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Abstract. During the last years, preprocessing-based techniques have been developed to compute
shortest paths between two given points in a road network. These speed-up techniques make the com-
putation a matter of microseconds even on huge networks. While there is a vast amount of experimental
work in the �eld, there is still large demand on theoretical foundations. The preprocessing phases of
most speed-up techniques leave open some degree of freedom which, in practice, is �lled in a heuristical
fashion. Thus, for a given speed-up technique, the problem arises of how to �ll the according degree of
freedom optimally. Until now, the complexity status of these problems was unknown. In this work, we
answer this question by showing NP-hardness for the recent techniques. Part of this report has been
published in [3]. However, this work includes all proofs omitted there.

1 Introduction

Computing shortest paths in graphs is used in many real-world applications like route-planning in road
networks or for �nding good connections in railway timetable information systems. In general, Dijkstra's
algorithm computes a shortest path between a given source and a given target. Unfortunately, the algorithm
is slow on huge datasets. Therefore, it cannot be directly used for applications like car navigation systems
or online working route-planners that require an instant answer of a source-target query.

Often, this problem is coped with by dividing the computation of the shortest paths into two stages.
In the o�ine stage, some data is precomputed that is used in the online stage to answer a source-target
query heuristically faster than Dijkstra's algorithm. Such an approach is called a speed-up technique (for
Dijkstra's algorithm). During the last years, speed-up techniques have been developed for road networks
(see [6] for an overview), that make the shortest path computation a matter of microseconds even on huge
road networks consisting of millions of nodes and edges.

Usually, the o�ine stage leaves open some degree of freedom, like the choice of how to partition a graph
or of how to order a set of nodes. The decision taken to �ll the respective degree of freedom has direct
impact on the search space of the online stage and therefore on the runtime of a query. Currently, these
decisions are made in a purely heuristical fashion. A common trade-o� is between preprocessing time/space
and query time/search space. In this paper we show the NP-hardness of preprocessing the o�ine stage such
that the average search space of the query becomes optimal. For each technique, we demand that the size of
the preprocessed data should be bounded by a given parameter. This model is used because practitioners in
the �eld usually compare their results by absolute query times, size of the search space, size of preprocessing
and time needed for the preprocessing. In practice, the basic technique can be enriched by various heuristic
improvements. We will not consider such improvements and stick to the basic core of each technique. This
implies that, for the sake of simplicity, some techniques are slightly altered.

The techniques considered are ALT [10], Arc-Flags [17, 15], SHARC [5], Highway Node Routing /
Multilevel-Overlay Graph [23, 22, 16] and Contraction Hierarchies [9]. We left out Geometric Containers
[25, 26], Highway Hierarchies [19, 20] and Reach-Based Pruning [13, 11, 12] as their o�ine stage only contains
tuning parameters but no real degree of freedom. However, two interesting aspects of Reach-Based Pruning
are included. We further did not work on Transit Node Routing [21, 2] as this is a framework for which also
parts of the query-algorithm are to be speci�ed.

? Partially supported by the DFG (project WAG54/16-1).



Related Work. There is a huge amount of work on speed-up techniques. An overview on experimental work
can be found in [6]. There is large demand on a theoretical foundation for the �eld and there exists only few
theoretical work: In [4] results are given for a problem that is related to the technique of inserting shortcuts
to the underlying graph. Recently, a graph-generator for road networks was given [1] and it is shown that
graphs evolving from that generator possess a property called low highway dimension. For graphs with this
property, a special preprocessing technique is proposed and runtime guarantees for Reach-Based Routing,
Contraction Hierarchies, Transit Node Routing and Sharc using that preprocessing technique are given.

2 Preliminaries

Throughout the work G = (V;E; len) denotes a directed weighted graph with n nodes, m edges and positive
length function len : E ! R

+. Given an edge (u; v) we call u the source node and v the target node of (u; v).
Further, (u; v) is an incoming edge of v and an outgoing edge of u. With G we denote the reverse graph, i.e.
the graph (V; f(v; u) j (u; v) 2 Eg). A path P from x1 to xk in G is a �nite sequence x1; x2; : : : ; xk of nodes
such that (xi; xi+1) 2 E, i = 1; : : : ; k � 1. The length of a path P in G is the sum of the length of all edges
in P . A shortest path between nodes s and t is a path from s to t with minimum length. Given two nodes
s and t, the distance dist(s; t) from s to t is the length of a shortest path between s and t and in�nity if no
s-t-path exists.

Dijkstra's algorithm. Given a graph G = (V;E) with length function len : E ! R
+ and a root s 2 V ,

Dijkstra's algorithm �nds the distances from s to all nodes in the graph. For each node v in the graph, the
algorithm maintains a status marker, indicating exactly one of the states unvisited, visited or settled and a
distance label d(v). A min-based priority queue Q is provided that contains all visited nodes, keyed by the
distance label.

Each node v is initialized to be unvisited and d(v) is set to be in�nity. Then, d(s) is set to be 0, s is
set to be visited and inserted into Q. While there are visited nodes, the algorithm extracts one node v with
minimal distance label from Q, marks v as �nished and relaxes all of its outgoing edges (v; w). An edge
(v; w) is relaxed as follows: If d(w) � d(v) + len(v; w) nothing is to be done. Otherwise d(w) is set to be
d(v)+ len(v; w). If w is already visited, its priority in the queue is updated, otherwise it is marked as visited
and inserted into the queue.

There are many possibilities to break ties when extracting nodes from the queue. Throughout this work,
we additionally identify every node uniquely with an integer between 1 and jV j. Among all nodes with
minimal distance in the queue, the smallest integer gets extracted �rst.

In this work we focus on s-t-queries, i.e. queries for which only a shortest s-t is of interest. Hence, the
algorithm can break after the node t has been marked as settled. The search-space of the query is the set of
nodes, settled up to that point.

Bidirectional Search. This approach starts a Dijkstra's search rooted at s on G (the forward search) and
one rooted at t on G (the backward search). Whenever a node has been settled it is to be decided if the
algorithm changes to the opposite search. A simple approach is to swap the direction every time a node is
settled. The distance balanced bidirectional search changes to the other direction i� the minimal distance
label of nodes in the queue is greater than the minimal distance label of nodes in the contrary queue.
There are di�erent possible stopping criteria for bidirectional search which get speci�ed for the particular
speed-up technique applied. During the run of the algorithm, the tentative distance is minfdist(s; u) +
dist(u; t)j u has been settled by both searchesg. Finally, dist(s; t) = minfdist(s; v)+dist(v; t)g over all nodes
v, that get settled from both directions. The search-space of a bidirectional search is the union of the search-
spaces of forward and backward search. We consider the search space to be a multi-set, i.e. when computing
the size of the search space we count nodes that get settled in both directions twice.
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Speed-up techniques. The query of each speed-up technique we consider is either a modi�ed Dijkstra's
algorithm or a modi�ed bidirectional search. The output of an s-t-query is dist(s; t). We do not consider
extra techniques like path-unpacking (see [6] for a description). For a given technique, we write VF (s; t) for
the size of the search space of an s-t-query when choosing F to �ll the particular degree of freedom.

A Repeating Pattern. We consider Dijkstra's search and assume that there is a set T 2 V such that
dist(s; t) is equal for each t 2 T and an arbitrary but �xed s 2 V . Our aim is to compute the sum

P
t2T V (s; t)

of the search-spaces of all s-t-queries with t 2 T . We remember that, when deciding which node to settle next,
ties are broken according to some prede�ned order on the vertices. Hence we can decompose

P
t2T V (s; t)

as jT j � jfv 2 V j dist(s; v) < dist(s; t)gj+ jT j(jT j+ 1)=2.
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3 Reach-Based Pruning

Reach is a centrality measure indicating whether a node lies in the middle of a long shortest path. More
formally, the reach RP (vi) of a node vi with respect to a path P = (v1; : : : ; vk) is minflen(v1; : : : ; vi);
len(vi; : : : ; vk)g. The reach R(v) of a node with respect to a graph G is maxfP2SP j v2PgRP (v) where SP
denotes the set of all shortest paths in G. For ease of notation, we consider a single vertex to be a path of
length 0.

There exist di�erent variants of how to use reach for pruning the search-space of a bidirectional Dijkstra's
search, all of them sharing the same main idea. We use the self-bounding query explained later. In practice
the approach is mixed with other ingredients like ALT, contraction and the computation of upper bounds
for reach-values which we do not consider here. Further, inspired by Contraction Hierarchies we relax the
stopping criterion. This has been shown to be reasonable by experimental tests.

The reach-query is bidirectional Dijkstra's algorithm with the following two modi�cations: First, no
stopping criterion is used, hence all vertices reachable from the source get settled. Second, a node v is not
settled if R(v) is smaller than its priority in the queue. Note that v can still get visited. We denote by d+(v)
and d�(v) the length of the shortest path from s and to t respectively, found by visiting or settling node
v. Finally, dist(s; t) is given by min(d+(v) + d�(v)) over all nodes v that are visited or settled from both
directions.

Search-Space Minimal Reach. In case shortest paths are not unique the technique still computes correct
distances even if only considering one shortest path for each source-target pair. The Problem MinReach is
that of choosing these shortest paths such that the resulting average search-space becomes minimal. More
formally, we choose a set P of shortest paths and compute R(v) by maxfP2Pj v2PgRP (v). We denote by
VP(s; t) the search space of the s-t-reach-query using this reach-values for pruning.

Problem (MinReach). Given a graph G = (V;E; len), choose P � SP such that P contains at least one
shortest s-t path for each pair of nodes s; t 2 V for which there is an s-t-path and such that

P
s;t2V VP(s; t)

is minimal.

Theorem 1. Problem MinReach is NP-hard (even for directed acyclic graphs).

Proof. We make a reduction from Exact Cover by 3-Sets (X3C). W.l.o.g we may assume
S
c2C = U .

Given an X3C-instance (U;C) with jU j = 3q we construct a MinReach-instance G = (V;E) as follows:
V = fag [ C [ U where a is an additional vertex. There is an edge (a; c) for each c 2 C. There is an edge
(c; u) 2 C � U if, and only if u 2 c. All edge lengths are 1. The construction is polynomial, see Figure 1 for
a visualization.

C

U

a

Fig. 1: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g
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It is R(u) = 0 for u 2 fag[U . Hence, these nodes only get settled as start nodes from the forward search
or as target nodes from the backward search. Given the set P, we denote the search space starting at node
z by V +

P (z) and V �
P (z) for forward and backward search, respectively. We decompose

X
s;t2V

jVP(s; t)j = jV j

0BBBBB@jV +(a)j+
X

s2U[C

jV +(s)j| {z }
=jU[Cj

+
X

t2fag[C

jV �(t)j

| {z }
=jCj+1

+
X
t2U

jV �(t)j

1CCCCCA
Claim. There is a set P such that

P
s;t2V VP(s; t) � jV j [(1 + q) + jU [ Cj+ jCj+ 1 + 2jU j] if and only if

there is an exact cover for (U;C).

"if\ When computing the reach-values of nodes in C we only have to consider paths that start with
a and end in U because paths consisting of only one edge do not contribute to reach-values greater than
0. Let C 0 � C be an exact cover of (U;C). Further let C 0(u) denote the c0 2 C 0 with u 2 c0. We set
P = f(a;C 0(u); u)j u 2 Ug. Then, for each c 2 C we have R(c) = 1 if there is a path (a; c; u) in P and
R(c) = 0 otherwise. Hence, jV +(a)j = 1+ q and jV �(u)j = 2 for each u 2 U . This yields the claimed bound.

"only if\ Let P � SP be such that
P

s;t2V VP(s; t) � jV j [(1 + q) + jU [ Cj+ jCj+ 1 + 2jU j]. We show
that C 0 = fc 2 Cj (a; c; u) 2 Pg is an exact cover of (U;C). As P has to include one shortest a-u path
for each u 2 U we know C 0 covers of U . With the above decomposition of the search-space we know that
jV +(a)j+

P
t2U jV

�(t)j � 1 + q + 2jU j. It is V +(a) = fag [ fc 2 Cj R(c) � 1g = fag [ C 0 and, for u 2 U ,
V �(u) = fug [ fc 2 Cj R(c) � 1; u 2 cg = fug [ fc 2 Cj (a; c; u) 2 Pg � 2. Hence jC 0j � q.

External Shortcuts for Reach-Based Pruning. This is an enhancement for reach-based pruning similar
to problem ExtShortcutsArcFlags. We assume that, given the input graph G and a parameter k,
we are allowed to insert a set S of k shortcuts to G. The resulting graph G0 is the input of the search
technique MinReach and we denote the resulting search-space of an s-t-query by VS(s; t). One can solve
the MinReach-part of the preprocessing-phase by a heuristic approach. In that case, one can show the
NP-hardness of inserting shortcuts for a wide range of strategies. We show that it is NP -hard to insert the
shortcuts even if we are given an oracle that optimally solves problem MinReach in constant time.

Problem (ExtShortcutsReach). Given a graph G = (V;E; len) and a positive integer k, insert a set S
of k shortcuts to G, such that

P
s;t2V VS(s; t) is minimal.

Theorem 2. Problem ExtShortcutsReach is NP-hard (even for directed acyclic graphs and even if there
is an oracle that solves Problem MinReach in constant time).

Proof. We make a reduction from X3C. Let (U;C) be an instance of X3C with jU j = 3q. W.l.o.g we may
assume

S
c2C = U . We construct an instance (G = (V;E; len); k = q) of ExtShortcutsReach as follows:

the set V consists of two nodes c� and c+ for each c 2 C, one node u for each u 2 U , one additional node
a and an additional set M with jM j to be speci�ed later. There is an edge (c+; u) with length 2 i� u 2 c.
Further, there are edges (a; c�) with length 2 and (c�; c+) with length 1 for each c 2 C. Moverover, there is
an edge (m; a) with length 1 for each m 2 M . We set k = q. The transformation is polynomial as jM j will
be polynomial in the input size, see Figure 2 for a visualization.

Given the set S, we denote the search space starting at node z by V +
S (z) and V �

S (z) for forward and
backward search, respectively. It is R(a) � 1 and R(m) = 0 for m 2M . HenceX

s;t2V

VS(s; t) = jV j
X

z2fag[C�[C+[U

�
V �(z) + V +(z)

�
| {z }

�2jfag[C�[C+[U j2

+jV j
X
z2M

(V �(z)| {z }
=j1j

+V +(z))

We call a shortcut assignment S set covering if S contains, for each u 2 U , a shortcut (a; c+) such that
u 2 c.
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C−

C+

U

a

M
1

2

1

2

edge length

Fig. 2: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g

Claim. Let S be set-covering. Then P can be chosen such that
P

m2M V +
S (m) � 2jM j.

Let m be in M . It is R(u) = 0 for u 2 U . Hence V +(m) \ U = ;. Further, for c+ 2 C+ we have R(c+) � 2
and dist(m; c+) = 4. Hence V +(m)\C+ = ;. As S is set-covering, we can choose P such that paths starting
in M [ fag and ending in U do not to contain a node in C�. If we do so, R(c�) � 2 < dist(m; c�) for c� in
C�. Hence V +(m) � fm; ag.

Claim. Assume jM j > k. Let S and u� 2 U be such that (a; u�) 62 S and such that for all c 2 C with u� 2 c,
we have (a; c+) 62 S . Then

P
m2M V +

S (m) � 3jM j.

As jM j > k we have at least one node m0 2M such that (m0; v) 62 S for all v 2 V . Hence, (m0; a; c�) is the
only shortest path for c� 2 C and R(a) � 1. Therefore a gets settled from each m 2M . Further, a shortest
m0-u�-path starts with (m0; a; c�� ) for a c

�
� 2 C�. Hence, R(c�� ) � 3 and c�� gets settled from all m 2M .

Claim. We specify jM j = maxfk; 2jfa[C� [C+ [Ugj2g+1. Then
P

s;t2V VS(s; t) � jV j(2jfa[C� [C+ [

Ugj2 + jM j+ 2jM j) if and only if there is an exact cover for (U;C).

Let C 0 be an exact cover of (U;C). Then f(a; c+)j c 2 C 0g is set-covering and the bound on the search-space
holds with the above claims. On the other hand let

P
s;t2V VS�(s; t) � jV j(2�jfag[C�[C+[U j2+jM j+2jM j).

With the last claim we know that for each u 2 U there must be either a shortcut (a; u) 2 S� or a shortcut
(a; c+) with u 2 c. We gain a shortcut assignment S 0 out of S� by copying all shortcuts of the form (a; c+)
in S and taking, for each shortcut of the form (a; u) 2 S�, one arbitrary shortcut (a; c+) with u 2 c. The set
fcj (a; c+) 2 S 0g is a cover of (U;C) of size q.
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4 Highway Node Routing (Min-Overlay Graph)

Given the input graph G = (V;E) this technique chooses a sequence V := V0 � V1 � : : : � VL of sets of
nodes. Then, a sequence (G0; G1; : : : ; GL) of graphs is computed which is de�ned by G0 := G and for each
l > 0 by Gl = (Vl; El) with

El := f(s; t) 2 Vl � Vl j 8shortest s-t-paths P = (s; u1; u2; : : : ; uk; t) in Gl�1 it is u1; : : : ; uk 62 Vlg:

The length of an edge (u; v) in Gi+1 is the length of a shortest u-v-path in Gi. Note that, given nodes
u; v 2 V1 for which the the edge (u; v) is the only shortest u-v path in G0, (u; v) is contained in E1. The
level i of a node v, is the highest index i such that v 2 Vi. The multi-level overlay graph G is given by
G = (V;E1 [ : : : [ EL).

The query is a modi�ed distance-balanced bidirectionalDijkstra's algorithm in G. From a node of level i,
only edges in Ei[: : :[EL are relaxed. The forward (backward) search is aborted when all keys in the forward
(backward) priority queue are greater than or equal to the tentative distance. For the NP-completeness proof,
we restrict to 2-level min-overlay graphs:

Problem (HighwayNodePreProcess). Given a graph G = (V;E) and an integer F � jEj, choose V1 � V ,
such that jE [ E1j � F and

P
s;t2V VV1(s; t) is minimal.

We observe that a feasible solution always must exist as we could choose V1 = V .

Theorem 3. Problem HighwayNodePreProcess is NP-hard.

Proof. We make a reduction from Exact Cover by 3-Sets (X3C). Given an instance (U;C) of X3C with
jU j = 3q, we construct an instance (G = (V;E); F = jEj) of HighwayNodePreProcess as follows. The
set V consists of a node b, one node c for each c 2 C, one node u for each u 2 U and a setMv ofM additional
nodes for each node v in fbg[U where M will be speci�ed later. We set D :=

S
v2fbg[U Mv. For each c 2 C,

there is a directed edge (b; c). For each u 2 U and each c 2 C, such that u 2 c, there is a directed edge (c; u).
Finally, for each v 2 fbg [ U and each w 2 Mv, there is an undirected edge fv; wg. All edges have length
1, except edges from b to C which have length 2 and the edges from C to U which have length 10. The
transformation is polynomial as M will be polynomial in the input size (see Figure 3 for a visualization).
Note that, as F = jEj, no new edges may be introduced to the overlay-graph, i.e. E1 is empty.

C

U

b

D \Mb

Mb ⊆ D
1

2

10

1

edge lengths

Fig. 3: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g, some nodes in D are omitted

Requisite. Throughout the remaining proof, we write X := (jU j+ jCj+ 2) and assume M > 25X5. We will
see that, under this assumption, the maximum search space of an s-t-query is at most 2X (when V1 is chosen
optimally).
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Claim. Let V1 be an optimal solution, then fbg [ U � V1.

If fbg [ U � V1 and D \ V1 = ;, then
P

s;t2V VV1(s; t) � 2XjV j2 as, in this case, for each s-t-pair and for
forward and backward search at most the start node and all nodes in fbg [C [U get settled. We now show
that

P
s;t2V VV1(s; t) > 2XjV j2 if there is a v 2 fbg [ U with v 62 V1.

If
P

s;t2V VV1(s; t) � 2XjV j2, then fbg [U � V1: Assume that b 62 V1. Then jMb \ V1j � 1 as F = jEj. It
is X

s2Mb;t2DnMb

VV1(s; t) � (M � 1)| {z }
sources

� jU jM| {z }
targets

� M|{z}
search space

as for each according query all nodes in Mb get settled. Assume that u 2 U is such that u 62 V1. Then
jMu \ V1j � 1 as F = jEj. It is X

s2Mb;t2Mu

VV1(s; t) � M|{z}
sources

� (M � 1)| {z }
targets

� M|{z}
search space

as the backward search settles all nodes in Mu. The claim follows with M > 25X5 from

M2(M � 1) � (M=2)3 > 2X(2X2M)2 � 2X(jCj+ jU j+ 1 + (M + 1)jU j)2 = 2XjV j2

which contradicts the optimality of V1.

Claim. Let V1 be an optimal solution. Then V1 nD is also an optimal solution.

We already know that fbg [ U 2 V1. Given a solution V1, we show that we can iteratively remove elements
v of D from V1 without increasing the search-space. Let v be a node with only one neighbour w. Let the
edge (v; w) be undirected, i.e. len(v; w) = len(w; v) and let v; w 2 V1. Further, let v have minimal distance
from w and be maximal among all nodes in V1 with minimum distance from w (remember that we uniquely
identify vertices with integers). We show that, for each s; t 2 V it holds VV1(s; t) � VV1nfvg(s; t).

This is clear if s; t 6= v. Now, let w.l.o.g s = v. Note, that both search directions are �nished, as soon as
s gets settled by the backward or t gets settled by the forward direction. We denote the search with v 2 V1
by � and the other one by �0. The size of the according search spaces is denoted by j�j and j�0j.

Let t 6= w and assume that j�j 6= j�0j. The searches are equal up to the point at which the backward part
of � settles v. As the search is not �nished at that moment, the forward part of � may not have yet settled
w. Hence, dist(t; v) � dist(v; w) which contradicts the assumption that t 6= w. It follows � = �0 for s = v
and t 6= w.

Let t = w. Again, the searches are equal up to the point where the backward part of � settles v. In �
the computation is �nished after this step. In �0, as v is maximal among all neighbours of w with minimal
distance that are in V1, the search alters direction, settles w by the forward direction and is also �nished.
Hence, j�j = j�0j.

Note that this claim can also be proven slightly simpler using a similar argument as the last claim.

Claim. Let V1 be an optimal solution. Then, for each u 2 U , there is at least one c 2 C with u 2 c and
c 2 V1.

Recall that fbg [ U � V1. Assume, that there is a u with f(c 2 C \ V1j (c; u) 2 Eg = ;. Then, the set E1

would contain the edge (u; b) which contradicts F = jEj.

Claim. Let M > 2X3+4(jU j+1)X2) and V1 be an optimal solution. Then, there is an integer B, such thatP
s;t2V VV1(s; t) � B if and only if (C;U) has an exact cover.

Let V1 be an optimal solution with V1 \D = ;. It is (with some abuse of notation)X
s;t2V

VV1(s; t) =
� X

s;t2V nD| {z }
��

+
X

s2V nD;t2D
s2D;t2V nD| {z }

��

+
X

u2fbg[U
s;t2Mu

+
X

s2DnMb;t2Mb| {z }
=:

+
X

a;c2U;a 6=c
s2Ma;t2Mc| {z }

=:�1

+
X

s2Mb;t2DnMb| {z }
=:�2

�
VV1(s; t)
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The bounds � := 2X3 and � := 2(jU j+1)MX �2X derive from multiplying the according number of sources,
number of targets and maximum search-space.

The value of  is independent of the choice of V1 (if V1 sticks to the structure ensured by the above
claims) and computable in polynomial time (and of polynomial size). This is due to the fact, that in this
case, for all s-t pairs, the according forward and backward search-space have size 2. Further, if C \ V1 is an
exact cover of U ,

�1 = �01 := jU jM| {z }
source

� (jU j � 1)M| {z }
target

�( 2|{z}
forward search

+ 4|{z}
backward search

)

�2 = �02 := M|{z}
source

� jU jM| {z }
target

�( 2 + jU j+ q| {z }
forward search

+ 4|{z}
backward search

)

and

�1 � �01 +M2

�2 � �02

otherwise. Concluding, we set B := � + � +  + �1 + �2. With the assumption M > 2X3 + 4(jU j + 1)X2)
follows �+ � +  + �1 + �2 <  + �1 + �2 +M2 which proves the claim.
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5 ALT

Goal-directed search is a variant of Dijkstra's algorithm which assigns a di�erent priority to the nodes in the
queue. For a node v, let p(v) denote the priority of v in the queue when applying Dijkstra's algorithm (that
means p(v) is the tentative distance to v). Goal-directed search adds a potential �t(v) depending on the
target t to the nodes priority, i.e. the priority of v (when applying goal-directed search) is �t(v) + p(v). An
equivalent formulation (that implicitely substracts the constant �t(s) from the priority) is as follows. Given
the potential function �t : V ! R

+, goal-directed search is Dijkstra's algorithm applied on G with altered
edge lengths len(u; v) = len(u; v) � �t(u) + �t(v) for all edges (u; v) 2 E. A potential is called feasible if
len(u; v) � 0 for every edge (u; v). The ALT-algorithm [10] is goal-directed search with a special potential
function. Initially, a set L � V of `landmarks' is chosen. For a landmark l 2 L we de�ne

� l+
t (v) := dist(v; l)� dist(t; l) (1)

� l�
t (v) := dist(l; t)� dist(l; v) (2)

We use the convention 1�1 := 0. Accordingly, for a set L of landmarks, the potential is

�L
t (v) := max

l2L

�
� l+
t (v); � l�

t (v); 0
	
:

Note that this potential is feasible and that �L
t (t) = 0. We denote by VL(s; t) and V�(s; t) the search space

of an s-t-ALT-query using landmarks L and potential �, respectively.
The search space of an ALT-query can be expressed as

VL(s; t) = fv 2 V j dist(s; v) +�L
t (v) < dist(s; t) or

dist(s; v) +�L
t (v) = dist(s; t) and v < tg

The next lemma shows that, when using landmarks, the potential of a node is a lower bound of its
distance to the target.

Lemma 1. Let � be a feasible potential, t be a vertex and �(t) = 0. Then, for any vertex v, �(v) � dist(v; t)
holds.

Proof. Let v = v1; v2; : : : ; vk = t be a shortest v-t-path. Because of len(vi; vi+1) � �(vi) + �(vi+1) � 0

for each i = 1; : : : ; k � 1 it holds
Pk�1

i=1 len(vi; vi+1) �
Pk�1

i=1 �(vi) � �(vi+1). This implies dist(v; t) �
�(v)��(t) = �(v).

Goldberg et al [10] show that stronger potentials result in tighter search spaces:

Lemma 2 (Goldberg et al). Given arbitrary nodes s; t and feasible potential functions � and � 0 with
�(t) = � 0(t) = 0 and �(v) � � 0(v) for any vertex v. Then V�0(s; t) � V�(s; t).

Proof. We show that from v 62 V�(s; t) it follows v 62 V�0(s; t). Since v gets not settled using � it holds
dist(s; v) + �(v) > dist(s; t) + �(t) or (dist(s; v) + �(v) = dist(s; t) + �(t) and v > t). Because of the
assumptions it follows that dist(s; v) + � 0(v) > dist(s; t) + � 0(t) or (dist(s; v)) + � 0(v) = dist(s; t) +
� 0(t) and v > t) which means that v does not get settled using � 0.

The problem MinALT is that of assigning a given number of landmarks to a graph (and thus using only
a given amount of preprocessing space), such that the expected number of settled nodes gets minimal.

Problem (MinALT). Given a directed graph G = (V;E; len) and an integer r, �nd a set L � V with jLj = r
such that

P
s;t2V VL(s; t) is minimal.

Theorem 4. Problem MinALT is NP-hard.

Proof. We make a reduction from the NP-complete problem 3MinimumCover [8].
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Problem (3MinimumCover). Given a collection C of subsets of a �nite set S with jcj � 3 for each c 2 C
and a positive integer k. Does C contain a cover for U of size k, i.e. is there a subset C 0 � C with jC 0j = k
and

S
c2C0 c = U .

We say, a set c 2 C covers an element u 2 U if u 2 c. As a preparatory step, we may assume that jcj = 3
for each set c and that, for each element u, there is a set c that does not cover u. To assure this, we �rst
remove each element that is contained in every set, as such elements do not a�ect the solvability of the
instance. In case each set c of the remaining instance has size of at most 2, we can solve the problem in
polynomial time [8]. Otherwise, we transform the resulting instance (C 0; U 0; k0) to a new instance (C;U; k)
by setting k = k0 + 1, U = U 0 [ fx; y; zg where x; y; z are new elements and C = fx; y; zg [ fc j c 2 C 0; jcj =
3g [ fc [ fxg j c 2 C 0; jcj = 2g [ fc [ fx; yg j c 2 C 0; jcj = 1g. This instance ful�lls our claims.

Now, we construct an instance (G = (V;E; len); r) of MinALT the following way: We introduce a set
M = fm1; : : : ;mjM jg of nodes, with jM j to be speci�ed later and set V = C [ U [M . There is an edge
(c; u) with length 1 for each u 2 c. Moreover, there is an edge (ui; uj) with length � = 0:5 for each pair of
elements ui; uj 2 U , an edge (u;m) with length 1 for each pair u 2 U;m 2 M and an edge (mi;mi+1) for
each i = 1; : : : ; jM j � 1. Nodes are ordered such that c1 � : : : � cjCj � u1 � : : : � ujU j � m1 � : : : � mjM j.
The number of landmarks r is set to be k + 1. The transformation (and the following computation of M is
polynomial).

M

C

U

edge lengths 1

ε = 1/2

1

1

Fig. 4: Graph G constructed from the 3MinimumCover-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g

Let L be a set of landmarks. ThenX
s;t2V

VL(s; t) =
X

s2V;t2C

VL(s; t) +
X

s2M;t2U[M

VL(s; t)| {z }
=:�

+
X

s2U[C;t2U

VL(s; t)| {z }
��

+
X

s2U[C;t2M

VL(s; t)| {z }
=:(L)

Claim 1. The value of � is independent of the choice of L and can be computed in polynomial time.

For the cases s 2 V; t 2 C and s 2 M; t 2 U , the target t is not reachable from the source s (unless s = t).
Therefore, in these cases, the search space is exactly the number of nodes that are reachable from s (or 1 if
s = t). If s; t 2 M , either the target is again not reachable from the source or the search space is a direct
path to the target.

Claim 2. It holds 0 �
P

s2U[C;t2U VL(s; t) � � := jU jjCj(1 + jU j) + jU j3.

In case s 2 C, it holds dist(s; t) +�(t) = dist(s; t) � 1 + � < 2 = dist(s;m) for m 2 M . Hence, for each of
the jCjjU j s-t-pairs in C � U at most 1 + jU j nodes get settled. In case s 2 U , it holds dist(s; t) +�(t) =

11



dist(s; t) � � < 1 = dist(s;m) for m 2 M . Hence, for each of the jU j2 s-t-pairs in U � U at most jU j nodes
get settled.

We call a set L of landmarks set-covering if m1 2 L and for each u 2 U , either u or a node c 2 C with
u 2 c is contained in L.

Claim 3. Let L � V be set-covering. Then
P

s2U[C;t2M VL(s; t) � jM j(5jCj+ 2jU j).

Remember that we identify nodes by integers. It is VL(s; t) \M = ftg because dist(s;m) is equal for all
m 2 M and �L

t (m) > 0 for m < t;m 2 M . As each element u 2 U is covered by a landmark l, we have
�L
t (u) � dist(l; t) � dist(l; u) = 2 � 1 = 1 for those u. Hence, for s 2 U , VL(s; t) = fs; tg and for s 2 C,

VL(s; t) = fs; tg [ fu 2 U j s covers ug.

Claim 4. Let s 2 C; t 2M and �t be a feasible potential with �t(t) = 0, then V�t
(s; t) � 5 and V�t

(s; t) �
fs; tg [ fu 2 U j s covers ug.

Let �t be the potential such that �t(v) = dist(v; t). Then, V�t
(s; t) = fs; tg [ fsi 2 S j s covers sig. The

claim now follows from Lemmata 1 and 2.

Claim 5. Let L be a set of landmarks withM\L = ;. Then
P

s2C[U;t2M VL(s; t) � (jCj+jU j)jM j(jM j�1)=2.

If there is no landmark in M , then all nodes in M have the same potential due to symmetry reasons. Hence,
before settling a node t 2M , all nodes m 2M with m < t are getting settled. The claim follows by summing
over all possible sources and targets.

Claim 6. Let L be a set of landmarks such that there is an x 2 U that is not a landmark and not covered
by a landmark. Then

P
s2U[C;t2M VL(s; t) � jM j(5jCj+ 2jU j) + jM j � jLj.

Let s be in U . Then jVL(s; t)j � 2 as source and target di�er. Let s be in C, by Claim 4 we know that
jVL(s; t)j � 5. Because of the preparatory step, we know that there is a set cx 2 C with x 62 cx. Furthermore,
there are at least jM j � jLj nodes in M that are no landmarks. Let tx denote such a node. For a landmark
l 2 C, � l

tx(x) = 1� �. For a landmark l 2 U , � l
tx(x) = 1� �. For a landmark l 2M , � l

tx(x) = 0 as tx is not
a landmark. Therefore x 2 VL(cx; tx) and jVL(cx; tx)j � 6. The claim now follows together with Claim 4 by
summing over all possible sources and targets.

Claim 7. Let jM j be maxf� + r; 2(� + 5jCj + 2jU j + 1)g + 1 and L be optimal. Then
P

s;t2V VL(s; t) �
�+ � + jM j(5jCj+ 2jU j) =: q if and only if (C;U) has a cover of size at most k.

We observe that there is a set-covering set of landmarks of size k + 1 if and only if (C;U) admits a
set-cover of size k. Because of Claim 3 a set-covering set of landmarks ful�lls

P
s;t2V VL(s; t) � q. Let L

be a set of landmarks such that
P

s;t2V VL(s; t) � q. Because of Claims 5 and 6 L0 = fm1g [ (L nM) is
set-covering and of size at most k + 1.

12



6 Arc-Flags

Main Technique. This approach partitions the set of nodes V into k cells V = (V1; V2; : : : ; Vk). For a node
w, we write V(w) = Vi i� w 2 Vi. To each edge (u; v) a k-bit vector F(u;v) is attached, such that F(u;v)(Vi)
is true i� a shortest path starting with the edge (u; v) and ending at a node t 2 Vi exists. The Arc-Flags
s-t-query is the variant of Dijkstra's algorithm which only relaxes edges (u; v) for which F(u;v)(V(t)) is true.

Problem (ArcFlags). Given a graph G = (V;E; len) and an integer k, �nd a k-partition V = fV1; : : : ; Vkg
of V such that

P
s;t2V VV(s; t) is minimal.

In order to prove NP-completeness for ArcFlags we will use the following technical lemmata.

Lemma 3. Given L;m 2 Z>1, we consider the problem (P ) of how to minimize
Pm

i=1 ci(ci+1)=2 such that
c1 + c2 + : : :+ cm = Lm and c1; c2; : : : ; cm 2 Z+.

The only optimal solution of (P ) is c�1 = c�2 = : : : = c�m = L with objective value D = mL(L+ 1)=2. For
any other feasible solution c01; c

0
2; : : : ; c

0
n it is

Pm
i=1 c

0
i(c

0
i + 1)=2 � D + 1.

Proof. Given c0 = (c01; c
0
2; : : : ; c

0
m) with c01 + c02 + : : : + c0m = Lm, we can construct c0 by starting with

c = (c1 = L; c2 = L; : : : ; cm = L) and iteratively proceeding as follows. At each step we choose some i and j
full�lling ci > c0i, cj < c0j and set ci := ci � 1 and cj := cj + 1 until no such i and j exist anymore.

We de�ne �+ :=
P

ijc0
i
>ci

c0i � ci and �� :=
P

ijc0
i
<ci

ci � c0i. Throughout the construction we have the

invariant �+ = ��. Hence, �+ = �� = 0 and c0 is constructed when the algorithm terminates (which is
guaranteed due to monotonicity �+). Further, throughout the construction we have ci � cj if ci > c0i and
cj < c0j as a second invariant. Finally, when performing a step, the objective value increases by

1=2 [(ci � 1)ci + (cj + 1)(cj + 2)� ci(ci + 1)� cj(cj + 1)] � 1

which proves the lemma.

Lemma 4. Given are a set A of 3m elements, a bound B 2 Z+ and a size wa for each a 2 A such that
B=4 < wa < B=2 and such that

P
a2A wa = mB. Consider the problem (P 0) of how to partition A in m

disjoint sets A1; A2; : : : ; Am such that
Pm

i=1

�
jAij �

P
a2Ai

wa
�
is minimal. A solution of (P 0) has to full�ll

jAij = 3 for each i = 1; : : :m and has objective value D = 3
P

a2A wa = 3mB. Further, for each other
partition of A the objective value is at least D + 1.

Proof. Analogous to the proof of Lemma 3 we may assume that there is a starting partitionA0 = (A01; A
0
2; : : : A

0
m)

with jA0ij = 3 such that we can construct an arbitrary partition A� = (A�1; A
�
2; : : : A

�
m) out of A

0 by itera-
tively moving one element from a set Ar with jArj � 3 to a set As with jAsj � 3. Let Ar = f1; : : : ; kg and

As = fk+1; : : : ; k+ `g. When moving element k to As the objective function increases by (k�1)
Pk�1

i=1 wi+

(` + 1)
Pk+`

i=k wi � k
Pk

i=1 wi � `
Pk+`

i=k+1 wi. This simpli�es to (` + 1 � k)wk +
Pk+`

i=k+1 wi �
Pk�1

i=1 wi >
B=4+ 3 �B=4� 2B=2 = 0 because of k � 3 and ` � 3 and the bounds on the wi. The claim follows with the
objective function always being integer-valued.

Theorem 5. Problem ArcFlags is NP-hard.

Proof. We make a reduction from the strongly NP-complete problem 3-Partition [8].

Problem ( 3-Partition). Given a set A of 3m elements, a bound B 2 Z+ and a size wa for each a 2 A
such that B=4 < wa < B=2 and such that

P
a2A wa = mB, can A be partitioned into m disjoint sets

A1; A2; : : : ; Am such that, for 1 � i � m,
P

a2Ai
wa = B.

Given a 3-Partition-instance (A; fwaj a 2 Ag) with jAj = 3m and B =
P

a2A wa=m, we construct an
ArcFlags-instance (G = (V;E; len);m + 1) as follows: We introduce a directed cycle (Z;U) to G with
len(u; v) = 1=(jZj+ 1) for each (u; v) 2 U . The cardinality jZj will be speci�ed later. We further introduce
A to V and for each a 2 A a set Wa of wa nodes. We denote by W the set

S
a2AWa. There is a directed

edge (z; w) of length 1 for each z 2 Z and w 2W and a directed edge (w; a) of length 1 for each a 2 A and
w 2Wa. A visualization can be seen in Figure 5.
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A

W

Z

edge lengths

1

1

1
|Z|+1

Fig. 5: Graph G constructed from the 3-Partition-instance 2,2,2,3,4,5

Claim. Let Z > 6jA[W j3. Then there is an optimal (m+ 1)-partition V = (V1; : : : ; Vm+1) with Vm+1 = Z.

Let V� be an m+ 1 partition such that there is a J � f1; 2; : : : ;m+ 1g with Z =
S
j2J Vj . ThenX

s;t2V

VV�(s; t) =
X
s;t2Z

VV�(s; t)| {z }
=jZj2(jZj+1)=2

+
X

s2Z;t2A[W

VV�(s; t)| {z }
�jZj�(jA[W j+1)2

�jZj�jA[W j3

+
X

s;t2A[W

VV�(s; t)| {z }
�jA[W j3

+
X

s2A[W;t2Z

VV�(s; t)| {z }
=jZj�jA[W j

W.l.o.g let max J be (m + 1). Let V�� = (V ��
1 ; : : : ; V ��

m+1) with V ��
i = V �

i for i 62 J , V ��
i = ; for i 2

J n fm + 1g and V ��
m+1 =

S
j2J V

�
j . Then

P
s;t2V VV�(s; t) =

P
s;t2V VV��(s; t) which can be seen by the

above decomposition of
P

s;t2V VV�(s; t).
In the other direction, let V 0 be an (m+ 1)-partition such that there are vertices w 2 A [W and z 2 Z

with w 2 V 0
i and z 2 V 0

i for some i. ThenX
s;t2V

VV0(s; t) �
X
s;t2Z

VV0(s; t) +
X
s2Z

VV0(s; w) �
jZj2(jZj+ 1)

2
+
jZj(jZj+ 1)

2

With the assumption Z > 6jA [W j3 we have

jZj(jZj+ 1)=2 > jZj � jA [W j3 + jA [W j3 + jZj � jA [W j

which yields
P

s;t2V VV�(s; t) <
P

s;t2V VV0(s; t): Hence, for optimal V� there must be a J � f1; 2; : : : ;m+1g
with Z =

S
j2J Vj and the claim follows with the above restructuring of V� to V��.

Requisite. In the remainder we assume Z > 6jA [ W j3. Further V� denotes an optimal partition with
V �
m+1 = Z. We decompose the objective function as follows.X
s;t2V

VV�(s; t) =
X
s;t 62Z

VV�(s; t)| {z }
�jW[Aj3

+
X
s;t2Z

VV�(s; t) +
X

s62Z;t2Z

VV�(s; t)| {z }
=:�

+
X

s2Z;t2A

VV�(s; t)| {z }
=:�

+
X

s2Z;t2W

VV�(s; t)| {z }
=:

The value of � is independent of V� as it equals jZj2(jZj + 1)=2 + jW [ AjjZj. We write Ai := A \ V �
i and

W i := W \ Vi. Further, with Hi = fw 2 W jw 2 Wa and a 2 Vig we denote the set of nodes in W that are
direct predecessors of a node in A \ Vi. Note that jHij is exactly the weight of all elements in A \ V �

i . With
this notation we have

� = jZj
mX
i=1

�
jAij(jAij+ 1)=2 + jAij(jW i [Hij) + 1

�
 � jZj

mX
i=1

�
jW ij(jW ij+ 1)=2 + 1

�
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Further,  = jZj
Pm

i=1

�
jW ij(jW ij+ 1)=2 + 1

�
in case Wi = Hi for all i.

Claim. Let �� := jZj
Pm

i=1(3(3+1)=2+3mB+1) and 
� := jZj

Pm
i=1(B(B+1)=2+1). Then

P
s;t2V VV�(s; t) �

jW [Aj3 + �+ �� + � if, and only if the 3-Partition-instance (A; fwaj a 2 Ag) is a yes-instance.

\if": Let A1; A2; : : : ; Am be a 3-partition of (A; fwaj a 2 Ag). We partition G such that for each a 2 Ai it
holds a 2 Vi andWa � Vi. Then, for each i,W i = Hi, jWij = B and jAij = 3. This implies

P
s;t2V VV�(s; t) �

jW [Aj3 + �+ �� + �.
\only if": On the other hand, let

P
s;t2V VV�(s; t) � jW [Aj3+�+��+�. We will show that A1; : : : ; Am

is a 3-partition of A. We apply Lemma 3 on
Pm

i=1 jAij(jAij+1)=2 and
Pm

i=1 jW ij(jW ij+1)=2 and Lemma 4
on

Pm
i=1 jAijjHij. By optimizing these terms separately we know that

P
s;t2V VV�(s; t) � �+��+�. Further

it is jAij = 3, jW ij = B and W i � Hi for all i, since otherwise
P

s;t2V VV�(s; t) � � + �� + � + Z. From

W i � Hi follows W i = Hi as both W 1; : : : ;Wm and H1; : : : Hm partition W . Hence jHij = B for all
i = 1; : : :m and A1; : : : Am is a 3-Partition of A.

Search-Space Minimal Arc-Flags. This problem models a special aspect of the arc-ag technique. In case
shortest paths are not unique, the situation may occur that one can improve the search-space by changing
some ags from true to false while still guaranteeing the query to compute the correct distance. We consider
the partition V = (V1; V2; : : : ; Vk) of the graph G = (V;E) to be already given and change the rule of how
to compute the vectors F(u;v): For each pair of nodes s and t there shall be at least one shortest path
s = v1; : : : ; v` = t such that F(vi;vi+1)(V(t)) is true for i = 1; : : : ; ` � 1. We may assume that for each edge
(u; v) with F(u;v)(Vi) = true there is at least one shortest path starting with (u; v) that leads to Vi. The
problem MinFlags is that of how to assign values to the vectors F(u;v) such that the resulting average
search-space of an arc-ags query becomes minimal.

Problem (MinFlags). Given a graph G = (V;E; len), a partition V = (V1; : : : ; Vk) of V , compute an arc-ag
assignment F = (F(u;v))(u;v) for G such that

P
s;t2V VF (s; t) is minimal.

Theorem 6. Problem MinFlags is NP-hard (even for directed acyclic graphs).

Proof. We make a reduction from X3C.

Problem (Exact Cover by 3-Sets (X3C)). Given a set U with jU j = 3q and a collection C of 3-element
subsets of U , does C contain an exact cover for U , i.e., a subcollection C 0 � C such that every element of U
occurs in exactly one member of C 0?

Let (U;C) be an instance of X3C, w.l.o.g we may assume
S
c2C = U . Let (G = (V;E);V = fV1; V2g) be

an instance of MinFlags as follows: the set V consists of two nodes c� and c+ for each c 2 C, one node u
for each u 2 U and one additional node a. The partition is given by V2 = U , V1 = V n V2. There are edges
(a; c�) and (c�; c+) for each c 2 C, and an edge (c+; u) i� u 2 c. All edges have equal length, the node
ordering is arbitrary, (see Figure 6 for a visualization). The transformation is polynomial.

Given an arc-ag assignment F , the objective function can be decomposed asX
s;t2V

VF (s; t) =
X

s2V nfag;t2V

VF (s; t) +
X

t2V nU

VF (a; t)| {z }
�

+
X
t2U

VF (a; t)

Claim. The value of � is independent of F and can be computed in polynomial time.

Shortest paths that start with a node u 6= a are unique. Therefore, an arc-ag assignment for G is
relatively �xed: F(v;w)(V1) is true i� w 62 V2 and F(v;w)(V2) is true if v 6= a. The remaining degree of freedom
is to decide for arbitrary c� if F(a; c�) is true. For each node s 6= a, queries starting from s are not a�ected
by the actual choice of F . Further, queries for which s; t 2 V1 are also not inuenced by F .
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Fig. 6: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g

Claim. There is an integer B such that (U;C) contains an exact cover if, and only if the objective function
for an optimal solution of (G;V) is smaller than B.

We call an arc-ag assignment an exact cover i� for each u 2 U , the value F(a;c�)(V2) is true for exactly
one c 2 C with u 2 c. Obviously an exact cover on G induces one on (U;C) and vice versa. Let F� be an
exact cover, then X

t2U

VF�(a; t) = � := jU j|{z}
# targets

( 1|{z}
a

+ 2q|{z}
nodes in C�[C+

) + jU j(jU j+ 1)=2| {z }
overall sum nodes in U

holds. The term jU j(jU j+1)=2 derives from the fact that the nodes in U are settled in some �xed order and
before settling u all nodes v with v < u get settled. We set B := �+ �. Further, asX

t2U

VF (a; t) = jU j � 1| {z }
a

+2jU j#f(a; c�)j F(a;c�)(V2) = trueg+ jU j(jU j+ 1)=2| {z }
nodes in X

for arbitrary F from
P

t2U VF (a; t) � � follows that F is an exact cover.

External Shortcuts for Arc-Flags. This problem models an enhancement of the arc-ag technique that
is used within the SHARC-algorithm. We are in the situation that the graph G = (V;E; len), a h-partition
V = (V1; : : : Vh) of G and an integer k are already given. A shortcut is an edge (u; v) that is added to the
graph for which len(u; v) = dist(u; v). A shortest path v1; v2; : : : ; v` is called canonical if it is edge-minimal
among all shortest v1-v`-paths and if (v1; : : : ; v`) is lexicographically minimal among all edge-minimal shortest
v1-v`-paths.

The query is similar to the arc-ag query but the preprocessing stage di�ers. We are allowed to add
k shortcuts to the graph, afterwards the vectors F(u;v) get computed as follows: F(u;v)(Vi) is true i� a
canonical shortest path starting with the edge (u; v) and ending at a node t 2 Vi exists. W.l.o.g we do not
insert shortcuts that are already present in the graph.

Problem (ExtShortcutsArcFlags). Given a graph G = (V;E; len), a partition V = (V1; : : : ; Vh) of V
and a positive integer k, insert a set S of k shortcuts to G, such that

P
s;t2V VS(s; t) is minimal.

Theorem 7. Problem ExtShortcutsArcFlags is NP-hard (even for directed acyclic graphs).

Proof. We make a reduction from X3C. Given an instance (U;C) with jU j = 3q, we construct an instance
(G; k = q) of ExtShortcutsArcFlags as follows. Starting with the empty graph, we introduce a path
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(h1; h2; a) to G. For each u 2 U we insert an edge (u; h1) to G. For each c 2 C we insert a path (c; d1c ; d
2
c ; a)

and M edges (m1
c ; c); : : : ; (m

M
c ; c) to G with M to be speci�ed later. We denote by fM the set fmi

c j c 2
C; 1 � i � Mg and by Di the set fdic j c 2 Cg. Finally, there is an edge (u; c) i� u 2 c. The edge lengths
are adjusted such that each path in G is a shortest path, i.e. all edge lengths are 1 except the length of edge
(h2; a) which equals 2. The partition V = (V1; V2) is given by V2 = fag; V1 = V n V2. The transformation is
polynomial (see Figure 7 for a visualization).

C

U

a

V1

V2

h1

h2 D1

D2

M̃

Fig. 7: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g

Let S be a shortcut assignment. It isX
s;t2V

VS(s; t) =
X

s2V;t2V nfag

VS(s; t)| {z }
�

+
X

s2V nfM

VS(s; a)

| {z }
��

+
X
s2fM

VS(s; a)| {z }


The value of � is independent of S and can be computed in polynomial time: Each edge (v; w) in the graph
induced by V nfag is the only path from v to w. This does not change due to a shortcut insertion. Therefore
V(v;w)(V1) is true i� w 6= a.

The value � := jV n fM j2 is a correct bound as the corresponding part of the search space consists of

jV n fM j di�erent queries that settle at most the entire subgraph reachable from the source. Note that � is
independent of M . We now �x M := maxf� + 1; 4g.

Claim. Let S be an optimal solution. Then, each shortcut in S is of the form (c; a) for an c 2 C.

W.l.o.g q < jCj which ensures the existence of such a shortcut-assignment. Further,  = 5M jCj in the
original graph without shortcuts. We can bound the value of  on a graph with shortcuts by subtracting the
maximal yield for each type of shortcut:

 � 5M jCj �1jS \ fM �D1j

�2jS \ fM �D2j �M jS \ C �D2j

�3jS \ fM � fagj �2M jS \ C � fagj �M jS \D1 � fagj
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Let S� be such that each shortcut is the form (c; a) for a c 2 C. For each shortcut (c; a), the ag V(c;d1c)(V2)
is false. Hence  = 5M jCj�2Mq := opt which is optimal for . If, for a shortcut assignment S 0, at least one
shortcut is not of this form we have  � opt +M . It holds

P
s;t VS�(s; t) � �+ � + opt < �+ opt +M �P

s;t VS0(s; t) which implies that S� is better than S 0.

Claim. There is an integer B, such that an optimal solution of (G; q) is smaller than B if, and only if (U;C)
contains an exact cover.

Let S� be optimal. We writeX
s;t2V

VS�(s; t) =
X

s2V;t2V nfag

VS�(s; t)| {z }
�

+
X

s2
D1[D2
[fh1;h2g

VS�(s; a)

| {z }
�0

+
X
s2U

VS�(s; a) +
X
s2C

VS�(s; a)| {z }
=4(jCj�q)+2q

+
X
s2fM

VS�(s; a)| {z }
=5M jCj�2qM

The value of �0 is equal for all optimal S and computable in polynomial time. We call a shortcut assignment
S set covering i� for each u 2 U , there is a c 2 C with u 2 C such that (c; a) 2 S.

It is
P

s2U VS(s; a) = 3jU j if an optimal shortcut assignment S is set covering and greater otherwise: Let
u be in U . If S is setcovering, a canonical shortest u-a path in (V;E [ S) is of the form s-c-a for a c 2 C.
Therefore, V(u;v)(V2) is true, only for one node v which must be in C and for which there is a shortcut (v; a).
Because of (v; a) the ag V(v;d1v) is false which implies VS(u; a) = 3 which is minimal for every u and optimal
S. If u is not covered by a shortcut, the canonical shortest u-a-path is u-h1-h2-a and VS(u; a) = 4.

We set B := � + �0 + 3jU j + 4(jCj � q) + 2q + 5jM jjCj � 2qM . If (G; q) has optimal solution S with
objective at most B, we know that S is set covering and that fc j (c; a) 2 Sg is a set-cover for (X;C).
The other way around, an solution S 0 for (G; q) with objective value at most B can be constructed out of a
set-cover C 0 for (X;C) by setting S 0 := f(c0; a) j c0 2 C 0g.
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7 Contraction Hierarchies

Throughout this section we work on undirected graphs. This is no restriction as the results also hold for
directed graphs with edges always being symmetric. Given the input graph G = (V;E), the preprocessing of
Contraction Hierarchies (CH) consists of distuingishing a total order � on V and iteratively contracting the
�-least node until G is empty. A node v is contracted as follows: For each pair of edges fu; vg, fv; wg such
that (u; v; w) is the only shortest u-w-path, a new edge (u;w) called a shortcut is introduced with length
lenfu; vg+ lenfv; wg to G. Afterwards, v and all of its adjacent edges are removed from G. The output of the
preprocessing is � and the graph H�(G) = (V;E [E0) where E0 is the set of all edges that got inserted due
to node contraction. We call H� := H�(G) the contraction hierarchy of G and denote by jH�j the number
of edges jE0j .

The CH-query is bidirectional Dijkstra's algorithm on H�(G) applying two changes. Firstly, no special
stopping criterion exists, the whole reachable subgraph gets settled. Secondly, when settling node u, only
edges fu; vg with u � v get relaxed.

Problem (CH Preprocessing). Given a graph G = (V;E), a length function len : E ! R
+ and a number

K 2 Z�0, �nd an order � on V , such that jH�(G)j � K and
P

s;t2V V�(s; t) is minimal?

Theorem 8. Problem CH Preprocessing is NP-hard.

Proof. For this problem, it is not assured that a feasible solution exists. We show that already the problem
of minimizing jH�j is NP-complete. To that end we make a reduction from VertexCover:

Problem (VertexCover). Given an undirected graph G = (V;E) and a positive integer K � jV j, is there
a vertex cover of size K or less, i.e., a subset C 0 � V of G with jC 0j � K such that for each edge fu; vg 2 E
at least one of u and v belongs to C 0.

Given a Vertex Cover instance (G = (V;E);K), we construct a weighted graph G0 = (V 0; E0), which
admits a contraction hierarchy H with at most jE0j+K arcs, if and only if G has a vertex cover of size at
most K. From now on let m = jEj and n = jV j and w.l.o.g we assume that each vertex is adjacent to at
least one edge.

The set V [E is a subset of V 0. The vertices E � V 0 are henceforth referred to as edge-vertices. For each
e = fu; vg 2 E the graph G0 contains the edges fe; ug 2 E0 and fe; vg 2 E0. Furthermore V 0 contains two
special vertices s; t 2 V 0, where s is connected to all edge-vertices e 2 E and t is connected to all vertices
v 2 V . That is ffs; eg : e 2 Eg � E0 and fft; vgj v 2 V g � E0.

Now we �x an arbitrary order e1; : : : ; em on E and connect each ei to ei+1 by a honeycomb gadget Hi

that enforces the contraction order ei � ei+1. The gadget Hi can be seen in Figure 8a. Additionally we have
a �nal gadget F connecting s and t, which is depicted in Figure 8b. Finally we have to �x the edge-lengths
in G0. We let len(t; v) = 1

2m, len(ei; v) = 2m and len(s; ei) = m+ i for ei 2 E and v 2 V . The edge-lengths
in the gadgets are chosen according to Figure 8a and Figure 8b. The whole construction is summarized in
Figure 9. Note that G0 can be computed in polynomial time, as K is polynomial in jV j.

Direction \only if". There is a vertex cover C � V in G of at most K nodes only if G0 admits a
contraction hierarchy H with at most K + jE0j arcs: Let C � V be a vertex cover with at most K vertices.
Consider the following contraction order of V 0:

1. Contract all v 2 V n C. This does not insert any shortcuts into the hierarchy: Paths of the form (t; v; e)
are no unique shortest paths as there must be a path (t; c; e) of same length with c 2 C. Paths of the form
(ei; v; ej) have length 4m and are no shortest paths as the path (ei; s; ej) has length 2m+ i+ j < 4m.

2. Contract all edge-vertices e 2 E in the chosen order e1; : : : ; em. Note that by contraction of ei the
contraction of the gadget connecting ei to its successor ei+1 is implicitly included. This step inserts at
most K shortcuts into the hierarchy. We use the notation from Figure 10a.

(a) The path p = (xr; ei; xs) has length 2m+4i and thus is no shortest path, as the path (xr; yr; ei+1; ys; xs)
has length 2.
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(b) The �nal gadget F connecting s and t.
The weights � and � are chosen as � = 5m+
1

8
and � = 5m.

Fig. 8: The gadgets used in the reduction from Vertex Cover to CH Preprocessing

(b) The path p = (xr; ei; s) has length 2m+3i, while the path (xr; yr; ei+1; s) has length m+ i+2, which
is, for all i � 1, less than 2m+ 3i. Therefore p is no shortest path.

(c) The path p = (xr; ei; v) has length 3m+2i. Again p is no shortest path, as the path (xr; yr; ei+1; v
0; t; v)

has length 3m+ 1, which is less than 3m+ 2i for all i � 1.
(d) A shortcut (s; v) may be introduced replacing the path p = (s; ei; v). At this step at most jCj = K

vertices are left in V . Hence at most K such shortcuts are introduced.
After contraction of ei the remaining part of the gadget Hi consists only of the vertex ei+1 and simple
paths (xr; yr; ei+1). Thus it can be contracted without introducing any shortcuts.
To exactly know the structure of G0 after this step we additionally proof that there is a shortcut (s; v) for
each v 2 V : Let ei be the �rst edge-vertex adjacent to v in our �xed order e1; : : : ; em, then p = (v; e1; s)
is a unique shortest path of length 3m+ 1 because of the following case distinction.
(a) p0 = (s; ej ; v) for some edge-vertex ej distinct from ei. Then p0 has length 3m + j, which is greater

than 3m+ i as ei is the �rst edge in e1; : : : ; em that is adjacent to v.
(b) p0 = (s; ej ; u; t; v) for some edge-vertex ej 6= ei and some vertex u 2 V . Then p0 has length 4m + j,

which is greater than 3m+ 1.
(c) p0 = (s; xr; t; v) for some vertex xr in the �nal gadget F . Then p0 has length at least 10m, which is

greater than 3m+ 1, too.
3. Contract the special vertex s. This does not insert any shortcut in the hierarchy: The remaining graph

consists of fs; tg [ C, the �nal gadget F and the set of shortcuts that were inserted ffs; vg : v 2 Cg,
where the edge fs; vg has weight 3m + i, if ei is the �rst edge-vertex in the order e1; : : : ; em that is
adjacent to v. Hence, the graph like the one shown in Figure 10b, from which we borrow notation for
the following considerations. We have to take the following paths into account:
(a) The path p = (v; s; v0) between two vertices v; v0 2 C has length greater than 6m. As the path

(v; t; v0) has length m the path p is clearly no shortest path.
(b) The path p = (xr; s; xs) between two vertices xr and xs of the �nal gadget F has length 10m + 1

4 ,
while the path (xr; t; xs) has length 10m. Therefore p is no shortest path.

(c) The path p = (xr; s; v) has length 8m+ i+ 1
8 . Again, p is no shortest path as the path (xr; t; v) has

length 5m+ 1
2m.

4. Contract all v 2 C. This does not insert any shortcut into the hierarchy as after Step 3 all v 2 C have
degree one.

5. After Step 4 the remaining graph consists only of the �nal gadget F without s and its incident edges.
For each two distinct vertices xr; xs in the �nal gadget F the path (xr; t; xs) has length 10m. Hence it
is no shortest path as (xr; yr; !; ys; xs) has length 4. Thus t can be contracted without introducing any
additional shortcuts. After contraction of t the remaining part of F is the vertex ! with paths (xr; yr; !)
attached to it. This, too, can be contracted without inserting any new shortcuts into the hierarchy.
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Fig. 9: Schematic picture of G0. The honeycomb gadgets Hi are depicted by small hexagons between ei and ei+1. For
readability reasons the �nal gadget F is only shown as half hexagons at s and t.

Direction \if". On the other hand suppose there is an order � on the vertices of G0, such that the
corresponding contraction hierarchy has at most jE0j+K arcs { or equivalently at most K shortcuts. We will
�rst show some simpler properties that the contraction order � must possess and then construct a vertex
cover in G using these properties and the contraction order.

Claim. Each edge-vertex ei gets contracted before its successor ei+1 in the �xed order e1; : : : ; em.

Assume the contrary and consider the honeycomb gadget Hi between ei and ei+1. Without loss of generality
let (x1; y1); : : : ; (xL; yL) be the pairs of vertices (xr; yr) in Hi, such that ei+1 � xr or ei+1 � yr. Then there
are K + 2 � L pairs (xL+1; yL+1); : : : ; (xK+2; yK+2), where xr; yr � ei+1 � ei for r > L which we consider
�rst:

1. yr � xr; ei; ei+1
The path p = (xr; yr; ei+1) is a unique shortest path of length 1:
(a) The paths (xr; ei; xs; ys; ei+1), where s 6= r, have length 2m+ 4i+ 1.
(b) The paths (xr; ei; v; ei+1), where v is some vertex v 2 V incident to e have length 5m+ 2i.
(c) The path (xr; ei; s; ei+1) has length 3m+ 4i+ 1.

2. xr � yr; ei; ei+1
The path p = (ei; xr; yr) is a unique shortest path of length m+ 2i+ 1

2 :
(a) The paths (ei; xs; ys; ei+1; yr), where s 6= r, have length m+ 2i+ 3

2 .
(b) The path (ei; s; ei+1; yr) has length 2m+ 2i+ 3

2 .
(c) The path (ei; v; ei+1; yr) has length 4m+ 1

2 .

Therefore contraction of xr and yr before ei and ei+1 results in at least one additional edge being inserted
into the hierarchy. This sums up to at least K + 2� L additional edges.

Now consider the pairs (x1; y1); : : : ; (xL; yL), where at least one of xr; yr gets contracted after ei+1. For
1 � s � L let zs be the vertex zs 2 fxs; ysg that is a neighbour of ei+1 when ei+1 gets contracted. For
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Fig. 10: Important steps during contraction of G0 given a vertex cover C � V

distinct zr; zs the path p = (zs; ei+1; zr) has length at most 2, while paths (zr; : : : ; ei; : : : ; zs) have length at
least m+2i, as they include the edge fxr; eig of length m+2i or the shortcut fyr; eig of length m+2i+ 1

2 .
Hence p is a unique shortest path and contraction of ei+1 before zs; zr and ei inserts an additional shortcut
fzr; zsg. As there are

1
2L(L� 1) such pairs fzr; zsg, contraction of ei+1 leads to the insertion of 1

2L(L� 1)
shortcuts.

Altogether, contraction of ei+1 before ei results in at least K + 2 � L + 1
2L(L � 1) > K shortcuts

contradicting the assumption of at mosthttp://portal.acm.org/citation.cfm?id=502098 K inserted edges.

Claim. The special vertices s and t gets contracted before the vertex ! in the �nal gadget F .

Assume the contrary, i.e. that � 2 fs; tg gets contracted after !. Further let �0 2 fs; tg n f�g. Partition the
pairs (xr; yr) of vertices in F , such that ! � xr or ! � yr for all 1 � r � L and such that xr; yr � ! for all
L+ 1 � r � K + 2. Now consider the following contraction orders:

1. yr � xr; !; �. In this situation (xr; yr; !) is a unique shortest path.
2. xr � yr; !; �. In this situation (�; xr; yr) is a unique shortest path.

Contraction of xr and yr before � and ! inserts in any case at least one shortcut which sums up to at least
K + 2� L additional edges in the hierarchy.

Let zs for 1 � s � L be the vertex zs 2 fxs; ysg that is a neighbour of ! when ! gets contracted. For
distinct zs; zr the path p = (zs; !; zr) has length at most 4. As any path (zs; �; zr) or (zs; �

0; zr) has length at
least 10m, p is a unique shortest path. Contraction of ! before zs; zr therefore inserts an additional shortcut
fzs; zrg. As there are

1
2L(L� 1) such pairs fzs; zrg, contraction of ! inserts at least 1

2L(L� 1) shortcuts.

22



Altogether, contraction of ! before � results in at least K +2�L+ 1
2L(L� 1) > K additional shortcuts

being inserted. This is a contradiction and thus � � !.

Claim. The special vertex t gets contracted after all v 2 V .

Assume the contrary and let v0 2 V be a vertex with t � v0. By the last claim we may assume that ! is still
present when t gets contracted. Consider the �nal gadget F and partition the pairs (xr; yr) of vertices in F ,
such that t � xr or t � yr for all 1 � r � L and such that xr; yr � t for all L � r � K + 2. Now consider
the following contraction orders:

1. yr � xr; t; !. In this situation (xr; yr; !) is a unique shortest path of length 2.
2. xr � yr; t; !. In this situation (t; xr; yr) is a unique shortest path of length 5m+ 1.

Contraction of xr and yr before t hence inserts at least one additional edge into the hierarchy which sums up
to at leastK+2�L additional shortcuts. For 1 � r � L now let zr be the vertex zr 2 fxr; yrg that is adjacent
to t, when t gets contracted. We have dist(v0; s) � 3m+ 1), dist(s; xr) � 5m+ 1

8 and dist(s; yr) � 5m+ 9
8 .

1. Let zr = xr then p = (v0; t; xr) is a unique shortest path of length 11
2 m.

2. Let zr = yr then p = (v0; t; xr; yr) is a unique shortest path of length 11
2 m+ 1.

Contraction of t therefore results in the insertion of an additional shortcut fv0; zrg. As there are L such
neighbours zr of t, contraction of t inserts at least L additional edges. Altogether contraction of v after t
results in K + 2� L+ L > K additional shortcuts, which is a contradiction.

Claim. All edge-vertices ei 2 E get contracted before s.

Assume the contrary, i.e. that there is some edge-vertex ei 2 E that gets contracted after s. Consider the
�nal gadget F and partition the pairs (xr; yr) of vertices in F , such that for all 1 � r � L it is s � xr or
s � yr and such that for all L+ 1 � r � K + 2 it is xr; yr � s. By the last claims we know that xr � s and
yr � s imply xr � ! and yr � ! respectively. Now consider the following contraction orders.

1. yr � xr; s; !. In this situation (xr; yr; !) is a unique shortest path of length 2.
2. xr � yr; s; !. In this situation (s; xr; yr) is a unique shortest path of length 5m+ 1

8 + 1 .

Contraction of xr and yr before s hence inserts at least one additional edge into the hierarchy which sums
up to at least K + 2� L additional edges into the hierarchy.

For 1 � r � L let zr be the vertex zr 2 fxr; yrg that is adjacent to s, when s gets contracted. The
path p = (ei; s; zr) has length 6m + i + 1

8 for zr = xr and length 6m + i + 1
8 + 1 for zr = yr. The path

p0 = (ei; u; t; xr) in G0, where u is some vertex u 2 V , has length 7m + 1
2m and p0 = (ei; u; t; xr; yr) in G0

has length 7m + 1
2m + 1. For p is a unique shortest path in G0, p is a unique shortest path, when s gets

contracted, too. Contraction of s therefore inserts a shortcut fei; zrg into the hierarchy. As there are L such
vertices zr contraction of s results in the insertion of at least L such shortcuts.

Altogether contraction of ei after s resulted in K + 2 � L + L > K additional shortcuts, which is a
contradiction.

Subsumption. The following observations subsume the above claims about possible pairwise contraction
orders.

1. E gets contracted in order e1; : : : ; em.
2. V � t and E � s, that is whenever we encounter vertices v 2 V or edge-vertices e 2 E, we may assume

that the vertex t or the vertex s respectively are not contracted yet.

In the �nal step of this proof we will construct a vertex cover for the original graph G and prove that it
contains at most K vertices.

For each vertex v 2 V let emin(v) be the �rst edge-vertex in order e1; : : : ; em that is incident to v, that
is emin(v) = eM , where M = minfi : ei is incident to vg. We partition E into two sets. The set E1 contains
those edges that are incident to some vertex v that gets contracted after emin(v).

E1 = fe = fu; vg 2 Ej emin(u) � u or emin(v) � vg
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Secondly we let E2 be the set of edges that are incident to two vertices u and v that get both contracted
before emin(v).

E2 = fe = fu; vg 2 Ej u � emin(u) and v � emin(v)g

Obviously it is E = E1 _[E2. Now we de�ne for each edge e 2 E the cover vertex v(e) of e as follows:

v(e) =

(
u 2 V incident to e in G such that emin(u) � u e 2 E1

�-maximal u 2 V incident to e in G e 2 E2

Claim. C = fv(e) : e 2 Eg is a vertex cover in G.

Let e = fu; vg 2 E. Then v(e) = u or v(e) = v by de�nition of the cover vertex v(e).

Claim. C = fv(e) : e 2 Eg has size at most K.

As there are at most K shortcuts in the contraction hierarchy, it su�ces to show that there is an injective
mapping M : C ! S, where S is the set of shortcuts. We will construct M by assigning to each vertex
v 2 v(E1) the shortcut fs; vg and to each v 2 v(E2) a shortcut of the form ft; eg.

Observe that v(E1) and v(E2) are disjoint, as u 2 v(E1) \ v(E2) would imply emin(u) � u � emin(u).
Since the shortcuts assigned to v 2 v(E1) and v 2 v(E2) are of di�erent kind, it is clear that M : C ! S is
well-de�ned and injective on C = v(E1) [ v(E2), if it is well-de�ned and injective on v(E1) and v(E2).

First consider a vertex v = v(e) 2 C with e 2 E1. Then, by de�nition of E1, v � ei = emin (v). By
the subsumption we now that s and t are still present in the graph when ei gets contracted. Now consider
possible paths between s and v at this step.

1. The path p = (s; ei; v) has length 3m+ i. For any other ej the path (s; ej ; v) has length 3m+ j and since
ei = emin (v) the path p is a unique shortest path among the paths (s; ej ; v).

2. For some vertex u 6= v and some edge-vertex ej 6= ei the path (s; ej ; u; t; v) has length 4m+ j
3. The path (s; xr; t; v), where xr is a vertex of the �nal gadget F , has length 10m+ 5

8 .

Hence, (s; ei; v) is a unique shortest path when ei gets contracted and thus contraction of ei inserts a shortcut
fs; vg. We let M(v) = fs; vg.

Next we account for the vertices in v(E2). Let v 2 v(E2). Choose arbitrary e = fu; vg in E2 such
that v = v(e). By de�nition of E2, we have u � emin(u) and v � emin(v). In particular u � v � e. By
the subsumption, the vertices s and t are not contracted, when u or v get contracted. Consider the paths
pu = (t; u; e) and pv = (t; v; e), each of length 5

2m. Apart from pu and pv the only relevant path between t
and e is p0 = (t; xr; s; e), where xr is some vertex of the �nal gadget F . The length of p0 is greater than 10m
and thus pu and pv are shortest paths.

When v gets contracted, u and the path pu are already contracted and pv is a unique shortest path.
Contraction of v hence inserts a shortcut ft; eg into the hierarchy. We let M(v) = ft; eg. Observe that M is
injective on v(E2), as M(x) =M(y) implies x = y = v(e0) for some e0. This �nishes the proof.

We now consider the problem of minimizing the preprocessing size without regarding the search-space
size.

Problem (CHPSO). Given a graph G = (V;E), a length function len : E ! R
+ and a number K 2 Z�0,

�nd an order � on V , such that jH�(G)j � jEj is minimal.

Using essentially the same reduction as for the last problem, we can give some non-approximability results
for CHPSO.

Corollary 1. Problem CHPSO is APX-hard and, for any � > 0, it is NP -hard to approximate CHPSO
within a ratio of 7=6� �.
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Proof. The problemMinVertexCover is to �nd a vertex cover of minimal cardinality. The APX-hardness
of MinVertexCover has been shown in [18]. In [14] it is shown that it is NP -hard to approximate
MinVertexCover within a ratio of 7=6� �.

Let G be a MinVertexCover-Instance and G0 be a CHPSO instance constructed like in the proof
of Theorem 8. Let opt(G) and opt(G0) denote the values of optimal solutions of G and G0, respectively.
According to the proof of Theorem 8 we know that opt(G) = opt(G0).

Further, let � be a feasible solution for G0 such that (jH�(G
0)j � jEj)=opt(G0) � 7=6 � � for an � > 0.

Let C = fv(e) : e 2 Eg be like in the proof of Theorem 8. Then C is a feasible solution for G and
C � (jH�(G

0)j � jEj. Hence, jCj= opt(G) � 7=6� �.
The proof of APX-hardness works analogous.

Lower Bounds for Search-Space Guarantees. We now consider the following question: Preprocessing
size and space are unrestricted, what guarantee can Contraction Hierarchies give for the size of the average
search space? Obviously the size of the search space is bounded from above by the number n of nodes. For
arbitrary graphs, no bound outside 
(n) is possible as the complete graph with n vertices has average search
space size (n+ 1)=2.

We give a lower bound of 
(ldn) for guarantees on the average search-space size on sparse graphs
(especially for graphs with bounded degree). Throughout the remainder of this section, we consider the
input-graph Pn = (Vn; En) to be a path, i.e. Vn = f1; : : : ; ng and En = ffi; i + 1g j 1 � i < ng. Given a
graph G = (V;E), an order � on V and the contraction hierarchy (V;E�) := H�(G), the directed contraction

hierarchy
�!
H (G;�) is de�ned as

�!
H (G;�) := (V; f(u; v) j fu; vg 2 E�; u � vg):

For simplicity, we consider only one direction of the actual query. Remember that distG(u; v) denotes the
distance from vertex u to vertex v in graph G. Consequently,

VG;�(u) :=
���fv 2 Vn j dist�!H(G;�)

(u; v) <1g
���

is the number of nodes visited during a query starting at vertex u and

V(G;�) :=
X
u2V

VG;�(u)

is n=2 times the average search space for the contraction hierarchy H�(Pn). For all de�nitions, we will leave
out the order � whenever the choice of � is clear.

Lemma 5. For all n 2 Z+ and all orders � on Vn, it is

V(Pn;�) � B(n+ 1)

where B(k) =
Pk

i=1dld ie and Pn = (Vn; En) with Vn = f1; : : : ; ng and En = ffi; i+ 1g j 1 � i < ng.

In order to proof this result we �rst give two facts on the sequence B(k). The sorting numbers B(k) are
sequence A001855 in [24]. The following recursive formula is a key to the proof of Lemma 5.

Lemma 6. Let B(k) =
Pk

i=1dld ie for k 2 Z
+. Then

B(n) = B
�ln

2

m�
+B

�jn
2

k�
+ n� 1

Proof. We do induction on n. For n = 2 we have

B(2) = 0 + 1 = B

��
2

2

��
+B

��
2

2

��
+ 2� 1
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For n > 2, we get by induction hypothesis

B(n) = B(n� 1) + dldne = B

��
n� 1

2

��
+B

��
n� 1

2

��
+ dldne+ n� 2

If n is even, then
�
n�1
2

�
= n

2 � 1 and
�
n�1
2

�
= n

2 . Furthermore dldne = dld n
2 e+ 1 and thus we get

B(n) = B
�n
2
� 1

�
+B

�n
2

�
+ dldne+ n� 2 = B

�n
2

�
+B

�n
2

�
+ n� 1

If n is odd, then
�
n�1
2

�
= n�1

2 =
�
n�1
2

�
. Additionally dldne = dld n+1

2 e+ 1 and we get

B(n) = B

�
n� 1

2

�
+B

�
n� 1

2

�
+

�
ld
n+ 1

2

�
+ n� 1 = B

�
n� 1

2

�
+B

�
n+ 1

2

�
+ n� 1

This �nishes the proof.

Further, from the monotonicity of ld we have the following inequality.

Lemma 7. Let B(k) =
Pk

i=1dld ie for k 2 Z
+. Further, let n1; n2; n 2 Z

+ with n1 + n2 = n. Then

B(n1) +B(n2) � B
�ln

2

m�
+B

�jn
2

k�
Proof. Without loss of generality let n1 � n2. As n1 + n2 = n this implies in particular n1 �

�
n
2

�
and�

n
2

�
� n2. Now this lemma follows directly from the monotonicity of ld and the de�nition of sorting numbers:

B(n1) +B(n2) =

n1X
i=1

dld ie+
n2X
i=1

dld ie =

dn2 eX
i=1

dld ie+
n1X

i=dn2 e+1

dld ie+
n2X
i=1

dld ie

� B
�ln

2

m�
+

n2+n1�dn2 eX
i=n2+1

dld ie+
n2X
i=1

dld ie = B
�ln

2

m�
+B

�jn
2

k�
Equipped with these two lemmata on the sorting numbers we now approach the proof of Lemma 5:

Proof (of Lemma 5). We do induction on n. If n = 1, there is nothing to show, as B(2) = 1. Now let n > 1.
Furthermore let � be an order on Vn and v be the �-largest vertex in Vn. Removal of v splits Pn into graphs
P1, P2 and H = H�(pn) into graphs H1, H2 of n1 and n2 vertices, where n1+n2 = n�1. It is H1 = H�(P1)
and H2 = H�(P2). Furthermore VPi(v) = VPn(v)� 1 for all vertices v 2 V (Pi) and thus

V(Pn) = V(P1) + n1 + V(P2) + n2 + 1

By induction hypothesis we have V(Pi) � B(ni + 1). Hence we may apply Lemmata 6 and 7 to obtain

V(Pn) � B

��
n+ 1

2

��
+B

��
n+ 1

2

��
+ n = B(n+ 1)

which was to show.

The lower bound of B(n+1) is tight as Algorithm 1 computes an order � on Vn, such that V(H�) = B(n+1).
The proof is by induction analogous to the proof of Lemma 5.

Corollary 2. For all n 2 N and all orders � on Vn it is V(H�) = 
(n ldn) and there is an order � on Vn,
such that V(H�) = �(n ldn).

26



Algorithm 1: OptimalPathOrder

Input : Path Pn = (Vn; En) of n vertices
Output: Order � on Vn, such that V(H�) = B(n+ 1)
if n = 0 then

return h i
else

Pick vertex v 2 V separating Pn into paths Q and R of length
�
n�1
2

�
and

�
n�1
2

�

return OptimalPathOrder(Q) �OptimalPathOrder(R) � hvi
end

Proof. The corollary is an immediate consequence of the equation

B(n) = n dldne � 2dldne + 1 = �(n ldn)

which can be shown by induction on n. If n = 1we have B(1) = 0 = 0� 1 + 1. If n > 1, then

B(n) = B(n� 1) + dldne

= (n� 1) dldn� 1e � 2dldn�1e + 1 + dldne

If dldn� 1e = dldne, the claimed equality follows immediately. On the other hand, dldn� 1e < dldne, if
and only if n = 2k + 1 for some k 2 Z+. In that case we have

B(n) = (n� 1) dldn� 1e � 2dldn�1e + 1 + dldne

= (n� 1) � k � 2k + 1 + k + 1

= nk � n+ 3

= n(k + 1)� 2(n� 1) + 1

= n(k + 1)� 2k+1 + 1

= n dldne � 2dldne + 1
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8 Conclusion

Speed-up techniques have been widely studied experimentally for the last years, especially for road-networks.
There is large interest in a theoretical foundation of the techniques developed and some �rst work on the
topics have been published [1, 4]. In this work we focused on the preprocessing phases of the recent techniques.
These usually incorporate a degree of freedom that, in practice, is �lled in a heuristical manner.1 Until now,
the complexity status of �lling the according degree of freedom was unknown. We settled this question by
showing that all variants considered are NP-hard to optimize.

There are numerous open questions for the topic. A reasonable next step to enhance this work is the
development of approximation- or �xed parameter tractable algorithms for the preprocessing phase. E�cient
algorithms for special graph classes would help to show the bounds of intractability.

When working with special graph classes (either for giving algorithms or showing the complexity status)
modeling the two main applications for speed-up techniques, road-networks and public transportation net-
works would be helpful. Until now there is no experimentally veri�ed model for these two applications (but
some �rst work [1, 7]). From a more theoretical point of view we have the question which of the problems
can be solved e�ciently on trees.

Another interesting question is the following: We assume preprocessing time and space is unbounded, how
good can a speed-up technique actually get? Obviously, ALT and Arc-Flags can encode All-Pairs Shortest-
Path in a way that a shortest s-t path and dist(s; t) can be queried in time that is linear in the size of the
shortest-path subgraph which yields optimal search-space for these techniques (but of course, the runtime
of ALT would not be optimal in this case). The situation is not so clear for Highway-Node Routing, Reach,
Highway-Hierarchies and Contraction Hierarchies. We have shown that the average CH-search space of an s-
t-query can not guarantee to be better than 
(n) for arbitrary graphs and 
(log n) for graphs with bounded
degree. Is the second bound tight?

Finally, another interesting model can be obtained by also including the number of relaxed edges in the
search-space. However, we expect to obtain the same results for that model with slightly modi�ed proofs.
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A Proofs of Correctness

Highway-Node Routing

Lemma 8. Given a multilevel overlay graph G = (V;E [ E1 [ : : : [ EL) of a graph G = (V;E), then
bidirectional, distance-balanced Dijkstra's algorithm in G, where from a node of level i only edges in Ei [
: : : [ EL are relaxed, returns the correct distance in G.

Proof. Let s; t 2 V . The construction of the multilevel overlay graph G obviously does not change dist(s; t).
Hence, it su�ces to show, that for each shortest s-t-path in G, there exists a shortest s-t-path in G, whose
edges ful�ll the relaxation criterion.

Let p = (s = v1; : : : ; vm = t) be a shortest path between s and t in G. Then we can choose maximal
subsequences p1 = (s = vi1 ; : : : ; vik) and p2 = (vjl ; : : : ; vj1 = t) of p, such that the levels of vir and vjr are
less or equal than the level of vir+1 and vjr+1 respectively. Note that p1 and p2 are maximal and therefore
have non-empty intersection, i.e. jl < ik. By de�nition of multilevel overlay graphs, E [ E1 [ : : : [ EL
contains edges (vir ; vir+1) and (vjr ; vjr+1) of length len(vir ; vir+1; : : : ; vir+1) and len(vjr+1 ; vjr+1+1; : : : ; vjr )
respectively. Hence the sequences p1 and p2 are shortest paths in G and the edges (vir ; vir+1) and (vjr+1 ; vjr )
ful�ll the relaxation condition, i.e. if vir or vjr+1 is on level K, then vir+1 or vjr are at least on level K, too.

Reach To see that this query algorithm is correct consider a shortest path (s = v1; : : : ; vi; : : : vl = t) between
s and t. If there is some vertex vi such that for all 1 � j < i the vertices vj get settled in the forward search
and for all i < k � l the vertices vk get settled in the backward search, then d

+(vi) = len(v1; : : : ; vi); d
�(vi) =

len(vi; : : : ; vl) and the query is correct. Assume the contrary, i.e. that there are vertices vj and vk with j
minimal, k maximal, j < k and such that vj does not get settled in the forward search and vk does not get
settled in the backward search. After settling vj�1 the priority of vj in the forward queue is len(v1; : : : ; vj)
and after settling vk+1 the priority of vk in the backward queue is len(vk; : : : ; vl). As both vj and vk do not
get settled, the de�nition of R and the settling criterion imply

minflen(v1; : : : ; vj); len(vj ; : : : ; vl)g � R(vj) < len(v1; : : : ; vj)

minflen(v1; : : : ; vk); len(vk; : : : ; vl)g � R(vk) < len(vk; : : : ; vl)

Hence len(vj ; : : : ; vl) < len(v1; : : : ; vj) and len(v1; : : : ; vk) < len(vk; : : : ; vl), which is a contradiction, as

len(v1; : : : ; vl) < len(v1; : : : ; vk) + len(vj ; : : : ; vl) < len(vk; : : : ; vl) + len(v1; : : : ; vj) < len(v1; : : : ; vl)
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