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Abstract—Agents in networks have two strategic choices:
They can forward/process incoming service requests – or not,
and they can establish additional contacts and maintain or
terminate existing ones. In other words, an agent can choose
both an action-selection and a link-selection strategy. So far, it
is unclear which equilibria exist in such settings. We show that
there are the following equilibria: First, an inefficient one where
agents leave the network. Second, an equilibrium where agents
process requests on behalf of others, i.e., they cooperate. In this
second equilibrium, agents distribute their contacts uniformly,
which is not efficient. We show that a strategy, we propose in
this paper, yields an equilibrium that is optimal, i.e., that yields
the highest sum of payoffs over all equilibria. If agents base
their link-selection decisions on the processing times of their
requests, optimal system states can be equilibria.

Keywords-Artificial social systems, peer-to-peer coordination,
game theory, distributed problem solving, social and organiza-
tional structure

I. INTRODUCTION

In the recent past, network formation has become an
important research topic. Agents1 in networks may act as
servers and provide services or information, e.g., process
an incoming request, and at the same time they want to
consume services provided by others, i.e., act as clients. In
this paper, we consider networks where agents may be both
client and server. While an agent is interested in consuming
services from many different agents, it typically is linked to
only few nodes in the network. Thus, an agent may have to
send its service requests (requests for short) via intermediate
nodes. Since forwarding agents can always drop requests,
there is a general interest in short forwarding chains, i.e.,
those with few intermediate nodes. In combination with the
processing of requests, we investigate another dimension of
an agent’s strategy space, link selection. While we assume
that there is a given underlying network structure, i.e., each
node has contacts it cannot choose, there are links/contacts
an agent can choose, i.e., additional contacts. In this paper,
a link between agents is bilateral: Both agents can use it and
have to pay for it.

Strategic Choices An agent has certain strategic choices:
(a) It can forward or process a request – or not. When

1In this article, we use ‘agent’ and ‘nodes’ as synonyms.

forwarding, it can decide which agent to forward to. (b) It
can establish additional contacts or terminate existing ones.
We refer to the first choice as action selection, and to the
second one as link selection. Networks with these features
are ubiquitous, e.g., social networks, cooperation between
companies, or P2P networks. Link selection is indeed an
issue since maintaining contacts typically incurs costs. While
agent behavior includes both link selection and action selec-
tion, existing work typically deals with only one aspect (see
Section II). Given this, we study agent behavior under a
strategic perspective, i.e., node behavior is driven by utility
considerations, and address the fundamental question which
equilibrium states arise.

Research Questions This paper addresses the following
research questions: (a) Which link-selection strategies and
action-selection strategies do agents use, and which equi-
libria exist? Equilibria are a fundamental concept in game
theory, and finding them is necessary to analyze strategic
choices. (b) A fast answer often is more valuable than a
slow one, and we model this with a discount factor. How
does this specific parameter affect the strategic choices of
nodes? (c) If equilibria exist, how efficient are they? In
efficient networks, the sum of the payoffs of all agents, i.e.,
the social welfare, is maximal, or, more practically, agents
process almost all requests, and the number of intermediaries
is small. (d) The relationship between nodes depends on their
ability to estimate the degree of cooperation of other nodes.
When this ability becomes weaker/stronger, how does this
affect the equilibria?

Identifying equilibria in networks where more than two
players process a request tends to be difficult [1]. Taking
link selection into account makes the problem of identifying
equilibria even more involved [2].

Contributions As a first step of our analysis, we specify
a strategy space that is very general, i.e., subsumes strategies
known from literature. While [3] has identified network
structures that are optimal, it is unclear if they are equilibria.
We now have conducted a theoretical analysis of the setting
described before that shows the following: There are two
equilibria. (I) The inefficient network: If agents do not
cooperate enough, they are dissatisfied with the system



as a whole and leave the network. (II) The cooperative
equilibrium: Uncooperative behavior does not yield high
payoffs, since agents ignore requests from uncooperative
nodes. Consequently, uncooperative strategies do not pay
off, and thus, the degree of cooperation is high. If agents
do not take the contact distributions of their contacts into
account when processing requests, then the optimal strategy
is distributing additional contacts uniformly over the net-
work. The resulting network structure is not efficient [3]. A
better outcome is possible if agents do not only distinguish
between cooperative/uncooperative behavior of other nodes,
but take the response times of requests forwarded into
account. We propose a strategy, dubbed Drop-Slow-Contacts
(DSC), as follows: Nodes drop additional contacts where
response times are too high. As a core result of this paper, we
show that the DSC is an equilibrium strategy that increases
the social welfare, and yields high payoffs.

If agents use the DSC Strategy, then they give each
of their contacts an incentive to distribute its additional
contacts in a way that is beneficial for the whole system.
Our proposed Strategy DSC is cheap, i.e., does not need
complex computations or extra messages, and yields high
payoffs.

Paper Outline Section II discusses related work. We
describe some fundamentals in Section III. Our analysis is
in Section IV, and Section V concludes.

II. RELATED WORK

This section addresses related work regarding action se-
lection and link selection.

Action Selection Game-theoretic models [4], [5], [6], [7]
as well as behavioral models [8], [9] can help to understand
action-selection strategies. First, there are motives for ma-
licious behavior: [8] explains the evolution of ideologically
motivated attacks, and describes a set of countermeasures.
[9] shows how nodes propagate viruses in an email network,
and describes how to immunize against this malicious propa-
gation. The (Iterated) Prisoners’ Dilemma [5] explains why
free-riding may occur. On the contrary, [6], [7] show that
cooperation can evolve through different strategies: Indirect
reciprocity and reputation [6] as well as network reciprocity,
and group selection [7]. Indirect reciprocity means that
Node i only chooses the cooperative strategy towards Node j
if j has done so towards other nodes. Reputation in [6]
depends on the observations of the node itself as well
as on third-party opinions, i.e., feedback. [10] proposes
a payment scheme for feedback so that issuing truthful
feedback is the optimal strategy. Network reciprocity is
indirect reciprocity between members of a forwarding chain.
The models used in [6], [7] leave aside intermediate nodes,
which is important in real-world networks. Even though
intermediate nodes are important in real-world networks,
investigating them analytically is difficult [1]. [11] analyzes
the cost of selfish routing compared to a centralized solution:

The latency is close to optimal in a given network, even
though nodes route based on utility considerations. Thus, no
centralized instance is necessary for routing. In contrast to
our approach, [11] assumes that a network structure is given.
In general, however, the structure is the result of the behavior
of the agents. Analyzing multi-player games is difficult if
the network structure is taken into account [2]. All the
approaches mentioned leave network formation aside. The
network structure can influence the outcome of a game [12].
Thus, we investigate network formation as well.

Link Selection Network-formation models [13], [14],
[15] describe which networks emerge from link selection
of nodes. [16] shows which network topologies guarantee
strong equilibria, i.e., states where no group of nodes can
improve the utility of each of its members. [17] uses link
blocking to minimize the propagation of undesirable data in
the network. [13] proposes the Connections Model: A node
benefits from nodes it is directly or indirectly linked with.
The benefit decreases, the larger the path length between
two nodes is. [13] shows that nodes form different net-
works contingent on contact-maintenance costs: If contact-
maintenance costs are less than the decrease of benefit
between a contact and the contact of the contact, complete
networks where a node is linked to any other node are
efficient. If contact-maintenance costs are higher than the
expected benefit of a new contact, empty networks, i.e.,
those where no node has a contact, result. For other contact-
maintenance costs, star networks are efficient, i.e., one node
(the center) is linked to all other nodes. The star is not an
equilibrium. The center of the star can increase its payoff
by giving up the center position. Instead, we will focus on
situations where all agents have about the same number of
contacts. This setup is more likely since the motivation for
having many more contacts than other agents is unclear. We
are interested in finding equilibria for networks where agents
choose their action-selection strategy and their link-selection
strategy, in contrast to [13]. [14] comes to results that are
similar to [13], but also points out which kinds of hot spots,
i.e., nodes with high forwarding load, arise from different
networks. Both [13], [14] leave out action selection, i.e.,
do not allow their nodes to drop requests or to use utility-
based routing algorithms. Still, [13], [14] show the difference
between efficient networks and the equilibria: Self-interested
nodes do not form efficient networks in every situation.

Combined Models In simple scenarios with restrictive
assumptions there are models that feature both link and
action selection: [12] investigates two types of 2× 2 games
of players that form networks. There, the network structure
depends on link costs and on the distribution of strategies
among all nodes. [18] shows, in a behavioral experiment,
that the network structure influences the payoff of players
in network-trade games. There, equilibrium theory is a good
predictor for human behavior. Thus, link selection and action
selection should be investigated in combination.



III. DEFINITIONS AND ASSUMPTIONS

We investigate coordinator-free networks of self-interested
agents. In the following, we describe network characteristics,
measures used in our study, and the strategy space.

A. Network Characteristics

Fundamentals N = {0, ..., n − 1} is a set of identifiers
of agents that form a network. We see two types of contacts
in a network: contacts a node can choose, i.e., additional
contacts, and those it is always linked to, i.e., fixed contacts.
This is natural, e.g., relatives or neighbors are fixed, while
a person is free to choose his friends or business contacts.
Let Ki (K+

i ) be the set of all contacts (set of all additional
contacts) of Agent i. Further, let | · | denote the cardinality
of a set. E.g., |Ki| is the number of contacts of Agent i.
If we do not have a specific agent in mind, we leave the
subscript aside. We refer to the network structure consisting
of fixed contacts as fixed network structure. To keep the
analysis manageable, the fixed network structure is a ring in
our case, i.e., each agent i ∈ N has two fixed contacts: the
agent left of Agent i, Agent (i − 1) mod n and the one to
the right, Agent (i+ 1) mod n.

Kleinberg Distributions In [3] Kleinberg has investigated
the routing complexity in random networks with an initial
network structure. According to [3] the average number
of hops in a ring plus a random matching is minimal if
all pairs of nodes (u, v) are contacts with a probability
proportional to [d(u, v)]−r (where d(u, v) is the number of
steps in the original network, and r the dimension of the
network, e.g., r = 1 for a ring of nodes). We will refer to
these networks as networks with a Kleinberg distribution. [3]
contains a proof that there exists a constant β so that nodes
deliver requests in β · log2(n) steps with high probability.
[3] assumes cooperative nodes and leaves action selection
aside. Even though [3] is important from an algorithmic
perspective, it is still necessary to investigate if agents have
an interest to form such networks.

B. System Model

One-Shot vs. Repeated Interactions In large networks,
we frequently have the following scenario: Endpoints of a
forwarding chain interact only once, i.e., play a one-shot
game, while contacts interact repeatedly. This scenario is
interesting: Theory predicts uncooperative behavior in one-
shot cooperation games [5]; on the other hand, cooperation
can evolve if the game is played repeatedly [5]. We focus
on the described scenario, instead of allowing repeated
interactions between endpoints of a forwarding chain. Based
on the scenario described, we analyze the payoffs after
each agent issued one request to each other agent in the
following. We do not investigate any intermediate states,
since, otherwise, contacts would also interact only once (or
few times), and this would change the nature of the game.

Requests We want to calculate the expected payoff of
an agent. To simplify the analysis, we assume that for each
request r there exists only one agent that can answer it.
Structured P2P systems [19], to give an example, meet
this condition. We refer to this agent as the destination
of request r (short form: dest(r)). Note that the issuer
does not have to know the destination of a request, but a
contact that is closer to the destination. E.g., if someone
wants to know ‘When did the Mayflower reach Cape Cod?’,
he does not have to know a history professor – someone
who probably knows a professor, e.g., a history student, is
sufficient as well. We assume that destinations of requests
issued are uniformly distributed. We refer to the creator of a
request as the issuer of request r (short form: iss(r)). If the
destination of a request processes the request, it sends the
answer directly to the issuer. (We will explain how agents
can estimate the degree of cooperation of other agents in
Section III-C.) We refer to the first agent that receives a
request r as the first forwarder (short form ff(r)). Next to
the first forwarder, there normally are further forwarders,
and the average number of hops if forwarding is only along
fixed contacts is n−1

4 : This is because the maximal distance
in the fixed network structure is half of the size of the ring
(n−1

2 ), and the expected distance is half of it.
Leaving the Network Issuing requests is either beneficial

or not. Thus, agents either issue requests, or they leave the
network, i.e., use Strategy Dropout (cf. Section III-E).

C. Assumptions
Network We assume that nodes have some address in

an address space. This can be their IP-address, a physical
address such as a city, or some knowledge domain as in
the history example above. Further, we investigate networks
where an agent knows which one of its contacts is closest to
the destination of a given request. This implies the existence
of a distance function in the address space. In our case this is
the number of hops in the fixed network structure. Having an
intuition about which contact is closest to a given destination
is a feature of many networks [20], [21].

Time We assume that agents process requests immedi-
ately, and that each message hop lasts a fixed amount of
time. Still, the processing time of a request depends on the
number of hops during the processing: It is proportional to
the number of hops it needs.

Uncertainty We assume that real-world agents use some
kind of reputation system [22] to estimate the degree of
cooperation of other agents, e.g., eigentrust [22], or feedback
payments [10]. The perception of the behavior of other
agents may be erroneous.

Utility We assume that an agent’s utility increases and
decreases with its payoff.

D. Measures
We now introduce measures used in this paper.

The payoff is the difference of income and expenditure.



Definition 3.1: The payoff of Agent i is:

payoff (i) = income(i)− expenditure(i)

An agent benefits from the system every time it receives an
answer to one of its requests. Let Ri be the set of requests
Agent i creates, and let Ri→j ⊆ Ri be those requests that
Agent i forwards to Agent j. For some requests Agent i
receives an answer: Let Ai ⊆ Ri be the set of requests that
have been answered, and let Ai→j ⊆ Ri→j be the set of
requests that have been answered and that Agent i had issued
to Agent j. The faster an agent i receives an answer, the
higher is the benefit, i.e., the benefit of an answer depends
on a discount factor δ ∈ [0, 1] and on the number of hops
h(req) a request req ∈ Ai needs to be answered. The benefit
of an answer is multiplied with cost factor a.

Definition 3.2: The income of an agent i when it receives
an answer to its request req ∈ Ai is:

income(req) = a · δh(req)

Definition 3.3: The income of Agent i is the sum of the
incomes corresponding to the answers Agent i recieved:

income(i) = a ·
∑

req∈Ai

δh(req)

Expenditures are processing costs and contact-maintenance
costs. We start by explaining the former.

An agent can process requests on behalf of others. Let Fi
be the set of requests Agent i forwards (i.e., Ri ∩ Fi = ∅),
and let Wi be the set of requests Agent i answers (W for
Work). Let Fi→j ⊆ Fi be the set of requests that Agent i
forwards to Agent j, and let Wi→j be the requests that
Agent i forwarded to Agent j and that Agent j answers.
The cost of issuing (forwarding, answering) a request is q (f ,
w). Next to processing costs there are contact-maintenance
costs. To define them, we need the two following auxiliary
functions:

g(i, j) =

{
true if Node j is additional contact of Node i
false else

(1)
nr(i, j) = number of time units when g(i, j) holds (2)

The cost of maintaining an additional contact per time unit
is c. r(i) is the number of additional contacts of Node i:
r(i) =

∑
n∈N nr(i, n)

Definition 3.4:

expenditure(i) = q · |Ri|+ f · |Fi|+ w · |Wi|+ c · r(i)

Table I lists the abbreviations.
Social Welfare Besides the payoff of an agent, we want to

quantify the success of the system as a whole, i.e., the value
function v [13], which is also known as social welfare [23].

Action/Event Number Payoff
of Events Factor

Issuing a request |R| q
Forwarding a request |F | f
Answering a request |W | w
Receiving an answer |A| a

Maintaining additional contact r(·) c

Table I
BENEFITS AND COSTS OF ACTIONS/EVENTS

Definition 3.5: The value function v of the system is:

v =
∑
i∈N

payoff (i)

Definition 3.6: A system is efficient if its value function
v is maximal.

Algorithm 1: isCooperative(Agent i, Threshold t)
Input: Agent i, Threshold t
Output: {TRUE, FALSE}
double trueCooperation = C(i);1

if C(i) ≥ t then2

return3

getRandomV alue[0, 1] ≥ reportingError;
else4

return5

getRandomV alue[0, 1] < reportingError;
end6

Cooperation The efficiency of a system depends on the
degree of cooperation of its agents. We refer to the degree
of cooperation of Agent i as C(i). C(i) is the ratio of
all requests Agent i processes among the ones received.
Following our assumption Uncertainty, agents use some
reputation system. To abstract from the concrete method
to estimate the degree of cooperation, we propose hav-
ing (I) an abstract method and (II) an unreliability factor.
(I) With Method ‘isCooperative(Agent j, Threshold t)’ an
agent i can test whether the degree of cooperation C(j)
of an agent j is higher than or equal to a threshold ti
chosen by i (cf. Algorithm 1). (II) Unreliability factor
reportingError ∈ [0, 1] models the extent of errors in the
estimation, i.e., reportingError is the ratio of the cases
when the result is incorrect.

Connectivity Two auxiliary functions are the distance
between agents and the normalized distance. The former
is the number of intermediaries between two agents in the
fixed network structure, and the latter is the normalization
of it.

Definition 3.7: The distance between two Agents i, j is:
d(i, j) = min(|i− j|, n+min(i, j)−max(i, j))
Example: Figure 1 shows a ring with six agents. To
determine the distance between Agent 4 and 0, one has



Figure 1. Ring with Six Agents

to count clockwise from 4 to 0. The difference is two:
d(4, 0) = min(|4 − 0|, 6 + min(4, 0) − max(4, 0)) =
min(|4 − 0|, 6 + 0 − 4) = min(4, 2) = 2. The distance
between Agent 1 and 3 is: d(1, 3) = min(|1−3|, 6+1−3) =
min(2, 4) = 2. �

Definition 3.8: The normalized distance ∆(·, ·) between
Agent i ∈ N and Agent j ∈ N is: ∆(i, j) = 4

n−1 · d(i, j)
One measure that describes how efficiently agents use the
system is the average number of hops h. A smaller average
number of hops leads to less forwarding load (if all other
parameters remain the same).

Definition 3.9:

h =
1

|A|
·
∑
req∈A

h(req)

Measure h∆(i) is the number of hops relative to the distance
to the destination for Agent i’s requests:

Definition 3.10:

h∆(i) =
1

|Ai|
·
∑

req∈Ai

h(req)

∆(i, dest(req))

h∆(i|j) is the average number of hops of Agent i’s requests
that it has forwarded to its contact j:

Definition 3.11:

h∆(i|j) =
1

|Ai→j |
·

∑
req∈Ai→j

h(req)− 1

∆(j, dest(req))

E. Strategy Space

Agent behavior can be manifold. There are aspects of
agent behavior that are well known and do not change. For
instance, [24] shows that humans use threshold strategies
when dealing with requests on behalf of others. Conse-
quently, we describe these known aspects of the behavior by
means of pseudocode. Still, the respective threshold value is
unclear, and we allow agents to choose this value, as we will
explain in the remainder of the section. Apart from threshold
strategies, most aspects of agent behavior are unknown, and
we model them by means of a vector of parameters called
strategy vector S. We start with action selection and continue
with link selection. Table II serves as a summary.

Issuing An agent may issue requests or may choose not
to. (We do not look at strategies where agents sometimes

Dimension Type Description
sendRequest binary If true, then the

agent issues requests.
contactC double Minimal degree of

∈ [0, 1] cooperation to consider
to process a request.

ownCoop double Ratio of processed
∈ [0, 1] requests from issuers

and predecessors that
are deemed cooperative.

maxC integer Maximal number
∈ [0, |N |] of additional Contacts.

additionalCC double Minimal degree of
∈ [0, 1] cooperation, to

become a contact.
maxProcessingT ime double Maximal request-

∈ [0,∞) processing time.
distribution arbitrary Distribution

distribution of contacts.

Table II
STRATEGY-SPACE PARAMETER

issue and sometimes do not issue requests.) Only if binary
parameter sendRequests is true, an agent issues requests.

Processing Humans in coordinator-free environments use
threshold strategies when processing a request on behalf of
others [24]: If a player i issues requests to a contact j, and
the fraction of these requests answered is less than a certain
threshold value, player i ignores requests from contact j.
In other words, human players hold a contact responsible
for the whole forwarding chain (even though someone else
in the forwarding chain might have dropped the requests).
This makes sense – a contact is responsible for selecting
cooperative contacts. Agents in our scenario use threshold
strategies as well, i.e., behave as described in Algorithm 2.
For each request, an agent tests whether the predecessor in
the forwarding chain qualifies (Line 1). ‘Qualifies’ means
that the forwarder has a degree of cooperation that is at
least as high as the expectation of the agent: An agent
ignores requests from contacts which have a lower degree of
cooperation than threshold contactC (contact-cooperation
threshold). An agent can use a timeout scheme to detect
whether a request has been dropped. Further, from an eco-
nomic point of view, it does not make a difference whether
a contact drops a request, or whether it is lost due to a
technical defect etc. In both cases, a contact that would have
processed the request is more useful for the issuer.

Algorithm 2: Dealing with Requests
Input: Request r, Predecessor p
if isCooperative(p, contactC) and1

getRandomValue[0, 1] < ownCoop then
process r;2

else3

drop r;4

end5



An agent can decide whether it is willing to process
a request even if the predecessor in the forwarding chain
qualifies (Line 1). Thus, in our model, an agent processes a
request with probability ownCoop (Line 1).

Link Selection The link-selection strategy of an agent
specifies under which conditions the agent chooses and
maintains additional contacts. We use four parame-
ters/conditions to model link selection. Note that all four
conditions have to hold, otherwise the agent drops the
respective additional contact.

1) An agent can specify how many additional contacts it
wants to have at most, by parameter maxC.

2) The degree of cooperation of a potential contact has
to be higher than threshold additionalCC (additional
contact cooperation threshold).

3) The average processing time of requests an agent i
forwards to a contact j, i.e., h∆(i|j), has to be less
than or equal to threshold maxProcessingT ime.
While parameter additionalCC defines which degree
of cooperation an agent demands from its additional
contacts, maxProcessingT ime is an additional con-
dition on the average processing times.

4) An agent can specify the distribution of its contacts:
Parameter distribution is a probability distribution
over the underlying address space (or a density func-
tion in case of a continuous address space). If an
agent i fulfills Conditions 1 to 3, then a potential addi-
tional contact chooses i with a probability proportional
to the specified value in the probability distribution
(cf. [3]).

Common Strategies Having introduced the strategy
space, we now explain that one can model strategies known
from literature:
• An Action-Selection Altruist [25] does not use

the system, but processes each request it receives
(ownCoop = 1, sendRequest = false and
contactC = 0).

• A Link-Selection Altruist [25] accepts arbitrarily coop-
erative contacts (additionalCC = 0, and maxC is a
large constant).

• An Action-Selection Free-Rider does not process re-
quests on behalf of others: ownCoop = 0 [4].

• A Link-Selection Free-Rider does not contribute to the
network structure, i.e., maxC = 0 [26].

• A Dropout neither uses the network nor contributes to
it (sendRequest = false , maxC = ownCoop = 0).

• Threshold Strategies: Humans cooperate with others
only if they process a certain number of their requests,
i.e., humans set contactC to some value v. The same
is known for choosing contacts [27], i.e., humans
normally set additionalCC to some value.

Thus, we can describe strategies known from literature by
our strategy set, as well as many other strategies.

To ease the analysis to some degree, we assume that
maxC is an exogenous parameter. In Appendix E, we ex-
perimentally identify values for maxC in different equilibria
using evolutionary algorithms.

To sum up, the strategy space S of an agent is as follows:

S ={sendRequest, contactC, ownCoop,
additionalCC,maxProcessingT ime, distribution}

(3)

Further, let S(i) be the strategy vector of Agent i.

IV. NETWORK EFFICIENCY

Our objective is finding network equilibria. In our analy-
sis, we start with equilibria for pairs of contacts. Afterwards,
we use these results to identify equilibria in the general case,
i.e., n ≥ 2.

Nash Equilibrium A Nash equilibrium is a state where
no player i can increase its payoff payoff (i) by changing
its strategy S(i) [28].

Cooperative Equilibrium and Inefficient Network In
the following, we will show that if all agents have the same
strategy, and if the strategy is as follows, then they are in
an equilibrium:

Sc = {true, 1.0, 1.0, 1.0, h∆(i), kleinberg} (4)

We refer to this equilibrium as the cooperative equilibrium:
All agents send requests, cooperate and have Kleinberg-
distributed additional contacts, i.e., all agents have Strat-
egy Sc. Further, they do not accept agents as additional
contacts that process their requests slower than their ad-
ditional contacts do on average. This strategy yields high
social welfare, as we describe in Section IV-B2. Next to
the cooperative equilibrium there is a second one. We refer
to it as the inefficient network, i.e., have Strategy Si:
Agents leave the network and consequently do not have any
distribution of additional contacts, nor any threshold for the
processing times of their requests, both denoted as ‘–’.

Si = {false, 0.0, 0.0, 0.0,−,−} (5)

Altruism We exclude Strategy Action-Selection Altruist.
This strategy has only expenditures, but never income.
Strategy Dropout always is more successful. Thus, being
an Action-Selection Altruist is never part of an equilibrium.

In the following, we illustrate the situation only for one
agent, Player i, when investigating symmetric cases.

A. Contact Relations

We start with a simple setup: We analyze the relation
between two players, Player i and Player j. This setup
allows studying the relationship between two contacts. In
this section, we show that there are (at least) two equilibria
in the two-player setup: the inefficient network and the
cooperative one. While the inefficient network always is an



equilibrium, cooperation is contingent on certain conditions,
as we explain in the following.

Inefficient Network Both players are dropouts (cf. Sec-
tion II; sendRequest = false). None of them has an
advantage by joining the network again, since the other
one is not contributing. Strategy Dropout (with zero payoff)
dominates action-selection free-riding: action-selection free-
riders have expenditures but no income.

Cooperative Equilibria We now find exogenous param-
eter values so that full cooperation, i.e., C(i) = 1.0, is an
equilibrium.

Lemma 4.1: Two contacts, Player i and Player j, cooper-
ate to the highest possible extent if the following conditions
hold. (Note that the conditions also have to hold in the
symmetric case, where i is exchanged with j and j with
i.)

isCooperative(i, additionalCCj = 1)

and
isCooperative(i, contactCj = 1)

and
ownCoopi
|Ri→j |

<
a · ownCoopj − q − c · r(i)
w · |Wj→i|+ f · |Fj→i|

Appendix B contains a proof.
The third condition describes the relation of the cost fac-

tors and the number of requests Agent i creates and forwards
to Agent j (|Ri→j |). As long as the benefit for receiving an
answer (a) is high compared to the cost of issuing requests
(q) or maintaining additional contacts (c) as well as the cost
of processing requests (w · |Wj→i| + f · |Fj→i|), the third
condition holds. Thus, the first two conditions are much
more important: A player has to be fully cooperative, since
players accept only fully cooperative contacts.

Note that Lemma 4.1 has an important implication: In the
cooperative equilibrium, contacts cooperate at least as much
as their contacts expect from them, and vice versa. Thus,
only bilateral contacts, i.e., Agent i trusts Agent j, and vice
versa, are stable.

In the efficient state the degree of cooperation is maximal,
i.e., ownCoopi = contactCj = additionalCCj = 1. Here,
the efficient state is only an equilibrium if the error when
estimating the degree of cooperation is less than 50%, see
Appendix F.

B. n-Player Game

In the n-Player Game, agents can choose actions and
contacts. Solving games with n players where players can
modify the structure of the system is difficult [1], [2]. Thus,
we take a statistical view. We assume that agents choose the
position of their additional contacts following a probability
distribution.

As we have seen in Section IV-A, agents cooperate with
their contacts. Thus, we can assume that agents choose

the closest contact to the destination of a request when
forwarding requests.

With n players, agents have to forward many requests,
and the structure of the system, i.e., link selection, plays a
greater role. In the following, we identify the link-selection
choices of an agent in an equilibrium.

Compared to the 2-Player Game, the network structure
might change in n-Player Games, and forwarding costs play
a role. While the income is as in Definition 3.3, the expected
value of the expenditure E[expenditure(i)] changes. In
particular, cost of forwarding and contact-maintenance costs
increase.

E[expenditure(i)] =

q|Ri|+ ownCoopi(f |Fi|+ w|Wi|) + c · r(i)
(6)

For (E[income(i)] > E[expenditure(i)]), Strategy
Dropout again is not beneficial. Formula (6) depends on
Player i’s forwarding load |Fi|. The forwarding load itself
depends on the network structure.

1) Contact Selection – Simplistic Case: The network
structure results from link-selection strategies. In the follow-
ing, we investigate two cases: In Case A, agents base their
decision of processing a request on the contact structure of
their contacts, in Case B, they take the distribution of the
agents in a forwarding chain (over the address space) into
account. As we will see, the strategies for both cases differ.
We start with Case A. Case B follows in Section IV-B2.

As a prerequisite for our analysis, we have to understand
the forwarding load in the fixed network structure. In such a
network, i.e., a ring of players, the forwarding load is likely
to be high. Let C be the average degree of cooperation. Then
the probability p(h) that a request is processed over h hops
is: p(h) = C

h

Example: Figure 2 graphs p(h). It shows p(h) for a small
population (40 + 1 agents). Every agent processes 80% of
the requests. Since the initial structure is a ring, there are at
most 20 agents in the forwarding chain. With each step the
probability that the request will be processed successfully
decreases. �

For large n, p(h) converges against a continuous distri-
bution. Hence, we show the continuous case here and in the
following.

No Additional Contacts If an agent does not have any
additional contacts, the expected benefit of sending a request
over h hops E(h) is: E(h) = p(h) · δh · a− q. The expected
benefit of issuing a set of n − 1 requests such that the
destinations of the requests are in the address space of a
different agent is:

E(n) = 2 ·
(n−1)/2∑
i=1

(
p(i) · δi · a− q

)
(7)

We multiply the sum with two, since there are n−1
2 agents

left and right on the ring structure. Note that we omit



Figure 2. Request-Processing Prob.: No Contacts

Figure 3. Request-Processing Probability: Three Contacts

rounding operators for non-integer values of positions or
numbers of nodes to ease presentation. – Even though
Formula (7) gives us the expected benefit, we will also
introduce an approximation of it that is easier to work with:

Ea(n) = 2 ·
∫ n−1

2

1

(
p(h) · δh · a− q

)
dh (8)

Ea(n) converges against E(n) for large numbers of agents.
Expected Benefit with Additional Contacts With addi-

tional contacts the expected benefit E(n) changes.
Example: For an illustration see Figure 3. In contrast

to the situation illustrated in Figure 2, the agent has three
additional contacts. One is exactly 20 hops away, the other
ones 11 hops (one right, one left). The grey area is the
probability mass won, i.e., where the agent had failed to
get answers before it has added the contacts. �

The benefit of having additional contacts is maximal if
the probability mass won is maximal. If agents do not take
the contacts of contacts into account, the distribution of
additional contacts is approximately optimal, i.e., brings the
maximal benefit, if they all have about the same distance to
the next contact. For the exact positions see Lemma 4.2.

Optimal Positions An agent that wants to maximize its
payoff has to find optimal positions pi, i ∈ [1, ..., |K+|] for
its |K+| additional contacts. (For the sake of simplification
we assume that the number of additional contacts is odd.) If
an agent does not take the distribution of contacts of contacts
into account, the optimal positions of its contacts are as
follows:

Lemma 4.2: If agents process requests independently

from the contact distribution of their contacts, then the
optimal positions of the contacts of an agent with position
p0 = 0 are as follows: One of the contacts is on the other
side of the ring, i.e., p|K+| = n−1

2 ; every other contact
with position p has a counterpart with position (n− p). For
i = 1... |K

+|−1
2 the optimal positions are as follows:

n− 1

2
· 2 · i
|K+|+ 1

+ 2 · |K
+| − i

|K+|+ 1
− 4 · |K

+| − i
|K+|+ 1

·
ln( 1+δ

2 )

ln(C · δ)
(9)

Appendix A contains a proof.
Example: Agent i with position pi = 0, |K+

i | = 3
calculates the optimal positions of its three additional
contacts. For an average degree of cooperation of
80% (C = 0.8), 40 agents, and a discount factor of
99% (δ = 0.99), the following positions are optimal
(cf. Figure 3): 1. One agent is on the other side of
the ring: p2 = 20. 2. The other two agents are almost
between the other two, i.e., have position p1 = 11 and
p3 = 29. The exact position(s) for p1 [and p3] are:
roundToInt

(
[n−]

(
20 · 2

4 + 2 · 2
4 − 4 · ln( 1+0.99

2 )

ln(0.8·0.99)

))
�

Lack of Efficiency The situation in Figure 3 is not
efficient, because contacts and contacts of contacts have
almost the same positions, i.e., contacts of contacts lead
only to little benefit. E.g., the agents in the previous example
would be additional contacts of each other, i.e., they would
not benefit from contacts of contacts.

We find the implications of Lemma 4.2 surprising: With-
out an incentive to form efficient network structures, payoff-
maximizing agents distribute their contacts uniformly, and
we are not aware of a real-world system that gives such an
incentive.

2) Contact Selection – General Case: We now investigate
networks where agents process requests of their contacts
dependent on how fast their contacts (and the forwarding
chains) process their requests, i.e., we are in Case B.

Contact relations have two aspects: First, an agent wants
to have additional contacts so that it can get answers
to its requests. Second, an agent wants to be chosen as
an additional contact: Namely, since contact relations are
bilateral, this is a prerequisite for the first aspect. The first
aspect leads to the following: Agents try to choose agents as
additional contacts that have Kleinberg-distributed contacts
(because then request processing is fastest). Because of the
second aspect, an agent is motivated to have Kleinberg-
distributed additional contacts himself, because otherwise
the agent is not attractive as an additional contact for other
agents. While Kleinberg et al. [3] show that their distribution
is optimal, it is unclear whether payoff-maximizing agents
form such networks. Our contribution is to show that a
Kleinberg distribution is indeed an equilibrium. To do so,
we take a Kleinberg distribution for each agent as a starting



point and check whether an agent has a reason to change
its contact distribution. Note that we already know from
Section IV-A that additional contacts cooperate.

Beneficial Contacts Due to the discount factor, the benefit
of an agent decreases with the number of hops/amount of
time between issuing a request and receiving an answer.
Two points influence the number of hops: (i) The number
of contacts of an agent and (ii) the distribution of additional
contacts of an agent’s contacts. For (i) an agent needs addi-
tional contacts and has to be attractive for other agents. An
agent is attractive if its contacts process requests quickly (ii).
According to [3], agents route requests optimally if they use
a Kleinberg distribution.

Evaluation of Contacts Since an agent cannot control
directly how its contacts distribute their contacts, it has
to rely on another technique. One option is observing the
number of hops (or the time) until it obtains an answer for
requests forwarded to the contact in question. If requests
routed over a contact are forwarded over too many hops
(and the discount factor is high), the contact is not useful
enough.

Drop-Slow-Contacts (DSC) Strategy: An agent i mea-
sures the time its requests need, i.e., h∆(i). It drops an
additional contact j if it processes requests slower than an
average contact, i.e., if h∆(i) < h∆(i|j) holds.

Appendix G proves that DSC is an cooperative equilib-
rium.

This strategy gives agents an incentive to process requests
as fast as possible if they want to have additional contacts
themselves, since they compete with other contacts. Note
that this strategy is cheap, i.e., does not need extra messages
or complex computations.

Example: Agent i has three additional contacts: Con-
tacts j, k, l. Suppose that the requests of Agent i have an
average processing time of h∆(i) = 2.6, and the average
processing times of requests that Agent i forwarded to its
contacts are: h∆(i|j) = 2, h∆(i|k) = 2, and h∆(i|l) = 4.
Since h∆(i) < h∆(i|l), Agent i should drop Contact l, or try
to exchange l against an agent with better performance. �

We now look at the implications of DSC. First, we
look at a special case, i.e., is there an incentive to change
from Kleinberg-distributed additional contacts to a uniform
distribution? Then we deal with the general case.

Let us assume that all agents have distributed their
contacts according to a Kleinberg distribution, except for
Agent u. u has uniformly distributed contacts and is addi-
tional contact of Agent i. Should i replace u with another
Agent k? To answer this question, we look at the expected
number of hops of Agent i’s requests, depending on the
contact.

Contact with Uniform Contacts: If Agent i keeps Con-
tact u, the expected value of the number of hops is (1 + β ·
log2(n)) (with a fixed constant β from the respective proof
in [3]): The uniformly distributed contacts of Contact u are

not beneficial to Agent i, when i wants to forward a request
to an agent in the neighborhood of u, because the additional
contacts of u are not close to u itself. Since Contact u does
not have additional contacts close to itself, it can only give
the request to one of its fixed contacts. If its contacts follow
a Kleinberg distribution, the expected value for the number
of hops is β · log2(n) [3]. This means that there is an extra
step due to Contact u’s lack of contacts in its neighborhood.

Contact with Kleinberg Distributed Contacts: If Agent i
exchanges Contact u with uniformly distributed additional
contacts against Agent k with Kleinberg-distributed addi-
tional contacts, the expected value for the number of hops
is β · log2(n) [3] and not 1 + β · log2(n).

Lemma 4.3: The payoff of Agent i increases for every
request it forwards to Agent k with Kleinberg-distributed
additional contacts, compared to the case where i uses
Contact u with uniformly distributed additional contacts, by
the following amount:

a · Cβ·log
2(n) · δβ·log

2(n) · (1− C · δ)

Appendix C contains a proof. – The consequence is as
follows: Agent i exchanges u against Agent k, since it leads
to a higher payoff. This means that agents prefer contacts
with a Kleinberg distribution. In other words, an agent in a
Kleinberg network cannot increase its payoff by switching to
a uniform distribution: Its additional contacts would replace
it with other contacts, i.e., this agent would loose its contacts.

Other Distributions: Contacts that have a Kleinberg dis-
tribution with r 6= 1 (cf. Section II), i.e., with an inefficient
r-value, or any other distribution are not stable either. If an
additional contact has not distributed its additional contacts
in an optimal way, then the number of hops increases, i.e.,
there exists an ε > 0 so that the number of hops increases
by about ε steps. Consequently, the payoff of an agent that
has an additional contact with a suboptimal distribution of
additional contacts is lower.

Lemma 4.4: The payoff of Agent i increases for every
request it forwards to Agent k with Kleinberg-distributed
additional contacts, compared to the case where i uses
Contact u with a distribution of additional contacts that is
different from a Kleinberg distribution.

Appendix D contains a proof. – Due to Lemma 4.4, an
agent exchanges a contact with non-optimal additional con-
tacts against an agent with Kleinberg-distributed additional
contacts.

Summary In Lemma 4.1 we show under which condi-
tions contacts cooperate. Further, agents either use the DSC
Strategy, or they do not. For the second case, Lemma 4.2
shows how agents should choose their additional contacts.
Note that this situation is inefficient (cf. Section IV-B1).
The social welfare is higher in the first case where agents
use the DSC Strategy. Lemmata 4.3 and 4.4 show that all



agents using the strategy and having Kleinberg-distributed
additional contacts are in equilibrium.

V. CONCLUSIONS

Agents in networks typically can choose both their action-
selection as well as their link-selection strategy. Understand-
ing the behavior of agents is essential to identify promising
strategies, or to design mechanisms to increase the social
welfare. We have identified two equilibria: (I) Contacts do
not cooperate. In this case it is rational to leave the network.
(II) Agents use the DSC Strategy proposed in this article. It
is as follows: An agent measures the time its requests passed
on to an additional contact need to be answered. If this time
is larger than the average processing time, the agent drops
the additional contact. Further, contacts cooperate with each
other, and all agents have Kleinberg-distributed additional
contacts. The DSC Strategy is cost-free, and agents can
increase the social welfare by using it.
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APPENDIX

A. Appendix – Structure

We now calculate the optimal positions p1, ..., pnc
of nc additional contacts formally. Without loss of generality, we

assume that the additional contacts have positions p1, ..., pnc/2 left of the agent on the ring, and pnc/2+1, ..., pnc
right on

the ring. Further, we assume that p1 > p2 > ... > pnc/2 > 0 < pnc/2+1 < ... < pnc holds. If so, the functions that describe
the probability that a contact successfully processes a request have intersection points at the following positions:
1. Intersection point for the closest agent left and right of the agent: {pnc/2−1

2 ,
1+pnc/2+1

2 }
2. For all other agents i, j with pi < pj :

pi+pj
2

3. For p1 and pnc
: pnc+p1

2

Thus, the expected benefit for all requests is:

E(p1, ..., pnc
)

=

∫ p1+p2
2

pnc+p1
2

p(|h− p1|+ 1) · δ|h−p1| · a dh

+ ...

+

∫ pnc/2−1+pnc/2
2

pnc/2−2+pnc/2−1
2

p(|h− pnc/2−1|+ 1) · δ|h−pnc/2−1| · a dh +

∫ pnc/2
−1

2

pnc/2−1+pnc/2
2

p(|h− pnc/2|+ 1) · δ|h−pnc/2| · a dh

+

∫ 1+pnc/2+1
2

pnc/2
−1

2

p(h) · δh · a dh

+

∫ pnc/2+1+pnc/2+2
2

1+pnc/2+1
2

p(|h− pnc/2+1|+ 1) · δ|h−pnc/2+1| · a dh +

∫ pnc/2+2+pnc/2+3
2

pnc/2+1+pnc/2+2
2

p(|h− pnc/2+2|+ 1) · δ|h−pnc/2+2| · a dh

+ ...

+

∫ pnc+p1
2

pnc−1+pnc
2

p(|h− pnc
|+ 1) · δ|h−pnc | · a dh

(10)

To find a maxima for E(p1, ..., pnc
) we calculate the derivative of it, i.e., the gradient. Due to lack of space, we only

show the partial derivative according to the first parameter p1, i.e., ∂E(p1,...,pnc )
∂p1

. The other parameters can be calculated
analogously. The partial derivative of the parameter p1 is:

∂E(p1, ..., pnc
)

∂p1
=

∂

∂p1

∫ p1+p2
2

pnc+p1
2

p(|h− p1|+ 1) · δ|h−p1| · a dh︸ ︷︷ ︸
Case (A)

+
∂

∂p1

∫ p2+p3
2

p1+p2
2

p(|h− p2|+ 1) · δ|h−p2| · a dh︸ ︷︷ ︸
Case (B)

+
∂

∂p1

∫ pnc+p1
2

pnc−1+pnc
2

p(|h− pnc |+ 1) · δ|h−pnc | · a dh︸ ︷︷ ︸
Case (C)

= a · (
∫ p1+p2

2

pnc+p1
2

∂

∂p1
p(|h− p1|+ 1) · δ|h−p1| dh +

1

2
· p(|p1 + p2

2
− p1|+ 1) · δ|

p1+p2
2 −p1|

− 1

2
· p(|pnc + p1

2
− p1|+ 1) · δ|

pnc+p1
2 −p1| − 1

2
· p(|p1 + p2

2
− p2|+ 1) · δ|

p1+p2
2 −p2|

+
1

2
· p(|pnc + p1

2
− pnc

|+ 1) · δ|
pnc+p1

2 −pnc |)

= a · (1

2
· p(|p1 + p2

2
− p2|+ 1) · δ|

p1+p2
2 −p2| − 1

2
· p(|pnc

+ p1

2
− pnc

|+ 1) · δ|
pnc+p1

2 −pnc |)

(11)



We derive Case A as follows:

∂

∂p1

∫ p1·b+c

p1·d+e

f(h, p1) dh =
∂

∂p1

∫ p1·b+c

0

f(h, p1) dh︸ ︷︷ ︸
We follow this case only.

− ∂

∂p1

∫ p1·d+e

0

f(h, p1) dh
(12)

The first part of Equation (12) can be derived as follows:

∂

∂p1

∫ p1·b+c

0

f(h, p1) dh

= lim
∆x→0

∫ (x0+∆x)·b+c
0

f(h, x0 + ∆x) dh−
∫ x0·b+c

0
f(h, x0) dh

∆x

= lim
∆x→0

∫ (x0+∆x)·b+c
0

f(h, x0 + ∆x) dh−
∫ (x0+∆x)·b+c

0
f(h, x0) dh−

∫ x0·b+c
0

f(h, x0) dh +
∫ (x0+∆x)·b+c

0
f(h, x0) dh

∆x

= lim
∆x→0

∫ (x0+∆x)·b+c
0

f(h, x0 + ∆x) dh−
∫ (x0+∆x)·b+c

0
f(h, x0) dh

∆x

+ lim
∆x→0

−
∫ x0·b+c

0
f(h, x0) dh +

∫ (x0+∆x)·b+c
0

f(h, x0) dh
∆x

= lim
∆x→0

∫ (x0+∆x)·b+c
0

(f(h, x0 + ∆x)− f(h, x0)) dh
∆x︸ ︷︷ ︸

We follow this case only.

+ lim
∆x→0

∫ (x0+∆x)·b+c
x0·b+c f(h, x0) dh

∆x︸ ︷︷ ︸
b·f(p1·b+c,p1)

(13)

Let ε ∈ [x0, x0 + ∆x] hold. Then, the first summand of Equation (13) is:

lim
∆x→0

∫ (x0+∆x)·b+c
0

(f(h, x0 + ∆x)− f(h, x0)) dh
∆x

= lim
∆x→0

∫ (x0+∆x)·b+c
0

f ′(h, ε)∆x dh
∆x

= lim
∆x→0

∫ (x0+∆x)·b+c

0

∂f

∂x
(h, ε) dh =

∫ p1·b+c

0

(
∂

∂p1
f(h, p1)) dh

(14)

To sum up, the derivative of the first summand is:

∂

∂p1

∫ p1·b+c

p1·d+e

f(h, p1) dh =

∫ p1·b+c

p1·d+e

∂

∂p1
f(h, p1) dh + b · f(p1 · b+ c, p1)− d · f(p1 · d+ e, p1) (15)

Case B from Equation (11) can be derived as follows:

∂

∂p1

∫ a

p1·b+c
f(h) dh =

∂

∂p1
(F (a)− F (p1 · b+ c)) =

∂

∂p1
F (a)︸ ︷︷ ︸

=0

− ∂

∂p1
F (p1 · b+ c) = −b · f(p1 · b+ c) (16)

We calculate Case C from Equation (11) as follows:

∂

∂p1

∫ p1·b+c

a

f(h) dh =
∂

∂p1
(F (p1 · b+ c)− F (a)) =

∂

∂p1
F (p1 · b+ c)− ∂

∂p1
F (a)︸ ︷︷ ︸

=0

= b · f(p1 · b+ c) (17)
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, can be calculated. It is:
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For optimal positions the gradient is zero. For simplification we assume that the number of additional contacts is odd. The
position of one of the contacts is on the other side of the ring, i.e., pnc

= n−1
2 . Every other contact with position p has a

sibling with position n− p on the other side of the ring. For i = 1... |K
+|−1
2 and j = |K+|−1

2 ...1 the optimal positions are
as follows:

• For pi:

n− 1

2
· 2 · i
|K+|+ 1

+
2 · j

|K+|+ 1
− 4 · j
|K+|+ 1

·
ln( 1+δ

2 )

ln(C · δ)



• For p
i+
|K+|−1

2

:

n−

(
n− 1

2
· 2 · i
|K+|+ 1

+
2 · j

|K+|+ 1
− 4 · j
|K+|+ 1

·
ln( 1+δ

2 )

ln(C · δ)

)
We checked all calculations using symbolic calculation tools.

B. Appendix – Proof of Lemma 4.1

In this section we investigate efficient equilibria for contact relations.
In the inefficient network agents do not send requests. Here, we assume that both players send requests (sendRequest =
true), i.e., are not dropouts. Still it is unclear if they cooperate (and how much) (cf. parameter ownCoop) and how much
they expect from their contact (cf. parameter contactC).

Following the definition of an equilibrium we look at the payoff of Player i and j. If both cannot increase their own
payoff by changing their strategy, they are in an equilibrium. Note that we assume that agents understand that the inefficient
network leads to no payoff, and that they avoid strategies that lead to an inefficient network.

We have three cases: Player i and j fulfill the expectation of each other (Case (1)), only one fulfills the others expectation
(Case (2)), as well as Player i and Player j do not cooperate as much as their contact demands (Case (3)).

Case (1): The degree of cooperation of Player i (ownCoopi) is higher than the expectation of Player j, and vice versa.
Then the following formulas hold:

isCooperative(i, additionalCCj) (19)

isCooperative(i, contactCj) (20)

Further, the income that Agent i gains from Contact j has to be higher than the expenditures:

a · |Ai→j | > q · |Ri→j |+ c · r(i) + (w · |Wj→i|+ f · |Fj→i|) · ownCoopi (21)

We use two estimations to simplify Formula 21. First, Agent i does not receive more answers for requests that it forwarded
to Contact j than j processes, i.e., |Ai→j | ≤ |Ri→j | · ownCoopj . Second, c ≤ c · |Ri→j |, i.e., Agent j is only an additional
contact of Agent i, if i forwards at least one own request to j. It follows:

a · |Ri→j | · ownCoopj > q · |Ri→j |+ c · |Ri→j | · r(i) + (w · |Wj→i|+ f · |Fj→i|) · ownCoopi (22)

Lemma 4.1 directly follows from Equations (19), (20) and (22).
In Case (2) the degree of cooperation of Player i is lower than the expectation of Player j (isCooperative(i, contactCj)

and/or isCooperative(i, additionalCCj)), but the degree of cooperation of Player j is higher than the expectation of Player i
(isCooperative(j, contactCi) and isCooperative(j, additionalCCi)). Thus, Player j drops Player i or its requests, and
consequently Player i does not have any income: E[income(i)] = 0. Instead Player i has costs if i does not choose Strategy
Dropout. It follows that Strategy Dropout is the equilibrium.

In Case (3) the degree of cooperation of Player i is lower than the expectation of Player j (isCooperative(i, contactCj)
and/or isCooperative(i, additionalCCj)), and vice versa:

E[income(i)] = 0 ∧ E[expenditure(i)] = q · |Ri| (23)

In this case Strategy Dropout is the equilibrium. As we have seen, only Case (1) leads to a cooperative equilibrium.

C. Appendix – Prof of Lemma 4.3

Proof: (I) The expected benefit of a request that has been forwarded over β · log2(n) hops is:

p(β · log2(n)) · δβ·log
2(n) · a− q

(II) The expected benefit when forwarding it one additional hop further is:

p(1 + β · log2(n)) · δ1+β·log2(n) · a− q

The difference of (I) and (II) is:
a · Cβ·log

2(n) · δβ·log
2(n) · (1− C · δ)

The increased payoff follows from one additional forwarder less that might drop the request (C), and that would prolong
the processing (δ). Lemma 4.3 follows. �



D. Appendix – Prof of Lemma 4.4

Proof: (I) The expected benefit of a request that has been forwarded over β · log2(n) hops is:

p(β · log2(n)) · δβ·log
2(n) · a− q

(II) The expected benefit when forwarding it ε > 0 additional hops further is:

p(ε+ β · log2(n)) · δε+β·log
2(n) · a− q

The difference of (I) and (II) is:

a · Cβ·log
2(n) · δβ·log

2(n) · (1− Cε · δε)

Lemma 4.4 follows. � Note that, in the presence of a discount factor or of uncooperative agents, the previous term has a
value that is positive, since 1 − Cε · δε ∈ (0, 1]. Thus, an agent exchanges a contact with non-optimal additional contacts
against an agent with Kleinberg-distributed additional contacts.

E. Appendix – Simulations

What are evolutionarily stable equilibria in information systems that allow nodes to choose their actions and their contacts?
This is the main question for system designers that seek for efficient networks. If the equilibrium is not efficient, mechanism
design is necessary to change the situation, otherwise costly efforts are not necessary.

Answering this question is difficult. Simulations are only meaningful if their design does not imply the result. Simulations
of evolutionary processes avoid this effect: They use a well known algorithm, i.e., evolution, and treat the strategy choices
of agents as a genome. Thus, the system designer does not make any assumptions about the strategies or the distribution
of strategies in the system, but about the actions an agent can take principally. Theoretical analyses, on the other hand, are
more precise, but often lead to formulas that cannot be solved analytically.

In this section we have two contributions: (I) We validate the identified equilibria experimentally. (II) We show that
(partial) cooperation arises from a network of agents with randomly chosen strategies. Note that the second contribution is
different from the first one: To show that a state is an equilibrium, all agents start already with the equilibrium strategy
(and then have no incentive to leave it); the second contribution is different: agents start with a random strategy, and evolve.
Thus, the second contribution shows likely equilibria.

Evolutionary Stable Evolutionarily Stable Strategies (ESS) are a subset of Nash equilibria [29]. Still, they have another
interpretation. Strategies are described by a gene G. A strategy S(G) is an ESS if it cannot be invaded by mutation of itself
S(G’). An invasion is defined as follows: A strategy S(G’) invades strategy S(G) if its expected payoff is higher. We use
this interpretation of Nash equilibria in Appendix E where we investigate different strategies under an evolutionary process.

Game Setup We believe agents in a decentralized search system act as described in the following game:
Players play rounds, i.e., time is discrete: (1) Each agent can issue one request per round (but is not forced to do so) and
send it to one of his contacts. (2) At the beginning of each round, an Agent i obtains a set of requests issued or forwarded
by agents which have i as a contact. Agent i decides for each request whether to drop or process (i.e., forward or answer)
it. (3) An agent can drop additional contacts at his discretion and can select players as contacts with whom it had interacted
before. For instance, Agent i can select Agent j as an additional contact if j had issued at least one request that has reached
Agent i. Selecting and dropping is possible in each round.

General Setup We simulate 500 agents in a dynamic network, i.e., we assume that strategies that lead to less payoff than
other strategies have a higher chance of dying out, and that new strategies come up with a certain probability. The motivation
is that agents/humans in decentralized search systems use strategies that are useful to them, i.e., that lead to high payoffs.
Thus, after 1,000 rounds in the game, we start a new meta-round: Strategies with a high payoff z(i) remain, unsuccessful
strategies die out. More precisely, we assume an evolutionary process with (a) a single point crossover and a crossover-rate
of 20%, and (b) a mutation probability of 10%. (a) means that out of 500 agents in a system, 100 combine their strategy, i.e.,
split their strategy-vector at a random position and exchange one fraction. (b) specifies that 50 agents out of 500 randomly
change their strategy. The intuition behind this is that some agents have new ideas about how they should behave. Note
that it is equivalent whether agents change their strategy or whether we exchange agents against new agents with a new
strategy: No agent keeps a history about events in a previous meta-round. This is natural, since these events are the result
of a distribution of strategies that is no longer valid.



Location In contrast to our theoretic analysis, we do not assume that an agent chooses the closest peer to a destination of a
request when forwarding. Instead we relax this assumption: Agents can choose any contact that is closer to the destination
than they are. When forwarding a request, there may be a tradeoff between the position of a contact and its degree of
cooperation. For example a medium cooperative contact that is very close to the destination might be a better choice than
a very cooperative contact that is far away. Thus, strategy-space dimension locationWeight defines how important the
location is compared to the degree of cooperation. E.g., locationWeight = 1 means that an agent chooses the closest
contact no matter how uncooperative it is. Algorithm 3 shows how an agent chooses a contact for forwarding a request:

Algorithm 3: Influence of locationWeight

Input: List of Contacts L, RequestDestination d, LocationWeight LW
max(∆) = maxc∈L ∆(c, d); min(∆) = minc∈L ∆(c, d);1

max(C) = maxc∈L C(c); min(C) = minc∈L C(c);2

double rating = -1.0; Contact contact = null;3

foreach Contact c ∈ L do4

double r = max(∆)−∆(c,d)
max(∆)−min(∆) · LW + C(c)−min(C)

max(C)−min(C) · (1− LW );5

if r > rating then6

rating = r; contact = c;7

end8

end9

return contact;10

Dependent on parameter locationWeight it computes a rating for each contact. Algorithm 3 identifies the contact with the
largest (smallest) distance to the destination and stores this distance (Line 1), analogously for the degree of cooperation
(Line 2). The algorithm then computes a rating for each contact (Lines 4-7). At the end, the agent forwards the request to
the contact with the highest rating.

Exogenous Parameters Next to dynamic strategies, we varied exogenous parameters: (a) the cost of maintaining contacts c,
(b) the reliability of information on the degree of cooperation of other agents, i.e., reportingError, and (c) the discount
factor δ. There are further exogenous parameters: the cost factors for forwarding and answering requests as well as receiving
responses (cf. Table I). We do not change these, here, because we focus on the relation between the cost of maintaining
contacts and the cost of processing requests, and not on the costs themselves. In other words, we vary the relation between
cost of contacts and processing costs, i.e., change the costs for contacts and leave processing costs constant.

Base-Line Set We start with a base-line set of exogenous parameters. Later, we will describe how the results change if a
parameter changes. The base-line set is as follows: For each additional contact an agent loses 1 point per round (c = 1).
When determining the degree of cooperation of a contact, an agent has a reporting error of 5% (reportingError = 0.05).
If it still receives an answer, a discount factor of 90% comes into the play (δ = 0.9).

Payoff Factors In the internet, forwarding, answering, issuing requests as well as maintaining contacts are cheap operations.
For instance, maintaining 1,000 contacts is not problematic for a modern pc. A user, on the other hand, is happy, i.e.,
receives a high benefit, for each answer to its requests. Thus, we have chosen a high benefit for receiving an answer. It
is 1,000 points in our experiments. The cost of issuing a request is 2 points, cost of forwarding 1 point, and the cost of
answering a request 5 points.

Contact Distribution Since we know from the previous section that agents choose a Kleinberg distribution, an agent i
selects a contact j with probability d(i, j)−r (and selects it if parameter maxC and additionalCC allow to do so) in our
simulations. For an illustration of the effect of parameter r see Figure 4. It shows d(i, j)−r for common values of r: The
higher r, the faster decreases d(i, j)−r. This means that agents with a higher r prefer close contacts over distant ones.

1) Equilibrium – Results: In this section, we show that cooperation is an equilibrium, i.e., we are in Case (I).

Initial Strategy Agents use the following strategy at the begin of the evolutionary process: Agents participate and cooperate



Figure 4. Impact of Parameter r

Figure 5. Action-Selection Strategy

(sentRequest = true, ownCoop = 100%), they use a threshold-strategy and defect on contacts that have a degree of
cooperation of less than 95% (contactC = additionalCC = 95%), the while issuing/forwarding agents overweight the
location of the next receiver over its degree of cooperation (locationWeight = 95%), agents have five additional contacts
and weight them by their distance to them (maxC = 5, r = 1).

Baseline-Set Figures 5 and 6 illustrate the results from the baseline-set. Figure 5 shows action-selection parameters, and
Figure 6 the additional-contact distribution. Both show the average over all agents. For Figure 6 we have grouped an agent’s
additional contacts by their distance (to the agent) into eight equidistant classes. The class that is closest to the agent (B1) is
shown on the bottom of Figure 6, the next closest (B2) is the one above, and so forth. For these plots alone, we simulated
100,000 agents issuing 100,000,000 requests. Note that, although we show only a representative result here, we repeated all
simulation 25 times.

We start with describing action-selection choices (cf. Figure 5): Agents participate (sendRequests = 1, z(i) > 0, both
not shown in the figures), have a high degree of cooperation (ownCoop ≈ 1), and use high thresholds for their contacts
(contactC ≈ 0.5, additionalCC ≈ 0.85). The contactC-threshold is insignificant: In all simulations it had a large variance
(whereas all other results are representative). An explanation is that an agent with a lot of additional contacts does not
rely on its fixed contacts. When forwarding requests, agents weight the location of a contact over its degree of cooperation
(locationWeight ≈ 0.95). This is natural, since they have cooperative contacts only.

On the link-selection choice, we have the following results (cf. Figure 6): Agents have 40 additional contacts. At the
beginning of the dynamic process, agents favor close contacts: In meta-round 37, an agent has twenty additional contacts
close to its own position (B1), but only five in meta-round 200. At the end of the measurement, agents distribute their
additional contacts almost uniformly: B1 to B8 are almost the same. One exception is that agents prefer close or (outmost)
distant contacts a little bit more than random ones. This is similar to a Kleinberg distribution.



Figure 6. Additional-Contact Distribution

Contact-Maintenance Costs We now look at each exogenous parameter and investigate its influence on the equilibrium
states. We start with the cost of maintaining contacts c. We vary the parameter in 10 steps from c = 0, c = 0.5, ... to c = 4.5.
1. The higher the costs, the less additional contacts are selected. Whereas an agent connects to many agents if contact cost
are low c = 0.5⇒ maxC > 60, an agent has only around 25 contacts for c = 2, and around 10 for c = 4.
2. The less contacts cost, the more do agents expect from their additional contacts. Threshold additionalCC is around 83%
for c = 0, and about 90% for c = 0.5. For higher contact-maintenance costs the expectation falls to 81% (c = 2), 72%
(c = 3), and to 70% for c = 4.

Reporting Error Next to the cost of maintaining contacts, we look at the reliability of information on the degree of
cooperation of other agents, i.e., the reportingError. Clearly, agents cannot know the behavior of other agents in reality

Algorithm 4: isCooperative(Agent i, Threshold t)
Input: Agent i, Threshold t
Output: {TRUE, FALSE}
double trueCooperation = C(i);1

double offset = ((getRandomValue[0,1] - trueCooperation) · reportingError);2

double adjustedCooperation = trueCoop + offset;3

return adjustedCooperation ≥ t;4

without making mistakes. There is an unreliability factor that models this: Parameter reportingError ∈ [0, 1] describes
how reliable information on the degree of cooperation of other agents is. In contrast to the simple mechanism used in
Section III-C, we use reportingError as described in Algorithm 4: We add an offset that differs by the reportingError
parameter at most. The higher it is, the less are agents able to determine the degree of cooperation of other agents. We vary
it in 5 steps from 0%, 5%, ... to 20%. The results are as follows:
1. If the reporting error is too high, the network breaks down, i.e., all agents use strategy ‘Dropout’. This especially happens
when reportingError is greater than 15%. (In the following, we only mention results from systems that did not break
down.)
2. In systems with a higher reporting error, agents tend to select more additional contacts.
3. The higher the reporting error, the more do agents favor close additional contacts and distant contacts. The first effect is
more distinctive than the second, i.e., agents have more close contacts than distant ones.
4. The degree of cooperation slightly decreases if the reporting error rises (until the network breaks down).

We have seen that a low reporting error is crucial for efficiency. The lower it is, the more do agents cooperate, and the
less additional contacts are necessary. The distribution of agents changes from almost uniform to a distribution that favors
close contacts, and that slightly favors distant agents. One explanation is that agents need close contacts to forward requests
on behalf of others effectively, and distant agents to improve the processing of their own requests.

Discount Factor The last exogenous parameter we vary is the discount factor δ. The lower it is, the more does the benefit
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for receiving an answer decrease per forwarder. We set δ to 0.5, 0.55, 0.6, ..., 0.95 and 1. The results are:
1. Low discount factors (but still greater than 50%) do not lead to broken systems. This is surprising, since for a discount
factor of 50% the benefit of receiving an answer decreases 50% per hop.
2. A low discount factor leads to more additional contacts. This is natural, since less hops means more benefit.
3. In a system with a discount factor of 100%, i.e., the value of an answer does not depend on the number of hops, agents
choose only few additional contacts (maxC ≈ 5).

From the three exogenous parameters we have investigated, each influences evolutionary equilibria in a different way.
The cost of maintaining contacts influences the number of contacts per agent as well as the expectations in the degree of
cooperation of contacts. The reporting error influences the degree of cooperation, and is crucial for efficient systems. The
discount factor has the lowest impact on evolutionarily stable equilibria. Still, it can change the average number of contacts
per agent.

2) Emerging Cooperation: Unlike the previous section, we do not assume any initial strategy here: Every agent flips its
genome-bits randomly at the beginning of the first meta-round. Later, the evolutionary process selects and evolves successful
strategies.

The question is now if cooperation can arise out of random strategies. For much simpler settings, e.g. iterated prisoner’s
dilemma, it is known that cooperation can arise [5]. In contrast to [5] we do not use human-written strategies, but random
ones. Further, link-selection and intermediaries in the forwarding chain make the problem much harder [1], [2], and less
predictable.

Answering this question is important beyond computer science, since it gives an explanation for human cooperation in
similar settings, for instance, cooperation among friends, or even societies. Note that altruism does not play a role here.
If the answer is ‘yes’, cooperation emerges out of self-interest. Note that a single simulation that leads to cooperation is
sufficient to prove that cooperation can emerge.

The short answer to this research question is ‘yes’. Still, there are some differences to the results from the previous section
that we state out now.

Cooperation Agents show a lower degree of cooperation than in Case (I). Figure 7 shows average action-selection choices
for the base-line parameter-set (cf. Figure 5). In contrast to Case (I) the average degree of cooperation (ownCoop) is lower,
i.e., around 50%. Even though the degree of cooperation is not efficient, agents cooperate, i.e., they generate positive payoff
for other agents. Further, their expectation in additional contacts is higher, i.e., almost 100% (cf. additionalCC). One
interesting result is that the stability of the system is much more robust against errors in the information on the degree of
cooperation of other agents: Systems with a reporting error of 60% or less do not break down. One reason for this robustness
might be the heterogeneity of the strategies.

Link-Selection Agents tend to select more additional contacts than in Case (I). Figure 8 shows average link-selection
choices for the base-line parameter-set: Agents choose around 100 additional contacts. This makes sense, since the degree of
cooperation in the system is lower than in the efficient system. The distribution of additional contacts is as follows: Agents
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prefer close contacts over random ones. They almost meet a Kleinberg distribution.

Discount Factor In contrast to the Case (I), the discount factor plays a much greater role: Systems with a discount factor of
less than 85% tend to break down. It seems to be important for the emergence of cooperation that agents benefit from their
requests even in systems with a random strategy. If the discount factor is too large, this is not true. Whereas the discount
factor influences action-selection strategies, it does not have a significant influence on link-selection.

Discussion Our simulations prove that the cooperation can arise out of self-interested agents with random strategies. This is
an important result, since it gives an explanation why networks that feature action and link selection are actually cooperative.
Many systems meet these conditions, and we now have a model that can explain cooperation in these systems.

F. Appendix – Reporting Error

Modern networks use reputation systems to increase cooperation and social welfare in the system. We assume that a
reputation system exists and that it reports whether the degree of cooperation C(i) of an agent i is lower than a threshold t.
Further, we assume that these reports are wrong in reportingError% of the cases (cf. Algorithm 1).

Now we analyze if the cooperative equilibrium is stable depending on exogenous parameter reportingError? To answer
this question, we start with four observations. Keep in mind that t = 1.0 holds in the cooperative equilibrium.

1) Cooperative agents lose reportingError% of their additional contacts.
2) Uncooperative agents lose 1− reportingError% of their additional contacts.
3) Cooperative agents lose about

(
1− (1− reportingError)h

)
% of their requests.

4) Uncooperative agents lose about
(

1− (reportingError)h
)

% of their requests.

If having additional contacts is beneficial at all, then Observation 1) leads to a higher payoff than Observation 2), if
reportingError < 0.5 holds. The same holds, for Observations 3) and 4). Consequently, for reportingError < 0.5 the
cooperative equilibrium is stable, and the inefficient network otherwise.

Obviously, a system can only be efficient, if parameter reportingError is zero. Otherwise, agents drop (some) requests
of cooperative agents because they deem them uncooperative.

G. Appendix – Utility of DSC

In this paper, we propose that agents use the DSC Strategy. In this appendix, we show that it is beneficial for the agents
to do so.

We assume that the system is in the cooperative equilibrium, i.e., additional contacts cooperate to the fullest extent. If an
agent i has the possibility to exchange a contact s with an agent f that processes requests faster, i.e., h∆(i|f) < h∆(i|s),
then DSC would propose to do so, and not using DSC the opposite. While the cost of maintaining s or f are equal, the
benefit incurred by Agent f is higher than the benefit incurred by Agent s due to the discount factor: Since the average
number of hops for requests req ∈ Ai→f forwarded to Agent f is smaller than for those forwarded to s (Ai→s) the benefit



is higher, i.e., the following formula holds:

a ·
∑

freq∈Ai→f

δh(freq) < a ·
∑

sreq∈Ai→s

δh(sreq) (24)
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