

 Karlsruhe Reports in Informatics 2010,1
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

TachoRace: Exploiting Performance
Counters for Run-Time Race
Detection

 Jochen Schimmel, Victor Pankratius

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197555145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

TachoRace: Exploiting Performance Counters for
RunTime Race Detection

Jochen Schimmel
Karlsruhe Institute of Technology

76128 Karlsruhe, Germany

schimmel@ipd.uka.de

Victor Pankratius
Karlsruhe Institute of Technology

76128 Karlsruhe, Germany

pankratius@ipd.uka.de

ABSTRACT

Fixing data races is a difficult parallel programming prob-
lem, even for experienced programmers. At the moment,
dynamic race detectors are frequently used because they find
races more reliably than other approaches; however, the dy-
namic approach significantly influences application behavior
during debugging because all thread’s memory accesses need
to be monitored. Despite using such detectors at application
development time, complex parallel applications may mani-
fest existing races only after deployment at customers, lead-
ing to crashes and corrupted data. Addressing these prob-
lems, we present TachoRace, a run-time detector using hard-
ware performance counters in a novel way for identification
of data races and inconsistent locking. Our low-overhead
technique monitors cache coherency bus traffic to detect par-
allel accesses to unprotected shared resources and helps re-
solve conflicts transparently, thus making it appealing for
production environments. Contrary to other run-time race
detectors, TachoRace mostly builds upon existing hardware
and makes a novel proposal to use synergy effects between
hardware needed for debugging and hardware needed for
performance analysis. As a proof of concept, we fully im-
plemented the TachoRace detector as a software simulator;
we evaluated it by executing real C/C++ applications from
the Helgrind and SPLASH2 benchmark suites, including 29
representative parallel bug patterns derived from real-world
programs. Experiments showed that TachoRace did not re-
port false positive races and only missed one race pattern
that could not be found by design. The average traffic over-
head introduced by TachoRace to detect and automatically
fix occurring races was just 0.2%.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.2.5 [Software Engineer-
ing]: Error handling and recovery

Technical Report 201001

Karlsruhe Institute of Technology, Germany
Institute for Program Structures and Data Organization (IPD)

Multicore Sofware Engineering Young Investigator Group

April 7, 2010

Keywords

Debugging, Race Conditions, Performance Counters, Multi-
core

1. INTRODUCTION
Multicore processors are standard in every PC and many

programmers need to write multithreaded shared memory
programs. Race conditions are among the most frequently
introduced parallel programming errors, and might go unno-
ticed due to rare manifestation; even experienced program-
mers have difficulties finding races. Unfortunately, the exact
solution to the problem of finding all races in arbitrary par-
allel programs is equivalent to the halting problem [6]. Thus,
race detectors have to rely on heuristics; this means that no
detector will ever be perfect and that there is no way around
trade-offs.

During the software development process, race detectors
are typically employed in the implementation and testing
phase. Complex multithreaded programs, however, might
still contain races after being deployed at the customer’s
site, causing a program to behave in unexpected ways and
produce incorrect results. Overlooking races during devel-
opment can easily happen due to program complexity and
the inherent imperfection of race detectors. In the long run,
it is thus important to also address the race detection and
prevention issues at run-time, i.e., during productive execu-
tion of an application. This improves software reliability on
desktop PCs and servers and is also useful in scenarios with
multicore embedded systems where software updates can’t
be applied too frequently.

Although run-time race detection approaches have been
proposed in the past [5, 13, 16, 20, 24, 25, 34] they typically
require significant system resources or specialized hardware
extensions that are too expensive for most everyday scenar-
ios. Our work makes a completely novel proposal to reduce
such cost, basically by using performance monitoring hard-
ware for bug detection and making just a few incremental
extensions to standard hardware. In addition, we build upon
synergy effects that were not exploited in the past: if our
proposed hardware extensions are not needed for run-time
race detection, they can instead be used for more accurate
performance monitoring.

This paper introduces TachoRace, a novel light-weight
race detector that leverages data from hardware performance
counters (which are available in many modern processors)
for data race detection. Such counters (resembling “tachome-
ters”) were originally designed for performance analysis and
are used by tools such as Intel VTune [8], but this paper

will show how they can be used for debugging and on-the-
fly race detection. We use performance counters to track
down events in the first-level cache of the cores of a multi-
core processor and prevent races if unsynchronized accesses
are detected. TachoRace effectively identifies and corrects
races occurring due to wrong locking. It is not designed for
situations in which locking is incorrectly not done at all; it
also does not correct races that actually do not occur.

Our initial experiments revealed that not all processors
have equally good performance counter support; collected
data can be noisy because it can’t be gathered selectively
enough. This motivated us – for a more general valida-
tion – to build a simulator using the PIN framework [17].
TachoRace executes binary programs and simulates caches,
cache protocols, and performance counters. Based on simu-
lations, we also tested novel hardware extensions and evalu-
ated their effectiveness for software debugging. This paper
presents two run-time race detection strategies that differ
in precision and the required level of hardware and software
support.

The paper is organized as follows. Section 2 presents data
race patterns that can be detected by TachoRace. Section
3 discusses requirements for run-time race detection. Sec-
tion 4 shows how TachoRace detects races using hardware
performance counters. Section 5 introduces an extension to
automatically prevent races as soon as conflicting accesses
are detected. Section 6 describes TachoRace’s implemen-
tation, and Section 7 shows the results from experiments.
Section 8 contrasts TachoRace to related work. Section 9
discusses open issues and future work. The paper provides
a conclusion in Section 10.

2. COMMON DATA RACE PATTERNS
A data race occurs when two threads simultaneously ac-

cess the same memory location without synchronization, and
at least one of them performs a write operation. This work
focuses on locks as a means for synchronization, motivated
by the observation that large amounts of code as well as
many programmers currently use locks.

Figure 1 shows four simplified but common code patterns
using two threads, three of which are racy. Previous work
has shown that these error patterns are representative for
errors occurring frequently in practice, so they need special
attention [26]. In the Figure, each thread increments the
global shared variable x. In Figure 1(a), there is no locking
at all. Although the “++” operator seems to be atomic, it
actually executes a read and a write operation, so x’s value
could be 1 or 2, depending on the thread execution order.
Most programmers are aware of such problems and intend to
introduce a protective lock. A common mistake, however, is
shown in Figure 1(b): a missing lock in the second thread,
i.e., not all necessary places are protected. User studies
have also shown that programmers tend to forget such locks
for read operations (even though concurrent writes might
occur), wrongly assuming that reads don’t need protection
[22]. Another common mistake is to secure accesses to the
shared variable by different locks, as shown in Figure 1(c).
This can easily happen in large programs with code dis-
tributed in many different files. Our approach is designed
to find races caused by wrong locking, i.e., patterns as in
(b) and (c). It also works for a generalization of these cases
(e.g., with more than two threads or several locks).

2.1 Lock Locked Element Relation
Programming languages that allow the explicit definition

of locks often do not allow the expression of a connection
between a lock and the data protected by this lock; this se-
mantic relationship only exists in the developer’s mind. Nev-
ertheless, experienced programmers write self-documenting
code including this information in comments, variable names,
or conventions on data structures. For example, consider in
C++ test case number 301 from the Helgrind Test Suite
[30]:

int var; /*GUARDED_BY(mu1)*/

Mutex mu1; /*This Mutex guards var*/

Another example uses a naming scheme:

int var; Mutex mu_var;

The Linux Kernel illustrates structural conventions; the lock
of the corresponding locked element is located in the first
field of a structure:

struct rq {

/* runqueue lock: */ spinlock_t lock;

/* nr_running and cpu_load should*/

/*...remote CPUs use both these ... */

unsigned long nr_running; ...

}

Even though Java or C# have the synchronized keyword
that helps determine the lock-locked element relationship,
programmers in practice mostly use explicit locks due to
performance reasons (see [12] for a performance compari-
son).

2.2 Consequences for RunTime Race
Detection

As will be shown later, knowing the lock-locked element
relationship can dramatically improve the precision of run-
time race detection. TachoRace introduces a single language
extension, lock_annotate, to make this relationship (that
is often visible anyway) explicit. For illustration, consider a
pattern protecting the variable account by acc_lock:

int account = 0; Lock acc_lock;

/*acc_lock protects account*/

lock_annotate(&acc_lock, &account, sizeof(account));

The lock_annotate construct registers the address of the
lock, the address of the locked element and the locked ele-
ment’s size. The locked element can be composed of other
elements that are contiguously stored in memory. The lock
annotation construct can be implemented as a native lan-
guage construct, as a runtime library function, or as an op-
erating system call.

Are annotations worth the effort? Earlier studies [22, 23]
have shown that parallel programs typically have only a few
lines of code containing synchronization constructs, so the
expected number of annotations is small. Moreover, devel-
opers document the relationship between locks and locked
objects in their code anyway. It thus is natural to standard-
ize the expression of such relationships to improve parallel
program understanding. Even though similar annotations
were proposed in earlier work [32], they were not designed
for automated on-the-fly race detection.

Section 4.2 will show that TachoRace also works without
the proposed lock annotations, but in a less accurate way if
the lock-locked element relationship has to be inferred.

int x = 0;
Lock lock_x;

void Thread1_inc(){
locka(lock_x);
x++;
unlock(lock_x);

}

void Thread2_inc()
{

lock(lock_x);
x++;
unlock(lock_x);

}

int x = 0;
int y = 0;
Lock lock_x;
Lock lock_y;

void Thread1_inc(){
lock(lock_x);
x++;
unlock(lock_x);

}

void Thread2_inc() {
lock(lock_y);
x++;
unlock(lock_y);

}

int x = 0;
Lock lock_x;

void Thread1_inc(){
lock(lock_x);
x++;
unlock(lock_x);

}

void Thread2_inc(){
x++;

}

int x = 0;

void Thread1_inc(){
x++;

}

void Thread2_inc(){
x++;

}

(a) No Locking (b) Inconsistent
Locking

(c) Wrong Locking (d) Correct Locking

Figure 1: Examples (a)–(c) show some common patterns of incorrect lock usage that can be detected by
TachoRace.

3. REQUIREMENTS FOR RUNTIME RACE

DETECTION
Traditional dynamic race detectors [31, 10, 9] log and an-

alyze all thread’s memory accesses. This introduces signifi-
cant run-time and memory overhead. This is inappropriate
for run-time race detection: we need low overhead, small
amounts of data to analyze, and support for long-running
applications. We also need to avoid halting a program when
races are detected, that is, we expect a fault-tolerant behav-
ior in which the race is automatically prevented or fixed.

To satisfy these requirements, we designed TachoRace as
a light-weight approach. It detects data races in running ap-
plications in a novel way by observing bus traffic (i.e., cache
coherency protocol information) between level-one caches of
processor cores. We avoided too complex hardware modi-
fications so that current processor hardware can be incre-
mentally improved at cost that is lower than that of heavily
specialized extensions. TachoRace thus builds on cache co-
herency protocol information gathered from state-of-the-art
hardware performance counters. For race prevention at run-
time, Section 5 discusses a simple but effective extension of
the MESI [7] protocol.

3.1 Exploiting Hardware Performance
Counters

Hardware performance counters (HPCs) are integrated in
standard processors to measure a variety of run-time statis-
tics, such as memory accesses or prefetching information.
Only a few instructions are needed to read a hardware per-
formance counter on an Intel Pentium or Intel multicore
processor: one instruction defines the metric, and other
instructions are used to start, stop or reset the counter.
Reading cache coherency protocol data through performance
counters incurs almost no run-time overhead compared to
the overhead introduced by other race detectors [31, 10].
Among others, we use for example the CMP_SNOOP perfor-
mance counter [7] to monitor MESI messages on the bus;
this counter counts the number of cache lines requested by
processor cores.

Unfortunately, current processors’ performance counter
capabilities vary widely. Counters on Intel processors that

are configured to observe cache events neither provide the
memory addresses of accesses causing these events, nor can
they filter events on a range of memory addresses. Counters
on other architectures such as the IBM Power5 processor
are more advanced [29], but also insufficient in this respect.
To reliably conclude which particular memory access was
responsible for the generation of a particular event, current
hardware needs extensions to track the addresses related to
memory accesses in cache events. As this data cannot be
gathered from existing processors, we built a simulator to
validate our approach.

3.2 Hardware Extensions
Performance counters in current processors are not se-

lective enough and need better event filters. As shown in
Figure 2, our approach introduces just one additional debug
register attached to each core, which consists of one memory
address field and one size field (in bytes) for a shared data
element. This register is used to configure a performance
counter to only count events with accesses to the specified
memory location; the data size – if greater than zero – ex-
pands the filter to a contiguous memory region.

Core 1

RAM

L1 Cache

HPC

Debug Register

Core 2

HPC

Debug Register

Core 3

HPC

Debug Register

Core 4

HPC

Debug Register

L1 Cache L1 Cache L1 Cache

Figure 2: Data bus with attached hardware perfor-
mance counters. Each counter has a debug filter
register.

The information stored in debug registers represents the
lock-locked element relationship discussed in Section 2.1.
The debug register’s address field contains the starting ad-
dress of a locked data element; the size field can be used

to monitor contiguous data structures such as objects or
arrays. Debug registers can be used in two different race
detection modes. One mode requires program annotation,
the other does not, as presented next.

4. RACE DETECTION WITH CACHE

PERFORMANCE COUNTERS
We present two approaches that are both implemented

in TachoRace. The first approach requires program anno-
tations to make race detection more accurate. The second
approach does not require any program annotations at all,
but is less accurate.

4.1 Lock Annotation Mode
In this mode, critical sections’ locks are annotated by a

programmer, as discussed in Section 2.2.
Figure 3 illustrates TachoRace’s rationale for run-time

race detection. Suppose that a programmer forgot a lock,
as in thread 2 in Figure 1 (b). In step (1), thread 1 running
on core one enters the critical section to increment x, and
the address of x is stored in core one’s debug register. In
addition, a corresponding performance counter is initialized
on core one to count all other core’s MESI events accessing
this address. Thread 1 loads x from main memory into its
local cache, and increments it safely in step (2); the MESI
events generated on the bus are visible to all cores. If thread
2 attempts to increment x at the same time (step 3), it has
to fetch x in the same way by getting the value from main
memory to its local cache, also generating MESI messages
on the bus. These messages also reach core one and incre-
ment its counter; this indicates an incorrect usage of locks,
as no other thread should have been allowed to access x

while thread 1 held the lock.
As processor documentation shows [7], starting and stop-

ping hardware counters causes very low overhead. Config-
uring the counters also has a low overhead, which makes
TachoRace applicable in a real-time context.

How to fill the debug registers? The lock and unlock op-
erations in libraries such as Pthreads can be extended to
configure the registers and start/stop the counters in a way
that is not visible to the user. In our simulator, we fully im-
plemented the register configuration in this way using the
PIN [17] framework. We remark that the principle presented
here can be extended to protect nested locks, provided that
additional debug registers are available on each core. We
successfully validated this extension in our simulator, as de-
scribed later.

4.2 AnnotationFree Mode
In situations where annotations are not available, the lock-

locked element relationship has to be inferred. Firstly, lock

and unlock operations need to be trapped to dynamically
add the set-up of performance counters and the debug regis-
ter initialization. Secondly, in a block enclosed by a lock and
unlock operation, it has to be inferred which data elements
were intended to be protected by that particular lock. The
exact information which memory location actually needs the
lock is not available due to missing annotations.

The answer to this question is not straightforward in prac-
tice because programmers (and especially inexperienced pro-
grammers) may be conservative and include in a critical sec-
tion more data elements than necessary (especially thread-
local ones). Monitoring uncritical elements that will never

conflict with other threads does not help finding races. Tacho-
Race therefore follows a best-effort approach and randomly
picks an element in the critical section when it is entered,
assuming that this is one that must be protected; the prob-
ability of an element being picked is the inverse of the total
number of data elements in the critical section. TachoRace
then assigns the memory address of this element to the de-
bug register to monitor accesses. The remaining steps of the
race detection work as described in Section 4.1.

Obviously, this strategy has the drawback to pick the
wrong data element to monitor, while a race manifests on
the memory address of another data element that is not
being monitored. The probability of picking the right ele-
ment has to be multiplied by the probability of observing
a thread schedule that leads to a race. However, as this
debugging approach works at run-time, TachoRace assumes
that malign data races will eventually be observed, provided
that the application executes the critical section frequently
enough. Then, the longer the execution time of the applica-
tion, the higher the chances of detecting races. In addition,
studies [23, 22] have shown that most of the critical sections
in parallel programs are short, which means that there is a
good chance of randomly picking the “right” data elements.
The effectiveness of this approach can also be improved by
adding more debug registers, so that more memory locations
can be monitored simultaneously.

Although the annotation-free mode is not as effective as
the mode requiring annotations, it still helps finding races
at run-time with a relatively low overhead. By contrast,
dynamic race detectors like [31, 9] are better at detecting
races without program annotations, but the required mon-
itoring overhead is intolerable for on-the-fly race detection
at run-time (see Section 8). TachoRace thus tries to balance
these trade-offs. Without run-time race detection, existing
races would be missed, and developers would have to rely on
users to report strange program behavior so they can trace
the symptoms back to the racy origins.

4.3 A Remark on Inconsistent Locking
Our conflict detection scheme generally works when locks

are used inconsistently, which leads to races in patterns like
Figure 2 (b)–(d). However, we also detect situations in
which multiple read accesses to a locked element occur in-
consistently; for example, thread one acquires a lock before
accessing variable x (for read access only), while thread two
simultaneously reads x without acquiring the lock. Techni-
cally, this is not a race, but points to a potential mistake,
so TachoRace can inform the developer about this.

5. RACE PREVENTION AT RUNTIME
We also extended the race detection approach to allow

“race healing” during program execution, which means that
TachoRace not only detects conflicts causing races, but also
prevents them.

5.1 How it works
In principle, TachoRace avoids races by modifying in real-

time thread access schedules, i.e., a bad schedule that leads
to a race is modified by issuing messages on the bus that
delay the executions of other cores’ threads causing the con-
flicts. We realized race prevention by extending the MESI
protocol with just two new Inter Processor Interrupt (IPI)
messages: “RaceWait” and “RaceContinue”.

RAM

Debug Register Debug Register

Core 1

L1 Cache

Core 2

L1 Cache

RAM

Debug Register

&X

Debug Register

Core 1

L1 Cache

Core 2

L1 Cache

RAM

Debug Register

&X

Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

Read X

RAM

Debug Register

&X

Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

Read X

MESI MESI

(1) T1: lock(lock_x); (2) T1: x++; (3) T2: x++;

Figure 3: Detecting a data race: The code from figure 1 (b) is executed, thread 1 is runnign on core 1, thread
2 on core 2.

The working principle is illustrated in Figure 4; the left
side of this Figure shows what would happen with the tradi-
tional MESI protocol, and the right side shows TachoRaces’
extended protocol.

Initially (in step A1 and B1), Figure 4 depicts a situation
in which core one acquired a lock on x and manipulated x’s
value, so x is available in core one’s cache. In TachoRace,
the address of the locked data element is additionally stored
in core one’s debug register. When core two attempts to
read x from main memory, these requests become visible on
the bus. In step B2, core one owning the data notices the po-
tentially conflicting request because it listened to bus traffic,
and issues a “RaceWait” message notifying of the conflicting
access. In step B3, core two receives the “RaceWait” mes-
sage and blocks the execution of its thread until it receives a
“RaceContinue” message in step B4. The “RaceContinue”
message is issued when core one’s thread executes its unlock

operation. Finally, core two’s thread resumes execution in
step B5 and re-issues the reading operation on x.

By design, data races are only detected and “healed” if
they indeed occur, that is, a potentially racy pattern in the
code that happens to be executed in a thread interleaving
that does not cause a conflict, is ignored.

We implemented this approach in our simulator; we show
later on benchmark programs in Section 6 that it indeed
works. We chose to modify the MESI protocol due to sev-
eral reasons: (1) many processors (e.g., Intel Core 2 or AMD
Athlon) implement this protocol; (2) it is likely more eco-
nomical to introduce simple hardware extensions rather than
propose entirely different hardware.

5.2 Handling Deadlocks
We have shown that TachoRace can resolve races at run-

time. There is a special case, however, in which a resolu-
tion is impossible and where TachoRace would introduce a
deadlock trying to resolve a conflict. We elaborate on this
problem next.

5.2.1 An Example

Let’s consider the following code:

Lock A; /*locks X*/

Lock B; /*locks Y*/ int X,Y;

lock_annotate(&A, &X, sizeof(X));

lock_annotate(&B, &Y, sizeof(Y));

void Thread_One() {Lock(&A); X++; Y++; Unlock(&A);}

void Thread_Two() {Lock(&B); Y++; X++; Unlock(&B);}

Thread one acquires lock A, securing access to variable X,
while thread two acquires lock B, securing access to variable
Y. In the critical sections, both threads concurrently write
access the variable that is locked by the other thread, so two
data races are overlapping. TachoRace detects both races
and responds by sending a RaceWait message to the con-
flicting thread for each data race. Both threads are stopped
and wait for a RaceContinue message from the other thread,
forming a deadlock. In more complex scenarios, more than
one thread can be involved in a deadlock when unsynchro-
nized variable accesses interleave with RaceWait messages.

The inherent problem is that TachoRace does not know
the programmer’s intention. The program is simply wrong.
Automatic race repair avoids the race, but leads to a dead-
lock; the programmers is the only one to fix it. Nevertheless,
TachoRace detects and reacts to such deadlocks.

5.2.2 Deadlock Detection

As an arbitrary number of threads may participate in a
deadlock, we need to check for deadlocks whenever a core
waiting for a RaceContinue message emits a RaceWait mes-
sage. This could potentially close a circle of waiting threads.
TachoRace checks for deadlocks as follows (see Figure 5): If
a thread 1 pauses another thread, say 2, by sending a Race-
Wait message while 1 is paused itself, it broadcasts a Dead-
lockCheck message on the bus. This message contains the
information which thread has sent the initial RaceWait mes-
sage to thread 1, e.g., thread 2. All other threads read the
DeadlockCheck message by snooping the bus and check if
the attached thread ID matches themselves. Thread 2 thus
detects that it has blocked thread 1. If thread 2 has not
received a RaceWait message before, it posts a NoDeadlock
message because a circular wait is no longer possible; this
concludes the protocol and resumes program execution. If
thread 2 has been paused by a RaceWait message before, it
broadcasts a DeadlockCheck message itself, including the id
of the thread that has blocked thread 2. Using this pattern,
a thread will eventually either send a NoDeadlock message
or the RaceWait chain exploration will reach thread 1 again
(with a message containing thread 1’s id), the one initially
starting the deadlock checking. In the latter case, thread 1
will issue a DeadlockFound message, signaling a deadlock.

Even though checking for deadlocks is complex and may
contain many IPI-messages at protocol level, it does not
harm TachoRaces’ ability to be used at runtime. As Tacho-
Race only emits messages when a data race manifests itself

Core 1

RAM

L1 Cache

X

Core 2

L1 Cache

RAM

Debug Register

&X

Debug Register

Core 1

RAM

L1 Cache

X

Core 2

L1 Cache

Core 1

RAM

L1 Cache

Core 2

L1 Cache

Core 1

RAM

L1 Cache

Core 2

L1 Cache

Read X

Retry

Write X

Read X

Core 1

L1 Cache

X

Core 2

L1 Cache

Read X

RAM

Debug Register

&X

Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

RaceWait

RAM

Debug Register Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

Release Lock &

Write X

RAM

Debug Register Debug Register

Core 1

L1 Cache

Core 2

L1 Cache

Read X

RAM

Debug Register Debug Register

Core 1

L1 Cache

Core 2

L1 Cache

RaceContinue

A1

A2

A3

A4

B3

B2

B5

B4

B1

Figure 4: Illustration of the race prevention strategy
using RaceWait and RaceContinue messages.

Thread 1

RAM

L1 Cache

HPC

&A

Thread 2

HPC

&B

Thread 3

HPC

&C

Thread 4

HPC

&D

L1 Cache L1 Cache L1 Cache

(1) DeadlockCheck (Thr. 2) (2) DeadlockCheck (Thr. 3) (3) DeadlockCheck (Thr. 4) (4) DeadlockCheck (Thr. 1)

(5) DeadlockFound

Figure 5: MESI messages sent during deadlock de-
tection.

in an undesired memory ordering, chances for any message
at all are low. Deadlocks are only checked when at least two
different data races manifest themselves at the same time
and the same threads are part of both races. Chances for
such an error are very small. In fact, it never occurred in
our experiments. Furthermore, [15] found in real-world ap-
plications that deadlocks with more than two participating
threads are rare.

5.2.3 Reacting to Deadlocks

In general, two strategies are sensible to react in such
situations: (1) send RaceContinue messages to all threads
participating in the deadlock; (2) Throw a specific exception
to be handled by the application or halt the application
otherwise.

In the first case, the data race is accepted and the appli-
cation continues execution, but the error is logged for the
application’s developers. In the second case, the developer
can provide error handling code at development time, for
example in form of a C++ exception handler, to recover the
application or stop it gracefully. Processor exceptions are
an elegant implementation (they are raised for example in
case of unresolvable errors, such as division by zero or wrong
pointers in protected memory mode [7]).

6. IMPLEMENTATION
Current multicore processors do not have a debug reg-

ister like the one proposed in this paper, but which is re-
quired to implement our run-time race detection. To vali-
date TachoRace, we thus developed a hardware and cache
simulator based on PIN [17], which is capable of executing
real, multithreaded binary applications. TachoRace runs on
Windows and Linux.

TachoRace can be configured to use a wide range of cache
architectures that may have a different number of cores and
cache levels. Every cache level can be individually config-
ured to be shared among selected cores. For example, it is
easy to model Intel’s Core 2 Quad Q6600 processor, where
each pair of cores share a common L2 cache, whereas ev-
ery single core has a private L1 cache. TachoRace can even
use a different cache coherence protocol on each cache level.
We implemented the widely-used MESI protocol [7], but our
simulator can be easily extended to use MSI or MOESI [1].
We also support the Least-Recently-Used replacement strat-
egy and an adjustable cache line size. Each cache level can
be configured to be fully associative, set associative, or n-
way associative. TachoRace does not consider prefetching.
All caches contain data only, as in most architectures in-

Test
case
no.

Helgrind
test case
ID

Error
Class

Description (1) (2a) (2b) (3a) (3b) (4a) (4b)

Offline (slow) Offline (slow) Run-Time (fast)

1 1 A write vs. write, no locking 1 1 0 1 0 0 0
2 3 D correct synchronisation with locks and signals 0 0 0 0 0 0 0
3 4 D correct sync., producer/consumer-pattern 0 0 0 0 0 0 0
4 6 D correct sync. with locks and signals 0 0 0 0 0 0 0
5 8 D correct sync. with thread-joining 0 0 0 0 0 0 0
6 9 A read vs. write without locking 1 1 0 1 0 0 0
7 11 D two worker threads, sync. with locks and signals 0 1 1 0 0 0 0
8 12 D producer/consumer-pattern with mutexes 0 1 1 0 0 0 0
9 13 D mutex-synchronisation 0 1 1 0 0 0 0
10 15 D mutex-synchronisation, three threads 0 0 0 0 0 0 0
11 20 A wrong sync. using timeouts 1 1 0 1 0 0 0
12 32 D sync. with thread-joining and mutex 0 1 1 0 0 0 0
13 47 B read vs. write with wrongly used mutex 1 1 0 1 0 1 0
14 50 B read vs. write with wrongly used mutex 1 1 0 1 0 1 1
15 52 B wrong signal-based sync. 1 1 0 1 0 1 0
16 55 D correct sync. with locks 0 1 1 1 1 0 0
17 56 A four threads, no sync. on global variable 1 1 0 1 0 0 0
18 64 A producer/consumer-pattern with unsync. thread 1 1 0 0 0 0 0
19 65 C producer/consumer-pattern with wrong locking 1 1 0 1 0 1 1
20 68 B correct write, unlocked read on glob. var. 1 1 0 1 0 1 1
21 69 C 1 reader, 3 writer, wrong mutex usage 1 1 0 1 0 1 1
22 128 C incrementing using wrong mutex 1 1 0 1 0 1 0
23 146 C 3 workers, 4 global variables, wrong mutex 1 1 0 1 0 1 1
24 301 C 2 mutexes used wrongly 1 1 0 1 0 1 1
25 302 C 2 workers, using wrong mutex 1 1 0 1 0 1 0
26 305 B 4 workers, inconsistent locking 1 1 0 1 0 1 1
27 306 B 3 workers, third without sync. 1 1 0 1 0 1 0
28 310 C 3 workers, one uses wrong mutex 1 1 0 1 0 1 1
29 311 C 4 threads, thread 4 uses wrong mutex 1 1 0 1 0 1 1

#races detected 19 24 19 14 9
total number of false positives 5 1 0 0

Table 1: Detection results for general bug patterns. Test cases are classified according to patterns (a)–(d)
shown in Fig. 1. Colums: (1) Test case contains data race; (2a) Race detected offline by Helgrind; (2b)
False positive reported by Helgrind; (3a) Race detected offline by Intel ThreadChecker; (3b) False positive
reported by Intel ThreadChecker; (4a) Race detected and corrected at run-time by TachoRace in annotation
mode; (4b) Race detected and corrected by TachoRace’s annotation-free mode.

struction data is read-only; instruction caches are not mod-
eled.

As a proof of concept, the implementation is based on the
following model: The processor contains n ≥ 1 processing
cores, each of which has its own level one cache. Higher
cache levels and main memory are shared among x cores
(e.g., with x = 2 for Intel’s Q6600). A program has a maxi-
mum of n threads, each of which is attached to one distinct
core, and threads are not migrated from one core to another
core. If there are more cores available than threads, the
redundant cores remain idle. Only one parallel program is
running at a time. Another program only starts when the
previous program has finished, excluding scheduling over-
laps. Threads can be deliberately paused and resumed to
achieve different thread interleavings. Neither an operating
system nor interrupts or traps are simulated, so the cur-
rently executing program is the only one to cause caching
activity.

We remark that the restrictions in the simulation environ-
ment were chosen to create a controlled environment that
cleanly demonstrates that the results are due to the race
detection approach, and not due to other factors or noise.
As TachoRace uses concrete hardware memory addresses, it
also works when threads from different processes incorrectly
access a shared resource.

7. EVALUATION
We evaluate the effectiveness of TachoRace’s on-the-fly

race detection at run-time and compare the results with Hel-
grind [31] (and open-source detector) and Intel’s commercial
Thread Checker [9], which are both dynamic race detectors
widely used in application development.

7.1 Benchmarks
We used two well-known benchmarks: The Helgrind race

detection unit tests and SPLASH2 [33]. The Helgrind unit
tests [30] consist of small programs implementing common
parallel error patterns that are taken from real-world pro-
grams, and other test cases (not related to parallelism) to
evaluate the tool. SPLASH2 consists of several realistic par-
allel applications in which we introduced races by remov-
ing locks or incorrectly placing locks. For the evaluation
of TachoRace’s annotation mode, all lock declarations were
annotated as described in Section 4.1.

The Helgrind unit tests consist of more than 50 different
parallel programs. We selected appropriate test cases that
were designed for race detection, resulting in a subset of 29
executable test cases. Each test creates several threads and
executes a small piece of code that either has a data race
or implements correct code that might look like a race to a
race detection tool. Table 1 shows an overview of our test
cases; out of 29 cases, 4 implement one racy pattern with no
locking at all (which TachoRace cannot detect by design),

Testcase SPLASH2 App File Code Lines Effect Testtype Result

1 cholesky malloc.C 141 - 145 program crashes true-positive detected
2 cholesky malloc.C 150 - 188 not visible true-positive detected
3 cholesky malloc.C 198 - 204 not visible true-positive detected
4 cholesky malloc.C 277 - 279 not visible true-positive detected
5 cholesky mf.C 109 - 126 not visible true-positive detected
6 cholesky mf.C 148 - 162 not visible true-positive detected

7 cholesky solve.C 329 - 332 all PIDs contain
same number

true-positive detected

8 cholesky solve.C 349 - 360 not visible true-positive detected
9 cholesky solve.C 372 - 382 not visible true-positive detected
10 water-nsquared interf.C 145 - 151 not visible true-positive detected
11 water-nsquared intraf.C 133 - 137 not visible true-positive detected
12 raytrace shade.C 200 - 205 not visible true-positive detected
13 raytrace shade.C 279 - 283 not visible true-positive detected

Table 2: Errors Built Into The SPLASH2 Benchmark.

10 are synchronized correctly, and the others incorrectly use
locks.

From SPLASH2, the second benchmark containing larger
programs, we selected three applications: “cholesky” (a nu-
merical application), “water-nsquared” (a physical simula-
tion), and “raytrace” (a parallel raytracer). We inserted 13
data races into these applications, with patterns like those
shown in Figure 1 (b) and (c), by randomly deleting ap-
propriate pairs of lock acquisitions and releases. The in-
troduced bugs are similar to those shown in the Helgrind
Test Suite and are also found in other real-world applica-
tions. Table 2 shows a summary of the introduced races (9
in the “cholesky” application, 2 in “water-nsquared”, and 2
in “raytrace”). Some of these bugs influenced the progress
of the applications and even crashed them when the race
condition occurred. In these situations, TachoRace could
demonstrate that it was able to detect and prevent the race
conditions at runtime and avoid crashes.

7.2 Results
When comparing results, the reader must be aware that

we compare online race detection techniques that are less
accurate (but usable in real-time) with offline techniques
that are more accurate (but slow and usable at development
time). This is an inherent tradeoff and the reader should
not be tempted to give accuracy results of one technique
more weight over the other, because the usage scenarios and
technical realizations are different.

Table 1 shows that using the annotation mode, TachoRace
finds all races in all test cases that employ locks, so it works
for all of the test cases where it should find a race. Out of
29 test cases, 19 contained races. TachoRace found races
in 14 cases; the races in the remaining 5 cases were not de-
tected, because they incorrectly did not use any locks at all,
and TachoRace was not designed to work in such scenarios.
TachoRace did not report false positives and resolved all
detected conflicts at run-time by delaying the execution of
the malicious thread, so the programs produced correct out-
puts. As a further stress-test, we inserted additional sleep
statements into key positions in the parallel program’s code
to provoke different thread schedule interleavings. The re-
sults emphasize TachoRace’s robustness: it still reported
and fixed conflicts only when they occurred. No situation
was encountered in which TachoRace’s race healing lead to
a deadlock.

In the class of offline detectors, Helgrind erroneously re-
ported 5 race-free test cases to contain races. Intel’s Thread
Checker was better and reported just one false positive, but

as shown in Table 3, its overhead can lead to slowdowns up
to 3324x (!); this is not unusual for offline dynamic detectors.

Table 3 shows that the message overhead introduced by
TachoRace through RaceWait / RaceContinue messages and
counter access is low. As the concrete message commu-
nication and counter access times are machine-dependent
(but on average approximately at the nanosecond scale), we
considered it more meaningful to list the respective counts
obtained by TachoRace. Although Thread Checker and
TachoRace work in an entirely different way and overhead
comparisons are difficult, we measured Thread Checker’s v.
3.1 slowdown for each test case on an Intel Quadcore ma-
chine running Ubuntu Linux 9.1, to give the reader an im-
pression of the overhead difference.

For the more complex SPLASH2 applications, TachoRace
found all races and automatically fixed them. Without Tacho-
Race, the applications produced incorrect results and even
crashed.

The annotation approach is superior to the annotation-
free mode, so annotations pay off. To evaluate the annotation-
free mode, we executed each test case without annotations
ten times. No false positives were reported, however as ex-
pected, this mode is more imprecise and reports fewer races
than the annotation mode. Out of 14 test cases whose race
is detectable by TachoRace, our random approach correctly
identified 9 racy cases (64%) within just a few iterations.
Though these results are not too bad, the technique seems
promising and motivates further research on other random
schemes.

7.3 Which Other Error Types Can Be
Detected?

In addition to detecting data races on a single variable,
TachoRace can also detect inconsistent locking involving
several fields in structures, which are in principle atomic-
ity violations. These types of errors are discussed exten-
sively in [14] and called multi-variable access correlations.
TachoRace can detect these errors whenever the correlated
variables are located in the same structure and the access to
the whole structure is protected by a single lock, as in the
following example:

struct MyStruct {

int element1;

long element2;

double element3;

double element4;

}

We tried out this scenario in a simple test case. The lock
protecting an instance of such a structure was annotated to
protect the memory region of all fields. Thus, threads trying
to access any of those fields without acquiring the lock gen-
erated bus events that helped TachoRace detect atomicity
violations.

8. RELATED WORK
Past on-the-fly race detection approaches still introduced

significant program slowdowns or required specialized hard-
ware that was too expensive or not demanded by the mass
market; these could be reasons for under-exploration [35].
TachoRace is the first approach reducing this trade-off by
exploiting synergies between hardware required for debug-
ging and hardware required for performance monitoring.

8.1 Approaches related to Transactional
Memory

Contrary to the extensions proposed by TachoRace, Trans-
actional Memory extensions used for race detection work in
an entirely different way and cannot be used for performance
capturing if online bug detection is not needed.

A transactional memory hardware implementation is used
in [5] to detect data races. Additional registers at the granu-
larity level of cache lines are introduced; by contrast, Tacho-
Race works at the granularity level of memory addresses and
thus avoids false sharing problems. TachoRace also targets
hardware extensions that are easier to implement incremen-
tally in current multicore processors.

ToleRace [26] is an online detector that also works on race
patterns as shown in Figure 2; in contrast to TachoRace, it
is more similar to Transactional Memory and operates on
copies of shared variables, thus introducing more overhead.

8.2 Comparison of other detectors and tools
FastTrack [4] is an offline dynamic detector reducing over-

head by using a lightweight representation of vector clocks;
however, it still incurs an average slowdown of 8.5x that is
too slow for online detection.

The approach proposed in [25] works at the granularity of
memory pages to enable race detection and fault tolerance;
it also requires lock annotations. An important difference
to TachoRace is that [25] require page copies containing the
locked data elements as soon as a critical section is entered,
which causes high overhead and high memory consumption.
This is unacceptable during run-time.

Light64 [20] also introduces an additional register per
core. Light64 detects races by comparing data changes from
repeated program runs. While this is suitable during devel-
opment time, it is inappropriate for run-time. TachoRace
fills this gap by allowing long-running applications to be
monitored for races that are fixed when conflicting accesses
are detected.

The online race detector of [24] requires no annotations,
and programs need to be instrumented just as for dynamic
race detectors; this leads to significantly more overhead than
in TachoRace. In addition, the technique requires a lazy re-
lease consistency memory model and has a theoretically ex-
ponential overhead; even with pruning attempts, programs
are about 200% slower. The approach worked for just two
out of four tested programs.

Isolator [25] dynamically ensures isolation for programs in
which some parts correctly obey a locking discipline, while

others don’t. In contrast to TachoRace, Isolator has a differ-
ent goal ensuring that correctly synchronized program parts
are not interfered by incorrectly synchronized threads. The
authors also do not elaborate on a detailed solution for the
situation in which Isolator’s algorithm introduces deadlocks.

Contest [11] presents on-the-fly race healing by introduc-
ing sleep and other statements into multithreaded programs
to influence the scheduler or introduce synchronization, but
the healing has been focused and demonstrated for just one
bug pattern (load-store bugs). Slowdown overhead is re-
ported to be dependent on the situation, reaching up to
3.75x.

AVIO [13] also proposes cache coherence hardware ex-
tensions to help detecting atomicity violations, but requires
multiple program runs (esp. correct runs) to extract invari-
ants that are needed for detection. In contrast to TachoRace,
this causes additional training overhead.

Colorama [2] proposes hardware extensions to automat-
ically infer critical sections, but causes additional memory
overhead and even introduces races if the inference mecha-
nism does not make correct predictions; this cannot happen
with TachoRace.

Atom-Aid [16] dynamically reduces the probability that
atomicity violations can manifest. By contrast, TachoRace
repairs races when they occur.

Autolocker [18] employs program analysis to find a locking
policy that does not lead to race conditions and uses lock an-
notations similar to TachoRace. However, resource-intensive
pointer analysis would have been necessary to detect all ac-
cesses to a particular variable. Contrary to TachoRace, Au-
tolocker may refuse executing certain programs.

Hard [34] introduces a hardware implementation of the
lock set algorithm, but contrary to TachoRace, does not
heal races.

The hybrid dynamic race detection approach in [21] com-
bines lock set and happens-before-based detection to im-
prove accuracy, but has slowdowns by orders of magnitude.

Differing from TachoRace, BugNet [19] introduces hard-
ware extensions for a capture-replay approach during pro-
duction runs, but is intended to be an application-level de-
bugging aid.

9. DISCUSSION
We now discuss some open issues and future extensions.

Moreover, we argument that extensions to hardware perfor-
mance counters are necessary (although they might not be
easy to implement).

9.1 Scheduling Interference
A problem not addressed in this paper is that the oper-

ating system may interrupt and even migrate an executing
thread. The operating system also has to take care that in
case of migration, the debug register contents are migrated
as well, and ensure that the memory bus is locked.

9.2 Current Hardware Performance Counters
Are Noisy

Our initial experiments with hardware performance coun-
ters in current multicore processors have shown that these
counters are not selective enough. Thus, gathered data can
be noisy, because it does not isolate precisely enough the
events that are of interest.

We counted coherency protocol events using an Intel Core

TachoRace Overhead Comparison

Test
Case
No.

RaceContinue RaceWait MESI Invalidate MESI Shared MESI Retry Total Messages Counter
Accesses

Thread
Checker
Overhead
(Exectime
Slowdown)

#msgs % #msgs % #msgs % #msgs % #msgs % #msgs %
1 0 0 0 0 5070 90.01 529 9.39 34 0.60 5633 100 0 248 x
2 0 0 0 0 4078 92.45 275 6.23 58 1.31 4411 100 0 122 x
3 0 0 0 0 4356 91.76 339 7.14 52 1.10 4747 100 0 1014 x
4 0 0 0 0 6326 95.19 264 3.97 56 0.84 6646 100 0 122 x
5 0 0 0 0 5243 95.34 232 4.22 24 0.44 5499 100 0 1007 x
6 0 0 0 0 24096 98.29 364 1.48 54 0.22 24514 100 0 57 x
7 0 0 0 0 4679 92.14 331 6.52 68 1.34 5078 100 0 62 x
8 0 0 0 0 7041 94.08 383 5.12 60 0.80 7484 100 0 999 x
9 0 0 0 0 5206 92.29 378 6.70 57 1.01 5641 100 0 573 x

10 0 0 0 0 8337 92.94 552 6.15 81 0.90 8970 100 0 1014 x
11 1 0.01 1 0.01 6580 91.22 577 8.00 54 0.75 7213 100 5 106 x
12 0 0 0 0 5722 91.14 497 7.92 59 0.94 6278 100 0 27 x
13 1 0.02 1 0.02 4660 88.29 568 10.76 48 0.91 5278 100 4 6 x
14 1 0.02 1 0.02 6117 94.72 288 4.46 51 0.79 6458 100 81 34 x
15 1 0.01 1 0.01 9067 95.73 346 3.65 56 0.59 9471 100 83 65 x
16 0 0 0 0 6529 94.00 361 5.20 56 0.81 6946 100 0 248 x
17 0 0 0 0 22226 95.19 1054 4.51 69 0.30 23349 100 0 3324 x
18 0 0 0 0 5760 89.16 611 9.46 89 1.38 6460 100 0 13 x
19 2 0.04 2 0.04 4172 84.27 699 14.12 76 1.54 4951 100 131 37 x
20 300 4.02 300 4.02 5045 67.57 777 10.41 1044 13.98 7466 100 464 4 x
21 9 0.13 9 0.13 5998 86.25 771 11.09 167 2.40 6954 100 195 39 x
22 1 0.02 1 0.02 5298 95.00 230 4.12 47 0.84 5577 100 65 114 x
23 1 0.02 1 0.02 4971 84.80 799 13.63 90 1.54 5862 100 322 12 x
24 1 0.02 1 0.02 4058 88.41 487 10.61 43 0.94 4590 100 3 512 x
25 20 0.20 20 0.20 8644 85.61 525 5.20 888 8.79 10097 100 327 0.43 x
26 1 0.02 1 0.02 5086 91.85 364 6.57 85 1.54 5537 100 201 77 x
27 1 0.02 1 0.02 4517 92.77 284 5.83 66 1.36 4869 100 118 222 x
28 1 0.02 1 0.02 4493 87.38 576 11.20 71 1.38 5142 100 129 12 x
29 2 0.02 2 0.02 8179 92.00 627 7.05 80 0.90 8890 100 112 76 x

Table 3: The overhead of additional message traffic introduced by TachoRace (RaceWait and RaceContinue)
is low, compared to the overall traffic.

2 Quad CPU running Ubuntu Linux. It was not possible to
isolate cache events caused by one particular process on a
specific memory location. HPC libraries such as PerfMon2
[3] already control the counters to be active only when a
certain process is running. However, this is not sufficient for
race detection, as other processes’ events may be counted as
well.

We modified the Linux kernel to allow only threads of
the process of interest to use the CPU cache by dynam-
ically modifying the Page Attribute Table and modifying
the Linux page tables. While this allowed us to restrict
HPC cache coherency measurements to a single process, it
is unrealistic for production environments. The limitation
of current hardware performance counters are also criticized
in [27, 28].

9.3 How to Protect Critical Sections
Containing NonContiguous Data

TachoRace requires that the protected data elements are
stored in contiguous memory regions. However, if hardware
provided enough debug registers, this limitation could be
overcome. This can be done by individually assigning one
debug register to each contiguous memory chunk.

A typical example are dynamically linked lists or tree
structures. As the memory areas belonging to such a data
structure change over time, expressing the lock-locked ele-
ment relationship is not easy. This information, however, is
required to identify all memory blocks that need to be stored
in the debug registers. This information can be obtained at
runtime by introducing an AddLockedElement instruction,
as in the following code example:

LOCK(&lock);

foreach (listelement l of list) {

AddLockedElement(&lock, &l, sizeof(l));

process(&l); }

UNLOCK(&lock);

This function iterates over an internally linked list and
counts the elements. The whole list needs to be locked,
so that no insert or delete operations can be performed on
the list while counting. The AddLockedElement instruction
adds the start address of each list node to the debug register
before the node is visited. From then on, any access violation
to visited nodes will be detected; each node is checked for
conflicts as soon as it is visited. That allows changes to
parts of the list that have not yet been visited by the count
function, offering a higher degree of parallelism than fine-
grained locks on each element.

9.4 Scalability
Our implementation is aimed at demonstrating the feasi-

bility of the concepts behind TachoRace and shows that we
can exploit synergies between bug finding and performance
monitoring. In its current form, the implementation works
with a number of debug registers that is less than or equal to
the number of program locks. However, our approach can be
extended in several ways to cope with situations where the
number of available registers is too small, which will be ex-
plored in future work. For example, one possible strategy is
to prioritize which locks are being monitored by TachoRace.
Another strategy could use virtualization to swap locks in
debug registers in a round-robin fashion, so every critical
section will be monitored in the long run.

9.5 Lessons Learned for Programming
Language Extensions

Despite language constructs in modern languages such
as“synchronized” in Java that aim to make the parallel pro-
grammer’s life easier, many programmers prefer using locks
due to performance (see also study of [12]). We thus cannot
ignore locks and have to make life easier for programmers
who choose to use locks. As the evaluation shows, lock an-
notations significantly improve the effectiveness of run-time
race detection. Programming languages therefore need to
offer intuitive ways of expressing the lock-locked element re-
lationship mentioned in Section 2.1. For example, a useful
language extension for Visual Basic could look like this:

Option StrictLocking

Dim x as Object

Dim y as Integer

Dim xy_lock As Lock Locking x,y

Options in Visual Basic enforce a specific way of coding;
Option Strict requires the developer to explicitly declare
every variable’s type. Option StrictLocking can be used to
mandatorily require additional information for locks. A lock
declaration extended by the Locking-keyword additionally
specifies the element to be protected by the lock. If a lock
secures more than one data element, a comma-separated
notation could be used. This scheme may be extended to
other synchronization mechanisms such as signals. In addi-
tion, the compiler may use this information to contiguously
store x and y in memory.

10. CONCLUSION
The approach presented in this paper is the first to pro-

pose the exploitation of synergy effects between run-time
bug detection and performance monitoring, using modified
hardware performance counters to detect data races. Tacho-
Race is also capable of preventing races as soon as conflict-
ing accesses are detected. The approach has a low overhead,
which makes it applicable at run-time in novel scenarios, for
example after applications have been deployed at customer
sites. This is a significant achievement improving state-of-
the-art, as available dynamic race detectors considerably
slow down application execution by orders of magnitude.
The results validate that TachoRace’s underlying principle
works. Experiments show that TachoRace effectively finds
and fixes races in applications and works on a variety of gen-
eral bug patterns. This opens the door for new directions
on how to make the execution of parallel programs more
reliable in production environments.

About the authors

Jochen Schimmel is a PhD student in the “Multicore
Software Engineering” young investigator group at the Karl-
sruhe Institute of Technology, Germany. His research fo-
cuses on parallel program debugging.

Dr. Victor Pankratius heads the “Multicore Software
Engineering” young investigator group at the Karlsruhe In-
stitute of Technology, Germany. His current research con-
centrates on how to make parallel programming easier for
the average programmer. His work on multicore software en-
gineering covers a range of research topics including empir-
ical studies, auto-tuning, language design, and debugging.
Contact him at http://www.victorpankratius.org

Acknowledgements

We would like to thank the LANDESSTIFTUNG Baden-
Württemberg for the financial support of this research project
as part of the Elite Program for Postdocs. We also thank the
Excellence Initiative at the Karlsruhe Institute of Technol-
ogy for funding and Sebastian Crüger for his support during
TachoRace’s implementation.

11. REFERENCES

[1] AMD. Amd64 architecture programmer’s manual.
http://www.amd.com, September 2007.

[2] L. Ceze et al. Colorama: Architectural support for
data-centric synchronization. In Proc. HPCA ’07,
pages 133–144, Washington, DC, USA, 2007. IEEE
Computer Society.

[3] S. Eranian. The perfmon2 project.
http://perfmon2.sourceforge.net.

[4] C. Flanagan and S. N. Freund. Fasttrack: efficient and
precise dynamic race detection. In Proc. PLDI ’09,
pages 121–133. ACM, 2009.

[5] S. Gupta et al. Using hardware transactional memory
for data race detection. In IPDPS, pages 1–11, May
2009.

[6] D. P. Helmbold and C. E. McDowell. A taxonomy of
race detection algorithms. Technical report, University
of California at Santa Cruz, UCSC-CRL-94-35, Santa
Cruz, CA, USA, September 28 1994.

[7] Intel. Intel 64 and ia-32 architectures software
developer’s manual. http://www.intel.com, December
2009.

[8] Intel. Intel VTune Performance Analyzer.
http://software.intel.com/en-us/intel-vtune/, 2009.

[9] Intel. Intel thread checker v.3.1.
http://software.intel.com, 2010.

[10] A. Jannesari et al. Helgrind+: An efficient dynamic
race detector. IEEE IPDPS, 2009.

[11] B. Krena et al. Healing data races on-the-fly. In Proc.

ACM PADTAD ’07, pages 54–64, 2007.

[12] D. Lea. The java.util.concurrent synchronizer
framework. Sci. Comp. Prog., 58(3), 2005.

[13] S. Lu et al. Avio: detecting atomicity violations via
access interleaving invariants. In Proc. ASPLOS-XII,
pages 37–48, New York, NY, USA, 2006. ACM.

[14] S. Lu et al. Muvi: automatically inferring
multi-variable access correlations and detecting

related semantic and concurrency bugs. In SOSP ’07,
pages 103–116, New York, NY, USA, 2007. ACM.

[15] S. Lu et al. Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics.
In Proc. ASPLOS XIII, pages 329–339, New York,
NY, USA, 2008. ACM.

[16] B. Lucia et al. Atom-aid: Detecting and surviving
atomicity violations. In Proc. ISCA ’08, pages
277–288, Washington, DC, USA, 2008. IEEE
Computer Society.

[17] C.-K. Luk et al. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI

’05, pages 190–200, New York, NY, USA, 2005. ACM.

[18] B. McCloskey et al. Autolocker: synchronization
inference for atomic sections. In Proc. POPL ’06.
ACM, 2006.

[19] S. Narayanasamy et al. Bugnet: Continuously
recording program execution for deterministic replay
debugging. In Proc. ISCA ’05, pages 284–295,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] A. Nistor et al. Light64: Lightweight hardware
support for data race detection during systematic
testing of parallel programs. In MICRO’09, 2009.

[21] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In Proc. PPoPP ’03. ACM, 2003.

[22] V. Pankratius, A.-R. Adl-Tabatabai, and F. Otto.
Does transactional memory keep its promises? results
from an empirical study. Technical report, IPD,
University of Karlsruhe, Germany, 2009.

[23] V. Pankratius, A. Jannesari, and W. Tichy.
Parallelizing bzip2: A case study in multicore software
engineering. Software, IEEE, 26(6):70–77, Nov.-Dec.
2009.

[24] D. Perkovic and P. J. Keleher. Online data-race
detection via coherency guarantees. In Proc. OSDI

’96, 1996.

[25] S. Rajamani et al. Isolator: dynamically ensuring
isolation in comcurrent programs. In ASPLOS ’09,
2009.

[26] P. Ratanaworabhan et al. Detecting and tolerating
asymmetric races. In Proc. PPoPP ’09, 2009.

[27] F. T. Schneider et al. Online optimizations driven by
hardware performance monitoring. In PLDI ’07, 2007.

[28] A. Shye et al. Code coverage testing using hardware
performance monitoring support. In AADEBUG’05,
2005.

[29] D. K. Tam et al. Rapidmrc: approximating l2 miss
rate curves on commodity systems for online
optimizations. In ASPLOS ’09, pages 121–132, New
York, NY, USA, 2009. ACM.

[30] Valgrind-project. Data-race-test:test suite for helgrind,
a data race detector, 2008.

[31] Valgrind-project. Helgrind: a data-race detector.
[Online]. http://valgrind.org, 2010.

[32] M. Vaziri, F. Tip, and J. Dolby. Associating
synchronization constraints with data in an
object-oriented language. In POPL ’06, pages
334–345, New York, NY, USA, 2006. ACM.

[33] S. Woo et al. The splash-2 programs: characterization
and methodological considerations. In Proc. ISCA’95.

[34] P. Zhou et al. Hard: Hardware-assisted lockset-based

race detection. In Proc. HPCA ’07, pages 121–132,
Washington, DC, USA, 2007. IEEE Computer Society.

[35] Y. Zhou and J. Torrellas. Deploying architectural
support for software defect detection in future
processors. In Workshop on the Evaluation of Software

Defect Detection Tools, 2005.

	2010,1_Titelbl.pdf
	2010,1_Bericht.pdf
	2010,1.pdf
	TachoRace-Techreport_pdfa.pdf

