(s, x, dz)β̄(d(s, x)) P-a.s. (5.9)

In particular the random measure β defined by (5.8) coincides a.s. with g(η, s, x)β̄(d(s, x)),
where

g(µ, s, x) :=

∫

κ̄(s, x, z)⊕κ(µ, s, x, z)2J̄(s, x, dz).

We now define

J(µ, s, x, dz) := g(µ, s, x)−1κ̄(s, x, z)⊕κ(µ, s, x, z)2J̄(s, x, dz),

if g(µ, s, x) > 0. Otherwise we let J(µ, s, x, ·) equal some fixed probability measure on X
′.

Then J is predictable and (5.9) implies (5.7).

As in Section 4 we let M2
ζ denote the space of all square integrable random variables

that can be written as a stochastic integral (5.3).

Theorem 5.4. Let f ∈ L2(Pη) and define

hf (η, s, x) =

∫

κ(η, s, x, z)⊕E[D(s,x,z)f(η)|ηs−]J(η, s, x, dz), (5.10)

where the stochastic kernel J is as in Lemma 5.3. Then hf ∈ A and (5.5) holds. Moreover,

we have for any t ∈ [0,∞] that P-a.s.

E[f(η)|ηt] = Ef(η) +

∫

1[0,t](s)hf (η, s, x)ζ(d(s, x)) + Nt, (5.11)

where (Nt) is a square integrable martingale such that N∞ is orthogonal to M2
ζ.

Proof: Clearly hf is predictable. The integrability condition (5.4) can be checked
exactly as in the proof of Theorem 4.1. We can now proceed as in the proof of Theorem
4.1 to derive the representation

f(η) = Ef(η) +

∫

hf (η, s, x)ζ(d(s, x)) + X ′, (5.12)

where X ′ ∈ L2(P) is orthogonal to M2
ζ . This orthogonality implies (5.5). Let t ≥ 0 and

define Nt := E[X ′|ηt]. Taking conditional expectations in (5.12) and using Remark 3.2
yields (5.11).

The next result characterizes the claims that can be perfectly hedged. The proof is
an obvious generalization of the proof of Corollary 4.2.

16



Theorem 5.5. Let f ∈ L2(Pη). Then (5.5) vanishes if and only if there is some h ∈ A
such that

E[D(s,x,z)f(η)|ηs−] = κ(η, s, x, z)h(η, s, x) λ-a.e. (s, x, z), P-a.s. (5.13)

In this case we have h(η, s, x) = hf (η, s, x) for β̄-a.e. (s, x) and P-a.s.

In the remainder of this section we assume that X = N, that is, we assume that there
are only countably many assets. For any j ∈ N we define a measure λj on R+ × X

′ by

λj :=

∫∫

1{(s, z) ∈ ·}λ(ds × {j} × dz).

Because λ is σ-finite all measures λj must be σ-finite as well. Hence there exist σ-finite
kernels Jj from R+ to X

′ and σ-finite measures µj on R+ satisfying

λj(d(s, z)) = Jj(s, dz)µj(ds), j ∈ N.

The predictable function κ is assumed to satisfy

E

∫

κ(η, s, j, z)2λj(d(s, z)) < ∞, j ∈ N.

This implies the σ-finiteness of the measure (5.1). The kernel J of Lemma 5.3 is given by

J(µ, s, j, dz) =
(

∫

κ(µ, s, j, z)2Jj(s, dz)
)−1

κ(µ, s, j, z)2Jj(s, dz)

whenever
∫

κ(µ, s, j, z)2Jj(s, dz) > 0. If f ∈ L2(Pη) then, according to Theorem 5.4, the
minimal variance hedge hf of f(η) can be computed as

hf (η, s, j) =
(

∫

κ(η, s, j, z)2Jj(s, dz)
)⊕

∫

κ(η, s, j, z)E[D(s,j,z)f(η)|ηs−]Jj(s, dz). (5.14)

Example 5.6. Assume that X
′ = R

∗ and that
∫

z2λj([0, t] × dz) < ∞, t ∈ R+, j ∈ N.

Assume further that κ(η, s, j, z) = κj(η, s)z, for some predictable processes κj, j ∈ N. For
any h ∈ A we then have

∫

h(η, s, j)ζ(d(s, j)) =
∑

j∈N

∫

h(η, s, j)κj(η, s)dζj(s) P-a.s.,

where ζj(t) :=
∫∫

{s ≤ t}zη̂(ds × {j} × dz), t ≥ 0, are independent square integrable
processes with independent increments and mean 0 (and no fixed jumps). Assume now
moreover, that λj(d(s, z)) = dsνj(dz) for measures νj on R

∗, so that the ζj are square
integrable Lévy martingales. Then we can choose Jj(s, dz) = νj(dz) and (5.14) simplifies
to

hf (η, s, j) = κ(η, s, j)⊕
(

∫

z2νj(dz)
)−1

∫

zE[D(s,j,z)f(η)|ηs−]νj(dz). (5.15)

This is the main result in [2]. In fact, the model in [2] allows the processes ζj to have a
Brownian component but considers only finitely many non-zero measures νj.

Acknowledgements: We wish to thank Yuri Kabanov for giving several comments on
an early draft of this paper.
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