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Abstract

Extracting information from text is the task of obtaining structured, machine-

processable facts from information that is mentioned in an unstructured manner.

It thus allows systems to automatically aggregate information for further analysis,

efficient retrieval, automatic validation, or appropriate visualization. Information

Extraction systems require a model that describes how to identify relevant target

information in texts. These models need to be adapted to the exact nature of the

target information and to the nature of the textual input, which is typically ac-

complished by means of Machine Learning techniques that generate such models

based on examples. One particular type of Information Extraction models are

textual patterns. Textual patterns are underspecified explicit descriptions of text

fragments. The automatic induction of such patterns from example text fragments

which are known to contain target information is a common way to learn this type

of extraction models.

This thesis explores the potential of using textual patterns for Information Ex-

traction from the World Wide Web. We review and discuss a large body of related

work by describing it within a common framework. Then, we empirically an-

alyze the effects of a multitude of design choices in pattern-based Information

Extraction systems. In particular, we investigate how patterns can be filtered ap-

propriately. We show how corpora of different nature can be exploited benefi-

cially and how the nature of the patterns influences extraction quality. Finally, we

present new ways of mining textual patterns by modelling pattern induction as a

well-understood type of Data Mining problems.
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Chapter 1

Introduction

1.1 Motivation

Technical and economic trends have increased the need for automatic extraction of

information from large bodies of text such as the World Wide Web. The amount

of content available on the Web is not only rapidly increasing but is also being

produced in an ever more individualized manner because a growing number of

private users create and share Web content [O’Reilly, 2009]. Grasping important

aspects of this content automatically has become a key requirement for many ap-

plications. Web search increasingly relies on extracted information to establish

a better correspondence between the user’s query and the document’s content by

going beyond the mere presence or absence of words. In the face of a large amount

of ever-growing Web content, market analysts rely on automatically extracted in-

formation to generate an overview of trends, rumors and customer opinions (cf.

Chapter 10). As a further example, scientific research faces millions of potentially

relevant documents (e.g. 18 million in the Medline medical literature database) the

automatic analysis of which has the potential of supporting and accelerating sci-

entific progress. A detailed description of applications of Information Extraction

is given in Section 4.1.

The task of automatically extracting information from text can be thought of

as compiling a list or some other structured representation of the facts that are

needed for the task at hand. As an example, market analysts may compile a list

of all products in the market they are surveying along with their vendors. From

reading a sentence like

“Audi’s new A4 TDI features a new common-rail injection system.”
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they conclude among other things that Audi is the maker of the A4 TDI

and may add a corresponding assertion to their list.

Structured information has several advantages over text. In particular it is more

concise, that is, looking at an appropriate table may save us reading hundreds of

pages of text. Furthermore, it is machine interpretable. If the structure of the

information is formalized in a way that a computer can process, the computer

can carry out tasks with this information. If for example, a further list exists that

specifies that “TDI” models feature a diesel engine, a computer would be able to

answer the question “Does Audi produce vehicles with diesel engines?”

Concluding that Audi produces the A4 TDI when reading “Audi’s new A4

TDI” is an almost trivial inference for a human reader and is yet hard for a ma-

chine because machines are limited to executing previously encoded instructions.

Human readers would recognize Audi as a vehicle maker and if not would know

that an unfamiliar capitalized word is likely to denote a company if the context

suggests this. They further know that car makers tend to release new models

which have names that frequently consist of combinations of letters and numbers.

Several phenomena make it difficult if not impossible to produce a computer sys-

tem that approaches such a phrase with the same inferences and the same ease

as human readers. The large variability of language requires to account for an

infinite amount of possible expressions that imply the same information. The am-

biguity of terms and phrases further makes interpretation difficult. For instance,

“A4” may also refer to an ISO standard paper size or a fashion magazine. Finally,

the extraction has to perform faster than human interpretation of the content in

order to keep up with the scale of the text bodies to be processed. Information

Extraction therefore relies on strongly simplifying models that encode how rele-

vant information may be mentioned in text. For the example phrase, such a model

could contain the following instructions: If the sequence “’s new” is present in a

text that is about the automotive domain and is preceded by a capitalized word

x and followed by a combination of letters and numbers y, assume that x stands

for the maker of y. This thesis is about ways to create and apply such models for

extracting information from large amounts of Web documents.

1.2 Problem Statement

This thesis investigates a paradigm of Information Extraction that can be char-

acterized as global relation extraction based on seed examples. This means that

processing starts with a pre-defined relation and a small set of examples that stand

in this relation (the “seeds”). Throughout this thesis, we will use the locatedIn

relation as an example target relation. The following is an example seed set that

can define a target relation:
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Amsterdam The Netherlands

Angers France

Camptown Lesotho

Hollywood California

Karpacz Poland

Mannheim Germany

Plymouth Massachusetts

Salinas Brazil

Note that this is the only information on the relation the system has. Human

readers can see from this list that on the left hand side, all items are cities and

on the right hand side are countries. They know that a single city can be in only

one country, that there are cities that carry the same name in different countries

but that country names are relatively few and in the general case unique. How-

ever, this additional information relies on human background knowledge and is

therefore not available for an automated system. It thus helps to imagine the seed

examples as sequences of characters in an unfamiliar alphabet. All one would be

able to do is to spot mentions of the seeds and observe commonalities and differ-

ences among them. The goal is to generate many more records for this table i.e.,

extracting further instances of this relation. To come up with these instances, ob-

servations are made about how known instances are mentioned in the text. These

observations are generalized to a model that is characteristic of the relation. The

model describes those properties (features) of text fragments that are good indi-

cators that the fragments mention a target relation instance. In sum, the input is a

small list of relation instances that (by example) define a relation and the intended

output is a larger list of instances of the same relation. The focus of this work

is global relation extraction, that is to find and formalize knowledge that holds

generally true as opposed to local extraction that aims at deriving the information

provided by a given sentence regardless of the question if it holds generally true.

Furthermore we focus on pattern-based Information Extraction which is the most

appropriate approach for Web-based extraction. Patterns are descriptions of text

fragments that can be read as a rule: If a given pattern is present in a text fragment

(i.e. the pattern matches that fragment) relevant information is present. We aim at

automatically deriving such patterns from seed examples.

More formally, the task can be characterized as follows: Given a specific bi-

nary relation R, find instances (x1, x2) ∈ DomainR × RangeR that stand in

the relation R. Thereby, DomainR and RangeR need not be known. The ap-

proach, i.e. learning an extraction model means finding a relation-specific map-

ping matchR : T → {0, 1} that decides for each fragment of text t ∈ T ,

whether or not a given relation is expressed and in addition, an extraction function
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extractR : T → NDomainR×RangeR1 that determines the relation instance that is

present.

extractR(t) = {(x1, x2)|(x1, x2) is expressed at some position in t}

The decision that matchR and extractR stand for may or may not happen in the

same processing step. Clearly, with the help of statistical methods and with lim-

ited knowledge, matchR can only be approximated. The goal is to produce an

approximation that is precise in the sense that it does not produce many incorrect

matches and has a large coverage thus identifying many of the possible extrac-

tions.

Given that we want to learn matchR using observations on known outcomes

on a subset of matchR’s domain we need countable features to actually formalize

these observations. In its most general sense, each feature is a partial function

f : T ⇁ Df which decides if a given feature is present in a given text fragment

t ∈ T and if so, to which degree d ∈ Df . We can assume Df = [0, 1] and for

most features even {0, 1}.

1.3 What is Special about Operating at Web Scale?

The special focus of this thesis is on extracting information from very large doc-

ument collections. There are several reasons why the large scale of the extraction

task requires a set of approaches distinct from classical Information Extraction.

Most prominently, both the computational costs for the induction of the extrac-

tion models (“learning”) and their application (“matching”) heavily depend on

the amount of text that is processed. Most matching mechanisms evaluate all text

fragments one by one making the amount of processing time grow linear with the

amount of text. When operating with the entire Web, this is no longer accept-

able. It is hence required to make use of indexing techniques to access relevant

text sections directly. The focus of this thesis is thus on textual patterns which

can be applied to search indicators for efficient matching. In very abstract terms,

learning for Information Extraction is the process of observing relevant properties

that allow the system to automatically identify in the data relevant information.

This process requires to compare different relevant text fragments. The amount of

possible comparisons grows more than linear with the amount of training input to

be mined. Due to the diverse and uncontrolled nature of Web corpora techniques

for mining large amount of text become necessary.

1We use 2A to denote the powerset of A and NA to denote the set of all possible multisets of

zero or more elements from A.
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On the upside, large corpora like the Web are an attractive source as they are

rich in up-to-date information. At the same time, most relevant information is

likely to appear in several positions redundantly so that errors that occur at one

position may be corrected by extractions in other positions.

1.4 Trends in the Field of Information Extraction

While the extraction of information has been studied for a long time (cf. Sec-

tion 4), recent developments in various areas of Computer Science, some of which

we mention below, have shifted both the goals and the methods of Information

Extraction research. Research in the area of Semantic Web Technologies has pro-

vided standard representations for formalized knowledge. These formalisms allow

systems to express information about document content in a structure with a for-

mally defined meaning that in turn enables automatic integration and interpreta-

tion of content. Semantic Web technologies allow for presentation (e.g. browsing

or searching) of documents in a way that does justice to the formalized content or

to infer information that is not explicitly specified but can be inferred by means of

logical reasoning. At the same time, Machine Learning and Data Mining meth-

ods have experienced trends towards processing larger amounts of data as well

as modeling and exploiting structure that is present in the data (cf. Section 2.3).

These developments have enabled the uptake of Machine Learning and Data Min-

ing methods in the field of Computational Linguistics. Today, many linguistic

analysis steps such as parsing and part-of-speech tagging are routinely done with

the help of learned models. In recent years, Information Extraction also started

benefiting from such models. Finally, the sheer processing power that is available

for extraction tasks has increased. Apart from the development of faster proces-

sors and data transfer mechanisms as well as larger main memory and storage

solutions, this increase is due to the development of methods for distributed com-

puting. As an example, the MapReduce framework [Dean and Ghemawat, 2008],

one of the key technologies in Cloud Computing has been designed particularly

with document analysis tasks in mind.

In addition to the technical novelties, the nature of the available content has

triggered research in Information Extraction. The most prominent example is

Wikipedia, which provides millions of articles of relatively high quality organized

in categories and portals and partially enriched with semi-structured information.

Examples of other attractive sources that have become available and processable

for Information Extraction are the above-mentioned Medline texts and online fo-

rums.
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1.5 Contribution

The contribution of this thesis consists of three major aspects.

• An overview is given of pattern-based Information Extraction systems with

a strong focus on methods for the automatic induction of such patterns

which have evolved approximately over the last 10 years. Furthermore,

the focus is put on the extraction of binary relations the meaning of which

is specified by example. A variety of pattern induction systems is summa-

rized in an abstract framework and many design and configuration options

are introduced. Such a framework is necessary as there is no agreed-upon

view of the problem in this field of research, let a lone an accepted evalua-

tion standard specialized on large-scale extraction. We use the framework

to illustrate key design alternatives abstracting over different target relations

and output structures, input sources and supervision models as well as im-

plementation aspects. The framework is introduced in Chapter 5 along with

a plugable implementation which is used in the experiments that constitute

the technical contribution of this thesis.

• This thesis presents a series of experiments that aim at deepening the un-

derstanding of important design choices within the pattern induction frame-

work. Most contributions that have been published in the field so far discuss

their work on the system level. That is, almost every new study introduces

a new extraction system which typically makes assumptions with regards

to many dimensions of the extraction task and alters many design choices

at once. However, to understand which key variables govern the setup of a

good extraction system, the impact of alternative choices of each of them

has to be understood. In particular with the aim of minimal supervision

and automatic adaptation to new extraction tasks in mind, understanding

the impact of design choices is important. In Chapter 6, alternative choices

of how to filter for appropriate patterns is analyzed. Chapter 7 shows how

corpus structure and size have impact on the bootstrapping behavior and in

Chapter 9, the choice of pattern language is analyzed.

• Finally, an important focus of this work is on large scale extraction.

While the application of patterns to the Web is quite common, scala-

bility problems during mining have not been addressed in the literature.

Most mining algorithms explore a huge space of possible patterns ei-

ther by pairwise abstraction or top-down exploration of the search space

(cf. Section 5.6.2 for details). Some other approaches are scalable, but

do not allow for rich feature integration [Ravichandran and Hovy, 2001;
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Talukdar et al., 2006]. In Chapter 8, pattern induction is modelled as a stan-

dard Data Mining problem (frequent itemset mining) which can be tackled

with highly optimized data structures. In Chapter 9, this approach is taken

further to allow for more flexible modeling of pattern languages. This way,

we analyze, what elements patterns should be able to contain to improve

extraction results.

The techniques presented in this thesis are discussed in the context of two

application scenarios. One of them is based on a use case from a marketing de-

partment in the automotive industry (Chapter 10), the other builds on the idea of

supporting communities in the compilation of knowledge resources that are useful

for human and machine processing (Chapter 11).

1.6 Reader’s Guide

This thesis consists of four parts. Part I: Preliminaries, introduces the context

of this work. In Chapter 2, methodological and technical foundations from the

neighboring fields are presented before the major Information Extraction tasks

are introduced in Chapter 3. Chapter 4 presents related work from the field of

Information Extraction along with applications and an overview of the relevant

tools. Part II: Large Scale Extraction Methods begins by presenting a framework

of iterative pattern-induction for Information Extraction (Chapter 5). Related sys-

tems are described by means of this framework. Further an implementation, the

Pronto system, is introduced. Chapter 6 presents experimental results on the ap-

plication of the Pronto system to Information Extraction from the Web using a

standard search engine. In Chapter 7, further experiments show results about the

extraction on a smaller corpus and the added benefit of Web extraction results to

reduce the required input seeds. Chapter 8 presents an efficient mining algorithm

for pattern induction applied in the Pronto system before Chapter 9 investigates al-

ternatives in the choice of pattern structures. Part III: Applications describes two

applications of the methods presented in this thesis. One of them supports market

analysts in the automotive industry (Chapter 10) and one supports online commu-

nities in collaborative generation of semi-structured documents (Chapter 11). Part

IV: Conclusion summarizes the findings and indicates potential for future work.

1.7 Published Results

We published the analysis of pattern filtering approaches as discussed in Chap-

ter 6 to a large extend at the AAAI conference 2007 together with Philipp Cimi-

ano and Egon Stemle [Blohm et al., 2007]. Some further results were presented



8 CHAPTER 1. INTRODUCTION

at the 3rd Web as Corpus Workshop 2007 [Blohm and Cimiano, 2007]. Fur-

thermore, we published results on the interaction of extraction from the Web

and from Wikipedia at the ECML PKDD 2007 together with Philipp Cimiano

[Blohm and Cimiano, 2007]. We presented the mining algorithm for pattern in-

duction (Chapter 8) at the Ontology-Based Information Extraction Workshop at

KI 2008 [Blohm and Cimiano, 2008]. The work on pattern expressivity (Chap-

ter 9) is joint work with Krisztian Buza, Philipp Cimiano, and Lars Schmidt-

Thieme and has been submitted to Taylor and Francis as a chapter of the book “Ap-

plied Semantic Technologies: Using Semantics in Intelligent Information Process-

ing.” Concerning the applications, the system for market analysis (Chapter 10) is

deployed at an industrial partner’s site as part of the software from the X-Media

project. A paper about the on online community support (Chapter 11) has been

published at the workshop on Wikipedia and Artificial Intelligence at AAAI 2008

with Markus Krötzsch and Philipp Cimiano [Blohm et al., 2008].

Exploratory studies on Machine Learning and Information Ex-

traction have been conducted and published with Stephan Bloehdorn

[Bloehdorn and Blohm, 2006] and Jürgen Umbrich [Umbrich and Blohm, 2008].



Part I

Preliminaries





Chapter 2

Methodological and Technical

Foundations

The work in this thesis makes use of concepts and methods from various fields of

research. In this chapter, we give an overview of these fields in order to put the

work in this thesis in a context and to facilitate understanding for readers from

various disciplines. Our goal is to convey an idea of the general concepts of the

fields and then give details relevant to the work presented in this thesis. Hence,

the overview is not intended to be exhaustive nor to balance the depth in which

different aspects of the fields are covered. Books and seminal works that cover

the respective fields in more depth are referenced in the respective sections. Af-

ter introducing some basic concepts and terminology in the following sections,

we present foundations of the field of Natural Language Processing before intro-

ducing methods from Machine Learning and Data Mining and explaining some

basics of Information Retrieval.

2.1 Terminology

Various fields of research are concerned with the question of how information

about facts in the world can be best represented for further processing. Research

areas such as Logics, Databases, Semantic Web, Computational Linguistics and

Artificial Intelligence have investigated this question from various points of view

and with various goals in mind. Like most works in the field of Information Ex-

traction, we approach the question how to represent information in a task-oriented

way. In the following, we introduce the corresponding notation and terminology.

Most of the terms should be intuitively clear to the reader; for some of them we

point out the context from which they have been adopted. To ensure a general

understandability of the thesis, we give preference to terms from widely adopted
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Computer Science and mathematical terminology. They are enriched and com-

plemented by terms from Computational Linguistics as well as Semantic Web

research and Description Logics as its formal foundation. An overview of the his-

tory of formal modeling in general and Semantic Web formalisms can be found in

a book by Pascal Hitzler et al. [2009].

2.1.1 Concepts and Relations

Almost all knowledge representation formalisms have in common that they allow

statements about objects. Objects, also called individuals, are elementary units

of processing and can stand in relations to each other. In the context of NLP,

objects are sometimes referred to as (named) entities. In addition to objects there

are values (e.g. numbers, specific strings etc.) which are used to describe objects

and referred to as literals.

Objects are grouped in classes. Many statements are made on the level of

classes of objects rather than on individual objects. In

“Tomatoes are red,”

the class of objects that qualify as tomato and the class of objects that qualify

as red are under discussion. An object (such as a given tomato) can belong to

one or more classes and is then called its instance. A class can be thought of as

a mathematical set (e.g. X) of objects; its instances are the elements in the set.

The number of instances that belong to a given class is called its cardinality. In

particular in the tradition of formal semantics, the term concept is used for classes

of objects. The view behind the term concept is that a distinction can be made

between an extensional description of the concept which enumerates all instances

and an intensional description which specifies criteria for determining whether an

object belongs to a given concept.

When it comes to identifying objects and concepts, words seem to be a natural

choice. For reasons described in Section 2.2, this leads to ambiguity. Semantic

Web formalisms hence put forward unique identifiers and propose name spaces to

ensure uniqueness.

Both, objects and classes can stand in relations. A relation is defined among

several classes (e.g X and Y ). A relation associates object. The associated objects

are said to “stand in” that particular relation. The most common type of relation

is binary (i.e. is defined between instances of two classes). In binary relations,

the two classes involved are called domain and range. If the domain is X and

the range is Y the relation can be formalized as a subset of the cross-product of
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domain and range R ⊆ X × Y . All pairs (x, y) ∈ R stand in the given relation.

They are also called instances of the relation. In (x, y), we speak of x as the first

argument and y as the second argument. All instances together form the extension

of the relation.

Relations can have several general properties that provide additional knowl-

edge about the instances standing in such a relation.

• Symmetry: A relation is symmetric if for every instance (x, y) the instance

(y, x) exists as well. Symmetry requires that domain and range are the same.

An example for a symmetric relation that specifies that x is married to y.

• Functionality: Functional relations are those for which at most one instance

exists for each element of the domain. i.e. if (x, y) ∈ R we know that there

is no (x, z) ∈ R with y 6= z. An example of a functional relation is that

between persons and their birth dates. A functional relation is also called

(partial) function.

• Injection: Injections are relations where no two values from the domain are

related to the same element of the range. i.e. if (x, y) ∈ R we know that

there is no (w, y) ∈ R with w 6= x. Injectivity is thus a dual property to

functionality and also referred to as inverse functionality. An example of an

injective relation is the relation between a home and its address.

• Transitivity: A relation is called transitive if relatedness is “passed on” in

the sense that if (x, y) stand in a given relation and so do (y, z) also (x, z)
stand in this relation. An example of a transitive relation is that of a person

being older than another person.

• Reflexivity: A relation is reflexive if for every element x in the domain the

instance (x, x) is in the extension of the relation. An example is the relation

of two objects having the same color.

Classes can be related as well. The relations between classes correspond es-

sentially to classical set algebraic operations. We only consider here the sub-class

relationship which corresponds to the subset operator.

2.1.2 Ontologies

If a formal framework with a formally defined meaning is used to specify a shared

conceptualization of a domain of interest, this specification is called an ontol-

ogy [Studer et al., 1998]. Ontologies are widely used to formalize knowledge in

particular in topic domains where an unambiguous definition of a complex ter-

minology is needed such as in Genomics [Ashburner et al., 2000] and Medicine
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[Smith et al., 2007]. The benefit of a formally defined ontology is that inferences

on the information provided can be made. If the information that Peter is older

than Holger and that Holger is older than Markus is given and the ontology spec-

ifies that the relation “is older than” is transitive, a system can automatically infer

that Peter is older than Markus.

A special simple type of ontologies are taxonomies in which classes are

arranged in a hierarchical structure by means of a single relation. The hierarchical

nature of the relation requires that the relation is transitive and anti-symmetric

(i.e. does not have any cycles). The most common relation for taxonomies is

the subclass relation. If a class X is a subclass of Y , all instances of X are

also instances of Y . We show here a naive and incomplete biological subclass

hierarchy:

Living being

Plant

Tree Flower

Animal

Mammal

Lion Mouse

Rodent

Squirrel Capybara

An example of an instance of the subclass relation is the class “Lion” which

is a subclass of the class “Mammal.” Taxonomies allow primarily one type of

inference namely that of inferring relation instances by means of transitivity, thus

one can infer that lions are also animals and living beings. Taxonomies are com-

monly described by means of a tree structure in which all classes are connected to

their immediately related classes. Using the tree metaphor, the topmost elements

are referred to as roots, the elements that stand in the relation to a given X and

lie above X are called the root path of X because they constitute exactly those

classes which connect X with the root. An example biological taxonomy could

have “Living being” as root and the root path of “Lion” could be “Lion, Mammal,

Animal, Living being.” As in our example there are no further specifications of

types of lions, “Lion” lion is a leaf. Some taxonomies are not trees but arbitrary

partial orders. This would allow a class to be subclass of several classes.
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2.2 Natural Language Processing

Natural Language Processing (NLP) is a subfield of Computational Linguistics

that is concerned with the application of linguistic methods to the analysis and

generation of natural language statements. Natural language is our primary means

of communication and can be characterized as a set of symbols, which we arrange

in a structure form to statements that convey a certain meaning. The structure of

a language statement is referred to as its syntax and the meaning as its semantics.

The field of Computational Linguistics and NLP has proposed a great variety of

conceptualizations and formalisms to describe language. They differ with regard

to the aspects of language they capture and the goals they have been designed

for. In fact, the question of how to conceptualize language interacts heavily with

research on human cognition, mathematical logic and philosophy.

When aiming at NLP, more specifically the extraction of information, the con-

ceptualization becomes driven by what helps to computationally process language

as far as that is needed to extract the target information. The methods from the

field of NLP presented here are those which have been widely applied. Therefore

they can typically be handled well both by human designers and administrators of

NLP systems and computationally by machines. In the remainder of this section,

we first discuss some NLP terms and methods to describe and model language at

a word level before going into the representation and interpretation of structure.

2.2.1 Words and their Semantics

Words can be characterized in many ways which typically formalize some aspect

of the meaning they convey or the syntactic role they play in the structural com-

position of language. A common and rather coarse conceptualization of a word

is the so-called “semiotic triangle” by Ogden and Richard [1923] who distinguish

the “symbol” of a word, its “referent” and the “thought of reference”. The symbol

is the realization of the word for the purpose of communication, i.e. in written

language the surface string by which it is written. The referent constitutes the

real world objects that are denoted by the symbol and the “thought of reference”

(also concept [Sowa, 2000] or analogous in Section 2.3.1) is the abstract intended

meaning which is denoted.

Before text can be processed automatically on a word-level basis, the individ-

ual units in a sentence have to be identified. In NLP, the notion of a token is used

for the minimal textual elements. Most tokenizers which are used for this task

separate tokens by white space and take into account punctuation. The notion of

a token is distinct from that of a word as special characters may be considered

tokens, too. Furthermore, there may be multi-word expressions which are the
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actual meaning-bearing units. As an example, the sentence

“I called her on the cell phone.”

contains seven words, eight tokens, and one multi-word expression (“cell

phone”).

Lexical Semantics

One way to formalize the meaning of words is to characterize relations between

word senses. As it turns out, one and the same symbol can denote various con-

cepts, and concepts can share (part of) the objects they denote. The following are

the most common lexical relations which capture limited aspects of the meaning

of the involved words.

Synonymy is the relation between two words that have the same meaning in

some context. They can be exchanged in that context without altering its meaning

(which is why one synonym of “synonymous” is “interchangeable”).

Homonymy means that the same symbol denotes distinct concepts. For ex-

ample, “bow” as the front of a ship or “bow” as the weapon. A special form

of homonymy is polysemy where the two polysemous concepts are different but

related (e.g. “foot” as in football and “foot” as in “foot of the mountain.”

Hyponymy is a relation that holds between terms and generalizations of them.

A hypernym of a word x is a word that denotes the same objects as x but also

denotes further ones. x is then called the hyponym of that word. An example is

“car” being a hyponym of “vehicle.”

Meronymy is a relation that holds between objects and their parts. For exam-

ple, “wheel” is a meronym of “car.” There are various types of meronymy. For

example, it can be distinguished, if something is a necessary or an optional part.

Also different types of objects and entities have different types of parthood. As

an example, “Frankfurt” only in a very general sense stands in the same relation

to “Germany” as “Queen Elizabeth II” to “The Royal Family.”

Antonymy is a relation between words that have opposite meanings.

Antonymy is most clear in adjectives which clearly focus on one aspect (“hot”

vs. “cold”) but they exist among some verbs (e.g. “accelerate” vs. “break”) as

well as among nouns (“student” vs. “teacher”).

The freely available lexical database WordNet [Miller, 1995] captures the rela-

tions synonymy, hyponymy and meronymy for nouns and several others for verbs

and for adjectives. Synonymy is captured in form of “synsets” which list all words

that (at least in one of their meanings) share a given meaning. All other relations
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are defined between such synsets. Apart from that, WordNet explicitly lists co-

ordinate terms (words with a common hypernym) and indicators of frequency of

usage.

Part-of-speech

A common way to capture the roles of words in the syntactic structure or specific

aspects of their meaning is to assign them to word classes. The most common

type of word class is called part of speech or grammatical category. The most

prominent parts of speech are noun, verb and adjective. Nouns typically refer

to real world things, like “espresso”, “love” or “garbage” which can be further

described by means of adjectives (“hot”, “desperate”, “worthless”). Verbs express

actions e.g. “drink”, “make” or “write.” To test if two words belong to the same

part of speech, we can make the substitution test and replace one for the other in

a sentence and check if it remains syntactically correct. The process of assigning

parts of speech to words in a text is called part-of-speech tagging. While a part

of speech is a property of an individual word, one should note that tagging them

requires to look at the context in which a word is used because homonymous

words may belong to different parts of speech but cannot be distinguished by their

surface string. For instance, “shower” may be an verb or a noun.

Table 2.1 lists the parts of speech used in the WSJ tagset [Marcus et al., 1993],

a standard tagset originally used to annotate named entities in the Wall Street

Journal corpus. We use the WSJ tagset in the experiments in Chapter 9. The

tagset has special classes for non-word token types like numbers, symbols and

special characters. Furthermore it adds determiners (e.g. “the”), prepositions (e.g.

“before”), pronouns (e.g. “she”) and adverbs (e.g. “violently”) as well as some

smaller classes. The major parts of speech are separated according to variants that

are mainly due to inflection. Inflections are modifications of the words to express

which role a given word plays in a given sentence. Verbs can have different forms

for singular (one referent) or plural (several referents) and encode temporal as-

pects of the statement (past tense, present, gerund: “loaded”, “loads”, “loading”).

Nouns are separated in singular and plural as well and adjectives allow for positive

(e.g. “big”), comparative (e.g. “bigger”), and superlative (“biggest”).

The part-of-speech tagging performed for the experiments presented in

Chapter 9 was performed with a probabilistic tagger using an HMM

model [Ciaramita and Altun, 2006] which was trained on the Penn Treebank

[Marcus et al., 1993].
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CC Coordinating conjunction

TO to

CD Cardinal number

UH Interjection

DT Determiner

VB Verb, base form

EX Existential there

VBD Verb, past tense

FW Foreign word

VBG Verb, gerund/present participle

IN Preposition/subord.

VBN Verb, past participle

JJ Adjective

VBP Verb, non-3rd person singular present

JJR Adjective, comparative

VBZ Verb, 3rd ps. sing. present

JJS Adjective, superlative

WDT wh-determiner

LS List item marker

WP wh-pronoun

MD Modal

WP Possessive wh-pronoun

NN Noun, singular or mass

WRB wh-adverb

NNS Noun, plural

SYM Symbol

NNP Proper noun, singular

RP Particle

NNPS Proper noun, plural

RBS Adverb, superlative

PDT Predeterminer

RBR Adverb, comparative

POS Possessive ending

RB Adverb

PRP Personal pronoun

PP Possessive pronoun

Table 2.1: Parts of speech in the WSJ tagset as used in our experiments. Classes

for individual special characters omitted.
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Other Classes of Words

Another way to classify words is grouping them into lexemes. A lexeme represents

a group of words that can be derived from each other by means of morphological

operations. One type of morphological modification is inflection as described

above. Another one is the addition of pre- and postfixes that modify the meaning

of the word (“reload”). For processing in NLP on a lexeme-basis (i.e. to ignore

morphological modifications), words are assigned a lemma, which is a canonical

form of a word (e.g. the infinitive of a verb).

A special class of words in NLP is that of stopwords. This application-

dependant class contains all tokens that can be excluded from further processing

because they can be safely assumed not to bear any meaning important to the

application. As an example, search engines filter out words that are likely to be

present on all pages so that their presence in a document does not contribute to de-

termining the relevance of a page with regard to a query. Common stopwords are

articles (“the”, “a”), pronouns (“he”, “who”, “this”), prepositions (“on”, “over”)

and conjuncts (“and”, “or”). In several experiments we exclude patterns that con-

sist only of stopwords. We use a stopword list that consists of the (alleged) stop-

words excluded by Google as presented by the Wikimedia Foundation.1

2.2.2 Syntactic Analysis

Whether or not a natural language sentence is intelligible and what its exact

meaning is, depends on the order in which words are arranged. The following

example contains a sentence which appears wrong (3) and hence potentially

unintelligible to English speakers and two sentences which share the same set of

words but express different meanings (1,2).

“Mary drove from Saarbrücken to Stuttgart.” (1)

“Mary drove from Stuttgart to Saarbrücken.” (2)

“Stuttgart Mary drove to Saarbrücken from.” (3)

A set of rules defining how correct utterances of a given language are built is

called grammar. Various kinds of grammars exist. Almost all of them have in

common that they break apart sentences into phrases of different types. They are

1http://meta.wikimedia.org/wiki/Stop_word_list

http://meta.wikimedia.org/wiki/Stop_word_list
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S

NP

Mary

VP

drove PP

from Saarbrücken

PP

to Stuttgart

Figure 2.1: Parse tree example.

hence called phrase structure grammars. Sentence (1) from the above example

contains the phrase “drove from Saarbrücken to Stuttgart” which has the role of

describing the action that was taken (verb phrase). It can be further subdivided

into the phrases “drove”, “from Stuttgart” and “to Saarbrücken” (the latter two

are examples of prepositional phrases). The difference in meaning between sen-

tence (1) and sentence (2) can be explained by the different city names sharing a

prepositional phrase with “to” and –likewise – sharing a prepositional phrase with

“from.” Another essential type of phrases are noun phrases which name and fur-

ther describe the nouns in a sentence. Phrases of different kinds can play different

syntactic roles. For example, “Mary” plays the role of the subject performing the

action which is an argument of the verb phrase which consists of the predicate

“drove” naming the action and prepositional phrases further specifying it.

Given a sentence in a language and its grammar, one can determine its phrase

structure. Figure 2.1 visualizes the phrase structure of sentence (1). Such a struc-

ture allows IE systems to derive an assignment of syntactic roles which in turn

may facilitate the extraction of information from the sentence.

The process of determining the phrase structure of a sentence is called syn-

tactic parsing. Two challenges exist in parsing: ambiguity and a large hypothesis

space. Consider the following example sentence:

“Mary drove Peter from Stuttgart to Saarbrücken.”

The prepositional phrase “from Stuttgart” may be a part of the noun phrase

“Peter from Stuttgart” or directly of “drove Peter from Stuttgart to Saarbrücken.”

In the former case, the phrase “from Stuttgart” names the origin of Peter in the

latter the start of the journey. The parser would have to derive and output both
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alternative parses. The large hypothesis space is due to the fact that grammars are

built up of many local rules the application of which may allow for the application

of further rules. In many cases, rule applications are possible at some time during

the process but do not lead to an ultimate result because at some later point,

no further rule applications are possible. This can be thought of as rejecting a

hypothesis of a partial parse. Due to these challenges, parsing takes a significant

amount of time for each sentence processed (cf. the work of Ravichandran [2005]

for a comparison of running times of different NLP techniques for Information

Extraction). Full parsing is hence rarely used in Information Extraction which is

why no particular natural language grammars and parsing systems are discussed

here. An introduction to the currently very common probabilistic approaches to

parsing is given by Manning and Schütze [1999] a detailed overview of many

aspects of the syntactic structure of natural language is given in a book by

Akmajian et al. [1995]. An alternative to parsing is chunking, a heuristic process

to determine some phrases within a sentence without completely analyzing the

phrase structure. Chunkers usually rely on part-of-speech tags in combination

with a set of rules or with a trained statistical classifier and are able to operate

much faster.

2.2.3 Summary

Information Extraction commonly makes use of many linguistic methods for text

processing. The key concepts were introduced in this section. Techniques consist

of classifying and labelling words along various linguistically motivated dimen-

sions such as part-of-speech and lemmas. Further, some semantic aspects of words

are established by describing relations that hold between words. Finally, the syn-

tactic structure of text can be captured by parsing or chunking. An overview of the

use of such techniques in the IE literature is given when individual extraction sys-

tems are introduced in Chapter 4 and Section 5.6. Some frameworks that integrate

linguistic processing tools are presented in Section 4.1.2.

2.3 Machine Learning and Data Mining

Machine Learning is a rather interdisciplinary sub-field of computer science

which is concerned with approaches to make computer programs improve by ex-

perience. The behavior of the programs thus not only depends on explicitly coded

instructions but on a predefined model along with observations in the input data.

Thereby, machines become able to adapt to aspects of the data they process which

are not known or fully understood at the time when the machines are set up. Ma-

chine Learning can hence be considered part of the field of Artificial Intelligence



22 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

and make use of concepts and methods from formal disciplines like logics, statis-

tics and information theory but also from biology, cognitive science and other

natural sciences as approaches are inspired by learning in living beings. Data

Mining is a field of research that is concerned with deriving relevant information

from large amounts of data. Thereby, both the model by which the obtained in-

formation is structured and the information itself can be derived during mining.

Machine Learning and Data Mining have a large overlap in methods and models.2

Formally, Mitchell [1997] defines a Machine Learning problem as given by a

task, a performance measure and training experience. As an example, a learning

problem may be to create a named-entity tagger the task of which is to decide

for a given word if it is of a specific entity type. The training experience con-

sists of texts in which the entities of that type are labelled and the performance

measure would be the number of choices correctly made by the tagger. Generally,

the task is captured in form of a target function f : X → Y which constitutes

the decisions that are to be learned. The decisions are just captured by mapping

values from some input space X to values from the output space Y . The mapping

is not known in advance (otherwise learning would not be necessary) and can

only be approximated. The individual dimensions of the input space are referred

to as features. Training experience provides the learning system with training

examples that can be used to learn to approximate the target function. The perfor-

mance measure indicates the appropriateness of the approximation to some task

frequently by means of verifying if the decisions the learned system makes on

some test examples are appropriate to the task.

This overview covers methods that can be divided into supervised and un-

supervised Machine Learning methods. This distinction is commonly made in

the literature and affects task definition, performance measure and the nature of

training experience. In supervised learning, training examples are of the form

(x, y) ∈ X × Y and explicitly state values the target function should return for

the training inputs. The goal is then to approximate an underlying target function

f : X → Y which generalizes over the mapping presented during training. Unsu-

pervised learning means that explicit target class values are not available. Training

examples here are only values from X . The target function learns to assign values

from Y , which in the unsupervised case is usually a set of cluster labels that is not

specified in advance. The goal is to yield a target function that accounts for in-

teresting properties of the data. Other unsupervised Data Mining methods derive

some other abstract descriptions (e.g. Association Rules) of the data that do not

map to individual data points.

2In many cases, the distinction of Machine Learning and Data Mining lies in the application.

Other application-oriented bordering and overlapping fields are knowledge discovery in databases

(KDD) and intelligent data analysis (IDA).
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The supervised and unsupervised methods discussed here are selected to allow

for an understanding of Machine Learning for Information Extraction in general

and the methods applied in this thesis in particular. We leave out many alternative

learning methods as well as paradigms not prominently employed for Information

Extraction (e.g. reinforcement learning, most regression methods and most clus-

tering techniques). Broader overviews and in-depth coverage of a large variety of

methods can be found in the classical textbook by Mitchell on Machine Learning

[1997] or in a more recent work by Kononenko and Kukar [2007] who cover both

Machine Learning and Data Mining. An overview with focus on learning and

Data Mining for Web-oriented applications is given by Liu [2007].

2.3.1 Supervised Methods

Supervised Machine Learning, as formalized above, aims at predicting outputs of

the target function based on known training input-output pairs from the function.

One distinguishes the prediction of continuous values, regression, and the predic-

tion of a finite set of target values (referred to as classes or labels), classification.

In both cases, the goal is to achieve a good generalization over the training ex-

amples that captures the important laws governing the data. Two possible types

of errors should thereby be avoided: When overfitting, the model replicates the

training data too closely and thereby includes into its decision aspects that do not

belong to the interesting properties of the data (noise). On the other hand, if the

approximation is too loose, overfitting is avoided, yet the error on the data may

increase.

We present here several recent approaches for supervised learning. They were

chosen to be those used most prominently in IE literature.

Support Vector Machines

Support vector machines (SVMs) [Boser et al., 1992; Vapnik, 1995] are a widely

used method for binary classification (i.e. |Y| = 2). They constitute an instance

of the class of linear function models which aim at separating data in a vector

space by means of a hyperplane. More specifically, SVMs compute the maximum

margin hyperplane by iteratively selecting from the training examples so-called

support vectors which along with some parameters define the separating hyper-

plane. In a trained SVM, the support vectors represent the training examples

which are closest to the separating hyperplane. Classification consists of mapping

an element from X to the side of the hyperplane it lies on and returning a label

that corresponds to the label of the support vectors on this side of the hyperplane.

A method based on a separating hyperplane requires that most of the data

points are linearly separatable, i.e. that there exists a hyperplane which correctly
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divides at least most of the data points into the desired classes. The so-called

Kernel trick is employed to increase linear separatability by mapping the data

from the input space X to a different, possibly higher-dimensional feature space

X ∗ in which the desired separatability exists. The kernel trick is based on the

observation that the only operator needed to compute a separating hyperplane in

the feature space is the inner product. Conceptually, the kernel is a function κ :
X ×X 7→ R that given two elements x, y ∈ X from the input space, computes the

inner product of the corresponding elements in the target space φ(x), φ(y) ∈ X ∗.

κ(x, y) = < φ(x), φ(y) >

The benefit of the kernel trick is that showing a limited set of properties

for κ ensures that κ is appropriate for the use of the kernel without specify-

ing φ explicitly. For example, the definitions of kernels for text processing in

[Giuliano et al., 2007] are defined directly as a comparison operation on text frag-

ments not separating the steps of embedding into the feature space and computa-

tion of an inner product. A detailed discussion of kernel-based Machine Learn-

ing methods with applications from the field of natural language processing and

with the help of structured knowledge has been presented by Stephan Bloehdorn

[2008].

Conditional Random Fields

Conditional Random Fields (CRF) [Sutton and Mccallum, 2006;

Lafferty et al., 2001] are a class of very general discriminative probabilistic

models. Probabilistic models introduce random variables x and y for the domain

X and range Y of the target function. Discriminative probabilistic models are

concerned with deriving the probability distribution p(y|x) which specifies the

probability of a classification from Y given an input observation from X . Types

of models constitute a function of x and y with a set of parameters. Training is

usually done by means of a maximum-likelihood estimation of parameters, that

is the parameters are set in a way that maximizes the likelihood of the observed

combinations of values from X and Y .

CRF are very powerful because they model conditional dependance between

observations of X and Y. These dependencies can be arranged in graphs of arbi-

trary structure. Connections in the graph can encode linear order of observations

or co-occurrence. Frequently, they are used to assign a sequence of labels to

a sequence of observations a task which is common in computational linguistics

(e.g. part-of-speech tagging), bioinformatics and speech recognition. In their most

general version, they are an undirected graphical model. The graph G represents

observations from X and Y as vertices V and dependencies in the model as edges
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Figure 2.2: A linear-chain SVM with Markov assumption. Image due to

[Sutton and Mccallum, 2006].

E. In the following, we describe the linear-chain CRF in which the structure of

the graph is limited to a structure as indicated in Figure 2.2.

The model of the linear-chain CRF which additionally makes the assumptions

that output labels at position t only depend on the input at t and the output label

at position t− 1 can be formalized as follows:

p(y|x) =
1

Z(x)
exp

(

K
∑

k=1

λkfk (yt, yt−1,xt)

)

Thereby Z(x) is a normalization factor, fk(yt, yt−1,xt) stands for one of the

K feature functions that determine if a given feature is expressed. The choice

of fk also binds the position t at which the feature is present. It indicates the

probability with which a given yt is output following a given yt−1 based on the

distribution of inputs xt at t. Note that the presence of the same feature at differ-

ent positions is reflected by different feature functions. λk stands for the model

parameter associated with the respective feature.

Practical linear-chain CRFs are likely to lift the Markov assumption by al-

lowing for further dependencies among labels in the output sequence but at the

same time tie parameters to each other assuming for example that a label that

depends on a particular feature in the previous element of the sequence has the

same dependency regardless of the position within the sequence. To account for

more complex structures, the set of feature functions needs to be altered includ-

ing their domain and range which in principle allows for the full distribution of

observations.

Conditional Random Fields constitute in fact a framework that covers several

other supervised probabilistic learning methods used in the literature including

Naive Bayes classification and Logistic Regression.
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Figure 2.3: Concepts as sets of text fragments (left) and arranged in a lattice

structure (right).

Concept Learning

In the following, we introduce Concept Learning, an early, non-statistical type

of Machine Learning tasks [Winston, 1975; Mitchell, 1997]. While the methods

from Concept Learning are not in the scope of this thesis, we use its basic no-

tions to later give a generalized formal basis for the task of text pattern induction.

Concept learning is concerned with deriving a concept as a Boolean function that

decides for each object from a domain based on a set of attributes if it is an in-

stance of a concept. As an example, in the domain of sportspersons, the concept of

a “swimmer” may be detected based on the attribute “clothing” to have the value

“swim suit” and the attribute “competition type” to be “race.” Or, by the exam-

ple of pattern-based Information Extraction which we will introduce later: In the

domain of textual mentions, a concept may be the sentences that express the rela-

tion of a person being born at a particular date. The decision, whether a sentence

belongs to this concept is based on the words of the mentions and their positions

as attributes. Formally, a concept is a subset of the domain X . c is the target

function, the values of which are only known for the training examples. Concept

learning is thus a supervised binary classification task (Y = {0, 1}). Learning is

performed by generating and testing hypothesis functions which are of the same

type as c with the goal of deriving or approximating c. More specifically, learn-

ing is performed as a search process in the space of allowed hypotheses X ⊆ X ,

which is also called the hypothesis space or search space. This space is defined by

the formalization of the attributes Att. In the classical notion of concept learning,

each attribute or feature a ∈ Att corresponds to a function a : X → Da with a

domain Da. Each hypothesis and concept consists of a conjunction of constraints.

In this simple formalization, each constraint γa on an attribute a can have three

types of values ∗, z ∈ Da or ∅. A ∗ constraint is always true, a ∅ is always false

and a constraint written as z is true for all x ∈ X where a(x) = z. A concept and
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a hypothesis for a hypothesis space defined by the attributes a1, . . . an can thus be

written as a vector of constraints 〈a1, . . . , an〉.
We identify two properties of concept learning that are key to the understand-

ing of text pattern induction:

• Property 1: There are several interesting properties of the hypothesis space.

In particular, there exists a partial ordering ≤ with a single supremum ⊤
(“top”) and single infimum ⊥ (“bottom”). If for two concepts, c1 ≤ c2
holds, then all instances of c1 are also instances of c2 . For each concept

c holds ⊥ ≤ c ≤ ⊤. ⊤ and ⊥ are abbreviations for “top” and “bottom”

denoting the concepts that contain all or respectively no objects. The search

for good hypothesis can start at the top, at the bottom, or proceed from both

sides at a time. The corresponding traversal strategies are called “top-down”

and “bottom-up” depending if they explore concepts in the space based by

adding or by removing constraints. Figure 2.3 shows some concepts as

sets of text fragments (left) and arranged in a lattice structure (right). The

right-hand side shows all concepts that have at least two instances. The best

concept in this space may be (was, born, ∗) which could be found by start-

ing with (∗, ∗, ∗) and becoming more restrictive (top-down) or by starting

by concrete phrases and becoming less specific (bottom-up).

• Property 2: The size of the search space depends combinatorially on the

number of attributes and the number of values each attribute can take.

Specifically, the size of the search space corresponding to 〈a1, . . . , an〉 is

1 +
∏

1...n (|Dan|+ 1). The constant 1 stands for ⊥, the added 1 for each

constraint stands for the option of setting it to ∗ (note that all options in-

volving at least one constraint set to ∅ are equal to ⊥).

Partial Supervision

The provision of training examples for supervised learning is one main cost fac-

tor. Approaches have been developed to reduce the number of labelled examples

from X needed by making use of unlabelled examples. These techniques are

referred to as “semi-supervised.” One general approach, which plays a major

role in the framework presented in Chapter 5 is bootstrapping which iteratively

evolves a classifier by taking parts of its output as input in the next iteration.

Bootstrapping is introduced in more detail and illustrated by applications from

NLP in Section 4.2.2. Bootstrapping can be performed with any classifier. A

special variant called positive-only learning requires the classifier to output some

confidence score with the classification. The classifier is trained initially on pos-

itive examples only and iteratively re-trained always taking the examples which

are classified negative with the highest confidence as artificial negative examples.
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Also, semi-supervised variants of supervised learning algorithms exist [Liu, 2007]

such as the transductive SVM or the biased SVM.

2.3.2 Unsupervised Methods

As described above, unsupervised methods derive target functions from data from

an input space X in the absence of sample target output values from the functions

domain Y . The aim is to find some function that describes the data well for the

purpose at hand. Such unsupervised methods help to produce an overview of

the data without an explicit specification which distinctions are relevant. Most

unsupervised methods are therefore particularly interesting for Data Mining.

Association Rule Mining

The goal of Association Rule Mining is to describe co-occurrence dependencies

between Boolean attributes of objects. An example association rule is

“People who buy apples also buy bananas. This true in 85% of the apple

purchase events which make up 20% of all purchase events.”

Association rules formalize implications among the presence of attributes and

come along with frequency indicators on how often the antecedent and the con-

sequent rule apply. A set of association rules can constitute a target function that

given an object x ∈ X and its attributes outputs associated attributes. The above

textual example of an association rule could be part of a target function that asso-

ciates apple shoppers with banana shoppers. However, association rule mining is

not concerned with deriving an appropriate set of rules to describe the relevant un-

derlying properties of the data but rather enumerates all those association rules that

fulfill certain frequency criteria. In the simplest case, objects are characterized as

a set of attributes from an alphabet A and association rules B → CwithB,C ⊆ A

give frequencies freq(B ∪ C|B) (“confidence”) and freq(B ∪ C) (“support”).

The frequency criterion is commonly defined as a frequency threshold freqmin

as freq(B ∪ C) ≥ freqmin.

In the above example, “20%” corresponds to the support, “85%” is the confi-

dence.

The challenge in association rule mining is the combinatorially many possible

association rules that exist for a given alphabet A. There exist several standard al-

gorithms for mining (cf. [Schmidt-Thieme, 2007; Liu, 2007] for overviews). The

key idea of all of them is to organize co-occurrence counting in a way that avoids

as far as possible counting attribute sets that will not contribute to any association

rule. One such algorithm is Apriori [Agrawal and Srikant, 1994] which explores
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the space of possible attribute combinations in a depth-first manner and uses a

Prefix tree data structure to count occurrences. Extensions of these algorithms for

objects with complex structures have been proposed [Agrawal and Srikant, 1995;

Srikant and Agrawal, 1997], most commonly, sequences of objects and attribute

sets which are arranged in a taxonomy. In this thesis, we use techniques from

association rule mining to generate textual pattern in Chapters 8 and 9. We do not

use association rules themselves but exploit the algorithms to generate candidates

for frequent textual patterns. The mining algorithms used are introduced in the

respective chapters.

Clustering

The most common type of unsupervised learning method is clustering which

comes in a large variety of forms. The general idea is to assign entities from

the input space X to classes without a predefined criterion or set of examples

for class membership. Clustering is done with regard to some notion of similar-

ity. Clustering is not in the focus of the technical work presented here. How-

ever, it is used as a preliminary step in pattern induction in the Snowball system.

[Agichtein and Gravano, 2000]

A popular clustering algorithm is k-means [Kaufman and Rousseeuw, 1990;

Duda et al., 2001]. It is based on the principle of iterative relocation as it itera-

tively adapts the position of k elements from the input space X until they form

good representatives of the training examples. More specifically, k-means initial-

izes a set R ⊂ X , |R| = k of representatives and then, given a set of unlabelled

training examples X ⊂ X repeats the following two steps until a stopping crite-

rion is reached:

• for each x ∈ X compute the closest representative l(x) in R. l(x) =
argminr∈R |x− r|. Thereby | · | is (usually) the squared Euclidean distance.

• Relocate r into the center of the cluster r defines: newV alue(r) =
centroid(x ∈ X|l(x) = r).

Because of the local nature of the updates, k-means is of a hill-climbing nature

and standard methods for avoiding local optima can be used such as repeated

application, simulated annealing and an appropriate choice of stopping criteria.

The algorithm makes the assumptions that the number k of target clusters is known

beforehand and that all features of the input space are continuous so that centroids

and distances can be computed. For both these assumptions there exist variants

of the algorithm that circumvent the assumptions (e.g. k-medoids for arbitrary

input spaces). For some applications, such as the construction of a terminological

taxonomy from text [Cimiano, 2006], it is desirable to have a hierarchy of clusters.
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A variant of k-means called bi-section k-means [Steinbach et al., 2000] does so by

recursively partitioning (parts of) the input space using k-means with k = 2.

Geometric Embedding

Another form of unsupervised analysis of data is referred to by the general term

Geometric Embedding which is a way to perform dimension reduction on the data

by associating each data point to one representative out of a set of representatives

which is arranged in some (low-dimensional) structure. The most popular instance

of Geometric Embedding is the Self-Organizing Map (SOM) [Kohonen, 1997],

which is defined by a set of representatives m ∈ M . Each m is associated with a

reference element from the input space repm ∈ X and a position in an Euclidean

space (the map) posm. It is necessary that there is a distance measure |x1, x2|
between any two elements x1, x2 from X .

SOM training consists of adjusting the representatives such that assigning each

element from X to its closest representative on the map renders a meaningful

layout of the data from X on the map. This is achieved by iterating over the

following steps for each x from a set of unlabelled training instancesX repeatedly:

• Find a “winner” representative w = arg minm|repm, x|

• Adjust repw towards x (such that |repw, x|) is decreased.

• Adjust the representatives which are close to w on the map towards x as

well to a decreasing degree the larger the distance on the map.

After having been initialized with random elements fromX , followed by sufficient

training, the SOM will develop a selectivity for similar input items in the same

region of a map. This is due to the adjustment of neighbours during training.

The arrangement of the map reflects interesting distributional aspects of the data.

However, not necessarily all interesting aspects are taken into account due to the

reduction of dimensions.

The map layout makes SOMs with a 2D space an appropriate tool for data

visualization which has been used in an NLP context [Kohonen et al., 2000]. Fur-

thermore, we experimented with using the SOM for inducing generative models of

sequences [Strickert et al., 2005] and, by means of an extension, to detect promi-

nent relation types among hyperlinked documents [Bloehdorn and Blohm, 2006].

2.4 Information Retrieval

Information Retrieval is concerned with the task of presenting for a given query

the documents that are most relevant. The most prominent and extensively inves-

tigated retrieval task is that of Web Search. The characteristics of Web Search are
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that documents have to be chosen from a large amount of heterogeneous hyper-

linked Web documents and that queries are typically posed in form of very few

keywords. In this thesis, like in several other works in the field of Information

Extraction, search engines are used as an interface to document collections. More

specifically, we use the Google search engine the major principles of which we

will present in this chapter. Introductions and overviews of research in the field of

Information Retrieval can be found in books by Chakrabarti [2002], Baeza-Yates

and Ribeiro-Neto [1999] as well as Liu [2007].

There are two important aspects in Web search: One is the efficiency of the

processing because it is expected that in a period of less than one second the right

documents are retrieved among millions of candidates. The other one is of course

the quality of the search results, that is how well the search results are appropriate

for the information need expressed in the query. Both efficiency and quality are

achieved by developing retrieval data structures that capture the most important

aspects of documents. These data structures are filled ahead of time (indexing

time) and accessed, once a query is posed (query time).

The indexing time data processing in Web search can be described as the fol-

lowing steps:

• Crawling: Given that Web documents are stored distributed over servers all

over the world without a central register, Web search engines need to detect

and download the pages on their own. This is accomplished by recursively

downloading pages and following the links on them for further downloads.

• Document preprocessing: Each page needs to be processed in order to

make the relevant content accessible for search. Typically, this means pars-

ing the data format (HTML, PDF, etc.) to isolate the textual content and,

from there, perform normalization tasks which are typically the removal of

stopwords and the replacement of words by their lemmas (see Section 2.2).

• Static rank computation: While the relevance of a document ultimately

depends on the query, there are also indicators of relevance that only de-

pend on the document itself. Indicators of such static ranking are the re-

cency of information and the authority of a source. The PageRank measure

for authority [Page et al., 1998] has been employed very successfully in the

Google search engine. It recursively defines page authority via the authority

of the pages linking to this page.

• Indexing: The resulting document representation is stored in an index. The

general idea of retrieval indices is presented below.

At query time, the following is accomplished:
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• Query analysis: Initially, the query needs to be analyzed. Special instruc-

tions like multi-word sequences (via quotes in Google) or the constraints

on the target page’s domain name or file type need to be separated from

keywords and keywords need to undergo preprocessing analogous to the

document preprocessing.

• Index lookup: The resulting representation of the query is used to retrieve

the relevant documents from the index.

• Relevance ranking: For typical queries there exist more results than a user

is willing to inspect. Therefore, the results need to be presented in a ranked

order. The above-mentioned static ranking scores need to be integrated with

query-dependant dynamic ranking scores. Their computation depends on

the retrieval model employed (see below).

• Presentation: Ultimately the results need to be presented to the user. Typ-

ically, for each resulting document, a summary is generated that gives an

indicator of why this document may be relevant to the query.

Several retrieval models exist that heuristically capture the relevance of a doc-

ument to a given query. The Boolean model conceives each word in the language

as a boolean attribute to each document which is true, if the word is present in

the document and false otherwise. The query is processed as a constraint on the

attributes of the documents. Queries may contain the Boolean operators and doc-

uments are considered relevant if they fulfill the constraints. The Vector Space

model describes each document as a point in a vector space which has a dimension

for each term in the language. The document’s value on each dimension depends

on the presence of the respective word in the document. A common function

to assign such a value is the TF-IDF score which relates the number of times a

word occurs in a document (term frequency) to the ratio of documents containing

that word. Such vectors can be computed for both documents and queries and

relevance is quantified by vector-space similarity (commonly cosine similarity).

Furthermore, there exist probabilistic approaches such as the Statistical language

model which is based on conditional probability distributions of queries and doc-

uments. The approach is to derive the distribution of a query given a document

Pr(q|d) based on observations in the documents and then use Bayes rule to esti-

mate the probability of a document given a query Pr(d|q).
Regardless of the retrieval model, Web search engines use a term-based index

to retrieve documents. The index, sometimes referred to as “inverted index” can

be thought of as an index just like those at the back of a book. It lists for each

term all the documents in which the term appears (postings list). The process of

answering a query composed of multiple terms is thus based on an intersection
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of the postings lists of the terms. Additionally, the position of a word within a

document can be encoded to allow queries for sequences of words or to reward

proximity of matches. When static ranking is employed, the postings lists are

sorted by the static rank of the documents. Search engines then only intersect

enough of the postings lists to display as many results as can be presented at a

time. Google usually presents 10 results at a time, so that the intersection can end

early. Along with the results, an estimate of the total number of results is given.

Due to the partial intersection of the postings lists, this estimate can be inexact.
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Chapter 3

Information Extraction Tasks

In very abstract terms, the goal of Information Extraction (IE) is to get hold of the

key facts in a text in an automatic fashion. Thereby, natural language analysis is

performed and the goal is to produce unambiguous output of a predefined format

[Cunningham, 2005]. When confined from other subfields of Natural Language

Processing (NLP), Information Extraction focuses on factual information of a sim-

ple nature and trades in-depth analysis for large coverage. It aims more at identi-

fying important phrases and simple relations than at interpreting, summarizing or

representing the content of the text as a whole. Applications of IE lie in the con-

struction of general purpose resources like dictionaries or ontologies, advanced in-

dexing for Information Retrieval and in areas where structured information about

entities needs to be collected (some examples have been given in Section 7.2).

Research in IE started with the manual generation of patterns and templates for

identifying key information (cf. [Rau, 1991] and [Hearst, 1992] for early ap-

plications as well as [Cunningham, 2005] and [Grishman and Sundheim, 1996]

for overviews). To reduce the manual effort required to create and maintain

the patterns, techniques from the field of Machine Learning were applied to IE

[Sarawagi, 2008; Nadeau and Sekine, 2007]. Today, a major goal is to scale meth-

ods up to very large document collections like Wikipedia (around 3 Million arti-

cles in English only), Medline (over 18 Million medical publications) or even the

entire Web.

This chapter starts out by introducing a terminology for IE aspects as it will

be used in the rest of the thesis. Then, emphasis is put on different IE tasks. To

this end, a series of dimensions in which those can differ are distinguished before

several prominent tasks are discussed. Finally, general challenges in the field of

IE are outlined.
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3.1 Terminology

Some terminology is required to describe various tasks and approaches in Infor-

mation Extraction. In this thesis we will use a terminology which is close to the

terminology used in the ACE 2008 task definition [NIST, 2008] and extends it

where necessary while others will be introduced where they are needed.

An entity is something that can be referred to textually (such as a person, a real

world object or a numerical value). It is to be distinguished from the text fragment

(string) itself as an individual entity can be referred to by different strings (syn-

onymy) and the same string can refer to different entities (homonymy or polysemic

references).

A relation can hold between two or more entities. If not otherwise specified

or clear from the context, we use the term relation in the sense of semantic rela-

tion. By semantic relation we mean that the entities which stand in the relation

as well as the relation itself are grounded in some meaning outside the text. This

grounding can take place by associating it to a concept in a formal ontology or a

task-specific conceptualization. Sometimes, this grounding is made explicit, but

most of the time, it is assumed that it can take place when the extracted informa-

tion is used. The entities that are related are called its arguments. An individual

assignment of entities to the arguments is called an instance of the relation, the set

of all valid instances is the extension of the relation. Note that the term “relation”

itself is used ambiguously in the literature. Sometimes authors use the term “rela-

tion” or also “relationship” when they mean what we introduced here as “relation

instance.” Relations can be of various arities that is have different numbers of

arguments.

Hence, the goal of IE is to identify entities and relations in text. Depending on

the task at hand, one may output entities and relation instances in a list or return

with them their mentions, that is, the text fragments they occur in. When mentions

are produced, IE can be viewed as an annotation process that is information about

individual text fragments is derived and associated with the text. When extracting

information in terms of entities and relations, several attributes of a given mention

are of interest. For entities, this is typically a type that specifies what kind of entity

has been found. To resolve synonymy, a unique identifier may be introduced. For

relations, multiple identifiers need to be derived: the identifier of the target relation

and one identifier for each argument.

3.2 Dimensions of Information Extraction Tasks

A great variety of IE tasks have been addressed in the literature, some of which are

described here. Apart from a set of rather small publicly available standard data
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sets, IE is performed in many specialized setups. Because the appropriateness

and potential of a given method depends on many factors, the transferability of

approaches between setups is difficult to predict. Thus, each setup can be consid-

ered a separate task. We will define an IE task as the task to produce a particular

type of output on a corpus of a particular nature with a certain given sort of su-

pervision and background knowledge. In the following, we elaborate on several

dimensions for each of these aspects.

The primary reason why automated IE is dependant on so many dimensions

is the fact that it relies on regularities in the input which can be altered by many

factors.

Structure of Target Output. One can distinguish the goal of entity extraction

and relation extraction. In both cases, one may perform local or global extraction.

While local extraction annotates entities and relations in the text, global extraction

aims at identifying facts that hold generally true abstracting from their particular

mention in the text. Note that global and local extraction will be covered to a large

extent by the same methods as both tasks require identifying mentions of instances

in the text. However, global extraction integrates over all mentions of a relation.

It can thus afford to miss mentions without loosing out on performance as long as

the same instances are identified elsewhere in the corpus. At the same time it can

increase precision by deciding on the validity of the extraction based on several

mentions. Yet, in order to be able to do so, global extraction may require greater

disambiguation efforts because several mentions of the same instance can only be

detected as such if the instance is identified in an unambiguous manner. In fact,

these two alternative choices (entity extraction vs. relation extraction and local

vs. global) account for four different tasks in the ACE 2008 evaluation (cf. Sec-

tion 3.3). As a terminological note, we will use the term relations both for entities

and relations when describing methods that apply to both entity and relation ex-

traction. In these cases, entity extraction can be considered the 1-ary special case

of relation extraction. Another option when it comes to extraction is to allow or

disallow implicit mentions of a given relation. An implicit mention is one where

the relation in question is not what the text is meant to convey at the position of

the mention. As an example, the sentence “Madrid is the capital of Spain.” does

not say that Madrid is located in Spain, yet it is reasonable to assume so and thus

allowing for implicit extraction but not for explicit.

Apart from entity and relation extraction there is the notion of event extraction.

Events are bigger units of textual content that follow a pre-defined structure. The

structure causes certain textual entities to play predefined roles in this event. The

goal of event extraction is to identify role-fillers in the text. As an example, in the

ACE 2007 evaluation there were events like “Life/Be-born”, “Business/Merge-
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Org” and “Personnel/Nominate” allowing for arguments like “Person”, “Place”,

“Position”, “Time-starting”, “Org.” In principle, events can be thought of as n-ary

relations where individual arguments can be left empty and with emphasis on cer-

tain particular argument types (actor and recipient of an action, time, location). A

special case of event extraction is single event extraction in which a given textual

unit can be assumed to reflect exactly one event. One frequently addressed exam-

ple for a single event extraction task is the Seminar Announcement extraction task

[Freitag, 1998] in which 485 seminar postings have to be processed each describ-

ing one talk. The goal is to extract the speaker name, the title of the talk, as well

as start and end time.

Target Output Relations. The nature of the target relations themselves have

a great influence on how a given relation extraction task can be addressed. On

the one hand, formally definable properties like reflexivity, domain and range

restrictions, cardinality, functionality/inverse functionality (cf. Section 2.1 for

a formal definition and description of these properties) can have an influence

on how relation instances are extracted. Two studies [Alfonseca et al., 2006;

Normand et al., 2009] have shown that knowing domain and range restrictions

can increase the quality of extraction. Apart from that, the numerical distribu-

tion and linguistic properties of the mentions can have an influence on how the IE

task presents itself. Intuitively, if the relation instances are mentioned more often

and in an unambiguous way, they are easier to extract. The target relations are

therefore an important aspect of the extraction task.

Nature of Input Text. The appropriateness of a given extraction method

strongly depends on the nature of the text that it is applied to. Hence, we consider

the nature of the text as part of the extraction task definition. Information Ex-

traction has been frequently applied to news wire articles [Suchanek et al., 2009],

classified advertisements [Embley et al., 1998], blog posts [Reiss et al., 2008],

Wikipedia articles [Wu and Weld, 2007] or the entire Web [Brin, 1999]. For the

task definition, we consider the following dimensions of text corpora as relevant:

• Corpus size. The size of a corpus naturally has a big impact on process-

ing time. Most extraction mechanisms operate linear w.r.t the size of the

corpus. Still, when very scarcely mentioned information is looked for in

very large corpora, linearly processing the entire corpus may take too long.

Some systems allow for faster extraction by using web search indexing tech-

niques to be able to operate faster at extraction time [Cafarella et al., 2005;

Cimiano and Staab, 2004; Blohm et al., 2007].
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• Lexical and syntactic variability. Given that IE exploits regularities in the

way in which instances are mentioned in the text, the rich variability that

natural language allows may render extraction difficult. Depending on the

text source and purpose, variability may be limited. With this observation

in mind, many studies have been conducted on text corpora that can be

assumed to be well structured. For example, Hearst [1992] operated on

Grolier’s American Academic Encyclopedia, Suchanek et al. [2008] specif-

ically exploited page category names in Wikipedia and Embley et al. [1998]

specialized in classified advertisements.

• Domain terminology. A large body of work in IE is concerned with adapting

IE systems to different topic domains. The biomedical domain for example

features synonyms and surface string variations that can only be recognized

by experts [Saric et al., 2004] as well as topic domain specific linguistic

particularities [Netzel et al., 2003]. Some domain-specific studies and ap-

plications are discussed in Section 4.1.1.

• Confidence in content. While the representation and aggregation of uncer-

tain knowledge is a research area in its own right, contradictions, errata and

possibly even spam have to be dealt with when aiming at global extraction

(i.e. finding globally true statements). Sources for such errors are multiple.

On the one hand, extraction models are usually imperfect and generate a cer-

tain amount of false extractions. On the other hand, information may change

over time, may depend on the point of view on a topic or may simply be

false. Most global IE systems make choices with respect to exclusion of im-

probable information ranging from a support threshold (suggested by Brin

[1999]) to entire frameworks for knowledge integration [Iria et al., 2006;

Suchanek et al., 2009].

• Language. Finally, the language of the input is an important factor. Most

research has been done on IE from the English language which is re-

flected by the fact that almost all studies cited here exclusively discuss

English examples (for an overview with regard to entity extraction cf.

[Nadeau and Sekine, 2007]). How much a given approach depends on the

language typically depends on the use of language specific linguistic re-

sources, features and heuristics.

Available Knowledge and Supervision. Apart from text, three types of input

can be provided to IE. An extraction model encodes knowledge on how target

information occurs in text. Such models can consist of textual patterns that are in-

tended to match relevant text fragments or formalizations of statistical knowledge
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about such fragments. An example pattern for the locatedIn relation that contains

cities and the countries they are located in is:

“flights to ANYARG1
, ANYARG2

from ANY airport”

Alternatively, in Machine Learning-based IE, the extraction model is learned

from examples. In such cases, training data is required which comes usu-

ally in form of example annotations or example relation instances. Train-

ing data for the same relation could be the following set of positive examples

{(Karlsruhe, Germany), (Tournai , Belgium)}.

Finally, further information on the structure of the textual input or the

target output may be available. We will refer to this as background knowl-

edge. Background knowledge could consist of a lexicon of possible arguments

of relation instances: {Karlsruhe,Tournai} and {Belgium, Germany}.
Background knowledge can be general linguistic knowledge or informa-

tion that specifically helps at extracting information of a particular type.

Among those there is no clear-cut border. Linguistic knowledge may

range from simple, generally applicable models that allow for token-wise

tagging to formalized semantic knowledge. The most common exam-

ple of the former is part-of-speech tagging [Rozenfeld and Feldman, 2006;

Pantel and Pennacchiotti, 2006; Califf and Mooney, 1997; Wu and Weld, 2007;

Bunescu and Mooney, 2006; Ruiz-Casado et al., 2005; Ciravegna, 2001;

Culotta et al., 2006; Snow et al., 2004]. An example of the use of specific

information is SOFIE [Suchanek et al., 2009] which incorporates a large on-

tology for verification and integration of extracted knowledge. More detailed

examples on how background knowledge is employed in practice are given in

Section 4. Some general principles of the formalization of semantic knowledge

are described in Section 2.1.

3.3 Prominent extraction tasks

Some text corpora have been frequently used for evaluation and thus have con-

tributed to defining interesting IE tasks. Among them are the seminar announce-

ment dataset by Freitag [1998] and a job postings list by Califf [1997].

Initial comparative evaluations in the field of IE have been performed in the

context of the Message Understanding Conferences (MUC) which were held be-

tween 1987 and 1997. An overview of the history of MUC has been published

after the completion of the sixth of seven events [Grishman and Sundheim, 1996].

The tasks at MUC focused mainly on single event extraction on military reports

and newswire texts. Over time, more and more complex templates were devel-
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oped. As an example, the annotation of an entity of type organization would not

only feature the organization’s name but also a type (e.g. company), location in-

formation and alias names.

The ACE program1 operated by the Speech Group at the U.S. National In-

stitute of Standards and Technology (NIST) has set some standards for IE tasks.

ACE stands for Automatic Content Extraction as the program aims to facilitate the

investigation of various extraction paradigms. They are classified as “Entity De-

tection and Tracking” (EDT), “Relation Detection and Characterization” (RDC)

and “Event Detection and Characterization” (EDC, not in 2008). In the 2008 com-

petition [NIST, 2008], entity and relation extraction were evaluated separately,

each in a local and a global manner and each with texts in the English and the Ara-

bic language. Six pairs of training and testing corpora have been made available

each with a different nature of text. The text types are broadcast news, broadcast

conversations, newswire, weblog, usenet, conversational telephone speech. The

size of the training corpora range around 50 thousand words). Seven types of

target relations are considered with 18 subtypes in total 2.

All ACE tasks implicitly assume that entity extraction is a necessary prereq-

uisite of relation extraction as all relations consider ACE entities a the candidate

arguments for the relation instances.

3.4 Challenges in IE

There are three basic ideals that govern research in IE. Quality of extraction is

one of them. Clearly, all IE systems try to avoid extracting wrong pieces of infor-

mation or missing out on important content. Secondly, it is an ideal to minimize

human supervision in the sense that as little information (which may come in

various forms) as possible needs to be formalized by humans in advance. This

can be achieved by resorting to available knowledge resources and by designing

extraction algorithms in a way that allows them to make optimal use of as little

supervision as possible. Finally, with a growing body of available texts and with

increasing computational capacities, scale becomes an interesting factor for IE

algorithms. On a technical level, a large variety of challenges exist:

• Cost of preprocessing: In spite of large advancements in recent years, the

high computational costs and also the brittleness of tools for linguistic anal-

ysis (part-of-speech tagging, syntactic parsing etc.) is still an issue. As an

1http://www.itl.nist.gov/iad/mig/tests/ace/
2Note that there has not been an ACE evaluation in 2009. The Knowl-

edge Base Population Track at TAC 2009 is the organizational successor.

http://apl.jhu.edu/˜paulmac/kbp.html

http://www.itl.nist.gov/iad/mig/tests/ace/
http://apl.jhu.edu/~paulmac/kbp.html
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example, a study from 2005 [Ravichandran, 2005] argues based on experi-

ments that a corpus of the size of one Terabyte would take a syntactic parser

388 years to parse.

• Adaptivity: As research strives to provide general understanding and solu-

tions, care has to be taken in an inherently goal-driven field like IE not to

develop systems that are only applicable to serving one particular task. Rec-

ognizing this issue, the MUC conferences started with MUC-5 to organize

their challenges in two phases [Grishman and Sundheim, 1996] limiting the

amount of adaptation effort: One phase in which only the general task was

known and one (short) phase in which the actual data was provided and the

systems could be configured to work with this data.

• Ambiguity: Language is by no means unambiguous. Although Information

Extraction does not translate the textual content in an unambiguous rep-

resentation but merely checks for the presence of certain words or other

features at certain positions, the integration of synonyms and the resolution

of polysemy are of importance. On a related note, the treatment of pronouns

and other cases of coreferences may be required in order to get hold of the

desired information.

• Uncertainty handling: When performing global IE, identifying the fact con-

veyed at a particular position in the text is not sufficient. Whether an extrac-

tion result constitutes a fact that holds true is not easy to assess. Reasons

for that may be the evolution of facts over time, the limited reliability of re-

sources, different views or conceptualizations of the aspects covered in the

text or the limited reliability of the extraction process itself. The reliability

of facts needs to be assessed when information is integrated globally. One

way of handling the limited reliability of extraction results is assigning each

fact a confidence score. However, in the general case, the different sources

of lacking reliability cannot be weighted against each other.

3.5 Focus of this Thesis

This thesis studies approaches for Information Extraction at Web scale. The goal

is to facilitate the collection of facts into knowledge repositories. We will demon-

strate application of such automatically extracted repositories for informing user

of market developments and supporting the creation of new information sources.

This thesis is hence focuses on global extraction. Moreover, like in most studies

in the literature, the focus is set on binary relations. This is due to several reasons.

Knowledge Representation based on binary relations have been well studied both
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in theory (e.g. in the field of Description Logics (DL)) and in practical applica-

tions (as the widely used and standardized Semantic Web languages rely on binary

relations). The wide adaptation of the DL-based OWL standard has shown how

complex states of affairs can be modelled by means of several binary relations.

With global extraction in mind, it is straight-forward that no distinction will be

made between explicit and implicit relation mentions because the target output

are not the mentions but the relation instances.

The studies presented in this thesis will work on a set of non-taxonomic re-

lations with varying properties. While no assumptions are made with regard to

logical properties of the target relations, it turns out that most relations are one-

to-many or many-to-one or violate these constraints only rarely.

The main focus of this work lies in the extraction from the Web. This has

several implications with regard to the nature of the input text. Most prominently,

it is large and ever-evolving. In the general case, large lexical and syntactic vari-

ances have to be assumed as there is no central control governing the generation

of web content. Wikipedia has also been studied as part of this thesis work. While

still a Web corpus, Wikipedia provides a more controlled terminology and content

quality which makes it a much-studied text collection for Information Extraction.

At the same time, Wikipedia is less redundant. The differences (and potential of

mutual benefit) of Wikipedia and Web data extraction are studied in this thesis.

The supervision paradigm applied in this work relies on the provision of a

small number of positive examples for relation instances. Training is thus done

in the absence of negative examples or with automatically generated negative ex-

amples. This makes it a semi-supervised learning task. The impact of token-wise

lexico-semantic background knowledge (cf. Section 3.2) is studied as part of this

thesis.
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Chapter 4

Approaches to Information

Extraction

This chapter gives an overview of the body of research and a range of applications

related to this thesis. The goal is to present the previous studies on which the

technical work of this thesis is built and to explore alternative and complementary

approaches. The chapter is divided into three sections. By starting the related

work overview with discussing Applications and Evaluation, we try to do justice

to the fact that the field of Information Extraction is inherently goal-driven in

the sense that it is less about modeling and understanding language as a whole

and also less about modeling and handling the knowledge. IE rather aims at the

efficient, possibly heuristic process of spotting key information in the text. Like

in this thesis, Machine Learning for Information Extraction is the focus of most

recent studies in the field of IE. The field of Machine Learning (ML) is concerned

with inducing a model of given data by means of examples. This is attractive

for IE because a task-specific model of how information is mentioned in text is

required for each IE process and in many cases providing examples is easier than

formalizing such a model manually. Finally, an overview is given on studies that

are concerned with Information Extraction and the Semantic Web. The Semantic

Web is concerned with making Web content machine understandable describing

it by means of formalisms with explicit formal semantics. The Semantic Web

thereby provides both attractive sources of formalized background knowledge and

interesting applications because IE can be used to generate formalized metadata

for Web content.

Recent overviews of IE literature include surveys by Sarawagi [2008] as well

as Nadeau and Sekine [2007]. Sarawagi discusses entity extraction and relation

extraction and further divides the field into rule-based and statistical approaches.

A large set of tasks and applications is reviewed. Approaches are categorized by

the task they solve, the methods they employ and the features that are used to



46 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

describe mentions of entities and relations. When it comes to the detailed de-

scription of IE approaches, the survey limits itself to a small set of example solu-

tions without discussing design alternatives. Furthermore, the survey features an

overview over the task of “Management of Information Extraction Systems” cov-

ering aspects of document access and information integration. Nadeau and Sekine

describe research in the field of named entity extraction in detail. Starting out with

an overview over the development of the field since 1991, research is described

in terms of the task addressed, the learning methods employed, the features used

to describe textual mentions, and the methodology of evaluation. While this sur-

vey only covers entity extraction, many techniques, especially those concerned

with learning extraction models, can be carried over to the extraction of relations.

In both studies, the observation is made that while historically, IE operated with

manually defined rules or patterns, more recent studies feature Machine Learning

methods. They find the IE tasks to differ greatly in terms of the target corpora and

the intended output. Furthermore, both surveys observe that, even though statisti-

cal models are more recent, both pattern-based and statistical models co-exist and

there is no clear winner among them in the general case. In an article in the “En-

cyclopedia of Language and Linguistics”, Cunningham [2005] gives an overview

of the history of the field of IE and provides an overview of applications and some

current developments.

4.1 Applications and Evaluation

Given the goal-oriented nature of IE, evaluation with respect to some target appli-

cation is an important aspect of IE research. Evaluation of a system cannot take

place ignoring the application it was designed for and conversely, systems need

to show the appropriateness for some task in order constitute a valid contribution

to the field. This section explores fields of applications for IE along with the text

corpora and other resources they employ before introducing relevant tools and

frameworks. Finally, modes of scientific evaluation are presented and discussed.

4.1.1 Evolution of Tasks and Applications

Research and development was driven by the growing interest in consolidated

information on the Web in corporate settings as well as in science and research.

Specialized search and browsing tools require extracted information to be able to

provide relevant documents and facts. Another driving factor was the availability

of resources that on the one hand provide a lot of information for extraction and on

the other hand serve as auxiliary sources of background knowledge. We describe

here some prominent applications, corpora and resources.
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A prominent type of application for IE are specialized Web search and brows-

ing tools. A popular subform of this, tools for aggregating advertisements

such as price comparison websites or job search engine have been a focus of

research from early on [Soderland et al., 1999; Embley et al., 1998]. Recently,

IE results for many domains have been integrated in the general domain Web

search engine Bing.1 Bing thereby relies on IE results provided by Powerset

[Converse et al., 2008]. Powerset’s results are output of IE processing involving

linguistic analysis on selected Web resources including Wikipedia.

Corporate applications differ from Web settings in several ways. On the

one hand, size, confidentiality and nature of the texts are different, so that the

IE tasks are posed differently [Fagin et al., 2003]. On the other hand, content

authors, information system providers and information system users follow a

common interest because they belong to the same organization [Blohm, 2005].

The possibly smaller size, the more uniform nature of the corpus and the com-

mon interest facilitate the use of IE as compared to open Web setups. Fa-

cilitating factors are that more background resources are available, the added

value for the system provider is higher and spam can be neglected. In the

field of information retrieval, specialized enterprise search solutions were devel-

oped such as Ontoprise SemanticMiner [Moench et al., 2003] or IBM Omnifind

which provide enhanced and flexible text analysis as features. Special setups

have been developed to extract and use corporate knowledge [Dadzie et al., 2008;

Iria et al., 2007]. Due to the inherently closed and confidential setting of enter-

prise information systems, scientific evaluation is difficult in particular when it

comes to comparing work on the same dataset. An exception is the Enron dataset

which comprises 400 Megabytes of corporate e-mails which have been made pub-

lic in the course of a lawsuit [Klimt and Yang, 2004]. This corpus has been used

for IE for example by Yunyao Li et al. [2008].

In the domain of scientific research, CiteSeer [Giles et al., 1998] was one of

the very early specialized search tools on the Web that heavily rely on IE. It uses IE

to build a citation index of research publications that are available on the Web. Its

initial form relied on a rule-based extraction process with manually encoded rules.

While CiteSeer aims at indexing of research papers from all subject areas, much

research effort has been put into facilitating research of particular domains. These

and other efforts are sometimes referred to by the term “eScience”, possibly to

suggest that the automated processing actually takes over some of the work of the

scientists. Depending on the subject, special measures need to be taken to account

for domain specific terminology [Saric et al., 2004]. For the biomedical domain

there are standard datasets for evaluation along with competitive challenges avail-

able. One example is the BioCreAtIvE event [Hirschman et al., 2005] for which

1http://www.bing.com/

http://www.bing.com/
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the set of tasks consists of entity extraction tasks like gene name identification and

normalization and relation extraction like protein-protein interaction.

Most applications that are in use today are search oriented. For search,

template-like metadata (e.g. bibliographic or product data) and entity detection

are particularly useful. In addition there are applications that aim at summariz-

ing and aggregating information across document borders. To this end, like in

this thesis, global relation extraction is performed. For example Martin Hofmann-

Apitius et al. [2008] detect entities and relations in biomedical texts and make

them available for knowledge-aware browsing. Further areas of application for

global relation extraction exist in fields like market analysis and in the creation of

large knowledge bases as discussed in more detail in Chapters 10 and 11.

One of the most popular resources for IE is Wikipedia2 which is a hypertex-

tual encyclopedic reference that is continuously developed by volunteer authors

following a wiki paradigm. It is available in many languages featuring 2.9 Mil-

lion documents in English as of July 2009. Wikipedia is widely used for IE not

only due to the broad domain coverage and the high quality of the content but

also because of the rich amount of formalized or semi-formalized content in form

of page categorization and attribute-value pairs presented in so-called infoboxes.

This thesis comprises a set of experiments on IE on Wikipedia (Chapter 7) in the

course of which related work on Wikipedia IE is discussed (Section 7.1).

An even larger and also rich information source is the Med-

line literature database provided by the U.S. National Library of

Medicine.3 It contains 18 million records describing publications in

the life sciences domain from the 1960s on. The abstracts provided

in the records are a popular source for IE (e.g. [Saric et al., 2004;

McIntosh and Curran, 2009]). WordNet [Miller, 1995] is a highly struc-

tured and manually compiled lexical resource is which also has been used as

background knowledge for IE (e.g. [Snow et al., 2004]). Recently, resources

provided by the Open Linked Data initiative such as DBPedia [Auer et al., 2007]

(e.g. [Kobilarov et al., 2009]) and YAGO [Suchanek et al., 2008] (e.g.

[Suchanek et al., 2009]) have found use as resources for IE as well as

the APIs of Web search engines (e.g. [Ravichandran and Hovy, 2001;

Cimiano and Staab, 2004; Rosenfeld and Feldman, 2006]).

4.1.2 Tools and Frameworks

Information Extraction systems are relatively complex software artifacts. Apart

from the actual decision where in the text a relevant entity or relation is men-

2http://www.wikipedia.org
3http://www.nlm.nih.gov

http://www.wikipedia.org
http://www.nlm.nih.gov
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tioned, there are several tasks to accomplished. In particular, document input

has to be processed, textual content has to be separated from markup and other

non-textual document content. Furthermore, the descriptive features upon which

the decision is based need to be computed which requires running NLP tools

like sentence or paragraph splitters, part-of-speech taggers, chunkers, parsers

and possibly supplemental IE tools. These features as well as extraction re-

sults have to be stored and represented in a way that provides convenient ac-

cess for further processing. The most widely used IE frameworks are GATE

[Cunningham et al., 2002] which is developed by the University of Sheffield and

UIMA [Ferrucci and Lally, 2004] which was initially developed by IBM Research

and is now an open source incubator project hosted by the Apache foundation.

Both GATE and UIMA view feature computation and IE itself as annotation of

text spans. They allow users to configure a cascade of annotators which is subse-

quently applied to the text on a document by document basis. Annotators access

the text and previous annotations via a common data model. One of UIMA’s

key features is that this data model is strongly typed and can be extended pro-

grammatically. Both frameworks come with a set of basic annotators and pro-

vide a programming interface that allows developers to create annotators that

execute arbitrary Java code. GATE comes with a rich and widely used pattern

matcher called JAPE. From some personal experience with UIMA [Blohm, 2005;

Umbrich and Blohm, 2008], we find it a convenient platform for developing light-

weight annotators that enable the identification of straight-forward entities or per-

form relevant preprocessing steps. The developer has a lot of freedom as arbitrary

code can be executed. This comes at the expense of interoperability and integrat-

edness. Annotators can only be exchanged if they follow the same data model.

Efforts exist to make use of the type system facility to increase interoperability

[Hahn et al., 2007]. A further challenge for using UIMA with large scale IE is

the not necessarily efficient access to annotations provided (due to specific API

issues).

A recent rule-based IE system, “System Text for Information Extraction” or

“System T”, 4 has been released as a prototype by IBM Research. It allows pattern

authors to define mentions of target instances and n-ary relations by means of a

rule language called AQL. AQL has a syntax very similar to SQL but queries for

text spans instead of database rows. Intuitively, user-defined types of text spans

take the role of columns and co-occurrences of these spans take the role of rows.

As an example, one could query for all phone numbers occurring within a max-

imum distance from a person name. Thereby, special AQL operators allow the

user to define how phone numbers and person names are identified. The underly-

ing view of IE taken is an algebraic one [Reiss et al., 2008] much like in database

4http://www.alphaworks.ibm.com/tech/systemt/

http://www.alphaworks.ibm.com/tech/systemt/
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query processing which opens the way to matching optimizations. If in the above

example, phone numbers are much cheaper to identify than person names, then

System T would decide to search for numbers in the entire text and search for per-

son names only within the relevant context window around the phone numbers.

A popular tool for Machine Learning for Information Extraction is the “Mal-

let” tool suite [McCallum, 2002]. It contains a set of sequence tagging tools that

allow for supervised extraction by means of a user-defined set of token features.

It supports learning methods like Hidden Markov Models, Maximum Entropy

Markov Models, and Conditional Random Fields.

4.1.3 Evaluation

A number of evaluation initiatives and standard corpora exist for Information Ex-

traction (cf. Section 3.3). Still evaluation is not straight-forward. Alberto Lavelli

et al. [2008] give an overview of problems that may arise when evaluating and

comparing IE systems. Upon these observations, they derive suggestions for im-

proved IE evaluation. They distinguish “data problems”, “problems of experi-

mental design,” and “problems of presentation.” While data problems are mostly

related to potential errors in annotation and formatting, problems in experimental

design include varying approaches to train/test split selection, the lack of study of

the impact of individual features, inconsistencies in penalization of variabilities in

the text fragments extracted and incompatibilities of match count strategies. Con-

cerning the presentation of results they observe that frequently not all interesting

measures or diagrams are reported or that only an insufficient subset of standard

corpora are used for evaluation. One should note that this survey has been written

with a closed-corpus supervised extraction paradigm in mind. Many recent stud-

ies have varied the supervision method and aimed at extraction from the World

Wide Web. This adds at least the following additional problems with regard to

comparability.

• The uncountability of negatives: As the procedures do not actually

process the entire Web, the amount of (correctly or incorrectly) not

extracted information (“negatives”) is not known. In the absence

of false negative counts, recall cannot be given. Studies on Web-

based extraction report absolute result counts [Ruiz-Casado et al., 2005;

Tomita et al., 2006; Talukdar et al., 2006] or notions of relative recall

[Pantel and Pennacchiotti, 2006].

• The incomparability of corpus and corpus access: Studies vary in the

way the Web is accessed. Hardly reproducible approaches include down-

loading a fraction of the Web based on a set of queries beforehand
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[Rosenfeld and Feldman, 2006] and crawling an undefined portion of the

Web accessing it via an own search engine [Cafarella et al., 2005].

In principle, all Web-based extraction systems suffer from these problems as the

content of the Web and the view search engines provide on them is changing

permanently.

4.2 Machine Learning for Information Extraction

It is widely assumed in the Information Extraction community that Ma-

chine Learning techniques enable much faster and less labor intensive

adaptation to tasks and domains [Sarawagi, 2008; Nadeau and Sekine, 2007;

Ravichandran, 2005]. While the setup or domain adaptation of early IE sys-

tems consisted in formalizing general and task-specific linguistic knowledge, ML-

based IE makes it possible to limit the human input to training examples in form of

target instances or annotation of their mentions in the text. Most recent research,

including this thesis, therefore focus on the automatic learning of IE models. One

should note that few studies actually investigate the issue of saving labor and costs

through the use of ML techniques for IE. Among the literature studied for this

thesis, only one study quantifies the effort of training a system for an industrial

application [Ciravegna, 2001]. To further investigate this issue one would have to

contrast machine-learned versus manually created models both regarding perfor-

mance and setup costs. However, a clear indicator for the trend towards ML is

the large number of conference tracks and workshops at ML conferences devoted

to IE [Kok et al., 2007; Blohm et al., 2008; Li et al., 2008] and conversely ML-

dominated tracks and workshops at NLP conferences [Cardie and Isabelle, 2006;

Carroll et al., 2007; Mooney et al., 2005].

This section focuses on three aspects in ML for IE, namely feature repre-

sentation of text segments, the selection of models for learning and the training

paradigm. A distinction is made between statistical ML methods and pattern-

based approaches. Statistical methods are those which evolve a statistical model

to decide if target information is present in a given text fragment. Pattern-based

systems are often also referred to as rule-based. Their model is based on con-

straints on the input sequence they accept for abstraction. After presenting both

types of approaches, we discuss their relative benefits and drawbacks in a separate

subsection. Further closely related work is discussed when individual systems are

introduced either in Sections 4.2.5 and 4.3 or in Chapter 5.
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4.2.1 Features for Describing Textual Mentions

Information Extraction can take into account many different aspects of text seg-

ments to decide if a relevant piece of information is mentioned at a particular

position. Those aspects have to be modelled as accessible features. In the sim-

plest case, the features are exactly the tokens that constitute a textual mention.

Those can be represented as a sequence or a set. Usually, further features improve

the quality of extraction as they provide further information about the mentions.

A feature d can be thought of as a function fd(s) with fd : Sd 7→ Rd which as-

signs each textual segment s from the set of possible segments Sd a value from

the feature’s range Rd. Depending on the choice of Sd and Rd different types of

features can be distinguished:

• Token-based features are those features in which Sd is the set of all individ-

ual minimal textual units (tokens). The most straight-forward token-based

feature is the token’s surface string itself. All others provide information

that describe the token on a more general level or incorporate information

that can be concluded from the context. Token-based features can capture

lexical and semantic features of tokens like part-of-speech, number, case

and synonyms as well as type information of various kinds (based on lists,

taxonomies, named-entity taggers etc.) and orthographic features (capital-

ization, characters used etc.).

• Mention-based features encode information that holds for the entire men-

tion (i.e. the text fragment which is under consideration) which is relevant

for deciding whether or not the target relation is present at that position.

Mention-based features can be any property that can be observed about a

fragment of text.

• Structural features usually need to be encoded as combinations of several

token-based or mention-based features. They describe the layout structure

of the document or the textual or grammatical structure present in or derived

from the text.

The most frequently used token-based features in IE apart from the

surface string are POS [Rozenfeld and Feldman, 2006; Culotta et al., 2006;

Califf and Mooney, 1997; Bunescu and Mooney, 2006; Ruiz-Casado et al., 2005;

Wu and Weld, 2007; Pantel and Pennacchiotti, 2006; Alfonseca et al., 2006;

Ciravegna, 2001] as well as named-entity types [Rosenfeld and Feldman, 2006;

Culotta et al., 2006; Agichtein and Gravano, 2000; Bunescu and Mooney, 2006;

Ruiz-Casado et al., 2005; Ciravegna, 2001]. Furthermore, regular ex-

pression matches can distinguish orthographic speciality [Brin, 1999;
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Wu and Weld, 2007; Culotta et al., 2006] (e.g. those which render the pres-

ence of proper names likely). Several studies [Califf and Mooney, 1997;

Yangarber, 2003] use synonym information by annotating WordNet synsets.

The Yago ontology is used for the same purpose [Suchanek et al., 2009].

Morphological information for tokens is also applied [Ciravegna, 2001].

Wu and Weld [2007] as well as Wang et al. [2007] use corpus-specific

mention-based features which are derived from structured information given on

the page. The document URL is used as a feature by Brin [1999]. Claudio Giu-

liano et al. [2007] use typical word-based features (in particular the surface string

and punctuation) in mention-based manner by aggregating surrounding tokens in

a bag-of-words manner and combine token-based and mention-based features as

a linear combination of kernels. Examples of structural features are dependency

parse trees [Snow et al., 2004; Xu et al., 2007] and connecting paths in an ontol-

ogy [Culotta et al., 2006].

4.2.2 Statistical Learning: Methods and Training

As introduced in Section 1.2, relation extraction (and entity extraction analo-

gously) can be viewed as a classification task that decides if a given text fragment

expresses the target relation and an additional processing step that identifies the

arguments within the mention.

There are several ways in which these two steps are combined when relation

extraction is modelled as a statistical learning problem.

• Argument-driven: First detect potential arguments of the relation in text and

then decide, if they stand in the target relation. In the sentence “Sheffield is

a city in England.”, an argument-driven system would first spot “Sheffield”

and “England” as possible relation arguments and then decide, if the textual

context justifies asserting a locatedIn relation instance between them. Most

statistical models base on a previous identification of the argument slots

either by assuming named-entity tagging (possibly in coarse categories) to

be performed prior to relation extraction or by employing sequence models

that distinguish tokens.

• Fragment-driven: Alternatively, one can first identify a text fragment that

is likely to hold a mention of a relation instance and then identify the argu-

ments. In the above example, a fragment-driven approach would first spot

“is a city in” as a good indicator of the locatedIn relation and then spot the

arguments “Sheffield” and “England” in the text.

Argument-driven processing by means of named-entity tag-

ging is almost the standard procedure [Rosenfeld and Feldman, 2006;
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Rozenfeld and Feldman, 2006; Agichtein and Gravano, 2000; Yangarber, 2003;

Bunescu and Mooney, 2006; Ruiz-Casado et al., 2005]. An alternative is the use

of otherwise distinguished entities such as link-title pairs [Culotta et al., 2006].

Also argument-driven extractors are those relying on sequential models operating

on token-based features [Culotta et al., 2006].

Details of these systems along with additional uses of classifiers for Informa-

tion Extraction are discussed in Section 5.6.

A great variety of statistical classifiers have been applied to Information Ex-

traction. The most common techniques are introduced in Chapter 2. Many

approaches model the IE task as classification in a vector space using SVM

[Snow et al., 2004], Naive Bayes [Etzioni et al., 2005] and classical Logistic Re-

gression models. Due to the sequential nature of language, models that incorpo-

rate sequence structure like SVMs with sequence Kernels [Zelenko et al., 2003;

Giuliano et al., 2007] and linear-chain Conditional Random Fields (CRF) are fre-

quently employed. Finally, models that enable capturing more complex graph-

like structures are frequently used [Culotta et al., 2006; Wu and Weld, 2007;

Giuliano et al., 2007]. The graph structure can represent grammatical structure,

hyperlinks between text segments, document metadata or similarity. Examples

of the different uses for the literature are given below sorted both by the models

they employ and the nature of the supervision. Furthermore unsupervised models

like vector space clustering and the induction of Hidden Markov Models (HMMs)

or statistics via suffix-tree computation have been used as intermediary learning

steps to generate text patterns.

In Section 2.3 the distinction between supervised and unsupervised ML was

introduced. When it comes to IE, several special forms of supervision have been

proposed in the literature. This is due to the fact that the cost of supervision is one

of the key cost factors of IE and some types of supervision are cheaper to come

up with than others. Training of classifiers usually requires positive and negative

examples to derive an appropriate model. There are so-called semi-supervised

models that make use of both labelled an unlabelled data for training. For IE,

those approaches which only require labelled input from positive examples, are a

common variant of semi-supervision. They build on the idea of generating nega-

tive from unlabelled training data by assuming unlabelled positions to be negative.

One popular extension of supervised ML is bootstrapping. The general idea

of bootstrapping-based IE is that models and extraction output can be co-evolved.

A model can lead to new extraction output and extraction output can be used

as training instances to improve the model. Bootstrapping approaches run over

several iterations of training and application of the model. In terms of supervision,

bootstrapping re-uses classification output as training examples to re-train the

model in the next iteration. The assumption is that output is improved over the

iterations. Thereby, bootstrapping can be applied to pattern-based or statistical
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models. The term bootstrapping is a reference to a proverb about pulling oneself

out of a swamp by one’s bootstraps. Initial work in applying this principle to IE

has been done by Brin [1999] and Riloff and Jones [1999]. Since then, many

adaptations of this paradigm have followed [Agichtein and Gravano, 2000;

Etzioni et al., 2005; Pantel and Pennacchiotti, 2006; Yangarber, 2003;

Culotta et al., 2006; Tomita et al., 2006; Talukdar et al., 2006; Xu et al., 2007].

Results show that hundreds and thousands of instances can be extracted with the

provision of only around 10 training examples. The principle of bootstrapping

is also at the heart of the framework introduced in Chapter 5 and a subject of

investigation in Chapters 6 and 7.

One further variant of semi-supervised learning is self-supervised learn-

ing in which examples are generated from unlabelled data by means

of labelling heuristics [Banko et al., 2007; Downey and Etzioni, 2008;

Rozenfeld and Feldman, 2008]. Finally, Active Learning has been widely

studied in the ML community and applied to Information Extraction

[Thompson et al., 1999; Soderland et al., 1999].

Many ML methods for IE use methods that represent the input space as a

vector space in which each dimension stands for some feature typically discard-

ing order and structure of the text; other models use input space representa-

tions that preserve the sequential order of text or other structures. Approaches

using vector space models include the one by Snow et al. [2004], TextRunner

[Banko et al., 2007] and KnowItAll [Etzioni et al., 2005] who use Naive Bayes

(or in the first case also standard Logistic Regression-based) classification to as-

sess the quality of extracted instances. The feature sets for the Machine Learning

method differ: Snow et al. and the KnowItAll system perform classification of

instances based on which patterns they match. The Snowball system performs

clustering based on the presence or absence of words. The clusters are then used

to induce patterns which are further refined by means of bootstrapping.

In terms of sequence models, SVMs with appropriate Kernels are used

[Suchanek et al., 2006; Bunescu and Mooney, 2006; Culotta and Sorensen, 2004;

Giuliano et al., 2007]. Recently, CRF have become quite popular for this purpose

[McCallum and Li, 2003; Culotta et al., 2006]. Giuliano et al. use a CRF for the

entity extraction part of the study.

There are several sequence models that perform unsupervised learning to

find relevant properties in the data, which are then used to generate textual pat-

terns. Talukdar et al. [2006] use an algorithm for the induction of HMMs which

describes words as emissions of an HMM. These emissions occur in the lin-

ear order of the words in the text. Each HMM describes a set of sequences

that were aligned by so-called “trigger phrases.” With appropriate techniques,

HMMs on language-like sequences can be induced even from relatively noisy data

[Strickert et al., 2005]. The induced transition probabilities are used to generate
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salient text patterns. Similarly, text sequences can be counted into a Suffix Tree

data structure [Ravichandran and Hovy, 2001] which allows also to find frequent

sequences that are likely to constitute good patterns.

Work on structured input frequently is also based on CRFs or SVMs. Zelenko

et al. [2003] use Tree Kernels in combination with an SVM to represent depen-

dency parse structure. A similar setup is presented by Culotta and Sorensen [2004]

but augmented by token-wise structured features such as WordNet hypernyms. A

graph-labeling model is used by Chen et al. [2006]. Known and candidate relation

instances are modelled as vertices in a graph. Edges are introduced and weighted

based on the similarity of the contexts they occur in. Known instances are as-

signed labels depending on the relation. The labels are then propagated in a way

that allows for appropriate generalization over the examples.

4.2.3 Pattern Induction

Text patterns are underspecified and explicit representations of text sequences that

are of the same nature as the textual content itself. Each text sequences either

matches a given pattern or does not match it. Textual patterns are the most promi-

nent form of rule-based extraction. They can be viewed as a set of constraints that

each text fragment matching these patterns has to fulfill. Patterns are formalized

as a sequence of text plus additional markup that essentially serves two purposes:

On the one hand restricting matches with regard to additional features and on the

other hand introducing underspecification by means of markup that allows for al-

ternatives in matching. The set of markup allowed determines the expressivity of

the patterns that can be written and thereby defines a pattern class.

An example of a pattern is:

“flights/NNP to/IN ANYARG1
,/, ANYARG2

from/IN ANY airport/NN” (1)

Thereby, ANYARG1
is a “wildcard” that matches any token and the codes

after the slashes specify part-of-speech constraints. The pattern thus encodes two

types of token-based features: the token itself and its part-of-speech. The pattern

matches at all positions where words which have the specified combinations of

surface string and part-of-speech occur in the same order as in the pattern allowing

for arbitrary matches at the wildcard positions. Argument wildcards distinguish

position which hold the desired target information.

This section describes key developments in the automatic induction of pat-

terns for Information Extraction and presents several dimensions in which induc-

tion approaches differ. A framework for pattern induction for relation extraction

is presented in Chapter 5 which features also a more formal introduction to the

notion of pattern used for the technical work presented in this thesis. A variety
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of approaches from the literature are then described by means of this framework.

While this section provides an overview of the literature, we refer the reader to

Section 5.6 for a systematic and detailed overview of pattern-based design alter-

natives. Furthermore, Chapter 9 presents a study on the impact of features from

the pattern classes and therefore surveys related work with interesting pattern lan-

guages.

Approaches to learning textual patterns for IE differ with regard to the pattern

class employed and with regard to the algorithm that is used.

All pattern induction algorithms create the patterns as generalizations over one

or several textual mentions. These mentions along with the pattern class define a

space of potential patterns. The algorithms differ with regard to how this space

is explored. The most important requirements for pattern induction algorithms

are good precision and recall as well as good runtime behavior. There are three

general approaches to pattern induction.

• Guided exploration: Some algorithms explore the space top-down start-

ing with very general patterns which tend to match too many mentions

and then refine those by making them more specific i.e. adding con-

straints. The alternative is the bottom-up exploration where overly spe-

cific patterns are generalized by removing constraints. In both cases,

pattern quality assessment plays an important role in deciding to re-

move or add constraints. A frequent approach to bottom-up induction

is based on pairwise alignment of mentions. Based on the alignment,

shared features are added as constraints and all others can take arbi-

trary values [Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006;

Ruiz-Casado et al., 2005; Pantel et al., 2004]. In some cases, derived pat-

terns are recursively fed back as candidates for further pairwise abstraction.

Similarly, Brin groups mentions by common text between the arguments

and then generalizes by deriving longest common substrings [Brin, 1999].

Top-down approaches make additional assumptions to guide the explo-

ration. Califf and Mooney [1997] operate top-down but only within the po-

tential abstractions over two randomly selected mentions at a time. Soder-

land et al. operate similarly [1999] but additionally extend the patterns so

that they are able to impose constraints on the content of the arguments. The

(LP )2 algorithm [Ciravegna, 2001] operates top-down adding constraints

from one pattern only but ruling out alternatives in a greedy manner. This

greediness has as a consequence that all mentions that are covered by a pat-

tern that was induced will not take part in the induction of further patterns.

• Frequency of mentions: Other implementations guide the exploration of

the pattern space with the help of information about the mentions, in
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particular their counts. Mentions are counted with the help of spe-

cialized datastructures like suffix trees [Ravichandran and Hovy, 2001;

Pantel and Pennacchiotti, 2006] or automata [Talukdar et al., 2006] which

are then used to determine appropriate generalizations.

• Underspecified representation: In the extreme case, no exploration takes

place at all. Simply, the abstraction that makes text mentions to patterns

takes place by discarding information when each mention is transferred to

a pattern. The generalization is then implicitly done by the selection of the

features that are not discarded and the quality is assured by subsequent pat-

tern evaluation. Such approaches are taken by McIntosh and Curran [2009]

using the two preceding and two following tokens as pattern, by Fabian

Suchanek et al. [2009] using all tokens between the arguments as well as

by Snow et al. [2004] who use dependency paths. Another approach which

does not perform exploration of the pattern space is presented by Paşca et

al. [2006]. Their patterns allow for underspecification because each token

not only matches the exact word found at a position but all words that are

distributionally similar within some corpus.

In Part II of this thesis, one algorithm is presented that finds all patterns with

a certain minimum number of constraints that are the abstraction of at least two

sequences in a bottom-up manner (Section 6.2.1) and two algorithms based on

frequent itemset mining that exhaustively find all patterns with a certain number of

mentions in the training data and certain minimum requirements on the constraints

(Chapters 8 and 9).

While there exist a large amount of design alternatives for pattern-based Infor-

mation Extraction, few studies actually compare the impact of design alternatives.

Exceptions include a study by Tomita et al. [2006] in which setups very close to

DIPRE [Brin, 1999] and Snowball [Agichtein and Gravano, 2000] are compared.

Two studies investigate the use of knowledge about a relation’s cardinality as ad-

ditional background information in order to more precisely assess the quality of

induced patterns [Alfonseca et al., 2006; Normand et al., 2009]. Alfonseca et al.

develop a relatively task-specific filtering mechanism for patterns in a question

answering scenario. Normand et al. show for one relation in a very simple but

statistically nicely modelled extraction framework that precision and recall can be

increased if it is known that a target relation is functional.

The PORE [Wang et al., 2007] system learns link-title relations in Wikipedia

articles. While no text-based extraction in the stricter sense is performed because

most features used exploit the particular structure of Wikipedia (categories, in-

foboxes etc.) rather than its textual context, an interesting extension of the boot-

strapping approach is presented. PORE extends an algorithm for positive-only

learning. Positive-only learning iteratively improves an initially weak classifier
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which is trained knowing a set of positive examples P . In each iteration, those

examples which are classified as negative are added as negative training examples

for the next iteration. PORE extends this procedure by evolving the positive ex-

amples also in a bootstrapping manner. Results show that this bootstrapping pro-

cedure performs better than extraction with one iteration of positive only learning

alone.

In a recent study by McIntosh and Curran [2009], several aspects with regard

to the choice of examples for bootstrapping of a Named-Entity-Categorizer are

investigated in detail. They base on the observation that the choice of the seed

instances is of crucial importance for the quality of the output. Even when start-

ing out with 10 seeds and extracting 100 instances, precision can vary by up to

30%. The paper proposes to account for this phenomenon by taking an unsuper-

vised bagging approach to extend the seeds: The instances extracted in the first

iteration are distributed into many overlapping seed sets (the bags). Those then

serve as seeds for the next iteration which is run once for each bag separately. The

instances extracted starting with each of these bags is combined after one itera-

tion and serves as a more stable and high-quality set of instances. Furthermore,

McIntosh and Curran use distributional similarity as a measure for instance fil-

tering: Newly derived instances are only accepted if they are more similar to the

seeds than to other candidates. This is meant to prevent “semantic drift” i.e. the

change of the semantics of the target relations by the introduction of more and

more instances from a different relation.

4.2.4 Patterns vs. Statistical Models

The distinction in pattern-based approaches and approaches based on statistical

ML is fairly commonly done [Sarawagi, 2008; Nadeau and Sekine, 2007]. While

early work almost exclusively focused on patterns and fundamental methods in

the field of ML continue to evolve, one cannot say that patterns are about to be

replaced by learned methods. We present here the benefits of both types of ap-

proaches before discussing several studies that use both, patterns and statistical

ML.

The strengths of pattern-based approaches stem from their explicit nature. On

the one hand, the explicit nature allows human interpretation and verification. On

the other hand, explicit patterns can be mined and matched with methods that

use the explicit nature for optimization. For example, we present studies of this

aspect in Chapters 8 and 9 in which optimized mining takes place by means of

Frequent Itemset Mining. A similar approach is the one taken by Jindal and Liu

[2006]. They use Sequential Pattern Mining – a modification of Frequent Itemset

Mining – to derive textual patterns for classifying comparative sentences in prod-

uct descriptions. While, like our approach, encoding sequence information, their
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model is not able to account for several constraints per word. Additionally, the

scalability aspect has not been a focus of their study as mining has only been per-

formed on a corpus of 2684 sentences with a very limited alphabet. For optimized

matching, information retrieval indices have been used [Cimiano and Staab, 2004;

Etzioni et al., 2005]. A notable variant of this approach is presented by Michael

Cafarella et al. [2005] who use a specialized search engine that allows them to en-

code additional features (in particular part-of-speech tags) into the query. The

study presented in Chapter 6 uses the Google Web search engine for pattern

matching. Even in the absence of such an index, patterns can be matched effi-

ciently using finite-state automata [Jurafsky and Martin, 2000]. A further advan-

tage of patterns is that by using distinguished tokens as argument slots, the iden-

tification of arguments is straight-forward while statistical methods in most cases

require previous identification of the arguments by means of named-entity-taggers

or other markup [Bunescu and Mooney, 2006; Culotta et al., 2006].

Statistical models numerically compare descriptions of present candidate men-

tions to the model. During the process, a value is computed that quantifies how

well the candidate fits the model. Thereby, each feature contributes to this score

to a certain extent. This makes statistical models more robust to noise or variabil-

ity in the data as a deviation in one feature can be compensated for by others. In

the literature, statistical models are commonly used when a large number of fea-

tures is integrated. For example, Culotta et al. [2006] integrate surrounding words,

presence on type lexicons, matches of regular expressions for orthographic spe-

cialities, part-of-speech, frequent prefixes and suffixes and conjunctions of theses

features. Yet, the pattern-based algorithm presented in Chapter 8 also allows us to

integrate arbitrarily many finite-domain token-based features.

Because both patterns and statistical models have their advantages, they have

been combined in various ways. Talukdar et al. [2006] induce a probabilistic

model (an HMM) which is then used to generate patterns. The Snowball sys-

tem [Agichtein and Gravano, 2000] employs a mixture model which uses vector

space clustering to group relation mentions and then generates from each clus-

ter patterns which also allow for inexact weighted matches. In several studies

[Snow et al., 2004; Etzioni et al., 2005; Suchanek et al., 2009], pattern matches

serve as features for a statistical model which decides which relation instances to

keep and thereby integrates individual mentions of relation instances into global

extraction results.

4.2.5 Systems and Tools

This section describes some learning IE tools that have been presented in the lit-

erature. The descriptions are meant to provide an overview of the systems. Imple-
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mentation details that are relevant to the scope of this thesis are presented in more

detail in Section 5.6.

The first system that combined pattern-based IE, a bootstrapping-based learn-

ing algorithm and the use of data from the Web was DIPRE by Brin [1999].

DIPRE was shown to learn instances of the authorOf relation starting from five

positive examples. It takes an iterative induction approach which bootstraps a set

of textual patterns. The induction algorithm is simple but effective as far as the

evaluation on 20 output instances goes. DIPRE provides simple examples of a lot

of design choices that were later refined. Patterns were filtered by “specificity” as

measured by the number of tokens they contain. Arguments are filtered by regular

expression patterns to ensure that they matched the format in which author names

and their works are usually presented.

The Snowball relation extraction system [Agichtein and Gravano, 2000] is an

early successor of DIPRE which comprises many refinements that have been in-

fluential on later developments. While Snowball like DIPRE builds on iterative

pattern induction trained with a few seed examples, it presents a new view on pat-

terns which allows for partial matches and it assumes that the arguments are iden-

tified prior to matching by a named-entity tagger. Also, the evaluation of extracted

instances is introduced which builds on the degree of match and on the assumption

that the extracted relation is many-to-one. The degree of match is essentially the

Euclidean distance between bag-of-words vectors. Snowball’s pattern induction

algorithm which is introduced in Section 5.6.2 makes use of vector space cluster-

ing to group mentions which should be combined to a pattern. Snowball has been

evaluated on a relatively large corpus of 180,000 news articles for extraction of

instances of the headquarteredIn relation, i.e. companies and the location of their

headquarters. The evaluation reports that for this relation, precision and recall

of Snowball range at about 85%. It is compared against a baseline which sim-

ply counts co-occurrences of named entities which is aroung 5 percentage points

worse in precision and has approximately the same recall.

The (LP )2 single event extraction system [Ciravegna, 2001] somewhat stands

in the tradition of wrapper induction. It takes a new perspective on the extrac-

tion task by viewing it as the insertion for start and end tags before and after the

argument. Thereby, separate patterns are induced for start and end tags. (LP )2

makes use of relatively many token-based features (part-of-speech, case, lemma,

type-specific lexicons). Patterns (called rules in (LP )2) are induced with a greedy

bottom-up algorithm (cf. Section 5.6.2). As a novelty, (LP )2 makes use of “con-

textual rules” to make sure that opening and closing tags are present in combina-

tion and of “correction rules” that eliminate small errors if the argument borders

are misplaced by a small number of tokens. (LP )2 has been evaluated on two

standard datasets, the CMU seminar announcements and the job postings dataset
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(cf. Section 3.3) showing precision between 75% and 99% depending on the event

slot.

The KnowItAll system [Etzioni et al., 2005] is an entity and relation extrac-

tion system that aims at global extraction. It takes a bootstrapping approach but

features new ways in which supervision is provided. KnowItAll is among the

first systems that access the Web via a search engine for IE. Instead of requiring

seed examples as input, KnowItAll generates examples by means of generic text

patterns (similar to Hearst patterns [1992]). A further novelty presented by Know-

ItAll is the use of distributional features, so-called “discriminators” for instance

evaluation. Discriminators are simple generic patterns that have been designed for

the purpose of searching for them on the Web in combination with newly extracted

instances. The match counts in combination with various discriminators serve as

features of an instance which are provided to a Naive Bayes classifier in order to

decide if the instance is actually correct. KnowItAll has been evaluated on Web

extraction of city and country entities as well as the relation between movies and

the actors starring in them. Precision of between 60% and 80% has been reported

for lists of between 100 and 1000 instances.

As an example of a fairly recent line of work which aims at IE from Wikipedia,

we discuss here the Kylin system [Wu and Weld, 2007] which performs single

event extraction on Wikipedia pages with the goal to enrich Wikipedia’s semi-

structured content presented in so-called “infoboxes.” A study on IE from

Wikipedia along with the discussion of further related work can be found in Chap-

ter 7. Kylin learns to identify missing attribute values for infoboxes by training

a cascade of statistical classifiers for three decisions: “Document classification”

decides if a given infobox is appropriate for a given document. “Sentence classi-

fication” decides if a given sentence contains a target attribute value and an “ex-

tractor” finally extracts the argument. While document classification is done by

a heuristic, sentence classification is done using a Maximum Entropy model with

tokens and part-of-speech as features. The extractor then uses CRFs with a very

large feature set most of which are token-based in nature. Kylin has been eval-

uated on four types of infoboxes reporting between 75% and 98% precision and

around 60% recall.

A fairly generic and recent implementation of a system for closed-corpus re-

lation extraction by means of statistical Machine Learning has been presented by

Claudio Giuliano et al. [2007]. Relation extraction is done as a two step process

featuring named-entity classification followed by relation classification. Named-

entities are identified with a CRF model with a set of token-based features (sur-

face string, part-of-speech, orthographic features such as capitalization, gazetter

matches and n-gram context). Relations are extracted by means of classifying

co-occurrences of identified named entities. For this purpose, an SVM with two

different types of kernel is used: a bag-of words kernels that features the greater
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context and a sequence kernel for the local surroundings with a larger set of fea-

tures (similar to the above). The system has mainly been built to study the impact

of these kernels showing that the combination indeed leads to an improvement.

Precision and recall are reported to be around 70%-80% on a TREC information

retrieval evaluation corpus.

4.3 Information Extraction and the Semantic Web

The general idea of the Semantic Web vision [Berners-Lee et al., 2001] is to make

Web data available for automatic inference. In particular, this requires the data to

be structured according to a given schema. The Semantic Web community ad-

vocates formal ontologies as schemata. Both the creation of ontologies and the

structuring of information are highly labour-intensive but can be partially per-

formed or assisted by IE technology. In the following, we present work from the

field of Ontology Learning as well as work that extracts data particularly with a

Web scenario in mind.

4.3.1 Ontology Learning and Population

Ontology Learning aims at acquiring a domain model from data

[Mädche and Staab, 2004] and is thus – if it is done from text – akin to In-

formation Extraction. If it is done with the aim of finding new concepts and

properties, Ontology Learning complements IE by providing the schema that

extracted information can be formalized in.

Philipp Cimiano [2006] presents a topology of Ontology Learning tasks called

“Ontology Learning Layer Cake” which organizes tasks belonging to Ontology

Learning by increasing complexity meaning that more complex tasks rely on the

output of less complex tasks. At the lower end of the layer cake, terminology-

based tasks like “acquisition of the relevant terminology” and “acquisition of syn-

onym terms / linguistic variants” can be found followed by the identification and

organization of concepts and relations. “Instantiation of axiom schemata” and

“definition of arbitrary axioms” form the upper end with regard to complexity.

Cimiano gives an overview of a large body of work in Ontology Learning

before presenting approaches which among other things advance organization

of concepts by means of agglomerative clustering and Formal Concept Analy-

sis (FCA), a technique which is based on deriving a concept lattice (a partially

ordered set with a distinguished supremum and infimum) that orders concepts

by their properties. On a higher level in the layer cake, possible properties for

concepts are learned by means of a set of predefined patterns and statistical cor-

relation. Finally, among others, the PANKOW system is presented that performs
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global entity extraction for the purpose of adding instances to an ontology (“On-

tology Population”). It matches a set of predefined patterns by means of a Web

search engine. Match count estimates provided by the search engine are used to

statistically assess the correctness of candidate entities.

Starting from the observation that most Ontology Learning systems do not ex-

ploit the expressivity that ontology formalisms like OWL provide, Johanna Völker

[2008] focuses on learning “expressive ontologies”, i.e. ontologies that formally

give rich descriptions of their concepts and relations. The LExO and RELExO

systems she presents are able to acquire class description in a semi-automatic

manner. Sentences that describe a class are parsed using a dependency parser.

With a set of hand-coded rules, the resulting dependency parse trees are trans-

lated into class descriptions. For example, one rule states that the application of

an intersective adjective Adj (i.e. an adjective that further restricts the meaning

of the noun it refers to) to a noun phrase NP defines a class consisting of the in-

tersection of all entities for which NP applies with those for which Adj applies.

e.g. “foul apples” is the intersection of the class of all apples with the class of all

foul objects. In RELExO, the so-derived class descriptions are refined by asking

questions to a user. Furthermore, the RoLExO system is able to learn restrictions

for domain and range of relations (e.g. that the author of a publication needs to

be a person) based on user answers on carefully chosen questions plus optional

empirical observations (i.e. that the authors of all publications in the KB hap-

pen to be persons). To add more expressivity to learned ontologies, an algorithm

called LeDA was presented that decides if two classes A and B are disjoint (e.g.

by definition are not allowed to share any instance). For this purpose, a decision

tree classifier was trained with a large set of features including comparison of the

surface string, differences in distributional features of the class labels in several

corpora and distance measures of associated texts (e.g. Wikipedia articles).

A recently published system by McDowell and Cafarella [2008] inte-

grates several ideas from previous systems for extending existing ontologies.

Their system, called OntoSyphon relies on both Hearst patterns for extrac-

tion (as in PANKOW [Cimiano et al., 2004]) and match counts for discrimi-

nation (as in KnowItAll [Etzioni et al., 2005]). It uses the Bindings Engine

[Cafarella et al., 2005] for efficient annotation-aware matching.

4.3.2 Bringing Semantics to the World Wide Web

In the following, we present several pieces of related work that address the task

of deriving knowledge from Web pages. These fall into two categories. Those,

which focus on a rich schema [Suchanek et al., 2007; Suchanek et al., 2009;

Culotta et al., 2006] and those which focus on operating at the scale of the Web

but with lighter or undefined schema [Ravichandran, 2005; Banko et al., 2007;



4.3. INFORMATION EXTRACTION AND THE SEMANTIC WEB 65

Davidov et al., 2007]. The technical work of this thesis can also be viewed as

part of the category with large scale and light-weight schema.

A widely used and large ontology that has been constructed by (heuristic)

large scale IE from Web data is the YAGO ontology [Suchanek et al., 2008]. It

has been constructed by bringing semi-structured data in Wikipedia into a struc-

tured form and has been used to integrate various data sources in the course of

the Linked Data initiative [Bizer et al., 2009]. The construction of Yago makes

use of the observation that authors assign articles to “Conceptual Categories” and

“Relational Categories.” Conceptual categories like “American physicists” allow

the system to conclude by means of linguistic processing (among other things an

alignment with WordNet) that the entity described on a page in this category is

in fact a physicist. Similarly, relational categories like “1879 births” or “rivers in

Germany” are translated to ontological facts. Furthermore, manually written pat-

terns for the translation of Wikipedia infoboxes to ontological facts are employed

as well as redirecting pages, which are used to conclude synonymy.

The authors of YAGO also present an innovative approach of integrating

ontology T-box and A-box knowledge (from Yago) into the extraction process

[Suchanek et al., 2009] by modeling the decision whether a given pattern match

actually expresses a target relation instance in logical formulae. Ontological facts,

pattern matches, the ontology T-box and some general rules on how a new rela-

tion instance can be deduced from them are modeled as formulae in propositional

logic with associated weights. A good choice of patterns and instances is iden-

tified simultaneously by solving a maximum satisfiability problem (MAX-SAT).

Solving a MAX-SAT problem is done by determining a variable assignment that

maximises the number of satisfied clauses. Using the weights of the formulae

solution of the MAX-SAT problem assigns weights to the variable assignments

which indicate if they can be added to the knowledge base while keeping it as

consistent as possible. The advantage of such a model is that three steps that fre-

quently occur separately in Information Extraction can be treated by solving one

maximum satisfiability problem: pattern selection, entity disambiguation and con-

sistency checking. The system is evaluated on small text corpora of up to 2000

Wikipedia articles, 150 newspaper texts and 3440 Web documents. It produces

results with very high precision (≥ 90% for most relations) which beats state-of-

the-art systems while maintaining the same level of recall. From the performance

figures provided, the generation of the probabilistic logical formulae presents it-

self as a computational bottleneck while the satisfyability problem is solved rather

quickly.

Another work that aims at integrating an ontology in the extraction process

is presented by Culotta et al. [2006]. They learn what they call relational pat-

terns which constitute paths of length > 1 in ontologies represented as networks

of relations between instances. These relational patterns serve as features to a
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CRF model that performs the identification of mentions in the text. As an exam-

ple a father → wife could support the mother relation, i.e. the confidence of a

mother(m, s) increases if we know that s has a father of which m is the wife. In

the study by Culotta et al. the relational patterns and the extraction result are co-

evolved by training an SVM which uses both relational patterns (initially a large

set of candidate paths) and textual features. This framework straightforwardly

also allows integrating background knowledge by adding relational paths or indi-

vidual relation instances from external sources (e.g. an ontology). The approach

has been evaluated on 271 Wikipedia articles. Relations have been assumed to be

expressed in hyperlinks which have been manually labelled for training. An in-

crease in precision from 65% to 72% can be observed whith the help of relational

patterns while recall is also slightly improved.

While the above studies focus on the integration of an ontology with Web doc-

uments, the following work focuses on scale. The work of Ravichandran [2005]

explicitly focuses on IE from large “terascale” corpora with the aim of extract-

ing the taxonomic is-a relation. Evaluation is done one 70 million page Web

corpus (116 GB) and a smaller newspaper corpus. The work integrates a pattern-

based approach using patterns that are automatically learned and evaluated and

a clustering-based approach using standard token-based features as well as pat-

tern matches and co-occurrence counts. This combination reaches a precision of

around 70% and yields around 1 million instances.

Recently Banko et al. [2007] introduced the idea of “Open Information Ex-

traction”, aiming to extract all relations contained in a large Web corpus (9 mil-

lion Web pages). To this end, a CRF classifier is trained that identifies subject,

predicate, and object of a relation in a sentence. Training of this classifier is done

in a semi-supervised manner by providing unlabelled but parsed text along with

heuristics that allow the system to identify relation instances in parse trees. While

the output of Open IE may be useful for search applications, it differs from other

IE results in that it does not adhere to a predefined schema. Concretely, predicates

are derived on a by sentence basis which leads to the fact that the same relation ex-

pressed by sentences with different predicates will not be integrated. Recently, it

has been shown that the output of Open IE can be used as features for classical IE

to increase precision [Banko and Etzioni, 2008]. A similar, schema-less approach

is taken by Davidov et al. [2007] operating on a smaller scale but attempting to

integrate relation instances expressed with different predicates.
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Chapter 5

The Iterative Pattern Induction

Framework

This chapter presents a framework that abstracts over various approaches to large-

scale global relation extraction found in the literature. Critical points in this frame-

work are identified and a series of experimental investigations is presented that

shed light on these critical points.

As outlined in Chapter 4, key challenges in large scale global Information Ex-

traction are on the one hand to minimize the amount of expensive human knowl-

edge that has to be put into the process in form of training examples or other form

of supervision and on the other hand to cope with massive amounts of input texts.

For this reasons, iterative bootstrapping approaches are widely used on the task

in combination with textual patterns. The framework used here is a general ver-

sion of bootstrapping for pattern induction. The general idea of bootstrapping and

related work on the subject have been introduced in Section 4.2.2.

Patterns can be thought of as simple crisp binary classifiers which have an ex-

plicit and intuitive interpretation. Initial successes with (manually specified) tex-

tual patterns for relation extraction date back to the work of Hearst [1992]. When

aiming at operating at large scale, they are frequently used due to the following

advantages over learned statistical models:

• In particular with the goal of global relation extraction in mind, one impor-

tant problem is identifying the actual relation instance within a sentence.

That is, it is one thing to decide, if the sentence “The Hague is the seat of

the government of The Netherlands” expresses the locatedIn relation and

another one to actually spot (TheHague,TheNetherlands) as the instance.

With patterns, this can be done easily by distinguishing certain elements of

the patterns as “argument slots.” Otherwise additional measures are neces-

sary. In many works that apply other types of classifiers to the task, this is
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either done by using a named-entity tagger [Snow et al., 2004] or with two

cascaded classifiers [Wu and Weld, 2007].

• A pattern-based representation enables the use of techniques from the field

of of Data Mining that efficiently and exhaustively find patterns. These

algorithms, as discussed in Section 2.3, are optimized for high volumes of

data that are analyzed in near-linear time. They integrate interesting types

of structure and background knowledge into the mining process as required

for mining.

• Patterns as opposed to discriminative models have a more or less direct tex-

tual interpretation which allows using Information Retrieval techniques for

efficient matching [Cafarella et al., 2005; Blohm et al., 2007]. Information

Retrieval techniques as described in Section 2.4 separate processing into

indexing-time processing and query-time processing. The expensive data-

linear processes can be done once as preprocessing (or existing indices can

be used) while the extraction itself can be considered a query-time process

that makes use of efficiently structured data.

5.1 Framework Overview

Intuitively the idea of iterative induction of extraction patterns can be described

as follows:

The process starts out with a set of relation instances that are known to be

correct:

{(Hollywood ,U .S .), (Osnabruck ,Germany), (Nice,France)}

It then looks, how they are mentioned in the corpus, which could be:

• “The richest people in the U.S. live in Hollywood”

• “The happiest people in Germany live in Osnabrück”

• “The luckiest people in France work in Nice”

It then looks what else is mentioned in the same way in the corpus and con-

clude that those are also instances of the relation. e.g. conclude (Sheffield , UK)
from

“The hardest-working researchers in the UK live in Sheffield”

With those new instances, repeat the process if more instances are needed. In

this example, the complexity of the task is hidden in the step of looking for “what
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Figure 5.1: Illustration of the sequence of steps in the induction cycle.

else is mentioned in the same way.” It comprises representing relation mentions in

a way that makes their key features computationally accessible, identifying gen-

eral patterns in those mentions and identifying mentions of these patterns. How

these tasks are accomplished is the focus of much research some of which is sum-

marized in this chapter.

The diagram in Figure 5.1 gives an overview of this process which can be

divided into six steps. First, the instances are matched in the corpus (1) which

generates a set of instance mentions. Pattern learning then takes place (2). Pat-

terns, i.e. underspecified generalized descriptions of the mentions are generated.

These are then filtered (3) to yield only those patterns that are likely to produce

good results when they are subsequently matched (4). The thus produced men-

tions are processed to extract new relation instances (5) which are in turn filtered.

In the following, a more formal description of the processing will be given.

Note the symmetry in the cycle: For both patterns and instances there is one

step where they are matched, another one where they are generated from mentions

and for both a filtering step exists. In fact, the set of patterns and instances co-

evolve. This state of affairs was called Pattern-relation duality by Brin [1999].

It may seem unnecessary to list filtering of patterns and instances as a sepa-

rate step. It could be considered the task of the pattern learner and the instance

extractor to produce high-quality output. Yet, in the literature, these steps are usu-
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ally separate in the sense that they build on different assumptions or input. The

separation thus facilitates the discussion of the approaches.

5.2 Patterns for Relation Extraction

Before describing the bootstrapping algorithm in more detail, we define here the

extraction pattern language. The exact nature of the patterns is an important de-

sign choice for the extraction system and many variants have been proposed in

the literature. The patterns described here are those used in the experiments in

Chapters 6, 7 and 8. Alternative pattern languages are presented and discussed in

Chapter 9. Patterns may look as follows.

“flights to ANYARG1
, ANYARG2

from ANY airport” (1)

In terms of the task formalization in Section 1.2, a pattern is a function m :
M → {0, 1} that returns 1 if a given fragment of text t ∈ M expresses the target

relation and 0 otherwise. Furthermore, if required, it also constitutes a function

e : 2M→Domainr×Ranger that returns the relation instances that are present. We use

an r subscript to indicate sets that are assumed to be constant over the run of the

algorithm but which depend on the relation in question.

Patterns are usually strongly limited subsets of regular expressions. They thus

represent languages that can be described with regular grammars and accepted by

non-deterministic Finite State Automata (NFA). NFAs are finite state machines

which can have a finite set of states and which accept input sequences if they

lead from a specified start state via permitted transitions to an accepting end state.

A transition is only possible if the transition label matches the next element of

the input sequence (cf. [Jurafsky and Martin, 2000] for a discussion of regular

expression and NFAs in the context of Natural Language Processing). Regular

expressions consist of the following symbols and operators: Terminal tokens from

an alphabet A, the empty string ε, the concatenation operator (represented by

whitespace here), the alternation operator | and the Kleene star repetition operator

∗, and ∅ representing the empty language. While approaches to learn (almost) the

full expressivity of regular expressions exist [Li et al., 2008], the full expressivity

is hardly ever used when operating with automatically matched patterns.

Figure 5.2 shows regular expression operators and their interpretation as por-

tions of an NFA in the standard graph-based visualization. States are visualized

as graph nodes displayed as circles containing the state’s label. Transitions are

visualized as labelled directed edges. Figure 5.3 shows the example pattern (1) as

a NFA. Note that the token alphabet is the lexicon of words. We use an abbrevi-

ation for large alternations in writing ||(B) for the alternation of all elements in
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Figure 5.2: NFA representation of pattern elements. A = a, b, c, d, T = b, c.

B and ANY denotes all words from the alphabet A, i.e. ||(A). Note that we will

interprete patterns such that they are allowed to start and end anywhere in the text.

As the full expressivity of regular expressions is not used in Information Ex-

traction from large scale text collections, this thesis uses a simplified representa-

tion that allows us to describe all pattern languages discussed. It consists of the

following elements:

• Token: a. A token from the input text represented by its surface string.

• (Typed) Wildcards: ANY /||(T ). An element of the pattern that matches an

arbitrary single token in the input sequence. In the typed case, matching

only occurs for tokens of a certain type T (with respect to POS, NE-tag or

another type of background knowledge available).

• Skips: ANY ∗. An element of the pattern that matches zero to many tokens

in the input sequence regardless of their type.

• (Restricted) Skips: ||(A\T )∗. A token in the pattern that matches zero to

many tokens in the input sequence regardless of their type unless it is of the

type it has been restricted to.

Any of the above pattern element types can be marked as argument slot. Most

commonly, typed wildcards are used for this purpose. We distinguish arguments

slots by adding an argn subscript. Note that patterns formalized in this manner

do not make use of the Kleene star (except implicitly by allowing starts and ends

anywhere in the text). Not all systems make use of all possible pattern elements.
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Figure 5.3: Example pattern (1) as NFA.

The choice of allowable pattern elements defines the set of possible patterns and

hence their expressivity (cf. Chapter 9). We call such a configuration a pattern

class.

5.3 The Algorithmic Framework

Figure 5.4 describes the generic pattern learning algorithm as it is used in our

experiments. It subsumes many of the approaches from the literature, the most

prominent of which are discussed in Section 5.6. For most of the experiments

presented here, the Pronto system has been developed as a generic implementation

of this algorithm. An overview of Pronto’s functionality is given in Section 5.5.

Implementation and configuration details are discussed along with the respective

studies in the following chapters.

The types of entities are handled by the algorithm are relation instances, pat-

terns and textual mentions. As introduced above, relation instances are of type

Domainr×Ranger. The algorithm receives a seed set of instances Inst ′ as input

and maintains during its processing a set Inst of instances which will contain the

desired output when the algorithm terminates. Patterns are composed of the ele-

ments described in Section 5.2. At the level of abstraction discussed here, patterns

are primitive objects from the set of all possible patterns Ppc which is defined by

the pattern class pc that is used. During the execution of the algorithm a set Ppool

of patterns is maintained that constitutes the currently learned model for relation

extraction. An initial set of patterns Pinit may be provided at starting time of the

algorithm [Yangarber, 2003]. Textual mentions can be any fragment of text in the

corpus. T constitutes the set of all text fragments (i.e. all possible mentions. When

the focus is pattern mining and matching the composition of patterns and textual

mentions will be discussed. Mentions are temporarily generated by pattern and

instance matching. The sets Mp and Mi contain them.

The algorithm starts with a set of initial instances Inst ′ of the relation in ques-

tion – so called seeds – and loops over a procedure which starts by acquiring

mentions of the instances currently in Inst . For the locatedIn relation the seed set
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may be {(V ancouver, Canada), (Karlsruhe,Germany), ...} Further, patterns

are learned by abstracting over the text mentions of the instances. The new pat-

terns are then evaluated and filtered before they are matched. From these matches,

new instances are extracted, evaluated and filtered. The process is stopped when

the termination condition DONE is fulfilled (typically, a fixed number of iterations

is set). In detail, the function calls have the following effect.

• The matching functions MATCH-INSTANCES: 2(Domainr×Ranger) → NT

and MATCH-PATTERNS: 2Ppc → 2T take as input a set of instances or

patterns respectively. They produce a set of mentions by matching the rela-

tion instances or the patterns to the corpus. A match of a relation instance

is a co-occurrence of its arguments within a defined context. For patterns,

all their matches in the corpus are returned. How exactly a match is de-

fined and how the access to the corpus takes place are design choices for the

implementation.

• The function LEARN-PATTERNS: NT → 2Ppc represents the actual pattern

induction process which abstracts over a set of instance mentions Mi and

returns patterns that are likely to match correct relation instances and not

irrelevant mentions. Several alternative induction algorithms will be dis-

cussed in the following chapters.

Patterns and instances are then evaluated and filtered. These steps are listed

separately for conceptual clarity. They may consist of a scoring and ranking

process followed by the application of a percentile or threshold cut-off. Note

that several evaluation processes or conditions may be combined. EVALUATE-

PATTERNS: NPpc → R
Ppc and EVALUATE-INSTANCES: N (Domainr×Ranger) →

R
Domainr×Ranger thus reflect the traversal over P or Inst respectively while

PATTERN-FILTER-CONDITION: Ppc × R
Ppc → {true, false} and INSTANCE-

FILTER-CONDITION: (Domainr×Ranger)×R
Domainr×Ranger → {true, false}

stand for the application of a filtering criterion. When for a given pattern p or an

instance i the corresponding filter condition function maps to true, it is kept, oth-

erwise it is removed. Note that by this formalization, the patterns are kept in

Ppool over iterations. Ppool is thus an evolving collection of rule-based knowl-

edge about how relation instances are mentioned in text. In this sense, the pattern

induction process as presented here can be considered a simple instance of Ge-

netic Programming: A population of patterns is kept that reproduces by means of

producing instances which lead to new patterns. Fitness is measured by pattern

quality measures and filtering performs the corresponding selection.

In the system presented by Riloff and Jones [1999] patterns are not taken over

in next iteration. The only gained information after each iteration is a (carefully
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ITERATIVE PATTERN INDUCTION(Patterns Pinit, Instances Inst
′)

1 Inst ← Inst
′

2 Ppool ← Pinit

3 while not DONE

4 do Mi ← MATCH-INSTANCES(Inst)
5 Ppool ← Ppool ∪ LEARN-PATTERNS(Mi)
6 EvalP ← EVALUATE-PATTERNS(Ppool)
7 Ppool ← {p ∈ Ppool | PATTERN-FILTER-CONDITION(p,EvalP )}
8 Mp ← MATCH-PATTERNS(Ppool)
9 Inst ← Inst + EXTRACT-INSTANCES(Mp)

10 EvalI ← EVALUATE-INSTANCES(Inst)
11 Inst ← {i ∈ Inst | INSTANCE-FILTER-CONDITION(i, EvalI )}

Figure 5.4: Iterative pattern induction algorithm starting with initial patterns Pinit

and instances Inst ′

filtered) set of new instances. They refer to this variation as “mutual bootstrap-

ping.”

The function EXTRACT-INSTANCES: NT → 2Domainr×Ranger reflects the pre-

viously mentioned tasks of identifying the relation instances present in the relation

mentions identified and then integrating the extracted instances into one set.

5.4 Assumptions and Challenges in Iterative Pat-

tern Induction

The above algorithm makes several assumptions which are important to be kept in

mind as they determine limits of the approach. We mention the major assumptions

here in a very abstract manner before deriving challenges that arise from a more

practical point of view.

Assumption 1: Uniform Mentions There are one or more uniform ways in

which instances of a target relation are mentioned in text that distinguishes them

from non-mentions. This uniformity can be observed by looking at the contexts

of a limited set of mentions.

Assumption 2: Redundant Instances In order for the iterative nature of the

algorithm to be beneficial , instances that are derived during one iteration should

improve the model for the next iteration. Thus, relation instances are supposed to

be mentioned in multiple contexts. An example, probably explains this best. Con-

sider the inference made in Section 5.1 where it is concluded that (Sheffield , UK)
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is an appropriate instance because it occurs in the sentence “The hardest-working

researchers in the UK live in Sheffield.” The benefit of bootstrapping is that in

the next iteration, all matches of (Sheffield , UK) can be used as candidates for

patterns. If this is the only time, Sheffield is mentioned, (Sheffield , UK) is not

very valuable in the next iteration. So, bootstrapping can only work if the same

facts are entailed from several mentions, which we refer to as redundancy here.

Assumption 3: Explicit Model When operating with patterns as opposed to

arbitrary (statistical) discriminative models, one makes the assumption that the

uniformity assumed under (1) can be represented as a reasonably compact set of

constraints.

Assumption (1) and (2) together can be paraphrased with “observing mentions

of instances can lead to new instances.” Thereby (1) requires that mentions of

several instances share some aspects that can be identified and (2) requires that

sufficiently many instances occur in several contexts. The practical impact of this

assumption is discussed in Chapter 7. (3) requires that it is beneficial to write the

model down as a pattern. Patterns mostly consist of conjunctions of non-negated

constraints. Please refer to Section 4.2.4 for a discussion of benefits of pattern

representation and other representations.

Bootstrapping-based systems have been developed to achieve relatively large

output with very little input by re-using previous output as training input. How-

ever, one needs to keep in mind that output quality during bootstrapping underlies

complex dynamics: Both, precision and recall need to be kept under control while

other side conditions like time efficiency need to be considered. In the following,

a set of fundamental challenges for Information Extraction by means of iterative

pattern induction are identified.

Challenge 1: Cost of Supervision. The vision behind this research is devel-

oping a system that is relatively autonomously able to inform itself from Web

sources. Costly human intervention is to be avoided. Such intervention may oc-

cur in two forms. On the one hand, it occurs in the form of example instances.

On the other hand, an important, less obvious way of providing knowledge to the

extraction system is intelligently choosing extraction parameters, appropriate fil-

tering strategies and the level of pattern representation according to the task at

hand.

Challenge 2: Generalization Complexity. Patterns are underspecified repre-

sentations of text fragments that aim at describing a salient subset of the set of
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available fragments. They are induced in the LEARN-PATTERNS step of the algo-

rithm by abstracting over textual mentions. This requires to detect commonalities

between textual mentions. Depending on the notion of commonality applied, this

may quickly become computationally complex. If for example, pairwise compar-

ison of the mentions in Mi is required, this would amount to O(|Mi|
2) compar-

isons. This for example becomes necessary in the algorithm presented by Rosen-

feld and Feldmann [2006], where sequences are aligned in a pairwise manner and

pattern are generated if the alignment fulfills certain criteria.

Challenge 3: Pattern Quality Prediction Dilemma. The quality of a pattern –

like of any other crisp binary classifier – can be assessed by counting the two types

of errors possible (erroneous positive and negative classifications). However, as-

sessing those would require full knowledge of the target relation. PATTERN-

FILTER-CONDITION thus needs to make an uninformed estimate of the quality

of a pattern.

Challenge 4: Dependance on Redundancy. Pattern-based Information Extrac-

tion relies on the fact that relation instances are mentioned in the corpus in a

way that makes it possible to detect and exploit commonalities in these mentions.

Primarily this requires that relevant commonalities exist. If no interesting com-

monalities are present, neither pattern-based nor statistical IE can be performed.

Additionally however the bootstrapping nature of the algorithm requires that a

critical mass of relation instances is mentioned in more than one context. As an

illustration consider the state a system is in after one iteration of the loop in Fig-

ure 5.4. Inst contains all relation instances that can be found by patterns that can

be derived from abstracting over the contents of Inst ′. In the second iteration,

new patterns can only be derived if Inst \ Inst ′ are mentioned in a way that allows

to derive new interesting contexts which usually requires that Mi of the second

iteration contains more than Mp from the first iteration.

Challenge 5: Error Proliferation. Finally, if wrong instances are accepted into

Inst , they contribute in the next iteration to the generation of patterns. It may thus

happen that patterns are induced that are trained to generate wrong instances.

These challenges will be tackled in the following chapters. Chapter 6 puts a

particular focus on the problem of quality prediction (3) which also has implica-

tions for Challenge (5). In Chapter 7, the notion of redundancy (4) is in the focus

which is addressed in a way that relates also to the cost of supervision (1). The

generalization complexity is a particular focus in Chapter 8.
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Figure 5.5: Key components of the Pronto System.

5.5 The Pronto System

An Information Extraction system called Pronto has been developed for the stud-

ies presented in this thesis. Its major purpose is to serve as a workbench to enable

experiments that allow us to further understand the dynamics behind large-scale

Information Extraction with little supervision. To this end, the system has been

developed to show a great degree of plugability and configurabilty. A general

overview of the system is given here while the design and configuration of indi-

vidual components are discussed in more detail along with the experiments they

are applied with in Chapters 6, 7, 11 and 10.

5.5.1 Key components of Pronto

The Pronto system reflects the above formalization of the iterative pattern induc-

tion cycle. The structure of the algorithm is captured in an extensible manner by

means of interfaces that define the individual processing units as well as the data

structures for patterns, instances and textual mentions.

The data structures for patterns and mentions have an analogous structure. For

each token, a set of feature expressions can be specified. In a Mention, the features

describe the text in the mention, in a Pattern, these features serve as constraints

for matching. A pattern matches if all its constraints are fulfilled. Tokens can be

distinguished as argument slots. The following is a feature-based representation

of a mention of the example pattern from Section 5.2. The constraint-based view
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on patterns used in Pronto is similar to that used by Fabio Ciravegna [2001].

surface capitalization POS

We true PRP

offer false VB

flights false NNS

to false TO

Hamburg true NNP

, false ,

Germany true NNP

from false IN

Rotterdam true NNP

airport false NN

. false .

Relation instances are stored by implementations of the Instance interface

which allows specifying possibly n-ary instances (although all experiments and

the current implementation operate with binary relations only). For flexible eval-

uation, pointers are kept between patterns, instances and mentions. In particular

for a pattern, all its previously matched mentions can be retrieved as well as all in-

stances extracted. Analogously, all matching patterns for an instance or a mention

can be retrieved.

The composition and configuration of iterations in the induction framework

can be configured in an XML-based file format depending on the task at hand.

WorkflowItem interfaces are available for the steps presented in the algorithm in

Figure 5.4 (InstanceMatcher, PatternLearner, PatternEvaluatior, PatternMatcher, In-

stanceGenerator, InstanceEvaluator). The configuration is loaded by a runtime en-

vironment which then executes the individual workflow items. The runtime envi-

ronment loads the individual workflow items, provides them with the data envi-

ronment and controls iterations and termination.

Pronto is being used in the X-Media research project (cf. Chapter 10). A brief

user guide for Pronto is available in a report we published within the X-Media

research project [Iria et al., 2009]. Pronto can be downloaded as open source soft-

ware from https://sourceforge.net/projects/prontoie/.

5.5.2 Pronto Matching with Google Search

Pronto is able to use the Web as a corpus and access it via Web search. In particu-

lar, the Google API has been implemented. In the following, pattern and instance

matching by means of the Google API is described. In order to identify men-

https://sourceforge.net/projects/prontoie/
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tions of instances in Inst on the Web, the search index is accessed via Google’s

Java API querying for pages on which all words present in both arguments of the

instance can be found. The arguments themselves are quoted. A fixed number

nummatchInstances of results is retrieved. From those, only the result headers and

text snippets are kept which contain all arguments within a distance of at most

maxargDist. As an example, the instance (SanJose,California) would be trans-

lated to the query "San Jose" "California".

A fictional Google result for this query is:

Cheap flights in California - San Jose departures

We offer flights to San Jose, California airport from all major destinations on the West

Coast of the U.S. and Canada . . .

From this, with maxargDist = 10 and tprefix = tsuffix = 2, the following mentions

will be processed further (white space indicates token borders):

flights in California - San Jose departures

flights to San Jose, California airport from

From these and other mentions, pattern induction may produce the pattern:

“flights to ANYARG1
, ANYARG2

from ANY airport”

MATCH-PATTERNS(P ) matches each pattern in P by running a set of

queries to the Google API. For each query, a fixed number of search results

nummatchPatterns is retrieved. The queries are generated by taking the surface

string constraint for each token in a blank-separated manner. Tokens with empty

surface string constraints (above marked by ANY ) are represented by a ∗ wild-

card, which - when used in quotes - will be replaced with any word or very few

words in this position in the Google results. This sequence is stripped from lead-

ing and closing ∗ wildcards and surrounded by quotes. For instance, the above

pattern example would be translated into a Google-query as follows:

"flights to * * * from "

The comma in the pattern is represented as an individual token with the comma

surface string. During querying, however, it is omitted as Google discards punc-

tuation characters in queries.

In a subsequent analysis step, properties of the pattern that cannot be estab-

lished by Google matching are checked. In particular, Google ignores punctu-

ation and only matches lemmas thus discarding word morphology (e.g. “live”

vs. “lived”) and capitalization. For this purpose, the individual text fragments
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(title and snippets) returned by the Google API are tokenized and the respec-

tive features are computed for each token. The resulting sequence in the Mention

format is then matched to the patterns. Matching mentions are then fed to the

InstanceGenerator which identifies the argument slot fillers and thereby generates

new instances.

5.6 Related Extraction Systems

In the following, the most important related work on iterative pattern induction is

discussed. In line with the scope of this thesis we put an emphasis on the aspects

of a large scale (or at least implementations with a potential to scale to large text

collections) and on the task of global relation extraction. After giving a brief

overview of the systems, we organize the presentation of the related work by the

algorithmic steps presented in this framework. In doing so, we intend to shed

light on the design alternatives that exist at each step which would otherwise be

difficult as almost each major contribution to the field has been made based on a

new system which makes new assumptions on the task at hand.

With a few exceptions, the approaches discussed in this chapter are based on

a set of rigid patterns in the line of Hearst [1992], which are matched on corpora

of varying size or the Web via a search engine. The seminal work of Brin [1999]

introduced the basic bootstrapping algorithm, and thereby the automatic genera-

tion of patterns, for relation extraction while Riloff and Jones [1999] proposed an

almost identical method for entity extraction.

Another early system is that of Ravichandran and colleagues [2001] which

has been applied and evaluated in question answering scenarios. An interesting

feature of Ravichandran’s system is the automatic detection of reasonable pat-

tern borders with suffix trees as a data structure that allows retrieving occurrence

counts for all sub-strings of the mention in linear time.

Several systems have addressed the task of learning instances of concepts,

among them KnowItAll [Etzioni et al., 2005], PANKOW [Cimiano et al., 2004]

and Espresso [Pantel and Pennacchiotti, 2006]. The KnowItAll system has

even been extended with pattern learning capabilities to discover new pat-

terns [Downey et al., 2004]. Other recent works vary in pattern structure,

induction algorithm and the extraction task [Rosenfeld and Feldman, 2006;

Rozenfeld and Feldman, 2006; Pantel et al., 2004]. A similar system is that of

Snow et al. [2004] which integrates syntactic dependency structure into pattern

representation but has been only applied to the task of learning instance-of re-

lations or isa-relations. Similarly, Roman Yangarber [2003] operates on rather

abstract syntactic representations. Xu and Uszkoreit [2007] also use dependency

structures but focus on extracting n-ary relations.
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A different form of pattern representation was introduced in the Snowball

system [Agichtein and Gravano, 2000] which relies on annotation of named en-

tities with their category which can be used in formulating the patterns. Parts

of the pattern are represented as bag-of-words vectors and not plain strings,

thus capturing the frequency of the words occurring around the arguments in

diverse mentions. Other pattern-based system are discussed here for partic-

ularities of their induction algorithms [Ciravegna, 2001; Soderland et al., 1999;

Califf and Mooney, 1997] which induce pattern in a top-down or bottom-up man-

ner taking a generate-and-test approach. This is analogous to concept learning as

introduced in Section 2.3.1. These works rather stand in the tradition of wrapper

induction and event detection. In the work of Ruiz-Casado et al. [2005], Informa-

tion Extraction from Wikipedia text is done using hyperlinks as indicators.

5.6.1 Matching Instances and Identifying Contexts

In DIRPE [Brin, 1999] mentions are viewed as a seven-tuple:

(arg1, arg2, order, url, prefix,middle, suffix)

where the arguments arg1 and arg2 are restricted to match relation-specific regular

expressions. prefix, middle and suffix constitute the text before, between and

after the arguments. order encodes which argument occurs first. url encodes the

address of the document the mention has been found in. Prefix, suffix (and most

likely also the middle part) have a specified maximum length. With appropriate

settings, the phrase

“flights to Schiphol, The Netherlands from Heathrow airport”

would be represented as:

(Schiphol,TheNetherlands, 1,url, “flights to”, “, ”, “from Heathrow airport”)

Similarly, mentions are formalized in the Snowball system

[Agichtein and Gravano, 2000] in terms of prefix, infix and suffix the dif-

ference being that those positions are represented as weighted bags of words,

thus discarding word order. Furthermore, named-entity tags are stored for the

argument positions which apparently also serve for identifying the order.

(arg1type, arg2type, prefix,middle, suffix)

For example:

(City,Country, {“flights”, “to”}, {“, ”}, {“airport”, “from”, “Heathrow”})

url
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An alternative approach to representing context is replacing the ar-

guments with a uniform slot marker and then representing them as

one string [Ravichandran and Hovy, 2001; Pantel and Pennacchiotti, 2006;

Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006]. The mechanism

for instance matching used by the mentioned systems is by querying a web search

engine followed by argument identification on the returned results. It results in

text with highlighted arguments:

“flights to Schiphol1 , The Netherlands2 from Heathrow airport”

A similar view on mentions is taken by Ciravegna [2001] where start and end

markers of an annotated sequence (like XML tags) are noted as separate tokens.

This slightly different view is taken to allow for separate rules for the introduction

of start and end tags. In addition, for each token, linguistic information (lemma,

lexical category, semantic category) is kept in a table.

“flights to <arg1>Schiphol</arg1> , <arg2>The Netherlands</arg2>

from Heathrow airport”

The different ways of representing mentions (except from a few additional fea-

tures) all hold the same information as they constitute different ways to highlight

arguments. The details in which these representations differ come into play when

it comes to pattern induction and pattern matching.

5.6.2 Pattern Induction

The task of pattern induction is that of abstracting over the instance mentions in

a way that generates a set of patterns which are likely to describe instances of the

target relation. Thereby the induction process faces two challenges. First of all,

it is important that the patterns optimize the quality of future extractions. To do

so, the algorithms must identify the distinguishing features of relation instances

while successfully handling two types of noise that may arise: overly specific

features (preventing relevant instances to be matched) and too general features

(which when not accompanied by distinguishing features lead to spurious extrac-

tions). Secondly, induction algorithms need to cope with the extremely large set

of possible abstractions. There must be a way to guide pattern search properly.

Both problems are by no means particular to Information Extraction which is why

a few systems base their induction algorithms on Machine Learning algorithms

which have also been applied in other fields. We present very abstract and pos-

sibly simplifying pseudo code for the algorithms which is meant to convey an
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intuition of the alternative approaches. A more detailed account can be found in

the referenced publications.

A very simple algorithm for induction has been presented by Brin [1999].

Recall that, in their system, the pattern structure is a tuple (arg1, arg2, order, url,
prefix, middle, suffix). The algorithm used mines for a set of patterns with equal

middle string and order flag. Both, the selection of distinguishing features and

the search for appropriate abstraction are quite heuristically by grouping together

all mentions which share the same text between the arguments. The algorithm can

be formalized as follows:

INDUCTION [BRIN, 1999](Mentions M)
1 Groups← groups of mentions with equal order and prefix
2 while Groups 6= ∅
3 do

4 remove G ∈ Groups from Groups

5 if PATTERN(G) is not too general
6 then

7 OUTPUT(PATTERN(G))
8 else

9 split G into G′
1 . . . G

′
n by the first char their urls differ

10 if G′
1 6= G

11 then Groups← Groups ∪G′
1 . . . G

′
n

Where OUTPUT(G) generates a pattern from a set of mentions G of the form

(order, url, prefix,middle, suffix) where order and middle are the common val-

ues for those positions, url and suffix are the longest common prefix of those

values and, prefix are the longest common suffix of all prefix values of the group.

Specificity is assessed by the product of the character count in prefix, middle, url,
and suffix.

The pattern induction algorithm used by Rosenfeld and Feldmann [2006;

2006] as well as in a very similar manner by Ruiz-Casado et al. [2005] and Pantel

et al. [2004] finds pairwise generalizations by aligning strings in an inexact

manner. The patterns are then filtered by several criteria.

INDUCTION [ROSENFELD AND FELDMAN, 2006](Mentions M)
1 for (m1, m2) ∈M ×M

2 do

3 p← ALIGN(m1, m2)
4 if (COST(p) < maxcost ∧ HASRELEVANTWORD(p)
5 ∧HASANCHOREDSLOTS(p))
6 then OUTPUT(REMOVESTOPWORDS(p))
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Thereby ALIGN(m1, m2) finds an optimal alignment of two mentions with

respect to a cost function COST(p) where omissions at both sides are allowed (at a

given cost) and result in skip-markers in the alignment. HASRELEVANTWORD(p)
checks that a the patterns contain at least one out of a list of “relevant words”

(an unconventional way of additional supervision added to the learning) and

HASANCHOREDSLOTS(p) requires that no skip markers are found around the

argument slots. REMOVESTOPWORDS(p) removes stop words when found in

certain positions. Skip markers match arbitrary sequences (including an empty

sequence) during matching. One should note that pairwise abstraction if it is done

like in this algorithm limits the reach of pattern induction. For example there may

be three sentences:

“We offer cheap one-way flights from X to Y.” (1)

“We regularly offer one-way flights from X to Y.” (2)

“We regularly offer cheap flights from X to Y.” (3)

Three patterns would be generated:

“offer cheap flights from X to Y.” (1 & 3)

“. . . regularly offer . . . flights from X to Y..” (2 & 3)

“We . . . offer . . . one-way flights from X to Y” (1 & 2)

The obvious pattern (eliminating “regularly”, “one-way”, and “cheap”) is not

found because pairwise combination does not make the elimination necessary.

Pantel et al. [2004] and Ruiz-Casado et al. [2005] implement abstraction in

the same manner: Abstractions are generated as abstractions of pairs of mentions

under the condition that they are similar enough. Ruiz-Casado et al. are much

more explicit on how ALIGN(m1, m2) and COST(p) are implemented. The costs

are based on the notion of edit distance implemented on a token by token basis.

Abstraction is based on the alignment that minimizes the edit distance between

the mentions. For each position, in which both mentions share the same token,
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this token will be present at that position in the pattern. A disjunction is gener-

ated at positions where both mentions differ and a skip marker is added when a

token in one mention has no correspondence in the other one. While the algo-

rithm presented by Pantel et al. is also based on edit distance, fewer details on the

generation of patterns are given.

Given the model of instances as three bag-of-words vectors, Snowball

[Agichtein and Gravano, 2000] is able to guide the search for appropriate

abstraction by means of vector space clustering. The clusters are then turned

into patterns by aggregating the bags of words of each cluster. Thereby terms

are weighted by their frequency in the assumption that frequent terms also are

reasonably distinguishing.

INDUCTION [AGICHTEIN AND GRAVANO, 2000](Mentions M)
1 Groups← CLUSTER(M)
2 for G ∈ Groups

3 do

4 OUTPUT(CENTROID(G))

Thereby, a standard word-vector clustering algorithm is used by CLUS-

TER(M) and the groups are enforced to have a certain minimum mutual simi-

larity (by a cross-product-based “degree of matched”). CENTROID(G) computes

the centroids for the prefix, infix and postfix vector separately and norms them

to 1.

For pattern representations that are based on one string with slot markers at

argument positions, one way of identifying relevant abstractions is using suffix

trees [Ravichandran and Hovy, 2001]. Suffix trees contain a node for each sub-

string existing in a set of strings along with frequency counts of this substring.

While frequency can be used as a (recall-oriented) quality indicator, this approach

does not provide a straight-forward way to guide the search for patterns to prevent

having too many (possibly very similar) patterns. An appropriate choice of the fre-

quency threshold however may be determined from the suffix tree. This algorithm

is an example of the technique of generating patterns from a summarizing data

structure, much like the Frequent Itemset Mining techniques presented in Chap-

ter 8 and 9. As opposed to the modeling presented in Chapter 8, the suffix-tree

technique discussed here does not allow for an efficient integration of wildcards

or tags on a token basis.
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INDUCTION [RAVICHANDRAN AND HOVY, 2001](Mentions M)
1 T ← SUFFIXTREE(M)
2 for node ∈ T

3 do

4 if CONTAINSARGUMENTS(node) ∧ COUNT(node) > threshold

5 then OUTPUT(t)

A further approach also counts string sequences in an appropriate data

structure: Talukdar et al. [2006] induce automata that represent the observed

mentions. Each state transition is labelled with a token that is observed. A set

of relevant start-tokens (“trigger words”) is determined heuristically. For each

such start-token an automaton along with transition probabilities is induced using

Markov-Model induction techniques. The transition probabilities are used to

guide the search for relevant patterns while maintaining quality.

INDUCTION [TALUKDAR ET AL., 2006](Mentions M)
1 W ← TRIGGERWORDS(M)
2 for w ∈ W

3 do

4 C ← all maximal subsequences of all m ∈ M starting with w
5 A← INDUCEAUTOMATON(C)
6 PRUNE(A)
7 OUTPUT(A)

Where INDUCEAUTOMATON(C) counts the sequences in C into the automa-

ton data structure, PRUNE(A) removes all transitions which do not contribute to

paths that lie over a certain probability.

Several authors have presented approaches to pattern induction that stand in

the tradition of Inductive Logic Programming (ILP). The goal of ILP is to induce

rules (in the sense of logic programs) which entail the positive examples provided

and do not entail negative examples provided. Information Extraction patterns can

be considered rules that decide on the presence of an instance in a given piece of

text. Relation mentions thereby serve as positive examples.

In the work by Califf and Mooney [1997], rules are conjuncts of constraints

that require a certain surface string or POS tag to be present at a given position.

Patterns are derived by repeatedly generalizing over pairs of mentions or other

patterns by eliminating constraints or allowing the disjunction over individual

constraints. The scope of Califf and Mooney is entity extraction. Mentions are

represented as a triple of token lists (prefix , argument, postfix). Constraints are
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allowed on each of these lists. There are three types of constraints: the surface

string of a token, the part of speech of a token and the length of a list.

INDUCTION [CALIFF AND MOONEY, 1997](Mentions M)
1 Rules← TORULES(M)
2 fails← 0
3 while fails < maxFail

4 do

5 take (r1, r2) ∈ (Rules× Rules) randomly

6 RuleList← GENERALIZE(r1.argument, r2.argument)
7 n← 0
8 while BEST(RuleList) accepts negatives
9 ∧BEST(RuleList) is improving

10 do

11 n← n + 1
12 RuleList+ = NGENERALIZEPRE(n, r1.prefix , r2.prefix)
13 RuleList+ = NGENERALIZEPOST(n, r1.postfix , r2.postfix )
14 if BEST(RuleList) accepts negatives
15 then fails← fails + 1
16 else OUTPUT(BEST(RuleList))

Note that GENERALIZE can produce multiple generalizations. In particular, for

each constraint in which r1 and r2 differ, either their disjunction or the elimination

of the constraint are added as two variants. NGENERALIZEPRE produces a sub-

pattern with generalizations of the last n constraints left. NGENERALIZEPOST

generalizes the postfix keeping generalizations of the last n constraints respec-

tively. The algorithm constitutes an interesting combination of bottom-up and

top-down processing. Because the set of patterns is initialized with the exact men-

tions (thus the most restrictive possible) and later generalizes patterns more and

more it is bottom-up in nature. Yet, for a given pair of patterns to be generalized,

generalization takes place in a top-down manner.

The algorithm employed by Soderland [1999] works in much the same way.

Except that there argument patterns are learned analogously to the prefix and post-

fix patterns. Thus, for each pair of patterns, the algorithm starts with an empty

pattern which is gradually made more and more specific. Some special treatment

takes place at the argument borders to ensure that the position of the argument

borders is not underspecified. These algorithms generate a lot of candidate pat-

terns and check their quality in order to guide the further exploration of the space

of possible patterns. Hence, a larger amount of supervision is required than in

other scenarios. In particular – as opposed to all other algorithms presented here –
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negative examples (i.e. mentions that should not be matched) are required. Califf

and Mooney [1997] generated negative examples from annotated documents (in

which the absence of an annotation can be considered a negative example) and

Soderland enables interactive annotation.

In Ciravegna’s system [2001], the task of relation extraction is viewed as that

of introducing HTML-like tags into the text. The insertion is triggered by patterns

(called rules by Ciravegna) that constrain the surface string or some other features

of a sequence of tokens. Even though each argument that is identified consists of

a start and an end tag, both of them are induced by separate patterns. Two types of

patterns exist: Stronger tag patterns and weaker contextual patterns. Contextual

patterns only match if the match of a tag pattern has been found in the vicinity.1

For a given mention, all possible abstractions are considered (GENERALIZE(m)),

evaluated (BESTK) and depending on the quality taken up as pattern. The quality

of extraction is ensured by evaluating the candidate patterns by multiple criteria

on training annotations. Patterns not belonging to the best k patterns are taken

as contextual patterns if their quality fulfills some minimal standards (FILTER).

The amount of inserted abstractions is controlled by a covering criterion which

ensures that if a pattern is induced that matches a positive instance, this instance

will no longer count towards the evaluation of future patterns (this is known as

sequential covering [Mitchell, 1997]). Hence, the abstraction takes place in a

bottom-up manner. The search-space for good patterns is nondeterministically

controlled by the order in which mentions are processed for rule induction.

INDUCTION [CIRAVEGNA, 2001](Mentions M)
1 tagPatterns← ∅
2 contextPatterns← ∅
3 while M 6= ∅
4 do take m ∈M

5 bestPatterns← BESTK(GENERALIZE(m))
6 M ←M \ MATCHES(bestPatterns)
7 tagPatterns← tagPatterns ∪ bestPatterns

8 contextPatterns← contextPatterns

9 ∪ FILTER(GENERALIZE(m) \ bestPatterns)

Some work has been done in inducing patterns not on the textual form but

on the grammatical structure of the mentions. For this purpose, paths within de-

pendency parse trees [Snow et al., 2004; Xu et al., 2007] as well as very abstract

1In fact, there is a third type of patterns that take care of the correction of slightly misplaced

tags.
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subject-verb-object structures [Yangarber, 2003] were used. Probably due to the

large number of degrees of freedom along which these structures can be abstracted

over, the three works cited here do not use structured mining approaches but rather

generate a set of only slightly abstracted patterns and then leave the quality as-

surance to a filtering step. More specifically, Xu and Uszkoreit use all minimal

subtrees that span all arguments, Snow et al. all paths that connect two arguments

and Yangarber replaces either subject, verb or object by a wildcard.

Overall, there is a large variety of approaches to induce patterns that ex-

ist in parallel. All of them aim at identifying good combinations of rele-

vant features. Due to the large amount of possible combinations, various ap-

proaches are taken to guide the exploration. Most of them can be conceptu-

alized as a concept learning task as introduced in Section 2.3.1 because a pat-

tern defining a set of relation instances is in the same way a conjunction of

constraints as a formal concept. We described here approaches that explore

the space of patterns top-down [Ciravegna, 2001] and bottom-up [Brin, 1999;

Rosenfeld and Feldman, 2006; Califf and Mooney, 1997]. Other approaches use

a mapping to a vector space [Agichtein and Gravano, 2000] or supporting data

structures [Ravichandran and Hovy, 2001; Talukdar et al., 2006].

5.6.3 Estimating Pattern Performance

After inducing patterns, it is important to exclude patterns that are likely to gen-

erate an unacceptable amount of wrong instances. The quality of patterns is esti-

mated in the literature in many different ways. Most approaches to pattern evalu-

ation can be described in terms of a pattern-instance incidence matrix

Oc =

instances






c(1, 1) c(1, 2) . . .

c(2, 2) c(2, 2) . . .
...

...
. . .






patterns

where each cell stands for the incidence of pattern p ∈ Ppool and instance i. Dif-

ferent values c : Ppool × I → R numerically describe each incidence.

The approaches can be characterized by different choices of the incidence

function c, the choice of instances that are considered for the incidence matrix

EvalInst and the way, these values are aggregated to a score. We denote the set

of mentions of a pattern p extracting with an instance (i1, i2) with < i1, p, i2 >

and use |i1, p, i2| as a shorthand for | < i1, p, i2 > |.
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The most common choice of c are incidence counts ccount and a Boolean in-

dicator cbool(p, i) which is 1 if there is at least one incidence of p and i and 0

otherwise.

ccount(p, i) = |i1, p, i2|

cbool(p, i) = sgn(|i1, p, i2|)

Thereby, |i1, p, i2| gives the count of mentions where the instance i = (i1, i2) with

the arguments i1 and i2 coincides with the pattern p. Note that we use p both for

a pattern p ∈ Ppool itself and for its numeric index p ∈ [1, |Ppool|] in the matrix

and respectively i for i ∈ I ⊆ Domain × Range and i ∈ EvalInst . While

evaluation approaches all use the same set Ppool for the rows of the incidence

matrix, the set of instances EvalInst that is used for evaluation and that determines

the columns differs between the approaches. EvalInst contains at least a subset

of the instances previously accepted as correct Inst and may contain others (e.g.

negative examples).

Apart from the choice of c, pattern evaluation mechanisms differ in the calcu-

lation of the evaluation measure score : Ppool → R. In the following, we present

the most common measures adopted in the literature.

One common measure is the support of a pattern. Support means the count of

instances in the training set a pattern occurs with. It is based on adding up each

pattern’s row in the incidence matrix:

scoresupport(p) =
∑

i∈EvalInst

c(p, i)

EvalInst = Inst

As for the choice of c(p, i), one can opt for counting distinct supporting in-

stances by setting c(p, i) = cbool(p, i) (as proposed by Brin [1999] and evaluated in

Chapter 6) or all individual matches of each instance by setting c = ccount as used

by McIntosh and Curran [2009]. We illstruate the computation of scoresupport by

means of the following example:

Ppool = {p1, p2, p3}

Inst = {((Paris,France), (Chicago,U.S.), (Moscow,Russia)}

M = {m1, . . . , m355}
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We can assume for example:

< Paris, p1,France > = {m17, m56, m95, m183, m236}

< Paris, p2,France > = {m55, m65, m88, m184}

< Paris, p3,France > = ∅

< Chicago, p1,U.S. > = {m2, m58, m87, m185}

< Chicago, p2,U.S. > = {m23, m64, m99, m113, m335}

< Chicago, p3,U.S. > = {m173}

< Moscow, p1,Russia > = {m88, m126, m263, m299}

< Moscow, p2,Russia > = ∅

< Moscow, p3,Russia > = ∅

In the support-based case, the set EvalInst, which corresponds to the columns

is exactly Inst, i.e. the set the three accepted instances. Depending on the choice

of c(p, i), Oc looks as follows.

Ocbool =





1 1 1
1 1 0
0 1 0





Occount
=





5 4 4
4 5 0
0 1 0





The scores can then be computed as follows (using the non-boolean version):

scoresupport(p1) = 5 + 4 + 4 = 13

scoresupport(p2) = 4 + 5 + 0 = 9

scoresupport(p3) = 0 + 1 + 0 = 1

The scores presented in the following are computed in an analogous manner.

The most common measures are estimates of precision which differ in the

way false positive matches are determined. They share the choice of:

EvalInst = Inst ∪ NegInst

c(p, i) = cbool(p, i)

scoreprecision(p) =

∑

i∈Inst\NegInst c(p, i)
∑

i∈Inst c(p, i)

Here, the computation of false positives is based on a set NegInst of known wrong

matches. The score penalizes the presence of elements from NegInst in Inst .
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When no explicit negative examples are given there are several ways of creating an

(inherently incomplete) NegInst . One way is to make a functionality assumption

that is, assuming that if x is related to y in a given relation, it cannot also be

related to z by this relation. This assumption is true for many relations (dates of

one-time events, geographic location of non-movable objects etc.). When making

this assumption, NegInst can be computed as follows:

NegInst = {(i1, i2)|((i1, ix) ∈ Inst ∧ i2 < ix)}

Thereby, < is some order that ensures for each two ix and i2 that violate the

functionality assumption for some i1, the inclusion of the less plausible pair (i1, i2)
into the set of negative instances.

Various systems [Tomita et al., 2006; Agichtein and Gravano, 2000;

Ravichandran and Hovy, 2001] use the functionality assumption. There is

even an empirical analysis of a generalization of the functionality approach

[Alfonseca et al., 2006]. The generalization consisting in allowing arbitrary

cardinality constraints for the relation and giving partial credit for unknown

instances fulfilling the constraints. It is compared against a setup where only

seeds are counted as Inst members and seeds from other relations are used as

NegInst . The functionality assumption is shown to be beneficial. Similarly, the

added value of the functionality assumption is shown in [Normand et al., 2009],

showing that for an appropriate relation, the so-generated negatives increase

precision and recall of the extraction in particular if few examples are given.

The second source for negative instances are seed-sets of other relations that

are to be learned and of which can be assumed that the relations are disjoint with

the target relation. In that case, NegInst will be set to the union of those seed sets

excluding the relation which is currently worked on. This approach is taken by

Etzioni et al. [2005] and Talukdar et al. [2006]. With both approaches, which can

also be combined, scoreprecision(p) is bound to overestimate the actual precision of

p as it only penalizes a subset of all possible negative instances. Finally, there are

some systems which base their induction process on an annotated training corpus

[Ciravegna, 2001] or a very large training set assuming all relation instance not in

the training set to be false (e.g. WordNet [Snow et al., 2004]).

The scores used in the WHISK [Soderland et al., 1999] and URES

[Rosenfeld and Feldman, 2006] systems also build on error estimates using train-

ing data. WHISK uses a simple form of the Laplacian expected error estimate e+1
n+1

when observing e errors on n extractions. This amounts to:

EvalInst = Inst

c(p, i) = ccount(p, i)

scorelaplace(p) =

∑

i∈Inst\PosInst c(p, i) + 1
∑

i∈Inst c(p, i) + 1
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WHISK evolves an annotated training corpus so that all instances are considered

an error which have not been annotated. While scorelaplace(p) is close to 1 −
precision for large set of extractions, it penalizes less productive patterns because

for small Inst sets the impact of the added 1 in the denominator plays a big role.

For example, a pattern which only extracts one correct instances will score 0.5, a

pattern extracting 9 positive instances and no negatives will score 0.1.

For URES, the ratio of positive to negative instances NegInst is used where

negative instances are derived based on a variant of the functionality assumption

that also assumes that a sentence only contains one positive instance.

EvalInst = Inst ∪NegInst

c(p, i) = cbool(p, i)

scoreURES(p) =

∑

i∈Inst\NegInst c(p, i)
∑

i∈NegInst c(p, i) + 1

The Espresso system [Pantel and Pennacchiotti, 2006] takes an innovative ap-

proach to pattern (and instance) evaluation operating recursively. Espresso esti-

mates pattern quality with the help of instance quality and vice versa. At the same

time, it uses pointwise mutual information (PMI) as a measure of association be-

tween patterns and instances.

pmi(p, i) = log
|i1, p, i2|

|i1, ∗, i2| |∗, p, ∗|

The above count notation is extended to allow for arbitrary matches when

marked with ∗. By means of an instance confidence measure score(i), Espresso’s

measure can be described as:

c(p, i) = score(i) · cbool(p, i)

EvalInst = Inst

scoreEspresso(p) =

∑i∈Inst
(

pmi(p,i)
maxpmi

· c(p, i)
)

|Inst|

Thereby maxpmi is the maximum PMI between all patterns and all instances

in the matrix.

In the LPPL system [Tomita et al., 2006] the evaluation of patterns and in-

stances is modelled as a maximum-likelihood parameter estimation problem that

is solved using the Expectation Maximization (EM) algorithm. The goal is to

estimate a confidence distribution of patterns which maximizes the likelihood of
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the observed patterns. The instance confidence scores serve as parameters to this

model. Starting out with known values for the seed instances only, the EM al-

gorithm approximates the other instance confidences. The version of the EM

algorithm used by Tomita et al. [2006] co-evolves pattern confidences conf (p)
and instance confidences conf (i). The modeling used does not fit the above nota-

tion because a pattern-instance incidence matrix as evaluation is done on the level

of the mention and matching is not a binary decision but each pattern p matches

each mention m ∈ M to a certain degree of match dm(p,m). Thereby the best-

matching pattern for a mention p∗(i) is distinguished. The instance extracted from

a mention m is denoted iex(m)

conf (p) =

∑

m∈M |p=p∗(m) conf (iex(m)) + 1

|∗, p, ∗|+ β

conf (i) = 1−
∏

m∈M |iex(m)=i

(1− conf (p∗(m))dm(p∗(m), m))

In terms of the EM algorithm, the computation of conf (p) constitutes the ex-

pectation step and the computation of conf (i) corresponds to the maximization

step. After the algorithm terminates, the output is

scoreLPPL(p) = conf (p)

scoreLPPL(i) = conf (i)

In sum, all measures are computed on the basis of co-occurrence information

of patterns and instances while the measures vary in the choice of the set of in-

stances used and aggregate this information in various ways. While most measures

constitute relative frequencies or make otherwise use of a probabilistic measure,

they are not based on a sound probabilistic modeling of pattern quality. It is there-

fore understandable that the measures are employed in rather crude ranking and

cut-off mechanisms. In Chapter 6, the aspect of pattern quality assessment will

be investigated empirically. A selection of scoring mechanisms will be compared

when applied to the same task.

5.6.4 Matching Patterns

The matching of patterns is typically a straight-forward process the implementa-

tion details of which depend on the nature of the patterns and the size and repre-

sentation of the text corpus. As soon as the pattern structure strongly differs from

the text, the text has to be preprocessed prior to matching (e.g. providing required

linguistic markup or transforming text to a bag-of-words representation). In gen-

eral, the cost of such preprocessing is at least linear with the corpus size which
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makes it expensive for very large corpora (which otherwise may be accessed much

faster than linear-time with the help of Information Retrieval techniques, cf. Sec-

tion 2.4).

This issue can be improved in two ways. Firstly, the Snowball system matches

inexpensive markup first (the entity tags) and does further preprocessing (con-

version to bag-of-words, distance calculation to patterns) only when appropri-

ate markup combinations have been found. Secondly, the KnowItNow system

[Cafarella et al., 2005] incorporates linguistic information into the search index

by extending the index structure accordingly.

5.6.5 Evaluating Instances

Various approaches exist to assessing the quality of instances. They build on a

score that is assigned to each instance which is subsequently filtered based on

a threshold. In most cases, the score is based on the matches of the existing

patterns while some take co-occurrence counts with other contexts into account.

Most scores estimate the probability of an extraction being correct while some are

based on proximity in the space of possible co-occurrences. The focus here lies

on evaluation scores for global Information Extraction tasks with automatically

induced patterns.

The evaluation scores for instances can be described by means of the same

incidence matrix notation as above. Yet, the set of instances in question EvalInst

remains the set of derived instances Inst in all cases.

The most straight-forward way of computing instance score is that of simply

counting the matching patterns (support). This has been proposed (although not

systematically evaluated) by Brin [1999].

c(p, i) = cbool(p, i)

scoresupport(i) =
∑

p∈Ppool

c(p, i)

Assuming that pattern scores have an interpretation as a precision estimate,

i.e. reflecting the probability that a given instance extracted by the scored pattern

is correct, the probability of an instance being correct can be estimated as the

inverse of the joint probability that all patterns mistakenly extract the instance.

This model has been proposed in Snowball [Agichtein and Gravano, 2000] and

adopted in DARE [Xu et al., 2007].

c(p, i) = cbool(p, i) · scoreprecision(p)

scoreprecision(i) = 1−
∏

p∈Ppool

1− c(p, i)
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Agichtein and Gravano [2000] additionally proposes to weight patterns from ear-

lier iterations higher to adopt the “learning rate” over iterations.

While this probabilistic interpretation is appealing, one needs to keep in mind

that the precision scores proposed in these systems are crude upper estimates and

that this model makes an independence assumption among the pattern matches

which disregards that the patterns have been derived using the same mining pro-

cess and are therefore likely not to be independent.

Like for the patterns, Espresso [Pantel and Pennacchiotti, 2006] uses a

correlation-based approach for instance assessment. In fact, in line with the

pattern-relation duality, the measure is symmetric with the pattern score (with

the same definitions of pmi(p, i) and maxpmi):

c(p, i) = score(p) ∗ cbool(p, i)

EvalInst = Inst

scoreEspresso(i) =

∑

p ∈ Ppool

(

pmi(p,i)
maxpmi

)

· c(p, i)

|Ppool|

Another recursive approach is that by Tomita et al. [2006] as presented in Sec-

tion 5.6.3. Similarly, URES [Rosenfeld and Feldman, 2006] uses pattern scores

and a notion of degree of match to score instances, the details of which are not

published. The above-mentioned systems (as far as they describe the actual filter-

ing step) use a threshold to filter instances although it is not mentioned how this

threshold has been actually computed.

An alternative approach to instance evaluation is to assess their appearances in

other contexts than the present pattern sets. We will call these approaches distri-

butional. Etzioni et al. [2005] propose the use of so-called “discriminators”. Dis-

criminators are generic patterns that are indicative for whether or not two terms

stand in a specific relation. Extracted instances are combined with the discrimi-

nator patterns and matched in the corpus. The match counts are used as a feature

to compare instances. This principle is a way of assessing distributional similarity

(compare [Paşca et al., 2006]). Examples for discriminators are “city ANYcity”

for the unary relation of being a city or “ANYceo CEO of ANYcompany” for the

relation between a company and its CEO. The distribution of counts of instances

co-occurring with these discriminators is used to assess instance quality. More

specifically, given a set of discriminator patterns Disc for each instance i ∈ Inst

a vector is generated

d(i) = (. . . , pmi′(d, i), . . .)
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Where pmi′(d, i) is according to Etzioni et al. [2005] a (strongly simplified) ver-

sion of Pointwise Mutual Information.

pmi′(d, i) =
|i1, d, i2|

|i1, ∗, i2|

The decision whether a given i is in fact an instance of the target relation is

then made by a Naive Bayes classifier which is trained on a set of previously

accepted instances as positive examples and instances of known disjoint classes

(seeds of other target relations) as negative examples. The set of discriminators

which has to be produced for each target relation separately constitutes additional

supervision. A heuristic and a bootstrapping-based method are presented to come

up with discriminator patterns automatically.

A different way of distributional instance evaluation is presented by McIntosh

and Curran [2009] and Paşca et al. [2006]. They use vector space similarities

between bag-of-words vectors of words occurring around the instances. Distribu-

tionally more similar instances are considered better. McIntosh and Curran use

this distance to quantify the “semantic drift” for a given instance. This is done

by relating the distributional similarity of the seeds to newly extracted instance to

the distributional similarity among the newly extracted instances. If an instance is

closer to the newly extracted instances than to the seeds, it is considered likely that

the new extraction does not capture the original semantics of the target relation as

described by the seed set.

The hyponymy extraction system presented by Snow et al. [2004] uses a Naive

Bayes classifier Θ directly on the pattern-instance incidence matrix Oc where c is

chosen to represent co-occurrence counts:

EvalInst = Inst

c(p, i) = ccount(p, i)

scoreclassifier(i) = Θ((c(1, i), . . . , c(|Ppool|, i)))

where (c(1, i), . . . , c(|Ppool|, i)) is the projection of Oc(i) on its ith column. Θ
is trained on a set of positive and negative seeds. Aiming at extending WordNet,

Snow et al. make a good approximation of negative examples by allowing all noun

pairs not standing in a hyponymy relation in WordNet as negatives.

A thorough probabilistic model which estimates the correctness of instances

in a probabilistic manner is enabled by the URNS model [Downey et al., 2005]

which estimates the probability that a given mention is an instance of a

given class C (which may be a relation) based on the frequency of ob-

served extractions. In particular, it produces a probability estimate P (i ∈
C|i matches k times in n draws). URNS models the extraction process as re-

peated draws from an urn. Each draw corresponds to one match of a pattern (or
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set of patterns) and can either produce an error ball or a correct ball. In both cases,

the ball has a label i belonging to the instance that is being extracted. Apart from

a precision estimate of the pattern(s) that caused the given count of extractions it

only takes as input counts (or estimates) for the frequency of the target class and

of errors. The URNS model was applied in several systems [Cafarella et al., 2005;

McDowell and Cafarella, 2008]

5.7 Evaluation Paradigms

In the following chapters technical work with implementations of the framework

introduced in this chapter will be presented. While the exact experimental setup is

dependant on the study, common datasets and common evaluation measures have

been used.

5.7.1 Datasets

Training and test data of global relation extraction consists of relation instances.

While for training, a small set of seed examples is sufficient, the full extension of

the target relation needs to be known for evaluation purposes.

We obtained large relation sets using (i) a DAML version of the CIA World

Factbook (for currency), (ii) lineup data from 50 years of FIFA soccer games

provided by the SmartWeb project2 and (iii) exploiting Wikipedia categories in

a semi-automatic manner using the CatScan tool by Daniel Kinzler.3 The latter

allowed us to retrieve all members of a category. CatScan was applied recursively

to also obtain members of sub-categories.

The data sets have been chosen to differ according to various dimensions,

most notably in size. The currencyOf dataset, for example, is relatively small and

constitutes a relation with clear boundaries with almost no changes over time. The

other relations are likely not be reflected fully in the data sets.

• albumBy: 19852 titles of music albums and their artists generated from the

Wikipedia category “Albums by Artist.”

• bornInYear: 172696 persons and their year of birth generated from the

Wikipedia category “Births by Year.”

• currencyOf : 221 countries and their official currency ac-

cording to DAML export of the CIA World Fact Book.

2http://www.smartweb-project.de
3http://tools.wikimedia.de/˜daniel/WikiSense

http://www.smartweb-project.de
http://tools.wikimedia.de/~daniel/WikiSense
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http://www.daml.org/2001/12/factbook/ Manual modifications

were done to reflect the introduction of the Euro as official currency in

many European countries.

• headquarteredIn: 14762 names of companies and the country they are

based in generated from the Wikipedia category “Companies by Country.”

http://en.wikipedia.org/wiki/Category:Companies_by_country

• locatedIn: 34047 names of cities and the state and federal states they are

located in generated from the Wikipedia category “Cities by Countries.”

http://en.wikipedia.org/wiki/Category:Cities_by_country Note

that a considerable number of cities are contained in this data set with both

their state and their federal state.

• productOf : 2650 vehicle product names and the brand names of their

makers generated from the Wikipedia category “Vehicles by Brand.”

http://en.wikipedia.org/wiki/Category:Vehicles_by_brand

• teamOf : 8307 soccer players and the national teams they were playing for

between 1950 and 2006.4

It is important to note that also the Wikipedia collections have been compiled

manually by authors who assigned the documents to the respective categories and

have been checked by further community members. Thus, the datasets can be

regarded to be of high quality. Further, due to the vast coverage of Wikipedia, the

extensions of the relations can be assumed to be relatively complete.

In the experiments, small samples (size 10, 50 and 100) of the datasets were

taken as input seeds. Initial tests showed that taking prominent instances as seeds

strongly increases the system’s output quality over random seeds. It can be ex-

pected that in most real scenarios prominent seeds are available as they should

be those best known to the users. With two exceptions,5 we took the number of

in-links to the Wikipedia articles mentioned in each instance as an indicator for

their significance in the corpus and selected the top n samples with respect to the

harmonic mean of these counts.

4This data set is a courtesy of the SmartWeb consortium (see

http://www.smartweb-project.de/).
5For cities we took the average living costs as an indicator to ensure that Athens Greece was

ranked higher than Athens, New York. Population would have skewed the sample towards Asian

cities not prominently mentioned in the English Wikipedia. For Albums we required titles to be at

least 10 characters in length to discourage highly ambiguous titles like “Heart” or “Friends”

http://www.daml.org/2001/12/factbook/
http://en.wikipedia.org/wiki/Category:Companies_by_country
http://en.wikipedia.org/wiki/Category:Cities_by_country
http://en.wikipedia.org/wiki/Category:Vehicles_by_brand
http://www.smartweb-project.de/
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5.7.2 Evaluation measures

In our experiments, we relied on the widely used precision and recall measures to

evaluate extraction output. These measures compute the ratio of correctly found

instances to overall instances extracted (precision) or all instances to be found

(recall). They are appropriate to evaluate any binary statistical classifier and have

the benefit of having a probabilistic interpretation.

Both measures are computed based on the observed output Inst , the intended

positive instances (the extension Ext of the relation) and the set (hypothetical) of

all items to be classified All. By that two types of correct judgements and two

types of errors can be distinguished:

• True Positives(TP ): Correct positive classifications. Inst ∩ Ext.

• True Negatives(TN): Correct negative classifications. All \ (Inst ∪ Ext).

• False Positives(FP ): Erroneous positive classification. Inst \ Ext.

• False Negatives(FN): Erroneous negative classification. Ext \ Inst .

Precision is defined as the relative frequency of correct positive classification

among all classifications:

precision =
|Inst ∩ Ext|

|Inst|
=

|TP |

|TP ∪ FP |

Recall is the relative frequency of correct positive classifications among all

instances that should have been classified positively:

recall =
|Inst ∩ Ext|

|Ext|
=

|TP |

|TP ∪ FN |

Precision and recall are convenient quality measures for Information Extrac-

tion as they have an intuitive probabilistic interpretation: Given an instance ex-

tracted by an Information Extraction system with precision p, we know that this

instance is correct with the probability p. Given a relation instance of which we

know that it can be extracted from a corpus, we know that it will be extracted with

probability r by a system that has recall r on that corpus.

Sometimes it is convenient to compare extraction results on one dimension of

quality. To this end, the F-measure is widely used in the literature. It consists in

the combination of precision and recall by the weighted harmonic mean.

Fβ = (1 + β2) ·
2 precision recall

β2 · precision + recall
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The intuition behind this measure is that the overall quality lies in the balance

between precision and recall and that if one of the measures is much lower than

the other, this is to be penalized over-proportionally. Thereby, β weights precision

vs. recall. The most commonly used β value is 1. The choice of this measure

is somewhat arbitrary. How much false positives and false negative should be

accepted strongly depends on the application and it is unlikely that both affect the

effective quality of the system in the same manner.

As the fixed number of iterations in our experiments poses a technical limit

on the number of possible extractions (e.g. Google only returns 1000 results for

a query even if there are more) we use a notion of (r)elative (r)ecall assuming

maximally extracted number of instances by any configuration in any iteration

with the given relation. With yr(i,m) being the yield, i.e. number of extractions

(correct and incorrect) at iteration i for relation r with method m and pr(i,m) the

precision respectively, we can formalize relative recall as

rrr(i,m) =
yr(i,m) ∗ pr(i,m)

maxi,m yr(i,m)

5.7.3 Automatic Evaluation

The extraction output has been evaluated automatically based on the data sets de-

scribed above. Approximate matches are admitted by allowing the omission of

words and respecting WordNet synonyms. Both automatic and manual evalua-

tion lead to inexact assessment. The automatic assessment is inexact because an

automatic evaluation system is likely to miss the intended meaning of the output

(e.g. by not knowing all synonyms of a target instance). The manual evaluation

is usually done only on a sample of the data and is furthermore prone to human

errors. In order to investigate, the effects of manual vs. automatic evaluation, both

types of evaluation were compared on the basis of the experiments presented in

the following chapter. The results show that automatic evaluation underestimates

precision because it misses correct instance that the system is not aware of. Refer

to Section 6.3 for the comparison and a discussion on the possible causes.

5.8 Performance of Systems in the Literature

Information Extraction is a sub-field of NLP that is clearly driven by the goal of

obtaining the desired information rather than modelling or analyzing linguistic

properties. The evaluation of extraction output with respect to precision and

recall is hence at the center of scientific arguments. Most studies focusing on

large-scale and or Web-oriented IE, consider special scenarios, so that systems
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System corpus seeds relations precision

Culotta et al.[2006] 1127 Wikipedia p. annotated text 60 65% - 72%

Espresso[Pantel and Pennacchiotti, 2006] 5M words “few” 5 49%-85%

SOFIE[Suchanek et al., 2009] 3400 Web pages Yago ontology 13 >90%

KnowItNow[Cafarella et al., 2005] 60M Web pages seed patterns 5 >70%

Pasca et al.[2006] 100 M Web pages 10 seeds 1 >90%

Pronto (Ch. 6) Web 10 seeds 7 10 - 80%

URES[Rosenfeld and Feldman, 2006] some Web pages 10-15 seeds 5 70-90%

Snowball[Agichtein and Gravano, 2000] 180k news posts 5 seeds 1 85%

Table 5.1: Performance results reported in the literature and experimental condi-

tions.

in the literature differ with respect to many degrees of freedom. In this section,

we present results reported in key studies that are discussed in this thesis. In

Table 5.1, we show precision, type and size of the text collection as well as the

supervision provided.

Due to the many different degrees of freedom, a conclusive statement on the

superiority of one approach over another cannot be made. One can observe as

a general tendency that results in the range of above 80% are not obtained by

systems operating at the scale of milions of pages. Several authors observe strong

variations of output quality depending on the target relations. This is in line with

our observations reported in the following chapters.

No comparable way of reporting recall has been established. Several stud-

ies report absolute result counts [Brin, 1999; Rosenfeld and Feldman, 2006;

Cafarella et al., 2005]. Others report results relative to other systems

[Pantel and Pennacchiotti, 2006] or the full extension of the relation

[Paşca et al., 2006; Agichtein and Gravano, 2000]. Our approach to take the

full extension of the relation as a reference for precision and recall assessment

and perform automated quality assessment is a novelty.



Chapter 6

Controlling the Quality of Induced

Patterns

As indicated in Section 5.4, minimizing supervision of Information Extraction

systems is an important goal (referred to as Challenge 1 in Section 5.4). One

essential subtask to achieve is to control the quality of the set of patterns so that

they have the appropriate levels of precision and recall. Obviously this has to

be done without knowing precision and recall of the patterns because these mea-

sures require knowledge about the intended output (the Pattern Quality Predic-

tion Dilemma, Challenge 3). Pattern-based Information Extraction systems in the

literature therefore use a large variety of pattern evaluation mechanisms usually

computing scores that approximate precision and/or recall.

Good pattern quality measures enable the system to estimate output quality

and thus to adjust other parameters of the system as required. They hence play

an important role with regard to the autonomy of an extraction system. In order

to investigate these aspects, we present here an empirical comparison of various

evaluation strategies. We use a completely uninformed baseline and a fully in-

formed “gold standard” evaluation strategy as natural upper and lower bounds on

precision, recall and F-measure with regard to the choice of strategy. The ap-

proaches compared differ in the way they assign a utility score to each pattern

which is then used to filter out inappropriate patterns. These scoring functions are

called filtering functions throughout this chapter.

This study has been done in the Pronto system on several non-taxonomic rela-

tions. In the following, the different filtering functions that are the subject of anal-

ysis are introduced and discussed. Then, in Section 6.2 the experimental setup is

described before results are presented and discussed in Section 6.3 and put into re-

lation with related work in Section 6.1.1. A brief summary is given in Section 6.4.

We have published most of the empirical results of this study at the AAAI confer-

ence 2007 together with Philipp Cimiano and Egon Stemle [Blohm et al., 2007].
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Some further results were presented at the 3rd Web as Corpus Workshop 2007

[Blohm and Cimiano, 2007]. To the best of our knowledge, this is the first sys-

tematic comparison of different evaluation techniques.

6.1 Filtering Functions

As outlined in Section 5.3, the key idea of the iterative pattern induction frame-

work is to evolve a set of patterns Ppool which constitutes the learned model.

Before being applied, patterns are evaluated in each iteration and then filtered

based on this evaluation. In the following, we discuss prominent pattern evalua-

tion strategies from various pattern-based Information Extraction systems. They

can all be described in terms of a two-step process: First, a score score : P → R

is assigned and then, potentially weakly performing patterns are filtered out by

imposing a threshold or cut-off percentile on these scores.

From the literature we can identify five general types of pattern quality assess-

ment.

• Syntactic assessment. Filtering purely based on syntactic criteria like for

example a pattern’s length.

• Inter-pattern comparison. If there is a set of patterns that is known to be

good, it may be beneficial to rate a new pattern based on how similar its

output is to the output of those patterns.

• Support-based assessment. The iterative nature of the extraction allows the

system to estimate quality of patterns based on the number of mentions that

contributed to the generation of this pattern. We call this number support

like in association rule mining (cf. Section 2.3). An analogous filtering step

was suggested in by Brin [1999].

• Performance-based assessment. The most straightforward way to assess a

pattern’s quality is to judge the rate of correctly produced output. Because

an exhaustive assessment would require full knowledge of the target rela-

tion, heuristic performance-based assessment is typically by comparing the

output of new patterns to output of previous iterations.

• Instance-Pattern correlation. A further indicator for the quality of a pattern

is whether its presence correlates strongly with the presence of instances of

the target relation. Estimating this by counting mentions of patterns, seed

instances and patterns instantiated with seed instances allows controlling

both precision and potential recall of a pattern within one value.
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6.1.1 Pattern Filtering in Related Work

Given the focus of the study, all the systems introduced in Section 5.6 consti-

tute related work. In particular the varying approaches to pattern evaluation as

presented in Section 5.6.3 are of interest. For the present study, the focus is on

filtering functions of systems which operate on Web scale or are designed with

scalability in mind.

Syntactic assessment has been proposed and applied by Brin [1999], where

the length of a pattern is used to predict its specificity. Inter-pattern comparison is

particularly useful when patterns are induced as abstractions over individual men-

tions or over more specific patterns. This is done in [Ruiz-Casado et al., 2005]

where all pairwise abstractions below a given edit-distance threshold are used

and as a pre-evaluation filter in (LP )2 [Ciravegna, 2001] which uses inductive

logic programming (ILP) for abstraction. While support-based assessment is

quite common for instances [Agichtein and Gravano, 2000; Etzioni et al., 2005]

it has not been applied to pattern evaluation. Performance-based assessment

for patterns is performed by Agichtein and Gravano [2000] and Ciravegna

[2001] with a precision estimate that is also contestant in this study. A similar

score is used by the URES and URIES systems [Rosenfeld and Feldman, 2006;

Rozenfeld and Feldman, 2006]. Another variant called Laplacian expected er-

ror is applied by Soderland [1999]. A comparision of two rather task-specific

performance-based measures in a question-answering environment is presented

by Alfonseca et al. [2006]. Instance-pattern correlation is used in the Espresso

[Pantel and Pennacchiotti, 2006] and the KnowItAll [Etzioni et al., 2005] sys-

tems. Both correlation scores are reproduced in this study. An innovation of

Espresso is that pattern scores are used as weights in instance scores and vice-

versa which captures the recursive notion of the induction process during scoring.

Such a recursive evaluation can be also found in ExDisco [Yangarber, 2003]) with

the difference that documents are assigned a confidence value instead of instances.

The assumption is that a good set of patterns defines a good set of relevant docu-

ments which in turn contain these patterns more freuently.

In the following, we present here the filtering functions compared in the ex-

periments, which are partly taken from the literature of state-of-the-art pattern

induction systems. Note that for comparing the approaches which stem from

very heterogeneous systems in the literature, only the scoring of the patterns is

varied between the experimental conditions. The cut-off criterion is kept con-

stant by working with a pre-defined number of patterns that are kept for matching

whereby |Ppool| remains constant. An individual pattern can be kept over several

iterations but is re-evaluated against all patterns in each iteration. Thus, while

the set of extracted instances Inst is grown incrementally, the evolution of Ppool

is non-monotonic. Discarding patterns in each iteration is common practice in
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most pattern induction systems from the literature and in line with the idea of

mutual bootstrapping [Riloff and Jones, 1999]. Intuitively, it prevents the double

induction of noise both in the set of patterns and in the set of instances.

6.1.2 Performance-Based Filtering

Agichtein and Gravano [2000] use the output of previous iterations to approxi-

mate a performance-based precision measure for each pattern. Recall from Sec-

tion 5.7.2 that precision can be defined as:

precision =
|TP |

|TP ∪ FP |

with TP and FP being the set of correctly and erroneously extracted in-

stances, respectively. Agichtein and Gravano define FP as the set of instances

violating the assumption that the target relation is many-to-one. For this study, we

slightly generalize this notion of precision no longer distinguishing incorrect and

unclassified extractions to overcome Snowball’s restriction of only operating on

many-to-one relations by defining FP as the set of all instances not previously ex-

tracted. Following Agichtein and Gravano we use the output of previous iterations

to approximate a performance-based precision.

Definition 1 scoreprec(p): Let m(p) be the instances matched by pattern p, and

Inst to be the seeds of the current iteration. Approximating the precision amounts

to relating the number of instances a pattern extracts that have been accepted as

correct in previous iteration to all instances it extracts:

scoreprec(p) =
|m(p) ∩ Inst |

|m(p)|

This measure may heavily underestimate the actual output quality of a pattern

if that pattern is able to generate many previously unseen – but correct – relation

instances. The following strategies have been adopted to overcome this limitation.

6.1.3 Instance-Pattern Correlation for Filtering

Several systems from the literature use a measure called Pointwise Mutual Infor-

mation (PMI) as an instance-pattern correlation measure. Mutual Information is

a correlation measure with information theoretic interpretation that measures the

mutual dependence of two random variables. Pointwise mutual information fo-

cuses on a specific pair of outcomes. We evaluate here two different approaches

of pattern assessment via mutual information which use relative corpus frequen-

cies of instances and patterns to measure correlation.
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Definition 2 scorepmi(p): PMI measures the strength of association between two

discrete random variables A and B and is defined as:

pmi(A,B) = log
P (A,B)

P (A)P (B)

In the PMI-based correlation, the events of a pattern occurring in a given frag-

ment of text and that of an instance occurring in a given fragment are correlated

(pmi(p, i)). Pattern confidence values can be computed by averaging over a ran-

dom subset of the currently accepted instances Inst (whereby sampling is done

for efficiency reasons).

scorepmi(p) =
1

|Inst|

∑

i∈Inst

pmi(p, i)

The pmi(p, i) is defined in different ways two of which are given below.

The notation for pattern and instance match counts is adopted from Pantel

and Pennachiotti [2006]. We write |arg1, p, arg2| to denote the number of corpus

matches of a query generated by filling the arguments of instance i = (arg1, arg2)
into the argument slots of pattern p. At any position ∗ means allowing arbi-

trary values for the pattern or the argument replaced. If for example the passage

“. . . flights to London, England” appears 12 times in the text, it would hold that

|London, flightsto...,England| = 12

Definition 3 pmiKnowItAll(p, i): The KnowItAll [Etzioni et al., 2005] Informa-

tion Extraction system uses PMI in the following way to assess coherence of a

pattern-instance pair (p, i) in:

pmiKnowItAll(p, i) =
|i1, p, i2|

|i1, ∗, i2|

Note that the logarithm of the fraction is not used in the computations in Know-

ItAll which however does not affect the ranking of the results for which the score

is used. The same is true for the fact that both PMI-based formulae operate on

absolute counts instead of probabilities.

In KnowItAll, this measure is used to generate a feature vector for classifi-

cation of patterns. In the present work, we use an average of pmi values over a

subset of Inst of size 15 to quantify the patterns output quality.

Definition 4 pmiEspresso(p, i): In the Espresso system

[Pantel and Pennacchiotti, 2006], PMI is used in a different way aiming at
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relating the event of the pattern occurring in the corpus and the event of the

instance occurring in the corpus: The intuition behind this is that a pattern is

good if it occurs preferably in association with instances from Inst and conversely

instances from Inst have a strong association with the pattern.

pmiEspresso(p, i) = log
|i1, p, i2|

|∗, p, ∗| |i1, ∗, i2|

For the experimental comparison of the PMI-based filtering functions,

Google’s result count estimates were used to estimate probabilities. A discussion

on how these are created can be found in Section 2.4.

The multitude of different probabilistic modelings for pattern filtering avail-

able suggests that arguments from probability theory can merely serve as a mo-

tivation for a certain measure but not guarantee success. It is likely that there is

no universally appropriate modeling due to the unpredictable underlying distribu-

tions.

6.1.4 Support-Based Filtering

In addition to the above filtering functions, we further present a simple filtering

function based on the count of distinct instances from which a pattern was gener-

ated:

Definition 5 scoresupport(p): Given the number of distinct instances present in

the mentions from which a pattern was generated, i.e. distinct generators(p),
we define

scoresupport(p) = |distinct generators(p)|

Thus, scoresupport evaluates patterns by the number of different seed instances

from which they have been produced, hence favoring more general patterns and

penalizing patterns which just hold for a few examples.

6.1.5 Base Line and Gold Standard

Definition 6 scorerandom(p): As a baseline condition, a pattern evaluator has

been implemented that assigns random confidence values scorerandom(p) to all

patterns. The choice of patterns for the instance generation hence does not depend

on their output quality nor on further syntactic criteria.

Note that the Pronto system applies some syntactic heuristics to filter out pattern

candidates that are far too general or too specific (cf. Section 6.2.1). Hence, all

patterns that are put into the filtering are of some minimum quality. This explains
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why even the baseline system with random selection performs relatively well (see

the results in Section 6.3).

Definition 7 scoregold(p): In order to estimate the upper limit of the potential

of performance-based pattern evaluation, we introduce a scoring function that

is based on the full knowledge of the extension G of the target relation. This

extension is made available externally from large datasets we produced for that

purpose (compare Section Experiments):

scoregold(p) =
|m(p) ∩G|

|m(p)|

We use the term gold standard for this measure even though the measure may still

be out-performed for two reasons. Firstly, the extensions of the relations used

are not necessarily complete in the dataset. Secondly, the measure regards only

precision not coverage or syntactic properties. Yet, this measure can provide a

good indicator of how well a perfectly informed filtering function would perform

and thus serves to study limitations of the approach.

6.2 Experimental Setup

In order to assess the potential of various filtering functions, we have performed

experiments with various target relations and filtering functions. The goal of our

experiments is to explore the strengths and weaknesses of different filtering func-

tions from the literature, comparing these results to the baseline scorerandom(p)
as well as an approximation of an informed upper bound scoregold(p). In the fol-

lowing, the setup of the Pronto system is described in detail before the remaining

experimental details are presented.

6.2.1 Configuration of the Pronto system

This section gives implementation details of the Pronto system for the experiments

on pattern quality. The system configuration was kept constant over the experi-

ments varying only the filtering functions for the patterns and operating with sev-

eral target relations. The World Wide Web was accessed through the Google API

as described in Section 5.5.2.

To ensure the generality of the results, we have refrained from integrating

specific additional knowledge in our implementation. Common forms of back-

ground knowledge applied in the literature are thesauri, filters for part-of-speech

or syntactic criteria and knowledge about the type of relation in question (e.g.
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part-of-speech tags [Pantel and Pennacchiotti, 2006] or named entity classifica-

tion [Agichtein and Gravano, 2000]).

Note that all parameters chosen for the experiments have been determined

experimentally to ensure stable extraction quality across typical configurations

and target relations.

Matching Instances

In order to identify mentions of the current seed set on the Web, the search index

is accessed via Google’s Java API querying for pages on which all words present

in both arguments of the instance can be found. A fixed number nummatchInstances

of results is retrieved. From those, only the result headers and text snippets are

kept which contain all arguments within a distance of at most maxargDist. For

the experiments presented in this chapter we set maxargDist = 4 and decrease

nummatchInstances from 200 to 20 in steps of 45 over 5 iterations.

Learning Patterns

Learning patterns aims at finding representative abstractions of as many valid

mentions of relation instances as possible. Patterns are expressed as a set of con-

straints on the tokens. There are two types of constraints: the surface string of

individual words and their corresponding capitalization.

The learning algorithm essentially merges groups of mentions on a token by

token basis. Constraints that are shared by all mentions within a group are kept

while the others are eliminated. An unoptimized version of the algorithm for

merging is given in Figure 6.1 for illustration purposes. Basically, it ensures that

all subsets of the set of found mentions M are merged, if they share a certain

minimum number of constraints. The pattern

“flights to ANYARG1
, ANYARG2

from ANY airport” (1)

may have been generated by the following example mentions:

“... flights to Athens , Greece from Heathrow airport...”

“... flights to Paris , France from JFK airport...”

Thus, the generalization effectively corresponds to computing the least gen-

eral generalization (LGG) of two patterns as typically done in bottom-up ILP ap-

proaches (compare [Muggleton and Feng, 1990]).

The procedure MERGE(p, p′) takes the patterns p and p′, aligns them by their

arguments and generates a pattern containing only the constraints that p and p′

share for any of their token positions. The function CONSTRAINTS(p) counts
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LEARN-PATTERNS(M)
1 Queue←M

2 Pnew ← ∅
3 while NON-EMPTY(Queue)
4 do

5 o = FIRST(Queue)
6 for o′ ∈M ∪ Pnew

7 do

8 p← MERGE(o, o′)
9 if CONSTRAINTS(p) ≥ mincommon

10 then

11 Pnew ← Pnew ∪ p

12 ADD(Queue, p)
13 OUTPUT(Pnew)

Figure 6.1: The algorithm that learns patterns from a set M of mentions.

the number of non-empty constraints in p. Thereby it is ensured that at least

mincommon constraints are shared. To reduce the algorithm’s time complexity, an

index data structure is used to avoid the |M |2 comparisons required otherwise.

In particular, for the surface string constraint, a separate index is generated for

each token position allowing to query for the set of mentions with a given surface

string at a given position. Generating all groups of mentions that share a given set

of surface strings in the same positions thus becomes a matter of intersecting sets

returned from the index.

Prior to merging, the mentions are stripped off the text more than tprefix words

before the first and tsuffix words after the last argument. When comparing the men-

tions in which the arguments stand at different distances, only the first t tokens

are considered, where t is the minimum distance encountered between arguments.

For the present experiments we chose tprefix = tsuffix = 2 and mincommon = 2. This

relatively small context is due to the fact that initial experiments revealed that the

two preceding and following words are most indicative. Taking more words into

account significantly increases the pattern induction time required. For example,

the phrase

“cheap flights to Athens , Greece from Heathrow airport.”

Would be trimmed to

“flights to Athens , Greece from Heathrow”
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And due to maxargDist = 4 phrases like

“Athens is my favorite city in Greece.”

would not be considered at all.

In its pure form, the algorithm generates much more candidate patterns than

could reasonably be processed further. Therefore heuristic filters are applied to

exclude potentially worthless patterns. In particular, the following steps are un-

dertaken:

• For each pattern, the number of mentions from which it was generated is

considered, and all patterns originating from less that tmerge distinct in-

stances are discarded.

• Patterns with less than mincommon constraints other than punctuation or stop

words1 are eliminated.

Initial experiments have shown (in line with results by Agichtein and Gravano

[2000]) that punctuation contains important information for extraction patterns.

Therefore, punctuation characters are treated as individual tokens. As punctuation

is disregarded by Google, the presence of punctuation characters is established in

an additional matching step as described in Section 5.5.

Filtering Patterns

In each experimental setup, one of the filtering function described in Section 6.1

is applied to all patterns. PATTERN-FILTER-CONDITION(p) is defined to al-

ways retain the top 100 best-scoring patterns according to filtering functions, i.e.

|Ppool| = 100. Thus, newly learned patterns compete against those kept from

previous iterations and may replace them. Filtering is important to exclude too

specific (e.g. “ the Acropolis in ANYARG1
, ANYARG2

” which would only ex-

tract the instance (Athens,Greece)) or too general patterns (e.g. “... ANYARG1

is in ANYARG2
...” which would also match “My birthday is in March.”). The

number of 100 has shown to be an appropriate pattern pool size in preliminary

experiments.

Matching Patterns

MATCH-PATTERNS(P ) matches each pattern in P by running a set of queries to

the Google API. For this purpose, patterns are translated to queries as described in

1as available at http://meta.wikimedia.org/wiki/Stop_word_list

http://meta.wikimedia.org/wiki/Stop_word_list
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Section 5.5.2 and then matched. The resulting set of pattern matches is then fed to

EXTRACT-INSTANCES(Mp) which identifies the argument slot fillers and thereby

generates new instances. The number of results considered for each pattern is

nummatchPatterns = 60. Note that for multiple mentions of the same instance,

only one instance is generated. However, the set of patterns generators(i) which

extracted the instance i is kept for confidence computation.

Filtering Instances

The overall goal of evaluating instances it to estimate the confidence that they

belong to the target relation. For the purpose of the experiments we compute the

confidence of an instance by averaging over the confidence that Pronto assigns to

the patterns that extracted the instance.

score(i) =

∑

p∈generators(i) score(p)

|generators(i)|

INSTANCE-FILTER-CONDITION(i) is implemented to be true for the

top pfilterInstances per cent of the newly generated instances. We chose

pfilterInstances = 50% that means, the top 50% of the newly extracted instances

are kept for the next iteration, in addition to those which have been accepted in

earlier iterations. That is, while the patten set is kept at a constant size, the output

is grown monotonically.

Iterating

The choice of the termination condition DONE greatly depends on the target ap-

plication and its requirements with respect to coverage and precision. In the ex-

periments presented here extraction terminates after a fixed number titerations of

cycles.

Table 6.1 summarizes the parameters discussed in this section and how they

are set for the present experiments. Note that these parameters have been op-

timized systematically in previous experiments but are kept general enough to

work well with all target relations under investigation.

6.3 Analysis of Results

The empirical analysis of filtering functions is based on the assessment of preci-

sion and recall as defined based on the evaluation data described in Section 5.7.

The results of the experiments are based on both an automatic verification of the

results with respect to the seven data sets and a human validation of these results.
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Size of the seed set |Inst ′| 10

Size of pattern set |P | 100

Results retrieved for each instance nummatchInstances 200 – 20

Maximum tokens between arguments maxargDist 4

Windows around arguments tprefix = tsuffix 2

Minimum support for pattern tmerge 2

Minimum number of constraints per pattern mincommon 2

Results retrieved for each pattern nummatchPatterns 60

Ratio of instances kept after filtering pfilterInstances 50%

Number of iterations titerations 5

Table 6.1: Parameter values as used during the experiments.

While the automatic evaluation has the advantages that no sampling effects occur

and that it can be obtained quickly for all experimental conditions, this comes at

the expense of two problems. First, the data sets do not necessarily reflect the

entire extension of the relation (e.g. teamOf only contains data for international

soccer players not for other sports or national leagues and the bornInYear dataset

is incomplete for even more obvious reasons). Second, name ambiguities may not

be fully resolved in automatic evaluation. To address this, two students at our uni-

versity not involved in the development of the system were given random samples

of 100 instances of the output for each relation and each type of filtering function.

Evaluation was done for all filtering functions for three relations and for two fil-

tering functions (scoresupport and scoregold) for all relations. The evaluators were

asked to verify each fact using the Web as a resource. The results suggest that

automatic evaluation strongly underestimates the system precision (on average by

factor 1.81). In fact, in almost all cases with exception of the headquarteredIn

relation, which in general is quite spurious, the precision of the system is signif-

icantly better with respect to the manual evaluation, such that we can conclude

that the precision of the system is indeed close to state-of-the-art systems such as

Espresso, which achieves precision rates of 49% - 85% on a text corpus.

In the following, several aspects of the extraction process are investigated in

detail. Primarily, the differences in output quality of the filtering functions is

discussed. A focus is put on what can be derived from the comparison with an

informed upper bound and a random baseline and on how precision and recall

interact.
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6.3.1 Relative Comparison of Filtering Functions

The impact of the choice of the filtering function on the precision of the output can

be observed in Figure 6.2. The precision of the output of the last iteration has been

plotted over the relations examined and the filtering function chosen. The results

of a two-sided paired Student’s t-test given in Table 6.2 show the significance of

the observed differences (on the automatic evaluation results). The null hypothesis

is that the results for all relations of the two filtering functions compared originate

from the same distribution. A ‘<’ or ‘>’ indicates that the null hypothesis could

be rejected at an α-level of 0.10 and a ‘<<’ or ‘>>’ indicates rejection at an

α-level of 0.05.

The significance tests show that our informed upper baseline scoregold out-

performs all other strategies and that scoresupport and scoreprec are superior

to scorerandom. However, the PMI-based evaluation measures implemented in

KnowItAll and Espresso do not perform significantly better than the baseline,

while at the same time no significant difference could be in fact observed be-

tween the filtering functions scoresupport, scorepmiEspresso
, scorepmiKnowItAll

and

scoreprec.

Figure 6.2 suggests that the lack of a clear winner is due to different output

quality for different relations.

gold support Espr. Prec. Rand. Know.

gold - >> >> >> >> >>

support << - - - > -

Espresso << - - - - -

Precision << - - - >> -

Random << < - << - -

KnowItAll << - - - - -

Table 6.2: Results of a significance test on the difference of output distributions

of the filtering functions over all relations. > indicates significantly higher results

of the approach of that row over that in the column with an α level of 0.10 and

<< of 0.05. < and << stand for lower performance respectively.

Upper and Lower Bounds of Performance

In this section, the results are discussed in the light of the baseline provided by

scorerandom as well as an upper bound provided by the informed scoregold filter-

ing function. While scorerandom incorporates no information whatsoever into its

selection, scoregold incorporates complete information about the extension of the
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Figure 6.2: Overall output precision after 5 iterations for the 7 different relations

and evaluation strategies based on automatic evaluation. Results for exhaustive

automatic evaluation (a) and sampled manual evaluation (m).
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relation and thus represents a ’fully informed’ evaluation strategy. Such complete

information would actually never be available, such that it is important to stress

that this evaluation strategy has to be regarded merely to assess the impact of

pattern filtering.

As can be observed in Figure 6.2 and has been shown with the significance

tests in Table 6.2, most filtering functions presented here perform better in terms

of precision than scorerandom and worse than the informed filter scoregold, which

is an expected result. Although the evaluation strategies based on performance

and instance-pattern correlation, as implemented in Espresso and KnowItAll do

not perform significantly better than the baseline, the small differences of 1 to 7

percentage points should not be underestimated. In fact, for comparability rea-

sons, the baseline – like all other filters – comes with a pre-filter which excludes

all patterns with only one supporting instance. It is important to emphasize that

the random selection baseline in combination with this pre-filter provides already

a non-trivial baseline difficult to outperform.

Figure 6.4 indicates that while scoregold is clearly superior, no other strategy

is a clear winner (e.g. the statistically significantly better precision of scoresupport
comes at the expense of recall).

Trading Pattern Precision and Recall

Figure 6.3 shows precision, recall, and F1-measure values for different filtering

functions averaged over runs on different relations. In Figure 6.4, precision is

plotted against recall. The informed baseline, scoregold is circled. The best-

performing uninformed strategy, scoresupport is marked in red. There is a clear

superiority of scoregold and scoresupport in terms of precision. In terms of recall,

however, the other filtering functions scorerandom, scorepmiEspresso
and scoreprec

are slightly superior. This negative correlation between recall and precision can

be observed in the output for all individual relations but is particularly apparent

for the productOf relation which is the relation for which all scoring functions

achieve highest overall precision. The reasons for the lower recall with scoregold
and scoresupport lie in the fact that many of the patterns they generate contain in-

dividual tokens that make them too specific. Manual inspection of the patterns

extracted for the locatedIn relation with scoregold mention a city, person name

or date in a position that should have been a wildcard in 48% of the cases (as op-

posed to 19% with scorerandom). Apparently these patterns do not harm extraction

precision but reduce recall.

Patterns of this degree of specificity are not valuable for extraction. In contrast,

the scorerandom strategy leads to overly specific patterns in only 19% of the cases

and is hence more productive. The problem of scoresupport becomes apparent

when considering what we call “trigger phrases” in patterns, i.e. phrases that are
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Figure 6.3: Precision, relative recall and F1-measure by filtering strategy averaged

over the 7 relations.

frequently associated with the mention of relation instances. For scoregold, nearly

all trigger phrases are related to flight reservations, law firm advertising and hotel

offers. The output of scoresupport features many more trigger words such as ad-

vertisements for different types of local medical services, schools, restaurants and

weather forecasts. Thus, scoregold and scoresupport constitute two different ways

in which a set of patterns can be too specific. scoregold prefers patterns that are too

specific in the sense that they match only one or very few instances. scoresupport
overcomes this problem by preferring patterns generated from different instances,

but there tend to be many patterns in the pattern set that are similar among each

other and thus extract the same instances.

To explore the possibility of trading precision against recall, we also investi-

gate the influence of the pfilterInstances parameter that determines instance filter-

ing as described in Section 6.2.1. The value was varied from 10 % (keeping very

few instances) to 90 % (keeping nearly all instances). Figure 6.5 gives the preci-

sion, recall, and F1-measure values for the locatedIn relation as extracted with the

scoregold filtering function and shows that changing pfilterInstances has the desired

effect of trading precision against recall while the highest F-measure is obtained

with a very permissive instance filtering, which is most likely due to the fact that

scoregold typically generates relatively precise patterns. Overall, while the pre-
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Figure 6.4: Precision over relative recall and by filtering strategy for the 7 relations

and averaged. The informed baseline, scoregold is circled. The best-performing

uninformed strategy, scoresupport is marked with squares. In the lower right cor-

ner, precision is plotted over recall averaged over all relations (automatic evalua-

tion).
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cision decreases with increasing percentage of instances accepted, the recall and

F-Measure steadily increase.

The locatedIn relation and the scoregold filter were chosen for this experiment

as this is the setup with the highest precision scores achieved and also with the

greatest variability in recall among the filtering functions.

Figure 6.5: Precision, relative recall and F1-measure over different choices of the

pfilterInstances filtering parameter for the locatedIn relation as extracted with the

scoregold filtering function.

6.3.2 Stability of Results over Iterations

When running the algorithm over many iterations, it is important to avoid as far

as possible that the pattern precision decreases over the iterations due to the in-

creasing amount of erroneous extractions. Hence, we need to show extraction

quality decreases to such an extent that too much spurious results are introduced

which render results of future iterations useless. Figure 6.6 shows precision values

achieved with the individual filtering functions at each iteration averaged over all

relations. As expected, the output generated by scoregold remains stable in terms

of precision as filtering is fully informed. scoresupport is the most stable strategy

loosing only 1.3 percentage points between iteration 2 and 5 (the average loss ex-
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Figure 6.6: Precision of output over 5 iterations by filtering function averaged

over all relations investigated. Results based on automatic evaluation. scoregold
and scoremerge are more stable than the others (grayed)

cluding scoregold is 6.6). The scores of the other strategies are plotted with gray

lines.

Furthermore one needs to show that the process does not converge to a small

number of extracted instances after too few iterations. In order to show that this is

not the case, we studied how the the number of correct extractions develops over

time (cf. Figure 6.7). As it turns out, over the first 10 iteration the output increases

steadily and lies around 40 to 50 instances per iteration.

6.3.3 Considerations on the Properties of Various Relations

Given the large quality differences reported above for the different relations, it is

important to determine factors which influence the output quality of the learning

algorithm depending on the relation. Table 6.3 shows the learned relations, sorted

by the precision scores obtained with the most successful filtering function other

than the gold standard. Along those precision scores and that of the extractions

obtained with scoregold, five values are displayed that can be expected to have an

influence on the “extractability” of the relations. The web presence value gives

the average Google result count estimate for the 2000 relation instances most fre-
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Figure 6.7: Accumulated number of correctly extracted instances learned over the

number of iterations run averaged over all relations.

quently occurring on the Web. It is meant as an indicator of how frequently the

most common instances appear on the Web. The Arg 1/2 PNs columns give the

average percentage of proper nouns in the arguments3. |Arg 1/2| length are the

respective average argument lengths.

While a much larger set of relations would be required to make conclusive

statements, the data suggest that locatedIn and productOf owe their relatively

high precision scores to the fact that the most prominent relation instances occur

very frequently on the Web, which causes a high redundancy that can be exploited

in the pattern induction process. In addition, good extraction performance seems

to be correlated with the percentage of proper nouns in the argument positions.

Proper nouns are likely to be more easily identified with patterns due to their

special treatment in the English syntax.

6.4 Summary

We have investigated how the alternative approaches to pattern filtering affect the

induction process. The conclusions of these experiments are in fact not only in-

teresting for the Pronto pattern-learning systems, but for all bootstrapping-based

systems in the sense that they shed light on the benefits and disadvantages of dif-

3Assessed with the IMS TreeTagger (http://www.ims.uni-stuttgart.de/) consid-

ering all tokens tagged NP and NPS proper nouns.

http://www.ims.uni-stuttgart.de/
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relation size P(gold) best P(best) web presence

locatedIn 34047 0.75 Espresso 0.6 55820213

productOf 2650 0.72 KnowItAll 0.49 506697

albumBy 19852 0.56 support 0.33 10686457

bornInYear 172696 0.41 support 0.31 63756

currencyOf2 221 0.52 support 0.22 1916175

teamOf 8307 0.21 Espresso 0.09 1703556

headquarteredIn 14762 0.31 support 0.08 6908710

relation Arg1 PNs Arg2 PNs |Arg1| |Arg2|

locatedIn 0.93 0.94 1.23 1.31

productOf 0.79 0.96 2.33 1.08

albumBy 0.37 0.65 2.97 1.69

bornInYear 0.97 0 1.77 1

currencyOf 0.61 0.95 1.18 1.08

teamOf 0.85 0.3 1.34 2.12

headquarteredIn 0.84 0.99 1.98 1.37

Table 6.3: Relations with properties that may influence learnability, sorted by the

result precision of the most successful non-gold filtering function.

ferent pattern evaluation strategies. In particular, we have shown the influence of

pattern filtering on extraction quality by comparing random and fully informed

filtering ( scorerandom and scoregold, respectively) to various filtering strategies

based on evaluation functions presented in the literature. The results indicate that

a relatively simple evaluation strategy, i.e. the simple support evaluation strategy

overall yields better results than more elaborate measures such as PMI, which

relies on web occurrence counts. In fact, the PMI-based scores were unable to

outperform the random baseline in a statistically significant way, while the sup-

port strategy counting solely the number of distinct relation instances from which

a pattern was generated does achieve statistical significance. This raises indeed

doubts about the appropriateness of PMI and Web-based evaluation measures in

general (compare also [Downey et al., 2005]). However, we have also shown that

PMI yields a higher recall than the newly proposed support-based strategy, which

is biased towards precision. Finally, the results also show that for each filter-

ing function the applicability strongly varies depending on the specific relation

considered and whether precision or recall is more important. As it turned out,

precision and recall can also be controlled by the strictness of the filtering that is

by varying the number of instances carried over into the next generation.

To conclude, pattern filtering (both the scoring function and the percentage

filtered out) is an important design parameter in iterative pattern induction the

choice of which strongly depends on the Information Extraction task. This chapter
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has discussed and compared various approaches. We classified them into syntacti-

cal, performance-based, inter pattern comparison, instance-pattern correlation and

support-based measures. The informed upper bound that was used shows that pat-

tern filtering (all other settings being equal) can double both precision and recall.



Chapter 7

The Influence of the Text Corpus on

Extraction Dynamics

In Section 5.4 Dependence on Redundancy was identified as Challenge 4 to pat-

tern based Information Extraction. By redundancy we mean that the same facts

(i.e. relation instances) are mentioned several times in a corpus and that relation

mentions share common features. The lack of redundancy particularly becomes a

problem when Information Extraction is performed on corpora where redundancy

is avoided on purpose. Specialized text corpora such as company intranets or

collections of scientific papers are non-redundant by design because reading and

writing the same information over and over again is costly. Yet they constitute a

valuable source for Information Extraction as they are typically more reliable and

focused than the general Web (cf. [Fagin et al., 2003] for an analysis of structure

and content of corporate intranets).

After motivating and analyzing the dependence on redundancy further, we

present in this chapter the empirical analysis of a newly developed approach to

coping with this problem when performing Information Extraction on Wikipedia

as an example of a hardly redundant corpus. The experiments show that the in-

tentionally reduced redundancy in Wikipedia leads to the need of a larger amount

of training data but that integrating Web extraction into the process leads to a

significant reduction of required training data while maintaining the accuracy of

Wikipedia. In particular we show that, though the use of the Web can have similar

effects as produced by increasing the number of seed instances, it leads overall to

better results. The approach thus allows us to combine advantages of two sources:

The high reliability of a closed corpus and the high redundancy of the Web. Most

of the results shown here were published at the ECML PKDD 2007 together with

Philipp Cimiano [Blohm and Cimiano, 2007].

In the following, we will give an overview of related work before motivating

the problem of low redundancy in more detail in Section 7.2. We then describe the
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approach taken in Section 7.3 which integrates Web extraction to improve instance

quality which is subsequently evaluated experimentally (Section 7.4).

7.1 Related Work

In the computational linguistics community, it has been shown that the Web can

in some cases be effectively used to overcome data sparseness problems (compare

[Kilgariff and Grefenstette, 2003]).

In the present study, Wikipedia is used as a corpus. Wikipedia is cur-

rently widely used as a corpus for Information Extraction from text. One ex-

ample is a study by Suchanek et al. [2008] who focus on high-precision on-

tology learning and population with methods specifically tailored to Wikipedia.

Wikipedia’s category system is exploited assuming typical naming patterns and

composition of categories that allow the system to deduce semantic relations

from category membership. In [Ruiz-Casado et al., 2005] Information Extrac-

tion from Wikipedia text is done using hyperlinks as indicators for relations

just like in the present study. As opposed to the work presented here it re-

lies on WordNet as a hand-crafted formal taxonomy and is thus limited to re-

lations for which such sources exist. Precision of 61-69% is achieved on the

hyponymy and holonymy relations which is comparable to the results presented

here. Other related work makes use of information provided in Wikipedia-specific

data structures called infoboxes [Wang et al., 2007; Auer and Lehmann, 2007;

Wu and Weld, 2007]. Brin pioneered the use of Web search indices for this pur-

pose [1999]. A recent successful system using Web data is KnowItAll which has

been extended to automatic learning of patterns [Downey et al., 2004] as well as

PANKOW [Cimiano et al., 2004]. Many studies have addressed IE based lim-

ited Web document collections of various sizes [Rosenfeld and Feldman, 2006;

Banko et al., 2007; Tomita et al., 2006; Cafarella et al., 2005].

7.2 The Problem of Low Redundancy

In Section 5.4, the presence of redundant instances has been formulated as an

assumption made when applying iterative pattern induction. Here, the intuition

of this assumption is motivated further, before the lack of redundancy in the

Wikipedia is investigated.

Take for example the relation teamOf which features soccer players and the

national teams they were playing for. This information can quite reliably extracted
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Figure 7.1: Page co-occurrences for instances of four of the test relations on

Wikipedia. The counts are displayed on the Y-axis for individual instances or-

dered along the X-axis by decreasing co-occurrence counts.

from the first sentence of the Wikipedia article about each player as can be seen

from the following examples taken from the English Wikipedia.1

Henk Fräser (born July 7, 1966 in Paramaribo, Suriname) is a former

football defender from The Netherlands.

Gerald Glatzmayer (14 December 1968 - 11 January 2001) was an

Austrian footballer who took part in the 1990 World Cup.

Gabriel Jaime Gomez Jaramillo (born December 8, 1959 in Medellin)

is a retired football midfielder who was capped 49 times and scored 2

international goals for Colombia between 1985 and 1995.

Daniel Fonseca Garis (born 13 September 1969) is an Uruguayan for-

mer footballer, now a football player agent.

Wilmer Cabrera Linares (born September 15, 1967 in Cartagena) is

a retired football defender who was capped 48 times and scored 3

international goals for Colombia between 1989 and 1998.

Guido Buchwald (born January 24, 1961) is a German former football

defender and manager.

1The version of June 30th 2009
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Diego Armando Maradona (born 30 October 1960 in Lanus, Buenos

Aires) is a former Argentine football player, and current coach of the

Argentine national side.

Edgardo Bauza (born 26 January, 1958 in Granadero Baigorria, Santa

Fe) is a retired Argentine football defender and current coach of Al-

Nasr in Saudi Arabia.

Anthony Robert Dorigo (born 31 December 1965 in Melbourne, Aus-

tralia) is a retired English football (soccer) player who played for As-

ton Villa, Chelsea, Leeds United and the England national side as a

left-back.

However, in most cases, this is also the only sentence in which national team

membership is mentioned explicitly.2 There are several obvious patterns in this

set of sentences involving the phrases “is a . . . from . . . ”(1) “is a . . . football

player—defender”(2). If all instances occur only once in these first sentences

and no seed is mentioned featuring a type (2) phrase, then also the patterns gener-

ated from the seeds will not contain a type (2) phrase. Consequently, none of their

matches will be mentioned in a type (2) phrase which will prevent the phrase to

be discovered as a reasonable pattern in the next iteration, too.

Data sparseness thus becomes a problem when trying to extract information

from hardly redundant sources like corporate intranets, encyclopedic works or

scientific databases (this is in line with observations mentioned by Wang et al.

[2007]). In fact, Wikipedia authoring guidelines explicitly instruct authors to

avoid redundancy by searching for existing or related articles about a given topic

before inserting new information [Wikipedia Community, 2009].

To quantify this phenomenon, we discuss here the distribution of co-

occurrences of relation instances in Wikipedia of four test relations taking the

Google result count estimates for searches of individual relation instances limited

to the Wikipedia site (Figure 7.1). The figure shows the counts on the Y-axis for

individual instances ordered along the X-axis by decreasing co-occurrence counts.

The labels on the X-axis give percentiles. One can see that most relation instances

do not co-occur more than 100 times (median: 15) on a document level. When

doing the same counts on the entire Web, hardly any instance occurs less than 100

times, the median lies at 48000. The effect increases when considering that page

co-occurrence does not suffice for a relation instance to be extracted. Patterns only

2In the case of soccer players, Wikipedia provides a couple of lists or category pages that

include this information. Yet, those are not generally accessible by window-based textual pat-

terns as they are used here and they are not available for most other types of information. For

work specialized in exploiting Wikipedia-specific information, refer to [Suchanek et al., 2008;

Wu and Weld, 2007].



7.3. APPROACH 131

match a limited context. In the present case, Pronto matches 10 tokens around

each link relating it to the document title. This reduces the number of times, a

candidate relation instance occurs in the corpus dramatically to an average of 1.68

(derived by counting the number of times that the top 200 relation instances for

each relation co-occur in one sentence in our Wikipedia dataset). Consequently,

a large portion of relation instances does not occurr more than once which shows

that sparseness is indeed an issue.

7.3 Approach

The approach presented here explores whether the Web can effectively help to

overcome data sparseness as a supplementary data source for Information Extrac-

tion on limited corpora. Specifically, the Web is not used to extract additional

information, but only to make up for a lack of redundancy in the small corpus. No

information found on the Web goes into the result set without being verified on

the small corpus as otherwise the benefits of the smaller corpus (higher quality,

domain specificity, availability of further background knowledge) would be lost.

The approach thus combines advantages of two sources: the high reliability of a

closed corpus and the high redundancy of the Web.

Like in the previous chapter, Pronto (cf. Section 5.5) is configured to consti-

tute a weakly-supervised pattern learning system in which patterns are induced

on the basis of a few seed examples. In this study, matching takes place both

on Wikipedia and the Web. Wikipedia is meant to be the primary source of in-

formation and the Web plays an auxiliary role. The idea for integration of the

Web content in the Wikipedia extraction is as follows: given seed examples (e.g.

(Warsaw, Poland) and (Paris, France)) of a specific relation (e.g. locatedIn)

to be extracted (appearing in the local corpus), Pronto can consult the Web for

patterns in which these examples appear. The newly derived patterns, which in

essence are a generalization of plain string occurrences of the instances, can then

be matched on the Web in order to extract new examples which are taken into

the next iteration as seeds. Then, Pronto can induce patterns from the Wikipedia

corpus with an increased set of examples (coming from the Web), thus effectively

leading to more patterns. Several variations of this approach are possible two of

which are investigated below and compared to a Wikipedia-only baseline. Learn-

ing patterns separately on the Web and on Wikipedia and exchanging instances

among the extraction processes of these sources is only one possible way of in-

tegration. In future work, it would be possible also to apply patterns induced on

one source on the other source. Yet, we observed that very different patterns were

learned in the different corpora so that it is not likely that exchanging patterns is

beneficial. In particular, patterns generated on the Web specialize in prominent el-
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WEB-WIKI PATTERN IND(Patterns Pinit−web, Patterns Pinit−wiki, Instances Inst
′)

1 Inst ← Inst
′

2 Ppool−web ← Pinit−web

3 Ppool−wiki ← Pinit−wiki

4 while not DONE

5 do

6 Mi ← WEB-MATCH-INSTANCES(Inst)
7 Ppool−web ← Ppool−web ∪ LEARN-PATTERNS(Mi)
8 EvalP ← EVALUATE-WEB-PATTERNS(Ppool−web)
9 Ppool−web ← {p ∈ Ppool−web |WEB-PATTERN-FILTER-COND(p,EvalP )}

10 Mp ← WEB-MATCH-PATTERNS(Ppool−web)
11 Inst ← Inst + EXTRACT-INSTANCES(Mp)
12 Inst ← {i ∈ Inst | PRESENT-IN-WIKI(i)}
13 EvalI ← EVALUATE-WEB-INSTANCES(Inst)
14 Inst ← {i ∈ Inst | INSTANCE-FILTER-CONDITION(i, EvalI )}
15 Mi ← WIKI-MATCH-INSTANCES(Inst)
16 Ppool−wiki ← Ppool−wiki ∪ LEARN-PATTERNS(Mi)
17 EvalP ← EVALUATE-WIKI-PATTERNS(Ppool−wiki)
18 Ppool−wiki ← {p ∈ Ppool−wiki |WIKI-PATTERN-FILTER-COND(p,EvalP )}
19 Mp ← WIKI-MATCH-PATTERNS(Ppool−wiki)
20 Inst ← Inst + EXTRACT-INSTANCES(Mp)
21 EvalI ← EVALUATE-WIKI-INSTANCES(Inst)
22 Inst ← {i ∈ Inst | INSTANCE-FILTER-CONDITION(i, EvalI )}

Figure 7.2: Combined Web and wiki pattern induction algorithm starting with

initial patterns Pinit−web and Pinit−wiki as well as instances Inst ′ maintaining two

pattern pools Ppool−web and Ppool−wiki. The grayed instructions are not executed in

the Wiki only condition and only once in the Web once condition.

ements that are typical of Web pages (e.g. the titles) and Wikipedia patterns focus

on ways of mentioning facts that are specific to Wikipedia pages (e.g. listing birth

years of peoples by year on specific pages).

Figure 7.2 describes the modification of the iterative pattern induction algo-

rithm presented in Section 5.3. It basically consists of a subsequent application

of the loop body on the Web and on Wikipedia. Web matching and Wikipedia

matching contribute to the same evolving set of instances Inst but maintain sep-

arate pattern pools Ppool−web and Ppool−wiki. This separation is done to allow for

different types of pattern representation for the different corpora (see below).

To assess the added value of Web extraction, the experiments discussed here

compare three configurations of the algorithm in Figure 7.2.
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Dual: Exactly as described in Figure 7.2, this condition iterates the bootstrap-

ping performing both, Web and wiki extraction in every iteration.

Web once: The processing runs like in Figure 7.2 but the grayed lines are exe-

cuted only in the first iteration. Thereby, the seed set is augmented once by a set

of learned relation instances. After that, processing is left to Wikipedia extraction.

Wiki only: As a baseline condition, extraction is done on Wikipedia only. Thus

the grayed lines in Figure 7.2 are omitted entirely.

An important novelty is checking each instance i derived from the Web calling

PRESENT-IN-WIKI(i). This ensures that no knowledge that is actually not present

in Wikipedia goes into the set of results. Otherwise, the extraction procedure

would not be able to benefit from the higher quality in terms of precision that the

wiki corpus can be assumed to present.

7.3.1 Extraction from Wikipedia

In the following, we will discuss how patterns are matched and relation instances

are extracted from Wikipedia in the experiments presented here. We describe

pattern structure and index creation before going into detail on the individual steps

of the algorithm in Figure 7.2.

For pattern matching on Wikipedia, this study makes use of the encyclope-

dic nature of the corpus by focusing on pairs of hyperlinks and document titles.

It is a common assumption when investigating the semantics in documents like

Wikipedia (e.g. [Völkel et al., 2006]) that key information on the entity described

on a article a lies within the set of links on that article l(a) and in particular that

it is likely that there is a salient semantic relation between a and a′ ∈ l(a). Link-

title-pairs have been the focus in several studies on Information Extraction from

Wikipedia [Culotta et al., 2006; Wang et al., 2007].

In this study, we therefore consider patterns consisting of the document title

and a hyperlink within its context. The context of 2 ∗ w tokens around the link

is taken into account because we assume that this context is most indicative of

the nature of the semantic relation expressed between the entity described in the

article and the one linked by the hyperlink. In addition, a flag is set to indicate

whether the first or the second argument of the relation occurs in the title. Each

token can be required to be equal to a particular string or hold a wildcard character.

For the experiments w = 5 was chosen. Increasing w further severely increased

the induction algorithm’s running time while bringing hardly any further payoff

in terms of quality.
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Figure 7.3: Part of a Wikipedia article along with a record in the index database

that reflects an instance of the teamOf relation and a pattern that matches this

link-title pair.

To allow for efficient matching of patterns and instances we, created an index

of all hyperlinks within Wikipedia. It consists of an accordingly indexed database

table with one row for each title/link pair featuring one column for link, title and

each context token position. Figure 7.3 depicts an excerpt from a Wikipedia arti-

cle along with a record in the index database that reflects an instance of the teamOf

relation. Below that, a pattern is shown that matches this link-title pair. The index

was created using a Wikipedia database dump from December 17th 2006. The ta-

ble has over 42 Million records. We omitted another 2.3 Million link-title-pairs for

links lying within templates. This allows us to maintain generality as templates

to not constitute free text and are a special syntactic feature of Wikipedia that

may not transfer to similar corpora. Tokenization has been done based on white

space. Hyperlinks are considered one token. Punctuation characters and common

sequences of punctuation characters as well as HTML markup sequences are con-

sidered separate tokens even if not separated by white space. HTML comments

and templates were omitted.

Instance Matching and Pattern Learning

For each of at most nummatchCandidateswiki=200 instances, WIKI-MATCH-

INSTANCES(Inst ) sends two queries to the index, one for each possibility to

map argument 1 and 2 to title and link. Like in the Web case, there is a maxi-

mum limit for matches nummatchInstanceswiki
= 50 but it is hardly ever enforced

as virtually no instance is mentioned more than three times as a link-title pair.

The same LEARN-PATTERNS(Mi) method is applied as in the study described

in the previous chapter (Section 6.2.1). Like in the Web setting, EVALUATE-

WIKI-PATTERNS(Ppool−wiki) takes into account the number of distinct instances
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which participated in the creation of a pattern. Finally, WIKI-PATTERN-FILTER-

COND(p) retains the top poolwiki = 50 patterns for matching.

Pattern Matching and Instance Generation

WIKI-MATCH-PATTERNS(P ) retrieves from the index a random sequence of

nummatchPatternswiki
matches of the pattern by selecting those entries for which

the non-wildcard context tokens of the patterns are present in the correct posi-

tions. EXTRACT-INSTANCES(Mp) then generates an instance for each distinct

title/link pair occurring in the selected index entries. No filtering is done with

EVALUATE-WIKI-INSTANCES(Inst ) and INSTANCE-FILTER-CONDITION(i) as

initial experiments revealed that pattern matches of link-title pairs produce a rel-

atively high precision. Nonetheless, these operations are mentioned in the algo-

rithm formalization because filtering may become necessary for other relations or

other corpora.

In the absence of a (application-dependant) stopping criterion, the termination

condition DONE is currently implemented to terminate the processing after 10

iterations.

7.3.2 Extraction from the Web

Given a number of seeds at the start of each of the algorithm’s iterations, mentions

of these seed instances are searched on the Web. This is done as described in

Section 5.5 and most settings have been chosen analogously to the experiments

presented in Section 6.2.

For each instance in the current set of extracted instances Inst a fixed number

nummatchInstancesweb of results is retrieved for a maximum of numinstanceLimitweb

instances. These mentions serve as input to pattern learning if the arguments are at

mostmaxargDist tokens apart. For the present experiments we set maxargDist = 4,

nummatchCandidatesweb
= 50, and nummatchInstancesweb

= 200.

LEARN-PATTERNS generates more abstract versions of the patterns using the

same setup as in Section 6.2.

EVALUATE-WEB-PATTERNS(Ppool−web) is done using the scoresupport evalu-

ation strategy which was shown to be effective and fast at the same time. Es-

sentially it is based on the number of different instances from which the pattern

has been derived through merging. Evaluation is followed by filtering applying

WEB-PATTERN-FILTER-COND(p) which ensures that the top poolweb = 50 pat-

terns are kept. Note that like in Chapter 6, the patterns are kept over iterations but

old patterns compete against newly derived ones in each iteration.

MATCH-WEB-PATTERNS is also done with the same settings as Web pattern

matching in Chapter 6. For the present experiments nummatchPatternsweb
= 200.
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Parameter Web Wikipedia

Size of the seed set |Inst ′| 10,50,100 10, 50, 100

Size of pattern set |P | 50 50

Number of instances mat-

ched

nummatchCandidates 50 50

Results retrieved for each

instance

nummatchInstances 200 200

Maximum tokens between

arguments

maxargDist 4 -

Windows around argu-

ments

tprefix = tsuffix 2 10

Minimum support for pat-

tern

tmerge 2 2

Minimum number of con-

straints per pattern

mincommon 2 2

Results retrieved for each

pattern

nummatchPatterns 200 200

Instances kept after filter-

ing

pfilterInstances all in wiki all

Number of iterations titerations 10 10

Pattern filtering function score support

and wiki

presence

N/A

Table 7.1: Summary of parameter values for Web and Wikipedia extraction.

The above-mentioned PRESENT-IN-WIKI(i) check ensures that Web extrac-

tions for which no corresponding link-title pair is present in the Wikipedia are

eliminated. This way, the high quality of content of Wikipedia is used to filter

Web results and only those instances are kept that could in principle have been

extracted from Wikipedia. Yet, the Web results increase the yield of the extrac-

tion process. Table 7.1 summarizes the parameter settings for Wikipedia and Web

matching.

7.4 Experimental Evaluation

The goal of this study is to show how Information Extraction from the Web can

be used to improve extraction results on a smaller corpus, i.e. how extraction on

a precise, specialized corpus can benefit from a noisy but redundant source. We



7.4. EXPERIMENTAL EVALUATION 137

Figure 7.4: F-measure for results derived with different configurations and seed

set sizes. The mark << is to indicate that output quality is statistically signifi-

cantly worse than all other runs.

do so by running the system in two configurations employing Web extraction and

an additional baseline condition. As the assumption is that Web extraction can

make up for the lack of redundancy which is particularly important in the begin-

ning of the bootstrapping process, we compare how the different configurations

behave when provided with smaller and bigger amounts of seed examples. The

experimental conditions have been described in Section 7.3. The Dual condition

alternates Web and Wikipedia extraction. The Web once condition, performs Web

extraction in the first iteration only and the Wiki only baseline restricts extraction

to Wikipedia during the entire process. The evaluation looks at extraction results

of the three configurations running for 10 iterations. The 10, 50 and 100 most

prominent relation instances were used as as seed sets to test how the size of the

seed set influences the ability of the various relations to bootstrap the extraction

process.

7.4.1 Evaluation Measures

Like in the other chapters, we use precision and relative recall measures to eval-

uate system output. As described in Section 5.7.2. These measures compute the

ratio of correctly found instances to overall instances extracted (precision) or all

instances to be found (recall).
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7.4.2 Impact of Web Extraction

Figure 7.4 presents results of the extraction runs with the different configurations

starting with seed sets of different sizes. The figures show the F-measure af-

ter 9 iterations of the extraction algorithm. The scores are averaged over the

output on the seven relations from the testbed (albumBy, bornInYear, curren-

cyOf,headquarteredIn,locatedIn, productOf, teamOf – cf. Section 5.7.2). Preci-

sion for the Web-supported configurations ranges between 0.32 and 0.55 depend-

ing on the configuration. The wiki only conditions with 10 and 50 seeds returns

almost exclusively the seed instances (95% for 10 seeds, 25% for 50 seeds).

One can observe that a purely wiki-based extraction performs very bad with

10 seeds and still far worse than the other configurations when comparing output

bootstrapped from 50 seeds. A two-sided pairwise Student’s t-test indicates in fact

that the Wiki only strategy performs significantly worse than the other Web-based

configurations at a seed set size of 10 (α = 0.05) as well as for a seed set size of

50 (α = 0.1). This clearly corroborates the claim that the integration of the Web

improves results with respect to a Wiki-only strategy at 10 and 50 seeds.

In a more detailed account, extraction only from the wiki maintains only the

seed set over the entire process when starting with 10 seeds and with 50 seeds

only gains 113 instances on average between iteration 3 and 9 after extracting 320

in the first 3 iterations. In particular, with 10 seeds, the wiki only strategy does not

find any useful patterns in the mentions of the seeds provided, while for 50 seeds

this is the case for only two of the seven relations. Interestingly, the solely wiki-

based extraction yields more correct results when starting with 100 seeds. This

is due to one outlier, the albumBy relation, for which the wiki-based extraction

with 100 seeds finds a set of patterns that extracts over 2500 correct instances

in the first three iterations while none of the other configurations even reaches

2500 results in nine iterations. The reason is that the system learns that the prefix

“debut album” or a preceding headline “discography” are very good indicators for

an album name within an artist’s Wikipedia document thus making use of the rare

cases of redundancy of Wikipedia.

Figure 7.5 presents the same data in plots of precision and recall averaged over

the three iterations. Like in the experiments from the previous chapter, the behav-

ior of the various relations with regard to extraction quality varies strongly. Still,

in almost all setups, the dual method and the web once clearly outperform the wiki

only setup. For the 10 seed case, no additional instances at all were found in the

wiki only setup. The ability to cope with so few seeds is clearly the advantage of

working with a high-redundancy corpus like the web. For the albumBy, locatedIn

and bornInYear relations it turns out that for the two methods that query the Web,

going from 50 to 100 seeds actually reduces the quality (observe this by noticing

that the circled datapoint is not highest and rightmost for the green variant). This
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Figure 7.5: Precision and recall of extraction results after 9 iterations averaged

over the relation starting with 10, 50 and 100 seeds. Results from the same con-

figuation are connected by an arc for readabiliby reasons. The results for the 100

seed setup are circled.
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Figure 7.6: Correct yield counts after 3, 6 and 9 iterations. Triangles mark Web

once results, diamonds Dual and squares Wiki only.

is plausible when considering that the seeds provided come from a list ranked by

prominence. Less prominent examples may increase the risk of false instances

introduced.

7.4.3 Behavior over Iterations

Figure 7.6 shows the number of correctly extracted instances averaged over the

test relations after 3, 6 and 9 iterations. 50 seeds have been provided as train-

ing. In the wiki only configuration (square markers) the system is able to quickly

derive a large number of instances but shows only slow increase of knowledge

after iteration 3. The other configurations show a stronger increase between the

iterations 3 and 9. This confirms the expected assumption that the low number of

results when extracting solely from the wiki is due to an early convergence of the

process. It is interesting to observe that the Web once condition slightly outper-

forms the Dual condition. We hence assume that the major benefit of integrating

the Web into the process lies in the initial extension of the seed set. Further investi-

gation of this observation would require more iterations and further modifications

of the configuration.

Note that the algorithm as presented in Figure 7.2 is simplified in one respect.

Initial tests revealed that performing the PRESENT-IN-WIKI(i) filter in every iter-

ation was too strict so that bootstrapping was quenched. We therefore decided to

apply the filter in every third iteration.3 A considerable number of – not necessar-

3As the filter is always applied to all instances in Inst this does not lead to the presence of

non-wiki patterns in the final results. Yet, the non-wiki patterns seem to help bootstrapping before

they are eliminated.
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ily wrong – instances were filtered out when applying the filter. Consequently the

figure only present results after iteration 3, 6 and 9 for comparability reasons.

Overall, we can conclude that in this setting using the Web as background

knowledge allows us to produce more recall in hardly redundant corpora while

maintaining the precision level. Our results show that the number of seeds re-

quired can be drastically reduced with the Web matching which reduces the

amount of manual effort required.

7.5 Conclusion

The results indicate that Web-based information extraction can help improving

extraction results even if the task at hand requires extraction from a closed, non-

redundant corpus. In particular, it turned out that with extraction based on 10 seed

examples and incorporating the Web as “background knowledge” better results

can be achieved on average than using 100 seeds solely on Wikipedia. The poten-

tial of the approach lies in the fact that the additional information does not require

formalization (like e.g. in WordNet) nor is it limited to a particular domain.

In practical applications, one can improve results by including additional tech-

niques like part-of-speech tagging and named-entity tagging that have been omit-

ted here to maintain generality of the study. In addition to the title-link pairs

considered here, further indicators of relatedness can be considered to increase

coverage.

The approach taken here may be particularly suited in domains like e-Science,

corpora intranets or legal affairs because for these domains large non-redundant

text collections are available.
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Chapter 8

Efficient Pattern Induction with

Data Mining Methods

A key step in the pattern induction framework is the generation of appropriate

patterns (step 2 (learn patterns) in Figure 5.1). Various algorithms and imple-

mentations have been developed and applied in the literature. In this chapter, an

efficient and versatile algorithm is presented. In order to motivate our work, we

present here a set of design objectives that arise.

• Objective 1: Quality of patterns. Clearly, the induction process needs

to produce patterns that are general enough to cover not only the training

examples but as many correct potential extractions as possible while at the

same time do not produce too many spurious examples.

• Objective 2: Induction speed. Furthermore, the time an induction al-

gorithm takes to come up with patterns is an important factor. It deter-

mines the overall runtime of the system and may make the use of large

amounts of data prohibitive. Fast, low-quality induction results may in

some cases be favored over slower ones because there exist techniques that

make use of bootstrapping mechanisms to compensate for low-quality in-

duced patterns by means of several applications of the induction process

[Riloff and Jones, 1999; McIntosh and Curran, 2009].

• Objective 3: Feature richness. Machine Learning models make use of

the presence of information about the textual input in form of features. As

outlined in Section 4.2.1, a wide range of features has been found applicable

to IE. Yet, not all induction algorithms can incorporate a rich set of features.

• Objective 4: Clear parameters of model. An important challenge in

IE is the adaptivity to new tasks (cf. Section 3.4). In order to make a
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model adaptable (regardless if this is done manually or automatically), it

is of advantage to have a small, well understood set of parameters. Such

parameters can be the pattern class, the minimum length of a pattern or other

criteria that decide which patterns should be accepted. Some algorithms

have less clear (implicit) parameters such as the order in which instances

are processed.

In practical applications, the degree to which these objectives are fulfilled need

to be traded against each other. For instance, a feature-rich model with clear

parameters may be computationally expensive.

As outlined in Section 5.6.2, pattern induction can be viewed as the explo-

ration of a space of potentially applicable patterns which is defined by the present

textual examples. When operating in a semi-supervised Web-scale scenario, there

is usually a large amount of text examples to incorporate into the mining process.

Hence, the space of potential patterns becomes extremely huge which renders pat-

tern induction computationally complex. The algorithm presented in this chapter

addresses in particular the scalability aspect (Objective 2) by employing well-

understood mining techniques. The presented solution also allows for the use of

arbitrary token-based features (Objective 3) and resorts to a small set of parame-

ters (Objective 4). The quality of patterns in a concrete scenario (Objective 1) is

subject of the experimental evaluation (Section 8.2). We show that the optimized

algorithm here is able to gain a significant amount of extraction speed without

reducing the quality.

As identified in Section 5.6.2, there are several general approaches to pattern

induction.

• Many algorithms are based on organizing mentions by some criterion and

then performing a generalization step. For instance, Brin [1999] groups

mentions by common infixes and URL prefixes and then generalizes by

means of finding the longest common substring. The Snowball system

[Agichtein and Gravano, 2000] groups mentions using vector space clus-

tering and creates patterns by a median selection and bag-of-words vector

aggregation.

• A frequently used technique is pairwise generalization. This approach is

also referred to as “bottom-up” (cf. Section 2.3.1) because processing

starts from concrete text sequences and abstracts from them towards more

and more abstract patterns. There are several variants of these approaches

some of which work exhaustively, generalizing over all possible pairs

[Rosenfeld and Feldman, 2006], others produce different results depending

on the order in which the mentions are processed [Ruiz-Casado et al., 2005]

or on random choice [Pantel et al., 2004].
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• Conversely, some implementations operate top-down starting with a very

general pattern and refining it based on evidence. To reduce complexity, fea-

tures can be added from one mention at a time [Ciravegna, 2001]. Ciravegna

also excludes mentions used once from further processing which makes the

algorithm’s output depending on the order of processing.

• A further approach is to use a summarizing data structure to get an overview

of the data and from that generate appropriate patterns. Ravichandran and

Hovy [2001] do so by counting all mentions of all substrings in a suffix tree

and Talukdar et al. [2006] induce an HMM for pattern generation.

• Finally, a trivial solution to come up with pattern is what we introduced

in Section 4.2.2 as underspecified representation. All mentions are trans-

lated into patterns. The abstraction takes place only by not representing all

aspects of the mentions. Such approaches leave it to other stages of the algo-

rithm to cope with potential abundance [Snow et al., 2004; Xu et al., 2007;

Yangarber, 2003].

The experiments in Chapters 6 and 7 perform exhaustive search for patterns

which fulfill certain criteria (e.g. minimum support). We refer to this as its stan-

dard implementation. Thereby, the standard implementation relies on a bottom-up

procedure. It allows using arbitrary token-based features and operates with a small

set of parameters but at high expenses in terms of processing time. More specifi-

cally, the algorithm groups patterns if they share a minimum number mincommon

of words at the same positions and generalizes (“merges”) over such groups by

keeping all shared constraints and eliminating all others. To avoid too general

patterns, a minimum number of non-wildcard tokens is enforced. To avoid too

specific patterns, it is required that the merged mentions reflect at least tmerge dif-

ferent instances (support). In order to find patterns which can be merged, the men-

tions of relation instances are aligned by the instance argument positions. Then,

an index data structure is created for each token. The indices are able to efficiently

return for each token position p and each word w the set g(p, w) of mentions that

have w at position p. The merging algorithm explores combinations of p-w pairs

for non-empty intersections which indicate mentions that can be merged. Ex-

ploration of these combinations is done in a breadth-first-search manner. Note

that this abstraction step takes place for all mentions of all seed instances at a

time. Thus, the generalization is effectively calculating the least general gener-

alization (LGG) of patterns as typically done in bottom-up concept learning (cf.

Section 2.3.1) or ILP approaches (compare [Muggleton and Feng, 1990]) and is

closest to the bottom-up procedures discussed above.

This chapter experimentally compares the standard implementation to an im-

proved implementation with regard to time efficiency while maintaining quality,
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the set of parameters and the ability to incorporate arbitrary (finite domain) token-

based features. Most of the work presented in this chapter together has been

published with Philipp Cimiano at the Ontology-Based Information Extraction

Workshop at KI 2008 [Blohm and Cimiano, 2008]. The chapter is organized as

follows. In the following section, the approach is outlined. In particular, the

Apriori algorithm is introduced in Section 8.1.2 after reviewing related work. In

Section 8.1.3, we describe how the induction of IE patterns can be viewed as a

Frequent Itemset Mining problem that can be solved with Apriori. Before giving

some concluding remarks, we present experimental results in Section 8.2 that in-

dicate that modeling patterns as a collection of constraints which are selected by

means of Frequent Itemset Mining increases the speed of pattern induction while

maintaining the same level of quality.

8.1 Pattern Induction as Frequent Itemset Mining

The approach presented here is based on translating textual mentions of a specific

relation into set representations and using the Apriori algorithm to find patterns

in these mentions that exceed a certain minimum frequency (support). The task

of finding frequent subsets within a collection of sets is typically called Frequent

Itemset Mining (FIM). The approach presented here can thus be considered to

consist of the creation of a summarizing data structure in combination with a

bottom-up analysis of the data.

The mining for frequent itemsets is a subtask of Association Rule Mining

and as such has been studied extensively with applications like market analysis in

mind. Association rules are used to derive statements like “Customers who bought

product X usually also bought product Y” from transaction databases. A transac-

tion t ∈ DB constitutes a shopping process with several items a from an alphabet

of items A. DB is a multiset of subsets of A because transactions with the same

items may re-appear. In the above example, A would correspond to a merchant’s

product line-up, each transaction t would correspond to one purchase of one or

more products by a customer and DB would correspond to all transaction as they

would be recorded by a cash register.

In a database DB of transactions the frequent itemsets F ⊂ 2A are defined as

those sets that occur at least freqmin times as subset of a transaction, i.e.

F = {f ∈ 2A||{t ∈ DB|f ⊆ t}| ≥ freqmin}

In the shopping example, the frequent itemsets at a minimum support of

freqmin = 4 would be all the sets of items that have been purchased together

at least four times regardless of what other items may have been purchased with

them during these four or more transactions.
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8.1.1 Related Work

While an overview of the related work in pattern-based IE is given in Chapter 4

and specific focus on various pattern induction algorithms is put in Section 5.6.2,

this section focuses on related publications with regard to the use of Frequent

Itemset Mining.

The field of Association Rule Mining goes back to seminal work by Rakesh

Agrawal [1994] and his colleagues at IBM who also developed the Apriori algo-

rithm. Extensions of this work have been developed in particular with respect to

efficiency [Mueller, 1995] and the introduction of hierarchical background knowl-

edge [Srikant and Agrawal, 1997]. A comprehensive overview of Association

Rule Mining including further algorithms has been presented by Lars Schmidt-

Thieme [2007] with a particular focus on mining complex structures studying

application scenarios from the field of Web usage mining.

A similar approach to the one presented here is that of Jindal and Liu [2006].

They use Sequential Pattern Mining – a modification of Frequent Itemset Mining

to derive textual patterns for classifying comparative sentences in product descrip-

tions. Due to their way of encoding sequence information, their model is not able

to account for several constraints per word. Additionally, the scalability aspect

has not been focus of their study as mining has only be performed on a corpus of

2684 sentences with a very limited alphabet.

8.1.2 The Apriori Algorithm

Apriori [Agrawal and Srikant, 1994] is an algorithm for finding all frequent item-

sets given a database and a frequency threshold. The algorithm identifies all fre-

quent itemsets via breadth-first search in a graph representing all possible itemsets

with connections among those that can be derived from each other by adding or

removing one element. Apriori’s optimization is based on the observation that an

itemset f of size |f | = n can only be frequent in DB if all its subsets are also

frequent in DB (this is referred to as antimonotone property of support). Apriori

thus significantly reduces the amount of itemsets that need to be explored by first

deriving all frequent itemsets of size n = 1 and then progressively increasing n

so that the above subset condition can be checked when generating the candidates

for n+1 as all subsets of size n are known. Figure 8.1 formalizes the algorithm in

pseudocode. It stores all frequent itemsets of size n in a set Fn (line 6) after veri-

fying for each itemset that it occurs at least freqmin times in DB (lines 5,6). The

set of candidates C1 for the first iteration is given by all elements of the alphabet

(line 1). For the following iterations Cn+1 is then generated by taking all elements

of Fn and combining them if the condition MERGEABLE(f, g) is fulfilled (line

7), which makes sure that f and g overlap in n − 1 elements. PRUNE(Cn+1, Fn)
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APRIORI(Alphabet A,Database DB ⊂ 2A, Threshold freqmin)
1 C1 ← {{a}|a ∈ A}
2 n← 1
3 while Cn 6= ∅
4 do

5 ∀c ∈ Cn : COUNTSUPPORT(c,DB)
6 Fn ← {c ∈ Cn|SUPPORT(c) >= freqmin}
7 Cn+1 ← {f ∪ g|f, g ∈ Fn ∧ MERGEABLE(f, g)}
8 Cn+1 ← PRUNE(Cn+1, Fn)
9 n← n+ 1

10 return F1 ∪ . . . ∪ Fn

Figure 8.1: The Apriori algorithm.

removes all itemsets c from Cn+1 (which all have length n + 1) for which one

or more of all possible size n subsets of c are not contained in Fn which is the

above-mentioned necessary condition for c to be frequent (line 8).

The performance of the Apriori algorithm depends on the efficient imple-

mentation of the operations COUNTSUPPORT(c,DB), MERGEABLE(f, g) and

PRUNE(C, Fn). It is common to use a trie data structure (also called prefix tree)

for this purpose. Given an arbitrary total order on A, one can represent the item-

sets as ordered sequences with respect to that order. Tries are trees that represent

sequences as paths in the tree along with their frequency counts. After construct-

ing a trie from the DB, one can find and count non-continuous subsequences

of DB entries very efficiently, which is the task of COUNTSUPPORT. Similarly,

MERGEABLE and PRUNE can be implemented as traversal operations on the trie

(as described in [Mueller, 1995] and [Schmidt-Thieme, 2007]).

Figure 8.2 shows a subset of the variable assignment during one execution of

the algorithm along with a visualisation of the trie. Subscripts indicate frequency

counts. Struck-out nodes have been generated by line 7 in iteration 2 but but they

are not frequent enough to be kept. The grayed struck-out nodes (the ones below

“a2”) and were directly pruned away in line 8 because the intersections of {a, b}
and {b, d} were not frequent enough. Only the one invalid candidate (the struck-

out“d1” under “b′2”) was kept for the 3rd iteration and eliminated in line 6 because

the counts to not exceed the minimum support.

8.1.3 Mining for Text Patterns with Apriori

The general idea of applying frequent itemset mining for text pattern induction is

that a text pattern "flights to *, *" can be considered the frequent item-
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DB = {{a, b, c}, {a, b, c, d}, {c, d}}

freqmin = 2

F1 = {{a}, {b}, {c}}

F2 = {{a, b}, {a, c}, {b, c}, {b, d}, {c, d}}

F3 = {{a, b, c}}

C3 = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}

C4 = {}

a2

b2

c2 d1

c2

d1

b2

c2

d1

d2

c3

d2

d2

Figure 8.2: Example data for the execution of Apriori

set of the set of text mentions it has been generated from. We consider here an

example with the following DB.

DB = { "We offer flights to London, England.",

"I look for flights to Palo Alto, CA."}

We use a specific one-to-one mapping of text sequences to sets of integers

that encodes each feature of the sequence as an integer item. Frequent itemsets

among those sequence representations correspond to frequent patterns in the con-

text of relevant instances. Some modeling of the nature of items is necessary to

ensure that, in spite of the set nature of the itemsets, word order is preserved and

to allow for additional constraints on words (e.g. part-of-speech). Specialized se-

quence mining algorithms have been developed (e.g. the one used by Jindal and

Liu [2006]). Yet, in using them, it is not straightforward to encode multiple con-

straints per token. This is why we use in this chapter the more general model of

itemsets and encode the position as described below.

We use the notion of constraints for describing the textual mentions and

patterns. Each constraint has a type, a position and a value. A constraint is

fulfilled for a given text segment if the value is present at the given position in

a way described by the constraint type. The positions are the token numbers

(aligned by the positions of the arguments). Feature types can be for example
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surface string, capitalization and part-of-speech with their respective sets of

possible values. The textual mention "We offer flights to *, *" may

be represented as the following set of constraints (subscripts of feature types

denote positions):

surface2 = we

capitalization2 = true

surface3 = offer

capitalization3 = false

surface4 = flights

capitalization4 = false

surface5 = to

capitalization5 = false

surface6 = ,

capitalization6 = false

We then number the arguments as follows: 0 and 1 are reserved for the argu-

ments. 2,3,4 are the tokens before the first argument (if tprefix is 3) followed by

the tokens from between the arguments. The last tsuffix numbers are reserved

for the tokens coming after the last argument.

To make these attribute-value pairs accessible to FIM, we encode each con-

straint as a positive integer value using a function encode : Type × Position ×
V alue→ N for which an inverse function decode exists that decodes the encoded

information.

One can think of this as the process of first “flattening” the structured

information contained in the constraints to items like

{ surface 2 we , capitalization 2 true ,

surface 3 offer , capitalization 3 false ,

surface 4 flights , capitalization 4 false ,

surface 5 to , capitalization 5 false ,

surface 6 COMMA , capitalization 6 false }

and subsequently translated to integer values:
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{987, 435, 656634, 4235, 234, 6453, 64, 242, 786, 89}

More specifically, encode is defined as follows because this is a function for

which given con and pos value can be reconstructed from the result by simple

arithmetics (see decodevalue below).

encode(con, pos, value) =
(value ·maxCon + (con− 1)) ·maxPos + pos

where con is the number of the constraint type, pos the position and value is

the value that the constraint takes. The remaining variables reflect the respective

maximal values with respect to the given database. If for example we wanted to

encode that at position 2 the constraint surface has the value “offer”, we would

encode look up a dictionary id for “offer” (e.g. value = 7), and a constraint id

for surface (e.g. con = 3). With maxCon = 8 and maxPos = 20, one would

encode:

encode(surface, 2, “offer′′) = 7 ∗ 8 ∗ 20 + (2 + 20 ∗ (3− 1)) = 1162

Decoding a value at a given position and of a given constraint type would

amount to computing:

decodevalue(con, pos, code) =
code

maxCon∗maxPos+(pos+maxPos∗(con−1))

As shown in [Borgelt and Kruse, 2002] it leads to performance gains with re-

spect to time and memory complexity if the items are numbered with decreasing

frequency of occurrence and to process the item numbers with increasing natu-

ral order in the trie. Intuitively, this is due to the fact that the order changes the

shape of the trie and consequently the order in which sets are eliminated from

further exploration. When focussing on frequent words early-on, expensive alter-

natives, namely infrequent combinations of frequent items, are excluded earlier.

To make use of these performance gains, we assume constraint type and position

to be equally frequent while values (in particular words) strongly differ in fre-

quency. Hence, we identify each word by its rank on a corpus word count list and

design encode such that the magnitude of the output is particularly sensitive to the

constraint value.
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During the application of Apriori, only those subsets are retained that reflect a

frequently occurring textual pattern:

{6453, 64, 242, 786, 89}

This set is smaller, because the codes for the non-frequently occurring con-

straints are eliminated. As an example the text fragment “we offer” may be less

frequent and some of the capitalization constraints also. It is the assumption of

this approach that the remaining (frequent) constraints are exactly those which

reflect the text fragments that are typical of mentions of the target relation.

By means of decodevalue, the textual representation of the pattern can be re-

constructed from the remaining numbers:

"flights to *, *"

Apriori generates all patterns that exceed a given frequency threshold. Inevitably,

this yields multiple patterns that are subsumed by each other (e.g. if " * was

born in * " is frequent, then " * was * in * " is frequent as well). In

order to avoid such too general patterns and at the same time avoiding too specific

ones (e.g. "Wolfgang Amadeus * was born in * "), we introduce the

following rule for removing more general patterns: if pattern a has all constraints

also present in b and one more, b is removed unless SUPPORT(b) is at least 20%

higher than SUPPORT(a). This rule is applied starting with the smallest patterns.

Experiments showed that the threshold of 20% leads to a generally rather appro-

priate set of patterns. The remaining unwanted patterns are left to be eliminated

by further filtering.

For the purpose of the experiments presented here, we used the following four

types of constraints for con: The surface string of the words after a transformation

to lower case. A Boolean constraint capitalization indicating if the first letter of

the original surface string was a capital letter and the number of tokens at the

argument position for both arguments.

8.1.4 Limitations of the approach

The above-described method is applicable whenever a pattern can be described

with a limited set of constraints. The number of constraints grows rapidly as soon

as features with a complex structure (e.g. parse-trees, annotations w.r.t. a formal

ontology etc.) need to be taken into account. In general, the principle of Frequent

Itemset Mining has been extended to complex structures like sequences of sets,

sequences with wildcards of arbitrary length [Schmidt-Thieme, 2007] and items
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structured in a taxonomy [Srikant and Agrawal, 1997]. A more complex modeling

with frequent itemset mining is applied in Chapter 9.

8.2 Experimental Evaluation

The goal of the experimental evaluation is to demonstrate the advantages of mod-

eling the pattern abstraction subtask of iterative pattern induction as a frequent

itemset mining (FIM) problem. We do so by comparing the performance achieved

by the new itemset-based implementation with the abstraction algorithm we pre-

viously used (cf. Section 6.2.1). Most studies in Information Extraction do not

report time efficiency of the employed pattern induction algorithms or even over-

all running times. This study thus takes an initial step to analyze the impact of the

induction algorithm on runtime behavior in a large scale setting. Our study clearly

shows that the modeling of pattern induction as a standard Data Mining problem

is possible and beneficial. A more in-depth study of extraction performance would

require a common evaluation dataset for large-scale Web relation extraction or at

least a common basis of implementation.

8.2.1 Experimental Setup

The experiments were conducted on an Intel(R) Xeon TM dual processor sys-

tem with Hyper-Threading technology running at 3.2 GHz. The system ran on a

JavaTM 1.5 Virtual Machine with 2.6 GB RAM available.

To give an objective measure for temporal performance, we use the Extraction

Rate that is the number of correctly extracted instances TP over the duration D

of the extraction process in seconds:

Ex =
TP

D

D was measured by logging start and end times of experimental runs in the

file system.

8.2.2 Comparison with Previous Abstraction Algorithm

To assess the performance of the FIM version of Pronto, we compare precision,

recall and F-measure with results of the standard configuration consisting in a

bottom-up procedure for merging patterns described previously in Chapter 6.

Figure 8.3 shows precision, recall, F-Measure and the extraction rate for

three configuration of the system: the standard configuration (using the best-
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Parameter standard

and FIM-

Pronto

FIM-Pronto

tuned

Size of the seed set |Inst ′| 10 10

Size of pattern set |P | 100 100

Results retrieved for each

instance

nummatchInstances 200 – 20 200

Maximum tokens between

arguments

maxargDist 4 4

Windows around argu-

ments

tprefix = tsuffix 2 2

Minimum support for pat-

tern

tmerge 2 2

Minimum number of con-

straints per pattern

mincommon 2 2

Results retrieved for each

pattern

nummatchPatterns 200 200

Instances kept after filter-

ing

pfilterInstances top 50% top 50

Number of iterations titerations 5 5

Pattern filtering function score support or

N/A.

N/A

Table 8.1: Parameter values as used in the experiments with Pronto for the com-

parison experiments.

performing setup from the study presented in Chapter 6), the FIM-Pronto con-

figuration which uses the proposed modeling of the learning problem with all

parameters unchanged and FIM-Pronto tuned for which the parameters have been

optimized for the new learning algorithm. In particular, as FIM-Pronto is more

efficient than the standard setup, the system can process a higher number of in-

stances, such that we set the number of instance matched (nummatchInstances) to

200 (versus a decreasing number as indicated in Table 8.1 for the standard con-

figuration) and accept the top 50 instances at each iteration instead of the top

50%. Overall, there is a small superiority of FIM-Pronto over the standard ver-

sion in terms of precision and recall (0.33 vs. 0.29 and 0.15 vs. 0.11). Most im-

portantly, there is a clear superiority in terms of extraction rate (0.19 vs. 0.05

instances/second). This difference is statistically significant according to a two-

sided paired Student’s t-test with an α-Level of 0.05. In addition to that, a perfor-

mance gain can be achieved by optimizing the parameters of the overall system
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Figure 8.3: Precision, recall, F-measure and extraction rate for the individual con-

figurations averaged over all relations.

to the properties of the new learning algorithm (FIM-Pronto tuned). The effect

can be observed in Figure 8.4 where we compare the F-measure results of the

FIM configurations with the classic configuration individually for the different

relations.

It is important to note that in principle there are no reasons for any of the

abstraction algorithms to extract instances of better quality because they both ex-

plore all possible frequently occurring patterns in a breadth-first-search manner.

Differences are due to to three minor reasons: (1) There are minor differences in

modeling (see below), (2) pattern filtering directly counts from Apriori’s support

counts and thus count the number of supporting mentions as opposed to support-

ing instances and (3) the fact that learning was cut off after one hour per iteration

which was frequently the case with the standard induction algorithm.

One example of slight modeling differences which influenced performance is

the treatment of multi-word instances. Pronto’s pattern formalism allows it to gen-

erate queries in a way that differs in the representation of the argument wildcards

when translated to search engine queries. The algorithm has to decide whether

to insert one wildcard ∗ in an argument position (e.g. "flights to *, *",

nearly always matching exactly one word like in “flights to Seattle, Washington”)

or two (e.g. "flights to * *, *" allowing for two or more words like in

“flights to San Jose, California”). The standard version keeps all mentions in

memory during learning and takes the number of words in the argument of the
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Figure 8.4: Relative differences in F-measure of extraction results with FIM for

the individual relations compared to classic configuration.

first mention used for pattern creation as sample for the number of wildcards.

The FIM version encodes the fact that an argument has more than one word as

an additional constraint and consequently adds an item for it into the itemset. If

this item is contained in a learned frequent itemset, a double wildcard is inserted.

The strong differences in the albumBy and bornInYear relations can be explained

in that way. The FIM version learns in the above way that person names have

typically length 2 and birth years always have length 1 while the standard induc-

tion approach, which only takes individual sample instances into account, shows

a greater variability here. That is the standard approach would be more likely

to accept erroneously outputting multi-word expressions like “North Carolina” as

birth years.

As indicated in Figure 8.5, the clear benefit of the FIM abstraction step lies

in its runtime behavior. The duration of a pattern generation process is plotted

over the number of sample instances to be generalized. To measure these times,

both learning modules were provided with the same sets of mentions isolated from

the rest of the induction procedure. The FIM shows a close to linear increase of

processing duration for the given mention counts which reflect the range encoun-

tered in practice. Even though implemented with a number of optimizations, the

standard induction approach clearly shows a more than proportional increase in

computation time w.r.t. the number of input mentions.
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Figure 8.5: Time in seconds taken by a run of the classical induction algorithm

(squares) and the FIM-based algorithm (circles) over the numbers of sample men-

tions provided for induction.

8.2.3 Discussion

The experiments show advantages of modeling textual mentions as itemsets and

applying Apriori as an established Frequent Itemset Mining algorithm for this

purpose. The key advantage lies in the fact that all individual constraints are inde-

pendent from each other. Other summarizing data structures such as suffix trees as

used in [Ravichandran and Hovy, 2001] or the automaton-based HMM model in

[Talukdar et al., 2006] do not allow introducing a wildcard within a text sequence

or keeping intact one piece of information (e.g. capitalization) and eliminating the

surface string. This is due to the fact that both models are built on counting all

sub-strings of the present text sequences. Counting all alternatives with wildcards

at all positions would increase the computational complexity because there is an

exponentially large amount of possible subsequences with wildcards added.

Modeling patterns as an aggregation of constraints which reflect small pieces

of information also allows for high flexibility in pattern design. For example, in

the new approach, argument length is implicitly learned by the algorithm as a fur-

ther constraint on the positions. This way, the patterns for the bornInYear relation

correctly reflect that the first argument (the name) is nearly always of length 2

while the the second argument (the year) is of length one. Like some of the other

approaches discussed in Section 5.6.2 (in particular those based on Suffix-Trees,
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HMMs and bag-of-words vectors), our approach takes corpus frequency into ac-

count. Based on the trie data structure, patterns and sub-patterns can be compared

by mention counts and too general and too specific patterns can be ruled out by

the above-described filtering rule.

Finally, the Apriori algorithm provides good runtime behavior. From the ex-

periments, one can observe that in the present range of problem sizes, the running

time increases linearly with the number of text mentions to abstract over. Further

comparison with other approaches is difficult to achieve as most other approaches

in the literature do not report on induction time.

8.3 Conclusion

This chapter presents a formulation of the pattern induction step of the iterative

extraction framework as a well-known Data Mining problem, namely the one of

mining frequent itemsets. On the one hand, this formulation is elegant and ad-

vantageous as it opens the opportunity to apply optimizations from the literature

(compare for example [Han et al., 2004], [Zaki, 2000] and [Mannila et al., 1994]).

On the other hand, we have shown that this formulation leads to a significant de-

crease in the running time. In particular, the empirical running time behavior

decreases from polynomial to linear with the number of mentions to be general-

ized with respect to the non-optimized implementation of the induction step as

presented in Chapter 6. Further, we have also shown that the quality of the gener-

ated instances increases slightly in terms of F-Measure with respect to our earlier

approach.

The itemset-based formulation is also beneficial in this respect as it straight-

forwardly allows to incorporate additional knowledge in the form of constraints

on the tokens. In the following chapter we present a study that uses a more sophis-

ticated modeling based on FIM techniques to take into account taxonomic features

which encode linguistic knowledge.

Reviewing the related work, we conclude that the setup presented here is at

the state of the art with respect to extraction rate and extraction quality among

those systems that are able to work at Web scale. However, the possibilities to

compare our results with other works from the literature are limited because many

researchers in this field have different types of applications and evaluation in mind.

They thus work on different datasets and evaluate in many different ways.



Chapter 9

Pattern Expressivity

The goal of the experiments in this chapter is to investigate the impact of design

choices with regard to what a pattern can express (the pattern class) on extraction

quality. We introduced the notion of pattern classes in Section 5.2 and pointed

out that most experiments in the field of IE have only been performed using one

pattern class. Yet, one can expect that at least two aspects of pattern classes have

a major impact on extraction performance. On the one hand, the pattern language

elements that allow for underspecification (wildcard, skip, disjunction) and on the

other hand the set of features that are taken into account during pattern matching.

Figure 9.1 gives an example of a sentence that is indicative of an instance of

Figure 9.1: Example sentence with morpho-syntactic token features. The features

for each token are ordered by generality. ∗ denotes the most general constraint,

matching everything.

the locatedIn relation along with linguistic information that is available for each

token. As discussed in Section 4.2.1, many approaches to IE have incorporated

some sort of morpho-syntactic or semantic types into the pattern class in order

to yield more general patterns (an overview of some pattern classes used in the

literature is given in Section 9.2). The present work constitutes a generalization

of these approaches allowing to integrate a taxonomy of morpho-syntactic and

lexico-semantic features directly into the pattern mining process. The features for

each token in Figure 9.1 are ordered by generality. That is, each column above

the surface string of a token corresponds to the token’s root path in a taxonomy.
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The topmost row contains for each token the ∗ wildcard which is a feature that all

tokens share. It constitutes the top concept of the taxonomy or, in a constraint-

view, it is the constraint that does not exclude any token.

We present here a principled and uniform mining approach based on sound

techniques from the area of knowledge discovery and in particular frequent se-

quence mining. We thereby extend the idea presented in Chapter 8 of using a

FIM-based approach. Here however we use a sequence mining technique which

allows us to generate a wide range of pattern classes. As a novelty, we allow for

a special sort of wildcards that allow to identify for each token in the pattern the

right level of detail at which a constraint is added to the pattern. In Figure 9.2 this

is illustrated for the example sentence. The only the highlighted token information

will be part of the pattern.

Figure 9.2: Possible choice of features for a pattern from the example sentence.

More specifically, this chapter makes the following contributions.

• We introduce Taxonomic Sequential Patterns (TSP) as a generalization of

many pattern classes adopted in the literature. By way of this pattern class,

we can study the effect of taxonomic knowledge on the Information Extrac-

tion task as well as reproduce other pattern classes from the literature to

compare with. The question we want to answer here is whether TSPs are

superior to other types of patterns in terms of precision and recall.

• We present a principled mining algorithm as an extension of the well-known

Eclat algorithm [Han et al., 2004] that allows us to mine taxonomic sequen-

tial patterns and all the pattern classes that we directly compare with, e.g.

the patterns used in the URES system [Rosenfeld and Feldman, 2006], as

well as a few baseline pattern classes. Such comparisons of performance

across different pattern classes do not exist, probably due to the fact that

most mining algorithms are rather ad-hoc and cannot be straightforwardly

extended to mine other types of patterns. The mining algorithm we present

is principled in the sense that it is complete (i.e. it is guaranteed to find all

patterns with a given frequency threshold of occurrence, called minimum

support) and extensible by making minimal assumptions on the patterns

(i.e. an order of specificity defined on them).
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• We present results of experiments on 4 relations for 5 different pattern

classes we consider, showing that TSPs perform generally better compared

to URES pattern class and the other baseline pattern classes.

The chapter is structured as follows. In the following section, the role of

pattern expressivity as a design choice of IE pattern induction is discussed and the

work in this chapter is motivated. Some related work is discussed in Section 9.2

before the pattern classes and the mining algorithm are introduced (Sections 9.3

and 9.4). Then, in Section 9.5, we discuss our experimental results including

a description of the experimental setup, the dataset and taxonomy used and the

experimental setup before concluding.

The work presented here is joint work with Krisztian Buza, Philipp Cimiano,

and Lars Schmidt-Thieme and has been submitted to Taylor and Francis as a chap-

ter of the book “Applied Semantic Technologies: Using Semantics in Intelligent

Information Processing.” The focus of this chapter is the choice and evaluation of

pattern classes as well as the application in the field of IE. A large portion of the

work on the design and implementation of the algorithm for mining taxonomic

patterns has been performed and published by Krisztian Buza and Lars Schmidt-

Thieme [Buza and Schmidt-Thieme, 2008] who also performed the pattern induc-

tion part of the experiments presented here. The contribution of the author of this

thesis lies in the development of an experimental framework for the purpose of In-

formation Extraction and the conduction of the pattern class evaluation presented

here.

9.1 The Role of Pattern Expressivity

The choice of the pattern class in which we can express patterns directly deter-

mines the search space for patterns and thus clearly has the potential of affecting

performance. In this chapter, we explore one particular aspect of pattern expres-

sivity by analyzing the impact of factoring taxonomic information into the pattern

class. We do so by designing taxonomic sequential patterns as a generic pat-

tern class which subsumes many of the pattern classes in the literature and allows

us to explore the impact of taxonomic vs. non-taxonomic patterns. While many

pattern-based approaches so far have incorporated type information (e.g. sense

information, semantic or named entity tags etc.) into the patterns, the positive

effect thereof has not been empirically demonstrated. For the sake of simplicity,

we assume that all information can be encoded into one single hierarchy. This is

a slight simplification as the hierarchy will then contain classes corresponding to

different linguistic levels which are actually orthogonal. This assumption leads in

some cases to rather ad-hoc modeling decisions such as putting the class of per-

son under the part-of-speech noun in the hierarchy for instance. Nevertheless, this
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Figure 9.3: Quality-effects of the introduction of a taxonomy into a simple pattern

class: concrete words in pattern may be generalised, the count of patterns increase,

wildcard in patterns may be replaced by more specific taxonomical concepts.

assumption facilitates mining as because the use of one single taxonomy makes

the hierarchical structure become part of the antimonotonicity of patterns. The

antimonotonicity is the key to optimized pattern mining, in the case of taxonomic

knowledge it can be used to conclude that if patterns with a noun at a given posi-

tion are not frequent, patterns with specializations of noun (e.g. person) cannot be

frequent either.

In most of the literature discussed in Section 5.2, the pattern classes have not

been defined explicitly. Instead, the description of the pattern class itself is of-

ten mixed with the way the patterns are mined and matched. Such ad-hoc so-

lutions make comparisons difficult. The absence of a common notion on syntax

and (matching) semantics of patterns make the task of systematically analyzing

the influence of the choice of a pattern class on the task of extracting information

challenging. To address one point in this gap, we re-examine and substantiate

with experimental evidence an assumption that many systems have made: that

abstraction with respect to a type system or taxonomy can have a positive effect

on extraction performance. This study is meant to clarify a foundational question

which will help to take more informed decisions with respect to the design of the

pattern class in future work on relation extraction.

While it sounds straightforward that additional information (e.g. part-of-

speech or semantic tags) can improve extraction, an adverse effect is indeed pos-

sible (compare Figure 9.3). Suppose we are given a simple pattern class that only

includes words and (untyped) wildcards (i.e. only featuring the topmost and the

bottom line of features in Figure 9.1). The introduction of a taxonomy (i.e. as de-

picted in Figure 9.2 chose the pattern’s constraints from the taxonomy root paths

of the tokens) could have at least these three effects:
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• Generalisation effect: The integration of type information (in form of tax-

onomic concepts) increases recall (and potentially decreases precision) as

concrete tokens in the pattern might be replaced by more generic “types”.

This corresponds to selecting a feature at a higher level of abstraction in

Figure 9.2 which may lead to matching more mentions each of which may

be correct (increased recall) or incorrect (decreased precision).

• Specification effect: Gaps or untyped wildcards (tokens in patterns that

match arbitrary input tokens) may be replaced by typed gaps or wildcards,

thus restricting the sequences that the pattern matches and potentially in-

creasing precision, but possibly at the expense of a decrease in recall. This

corresponds to selecting a feature at a lower level of abstraction in Figure 9.2

which may lead to matching less mentions and thereby no longer matching

correct (decreased recall) or incorrect (increased precision) instances.

• The count of patterns (frequent sequences) might change: there might be

many new patterns containing the newly introduced taxonomic wildcards.

Recall can increase at the cost of a possible decrease in precision. The rea-

son why new patterns can occur is that shared features may not lie on the

lowest level of abstraction but higher up in the taxonomy. Mining with-

out taxonomy would miss out on these commonalities and not generate a

pattern.

Figure 9.3 illustrates the generalization effect with dashed arrows, the speci-

fication effect with solid arrows and the altered pattern count with dotted arrows.

While the three effects constitute classical precision/recall trade-offs, the crucial

question is whether the three effects add up to yield an overall improvement. In

particular, as all the three effects have some positive and negative side-effects

it would be certainly desirable to balance these effects in such a way that both

precision and recall increase. However, whether both precision and recall really

improve is not obvious. In fact, this is the question we address in this work.

9.2 Related Work

There exist various types and formalisms for textual patterns. While all of them

have in common that text fragments can be specified literally, they differ in the

way they allow for variability in the text sequences they match. Before introducing

the languages under investigation we review various pattern formalisms and their

semantics in the literature which differ primarily along the lines of the following

dimensions:
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• Abstraction over the surface string. Some pattern formalisms al-

low for wildcards that match arbitrary single tokens (e.g. Pronto,

ExDisco [Yangarber, 2003] or RAPIER [Califf and Mooney, 1997]), others

allow for skips which ignore zero to many tokens at a time (e.g. URES, see

below for a more detailed account).

• Pattern length. While some patterns match exactly one sentence (like

URES, its sister system URIES [Rozenfeld and Feldman, 2006], KnowIt-

Now [Cafarella et al., 2005] and work by Snow et al. [2004]), others focus

on a window of a specific length (Pronto and DIPRE). A method of intel-

ligently trimming patterns to an appropriate length has been described by

Ravichandran and Hovy [2001].

• Additional knowledge or structure. Patterns are not bound to simply re-

flecting features of the surface string. Most systems incorporate fur-

ther structural or linguistic features like Part-Of-Speech (e.g. URIES and

RAPIER), Named-Entity-Tagging (URES, Snowball and Ravichandran and

Hovy [2001]), word-sense disambiguation (ExDisco) and (shallow) parses

[Snow et al., 2004; Cafarella et al., 2005]. The systems are usually limited

to one kind of tags which is usually formalized by using typed wildcards.

A method for employing a rich pattern structure with efficient Information

Retrieval techniques is applied in KnowItNow.

• Relevance of linear order. While most patterns require tokens to oc-

cur in a particular linear order, exceptions are Snowball and LPPL

[Tomita et al., 2006].

• Argument identification. Trivial as it may sound, identifying the actual rela-

tion instances within a pattern match can be done in different ways. While

systems that build on NE-tagging can use this information, others usually

employ a distinguished type of wildcard or skip or break apart the pattern

into “prefix”, “infix” and “postfix” (cf. Section 4.2.2).

9.3 Taxonomic Sequential Patterns

We introduce Taxonomic Sequential Patterns as a generic pattern class allowing to

integrate taxonomic knowledge into patterns. A pattern class in our sense consists

of a repertoire of “pattern features” which can be used to express constraints on the

set of sequences the pattern matches. TSPs are sequences consisting of standard

tokens together with the following pattern features which have been introduced in

Section 5.2:
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• Wildcards (“ANY ”): A token in the pattern that matches an arbitrary single

token in the input sequence.

• Typed wildcards (“ANY [type]”): A token in the pattern that matches any

single token of a certain type in the input sequence. Most systems use

typed wildcards as a way to introduce additional external linguistic knowl-

edge into the mining process, such as part-of-speech (POS) information,

Named-Entity tags, word-sense information, as well as (shallow) parses.

We use typed wildcards to factor in taxonomic information which can be

used to constrain the tokens allowed at a certain position via these taxo-

nomic types. As an example, the third column in Figure 9.2 corresponds to

“ANY [living being].”

• Gaps: our patterns allow gaps while matching. Gaps are not specific to a

certain position in patterns, but a global property which can be active or not.

Gaps are implemented in our approach through “semi-continuous” patterns

allowing to drop (leaving unmatched) tokens in the input sequence at arbi-

trary positions. We talk of (d, n)-semi-continuous patterns if at most n drop

operations, each of them having a maximal length of d tokens, are allowed.

In its (3, 2)-semi-continuous version, the pattern from Figure 9.2 would

also match “The happiest people from Asia in Europe live in big cities like

Paris.” The two underlined sections would be dropped during matching.

However it would neither be matched by the (2, 2)-semi-continuous version

because it cannot drop the length 3 sequence “big cities like” nor by the

(3, 1)-semi-continuous version because this one only allows to drop in one

position.

• Argument slots (“ANY [type]argn”): Many systems use special ‘argument

slots’ to actually mark the position where the nth argument of the instance

occurs. We allow in addition to restrict the argument slots to a specific

taxonomic type as many other systems. In the example from Figure 9.2, the

fifth column would translate to “ANY [country]arg2”

Overall, the pattern intuitively illustrated in Figure 9.2 translates to the

following notation:

“The ANY [superlative] ANY [living being] ANY ANY [country]arg2
ANY [stative] in ANY [city]arg1”

The set of pattern classes we investigate experimentally is depicted in Fig-

ure 9.4. Our novel, taxonomic sequential patterns are tested in two variants TAX
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Figure 9.4: The pattern classes considered and in which features they differ.

and TAX-GAP. They both support typed wildcards and typed argument slots.

While TAX-GAP allows semi-continuity (we report here results for d = 1 and

n = 2 which despite the small numbers show a clear effect), TAX patterns are

continuous in the sense that they do not allow for gaps (but nonetheless for typed

wildcards). Apart from that, we investigate a SIMPLE pattern class as a base-

line which only allows argument slots and untyped wildcards. We further use the

above repertoire of pattern features to reproduce the URES pattern class1.

While the pattern mining algorithm itself as described in the following section

is exhaustive, we employ heuristics to reduce the number of patterns that are gen-

erated. The heuristics are as follows. (a) We disallow untyped wildcards in the

taxonomic case. (b) We keep only the most specific frequent patterns with regard

to typed wildcards. i.e. if patterns p1 and p2 are frequent and p1 can be generated

by exchanging the types of one or more typed wildcards in p2 by their supercon-

cepts, then only p2 is kept. (c) Patterns are scored and all patterns below a given

threshold are discarded. We vary the threshold as a parameter during the exper-

iments. While each of these heuristics is optional, an evaluation of the pattern

classes without these heuristics is computationally too complex. When mining

exhaustively, the pattern sets generated are “stacked” in the sense that the TAX,

TAX-GAP and SIMPLE-GAP patterns contain all SIMPLE patterns and that the

TAX-GAP patterns will contain the SIMPLE-GAP and the TAX features. This is

due to the fact, that all language elements these pattern classes add to the SIM-

PLE notion of patterns are optional. However, when the heuristics are applied, this

stacked property is sacrificed to the goal of keeping the most promising patterns.

URES patterns feature (typed) argument slots and can contain skips which are

marked in the pattern but differ from wildcards in the sense that they consume an

arbitrary number of consecutive tokens.

1For the sake of generality we do not implement the very specific heuristics implemented in

URES (e.g. providing a list of relation-specific and manually selected keywords which increase

the probability that a text fragment considered already contains the relation in question) to ensure

the generality of our results. We do thus implement the patterns used in URES but do not compare

our results with the URES system as a whole with its very proprietary settings.
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The taxonomy used for the TAX/-GAP class incorporates linguistic informa-

tion at several levels of abstraction (syntactic and semantic). It comprises infor-

mation on the part-of-speech level as well as on the named-entity-tag level and

allows for sub-class relationships between entity tags (e.g. city is-a location). The

taxonomy was constructed for the purpose of the study described here. The top-

level consists of generic classes of part-of-speech tags (noun, verb etc.). Below

that, more specific POS tags, WordNet supersense tags and WSJ tags (cf. Sec-

tion 2.2.1)are included by way of manual alignment (see section 9.5.2 for more

details.)

Taxonomic sequential patterns constitute a generalization over vari-

ous approaches from the literature discussed in Section 9.2 (in partic-

ular RAPIER [Snow et al., 2004], ExDisco [Yangarber, 2003], Pronto (in-

troduced in Section 5.5), KnowItNow [Cafarella et al., 2005], Espresso

[Pantel and Pennacchiotti, 2006] and the patterns used by Ravichandran and Hovy

[2001]) as it takes a more general approach to the integration of background

knowledge by using a taxonomy. In this sense, the empirical investigation of TSPs

re-examines the assumption in all of the above works that generalized patterns are

useful and grounding it empirically.

9.4 Pattern Mining

The complete pattern mining algorithm we introduce here builds – like the one

presented in Chapter 8 – on the basic idea of organizing the search in the space

of potential patterns efficiently. This organization exploits the anti-monotonicity

of patterns, i.e. on the basis of patterns already found to be non-frequent, one

infers that all other patterns subsuming these are not frequent either which allows

excluding them from further investigation and thus pruning the search space.

The differences between the algorithm presented in Chapter 8 and the one pre-

sented here lie in the way sequence and token-based features are encoded. On the

one hand, we use here a sequence mining algorithm that is specialized on mining

frequent subsequences (with wildcards), on the other hand, features are encoded

differently by means of typed wildcards with types ordered in a taxonomy. Fur-

thermore, the algorithm uses a different data model. This is due to the fact that the

number of alternative frequent patterns is much larger when all alternative types

for typed wildcards at all positions come into play. For example, if the pattern

phrase “The happiest people in Germany live in Osnabrück” from Figure 9.1 is

frequent, then all combinations in which one or more of the words are replaced

by one of the concepts on the root path (i.e. the features displayed above the sur-

face string, including the ∗ for the top concept) are frequent as well resulting in

4×4×5×4×5×4×4×5 = 128000 frequent patterns. Rather than in a breadth-
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first manner like in Apriori, the space of possible patterns is therefore explored in

a depth-first manner using an extension of the Eclat algorithm [Han et al., 2004].

Eclat is based on using an auxiliary data structure, a set of so-called TID lists (for

transaction identifier), which basically constitute an inverted index. Initially, a

TID list exists for each token listing all sequences in the database in which the to-

ken occurs. During mining, TID-lists are generated for all frequent subsequences

under investigation. Being an instance of depth-first search, the algorithm is most

conveniently formalized in a recursive way as in Figure 9.5.

Input is given in form of a collection of textual sequences DBs and a mini-

mum support threshold freqmin and a set of taxonomy root elements Roots. DBs

contains sequences of tokens from an alphabet A. Prior to the execution of the re-

cursive algorithm in the figure, TID lists need to be computed so that GETTID(a)
returns for each token a the set {s ∈ DBs|s contains a}. For wildcard tokens, the

interpretation of contains depends on the definition of the wildcard. The func-

tion OCCURSAT evaluates to true if (a match of) the given pattern occurs in the

sequence with the given id at least once and to false otherwise. To account for

various pattern classes, OCCURSAT needs to be adapted depending on the various

types of wildcards. DESCENDANTSOFLASTTOKEN(p) returns a set of tokens that

are the immediate descendants of the last token of p in the taxonomy. REPLACE-

LASTTOKEN(p, a) replaces the last token in sequence p by the token a. The

algorithm starts with a maximally unspecific pattern and recursively specializes it

in two ways:

• Extend the pattern in length by adding a (typed) wildcard as last token (line

4).

• Specialize the last token if it is a wildcard by replacing it with its immediate

taxonomic descendants (line 8).

This way, all possible patterns that are potentially frequent are tested at some

point during the execution of the algorithm. Further recursion only takes place

for frequent patterns (RECURRIFFREQUENT). Note that a pattern p2 that is a spe-

cialization of a pattern p1 in one of the two above ways can only be frequent if p1
is frequent. We thus exploit this anti-monotonicity by excluding specializations

of infrequent patterns from further processing. The second type of extension is

safely anti-monotone due to the definition of the taxonomy: A lower concept is

only present if its superconcept is present as well. This is the reason why tax-

onomic features constitute an efficient way to mine patterns with a rich set of

features.

ECLATRECURSION is called initially with depth = 0, prefix =<> and tid

containing the identifiers of all sequences in DBs. In line 4, p is extended by all

root tokens from the set of roots Roots. In line 8 the alternate specialization takes
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place by replacing the last token in p by a taxonomical subconcept. Both special-

ization steps are followed by the calling RECURRIFFREQUENT which computes

the new TID list and, continues the recursion if the TID list indicates that the pat-

tern is frequent. RECURRIFFREQUENT first computes a preliminary version of

the new sequence’s TID list by intersecting the old TID list with the TID list of

the added or replaced token (line 1). At that point, tidnew contains all sequences

from DBs which contain p and a. In further processing, all those co-occurrences

are excluded (line 7) in which a does not immediately follow p or respectively

constitute the last token of p (line 6). This expensive check however is only done

if the initial version of tidnew is large enough (line 2). OCCURRSAT is typically

implemented by maintaining the position information of the occurrences within

the TID lists as additional informatiln. If the final tidnew is large enough, the new

pattern is recurred over for further extension (line 10).

Figure 9.6 shows an example database, an example taxonomy and the corre-

sponding structure of recursive calls for the corresponding execution of the algo-

rithm. We only show a part of the recursive structure graph which continues under

the node labelled “. . . .”

The version of Eclat used for these experiments enables mining of all the

pattern classes presented in this chapter. Only the OCCURSAT method and the

counting of the TID lists have to be adopted to enable the use of further language

elements.

Note that like in the URES system, we use specificity as a criterion for pattern

selection. If pattern p1 can be derived from p2 by removing a token or replacing

a concrete token or wildcard by a more general one, p1 will be removed, thus

keeping only the most specific patterns. One should further note that as our aim

is to fairly compare to the URES pattern class (described by its pattern features

as in Section 9.3) and not to compare the naive pattern mining strategy in URES

against complete mining we mine all pattern classes, including URES patterns,

with a complete algorithm. In particular, the pairwise abstraction method of the

URES system as described in Section 5.6.2 mines only a subset of the possible

patterns of a given support (we give an example in Section 5.6.2). We ensure that

all pairs are mined by using an Eclat miner to construct patterns of the URES

pattern class.

9.5 Experiments

The goal of our experiments is to assess the performance of taxonomic patterns

in comparison to patterns not incorporating taxonomic information. We perform

our experiments on a large, publicly available corpus (thus making our results re-

producible) and aim at extracting four non-taxonomic relations for which the full
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ECLATRECURSION(Int depth, Sequence p, TIDList tid)
1 Output← Output ∪ p

2 for a ∈ Roots

3 do

4 pnew ← CONCAT(p, a)
5 RECURRIFFREQUENT(pnew, a, tid)
6 for a ∈ DESCENDANTSOFLASTTOKEN(p)
7 do

8 REPLACELASTTOKEN(p, a)
9 RECURRIFFREQUENT(pspec, a, tid)

10

RECURRIFFREQUENT(Sequence pnew, Token newToken, TIDList tid)
1 tidnew ← tid ∩ GETTID(newToken)
2 if |tidnew| ≥ freqmin

3 then

4 for id ∈ tidnew
5 do

6 if notOCCURSAT(pnew, id)
7 then tidnew ← tidnew \ {id}
8 if |tidnew| ≥ freqmin

9 then

10 ECLATRECURSION(depth+ 1, pnew, tidnew)

Figure 9.5: The extended Eclat algorithm.

extension is assumed to be given for evaluation purposes (freqmin, Section 5.7).

Furthermore, we isolate the task of relation extraction from lower-level prepro-

cessing by using a corpus preprocessed with standard tagging tools (sentence

splitting, tokenization, part-of-speech tagging, named entity tagging). We per-

form relation extraction with different pattern variants and compare the extraction

quality.

9.5.1 Evaluation Protocol

With the goal in mind of investigating particularly the design of pattern languages

and the use of taxonomic sequential patterns, we designed our experiments to

maximize the generality of our results rather than optimizing the performance for

a given setup. Towards this goal, it is important to avoid a large set of highly tuned

parameters. We do so, in two different ways:
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DBs = {xzx, xyz, yzy}

freqmin = 2

F1 = {A,B,C, x, y, z}

F2 = {AA,AB,AC,Ay, Az, BA,BC,Bz, CA,CB, xA, yA, yC, yz}

F3 = {{AAA,AAB,ABA,ACA,BAA,BAB,BCA,BCB,

BZA,BZB, xAA}}

A

B

x y

C

z

A

AA

AAA AAB

AB

ABA

AC

ACA

Ay Az

. . .

Figure 9.6: Example data for the execution of the Eclat taxonomy mining algo-

rithm. The upper tree displays the taxonomy. The lower tree displays the nested

recursive calls (only displaying the values for prefix)
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Figure 9.7: Excerpt from the taxonomy showing the noun subhierarchy for loca-

tion along with its root path.
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• As far as possible, parameters were avoided. The mining algorithm takes

only one parameter (support freqmin), and a threshold tscore on the score of

each pattern (see below). The values of these parameters were determined

measuring the system performance on the training set as described below.

This avoids tuning the parameters in an informed way. In particular, for

each pattern language and each relation we determined the best parameter

settings on the training data. We report results on test data using these

parameter settings.

• For the parameters of the evaluation setup and the linguistic processing,

parameters where chosen based on previous systems (see Section 9.5.2 for

details).

The evaluation protocol has been designed following those employed with

other recent Web-oriented relation extraction systems like the KnowItNow sys-

tem [Cafarella et al., 2005], Espresso [Pantel and Pennacchiotti, 2006] and URES

[Rosenfeld and Feldman, 2006]. Like in these studies, we identify a set of rela-

tions for which the extension of the relation is known. A small subset is taken

as training data, while the remaining examples serve as test set against which the

output is compared. The extracted instances are evaluated in terms of precision,

recall and F-measure with respect to the gold standard.

Compared to the above mentioned systems we use a similar number of re-

lations as test setup (KnowItNow uses 4, Espresso and URES 5). These studies

however do not report recall numbers but resort to giving recall relative to previous

systems (Espresso) or only absolute extraction counts (KnowItNow and URES).

Clearly, a set of four relations does not allow a conclusive statement on the ques-

tion whether taxonomic patterns are always or at least on average superior to other

types of patterns. However, the set of four relations clearly suffices to show that

using taxonomic information in the pattern language has the potential of increas-

ing the performance of a pattern-based Information Extraction system, which has

not been shown before.

We varied the minimum support freqmin between 2, 5, 10, 15 and 20 and the

cut-off percentile tscore for URES score of patterns from 0 to 100% in steps of

10%. After measuring precision and recall for each configuration on the training

data we chose the best-performing support and pattern score cut-off values for

each setup for evaluation on the test data.2 The configurations are chosen based

on the F1 measure with respect to the training samples and the negative examples

2Due to the combinatoric number of possible frequent patterns that are possible through ab-

stractions at different levels in the taxonomy, operating with a minimum support of 2 or 5 became

computationally intractable for some relations so that these settings were skipped. However, in

these cases, a good set of patterns were generated with higher minimum support due to the better

ability to generalize that are enabled with taxonomic knowledge. Note that this limitation, if it has
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generated from this. The strategy to generate negative examples from the provided

seed set (including only positive examples) is explained in more detail below.

9.5.2 Dataset and Preprocessing

The textual dataset used for our experiments consists of the “Semantically

Annotated Snapshot of the English Wikipedia”, a publicly available dataset

for hypertext mining provided by Hugo Zaragoza et al. [Zaragoza et al., 2007;

Mika et al., 2008]. It contains all 1,490,688 articles of a December 2007 version

of the English Wikipedia.

Our evaluation is performed on four semantic relations from different do-

mains: 172,696 (61,476) famous persons and their year of birth, 14,762 (757)

companies and the location of their headquarter, 34,047 (2,561) geographic en-

tities and their location as well as 2,650 (406) products from the automotive do-

main together with their makers. The numbers in brackets indicate the actual

co-occurrence counts of the complete extension within our chosen window size

of 10 tokens in the corpus. We will refer to this as the corpus-pruned extension

or gold standard for simplicity. This is a subset of the publicly available dataset

introduced in Section 5.7 from which we excluded those relations for which no

proper entity tagging was available in the corpus (albums and soccer teams) and

which were too small for our setup (currencies).

The Wikipedia corpus is in turn restricted for each relation to those con-

texts containing entities of the appropriate type, i.e. [Mozart]person was born in

[1756]Y ear. would be retained as context for the bornInYear relation (as would

also [Mozart]person died in [1791]Y ear.) but not [Mozart]person was born in

[Salzburg]city as it does not contain entities of the appropriate type. For this, we

also simulate a perfect named-entity tagging by restricting ourselves to co-occur-

rences of entities that are mentioned in at least one instance in the gold standard

of the target relation (obviously not necessarily in the same instance). It is im-

portant to note that the perfect tagging has been introduced to create a solid basis

of comparison and does not favor any pattern language because these perfect tags

are only taken into account during co-occurrence selection which is done in the

same way for all pattern classes. We take into account mentions of the corpus

for which the arguments of an instance are at most 10 tokens apart. Both during

matching and evaluation we use WordNet and Wikipedia redirects as a source for

(approximate) synonyms.

In order to incorporate taxonomic knowledge, we rely on the ‘Semantically

Annotated Wikipedia’ snapshot, which has been pre-annotated with coarse se-

any impact at all, favors the baseline and the URES pattern language because for those all setups

were available.
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mantic categories including the word’s part of speech (e.g. noun, infinite verb,

pronoun or punctuation) and coarse semantic categories as well as named entity

tags from the WSJ tagset. In total, there are 135 concepts in the taxonomy. An

excerpt of the taxonomy corresponding to the location subhierarchy is displayed

in Figure 9.7 (see [Zaragoza et al., 2007] for a documentation of the categories for

verbs and nouns as well as of the tagset). We did not rely on WSJ tags for marking

vehicle models because they were of very low precision for the respective classes.

The taxonomy of features was created manually by the authors. It integrates

WSJ entity tags, part-of-speech tags and WordNet supersenses based on a set of

assumptions mentioned below. The root concept constitutes a hypothetic univer-

sal “top” feature that is shared by all tokens. The level below that is formed by

the generic linguistic concepts noun, adjective, adverb, pronoun, verb, other (e.g.

preposition) and non-word. The generic assumptions to arrange WSJ tags, Word-

Net supersenses and POS tags below that are as follows: (a) WSJ have priority

over supersenses which have in turn priority over POS-tags. (b) All named enti-

ties are assumed to be nouns. (c) A pragmatic approach is taken to treat punctu-

ation, markup etc. They form general groups which together form the concept of

non-word. (d) WSJ tags and supersense tags can be mapped under some common

generic concepts (e.g. location) which may correspond to WordNet supersenses

and in turn can be assigned under one POS tag. In sum, to create a taxonomy, two

types of decisions have to be made:

• General linguistic: Which entity tag is a sub-concept of which POS tag.

How are punctuation classified.

• Semantic: How to align different named-entity tag sets and other concept

hierarchies.

The process of creating the taxonomy can be considered fairly generic: general

linguistic decisions are done once and for all and the semantic decisions are done

once per tagset. The design of the taxonomy is thus a parameter to the system like

the choice of tagset itself.

The time required to mine taxonomic patterns of a given class at a given sup-

port strongly depends on the structure and size of the taxonomy. These differences

are due to the fact that alternative candidate patterns are generated by trying out

taxonomic specializations. While certain alternatives can be excluded relatively

quickly in this way, the amount of possible specializations drastically increases

with the size (in particular the depth) of the taxonomy. To investigate the impact

of the taxonomy structure, we measured the time necessary for mining the patterns

with three different taxonomies:

• Tax1: Taxonomy as described in Appendix A: two levels of hierarchy, three

levels for nouns describing locations and organizations (groups) only. No
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Tax 1 Tax 2 Tax3

class supp. s count prec. rec. s count prec. rec. s

TAX 20 5 22 0.710 0.340 6 23 0.706 0.340 45477

TAX 15 7 32 0.721 0.380 5 35 0.722 0.383 413211

TAX 10 6 62 0.714 0.446 11 64 0.717 0.454 N/A

TAX 5 27 177 0.648 0.431 64 178 0.646 0.413 N/A

TAX-GAP 20 23 1344 0.553 0.475 48 2622 0.558 0.492 N/A

TAX-GAP 15 42 3420 0.528 0.493 86 7440 0.527 0.498 N/A

TAX-GAP 10 119 16312 0.528 0.495 260 42672 0.478 0.530 N/A

TAX-GAP 5 2319 474780 0.356 0.442 15073 2371008 0.420 0.560 N/A

Table 9.1: Mining time, counts, precision and recall for pattern sets for the pro-

ductOf relation for TAX and TAX-GAP patterns of various support thresholds and

the three taxonomies

untyped wildcard (top concept) allowed. This taxonomy was also the basis

for the other experiments in this chapter.

• Tax2: Deeper taxonomy: three levels for more nouns, quantities, and punc-

tuation. No untyped wildcard.

• Tax3: Consistent use of four taxonomic levels (including the top concept).

Table 9.1 shows mining times3 for patterns of the productOf relation for the

three different taxonomies. Mining times increase with lower support as more

patterns are found. As expected, patterns with lower support are also less precise

but produce more recall. The richer taxonomy, Tax 2, allows for the generation

of a few more patterns at the expense of an increase of processing time. The

taxonomy Tax3, which features a top concepts and a deeper structure, had to be

excluded from the comparison. The number of possible candidates was so big

that processing did only terminate for the strictest filtering conditions. Given the

prohibitive mining times we did not apply the computationally even more costly

post-filtering to determine counts and performance of the pattern sets. Overall,

these results show that the approach of working with taxonomic patterns is very

sensitive to the number of candidate patterns explored during induction. This

number in turn depends on the structure of the taxonomy as well as on other

parameters of the pattern class.

9.5.3 Experimental Setup

Our processing starts with a set of 100 most frequently mentioned sample relation

instances for each relation. This number is larger than in most Web-oriented stud-

3Measured on a 2.4 GHz server-sized computing running a Java VM with 10GB of main mem-

ory allocated.
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ies. We opted for this because, as shown in Chapter 7, Wikipedia pattern mining

requires a larger seed set due to the low redundancy of the corpus.

We run all experiments over the five pattern languages described in

Section 9.3. Overall, our setup is close to the one used by URES

[Rosenfeld and Feldman, 2006], but we work on Wikipedia to have a closed cor-

pus which is freely available and reproducible instead of the Web search results

which are subject to continuous change. In addition, we do not require a set of ad-

ditional “keywords” for each relation to be present in the contexts (as in the URES

system) as we consider this condition too strict (with a bias towards precision) and

would like to keep our settings fairly general.

The relevant parameters of our system are on the one hand the minimum

support freqmin as well as the threshold tscore on the scores of the patterns. For

each target relation and each pattern class we varied freqmin to be one out of

{2, 5, 10, 15, 20} and tscore to keep the best 10%, 20%, . . . 100% of the patterns

according to the pattern score. As we are directly comparing to the URES system,

we use the same score:

scoreURES(p) =

∑

i∈Inst\N c(p, i)
∑

i∈N c(p, i) + 1

Thereby, Inst is the set of extracted instances and c(p, i) is 1 if pattern p

extracts instance i and 0 otherwise. Refer to Section 5.6.3 for a more detailed

discussion of this measure. This is a way of assessing the precision of the pat-

tern. We differ slightly, however, in the strategy adopted to generate the negative

examples N . Essentially, we consider all those mentions as negative which do

not correspond to instances in the training set of the gold standard but which

contain an instance which can be created by swapping arguments between dif-

ferent instances from the gold standard. For example, given that Ankara and

The Netherlands appear in our gold standard as first and second argument of

some instance (but not in the same), the instance (Ankara,TheNetherlands)
would constitute a negative example, such that every pattern matching the fol-

lowing sentence and extracting (Ankara,TheNetherlands) should be penalized,

e.g. I met a blond girl from The Netherlands in Ankara. Our method for generat-

ing negative examples is essentially the same as the one used in URES with two

small deviations. On the one hand, we are able to generate more negative exam-

ples as we do not require a correct instance of the relation to be present in the

negative sentence. On the other hand, we do not use positive examples of one re-

lation as negative examples of another as in the URES system due to the fact that

our relations have completely different type signatures and this would not generate
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Figure 9.8: F-measure achieved with the different pattern languages averaged over

the four relations. The strategies marked with ∗ perform statistically significantly

better than the remaining ones.

any useful negative examples. Note that this method of generating negative exam-

ples does not require any additional negative training examples (i.e. non-instances

of a relation). Instead, it is based on the assumption that for all entities mentioned

in the training examples, the training set contains all relation instances they are

part in (i.e. something a local closed-world assumption).

While we tried out various configurations with regard to minimum support

freqmin and pattern filtering threshold tscore, we use an automatic (and thus pa-

rameter free) method to determine the optimal setup:

• Based on the training data, the F-measure for each combination of freqmin

and tscore is computed. For this, only output corresponding to the 100 seeds

is counted as correct and the set of negative examples N is generated only

from these 100 examples.

• For further comparison, we select the combination that achieves the best

F-measure based on the known top 100 dataset.

• For comparison, the F-measure computed based on the test data (full exten-

sion).

This corresponds to the best setup as chosen without knowing the full extension

of the relation.

9.5.4 Experimental results

Figure 9.8 shows F1-measure results for each pattern class averaged over all rela-

tions considered. Figure 9.9 shows precision over recall averaged over the four re-

lations investigated and Figure 9.10 shows the results for the individual relations.
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Figure 9.9: Precision over recall achieved with the different pattern languages

averaged over all four relations. The scale on the X-axis also gives absolute result

counts.

Figure 9.10: Precision over recall achieved with the different pattern languages

for each of the four relations. The scale on the X-axis also gives absolute result

counts.
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Note that TAX, TAX-GAP and SIMPLE-GAP outperform our baselines URES

and SIMPLE in a statistically significant manner (based on a two-sided pairwise

Student’s t-test with an α-level of 0.01) (shown in Figure 9.8 by a ∗ mark).

The conclusions to be drawn from our results are the following:

• As shown in Figure 9.8 Taxonomic Sequential Patterns, (TAX and TAX-

GAP) outperform state-of-the-art patterns used in the URES system as

well as simple sequential patterns (SIMPLE) in terms of F1-measure. This

clearly demonstrates the benefit of integrating taxonomic information into

the patterns and shows that the different effects (generalization and special-

ization) play together in an positive way to increase overall performance.

• As Figure 9.9 indicates, in particular TAX is able to increase both preci-

sion and recall at the same time. The increased recall is due to the higher

number of patterns that can be found (example below) and due to the fact

that more general non-trivial patterns can be found when mining with typed

wildcards. The higher precision is caused by the usage of wildcards with

type information which are more selective than general wildcards. This can

be seen in particular for the productOf, headquarteredIn and locatedIn re-

lations, while on the bornInYear relation TAX seems to perform worst (see

the comments on this below). On the averaged precision/recall diagram,

one can clearly see that TAX increases both precision and recall compared

to the other configurations we consider. TAX-GAP seems to increase recall

at the expense of a reduction in precision, such that the introduction of gaps

can be clearly considered as leading to over-generalization.

• The better performance of TAX-GAP does certainly not stem from the al-

lowed GAPs only, as the comparison with SIMPLE-GAP shows, so that we

can indeed claim that the taxonomic information is the main responsible

for the increase in performance. In fact, the semi-continuity in itself seems

to increase recall while reducing precision. For instance, SIMPLE-GAP

has a higher recall but a lower precision than SIMPLE (with exception of

bornInYear) and TAX-GAP has also a higher recall but a lower precision

than TAX (again with exception of bornInYear).

• For the bornInYear relation, TAX patterns perform worst. In fact, all pattern

classes produce very low recall due to the large extension of the relation,

such that no meaningful conclusions can be drawn. The main problem with

TAX here is that the parameter selection on training lead to a suboptimal

configuration of the system. This also shows that more advanced strategies

to determine the parameters are needed other than F-measure on the training

data set.
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Note that due to the stricter evaluation protocol, our scores cannot directly be

compared with other results in the literature (see Section 9.2 for more details).

The reason why taxonomic patterns yield a higher recall is that they produce a

higher number of patterns as well as more general ones. As an example, consider

the example pattern from above:

“The ANY [superlative] ANY [living being] ANY ANY [country]arg2
ANY [stative] in ANY [city]arg1”

where ANY [stative] matches any state verb such as live, stay etc. This may

be a reasonable pattern, which might not be found as a sequential pattern without

taxonomic knowledge as each single state verb might occur too rarely individu-

ally. By referring to the class of state verbs rather than to single verbs, the pattern

might suddenly become frequent. On the other hand, a system merely inserting

an untyped wildcard for each typed wildcard used above would be likely to over-

generate.

This example illustrates nicely how the different effects that taxonomic gener-

alization can produce play together, using taxonomic types to generalize patterns

(i.e. using ANY [creation verb] instead of specific verbs such as build for in-

stance), increasing recall, at the same time making sure that no other verbs match

the given position, thus ensuring precision.

9.6 Conclusion

In this chapter, we investigated a set of design alternatives in pattern languages.

In particular, we investigated the aspects of abstraction over surface strings and of

the use of additional knowledge and structure. To this end, we have introduced

Taxonomic Sequential Patterns with optional semi-continuity for relation extrac-

tion together with an exhaustive mining algorithm that allows us to mine patterns

across a variety of pattern classes. The algorithm is an extension of a sequence-

mining version of Eclat which has been optimized for typed wildcards with types

arranged in a taxonomy. We have shown that Taxonomic Sequential Patterns are

generally superior to a non taxonomic baseline as well as to the state-of-the-art

URES system with respect to both precision and recall.

The superiority of taxonomic patterns can be explained with the help of three

effects discussed in Section 9.1: on the one hand, it is indeed the case that the

taxonomic generalization yields more general patterns, effectively increasing re-

call (generalization effect), but at the same time increasing precision by replacing

untyped wildcards by typed wildcards, thus adding stronger constraints (specifi-

cation effect). On the other hand, by way of generalizing along a hierarchy, more
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patterns above the minimum support can be found, again increasing recall. The

main contribution of our work is to show that the above effects nicely comple-

ment each other adding up to yield an overall improved performance with respect

to approaches based on non-taxonomic patterns.

The impact of semi-continuity as an instance of abstraction over the pattern’s

surface string is ambivalent. We compared adding semi-continuity to two pattern

classes. Irrespective of the pattern class and the relation extracted, the addition of

semi-continuity leads to increased recall however almost invariantly at a more or

less dramatic loss of precision. This reduction of precision indicates that the use

of semi-continuity and possibly other forms of surface-string abstractions imply a

generalization effect.

In general, our work shows that the choice of the pattern class provides an

important set of design choices for pattern-based Information Extraction some of

which have been investigated in more detail. The organization of several levels of

background knowledge organized in a taxonomy has been shown to be beneficial.



Part III

Applications





Chapter 10

Web-wide Information Extraction

for Market Analysis

In this chapter we present an application of the Pronto system and further IE ap-

proaches in an industrial application scenario in the automotive industry. The

application is part of the X-Media integrated research project1 which is con-

cerned with Document and Knowledge Management in large enterprises in the

field of mechanical engineering. The project focuses on extracting and represent-

ing knowledge that stems from various media types in a way that allows it to be

aggregated, shared and reused.

This chapter first presents the task to which we apply IE from text before

introducing the IE approaches taken (Section 10.2). Practical experiences that

show the potential and limits of Web-based IE with textual patterns in this scenario

are discussed in Section 10.3. The scenario and the application described here

have been developed by many members of the X-Media project. Our focus has

been, like in this chapter, the task of IE from text.

10.1 The Competitor Scenario Forecast Task

A crucial task in the development of products is to be aware of consumer needs

and competitor actions in the market. Our use case partner maintains a department

which has the goal to assist management and design decisions with information

about the current and future product portfolio of competitors. The results of their

market analysis are compiled into several reports, in particular a release calendar

1More information under http://www.x-media-project.org. The description of

project results and use case setups in this chapter is kept on an abstract level in order to focus

on generally applicable results and observations as well as to respect the project’s privacy regula-

tions.

http://www.x-media-project.org
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is maintained that displays a time line of potential future product releases. Fur-

thermore, vehicle baskets are collected that consist of vehicles that are related to

specific management decisions. In order to combine these reports, a large variety

of sources is gathered and reviewed periodically. The reports include memos from

visitors to trade shows as well as news articles and blog posts. Individual items

of information for market analysis are called competitor scenarios consisting of

the information about one potential change in the market. Competitor scenarios

include the acting competitor, the potential product’s name and technical features

as well as the point in time when the action is expected.

In a first step, we identified parts of the Competitor Scenario Forecast task

that can be supported by automatic tools. The resulting tool setup consist of an

integrated Web-based application that provides a view on relevant documents. It

follows the idea of a Web portal in the sense that it aggregates and presents infor-

mation from different sources. In particular, news and market reports from vari-

ous providers which are enriched by meta-information that facilitates task-specific

browsing. This meta information is either provided by the portal users or derived

by text and image analysis components that process news articles. Furthermore,

so-called knowledge fusion components integrate extraction results from multi-

ple sources. The idea behind knowledge fusion is to derive global information

from local annotations. The advantage of separating local extraction and integra-

tion into different components is to allow for the integration of extraction across

documents, extraction approaches and modalities.

The portal provides three different views: The news management page which

allows to search, browse, and annotate news articles. Articles can be grouped by

various aspects of their topics (vehicle model, maker, market segment, technolo-

gies mentioned). Users can assign a status to each document to reflect, whether it

has been read and whether it is accepted as a source for further processing. The

image management page provides product images grouped by the depicted vehicle

components and allows for image similarity search. Finally, the calendar elabo-

ration page visualizes the assumed release dates of vehicles as extracted from the

documents in a time line and arranged by market segments. It further allows to

manually update release date information. The development and the evaluation of

the portal are ongoing.

10.2 Information Extraction for Competitor Sce-

nario Forecast

For IE from text, the following tasks are particularly relevant:
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• Identification of named entities: The names of vehicle makers and models

need to be recognized in the documents. While the set of makers is relatively

fixed, new model names are constantly invented. The full complexity of

named-entity detection has to be dealt with for model identification. When

analyzing mentions of vehicle names, three peculiarities become obvious:

1. Vehicle names frequently consist of common words of various parts

of speech. Common nouns may be used (“Isuzu Axiom”, “Volk-

swagen Rabbit”) as well as verbs (“Toyota Wish”), adjectives (“Re-

nault Rapid”) and even named entities that commonly carry a different

meaning (“Suzuki Verona”) .

2. Vehicle names are frequently combinations of letters and numbers.

Some parts of the name are optional and it is not straight-forward to

identify a generic name. Names may encode the size of the model (e.g.

“Audi A2” vs. “Audi A8”), its body type (e.g. “Peugeot 406 Coupé”),

its engine configuration (e.g. “Suzuki Swift GTi”) or simply differ re-

gionally (e.g. “Volkswagen Golf” is sold as “Volkswagen Rabbit” in

the United States).

3. The descriptions of vehicle models are rich in metaphors and fre-

quently mentions are anthropomorphic. For example “The Otti is part

of a new generation of minicars.” or “The bigger Clio III arrived late

last year, but its predecessor survives as the Clio Campus.”

• Identification of product features: To allow for organizing and search ve-

hicle models with regard to different product features, the textual descrip-

tions of the vehicles need to be analyzed to identify the values for these

features. We identified the following features as relevant: release date, top

speed, consumption, engine power, length, width, height, body type (e.g.

“hatch back” or “convertible”), and key technologies employed.

• Product classification: Both, release calendars and vehicle baskets are

organized with regard to product classes. There are various systems to

classify vehicles. We use here a classification into nine segments de-

signed by the UK Society of Motor Manufacturers and Traders (SMMT)

which is commonly used as a basis for legal cases on a European level

[Commission of the European Communities, 1999]. We use product fea-

tures, in particular the dimensions and the body type to perform this classi-

fication.

To address this task, we present in the following a setup of information extraction

tools that essentially integrates three approaches:
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• Existing formalized knowledge. Our use case partner maintains a high-

quality list of previously released vehicle models along with their features.

This information is used as a basis for annotations as it is more reliable than

information that is automatically extracted.

• Minimally-supervised text pattern induction on the Web. The advantage

of Web-based IE is that a large corpus of up-to-date information is provided.

In particular new market developments are quickly reflected on the Web.

• Supervised statistical Machine Learning. Supervised extraction is benefi-

cial when a larger amount of processing time can be invested into individual

documents to compute relevant features. In these cases, statistical models

are good at accounting for variability in the input.

The goal of this study is to use the most appropriate method for each part of

the task, rather than comparing their performance among each other. The integra-

tion runs as follows: The portal system is aware of a set of websites which contain

sufficiently reliable information on relevant market segments. These pages are

crawled regularly. Annotation models that have been derived by supervised learn-

ing are used for identifying mentions of model and maker names in the crawled

documents. Existing formal knowledge and output of minimally supervised Web

IE are used to provide high-quality features for further extraction.

10.2.1 Pronto in the Competitor Scenario forecast application

We use the Pronto system for extracting relational information from the Web

through a search engine. The Pronto setup used in the forecast application is

closest to the one used in Chapter 6. One major difference comparted to the task

in the previous chapters is that a larger seed set is used because many relation in-

stances are already known and the goal is to find additional new instances that may

reflect market changes. Pattern-based IE is most applicable when the text corpus

is large and redundant (such as the Web). As opposed to extraction with statisti-

cal classifiers, this method avoids linear processing of the entire corpus when the

model has been updated as we can directly use a search engine to query for the

surface realization of a pattern. The patterns are induced in a bootstrapping man-

ner (cf. Section 5.5) by abstracting over the mentions of previously found relation

instances.

10.2.2 Supervised Information Extraction

In contrast to the Pronto approach, our CRF annotation does not aim at finding

relation instances. It rather aims at identifying information of a specific type, thus
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performing entity extraction. This design choice is due to the way the annotated

data is used in the portal. For supervised IE on Web documents two student as-

sistants annotated at least 200 mentions of each type of vehicle feature and 300

mentions of models and makers in documents which are prototypic for portal con-

tent. More specifically, they annotated 150 documents completely for all target

annotation types. For annotation types that were not mentioned 200 times in these

documents, we additionally selected sequences that are likely to contain a target

mention (e.g. all sequences containing numbers for numerical features). Note

that both types of training data, the fully annotated documents and the additional

sequences provide negative examples although only the former reflects the actual

distribution of matches in the documents2. We trained a linear chain Conditional

Random Field (CRF) to annotate such web documents. The training and appli-

cation algorithms were taken from the Mallet toolkit [McCallum, 2002]. We pro-

vided a set of 19 token-based features which are listed in Figure 10.1. Some of the

features (set in bold in the figure) require domain-specific knowledge. Knowledge

of these types is available as pre-existing formalized knowledge and as extraction

results from Pronto extraction.

10.3 Practical Experience

10.3.1 Assessment of Pronto performance

As a test collection, we chose four different datasets for three semantic relations

from data provided by the use case partner:

• The bodyType relation relates vehicle models and the vehicle class they

belong to. E.g. (suzukiforenza, sedan), (hondapassport, sportutility),
(gmcsafari,minivan).

• The modelForecastedRelease relation captures the year in which a new ver-

sion of the given model was or will (presumably) be released. We used two

datasets for the sake of evaluation: modelForecastedReleaseDB with data

from the competitor database (which also includes past releases) and mod-

elForecastedReleaseCal with data from the release calendar (future releases

only).

• The isManufacturerOf relation assigns models to their maker.

2The pre-selection performed here is likely to increase precision at no expense of recall be-

cause all sentences not containing numbers almost certainly could only contribute false positives.

However, for measuring the appropriateness of the method for the application at hand, the mea-

sured performance is still valid because the pre-selection can also be implemented in the target

system.
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feature example matches

surface string all tokens

model “3-series”, “Toledo”

maker “BMW”, “Seat”

year “2010”

month or season “June”, “autumn”

motorshow “IAA”, “Chicago”

country “Belgium”, “Turkey”

body type “SUV”, “supermini”

price unit “EUR”, “$”

speed unit “mph”,”km/h”

consumption unit “mpg”, “g/100km”

bracket “(“)

punctuation “.”, “;”

number < 1 “0.45”

number ≥ 1 < 100 “45”, “87.7”

number ≥ 100 < 1000 “843.78”

number ≥ 1000 “439,843.43”

integer “9’843”

any number “439.843”

Table 10.1: The feature set for CRF-based annotation. Features requiring up-to-

date domain knowledge marked in bold.

• The modelBelongsToSegment relation assigns each model a market seg-

ment. E.g. (honda passport, I), (Smart, A), where segment A corresponds

to “mini” cars and I to Sports Utility Vehicles (SUVs).

The seed selection has been limited to models that have been released in the

last 10 years. Among those, random sampling has been applied. As an exception,

the input for bodyType has been taken from DBPedia (which relies on Wikipedia

as a source of knowledge) because the body type nomenclature in the competitor

database was too technical to be found on the Web.

We assess for each condition the precision of the extraction results. When

addressing extraction at a Web scale, recall assessment is difficult to make. In

order to assess, how well the approach is able to generate many relation instances

from a few examples we test extractions under two conditions. In the 10 to 100

condition, extraction starts with 10 examples and the extraction is stopped as soon

as 100 examples have been found. In the 100 to 1000 extraction starts with 100

seeds and 1000 results are the stopping criterion.
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Relation 10 to 100 100 to 1000

bodyType 0.97 0.95

modelForecastedReleaseDB 0.83 0.4

modelForecastedReleaseCal - 0.80∗

isManufacturerOf 0.93 0.55∗

modelBelongsToSegment - -

Table 10.2: Precision of extraction for the different relations in the 10 to 100 and

the 100 to 1000 conditions. In cases marked with ∗ regular expression-based post

filtering has been applied.

Table 10.2 shows precision scores for the different relations in the 10 to 100

and the 100 to 1000 conditions. bodyType extraction works very well under

both conditions. For modelForecastedReleaseDB and isManufacturerOf results

are much better for the 10 to 100 condition than for 100 to 1000. This can be

explained by the fact that success or failure of the extraction usually depends on

very few patterns that are generated. The patterns in turn depend on very few in-

stances that they initially occurred with. The more seeds there are, the more likely

is it that a couple of seeds together generate a pattern that strongly overgenerates

and introduces a lot of incorrect results.

Furthermore, an insufficient number of results is generated with the

modelForecastedReleaseCal relation when starting with 10 seeds as well as with

modelBelongsToSegment in both cases. This shows one important limit of the

approach: While appropriate for relations that are mentioned frequently (e.g. in

news coverage) it is not suitable for very technical or otherwise infrequently men-

tioned aspects. In particular, the seeds from modelForecastedReleaseCal as op-

posed to modelForecastedReleaseDB come from the release calendar which only

mentions future releases. Being rumors, those are not mentioned prominently

enough on the web. Similarly, the market segments are not frequently mentioned

along with the car as the letter code for market segments does not reflect the cus-

tomer perspective on the product.

10.3.2 Supervised tagging performance

For the supervised annotation, we report precision and recall for the considered

types of facts.3 The numbers were obtained by means of 5-fold cross validation

on the annotated data. As basis of precision and recall the counts for correctly and

3We excluded the dimension information length, width and height from further investigation

because too few mentions (< 10%) were found in the fully annotated documents. The same is true

for market segment assignments which were not mentioned at in the example texts.
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Entity type Precision Recall F1 measure

consumption 0.48 0.25 0.32

enginePower 0.89 0.77 0.81

price 0.77 0.64 0.64

releaseDate 0.56 0.46 0.48

model 0.83 0.66 0.73

topSpeed 0.81 0.73 0.73

maker 0.89 0.83 0.86

motorShow 0.78 0.56 0.61

bodyType 0.75 0.64 0.65

market 0.66 0.49 0.55

Table 10.3: Precision, recall and F-Measure of the supervised entity tagging with

CRF

incorrectly assigned target information lables is taken.4 The results presented in

Table 10.3show that the supervised annotation performs at a state-of-the-art level

of over 60% for most entities. However, one should not that some of the features

provided are domain specific and very strong indicator for individual entity types

(in particular units and gazetteer matches).

10.4 Summary

The goal of the study presented in this chapter is to employ IE technology to in-

crease the efficiency of the work of market analysts. Thereby, IE plays a support-

ing role that allows the user to focus on relevant documents and suggests relevant

target annotations. At the same time, all extracted information is subject to veri-

fication and possibly modification. Although the achieved precision values are in

line with state-of-the-art IE systems, they are far from allowing for completely au-

tomatic compilation of strategically relevant documents like the release calendar

and vehicle baskets.

The experiments show that not all relations can be extracted with the same

quality. In particular, the bootstrapping-based Web extraction approach via a

search engine only works if information is mentioned prominently. Supervised

tagging by means of Conditional Random Fields works with higher precision and

has a higher recall. It is therefore our method of choice for the annotation of the

4As opposed to also counting the absence of a tag additionally as a correct assignment of a

label of class “none”.
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documents in the portal. Up-to-date background knowledge will be acquired by

means of Web-scale Pronto extraction to ensure large coverage.
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Chapter 11

Supporting Communities with

Generating Structured Knowledge

This chapter presents an application of Information Extraction technology in an

interactive scenario that allows online communities to formalize their knowledge

while leaving repetitive annotation task to an automatic extraction system. More

specifically, we set up Pronto to extract information from Wikipedia and learn a

model for some interesting target relations. The learned model captures people’s

annotation behavior and is thus able to quickly extract new information to suggest

corresponding annotations. We developed an extension to the Wikipedia’s content

management software MediaWiki that enables communities to validate IE output

before it is integrated Wikipedia and at the same time give feedback to the ex-

traction system in form of additional training examples. The goal of this work

is thus to enable efficient creation of formalized relational information in which

machines and human users play a part that bests suits their abilities.

While annotation tools exist, that aim at annotating Web pages,

even the more prominent annotation frameworks such as CREAM

[Handschuh and Staab, 2003], Annotea [Kahan and Koivunen, 2001] or the

SHOE Knowledge Annotator [Luke et al., 1997] have had almost no practical

impact at a larger scale. The main reasons for this lack of acceptance are that the

creation of annotation is neither straightforward enough nor smoothly integrated

into those environments where content is massively created. Thus, annotation

still remains a significant hurdle for most casual users. Further, in the general

case there are no clear incentives in terms of a return of investment for users to

actually create annotations.

With the emergence of the so-called Web 2.0 [O’Reilly, 2009], a large number

of communities with a strong will to provide content have emerged. Essentially,

these are the communities behind social tagging and content creation software
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such as the bookmarking tool del.icio.us1, the photo sharing platform Flickr2, and

Wikipedia. Thus, it seems that one way of obtaining massive amounts of anno-

tated web content is to involve these communities in the endeavor and thus benefit

from their enthusiasm and effort. This requires in essence two things: semantic

annotation functionality seamlessly integrated into the standard software used by

the community and, secondly, an incentive mechanism such that people can im-

mediately benefit from the annotations created. This is for example the key idea

behind projects such as Semantic MediaWiki [Krötzsch et al., 2007] and Bibson-

omy [Hotho et al., 2006]. Direct incentives for creating semantic annotations in a

Semantic MediaWiki are for example semantic browsing and querying function-

ality, but most importantly the fact that queries over structured knowledge can be

used to automatically create views on data, e.g. in the form of tables.

In addition to the right provision of incentives, we need to use human resources

economically, avoiding that people get bored by annotating obvious facts or the

same things again and again. This is where standard Machine Learning techniques

which detect regularities in data can help. However, any sort of learning algorithm

will produce errors, either because they overgenerate or they overfit the training

data. Thus, human verification is still needed. We show here by example that

this verification can be provided by the community behind a certain project if

the feedback is properly integrated into the tools they use anyway. This opens

the possibility to turn information consumers into “passive annotators” which,

in spite of not actively contributing content and annotations, can at least verify

existing annotations if it is made easy enough. To realize this goal, we find the

iterative framework for pattern induction as introduced in Section 5.3 particularly

useful because it allows for flexible insertion of supervision in the filtering steps

(Steps 3 and 6). Iterative processing can be paused and resumed upon availability

of new instance data fitting the need of the wiki annotation.

The remainder of this chapter is organized as follows. In the next section we

describe our approach to combining machine and human intelligence for semantic

annotation in a wiki setting and describe how Semantic MediaWiki can be used

for this purpose. We also derive requirements for such an integration and describe

its corresponding architecture subsequently. We present an implementation based

on the English Wikipedia (Section 11.2) and discuss practical experiences with

a small group of community users (Section 11.3) before reviewing related work

(Section 11.4) and concluding. A paper about the work presented in this chapter

has been published at the workshop on Wikipedia and Artificial Intelligence at

AAAI 2008 with Markus Krötzsch and Philipp Cimiano [Blohm et al., 2008].

1http://del.icio.us
2http://www.flickr.com

http://del.icio.us
http://www.flickr.com
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Figure 11.1: Integrating (semantic) wikis with Information Extraction tools – ba-

sic architecture.

11.1 Combining Human and Machine Intelligence

The crucial aspect of this application scenario is that community members and

information extraction algorithms interact in such a way that they can benefit from

each other. Humans benefit from the fact that information extraction systems can

support them in the tedious work of manual annotation, and algorithms exploit

human annotations to bootstrap and learn patterns to suggest new annotations.

The workflow in our model is as follows:

1. Extraction tools use existing high-quality and community-validated human

annotations to learn patterns in data, leading to the extraction of new anno-

tations.

2. Users are requested to verify extracted data so as to confirm or reject it. This

is done by presenting questions to users.

3. Confirmed extraction results are immediately incorporated into the wiki, if

possible.

4. User replies are evaluated by extraction tools to improve future results

(learning), and to gather feedback on extraction quality (evaluation), re-

turning to (1) in a bootstrapping fashion.

The model thus is cyclic, but also asynchronous in nature, since learning, an-

notation, verification, and incorporation into the wiki interact with each other

asynchronously. Assuming the model above, we present a concrete architec-

ture and implementation. Figure 11.1 shows the relevant components – (Se-

mantic) MediaWiki, the extraction tools, a novel QuestionAPI as well as their
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basic interactions. We have selected the wiki-engine MediaWiki as a basis for

our work, since this system is widely used on publicly accessible sites (including

Wikipedia), such that large amounts of data are available for annotation. More-

over, the free add-on Semantic MediaWiki (SMW) extends MediaWiki with means

for creating and storing semantic annotations that are then exploited to provide

additional functionality to wiki-users [Krötzsch et al., 2007]. Due to the fact that

SMW is compliant with the RDF and OWL knowledge representation formalisms,

a large variety of Other sources can be connected as input source for training ex-

amples and later make use the semi-automatically created knowledge. This in-

frastructure is useful in two ways: first, it allows wiki-users to make direct use

of the freshly acquired annotations, and, second, it can support extraction tools

by providing initial (user-generated) example annotations as seeds for learning

algorithms.

As shown in Figure 11.1, our general architecture makes little assumptions

about the type and number of the employed extraction tools, so that a wide range

of existing tools should be usable with the system. We used the Pronto system

for this purpose and configured it similar to the “wiki dual” setup described in

Chapter 7.

11.1.1 Requirements on User Interaction

Successful wiki projects live from user communities that contribute and maintain

content. Therefore our work makes the assumption that social processes and

established interaction paradigms are crucial to the success of an annotation

system. Likewise, any extended functionality that is to be integrated into existing

wikis must also take into account the needs and interests of users and contributers.

We therefore formulate a set of requirements that we identified to guide the design

of the presented system:

(U1) Simplicity. Participating in the annotation process should be extremely

simple for typical wiki users, and should ideally not require any prior instruction.

The extension must match the given layout, language, and interface design.

(U2) Unobstructiveness and opt-out. In order to seriously support real-world

sites an extension must not obscure the actual main functions of the wiki.

Especially, it must be acknowledged that many users of a wiki are passive readers

who do not wish to contribute to the collaborative annotation process. Registered

users should be able to configure the behavior of the extension where possible.

(U3) User gratification. Wiki contributors typically are volunteers, such that

it is only their personal motivation which determines the amount of time they

are willing to spend for providing feedback. Users should thus be rewarded

for contributions (e.g. by giving credit to active contributors), and they should

understand how their contribution affects and improves the wiki.
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The '''Peugeot 204''' is a [[class::compact car]] produced

by the [[French]] manufacturer [[manufacturer::Peugeot]]

between [[market entry::1965]] and [[1976]].

Figure 11.2: Annotated wiki source text.

(U4) Entertainment. Even if users understand the relevance of contributing

feedback, measures must be taken to ensure that this task does not appear

monotone or even stupid to them. Problems can arise if the majority of changes

proposed by extraction tools are incorrect (and maybe even unintelligible to

humans), or if only very narrow topic areas are subject to extraction.

(U5) “Social” control over extraction algorithms. Wiki users and contributors

take responsibility for the quality of the wiki as a whole. Changes to wiki content

are frequently discussed and reverted if deemed inappropriate. Credibility and

authority play a crucial role here. Frequent inappropriate feedback requests and

content modifications by information extraction systems may lead to frustration

within the community. Therefore we propose to make the extraction tools

identifiable by giving their name, methodology and author so that users can

identify the origin of an annotation and contact responsible persons.

11.1.2 Semantic MediaWiki

Semantic MediaWiki (SMW) is an open source semantically enhanced wiki en-

gine that enables users to annotate the wiki’s contents with explicit, machine-

readable information. This information is then used to offer typed search and

browsing facilities within the wiki, as well as to export structured data in the stan-

dardised OWL/RDF format, thus supporting data reuse in other applications. A

brief overview of both aspects is provided here – for further details and related

work see [Krötzsch et al., 2007]. SMW’s main annotation mechanism is the as-

signment of property-value-pairs to pages. Property values might be other pages

(e.g. to express relations like “manufacturer”), or data values of a variety of spe-

cialised datatypes (e.g. for describing properties like “market entry”). Figure 11.2

provides a simple example of annotated wiki text, which is the basis for the HTML

output of a wiki-page. Square brackets is the standard syntactic notation for hy-

perlinks, and in SMW these links can be annotated with properties separated by a

double colon from the link-target. Based on such annotations, SMW can dynami-

cally generate lists of query results, as e.g. the one shown in Figure 11.3.
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Figure 11.3: Query result in Semantic MediaWiki: automobiles with mid-

engine/rear-wheel drive, their manufacturers, and classes where specified.

11.2 System Design and Implementation

In this section we discuss the design and implementation of our approach, which

realises the basic interactions shown in Figure 11.1. In order to enable easy in-

tegration of many extraction tools in asynchronous operation, all information ex-

change between wiki and extractors is realised via simple Web interfaces. This

web API forms one major part of our QuestionAPI extension of MediaWiki de-

veloped in the context of the work described in this chapter. The other two main

components of this module are its internal management of questions and answers,

and its user interface extensions to the wiki. All three components will be de-

scribed below, and it will be explained how the requirements identified are ad-

dressed by our particular design.

The main visible component of the QuestionAPI is its extension of the wiki

user interface. The QuestionAPI extends MediaWiki with a simple web-based

API that extraction tools can use to exchange information with the wiki. The

QuestionAPI enables extraction systems to pose questions, to request gathered

user feedback, and to remove questions from the system. Requests for feedback on

extraction results are presented to the user as multiple-choice questions in a simple

web-form, as shown at the bottom of Figure 11.4. Although we consider further

answer formats, the current implementation supports only the answers “yes” and

“no”, as well as a third option to defer a question. This last option allows users

to skip questions without answering them, so that they can continue with other

questions instead of accumulating questions that they are unable or unwilling to

answer.

The architecture assumes that the information extractors implementing the

question API will provide their questions in natural language. A corresponding

question template for each relation can be formulated when setting up the extrac-

tion system for the use of the QuestionAPI.

All questions are associated with the extraction tool that requested the feed-

back, and this information is displayed with each question. A wiki page is main-
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Figure 11.4: Questions to users displayed at the bottom of wiki pages.

tained for each extraction tool, so that users can find additional information or

provide comments (U5). Besides the general form of the request interface, an im-

portant question is where to display questions in the wiki. Following our require-

ment for unobstructiveness and opt-out (U2), the QuestionAPI can be configured

to display a variable number of questions either at the bottom of all wiki pages, or

only via a specific web interface (“special page”) of the wiki.

After answering one or more questions, users are shown a summary of the

submitted answers, as well as the option to answer further questions. The Ques-

tionAPI supports direct changes based on answers to questions such that if a user

has confirmed a certain semantic information, the QuestionAPI directly adds this

fact as an annotation to the wiki. If this is enabled, changes will be done im-

mediately when submitting an answer, and the answering user will get credit for

the change just as if she would have edited the wiki manually. While this helps

to increase user motivation (U3), it may also seem somewhat risky. But direct

changes only simplify the editing process – the question whether or not a single

user may modify a page still depends on the wiki’s settings. The specification of

direct changes currently works by specifying a string replacement and the page

context of that replacement. The latter ensures that replacements happen only if
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the page still (locally) corresponds to the version inspected by the extraction tool.

If other changes occurred, modifications need to be done manually by users.

We created a mirror of the English Wikipedia based on a Wikipedia database

dump from December 17th 2006 using MediaWiki (1.12alpha) and SMW

(1.0RC1), as well as our new extension QuestionAPI. For maintenance and per-

formance reasons, software components were distributed over three server-sized

computers: one running the PHP server for MediaWiki and its extension, one pro-

viding the database, and one running the Pronto extraction system. The systems

were able to serve pages at below 1 second response time, and to run Pronto at its

regular extraction rate of 0.3 facts per second.

11.3 Practical Experiences

We now present experiences gathered with the implementation of our collabora-

tive semantic annotation framework. We have set up an integrated system based

on Wikipedia data which we presented to community members on a publicly ac-

cessible web server in order to collect feedback and usage data. The observations

discussed here are not meant to be a formal evaluation but rather to give an idea

of the community uptake of the system as such, and the utility of the derived

information.

Experienced wiki users and developers were asked to test the system via wiki-

related mailing lists, and during a time of 5 days, 40 users (estimated from the

number of distinct IPs) provided a total of 511 answers to the QuestionAPI.

Of the 511 questions answered, 51% were answered with “no”, 34% were de-

ferred, and the remaining 15% were answered with “yes” which in our setup led

to automatic knowledge insertion. All users reacted positively to the interaction

paradigm. The general purpose of the questions was quickly understood and ap-

preciated, and no concerns were expressed with respect to obstructiveness or lack

of simplicity. Several users mentioned that the questions reminded them of a quiz

game, and suggested further uses of this extension beyond information extraction.

We interpret this as positive effect with respect to the entertainment requirement

(U4). In fact, game-like approaches to collaborative creation of knowledge exist

[von Ahn and Dabbish, 2004; Siorpaes and Hepp, 2008].

During the experiment, the option for deferring a question had been labelled

“don’t know” which was changed to “ask someone else” only later. This labelling

is assumed to be responsible for the large portion of “don’t know” answers: users

who considered the questions as a kind of quiz mentioned that they perceived it

as “cheating” to look up an answer that they were not sure about, such that “don’t

know” was considered more appropriate. This indicates that some introduction

and/or clearer labelling is still needed to better convey the purpose of the ques-
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tions. One consequence of this insight was the relabelling of “don’t know” to

“ask someone else” so as to communicate that personal knowledge is not to be

tested, while still encouraging an answer by reminding the user that the task will

otherwise be left to other users. Besides some bug reports about character encod-

ing, the only actual complaints from users were related to the content of some

types of questions, especially in cases where systematic errors occurred. This

also produced some suggestions for filtering Wikipedia-specific extraction errors,

e.g. caused by special kinds of frequent summary articles (“List of . . . ”) that can

normally not be involved in any relation.

In order to account for these observations, we formulate an extension of the

entertainment requirement (U4): It is important to ensure that systematic errors

in suggested relations are minimised beforehand, and excluded from verification

through collaborative annotation. One interesting approach to do this automati-

cally could be the use of unsupervised clustering methods that detect regularities,

and to exclude questions belonging to large clusters for which only “no” answers

have been provided so far. For this purpose, an additional answer option can be

introduced to allow the users to mark individual relation instances as “unreason-

able” suggestions.

11.4 Related Work

Annotation of web content has become popular in particular as tagging of vari-

ous kinds of media resources. Marlow et al. [2006] give an overview of tagging

systems, and discuss dimensions in which they can differ. While not a tagging sys-

tem in the stricter sense, the setup presented here would thereby be classified as

a free-for-all set model system with high resource connectivity and a special form

of tag support. The paper discusses various forms of incentives ranging from

future retrieval to opinion expression. As Wikipedia already has a vivid commu-

nity, we did not consider incentives for this study, and assume that our architec-

ture helps to involve a larger user community by providing a low-entry threshold

for contribution. An innovative approach with respect to incentives and human-

machine collaboration in tagging is the ESP game [von Ahn and Dabbish, 2004]

which asks pairs of users to come up with common tags for images by guessing

what the other user might tag or OntoGame [Siorpaes and Hepp, 2008] which asks

quiz-like questions to users. Further related work is done in the field of assisted

semantic annotation of websites (e.g. [Dzbor et al., 2003]). While our approach is

largely tailored to semantifying sources like Wikipedia, other projects have stud-

ied the interaction between human input of facts and Data Mining technology.

The Open Mind initiative studies the interaction of Web users and knowledge

bases. Their Common Sense [Pentney et al., 2007] system prompts users for nat-
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ural language statements on a given entity. In a similar way, the Knowledge Base

of the True KnowledgeTM question answering system can be extended by users

(http://www.trueknowledge.com/).

Unlike in classical tagging, annotations in Semantic MediaWiki are structured

statements that establish relationships between entities, or describe properties of

these. This is possible because each page is assumed to describe an ontological

element, and links are assumed to express relations between them. As described

above, annotations in SMW have a formal semantics suitable for exchanging them

via the Web. Some tagging systems are also working towards a more formal inter-

pretability of tags. Flickr introduced “machine tags” which allow unambiguous

expression of facts about the annotated media. Bibsonomy [Hotho et al., 2006]

provides the possibility to organize tags by asserting relations among them. The

Spock person search engine (http://www.spock.com) provides the possi-

bility to mark existing tags as correct and incorrect. Wikipedia as a data source

is described in Section 4.1.1 For related work on IE with Wikipedia refer to Sec-

tion 7.1.

While in our implementation we use IE from text to automatically derive sug-

gested annotations of Wikipedia hyperlinks, our architecture is not limited to that

setting. As reviewed and discussed in by Hendler and Goldbeck [2008], much

potential lies in the links and network structure as well as in social connections

between users. The authors argue that the social interactions enabled by annota-

tion constitute an important incentive for producing them.

11.5 Summary

In this chapter we present a new approach for facilitating semantic annotation

of wikis by means of community-supervised information extraction, and we

have presented a concrete practical realisation of this idea based on Semantic

MediaWiki and an extraction system. Our robust and flexible design enables the

loose, web-based integration of a wide range of extraction tools into existing com-

munity portals – thus tapping a large application field for information extraction

on the one hand, and new content-creation solutions for community platforms

on the other. Our contribution removes the major barrier between two important

fields of research and application, and thus opens up a range of new opportunities

for both areas. The first step certainly is to apply and evaluate information extrac-

tion tools on real-world community platforms. Our approach has been designed

to be completely open, such that existing extraction tools can use our system with

very little effort. The study shows that Web-scale pattern-based techniques as

presented in this thesis can be used for generating formal knowledge from large

unstructured sources such as Wikipedia.

http://www.trueknowledge.com/
http://www.spock.com
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Chapter 12

Synopsis of Results

The focus of this thesis is on providing methods for Information Extraction on

the Web and thus in particular addressing the scale and the heterogeneous and

redundant nature of Web content. We described and analyzed various approaches

from the literature in a common framework (Chapter 5) and identified five key

challenges in iterative pattern induction (Section 5.4). Those are the cost of super-

vision (1), the computational complexity of generalization (2), the pattern quality

prediction dilemma (3), the dependence on redundancy (4) and error prolifera-

tion(̃5).

The contribution of this thesis consists in presenting methods to address these

challenges. The methods have been implemented in systems that perform at state-

of-the-art levels and have been published and discussed at international confer-

ences and workshops. We give an overview of the novelties and contributions in

the following sections.

12.1 Controlling Quality of Iterative Pattern Induc-

tion

In a comparative study presented in Chapter 6 we investigated how to best over-

come the pattern quality prediction dilemma (Challenge 3). This dilemma is due

to the fact that extraction systems need to guide their choice of patterns by es-

timating the quality of their matches. An ultimate decision on the correctness

of a match can not be met without knowing the intended output. We compared

pattern quality measures that heuristically operate in the absence of such knowl-

edge. In particular, we compared measures extrapolating pattern quality from

training examples, measures modelling pattern-instance correlation, and a mea-

sure based on support (frequency). Furthermore the study includes a naive lower

baseline and a fully informed upper baseline. We demonstrated that in our Web
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extraction scenario, only the support-based measure statistically significantly out-

performs the random baseline with regard to precision, while all evaluation scores

stay clearly below the informed upper baseline. We further showed that the strict-

ness of pattern filtering allows to trade precision for recall and thereby to reduce

error proliferation (Challenge 5).

12.2 Supervision and Redundancy

Like many other researchers in the field we made use of the richness of Wikipedia

as a source for Information Extraction. In the study in Chapter 7 we show that

despite its vast coverage, IE from Wikipedia cannot be addressed with the same

extraction methods that are appropriate for the Web. We argued that this is due

to the fact that information is covered in a far less redundant manner. Our results

show that facts extracted from the Web can be used as additional supervision for

Wikipedia extraction allowing to produce with 10 seed examples better extraction

results than on Wikipedia alone with 100 seed examples. These results indicate

that the dependence on redundancy (Challenge 4) and the amount of required

supervision (Challenge 1) in fact interact and that a more redundant corpus allows

to reduce supervision.

12.3 Rich Patterns and Scalable Induction

The study presented in Chapter 8 shows that the formulation as a Frequent Itemset

Mining problem is a beneficial new way of guiding the search for the most salient

patterns. It strongly diminishes the generalization complexity (Challenge 2). The

induction process thereby relies on established and well-optimized Data Mining

techniques. We demonstrated a strong increase of the extraction rate at the same

level of quality as opposed to bottom-up exploration.

We identified in Section 5.2 a variety of ways in which patterns are formulated

in the literature. Pattern elements allow to define pattern classes which determine

the type of constraints that can be imposed on matching sequences. While in

the studies in the literature the choice of pattern class is not discussed or jus-

tified, we showed empirically that it constitutes an important parameter to the

mining process. For our experiments in Chapter 9 we identified several possible

effects that the introduction of pattern elements can have on extraction quality. To

analyze the effects, we developed an algorithm that enables mining various pat-

tern classes so that we can isolate the effect of individual pattern elements. We

demonstrated that the introduction of typed wildcards increases theF1 measure for

most target relations. This effect reflects that the introduction of additional knowl-
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edge in the model increases extraction quality. Furthermore, the introduction of

semi-continuity, a way of allowing more variability in content during mining and

matching, allows to trade precision for recall.

12.4 Applications

The Pronto information extraction system has been applied in two practical sce-

narios: The extraction of information for market analysis in the automotive in-

dustry and the support of the generation of a structured knowledge source in an

online community. The precision of the results achieved in the automotive sce-

nario is comparable to state-of-the-art extraction systems. The strength of Web IE

is that it provides an overview of developments of the whole Web. For the anno-

tation of a smaller number of individual Web pages the annotation by means of

Conditional Random Fields (CRF) proved more applicable. For the interactive use

in the Wikipedia community application, the iterative nature of the pattern induc-

tion algorithm proved particularly useful. Taking community feedback between

iterations of the pattern induction algorithm is a way to control error proliferation

(Challenge 5).
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Chapter 13

Outlook

To conclude this thesis, this chapter gives an outlook on potential uses of the

methods presented as well as on possible further developments of the methods.

We start out by describing three exemplary usage scenarios. We then suggest,

based on observations we made and results we obtained, future work on Informa-

tion Extraction.

13.1 Application Scenarios

Automatically extracted information can be applied wherever automatic interpre-

tation of textual information is beneficial. Many kinds of information systems

make use of IE as well as applications where large text collections need to be

processed. For the sake of illustration these scenarios are described concretely.

Nevertheless, they stand for general areas of application in which many usages

are possible.

Scenario A: Keeping Track of Web User Opinions. Understanding the mar-

ket situation by analyzing customer behavior has been the key motivation be-

hind the development of Data Mining techniques such a s the Apriori algorithm

[Agrawal and Srikant, 1994]. The increasing presence of product reviews in blogs

and specialized portals and the large volume of product-related news articles has

given rise to research on the analysis of textual sources for market analysis. One

popular instance is the task of sentiment analysis that aims at assessing the au-

thors’ attitude towards individual aspects of a product. Sentiment analysis is typi-

cally done by means of text classification with a specialized choice of text sources

and features [Pang et al., 2002]. Monitoring the entire Web by these means how-

ever is not possible. Almost everybody interested in the market standing of a

given product will today take an approach like the one suggested by Jarvis: query-
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ing Google for "ABC sucks" when interested in the situation of the product

“ABC” [Jarvis, 2009]. Jarvis argues for the economic importance of constantly

monitoring customer opinions on the Web. The techniques presented in this thesis

allow to automate such an analysis in two ways: Not only can the querying and

interpretation of query results be automated, pattern induction can also be used to

generate the most salient queries for the task at hand.

Scenario B: Missing Links in Linked Data. The Linked Data initiative

[Bizer et al., 2009] recently bundles efforts of many parties to publish data of var-

ious kinds so that it can easily be combined for new tasks. Key ingredients of

linked data are an interoperable data format and unique identification of entities

of discourse. As an example a travel information system which is based on linked

data may provide its users with information about their destination which was

integrated from various sources. Existing repositories provide the geographic lo-

cation (e.g. GeoNames), nearby attractions and famous residents (e.g. DBPedia)

web services such as those from Yahoo! Inc. provide weather and news events.

However, other information such as leisure activities and local events may only

be available in textual form on various web pages. To integrate them, the system

can resort to textual patterns that have been induced during portal setup and are

posed after having been augmented by the information provided in the linked data

repository. The system thus makes use of the explicit nature of textual patterns by

using them to retrieve on-demand information on a specific entity.

Scenario C: Collective Authoring. The application described in Chapter 11 can

serve as an example for a further range of applications in which human users and

IE systems develop a structured knowledge resource. When applied to Wikipedia,

such structured knowledge can be used to facilitate both editing and browsing. In

terms of browsing, faceted search and search by means of natural language ques-

tions would be beneficial extensions. Editing could be improved by consistency

checks and additional possibilities to integrate knowledge from other pages into a

new page (cf. [Krötzsch et al., 2007]). By the methods presented in Chapter 11,

Wikipedia can be extended in an unobstructive manner. Users would annotate hy-

perlinks freely within the usual wiki setup. The IE system aggregates tags and acts

in the background when sufficient information becomes available. Feedback and

further annotations can be collected as users answer questions or edit wiki pages.

With the help of additional ML methods, the recognition of relevant relations and

the mapping of tags to relations can partially be automated.
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13.2 Advancing IE Methods

The results presented in Chapter 9 show that patterns that capture additional infor-

mation about the matched text sequences (types of wildcard in our study) improve

both precision and recall. Future research in IE has to ensure that as much rel-

evant information about mentions of target relation instances as possible is cap-

tured. Many different structural aspects of textual mentions contribute to con-

veying meaning. In addition to the text’s surface form, various forms of gram-

matical structures can play a role as well as terminological knowledge which can

be formalized by arranging terms in structures (e.g. ontologies). Finally non-

textual structures like page layout (e.g. adjacency in tables) and document or-

ganization (e.g. hyperlinks and category systems) convey meaning. Although

approaches in which selected aspects are integrated exist (e.g. document structure

[Wu and Weld, 2007] and ontologies [Culotta et al., 2006]), the integration of ar-

bitrary structured features constitutes still an open issue. Such research would

require the identification of appropriate representation structures as well as the

adaptation of Machine Learning and Data Mining methods to the corresponding

structure.

A further line of research is the elimination of the borders between pattern-

based and statistical methods in IE. There have been few works in which pattern

matches have been treated as features [Etzioni et al., 2005; Snow et al., 2004]. In

these studies, instances were described by the set of patterns that were matched in

order to obtain them. Following this idea, the steps of pattern and instance eval-

uation can be viewed as a classification or regression problem to which pattern-

instance co-occurrences serve as features. Patterns are more salient than typical

classification (e.g. word presence) and can be obtained efficiently. Statistical

classification could overcome the limitations of their usual interpretation as con-

junction of Boolean constraints.

Finally, we expect a – once again – increasing amount of interaction of IE

research with research on linguistic formalisms as well as formal logics. Most

recent research on Information Extraction has focused on scalable processing of

large text corpora and therefore omitted cost-intensive in-depth analysis of the

textual input. Although there exist automatic methods for the translation of natural

language text into rich linguistic formalisms as well as inferencing tools which

operate on formalized knowledge, their application at a large scale has not yet

been possible. However, recent promising studies used techniques from uncertain

logical inferencing for IE [Suchanek et al., 2009] and transferred large amounts

of text into rich abstract linguistic descriptions [Curran et al., 2007].
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Appendix





Appendix A: Taxonomy used in

Chapter 9

The reduced taxonomy as used in

the experiments in Chapter 9. Con-

cepts with prefix “E.” are defined by

WSJ tags, a “POS.” prefix indicates def-

inition by part-of-speech all other con-

cepts stem from WordNet supersenses.

noun

noun.artifact

noun.body

noun.food

noun.substance

noun.object

noun.act

noun.cognition

noun.communication

noun.event

noun.process

noun.quantity

noun.time

noun.attribute

noun.feeling

noun.motive

noun.phenomenon

noun.relation

noun.shape

noun.state

noun.animal

noun.person

noun.plant

E.PRODUCT.OTHER

E.PRODUCT.DRUG

E.PRODUCT.FOOD

E.PRODUCT.OTHER

E.PRODUCT.VEHICLE

E.PRODUCT.WEAPON

E.PRODUCT.DESC.OTHER

E.PRODUCT.DESC.VEHICLE

E.PRODUCT.DESC.WEAPON

noun.group

E.ORG.CITY

E.ORG.CORPORATION

E.ORG.EDUCATIONAL

E.ORG.GOVERNMENT

E.ORG.HOSPITAL

E.ORG.HOTEL

E.ORG.MUSEUM

E.ORG.OTHER

E.ORG.POLITICAL

E.ORG.RELIGIOUS

E.ORG.STATE.PROVINCE

E.ORG.DESC.CORPORATION

E.ORG.DESC.EDUCATIONAL

E.ORG.DESC.GOVERNMENT

E.ORG.DESC.HOSPITAL

E.ORG.DESC.HOTEL

E.ORG.DESC.MUSEUM

E.ORG.DESC.OTHER

E.ORG.DESC.POLITICAL

noun.location

E.LOCATION.BORDER

E.LOCATION.CITY
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E.LOCATION.CONTINENT

E.LOCATION.OTHER

E.LOCATION.REGION

E.LOCATION.RIVER

E.GPE.COUNTRY

E.CONTACT.INFO.ADDRESS

E.CONTACT.INFO.OTHER

E.CONTACT.INFO.PHONE

E.FAC.AIRPORT

E.FAC.ATTRACTION

E.FAC.BRIDGE

E.FAC.BUILDING

E.FAC.HIGHWAY.STREET

E.FAC.OTHER

E.FAC.DESC.AIRPORT

E.FAC.DESC.ATTRACTION

E.FAC.DESC.BRIDGE

E.FAC.DESC.BUILDING

E.FAC.DESC.OTHER

E.FAC.DESC.HIGHWAY

E.GAME

E.LANGUAGE

E.LAW

E.EVENT.HURRICANE

E.EVENT.OTHER

E.EVENT.WAR

E.DISEASE

E.WORK.OF.ART.BOOK

E.WORK.OF.ART.OTHER

E.WORK.OF.ART.PAINTING

E.WORK.OF.ART.PLAY

E.WORK.OF.ART.SONG

verb

verb.consumption

verb.possession

verb.weather

verb.body

verb.competition

verb.contact

verb.social

verb.cognition

verb.communication

verb.emotion

verb.perception

verb.change

verb.creation

verb.motion

verb.stative

POS.MD

adjective

adj.all

POS.JJR

POS.JJS

E.NORP.NATIONALITY

E.NORP.OTHER

E.NORP.POLITICAL

E.NORP.RELIGION

adverb

POS.WRB

POS.RB

POS.RBR

POS.RBS

pronoun

POS.WP

POS.WPD

POS.PRP

other

POS.POS

POS.RP

POS.CC

POS.TO

POS.UH

POS.EX

POS.FW

POS.IN

nonword

NT.sentence.delimiter

NT.quote

POS.CLOSEBRACK

POS.

POS.OPENBRACK

POS..
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POS.DOLLAR

POS.SYM

POS.LS
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Extracting information from text is the task of obtaining 
structured, machine-processable facts from information that 
is mentioned in an unstructured manner. It thus allows systems 
to automatically aggregate information for further analysis, 
efficient retrieval, automatic validation, or appropriate visua-
lization. Information Extraction systems require a model that 
describes how to identify relevant target information in texts. 
These models need to be adapted to the exact nature of the 
target information and to the nature of the textual input, 
which is typically accomplished by means of Machine Learning 
techniques that generate such models based on examples. 
One particular type of Information Extraction models are 
textual patterns. Textual patterns are underspecified explicit 
descriptions of text fragments. The automatic induction of 
such patterns from example text fragments which are known 
to contain target information is a common way to learn this 
type of extraction models.

This work explores the potential of using textual patterns for 
Information Extraction from the World Wide Web. We review 
and discuss a large body of related work by describing it 
within a common framework. Then, we empirically analyze 
the effects of a multitude of design choices in pattern-based 
Information Extraction systems. In particular, we investigate 
how patterns can be filtered appropriately. We show how 
corpora of different nature can be exploited beneficially and 
how the nature of the patterns influences extraction quality. 
Finally, we present new ways of mining textual patterns by 
modelling pattern induction as a well-understood type of Data 
Mining problems.
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