
1 INTRODUCTION

1.1 Motivation
As stated above, getting data out of a digital model
can soon get very complex. But complexity -if well
documented- is not a first place issue. Access to
structures and values of a model instance often re-
quires internal knowledge about commonly used
good practices on how to use data structures if alter-
natives exist. Although publicly available the model
schema is sometimes not enough for working effi-
ciently and unambiguously with model data.
Several commonly used model types (e.g. IFC) have
their primary focus on product description, which is
well suited for data exchange; while data analysis is
often hindered by the way data is structured. For ex-
ample IFC connects properties with entities through
a plethora of at least four indirections before the re-
quested value is finally in sight. While this loose
coupling is a very elegant and flexible mechanism
for assigning properties to elements, it is quite im-
practical for inquiries on the data set. This is inde-
pendent of the data persistence technology used. Ei-
ther relational or object-oriented modeling will have
to resolve the deep indirection trees, making either
table joins or equivalent OO mechanisms necessary.
Depending on the underlying problem, this might ei-
ther be solved by converting the logical model struc-
ture into a technical database structure in order to
optimize data access (performance, complexity) or
leads into complex query expressions. The price for
the first solution is often conversion and redundancy
management. Moreover, applications build on top of
the database structures rather than the native model
structures will find it harder to implement domain-
specific logic, which by definition is using the native

domain-specific concepts. As for the second solu-
tion, complex queries might be hard to maintain and
error prone, scaling down application robustness.

1.2 Vision
The internal digital representation of a domain-
specific model is the result of applying methods of
computer science to the concepts of the respective
problem domain. Although reflecting the under-
standing of the domain concepts, syntax and seman-
tics the digital model carries the image of computer
science, not of the original problem domain. An ap-
proach of using this very valuable computer model
as an underlying foundation while expressing analyt-
ic interactions in plain domain-specific language
would strengthen the ability of domain-experts to
use domain-models, without having to be a software
specialist at the same time.
E.g. instead of going along the following indirection
path to find the floor area value of all office rooms
in an IFC model

IfcSpace

IfcRelDefinesByProperty
IfcSpaceProgram

IfcPropertySingleValue
IfcLabel:OccupancyType == “office”
…

As an analyst you’d rather like to say: “total office
room floor area” meaning the summed up floor area
of all rooms of type ‘office’ on the respective floor
in the respective building. Instead of expressing how
to collect the values by using the syntax of the digi-
tal model, a declarative expression doesn’t concern
about the ‘how to’. Instead it focuses on the ‘what’.

A Declarative Approach to Cross-Domain Model Analysis

Dipl.-Ing. Ulrich Hartmann
Prof. Dr.-Ing. Petra von Both
Institute for Industrial Building Production, University of Karlsruhe, Germany

ABSTRACT: The analysis of digital models requires in-depth knowledge of the semantical, syntactical and
technical specification of the model schema and its internal representation in the computer. Taking this huge
overhead into account, the preparation steps for conducting an analysis onto a digital model can get more do-
minant than the analysis itself. Beyond that, people involved in providing the technical infrastructure and
people conducting the analysis often do not share the same skill set. Productivity gains could be expected, if
one side could concentrate on the conceptual-part of the analysis and the other part could focus into the im-
plementation-part of digital model analysis. The concept shown here enables analysts to express elements and
terms of an analysis in their own domain-specific language, while the underlying mapping between the con-
ceptual and the technical view onto the system can be set up in a generalized and extensible fashion using
state-of-the-art software concepts.

How can this be achieved? This article tries to lay
out an approach, conceptually and technically, how
the separation of concerns between domain experts
and technical experts can be encapsulated, resulting
into better usability and software and the re-use of
analysis concepts and technical components alike.
The following example should show the principle.

1.3 Benefits
Separating domain concepts from technical concepts
not only encourages the utilization of digital models
by domain experts. The capability of defining prob-
lem-centered namespaces could even support cross-
domain collaboration of analysts of different do-
mains. A view exposing familiar structures and con-
cepts can be provided even if the analysis belongs to
more than one domain. The mapping layer between
expert view and technical view must be flexible
enough to reflect changing requirements from the
expert level. This also leads to more robust and re-
usable applications. In the end, complexity of digital
models need not be challenging, as it comes along
packed within suitable interfaces.

2 EXAMPLE SCENARIO

The local administration of X city is planning a new
bus line to enhance the public transportation system.
The route should link business areas and living areas
by providing an alternative option to travelling by
car for reducing office-hour traffic significantly.

Data Sources
The communal cadastral system, often basically a
GIS system, contains the city map with real estate
and city road information. Each real estate entry has
a reference to an electronic building document con-
taining an IFC-based model of the building1

. The
technical specification is of no relevance for the
concept.

Algorithms for Analysis
Different route alternatives have to be compared.
The catchment area of the optimal route would col-
lect most commuters in the morning and let them
disembark as close as possible at their working loca-
tion and vice versa in the evening. Although it’s not
possible to link everybody’s living location with the
individuals working location, it seems statistically
sound enough to optimize the traffic line by finding
the best coverage of the related embarking and dis-
embarking areas. The floor area of all buildings in
the covered region is summed up, separated into the

1 admittedly quite an optimistic assumption by now, making

it necessary to have an alternative instrument if this is not giv-
en

different occupancies like type ‘office’, type ‘pri-
vate’, etc. In this simple example we leave other
considerations like route length, time of travelling,
line switching and so on out of scope. The intention
of this example is not to build up a sophisticated
analysis model for urban traffic optimization. The
focus is on domain-spanning analysis and the advan-
tages of putting an abstraction layer between the
software-centered and the domain-knowledge-
centered view. We could apply nearly the same algo-
rithms for placing block heat and power plants at op-
timal locations in the urban area and –even more
important- separation of concerns into two separate
physical layers would promote the re-use not only of
concepts but also of components.

Basic Assumptions
− Coverage area is calculated assuming a maximum

walking distance to the route. Beyond that dis-
tance it wouldn’t be attractive to utilize the bus
line.

− An estimation of the amount of people involved
is given by the person ratio per square meter of-
fice floor and per square meter private home floor
respectively.

Involving different Algorithms
As a first rough estimation, the coverage area could
be calculated by applying a direct surface to surface
connection between building and bus route. Build-
ings within the maximum distance belong to the
coverage area.
In a more meaningful (but also more time consum-
ing) calculation the exact walking distance between
building location and bus route could be calculated
by called a navigation service (e.g. Google maps).
Pursuing the concept of dynamic business logic in-
volvement through the use components loaded at
runtime, different algorithms for calculation could
be consulted declaratively.

3 DECLARATIVE ANALYSIS ENVIRONMENT

3.1 Design Principles and Requirements
A systematic solution has to meet the following re-
quirements.

− Separation of conceptual and technical level
− Extensibility on both levels
− Configurable domain-specific language support
− Independence of underlying domain model
− Independence of underlying data model
− Works with OO and relational paradigm alike
− Use of mainstream software technology

Encapsulation of technical complexity by using do-
main-specific languages as an abstracting layer of-
fers efficient handling of model interaction.
The degree of complexity exposed at DSL level can
easily be scaled, due to the specific granularity
needed for an analysis. Reusable components can
implement model semantics and model access pat-
ters. They can serve as foundation for the semantic
level as basis for putting different DSL-Layers on
top.
Through this interface many applications could
prosper from the ability of not just storing and ex-
changing data through digital models, but also get-
ting specific pre-processed data back from the model
on demand of the domain. As shown in this paper,
complex domain-spanning analysis can be handled
declaratively at domain user level by using and / or
providing the right abstractions and toolset. Standard
technology has evolved greatly to support domain-
related requirements.

REFERENCES

[ANTLR] ANother Tool for Language Recognition, frame-
work for constructing interpreters, compilers, etc. from
grammatical descriptions. http://www.antlr.org/

Denton, T. & Jones, E. & Srinivasan, S. &Owens, K.

&Buskens, R. 2008. NAOMI-An Experimental Platform for
Multi-modeling. In Proceedings of MODELS, pages 143–
157, Toulouse, France, October 2008.

 Gamma, E. & Helm; Johnson, R. E. 1995. Design Patterns.

Elements of Reusable Object-Oriented Software. Addison
Wesley

Akehurst, D.H. & Howells, W.G. & Scheidgen, M. & Mcdo-

nald-Maier, K. D. 2007. Proceedings of the Workshop
Ocl4All: Modeling Systems with OCL at MoDELS 2007,
C# 3.0 makes OCL redundant!

Hessellund, A. & Lochmann, H. 2008. An Integrated View on

Modeling with Multiple Domain-Specific Languages.
IASTED submission

Hessellund, A. 2009. Domain-Specific Multimodeling, Ph.D.

Dissertation (preprint), Supervisors: Peter Sestoft and Kas-
per Østerbye

Mernik, M. & Heering, J. & Sloane. A. M. 2003 When and

how to develop domain-specific languages. Submitted to
ACM Computing Surveys

Mellor, S. & Kendall, S. & Uhl, A. & Weise, D. 2004. MDA

Distilled – Principles of the Model-Driven Architecture.
Addison-Wesley

[OMG_MDA] Object Management Group: Model Driven Ar-

chitecture. www.omg.org/mda

 [oslo] Microsoft model-driven development platform pre-

release. http://msdn.microsoft.com/oslo

Stahl, T. & Völter, M. 2007. Modellgetriebene Softwareent-
wicklung. Techniken, Engineering, Management. 2. Aufla-
ge, dpunkt,

Starke, G.: Effektive Software Architekturen-Ein praktischer

Leitfaden. Hanser, 2008

White, J.; Hill, J. H.; Tambe, S.; Gokhale, A., Schmidt, D. C.;

Gray, J. 2009. Improving Domain-specific Language Reuse
through Software Product-line Configuration Techniques.
Submitted to IEEE Software Special Issue: Domain-
Specific Languages and Modeling, Jul/Aug 2009.
(http://www.dre.vanderbilt.edu/~jules/white-dslreuse.pdf)

http://www.antlr.org/�
http://www.amazon.de/Patterns-Elements-Reusable-Object-Oriented-Software/dp/0201633612/ref=sr_1_1?ie=UTF8&s=books-intl-de&qid=1243331233&sr=1-1�
http://www.omg.org/mda�
http://msdn.microsoft.com/oslo�

	1 INTRODUCTION
	1.1 Motivation
	1.2 Vision
	1.3 Benefits

	2 EXAMPLE SCENARIO
	3 DECLARATIVE ANALYSIS ENVIRONMENT
	3.1 Design Principles and Requirements
	3.2 System Architecture Concepts
	3.3 Technologies and Tools

	4 APPLICATION
	5 CONCLUSION

