
'

&

$

%

System Support for Distributed
Energy Management in

Modular Operating Systems

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie

genehmigte

Dissertation
von

Jan Stoess
aus Karlsruhe

Tag der mündlichen Prüfung: 5. Februar 2010

Hauptreferent: Prof. Dr. Frank Bellosa
Karlsruher Institut für Technologie

Korreferent: Prof. Dr. Gernot Heiser
University of New South Wales

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197555137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract
Energy management has become a challenge for modern computing environments
that needs to be addressed by all involved components, including the operating
system. At the same time, the trend in operating-system design is moving away
from monolithic to modular structures; modern operating systems often come
as a small kernel and a set of unprivileged service modules atop. Their custom
operating-system abstractions render them extensible; their integrated virtualiza-
tion capabilities retain compatibility to existing applications. Nonetheless, most
existing energy-management schemes are tailored to monolithic operating sys-
tems, where software and hardware can be directly controlled to meet thermal
or energy constraints. A modern operating system, however, consists of multiple
components, and direct or centralized energy management is unfeasible.

This thesis proposes a novel approach for managing energy in modular opera-
ting systems. Our approach strives to enable energy awareness and energy mana-
gement if the resource-management subsystem is distributed and scattered among
operating-system modules rather than being centralized and monolithic. There are
four key achievements: a model for modularization-aware energy management;
the support for exposed and distributed energy accounting and allocation; the use
of different energy-management interaction protocols; and, finally, the support for
virtualization of energy effects.

We have implemented a prototype of our approach for a modular, virtualization-
capable microkernel operating system. Our prototype supports processor and disk
energy management, at the level of physical and virtual devices. To that end, it
features distributed and exposed mechanisms for accounting and allocation of
processor and disk energy both to complete virtual machines and to individual
virtualized applications. Experiments show that the prototype accurately accounts
and allocates processor and disk energy consumption to different notions of appli-
cations at runtime. Our mechanisms enable extensible and easily adaptable energy
policies. Overheads for processor energy management may be dramatic for micro-
benchmarks, but percolate to application level at a more moderate level. Over-
heads for combined processor and disk management are limited to an increase in
processor utilization. Our experiments also reveal that there is an interdependen-
cy between accuracy and performance of energy-management mechanisms; using
different management protocols, our prototype enables developers of energy poli-
cies to choose themselves the particular point in the trade-off space.

iii

iv

Zusammenfassung
Über Jahrzehnte hinweg waren Leistung und Leistungssteigerung die bestimmen-
den Ziele bei der Entwicklung von Rechensystemen. In jüngster Zeit hat sich
allerdings eine weitere Herausforderung dazugesellt: die Energieeffizienz. Der
Wunsch nach energieeffizienteren Computern hat zwei Hauptursachen: Erstens
erfreuen sich mobile Rechensysteme wie tragbare Telefone oder andere Klein-
computer einer zunehmenden Verbreitung, was Computerhersteller vor die Her-
ausforderung stellt, leistungsfähige Computergeräte mit begrenztem Energievor-
rat zu entwickeln. Zweitens hat die Computerindustrie insgesamt mit einem stetig
steigenden Energiehunger der Rechensysteme (insbesondere der Serversysteme)
und einer damit verbundenen Kostenexplosion zu kämpfen. Der wachsende Ener-
giehunger ist vor allem auf die gesteigerten Energiedichten in modernen Rechne-
rarchitekturen zurückzuführen; der dadurch entstehende Bedarf an aufwändiger
Kühlung vergrößert den Energiebedarf entsprechend zusätzlich.

Nicht überraschend herrscht daher mittlerweile ein breiter Konses in Forschung
und Technik, dass Energieeffizienz ein Hauptkriterium bei der Entwicklung von
Computeranlagen sein sollte. Im Bereich der mobilen Computergeräte steht dabei
naturgemäß der Wunsch im Vordergrund, möglichst lange Batterielaufzeiten zu
ermöglichen. Bei Standrechnern und Serversystemen wiederum stellt die Reduk-
tion der Energiekosten das Hauptziel dar. Das allgemeingehaltene Ziel der Ener-
gieeffizienz zergliedert sich somit in mehrere Teilziele, von denen die folgenden
vier als maßgeblich bezeichnet werden können: erstens sollten Computersysteme
natürlich weniger Leistung aufnehmen, sowohl um die Nutzbarkeit der Mobil-
geräte zu erhöhen als auch um Energiekosten und deren ökologische Auswirkun-
gen zu reduzieren; darüber hinaus sollten zweitens Computersysteme aber auch
möglichst die Betriebstemperaturen gering halten, weil sich dadurch Bedarf und
Kosten der Kühlung in Grenzen halten lassen, was erneut den Energieverbrauch
der Rechenanlage verringert. Drittens sollten Computersysteme nach Möglichkeit
das Auftreten von Leistungs- und Temperaturspitzen vermeiden, weil Kühlung
und Elektizitätsversorgung von Computern oftmals nach Maximalbedarf und Ma-
ximaltemperaturen entworfen werden; jedes Vermeiden von Spitzenbedarf erlaubt
daher eine bessere Anpassung der Strom- und Kühlinfrastruktur an tatsächliche,
durchschnittliche Gegebenheiten. Viertens schließlich sollten Computersysteme
eine anwendungsgetriebene Form des Energiemanagements betreiben, da nur der

v

vi ZUSAMMENFASSUNG

Miteinbezug von Software und Anwendungen die Ziele der Energieeffizienz mit
anderen, ebenso wichtigen Anforderungen an Rechenanlagen wie Dienstgüte, Be-
nutzerfairness, oder bedarfsgerechter Kostenabrechnung in Einklang zu bringen
erlaubt.

Traditionell hat man sich dem Ziel energieeffizienter Computer meist auf der
Ebene der Hardware und Anlagen gewidmet, beispielsweise durch energieeffizi-
ente Rechnerarchitekturen oder durch thermodynamisch effizientere Kühlanlagen.
Tatsächlich sollte dieses Ziel aber auf allen Ebenen der Rechenanlagen ange-
gangen werden; insbesondere das Betriebssystem trägt hierbei eine Schlüssel-
rolle, da diesem die Laufzeitkontrolle sowohl der Hardware als auch der Soft-
ware untersteht. Ein betriebsystemseitiges Energiemanagement kann somit dafür
sorgen, dass das Erreichen von Energieeffienz global und dynamisch erfolgt, al-
so alle Hardwaregeräte und Anwendungen umfasst und zur Laufzeit stattfindet.
In der Tat hat sich eine Vielzahl von wissenschaftlichen Untersuchungen dem
Problem des betriebssystemseitigen Energiemanagements verschrieben. Generell
stützt man sich hier zumeist auf Laufzeitmechanismen zur Überwachung und
Steuerung sowohl der Geräte und ihrer Energiezustände, als auch der Anwendun-
gen und deren Auswirkungen auf den Energieverbrauch. Mit Hilfe solcher Me-
chanismen versucht man sodann, Leistungs- und Nutzbarkeitsanforderungen mit
Energiezielen unter einen Hut zu bringen; üblicherweise bedeutet das entweder,
ein gegebenes Mass an Rechenleistung und Dienstgüte zur Verfügung zustellen,
das aber mit möglichst wenig Energie, mit möglichst geringer Temperatur und mit
möglichst wenig Energie- und Temperaturspitzen. Oder man konzentriert sich um-
gekehrt darauf, im Rechensystem gewisse Auflagen bezüglich Energieverbrauch
oder Temperatur nicht zu überschreiten, dabei aber ein Maximum an Leistung und
Dienstgüte herauszuholen.

Neben der gesteigerten Wichtigkeit des betriebssystemseitigen Energiemana-
gements lässt sich noch ein zweiter wichtiger Trend in der Betriebsystemfor-
schung und -praxis beobachten: der Trend zu modularen Betriebssystemstruk-
turen. Der traditionelle Betriebssystemaufbau unterscheidet lediglich zwischen
Nutzer- und Kernbereich: Anwendungen laufen im Nutzerbereich, während die
gesamte Funktionalität des Betriebssystems monolithisch im privilegierten Kern-
bereich verbleibt. Waren frühe Betriebssysteme verhältnismäßig klein und ber-
schränkt in ihren Funktionen, so sind mit zunehmender Leistungsfähigkeit der
Rechenanlagen auch Größe und Komplexität des Betriebssystems beträchtlich
gewachsen: ein moderner Betriebssystemkern wie Windows or Linux hat einen
Quellcodeumfang von Millionen von Zeilen Code und umfasst eine unüberschau-
bare Anzahl von Funktionen und Diensten. Die wachsende Anzahl von Anwen-
dungsszenarien, welcher sich moderne Betriebsysteme ausgesetzt sehen — so
wird beispielsweise Linux heutzutage sowohl in mobilen Kleinstgeräten als auch
in Rechenzentren eingesetzt —, hat ihren Teil zur wachsenden Komplexität beige-

vi

vii

tragen. Die Kombination aus monolitischem Betriebssystemaufbau einerseits und
wachsender Betriebssystemkomplexität anderseits führt jedoch zu beträchtlichen
strukturellen Problemen. Als wichtigste Probleme sind die starken Einschränkung-
en hinsichtlich Flexibilität und Ausfallsicherheit zu nennen, welche sich aus der
gemeinsamen Unterbringung aller Betriebssystemfunktionen in einem einzigen
privilegierten Kern und aus dem Fehlen von Modulgrenzen innerhalb dieses Kerns
ergeben.

Zur Behebung der Probleme monolitschen Betriebssystemaufbaus hat die For-
schung eine Vielzahl unterschiedlicher Lösungsansätze beigetragen; die vorlie-
gende Arbeit befasst sich mit einer Klasse solcher Lösungen, welche als mo-
dulares Betriebssystem bezeichnet wird. Kurz zusammengefasst besteht der An-
satz modularer Betriebssysteme darin, einzelne Betriebssystemdienste in Softwa-
remodulen zu kapseln, welche ausschließlich über wohldefinierte Schnittstellen
interagieren. Zur Eindämmung von Fehlern können Module in unterschiedlichen
Schutzdomänen untergebracht werden und verschiedene Privilegienstufen zuge-
wiesen bekommen. Als Konzept und Forschungsansatz existieren modulare Be-
triebssysteme seit geraumer Zeit; erst vor kurzem jedoch haben modulare Be-
triebssysteme auch zunehmend praktische Anwendung gefunden. Typische Aus-
prägungen bestehen aus einem kleinen Betriebssystemkern sowie mehreren Be-
triebsystemdiensten, wobei letztere deprivilegiert im Nutzerbereich laufen. Für
Anpassbarkeit und Erweiterbarkeit des Betriebsystems sorgen anwendungsspezi-
fische Betriebsystemabstraktionen und -dienste; für die Kompatibilität zu exis-
tierenden Anwendungen steht meist eine integrierte Virtualisierungsschicht zur
Verfügung.

Problemstellung
Zwar gibt es eine Vielzahl existierender Untersuchungen und Lösungsansätze aus
der Forschung, welche sich dem betriebssystemseitigen Energiemanagement wid-
men. Jedoch haben sich diese Ansätze im Wesentlichen auf Standardbetriebssys-
teme mit monolitschem Aufbau konzentriert. Solche monolithischen Kerne ver-
einigen alle Betriebsystemfunktion in einem einzigen Kern, welcher zudem vol-
le und exklusive Kontrolle sowohl über alle Hardwaregeräte als auch über alle
Anwendungen ausübt. Die Folge ist jedoch, dass das Energiemanagement typi-
scherweise gleichermaßen zentralistisch und monolitisch organisisert ist. Im mo-
nolitischen Kern ergeben sich dadurch auch keinerlei Probleme, kann doch dieser
dank privilegiertem Direktzugriff auf alle Geräte und Anwendungen das gesamte
Ressourcenmanagement unmittelbar nach den gewünschten Energiekriterien aus-
richten.

Jedoch ist solcherart zentralistisches Energiemanagement, so passend sich es
auch in den monolitischem Betriebssystemaufbau einfügen mag, grundsätzlich

vii

viii ZUSAMMENFASSUNG

ungeeignet für modulare Betriebssysteme. Modulare Betriebssysteme lassen die
einfache Strukturierung in Anwendungs- und Kernbereich hinter sich und bau-
en das Gesamtsystem stattdessen als eine Menge einzelner verteilter Module auf
unterschiedlichen Hierarchiestufen auf, typischerweise unter Bereitstellung ei-
nes sehr kleinen privilegierten Kerns sowie einer Vielzahl von darüberliegenden
Dienstmodulen. Mit einer solchen Struktur verteilen sich die für das Energie-
management relevanten Kontrollfunktionen und Datenstrukturen naturgemäß auf
viele unterschiedliche Module. So verfügt der Kern über Direktzugriff auf ele-
mentare Hardwarefunktionen; alle anderen Informationen und Kontrollfunktio-
nen, einschließlich der Gerätetreiber, sind jedoch in die verschiedenen Dienstmo-
dule im Nutzerbereich ausgelagert. Diese wiederum haben eng begrenzte Privile-
gien hinsichtlich der Hardware, oft mit Zugriffsberechtigung auf nur jeweils ein-
zelne Geräte pro Modul. Gleichermaßen gestaltet sich die Anwendungskontrolle:
hat der Kern Kontrolle über maschinennahe Anwendungensabstraktionen und de-
ren Verhalten, so sind höherwertige oder komplexere Arten von Anwendungen
erst in höheren Schichten des modularen Betriebssystems zu finden.

In solch einer Umgebung ist direkt und zentralistisch organisiertes Energiema-
nagement schlechterdings unmöglich, da sich Kontrolle und Information über den
Energiezustand des Systems auf mehrere isolierte Module in unterschiedlichen
Betriebssystemschichten verteilen. Diese Verteilung führt zu drei wesentlichen
Problemen für das Energiemanagement:

Erstens findet, durch die Verteilung und Modulgrenzen bedingt, kein zentrales
Ressourcenmanagement mehr statt, sodass sich die für das Energiemanagement
wichtigen Informationen — Zustand und Verhalten von Hardware und Anwen-
dungen in Bezug auf Energieverbrauch und Energieeffekte — nunmehr isoliert
voneinander in vielen unterschiedlichen Modulen befinden, wobei sich einzelne
Module und Informationsteile hinsichtlich inneren Aufbaus und Semantik unter-
scheiden können. Damit ein Energiemanagement stattfinden kann, müssen diese
Informationen nun explizit ermittelt, transportiert und zusammengeführt werden.
Durch Virtualisierungsschichten und sonstige Kompatibilitätsanforderungen erge-
ben sich dabei zusätlizche Einschränkungen beim Entwurf der zum Transport und
Zusammenführen notwendigen Schnittstellen und Protokolle.

Zweitens ergibt sich in modularen Betriebssystemen ein zusätzlicher Bedarf
an Kommunikation und Datenaustausch. Die am Energiemanagement beteiligten
Dienste und Funktionen verteilen sich nunmehr auf verschiedene Module, wel-
che durch geeignete Schutzmechanismen (etwa Hardware-Addressräume) von-
einander abgegrenzt werden. Der Aufbau solcher Schutzgrenzen hat seinen Preis:
sind im monolitischen Betriebssystem andere Dienste und Funktionen direkt, also
durch Prozeduraufrufe und Speicherzugriffsoperationen erreichbar, so müssen für
diesen Vorgang im modularen Betriebssystem spezielle Kommunikationsprimiti-
ve benutzt werden, um die Schutzdomänen entsprechend geordnet zu durchque-

viii

ix

ren. Für ein effektives Energiemanagement müssen die dabei entstehenden Zu-
satzkosten und die zusätzliche Komplexität möglichst schon beim Entwurf mit-
einbezogen werden.

Drittens schließlich führt der modulare Betriebssystemaufbau zu einer drasti-
schen Zunahme von Abhängigkeiten und Wechselwirkungen innerhalb des Ener-
giemanagements. Hat der Monolith lediglich zwischen einer Anwendungs- und
einer Hardwareschicht unterschieden, so ergeben sich im modularen Betriebssys-
tem komplexe Pfade, welche von den verschiedenden Arten von Anwendungen
durch die jeweiligen Systemdienste hindurch hinab zu den energieverbrauchen-
den, jeweils aber von unterschiedlichen Treibern verwalteten Geräten führen. Soll
Energiemanagement jedoch die Anwendungsebene miteinbeziehen, so müssen die
Abhängigkeiten und Wechselwirkungen der Ressourcen- und Energieverbrauchs-
pfade ebenfalls in den Managementprozess eingebunden werden.

Wie bereits angesprochen, existiert eine Vielzahl von Vorschlägen und Ansät-
zen aus der Forschung zur Steigerung der Energieeffizienz aus dem Betriebssys-
tem heraus; keiner dieser Ansätze hat sich jedoch, wie die vorliegende Arbeit, mit
dem Problem befasst, wie die systemseitige Unterstützung für Energiemanage-
ment in modular aufgebauten Betriebssystemen zu bewerkstelligen ist. Die aller-
meisten Ansätze zum betriebssystemseitigen Energiemanagement konzentrieren
sich auf herkömmliche, monolithische Betriebssystemstrukturen und lassen das
Problem der Modularisierung unbeachtet. Zwar ist zu erwarten, dass große Teil
dieser Ansätze, inbesondere die Algorithmen und Strategien, prinzipiell auch in
modularen Betriebssysteme Anwendung finden können. Jedoch setzt dies eine ge-
eignete Unterstützung seitens des Betriebssystems voraus.

Wesentlich weniger wissenschaftliche Untersuchungen setzen sich dagegen
mit Energiemanagement für ein Betriebssystem, welches einer Art Modularisie-
rung unterzogen ist, auseinander. Eine dieser Untersuchungen hat sich mit der
Frage befasst, wie Energieabrechnung und Energie-Preiskalkulationen in einem
sogenannten vertikal strukturierten Betriebssystem gewährleistet werden können.
Solch vertikal strukturierte Betriebssysteme können durchaus als modularisiert
bezeichnet werden, obwohl die Modularisierung nur in eine Richtung erfolgt.
Während die vertikale Unterteilung die Energieabrechnung erleichtert — Ab-
rechnungsdaten fallen nur auf unterster Schicht an und können jeweils direkt der
darüberliegenden Schichten in Rechnung gestellt werden — wird sie der Komple-
xität anderer modularer Betriebssysteme (zum Beispiel mikrokernbasierter Syste-
me), welche keine strikt vertikale Unterteilung aufweisen, hinsichtlich des Ener-
giemanagement nicht gerecht. Eine Reihe weiterer Untersuchungen hat sich mit
der Frage befasst, wie Energiemanagement in virtualisierten Betriebsystemum-
gebungen durchgeführt werden kann, eine weitere, popouläre Ausprägung mo-
dularer Betriebssysteme. Hinsichtlich ihrer Ziele und Erkennnisse stimmen die-
se Ansätze mit der vorliegenden Arbeit oftmals überein, konzentrieren sich al-

ix

x ZUSAMMENFASSUNG

lerdings im Wesentlichen ausschließlich auf Virtualisierungssysteme und lassen
wichtige Merkmale anderer modularer Betriebssysteme außer Acht. Schließlich
existiert eine weitere Reihe Untersuchungen zum Problem, wie Energiemanage-
mentfunktionen in einem mikrokernbasierten Betriebssystem bereitgestellt wer-
den können. Typischerweise befassen sich diese Untersuchungen speziell mit mo-
bilen Endgeräten. Sie zielen daher hauptsächlich darauf ab, Batterielaufzeiten zu
erhöhen, schenken aber anderen Aspekten wie der geeigneten Energieabrechnung
oder -budgetierung weniger Aufmerksamkeit. Des weiteren lassen diese Ansätze
die Frage ausser Acht, wie sich Energiemanagement ändert, sobald eine Virtuali-
sierungsschicht ins modulare Betriebssystem eingebunden wird.

Ansatz
Die vorliegende Arbeit stellt ein neuartiges Konzept zur systemseitigen Unter-
stützung für Energiemanagement in modularen Betriebssystemumgebungen vor,
da solche zunehmend in Forschung und Praxis Verbreitung finden. Ziel der Arbeit
ist es, energiegewahres und energieeffizientes Ressourcenmanagement angesichts
verteilter und verstreuter Resourcenmanagementprozesse im Modularbetriebssys-
tem zu ermöglichen. Die von uns angestrebte Unterstützung sollte genügend Fle-
xibilität besitzen, um der Vielzahl existierender Energiemanagementalgorithmen
und -strategien gerecht zu werden; sie sollte die Effizienz des Betriebssystems
erhalten, trotz existierender Modulgrenzen und erhöhtem Kommunikationsauf-
wand; und sie sollte die Vorteile modularer Betriebssysteme auch für allfällig in-
tegrierte Energiemanagementsubsysteme aufrechterhalten, auf der anderen Seite
aber weiterhin Kompatibilität gegenüber existierenden Anwendungen bewahren
können. Zusammengefasst sind die wesentlichen Beiträge dieser Arbeit:

Modell für Modularisierungsgewahres Energiemanagement Der erste Beitrag
unser Arbeit besteht in einem Modell, welches das Betriebssystem als eine
Menge von Modulen begreift und den Prozess des Energiemanagements als
eine rückgekoppelte Schleife, deren Kontrollfluss sich über eines oder meh-
rere solcher Module erstreckt. Des weiteren fußt das Modell auf der Einheit
Energie als alleiniger Abstraktion zur Formulierung und Realisierung des
Managementprozesses, da nur Energieeinheiten über Geräte- und Anwen-
dungsgrenzen hinweg verteilbar, unterteilbar und konvertierbar sind.

Exponierte und Verteilte Energieabrechnung Der zweite Beitrag besteht in ei-
nem verteilten Energieabrechnungsverfahren, welches die von den Compu-
tersystem verbrauchte Energie akkurat auf die Anwendungen zurückzuführ-
en erlaubt. Das Verfahren ist verteilt konzipiert, so dass es sich über Mo-
dulgrenzen hinweg in der Lage zeigt, auch mit komplexen Ressourcen- und

x

xi

Energieverbrauchspfaden und den entsprechenden Abhängigkeiten zurecht-
zukommen.

Exponierte und Verteilte Energieallokation Der dritte Beitrag besteht in einem
Verfahren zur exponierten und verteilten Energieallokation, welches für die
jeweiligen Ressourcenverwaltungsmodule geeignete Allokationsmechanis-
men zur Verfügung stellt und exportiert, so dass diese von den in anderen
Modulen liegenden Entscheidungsprozessen und Strategien des Energiema-
nagements dazu verwendet werden können, den Ressourcen- und Energie-
verbrauch so aus der Ferne zu steuern, dass die gegebenen Energieeffizienz-
ziele erreicht werden können.

Interaktionsprotokolle für das verteilte Energiemanagement Der vierte Bei-
trag besteht in einer Ausforschung zweier Protokolle für die Abwicklung
der für das verteilte Energiemanagement notwendigen Kommunikation. Un-
sere Beobachtung ist dabei, dass die Art der Kommunikation Auswirkungen
sowohl auf die zeitliche Genauigkeit als auch auf die Effizienz des Energie-
managementprozesses hat. Es werden daher zwei verschiedene Protokol-
le ausgeleuchtet, welche sich hinsichtlich der Zeitdauer zwischen Anfallen
der zur Kommunikation vorgesehenen Energiemanagement-Informations-
einheiten und der eigentlichen Übertragung dieser Einheiten unterscheiden.

Virtualisierung von energetischen Effekten Der fünfte und letzte Beitrag be-
steht in der geeigneten Emulation energetischer Effekte von Hardwaregerät-
en, um den Energiemanagementprozess nicht nur auf der Ebene der Hard-
ware sondern auch auf der Ebene virtueller Geräte zu gewährleisten. Moder-
ne Betriebssysteme setzen immmer häufiger Virtualisierungsschichten ein,
um ihre Kompatibilitätsprobleme zu lösen. Eine Virtualisierung von Ener-
gieeffekten einzelner Geräte bietet daher den Vorteil, dass ein modulares
Betriebssystem gleichzeitig abwärtskompatibel einerseits und offen für an-
wendungsspezifische Optimierungen im Energiemanagement andererseits
zu sein vermag, da Optimierungen in Richtung Energieeffizienz nunmehr
schrittweise in die virtualisierten Ressourcenmamagementsubsysteme ein-
geführt werden können.

Validierung
Zur Validierung des Ansatzes wurde für die vorliegende Arbeit ein Prototyp ent-
wickelt, welcher die Gültigkeit der Konzepte anhand eines mikrokernbasierten
Mehrmodulbetriebssystems überprüft. Konkret fußt der Prototyp auf einer Imple-
mentierung der L4-Mikrokernreihe und der Implementierung mehrerer System-
dienste im Nutzerraum; insbesondere umfasst der Prototyp auch eine Virtuali-

xi

xii ZUSAMMENFASSUNG

sierungsschicht, welche para-virtualisierte Linux 2.6.9 Gastbetriebssysteme un-
terstützt. Das Gesamtsystem läuft auf Computern der IA-32 Architektur. Durch
die von L4 bereitgestellten Grundabstraktionen lässt sich das System sehr leicht
erweitern; durch die mitgelieferte Virtualisierung bleibt es dabei gleichzeitig ab-
wärtskompatibel gegenüber Linux-Anwendungen. Insgesamt stellt dieses Mehr-
modulbetriebssystem einen typische Vertreter eines modernen modularen Systems
dar, wie man es auch in ähnlicher Form in der Praxis finden könnte; es bietet somit
eine ideale Plattform zur Validierung der vorgeschlagenen Energiemanagement-
konzepte.

Die prototypische Implementierung der vorgeschlagenen systemseitigen Un-
terstützung für das Energiemanagement fand dabei in verschiedenen Modulen und
auf mehreren Ebenen des mikrokernbasierten Modularbetriebssystems statt; un-
terstützt wird zur Zeit das Energiemanagement für Prozessoren und Festplatten.
Die Prozessorverwaltung wird dabei direkt von L4 übernommen, während Fest-
plattenlaufwerksdienste von speziellen Treiberprogrammen im Nutzerbereich be-
reitgestellt werden. Der Prototyp unterstützt derzeit Energiemanagement auf der
Ebene physischer Geräte und auf der Ebene virtualisierter Geräte. Energieabrech-
nung und Energieallokation erfolgen in verteilter Art und Weise und umfassen
dabei sowohl virtuelle Maschinen als auch einzelne virtualisierte Anwendungen
innerhalb einer virtuellen Maschine. Die prototypische Energiemanagementinfra-
struktur ist erweiterbar gestaltet und erlaubt die Anpassung oder den Austausch
einzelner Energiemanagementstrategien und deren Implementierungen, ohne dass
dabei die Managementmechanismen ausgetauscht werden müssten.

Die Auswertung der prototypischen Implementierung wurde auf einer Stand-
rechner der IA-32 Architektur durchgeführt, welcher mit einem Pentium D 830
mit 3 GHz Taktfrequenz, einer Intel 945G Hauptplatine mit 2 GByte Hauptspei-
cher, sowie einer 160 GByte großen Maxtor Diamond Max Plus 9 IDE Festplat-
te bestückt ist. Hinsichtlich der Auswertung standen zwei Hauptaspekte im Vor-
dergrund: die Wirksamkeit der Energieabrechnungs- und Energieallokationsme-
chanismen sowie die allfälligen Leistungseinbußen, welche die Benutzung dieser
Mechanismen nach sich zieht. Die Genauigkeit der internen Energieabrechnung
wurde jeweils mit Hilfe externer Messungen des Energieverbrauchs von Prozessor
und Festplatte überprüft, welche mit einem digitalen Erfassungsgerät von Natio-
nal Instruments erfolgte.

Die Wirksamkeit der Energiemanagementmechanismen wurde anhand ver-
schiedener Experimente zur Genauigkeit der Energieabrechnung und Energieal-
lokation überprüft. Dabei wurden sowohl das Energiemanagement ganzer virtu-
eller Maschinen als auch einzelner virtualisierter Anwendungen unter die Lupe
genommen. Experimente mit der Energieabrechnung eines virtualisierten Fest-
plattendienst förderten zu Tage, dass der Pfad von virtuellen Anwendungen hinab
zu den phyischen Geräten getreu und in hoher zeitlicher Auflösung nachverfolgt

xii

xiii

werden kann, und individuelle Energieverbrauchsdaten für die jeweils beteiligten
Module und Anwendungen ermitteln werden können, welche überdies kumula-
tiv mit dem extern gemessenen Energieverbrauch von Festplatte und Prozessor
übereinstimmen. Weitere Experimente mit der Energieallokation für Prozessor
und Festplatte brachten ans Licht, dass die vorgeschlagenen Mechanismen ei-
ne individuelle Budgetierung einzelner Anwendungen und virtueller Maschinen
seitens ihres Energievebrauchs erlauben. Wiederum stimmten intern gemessene
Energiebudgets mit dem jeweils extern gemessenen Energieverbrauch von Fest-
platte und Prozessor überein.

Mögliche Leistungseinbussen wurden anhand weiterer Experimente ermittelt,
welche die Effizienz des Prototypen mit der des originalen mikrokernbasierten
Modulbetriebssystems ohne Unterstützung für Energiemanagement verglichen.
Die Resultate untermauern den postulierten Zusammenhang zwischen der Art der
Kommunikation, der zeitlichen Genauigkeit und der Effizienz des Energiemana-
gementprozesses. So ergab sich im Falle des Prozessor-Energiemanagements ei-
ne dramatische, zehnfach große Leistungseinbuße für ein ausgewähltes Micro-
benchmark-Szenario, was sich aber weit moderater auf der Anwendungsebene
niederschlug, wo sich die Leistungseinbußen je nach gewünschter Genauigkeit
der Energiemanagementmechanismen zwischen 0 und 36 Prozent für ausgewählte
Benchmarks bewegten. Im Falle des kombinierten Energiemanagements von Pro-
zessor und Festplatte konnte keine Änderung des Festlattendurchsatzes festgestellt
werden und die Leistungseinbußen blieben auf den erhöhten Bedarf an Prozessor-
leistung beschränkt. Der erhöhte Rechenbedarf bewegte sich dabei absolut gese-
hen auf niedriger Ebene, war aber relativ gesehen durchaus signifikant: so stieg
der Bedarf von 5.1 auf maximal 7.6 Prozent, was einem relativen Anstieg um
maximal 49 Prozent entspricht. Wiederum hingen die tatsächlichen Werte von der
gewünschten Genauigkeit der Energiemanagementmechanismen ab. Im Lichte der
vorläufigen, prototypischen Implementierung kann man davon ausgehen, dass ei-
ne Optimierung der Mechanismen eine weitere Reduktion der Leistungseinbußen
mit sich zöge. Festzuhalten ist aber auch, dass das Postulat der negativen Kor-
relation zwischen Genauigkeit und Effizienz des Energiemanagementprozesses
untermauert weden konnte, was im Gegenzug wiederum für das in dieser Arbeit
vorgestellte Konzept zur flexiblen Gestaltung der Kommunikation im Energiema-
nagementprozess spricht, welche eine Anpassung des Kommunikationsprotokolls
an die jeweiligen Energiestrategien erlaubt.

xiii

Portions of this work were previously published in the following papers and
articles:

• Jan Stoess, Christoph Klee, Stefan Domthera, and Frank Bellosa. Transpar-
ent, Power-Aware Migration in Virtualized Systems. In Proceedings of the
GI/ITG Fachgruppentreffen Betriebssysteme, Karlsruhe, Germany, October
2007.

• Jan Stoess. Towards Effective User-Controlled Scheduling for Microkernel-
Based Systems. In ACM SIGOPS Operating Systems Review, 41(4), July,
2007.

• Jan Stoess, Christian Lang, and Frank Bellosa. Energy Management for
Hypervisor-Based Virtual Machines. In Proceedings of the 2007 USENIX
Annual Technical Conference, Santa Clara, CA, June 2007.

• Jan Stoess, Christian Lang, and Marcus Reinhardt. Energy-aware Proces-
sor Management for Virtual Machines. In Poster session of the 1st ACM
SIGOPS EuroSys Conference, Leuven, Belgium, April 2006

xiv

Contents

Abstract iii

Zusammenfassung v

1 Introduction 7
1.1 The Problem . 9
1.2 Approach . 11
1.3 Validation . 12
1.4 Organization . 14

2 Background and Related Work 15
2.1 Overview . 16
2.2 Energy Management in Operating Systems 18
2.3 Modularization in Operating Systems 20
2.4 Energy Management and

Modular Operating Systems . 24
2.5 Related Approaches . 29

2.5.1 Energy Management for Traditional Operating Systems . . 29
2.5.2 Energy Management for Vertically Structured Systems . . 33
2.5.3 Energy Management for Virtualized Systems 33
2.5.4 Energy Management for Microkernel-Based Systems . . . 35
2.5.5 Summary . 36

3 Energy-aware Modular Operating Systems 39
3.1 Overview . 40

3.1.1 Goals . 40
3.1.2 Approach . 41
3.1.3 Scope of the Approach 42

3.2 A Model for Modular Energy Management 43
3.2.1 Unified Notion of Energy 44
3.2.2 Translating Temperature and Thermal Models 46

1

2 CONTENTS

3.2.3 Energy-Management Feedback Loop 46
3.3 Exposed and Distributed Energy Accounting 47

3.3.1 Determining Device-Energy Consumption 48
3.3.2 Attributing Device-Energy Consumption 49
3.3.3 Exposing Device-Energy Consumption 50
3.3.4 Energy Accounting of Software Resources 51

3.4 Exposed and Distributed Energy Allocation 52
3.4.1 Exposing Resource-Allocation Decisions 53
3.4.2 Interface-Design Considerations 54

3.5 Energy-Management Interaction Protocol 54
3.5.1 Synchronous Interaction Protocol 56
3.5.2 Asynchronous Interaction Protocol 56
3.5.3 Discussion . 56

3.6 Energy Virtualization . 57

4 Application to an L4-Based Operating System 61
4.1 Prototype Environment . 62

4.1.1 The L4 Microkernel . 63
4.1.2 L4-Based Virtualization 65
4.1.3 User-Level Device Drivers 68
4.1.4 Energy-Management Framework 69

4.2 Device-Energy Models . 71
4.2.1 Processor-Energy Model 71
4.2.2 Disk-Energy Model . 74

4.3 Distributed Energy Accounting 76
4.3.1 Processor-Energy Accounting 76
4.3.2 Disk-Energy Accounting 79
4.3.3 Recursive Energy Accounting 81

4.4 Exposed, Energy-Aware Resource Allocation 83
4.4.1 User-Controlled Processor Scheduling for L4 83
4.4.2 Exposed Energy-Aware Disk Control 92

4.5 Legacy Compatibility . 96
4.5.1 Legacy Resource Management 96
4.5.2 Support for Energy-Aware Improvements 97

4.6 Energy-Policy Management . 100
4.6.1 Host-Level Energy Management 100
4.6.2 Guest-Level Energy Management –

An Energy-Aware Guest Operating System 107

2

CONTENTS 3

5 Evaluation 109
5.1 Evaluation Setup . 110
5.2 Effectiveness of Energy Management 110

5.2.1 Processor and Disk-Energy Accounting 111
5.2.2 Host-Level Processor-Energy Allocation 113
5.2.3 Host-Level Disk-Energy Allocation 115
5.2.4 Para-Virtualized Processor-Energy Management 116
5.2.5 Preserving Legacy Processor Scheduling 117

5.3 Performance of Energy Management 119
5.3.1 Performance of Processor Management 119
5.3.2 Performance of Combined Disk and Processor Management122

5.4 Summary . 124

6 Conclusion 127
6.1 Contributions of the Thesis . 127
6.2 Suggestions for Future Work . 129

Acknowledgements 131

Bibliography 132

3

4 CONTENTS

4

List of Figures

2.1 The Trend to Modular Operating-System Structures 22

3.1 A Model for Modular Energy Management 43
3.2 Energy as the Basic Notion in the Management Process 45
3.3 Exposed Energy-Accounting Process 49
3.4 Recursive Accounting of Software Energy Consumption 51
3.5 Exposed Energy Allocation Process 53
3.6 Adaptive, Exposed Resource-Management Communication 55
3.7 Host-Level and Guest-Level Energy Management Capabilities . . 58

4.1 Prototype Architecture . 62
4.2 L4Ka Virtualization Architecture 67
4.3 Host-Level and Guest-Level Energy Managers 70
4.4 Performance-Counter–Energy Weights 72
4.5 Runtime Processor-Energy Estimation of Virtual Machines 75
4.6 Synchronous Processor-Energy Accounting 77
4.7 Asynchronous Processor-Energy Accounting 78
4.8 Disk-Energy Accounting . 80
4.9 Recursive Accounting of Disk-Energy Consumption 82
4.10 Flexibility through User-Level Scheduling 86
4.11 Synchronous Scheduling Control via Preemption IPCs 87
4.12 Recursive Scheduler Hierarchy 90
4.13 Asynchronous Scheduling Control via Event Tracing 91
4.14 3-Tier Scheduling Architecture 98
4.15 Virtualizing Performance Counters 99
4.16 Energy-Aware Guest Operating System 107

5.1 Accounting Energy Consumption for Disk Reads 111
5.2 Accounting Energy Consumption for Disk Writes 112
5.3 Host-Level Processor-Energy Allocation 114
5.4 Host-Level Disk-Energy Allocation 115

5

6 LIST OF FIGURES

5.5 Host-Level versus Guest-Level Energy Redistribution 116
5.6 Preserving Legacy Processor-Scheduling Semantics 118
5.7 IPC Overhead for Processor Management (Intra-AS) 120
5.8 IPC Overhead for Processor Management (Inter-AS) 121
5.9 Application-Level Overhead for Processor Management 121
5.10 Overhead for Disk and Processor Management (1) 122
5.11 Overhead for Disk and Processor Management (2) 123
5.12 Overhead for Disk and Processor Management (3) 123
5.13 Overhead for Disk and Processor Management (4) 124

6

Chapter 1

Introduction

For decades, research and industry have focused on performance as the deter-
mining factor for designing computers. Recently, however, energy efficiency has
become another serious challenge for computing environments. The desire for
energy-efficient computing has two root causes. First, there is an ongoing trend
in computing towards mobility, and computer designers are confronted with the
challenge to deliver ever-increasing performance under conditions of constrained
energy. Second, computer designers face a rapid growth in energy demands of
computer systems, particularly in server systems, and with it an explosion of as-
sociated costs. The main reason for such high energy demands is the increasing
power density of today’s computer architectures; cooling requirements aggravate
the energy demands additionally.

It has therefore become general consensus among researchers and practition-
ers that energy efficient computer design is a first-class architectural design con-
straint. For mobile computing platforms, the most important objective of energy
management is to extend battery lifetime; in contrast, the common goal for server
systems lies in reducing operational costs and in overcoming the limitations of
higher power densities. Hence, “energy-efficient” computing has several different
goals, among which we have identified four to play key roles: First, computers
should consume less power, to enhance usability of mobile devices, and to reduce
the general electricity costs and the ecological footprint of computing; second,
computers operate at lower temperatures, to prevent the cooling requirements and
costs from skyrocketing; third, computers should avoid power and temperature
peaks where possible, as avoiding such peaks allows cooling infrastructure and
electricity capacities to be designed for average scenarios, rather than to be over-
provisioned for cumulated worst-case scenarios. Fourth, computers should pro-
vide a notion of application-centric energy management, as involving applications
allows energy management to be combined with other notions such as quality-of-
service, fairness, and billing, all of which are crucial for computer users.

7

8 CHAPTER 1. INTRODUCTION

Traditionally, computer designers have striven for energy efficiency mostly at
the hardware and facilities layer, for instance, by designing low-power architec-
tures or by improving air conditioners and data-center thermodynamics. Energy-
efficient computing, however, is a challenge that needs to be addressed by all in-
volved components, including the operating system. In fact, the operating system
plays a crucial part in the design methodology, as it is responsible for control-
ling both computer hardware and applications at run time. Implementing energy
management at operating-system level thus enables global and dynamic energy
management, encompassing all hardware devices and software activities together.

As of now, there exists a large bottom of approaches to involve operating sys-
tems in computer energy management. Such approaches typically employ various
monitoring and control loops for hardware devices and their power or heat states;
likewise, such approaches implement some form of monitoring and control of
applications, as those are ultimately responsible for device load and energy con-
sumption. Based thereon, some management policy then strives to align utility
interests with energy-efficiency goals; that is, the policy follows the goal of de-
livering performance at a given (or maximum) level, but with the lowest power
consumption, the lowest heat generation, or the fewest power and heat spikes pos-
sible. Or, conversely, the policy tries to satisfy requested power or heat constraints
while providing as much service and as much performance as possible.

At the same time energy efficiency has become a challenge for modern com-
puting and operating systems, there has been a a growing trend in the recent past,
in research and practice, towards modular operating-system designs with a small
kernel base. Traditional operating-system design separated the software stack into
two layers: user level and kernel level. Applications ran concurrently at user level,
while the operating system encompassed all privileged and service functionality
in a single kernel image. Early operating-system kernels were rather small in size,
and their functionality was rather limited. With increasing capabilities and capac-
ities of computers, however, kernel size and complexity increased dramatically; a
modern monolithic kernel is built from millions of lines of source code, containing
a huge conglomerate of complex and entangled functions.

A growing diversity of application domains has contributed to the size and
complexity growth, as modern operating systems are typically designed to run in
different deployments such as the server, desktop, and embedded space. In com-
bination with large kernel sizes and complexity, however, monolithic design leads
to severe structural problems. The two most burdensome among them are: limited
flexibility, which stems from the lack of properly defined interfaces and module
boundaries in a single kernel image; and limited reliability, which is caused by the
monolithic kernel structure, where all kernel code, including device drivers and
other, potentially error-prone parts run within the same, privileged kernel domain.

To alleviate the problems of monolithic kernel design, researchers have pro-

8

1.1. THE PROBLEM 9

posed and explored different solutions. In this work, we focus on a specific subset
of those approaches, which we refer to as the paradigm of modular operating sys-
tems. In short, a modular operating system performs all its tasks in independent
modules, which interact via dedicated and well-designed interfaces only. Modules
are confined in isolated domains with different privileges, permitting flexible sys-
tem design and containment of faults. Concept-wise, modular operating systems
are a long-standing idea. Only recently, however, have modular operating systems
emerged to become prevalent also in practice, and have become of widespread
use in different deployments such as the embedded-systems or the server space.
Typical embodiments come as a small kernel and a set of service modules running
atop, in deprivileged user level. They provide custom abstractions to make the
system extensible to new application scenarios; at the same time, they have inte-
grated virtualization capabilities to remain compatible to existing applications.

1.1 The Problem
There has been a considerable research interest in involving operating systems in
the energy management of a computer system. So far, however, most of these
approaches have been targeting standard, monolithic operating-system structures.
Monolithic kernels pack all their functionality and data in a single image; they
have full and exclusive control over both hardware devices and applications. As a
fundamental consequence, their energy-management subsystem becomes central-
ized and monolithic as well. Centralized operating-system energy management
is well suited for monolithic kernels: in charge of controlling all devices and the
whole application flow in the system, the kernel level can directly monitor and
control both software and hardware in order to meet the thermal and energy con-
straints imposed by the management policies.

Modular operating systems, however, go beyond the simple application–kernel
world in their structure, rendering direct and centralized energy management un-
feasible. Modular operating systems consist of a distributed and multi-layered
software stack, typically with a small kernel base and multiple service modules
running atop, at user level. With such a structure, control and information is dis-
tributed: the privileged but small kernel has direct access to essential parts of the
hardware only; all other operating-system services, including device drivers, run
as user-level modules, with reduced privileges and limited scope. Multiple notions
and granularities of applications and resource principals co-exist, and are catered
for and controlled by different operating-system modules or layers.

In such an environment, direct and centralized energy management is unfea-
sible, as control and accounting information of devices and applications are dis-
tributed across the whole system. Three main problems for energy management

9

10 CHAPTER 1. INTRODUCTION

arise from the scattering and isolation of device and application control:
First, semantic loss arises between modules in terms of energy-management–

related information. With an operating system partitioned into multiple mod-
ules, resource management becomes partitioned as well, and multiple resource-
management subsystems may reside in different modules, each with different se-
mantics and mechanics. As a result, the information relevant for energy man-
agement — device power or heat states, application behavior and their effects on
power consumption, and so on — must be shared and structured explicitly. Legacy
compatibility and virtualization play an important role, as they often limit the de-
sign space of protocols and interfaces for semantic sharing between modules.

Second, the communication and interaction required for energy management
become increasingly important and challenging in terms of their associated costs.
In a modular operating system, the components taking part in the energy man-
agement now reside in separate software modules, with boundaries between them
for isolation purposes. The isolation comes at the cost of overhead for crossing
module boundaries; whereas monolithic kernels can rely on memory procedure
calls and memory loads and stores to transfer control and data relevant for energy
management, modular operating systems cannot use such direct mechanisms to
retrieve the same information, but must resort instead to explicit communication
primitives overcoming the protection boundaries. As a result, energy-management
communication must be thoroughly designed and engineered in modular operating
systems, rather than performed directly and ad-hoc as done in monolithic kernels.

Third, in modular operating systems, dependencies and resource paths from
applications down to hardware become more complex. Hardware management
is partitioned among multiple drivers, and applications can have different types
and granularities; coarse-grain applications (a virtual machine, for example) can
consist of multiple sub-applications (applications within a virtual machine, for
example). As a result, resource-management dependencies and paths become in-
creasingly complex, and with them their effects on energy consumption and heat
generation. Application-specific energy management, however, must deal with
the different types and granularities of applications, and with distributed resource-
management subsystems.

While numerous research efforts have been conducted on operating-system en-
ergy management, so far, none of them has addressed the specific problem of pro-
viding system-level energy-management support in modular operating systems.
Most of the existing energy management approaches were designed towards a
traditional, monolithic operating-system structure; as such, they were safe to dis-
regard operating-system modularization at all. We conjecture that many of those
approaches, particularly their policies and algorithms, will be valid and applica-
ble in modular operating systems in principle — provided system-level support
for modular energy management is in place.

10

1.2. APPROACH 11

Substantially fewer approaches to operating-systems energy management have
targeted an operating system that was modularized in some kind. Some efforts
have investigated how energy pricing and accounting can be facilitated in so-
called vertically-structured systems, which multiplex all resources at a low level,
and move protocol stacks and most parts of device drivers into user-level libraries;
such systems can be termed modular, albeit the modularization occurs in vertical
direction only. Vertical structuring, however, implies that devices are shared at a
low level only, and renders it hard to achieve energy accounting and budgeting
in presence of shared drivers and operating-system services, as they are common
in other modular operating systems such as microkernel-based systems. Several
other efforts have investigated how energy management can be designed for vir-
tualized operating systems, another, popular form of a modular operating system.
While those approaches share many goals, insights, and ideas with our own work,
they are typically focused on virtualization systems only, and do not address the
problems and specifics of other instances of modular operating systems, such as
microkernel-based systems. Finally, some efforts have been conducted to explore
energy-management solutions for microkernel-based operating systems. As those
approaches typically target on mobile computers, they heavily focus on extended
battery lifetime, but less on other energy-management problems such as account-
ing and budgeting; also, they do not consider the problems arising if a virtualiza-
tion layer is integrated into the operating-system stack.

1.2 Approach
Observing these problems, we present a novel system-level framework for manag-
ing energy in modular, multi-layered operating-system environments, as they are
becoming common in today’s computer systems. Our framework strives to enable
energy awareness and energy management if the resource-management subsys-
tem is distributed and scattered among operating-system modules, rather than be-
ing centralized and monolithic. We envisage a framework that enables flexibility
in energy-management algorithms and objectives; that provides efficient support
for modularity and isolation of energy-management subsystems; and that enables
customization of the operating system to new application domains and energy-
management paradigms, but, at the same time, allows to preserve compatibility to
existing and legacy applications.

Our framework makes the following key contributions:

A Model for Modularization-Aware Energy Management We model the op-
erating system as a set of modules; the energy management becomes a
feedback loop involving one or more of such modules. Our model solely re-
lies on the notion of energy as the base abstraction, since energy quantifies

11

12 CHAPTER 1. INTRODUCTION

power and thermal effects in a partitionable, distributable, and convertible
way.

Exposed and Distributed Energy Accounting We propose a distributed energy-
accounting approach, which accurately tracks back the energy spent in the
system to originating applications and other activities. Our approach incor-
porates both the direct and the side-effect energy consumption spent along
the path from different notions of applications down to hardware devices.

Exposed and Distributed Energy Allocation We further propose to expose suit-
able energy-allocation mechanisms from drivers and other resource man-
agers to respective energy-management subsystems. Exposed allocation
enables dynamic and remote regulation of energy consumption throughout
the modular operating system, across module boundaries and isolation do-
mains.

Energy-Management Interaction Protocols We explore two different schemes
for carrying out the communication that is required to propagate energy-
management–related information between modules. We postulate that the
optimal protocol is largely defined by two (opposing) factors: the timeli-
ness requirements of the energy-management policy, and the performance
overhead induced by the module isolation. We thus explore two interaction
schemes, which differ in their synchronizity with respect to the propagation
of energy-management data.

Virtualization of Energy Effects Finally, we support energy management not
only for physical devices but also for virtual devices. Platform virtualization
is a widely used and convenient mechanism to provide legacy compatibility
and has found its way into many modern operating systems. Supporting a
notion of virtual energy thus provides a convenient development path to-
wards legacy-compatible but energy-aware resource management.

1.3 Validation
To demonstrate our approach we have developed a prototype for a microkernel-
based modular operating system. We use an instance of the L4 microkernel family
as the privileged microkernel. Our system permits the development of custom-
built operating-system modules using L4 abstractions and mechanisms; at the
same time, it retains legacy compatibility to existing applications by means of
a platform virtualization layer. Our environment runs on IA-32 hardware and
supports Linux 2.6.9 guest operating systems. Our prototype system forms an

12

1.3. VALIDATION 13

instance of a modular operating system that can be practically used in modern
computing environments. As such, we consider it a good and realistic candidate
for evaluating our energy-management design principles and considerations.

Our prototype employs energy management at several layers and levels of
granularity. It currently supports management of two main energy consumers,
processor and disk. Processor services are directly provided by the L4 kernel,
while the disk is managed by a special user-level driver. Our prototype supports
energy management both for physical and for virtual processors and disks. To
that end, it features a distributed and recursive energy-management mechanisms
for native microkernel modules, for complete virtual machines, and for individual
applications running within a virtual machine. Our energy-management infras-
tructure is extensible, and allows management policies to be adapted to the actual
workload or deployment situation without having to exchange the mechanisms
themselves.

We have evaluated our approach and prototype implementation on an IA-32
platform equipped with a Pentium D 830 with 3 GHz, an Intel 945G motherboard
with 2 GBytes RAM, and a Maxtor Diamond Max Plus 9 IDE hard disk with
160 GBytes in size. We validated our internal accounting mechanisms by means
of an external high-performance data acquisition system, which we used to mea-
sure the real disk and processor power consumption. For evaluation, we con-
sidered two aspects as relevant: first, we were interested in the effectiveness of
energy accounting and allocation; second, we were interested in the performance
overhead induced by those mechanisms.

To evaluate the effectiveness of our energy-management framework, we pur-
sued several experiments validating the accuracy of our energy accounting and
allocation mechanisms with respect to both whole virtual machines and individ-
ual virtualized applications. Experiments with a virtualized disk service show that
our infrastructure is able to accurately track down all portions of energy consump-
tion from a virtualized application down to the hardware device, and to attribute
the portions to the originating software activities. All internal accounting records
furthermore correspond with the actual, externally measured processor and disk
energy consumption. Experiments with our processor and disk energy allocation
mechanisms, which we pursued both at host level and at the level of virtualized
applications, demonstrate that our prototype is capable of accurately allocating
individual portions of processor and disk energy to different notions of applica-
tions. Again, all internal records correspond with real processor and disk power
consumption.

To evaluate the performance overheads associated with our prototype frame-
work, we pursued further experiments comparing the performance of our pro-
totype against a version without support for energy management. The results
highlight the interplay between accuracy and efficiency of energy management:

13

14 CHAPTER 1. INTRODUCTION

overheads for processor energy management may be dramatic, up to factor 10x,
for a microkernel IPC benchmark, percolating however to application level at a
more moderate level, where overheads range from 0 to 36 per cent for selected
application benchmarks, depending on the desired accuracy of scheduling. Over-
heads for combined processor and disk management are zero with respect to the
disk throughput, and limited to an increase in processor utilization. The increase
occurs at a low level in absolute terms, but is still significant relatively: utilization
rises from 5.1 to at most 7.6 per cent, that is, by at most 49 per cent. The actual
overheads again depend on the desired accuracy of scheduling. The evaluation
supports our observation that there is a fundamental trade-off between accuracy
and performance in energy management. We draw the conclusion it should be up
to developers of energy-management policies, which point in the trade-off space
to choose; our energy-management infrastructure strives to enable those different
decisions to be put in effect.

1.4 Organization
The rest of this thesis is structured as follows: Chapter 2 reviews background
material and related work in the context of our approach. Chapter 3 explains the
design concepts and rationale behind our approach. Chapter 4 illustrates in detail
our prototype implementation. Chapter 5 presents the evaluation of our prototype.
Chapter 6 summarizes our approach and presents our conclusions.

14

Chapter 2

Background and Related Work

In this chapter, we present background material and related work in the context of
our approach. The chapter is organized as follows: In Section 2.1, we present an
overview and motivate, why energy management has become a serious challenge
for today’s computer systems. In Section 2.2, we explain why the operating sys-
tem plays a crucial and important role in the design of energy-efficient computing.
In Section 2.3, we explain why there is an ongoing trend in modern operating-
system structures towards modularization and layering. Subsequently, in Section
2.4, we detail why approaches to energy management for traditional operating-
system structures fall short and energy management becomes challenging in mod-
ularized operating-system structures. Finally, in Section 2.5, we will review and
discuss concrete approaches to supporting energy management in both traditional
and modularized operating systems, and relate them to our own approach.

15

16 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Overview
For decades, research and industry have focused on performance as the deter-
mining factor for designing computers. Recently, however, energy efficiency has
become a serious challenge for computing environments. The desire for energy-
efficient computing has two root causes. First, there is an ongoing trend in com-
puting towards mobility, and computer designers are confronted with the chal-
lenge to deliver ever-increasing performance under conditions of constrained en-
ergy. Saving battery life simply enhances the time span between consecutive bat-
tery charge cycles and thus directly benefits the users of mobile devices. Second,
computer designers face an increasing hunger for energy in computer systems,
especially in server systems, and with it an explosion of associated costs. The
energy demands of computer systems are growing rapidly, in absolute terms and
in proportion to the operational costs. According to recent studies, the power con-
sumption of a typical server is estimated to have increased by nearly a factor of
ten between 1996 and 2006 [Ranganathan et al., 2006]; and the costs for electric-
ity and cooling can represent as much as half of the total costs of the data-center
operating budget [Filani et al., 2008, Rasmussen, 2006].

The main reason for the growth in energy demands is the increasing power
density of today’s computer architectures, which, in turn, stems from high-density
chip designs as well as from high-density packaging and integration architectures.
Cooling requirements aggravate the overall demand for energy: as increasing
power densities lead to a higher probability of thermal fail-overs of the hardware,
additional cooling facilities are required to sustain reliability of the computing in-
frastructure. Cooling facilities contribute a large part to the recurring energy costs:
according to recent studies, in about 85 percent of today’s data centers, every watt
consumed for the actual computer equipment requires another watt for cooling
and and other support infrastructure [Malone and Belady, 2006].

Although there have been substantial advances in the design of energy-efficient
computing, to date, they have not been able to alleviate much of the simultaneous
increase in energy hunger: while power consumption per computational unit has
dropped by 88 percent between 2000 and 2006, the at-the-plug consumption has
still risen by a factor of 340 percent [Brill, 2007]. Nevertheless, it is now general
consensus among researchers and practitioners that energy efficiency and energy
management have become a first-class architectural design constraint [Mudge,
2001]. For mobile computing platforms, the most important objective is to extend
battery lifetime [Benini et al., 2000, Welch, 1995]; in contrast, the common goal
for server systems lies in reducing operational costs and in overcoming the limi-
tations of higher power densities [Bianchini and Rajamony, 2004, Lefurgy et al.,
2003]. Hence, “energy-efficient” computing has several different aspects, and we
break up the the general goal into four major objectives constituting it:

16

2.1. OVERVIEW 17

Lower Power Consumption First and foremost, computers should consume less
power, for several reasons. Naturally, low power consumption helps to
increase battery lifetime thus enhances usability and value of mobile de-
vices when not plugged into an outlet. However, low power consumption
is also beneficial for economic and ecological reasons: power consump-
tion required for information technology is estimated to account for 8 per-
cent of the overall power demand in the United States [Mudge, 2001]; for
many industries, data centers are one of the largest sources of greenhouse
gas emissions [Forest, 2008]. Power-efficient computing reduces both the
electricity costs for the infrastructure provider and the global impact of the
information-technology business on the ecological footprint.

Lower Operating Temperatures Second, computing hardware should operate
at lower temperatures, to reduce the requirements for cooling capacity and
to prevent cooling costs from skyrocketing [Kerby, 2007, Skadron et al.,
2003a]. Low operating temperatures furthermore reduce the heat density of
computer infrastructure and thus allow denser packaging and feature inte-
gration without inducing higher risks for thermal rises.

Fewer Power and Temperature Peaks Third, computer hardware should avoid
power and temperature peaks where possible. Although the chance for in-
dividual peaks may be low, total power ratings of computer systems are usu-
ally computed as the sum of individual worst-case ratings; keeping power
consumption steady and avoiding power peaks thus allows electricity bud-
gets and contracts to be based on average rather than on peak power con-
sumption. Similarly, avoiding temperature peaks allows cooling infrastruc-
ture and capacities to be designed for average thermal scenarios, rather than
to be over-provisioned for cumulated worst-case scenarios [Felter et al.,
2005, Ranganathan et al., 2006].

Better Accounting and Budgeting of Energy-Related Effects Fourth, and final-
ly, computer systems should involve applications and workloads as the root
cause and consumers of computer energy. Accounting and budgeting play a
key role in this regard: accountable computing allows energy-management
goals to be combined with quality-of-service requirements of applications
and the workload [Femal and Freeh, 2005, Ranganathan et al., 2006]. Fur-
thermore, accounting enables fair billing of energy-related costs on the basis
of individual applications and customers. Energy accounting and budget-
ing typically requires monitoring power characteristics at two sources, the
computer hardware components and the workload and users executing on
the computer [Microsoft Corporation and Intel Corporation, 2009].

17

18 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Energy Management in Operating Systems
Traditionally, computer designers have striven for energy efficiency mostly at the
hardware and facilities layer, for instance, by designing low-power architectures
or by improving air conditioners and data center thermodynamics. A substantial
amount of effort has been put into low-power circuit design, including research
on power-efficient processors and cores, main memory, and storage systems (e.g.,
[Benini et al., 2000, Mudge, 2001]). Likewise, there exist numerous efforts to
improve the energy efficiency of the facilities hosting the computer infrastructure
and their integrated cooling equipment (e.g. [Fan et al., 2007, Sullivan, 2000]).
Ideally, however, the problem should be addressed holistically at all system levels,
including the operating system.

Indeed, for energy-efficient computing, the operating system plays a crucial
part in the design methodology. As the software component responsible for both
computer devices and the applications running atop, the operating system is the
ideal place for controlling, monitoring, and coordinating energy conditions and
states on both the hardware and the software side of the computer. Implementing
an energy-management subsystem for the operating system thus enables global
and coordinated management encompassing all devices and activities in the com-
puter; dynamic and reconfigurable management, adapting to varying workload
conditions and adhering to energy efficiency goals at runtime; and, finally, ac-
countable management, tracking back energy consumption, heat generation, and
the associated costs to originating activities respectively the customers running
them.

In fact, there has been a growing research interest in involving the operating
systems in the management of computer energy. Facing both performance and
energy efficiency as primary design goals, approaches to energy management at
operating-system level typically attempt to integrate both performance and en-
ergy considerations into their resource-management process: operating-system
energy management then either follows the goal of delivering performance at a
given level, but with the lowest power consumption, the lowest heat generation,
or the fewest power and heat spikes possible. Or, conversely, it tries to satisfy
requested power or heat constraints while providing as much service and as much
performance as possible [Isci et al., 2006]. Best-effort operating systems usu-
ally adhere to the former goal; however, electricity budgets, utility contracts, or
cooling facilities provisioned for worst case scenarios render the latter objectives
equally or even more important. In any case, the following two tasks are crucial
for operating-system power management:

Controlling and monitoring hardware devices Naturally, operating-system power
management must both control and monitor the energy conditions of the

18

2.2. ENERGY MANAGEMENT IN OPERATING SYSTEMS 19

underlying hardware devices. The control part comprises of manipulat-
ing device power and performance states at runtime, in order to reduce the
power consumption or temperature. An increasing number of modern com-
puter devices feature such capabilities to control or reduce power and heat
dissipation: modern micro-processors, for example, provide different fre-
quency and voltage settings, or other mechanisms such as clock gating or
sleep states, enabling the operating system to dynamically change proces-
sor power and heat generation. Likewise, modern memory controllers and
peripheral network and storage devices often support different performance
and standby states with different resulting power consumption and tempera-
ture. The monitoring part comprises of observing device power and thermal
conditions on a regular base; secondary parameters such as load and general
device usage characteristics are often relevant as well. While devices have
become fairly mature in terms of control, they are often less equipped in
terms of monitoring. Many modern computers feature thermal sensors, but
often only a few of them, sometimes at places in the chassis not necessar-
ily related to the location of devices; also, the sensors are typically thermal
diodes, which are slow to read out (in the order of hundreds of millisec-
onds, a substantial amount of time for an operating system). Specific energy
meters for individual hardware components are mostly missing or unavail-
able to software, rendering hardware-supported energy monitoring on a per-
device base unfeasible. Research has therefore responded with estimation
schemes for hardware power effects (e.g., [Bellosa et al., 2003,Heath et al.,
2006]); the schemes typically rely on device models and on second-order
characteristics such as load and usage patterns to approximate per-device
power and heat conditions.

Controlling and monitoring workload In addition to hardware control, operat-
ing-system energy management must also control and monitor the workload
and applications running atop, for three reasons: First, dynamic energy-
management schemes often attempt to adapt hardware power states to the
expected load situation; since applications ultimately create hardware load,
monitoring application behavior plays an important role for predicting fu-
ture load conditions. Second, energy management can actively adapt work-
load behavior and request patterns in order to impact hardware energy ef-
fects. Typical examples for such active mechanisms employed in operat-
ing systems are to throttle, batch, or delay individual requests in order to
lengthen periods of idleness and underutilization, or to multiplex and bal-
ance requests across multiple devices of the same type. Sometimes, di-
rect hardware control even remains unavailable to the operating system;
rather, the hardware controller turns the device off or into low-power modes

19

20 CHAPTER 2. BACKGROUND AND RELATED WORK

during phases of underutilization automatically (as done in memory con-
trollers [Fan et al., 2001]). In those cases, software control is the only
means to influence the energy consumption of a device. Third, and finally,
workload control and monitoring is the prerequisite for accounting and bud-
geting of energy-related effects. Only the operating system can attribute en-
ergy consumption and heat generation to originating applications, and only
the operating system has sufficient control over schedules to guarantee that
quality-of-service constraints and service-level agreements can be negoti-
ated on the bases of individual customers or applications.

To summarize, coordinated and dynamic energy management at operating-
system level requires monitoring power, heat, or other status information of both
computer devices and of applications. It further requires mechanisms to directly
control device power states as well as the applications generating device load.
Based on such information and control, operating-system energy management can
strive to adhere to energy-management objectives while still adhering to quality-
of-service constraints or service level agreements; or, conversely, energy manage-
ment can attempt to maximize performance while adhering to energy-management
constraints. Energy management can finally support accountable computing, where
energy consumption and heat generation are attributed and billed to originating
customers and their applications.

2.3 Modularization in Operating Systems
At the same time power and thermal management have become a challenge for
modern computing and operating systems, there has been a a growing trend in the
recent past, in research and practice, towards modular operating-system design
with a small kernel base.

Traditional multi-programming operating systems separate the software stack
into two layers, user level and kernel level. Applications run in unprivileged user
mode, executing arbitrary code (applications, applets, plug-ins) coming from ar-
bitrary sources (vendors, software distributors, the Internet). To enable applica-
tions to run concurrently but isolated from each other, and to provide safe and
coordinated access to hardware devices, the operating system runs in privileged
processor mode and protected from the applications. The operating system is ac-
tivated whenever applications demand privileged service or access to hardware.
The operating system may also become active independently from applications,
for instance to handle device requests or to interrupt the current application and
execute another one.

Early operating-system kernels were rather small in size and functionality,
mainly because computers were small in size and their capabilities as well. With

20

2.3. MODULARIZATION IN OPERATING SYSTEMS 21

increasing capabilities and capacities of processors, memory, and peripheral de-
vices, however, kernel sizes have increased dramatically. A modern UNIX or Win-
dows kernel for a recent computer system is built from millions of lines of source
code, containing a huge conglomerate of complex and entangled functions, with
modules for various operating-system tasks such a process management, device
handling, file systems, user-interface management, networking, process commu-
nication, and so on. Along with the monolithic design and the growth of kernel
size, however, have come severe difficulties: since the operating system is packed
into a single kernel image, its growing size and functionality has lead to a com-
plex and entangled piece of code, which is suffering from fundamental problems
in flexibility and reliability:

Limited extensibility Monolithic operating systems are complex and entangled,
and the lack of properly defined interfaces and module boundaries nega-
tively affects their extensibility and maintainability. Once an abstraction or
its implementation has been established in a particular kernel, it becomes te-
dious and expensive to change or remove it [Engler et al., 1995]. The result
is that monolithic operating systems generally advance very slowly, since
enhancements and optimizations are hard to integrate; for example, many
of the core kernel primitives of UNIX operating systems, notably processes,
virtual memory, or inter-process communication, have existed for decades,
and have not changed significantly throughout particular UNIX revisions
and flavors.

Limited Reliability All code of a monolithic operating systems runs in privi-
leged processor mode; its sheer size and complexity adversely impact sys-
tem reliability and dependability; any mistake in any subcomponent can
bring down the whole operating system [Swift et al., 2003,Tanenbaum et al.,
2006]. As device drivers constitute a large fraction of the operating system
code base and show error rates up to seven times higher than other parts
of the software infrastructure [Chou et al., 2001], the problem of poor fault
isolation and containment is particularly problematic at operating-system
level.

The negative implications of lacking extensibility and reliability has been ag-
gravating with the growing diversity in fields of application for standard operating
systems: modern operating systems such as Linux or Windows are typically de-
ployed in multiple application domains simultaneously, such as the server, desk-
top, embedded space.

To alleviate the problems of monolithic kernel design, researchers have pro-
posed and explored different solutions, including approaches to add enhanced reli-
ability subsystems to the operating system [Ng and Chen, 1999,Swift et al., 2003]

21

22 CHAPTER 2. BACKGROUND AND RELATED WORK

or to use type-safe languages and compilers [Bershad et al., 1995, Seltzer et al.,
1996]. In this work, we focus on a different subset of approaches, which we refer
to as the paradigm of modular operating systems. In short, a modular operating
system performs all its tasks in independent modules, which interact via dedicated
and well-designed interfaces only. Modules are confined in isolated domains with
different privileges, permitting flexible system design and containment of faults
(Figure 2.1).

Small Kernel

CPU CPU

Guest OS

APP APP APP

vCPU vDISK

Driver

Service

APP

APP

APP

Operating System DISK

CPU CPU DISK

APP APP APP

APP APP APP

VMM

Figure 2.1: The trend to modular operating system structures, with a small priv-
ileged kernel and isolated operating-system modules and drivers atop. To stay
compatible to existing legacy applications, modular operating systems often em-
ploy some form of virtualization.

Concept-wise, modular operating systems are a long-standing research idea,
with their roots in early multiprogramming computer systems [Hansen, 1970,
Wichmann, 1968]. However, while an old idea from a standpoint of theory and
research, only recently modularization has been successfully employed in mod-
ern real-world operating systems with their vast functionality and their varying
fields of application. In the area of embedded systems, where reliability and trust-
worthiness are major concerns, microkernel-based modular systems have been
of widespread use for years — traditionally, however, as special-purpose real-
time operating systems [Hildebrand, 1992, Green Hills Software, 2009]. With the
growing capabilities of modern embedded hardware and consumer electronics,
however, modern operating-system concepts and virtualization technology have
become important factors for embedded operating systems as well [Heiser et al.,
2007, Heiser, 2009]. This trend has recently lead to commercial, microkernel-
based hypervisor systems for the embedded space, such as OKL4 [Open Kernel
Labs, 2009] and VMware MVP [VMware Inc., 2009b], which are successfully
deployed on millions of mobile phones. In the area of server systems, operating-
system modularization has also become mainstream technology in the last few
years, mainly in form of hypervisor-based virtualization environments. Such en-

22

2.3. MODULARIZATION IN OPERATING SYSTEMS 23

vironments have been deployed successfully on millions of enterprise comput-
ing systems worldwide over the last few years, with different products such as
VMware ESX [VMware Inc., 2009a], Citrix XenServer [Citrix Systems Corpora-
tion, 2009], or Microsoft Hyper-V [Microsoft Corporation, 2009] offered on the
market.

In general, the main characteristics of such modern and practical modular op-
erating systems are:

Small Kernel Base A widely accepted principle to improve flexibility and relia-
bility of operating systems is to keep the amount of code running in the priv-
ileged kernel to the possible minimum [Accetta et al., 1986, Engler et al.,
1995,Liedtke, 1995]. Small kernels enforce the remaining operating-system
functionality to be constructed as user services, like other applications; also,
they contain fewer bugs and are therefore easier understood, fixed, and val-
idated [Heiser, 2005, Klein et al., 2009, Tanenbaum et al., 2006]. While
a minimal kernel — or microkernel — and its interface do not mandate a
modular or reliable system structure on top [Härtig et al., 1997], they clearly
suggest it; indeed, many modular operating systems of practical relevance
run on top of some sort of microkernel [Heiser, 2005,VMware Inc., 2009a].
Minimizing the kernel part thus permits a modular and flexible system struc-
ture, and enables a higher level of assurance and reliability.

Confinement and Isolation Another important design principle is that a modu-
lar operating system should allow executing its modules and components
in isolation. Confinement and isolation can be done in different ways;
typically, the kernel provides fundamental isolation abstractions, either by
means of hardware protection domains or by means of a software-protected
runtime system. Widely used hardware mechanisms are memory address
spaces and processor privilege modes [Herder et al., 2006, Liedtke, 1995];
typical representatives of software protection domains are safe languages
[Hunt and Larus, 2007] and virtual machines [Adams and Agesen, 2006].
Depending on the particular design of the modular operating system, the
isolation results in different system structures: multi-server systems such as
Sawmill [Gefflaut et al., 2000], K42 [Krieger et al., 2006], or Minix [Herder
et al., 2006] arrange the system as a set of individual user servers that inter-
act with clients and with each other to provide the operating-system func-
tionality. In contrast, vertically structured systems such as ExoKernel [En-
gler et al., 1995], Nemesis [Leslie et al., 1996], or, similarly design-wise,
virtual- machine environments [Barham et al., 2003] arrange the system in
multiple layers and move the functionality into protocol stacks and user-
level libraries.

23

24 CHAPTER 2. BACKGROUND AND RELATED WORK

Legacy Compatibility Although much effort has been invested in their design
and development, modular operating systems were not generally accepted
as a practicable methodology for general-purpose system construction for a
long time. Besides the lack of performance of early versions, which could
be overcome over time [Härtig et al., 1997] but still contributed to negative
perception, modular operating systems suffered of the fundamental compat-
ibility problem any new operating-system endeavor suffers: applications,
libraries, and other system services must be ported to the new infrastruc-
ture. Compatibility, however, is a fixed requirement for an operating system
to become prevalent [Krieger et al., 2006]. Over time, the sluggish ad-
vancements of traditional operating systems and the boot-strap dilemma of
advanced operating systems have provoked the emerge of platform virtual-
ization as a solution. Originally designed to allow time sharing and logi-
cal partitioning for mainframe computers [Goldberg, 1972], virtualization
conveniently solves the compatibility problem by providing one or more
identical copies of the underlying hardware and enabling arbitrary appli-
cations (written for a particular hardware platform) to be executed without
or with very few modifications. Virtualization layers have become very
popular and the de-facto standard to solve legacy-compatibility problems;
they have been integrated into commodity operating systems [Kivity et al.,
2007, Sugerman et al., 2001] and into modular operating systems [Barham
et al., 2003, Härtig et al., 2005, Heiser, 2009].

To summarize, the trend in operating-system design is moving away from
monolithic, heavy-weight towards modular structures; modern operating systems
often come as a small kernel and a set of service modules running in deprivileged
user mode. They have integrated virtualization capabilities to remain compatible
to existing applications, but simultaneously provide custom abstractions to make
the system extensible to new application scenarios.

2.4 Energy Management and
Modular Operating Systems

Although there has been a considerable research interest in operating-system en-
ergy management (Section 2.5 will review concrete approaches in detail), so far,
most such schemes have been targeting standard, monolithic operating-system
structures. Monolithic kernels pack all their functionality and data in a single
kernel image; they have full — and exclusive — control over both hardware de-
vices and applications. As a fundamental consequence, their energy-management
subsystem becomes centralized and monolithic as well. We postulate that direct

24

2.4. ENERGY MANAGEMENT AND
MODULAR OPERATING SYSTEMS 25

and centralized energy management, as done in monolithic operating systems,
is an unfeasible approach for modular operating systems. This paragraph is de-
voted to a discussion on that matter. We first describe the main characteristics of
centralized energy management; we then describe why such centralism becomes
unfeasible in modular operating-system structures.

Management Centralism in Traditional Operating Systems

Energy management can be seen as special case of resource management. Re-
source management is concerned with multiplexing hardware resources to appli-
cations as the resource principals; energy management is concerned with doing
so in a energy-aware way. A central aspect of monolithic operating systems is
that resource management — and thus energy management — occur in direct and
centralized fashion, both with respect to applications and with respect to hardware
devices.

Since the kernel instance executes in privileged operating mode, it has direct
control over hardware devices and their modes of operation. Co-located with the
kernel, the resource-management subsystem can directly inspect power, perfor-
mance, or temperature conditions of the devices, and it can directly control their
power and performance states. The kernel also has direct control over the appli-
cation stack, and is capable of performing energy management on the basis of
individual applications. To that end, it can monitor and control individual appli-
cations at runtime in order to meet energy management and performance goals.

A monolithic kernel is not only privileged, it is also centralized in resource
management: the kernel is the only entity responsible for all applications and
all devices. Moreover, typically the monolithic operating system shows a fairly
straight-forward application structure, where the kernel provides some unified ab-
straction — a process, for instance — for both isolation and resource management
[Banga et al., 1999]. The kernel controls all applications and processes, carrying
out their requests on the available hardware devices. Its resource-management
subsystem is centralized and comprehensive, capable of controlling all hardware
and all applications in unison.

Distributed Resource Management in Modular Operating Systems

Obviously, direct and centralized resource management are unfeasible in modu-
lar operating systems. A modular operating system goes far beyond the simple
application–kernel world in its structure, consisting of a distributed and multi-
layered software stack, with a small kernel base, multiple operating-system ser-
vice modules at user level, and possibly multiple notions and granularities of ap-
plications and resource principals. At the lowest-level of the environment, the

25

26 CHAPTER 2. BACKGROUND AND RELATED WORK

privileged but small kernel has direct control over those parts of the hardware that
are essential to providing safe and secure isolation and resource management;
usually, the kernel manages, at the very least, access to processor, physical mem-
ory, and parts of the peripheral hardware, by providing basic abstractions such
as virtual processors, virtual-memory segments, and safely controllable device
registers and hardware interrupts. All other operating-system services, however,
run as user-level service modules, providing different services and abstractions
of higher value and complexity: user-level drivers control hardware not directly
managed by the kernel; user-level service modules are responsible for providing
higher-order abstractions and resource-management functionality; examples are
the POSIX layer in K42 [Krieger et al., 2006]), which provides an application pro-
gramming interface akin to traditional UNIX systems; or the user-level virtualiza-
tion layer in L4Linux [LeVasseur et al., 2004], which provides a software abstrac-
tion that looks like physical hardware. The resulting structure inherently implies a
distribution and compartmentalization of operating-system resource management,
where parts of the resource management reside within the kernel, and other parts
reside within the different operating-system modules atop.

Energy Management in Modular Operating Systems

Distributed resource management implies distributed energy management: there
is no direct and centralized control over devices and their power states; likewise,
there neither exists a single type of application exported to users, nor are all ap-
plications controlled by a single kernel instance. The privileged kernel only has
access to those devices essential for secure isolation; user-level drivers only have
access to their own dedicated set of devices; No component has comprehensive
control over all devices and their power states. Likewise, application control is
scattered across operating-system modules. The kernel and drivers have coarse-
grained information on how low-level activities use the physical hardware. How-
ever, they do not possess any knowledge of the energy consumption of higher-level
notions or types of applications, since this information is stored in higher-level
resource-management subsystems. No component has comprehensive control of
all individual applications and their effects on power and heat.

The scattering and isolation of device and application control bears substan-
tial challenge for energy management in operating systems; we have identified
three root factors causing the challenge: i) a semantic loss between modules; ii)
an increased communication overhead; and iii) an increasing importance of inter-
dependencies between different resource principals and devices.

Semantic Loss between Modules Monolithic operating systems are usually com-
piled from a single source-code repository; agreement about data structures

26

2.4. ENERGY MANAGEMENT AND
MODULAR OPERATING SYSTEMS 27

and procedure signatures occurs through the common programming lan-
guage. Modular operating systems, in contrast, do not have such shared
build source; modules are compiled separately, possibly from source code in
different programming languages, with different compilers and build envi-
ronments, and from different vendors; each module is, in principle, a black
box to the other modules. As a consequence, multiple energy-management
subsystems may reside in different modules, and each subsystem cannot
silently assume mutual agreement on the semantics and structure of energy-
management–related data and control flow; rather, the bits of information
relevant for energy management — accounting data, device power, perfor-
mance, and heat states, information on applications, and so on — must be
shared and structured explicitly. Legacy compatibility and virtualization
play an important role, as they often limit the design space of protocols and
interfaces for semantic sharing between modules.

Increased Communication Overhead In a modular operating system, the com-
ponents taking part in the energy management reside in separate software
modules; for reasons of confinement of privileges and failures, module do-
mains are isolated from each other, by means of appropriate hardware or
software protection mechanisms. The protection comes at the cost of in-
creased overhead for crossing module boundaries; whereas monolithic ker-
nels can rely on procedure calls and memory loads and stores to transfer
control and data relevant for energy management, modular operating sys-
tems cannot use such direct mechanisms to retrieve the same information,
but must resort instead to explicit communication primitives overcoming
the protection boundaries. Crossing such boundaries, however, is expen-
sive — to give an example, costs for direct procedure calls amount to a
few dozen processor cycles at most on x86 processors; in contrast, sim-
ply switching the address-space base registers amounts to a few hundred
cycles at least, without even considering indirect costs for cache misses.
Direct sharing of memory is not always an option, as it must be carried out
carefully in order to preserve the desired modularization and isolation [Gef-
flaut et al., 2000]. Even with well-designed and implemented communi-
cation and sharing primitives (e.g., [Aron et al., 2001, Haeberlen et al.,
2000, Liedtke, 1993]), a residual communication overhead remains; con-
sequentially, energy-management communication must be thoroughly de-
signed and engineered in modular operating systems, rather than performed
directly and ad-hoc as done in monolithic kernels.

Importance of Interdependencies Monolithic operating systems with their ker-
nel-and-user-only separation scheme show a fairly simple dependency path

27

28 CHAPTER 2. BACKGROUND AND RELATED WORK

in terms of resource and energy management: the kernel always executes on
behalf of the application having invoked it; device accesses and subsequent
energy effects can be directly tracked back to that application. Device shar-
ing occurs, but only between applications and devices, and only between a
single notion of applications. In modular operating systems, dependencies
and resource paths become more complex. Multiple resource-allocation
components and device-driver modules may exist concurrently, at differ-
ent position in the hierarchy and with different scopes. Applications can
have different types and granularities; coarse-grain applications (e.g., vir-
tual machines) can consist of multiple sub-applications (e.g., applications
within virtual machines). Sharing not only occurs between applications,
but also between operating-system modules (e.g., a virtual file server at
user-level, serving disk requests from an associated storage system). As
a result, resource dependencies and paths become increasingly complex,
and with them their effects on energy consumption and heat generation.
Application-specific energy management cannot neglect the interdependen-
cies and paths, however; rather it must cope with the different types and
granularities of applications and with the sharing patterns of both hardware
devices and software modules.

To summarize, a monolithic kernel has full control over all hardware devices
and their modes of operation; it can directly regulate device activity or energy con-
sumption to meet thermal or energy constraints. A monolithic kernel also controls
the whole execution flow in the system. It can easily track the energy consump-
tion at the level of individual applications and leverage its application-specific
knowledge during device allocation to achieve dynamic and comprehensive en-
ergy management. Modern modular operating-system environments, in contrast,
consist of a distributed and multi-layered software stack including a small ker-
nel, multiple operating-systems components, device-driver modules, guest virtual
machines, and other service infrastructure. In such an environment, direct and
centralized energy management is unfeasible, as device control and accounting
information are distributed across the whole system.

As a result, modular operating systems require well-designed, system-level
support for energy management, in order to overcome the semantic loss between
operating-system modules; to mitigate the effects of increased communication
overheads across modules; and to deal with the increasing importance of interde-
pendencies between different resource principals, system services, and hardware
devices.

28

2.5. RELATED APPROACHES 29

2.5 Related Approaches
So far, we have discussed existing approaches to energy management in operat-
ing systems only in a non-specific way. In this chapter, we will substantiate our
general observations by discussing concrete approaches and relating them to our
own work. We begin by reviewing existing approaches for traditional, monolithic
operating systems. We subsequently review approaches for advanced operating
systems, which already show some form of modularization. The section is di-
vided into four subsections:

Energy Management for Traditional Operating Systems Most of the existing
approaches to operating-system energy management target standard, mono-
lithic operating systems, and do not address the problems that arise if the
operating systems consists of several layers and is distributed across multi-
ple components. We will review them in Section 2.5.1.

Energy Management for Vertically Structured Systems Vertically structured
operating systems are modularized in the sense that they divide the operat-
ing system into multiple layers. There have been some approaches address-
ing energy-accountability issues within vertically structured systems. We
will review similarities and differences in Section 2.5.2.

Energy Management for Virtualized Systems Several other efforts have inves-
tigated how energy management can be designed for virtualized operating
systems, another, popular form of modular operating system. We will re-
view similarities and differences in Section 2.5.3.

Energy Management for Microkernel-Based Systems Some previous work has
been done investigating how energy management can be integrated into
microkernel-based operating systems. We will review similarities and dif-
ferences in Section 2.5.4.

2.5.1 Energy Management for Traditional Operating Systems
There exists a plethora of operating-system energy management approaches, most
of which target standard operating systems. We review those approaches in the
following, classifying them by four characterizing aspects: i) their application
domains ii) their targeted hardware components; iii) their goals; and iv) their
policies. Obviously, our classification scheme is not mutually exclusive, and ap-
proaches may fall in several categories: we therefore list prominent representa-
tives for each aspect. We afterwards discuss the shortcomings of those approaches
with regard to operating-system modularization.

29

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Application Domains

Operating-system energy management has two main application domains: mo-
bile platforms and, more recently, the server space. Originally, operating-system
energy management targeted mobile platforms, and typically focused on extend-
ing battery lifetime [Benini et al., 2000, Welch, 1995]. More recently, operating-
system energy management has emerged to also target stationary and server sys-
tems, typically with the goal to reduce their operational costs and to overcome
their limitations of higher integration densities [Bianchini and Rajamony, 2004,
Lefurgy et al., 2003].

Targeted Hardware

Pioneering approaches focused on reducing energy consumption of individual de-
vices found in mobile systems, such as the processor [Weiser et al., 1994], mem-
ory [Huang et al., 2003], hard drives [Li et al., 1994], and network devices [Stemm
and Katz, 1997]. Holistic schemes such as EcoSystem have investigated how the
operating system can manage energy consumption of all laptop devices in a uni-
form way [Zeng et al., 2005, Zeng et al., 2002]. Servers, in turn, are distinct from
mobile systems in that they comprise larger and more hardware: modern servers
feature multiple processors with large caches, large amounts of possibly hierar-
chical memory, and high-speed network interfaces; they can have locally attached
storage as well as external, network-attached storage. Multiple servers can be
connected as clusters, blade servers, or in similar organization, forming comput-
ing systems of size of data centers. With such an architecture, energy management
of individual devices or computers becomes too narrow. Research has responded
by proposing mechanisms encompassing multiple devices [Bianchini and Raja-
mony, 2004, Felter et al., 2005, Isci et al., 2006, Merkel and Bellosa, 2006] and
multiple computer nodes, as found in clusters [Elnozahy et al., 2003, Elnozahy
et al., 2002] and data centers [Raghavendra et al., 2008,Ranganathan et al., 2006].

Goals

With the growing complexity and emerging application domains of computer, en-
ergy management has also shifted its goals, from initially focusing on saving en-
ergy to reduce battery life to more complex objectives. As already explained
(Section 2.1), besides lower power consumption, the most important objectives
are lower operating temperatures, fewer power and temperature peaks, and better
accounting and budgeting.

An important sub-goal in reaching those objectives is modeling power and
thermal effects in the computer, and there exist numerous attempts to incorporate

30

2.5. RELATED APPROACHES 31

such models into the operating system, for individual devices such as proces-
sors [Bellosa, 2000, Snowdon et al., 2007], memory [Delaluz et al., 2001, Lebeck
et al., 2000], or hard disks [Allalouf et al., 2009, Zedlewski et al., 2003], and
for whole computers [Economou et al., 2006, Govidan et al., 2009] and comput-
ing centers [Chase et al., 2001, Heath et al., 2006]. Beyond modelling hardware
energy effects, some studies have also investigated how applications can be mod-
eled and analyzed for better energy management [Verma et al., 2009, Weissel and
Bellosa, 2004].

Related to power modelling are the tasks of energy accounting and budgeting
of individual applications. Accounting has been identified as essential prerequi-
site for operating systems that strive to provide energy awareness and quality-
of-service guarantees at the same time [Neugebauer and McAuley, 2001]; and
several attempts have been made to provide accounting and budgeting capabilities
for mobile as well as server systems [Bellosa, 2000,Chase et al., 2001,Femal and
Freeh, 2005, Flinn and Satyanarayanan, 1999, Ranganathan et al., 2006].

Policies

Finally, a wide design space exists — and has been explored — in terms of the
policies for operating-system energy management. Pioneering approaches for lap-
tops and mobile computing were mostly concerned with turning individual de-
vices into low-power modes during phases of idleness and underutilization [Lu
and Micheli, 2001]. A vast number of approaches concentrated on processor
energy management since the seminal work in [Weiser et al., 1994], which has
led to a wide range of complex and flexible policies that perform fine-grain se-
lection of processor power states — sleep states as well as as well as dynamic
voltage and frequency settings —, while striving to mitigate the possible perfor-
mance losses (e.g., [Flautner and Mudge, 2002,Govil et al., 1995,Snowdon et al.,
2009, Weissel and Bellosa, 2002]). Similar investigations have been made for
memory controllers, where intelligent data placement and scheduling can help to
increase idle times of individual memory banks [Delaluz et al., 2001,Delaluz et al.,
2002,Lebeck et al., 2000], and for peripheral devices such as hard disks, where, in
addition to ordinary spin-down and dynamic rotation policies [Li et al., 1994, Lu
et al., 2000, Gurumurthi et al., 2003], energy-aware caching and pre-fetching can
help to increase disk idle times [Papathanasiou and Scott, 2004, Zhu et al., 2004]
even further. In light of the interdependency between energy effects and applica-
tion behavior, many other approaches have investigated, how applications and the
operating system can interplay in a coordinated way to forecast periods of idleness
and underutilization [Anand et al., 2004, Flautner and Mudge, 2002, Heath et al.,
2002, Sachs et al., 2004, Weissel et al., 2002].

Again, with growing complexity and increasing importance of the server space,

31

32 CHAPTER 2. BACKGROUND AND RELATED WORK

the policies of energy management changed. While the traditional opinion has
been that idle periods in server workloads are too short for spin-down policies to
become applicable [Carrera et al., 2003, Zhu et al., 2005], more recent studies on
productive servers show that server workloads do show diurnal pattern variations
that are sufficiently high to allow typical mobile disk power-management schemes
to be applied [Narayanan et al., 2008]. Similarly, the traditional opinion has
been server workloads are typically structured as multiple-application programs,
thus server power management should place its focus on system-level rather than
application-centric policies [Lefurgy et al., 2003]. More recent studies again
show, that taking into account application behavior can indeed enable better en-
ergy management for servers and data centers [Kansal and Zhao, 2008,Mandagere
et al., 2007,Raghavendra et al., 2008]. Finally, in presence of multiple devices and
computers with different characteristics, many approaches have investigated how
applications and request traffic can be allocated and balanced across devices and
computers, thereby reducing power and power peaks [Colarelli and Grunwald,
2002, Felter et al., 2005, Kumar et al., 2003, Zhu et al., 2005] as well as heat and
heat peaks [Gomaa et al., 2004, Merkel and Bellosa, 2006, Moore et al., 2005].

Discussion

All the discussed approaches for traditional operating systems have in common,
that they heavily focus on energy-management algorithms and policies, but take
a centralized operating-system structure for granted. As such, they are not pre-
cluded from being applicable to modular operating systems per se; however, they
do not address the specific problems that arise if the operating system consists of
several layers and is distributed across multiple components, as modular operat-
ing systems do. We conjecture that much of the existing body of research can be
applied to modular operating systems as well – provided properly designed mech-
anisms overcoming the problems of modularization are in place. It is our key goal
to provide such a surrounding framework enabling different energy-management
mechanisms in modular operating systems. We evaluate our framework in a re-
alistic modular operating system and for different physical devices and different
energy-management policies (see the following chapters). Naturally, given the
wide range and technical complexity of existing energy management schemes for
modern operating systems, it was impossible for us to substantiate that our ap-
proach is generic and flexible enough to fit every imaginable requirement. We
still see our work as a first important step towards the development of energy-
management schemes for modular operating systems.

32

2.5. RELATED APPROACHES 33

2.5.2 Energy Management for Vertically Structured Systems

Vertically structured operating systems are one representative of modular operat-
ing systems, albeit the modularization occurs in a single “direction” only. The
idea of vertically structuring an operating system originally stems from research
in the area of microkernels [Engler et al., 1995] and multi-media operating sys-
tems [Leslie et al., 1996]. The fundamental approach is to layer the system into
a small kernel at the bottom, applications at the top, and protocol stacks, user-
level drivers, and other system libraries in between, with the advantage that such
a structure allows multiplexing all resources at a low level, and moving kernel
services into user-level libraries. Unlike microkernel-based systems, vertically
structured systems abandon shared operating-system components or servers, and
require the functionality typically performed by the kernel to be executed within
each application itself. As a result, most resource and energy consumption can be
accounted to individual applications, and there is no significant anonymous con-
sumption anymore. Such a structure can enable accurate and easy accounting and
pricing of energy, as demonstrated in a research effort for the Nemesis operating
system [Neugebauer and McAuley, 2001]. A big limitation of vertical structur-
ing, however, is that it trades off freedom in the design space of modularization
against better facilitation of accounting. In contrast, it was one of the key goals
of our work to explicitly account the energy spent in more complex shared ser-
vice and driver components, since such components are common in other forms
of modular operating systems.

2.5.3 Energy Management for Virtualized Systems

In terms of resource management, virtualization environments resemble the struc-
ture of vertical operating systems: a hypervisor or host operating system also
multiplexes system resources at a low level, and lets each virtual machine use its
own protocol stack and services. Scheduling occurs in layered, hierarchical fash-
ion, with the hypervisor, guest kernels, and applications being stacked on top of
each other. In addition, host-level resource management occurs independent from
guest operating systems, permitting virtual components to recursively implement
their own strategy.

However, with the ongoing trend in virtualized environments to restrict the hy-
pervisor support to a minimal set of hardware and to perform most of the device
control in unprivileged driver domains [Fraser et al., 2004,LeVasseur et al., 2004],
virtualized environments have abandoned the pure principles of vertically struc-
turing, in favor of a multi-server like structure, where shared service components
run atop the actual hypervisor. Hosted virtualization solutions such as Virtual-
Box [Sun Microsystems Corporation, 2009] or VMware workstation [VMware

33

34 CHAPTER 2. BACKGROUND AND RELATED WORK

Inc., 2009c], a popular solution for end-user and workstation systems, show a
similarly loose vertical structuring: a small host kernel module is responsible for
world switches, but all other virtualization functionality is contained in a host ap-
plication relying on the capabilities of the fully-fledged host kernel. Either way,
virtual machine monitors layer the operating system stack, and, incidentally, mod-
ularize it. As such, they can be regarded as a modular operating system, albeit with
strict interfaces based on hardware semantics.

In light of the ongoing trend to virtualization, research has already investi-
gated whether and how energy-management issues change. Many of the existing
efforts have focused on the ability of virtualization to encapsulate a whole ap-
plication stack and how it can be leveraged for server energy management: that
is, virtual machines can be moved around easily and are an ideal container for
dynamic, energy-aware workload placement [VMware Inc., 2007, Nathuji and
Schwan, 2008, Nathuji et al., 2008, Raghavendra et al., 2008, Tolia et al., 2009,
Verma et al., 2008, Verma et al., 2009].

Fewer studies have been performed on how the modularization of operating
system caused by virtualization changes the mechanics of operating-system en-
ergy management. Recently, Wang and colleagues proposed a cluster-level ar-
chitecture that coordinates power and performance management of virtual ma-
chines within and across physical computers [Wang and Wang, 2009]. The most
prominent work in this area, however, has been done by Nathuji and colleagues.
In his PhD thesis and publications, Nathuji investigated mechanisms for coor-
dinated power management between diverse management components that exist
across system layers, again within and across physical computers [Nathuji, 2008].
Particularly with regard to virtual-machine environments, his work explores how
processor–power-management policies in the virtualization layer can coordinate
with guest application policies via virtualized processor power states [Nathuji and
Schwan, 2007]; how token-based processor scheduling schemes help power bud-
geting across virtualized applications and the computer hardware [Nathuji and
Schwan, 2008]; and how platform power budgets in virtualized systems can in-
corporate quality-of-service hints from guest operating systems [Nathuji et al.,
2009].

Since our work explicitly encompasses virtualization, much of the existing
findings are applicable to our goal of providing energy-management capabilities
for modular operating system as well. Our work is different in several aspects:
First, while Wang, Nathuji, and colleagues are focused on virtualization solutions
only, our work also investigates and evaluates aspects of modular operating sys-
tems not directly related to virtualization. For example, their energy-management
mechanisms and policies proposed are solely based on virtualized devices such as
virtual processors; our work also investigates the case where a microkernel pro-
vides more fine-grained abstractions such as kernel threads and light-weight com-

34

2.5. RELATED APPROACHES 35

munication. Second, the works by Wang, Nathuji, and colleagues were heavily
centered around processor power management; in contrast, our work also explores
management of peripheral devices such as hard disks. Third, many of the mecha-
nisms proposed in their work were explicitly designed to leverage existing hyper-
visor mechanisms for energy management: Wang and colleagues used the credit
scheduler in the Xen hypervisor [Xen.org, 2009] for carrying out their processor
power management decisions. Nathuji and colleagues also used existing mecha-
nisms where possible: mapping virtual power states to physical power settings and
scheduling parameters in [Nathuji and Schwan, 2007] was mostly done using ex-
isting Xen mechanisms; the quality-of-service-aware power budgeting mechanism
in [Nathuji et al., 2009] was based on the capabilities of Hyper-V to cap processor
utilization of individual virtual processors. Nathuji and colleagues deliberately
made the decision to use existing mechanisms, in order to permit their findings to
be applied the wide range of virtualization solutions currently deployed or under
development [Nathuji and Schwan, 2007]. In contrast to all those approaches, it
was our explicit goal to explore how resource and energy-management primitives
can be designed to work across module boundaries, without restricting ourselves
to existing ones.

2.5.4 Energy Management for Microkernel-Based Systems
Finally, some previous approaches have investigated how energy management can
be integrated into microkernel-based modular operating systems. In the following,
we will discuss them and relate them to our own work.

Two prominent and long standing microkernel implementations for embedded
systems are Symbian OS and QNX. The Symbian Operating System, a microkernel-
based system for mobile phones, has a feature-rich power-management subsystem
designed to enable controlling the hardware power-management capabilities, ex-
tending the battery life time, and managing the user’s perception of the phone
operational state. Its user interface comprises of both system calls and up-calls:
system calls enable applications to initiate device standby, to manage wakeup
events, or to register notifications; up-calls, in turn, allow the kernel to notify
applications on power-related events such as system standby. The core power-
management functionality is implemented within the kernel, both for processor
and peripheral devices; device-specific kernel extensions, called power handlers,
encapsulate low-level device management code and communicate with the rest of
the kernel through well-defined interfaces. Interfaces and extensions are imple-
mented using C++ language constructs [Sales, 2005].

Similarly, the power-management subsystem of QNX, a real-time microkernel
operating system for embedded devices and mission-critical applications, defines
a set of mechanisms that enables developers to control and manage power in their

35

36 CHAPTER 2. BACKGROUND AND RELATED WORK

devices. Akin to the goals of our work, and in contrast to Symbian OS, the QNX
framework avoids imposing a power policy on applications. Instead, it lets de-
velopers create the policies based on their own application-specific needs. To
that end, the framework supports a user-space power-manager application called
power server, which coordinates the power management across client applications,
the kernel, and device drivers (which are not part of the kernel in QNX). The
framework also provides libraries to establish well-defined power-management
interfaces between the involved components [QNX Corporation, 2009, Ethier,
2004].

Both the Symbian and QNX power-management subsystems share many of
the goals and ideas underlying our own work; still, there are some differences:
both frameworks heavily focus on low-power states of the hardware such as de-
vice standby and sleep states; to our best knowledge, they do not pay attention to
the problem of energy accounting and budgeting in modular operating systems.
Also, neither of the two approaches was explicitly designed with virtualization
in mind — despite the growing importance of virtualization solutions even in the
embedded area [Heiser, 2008, Heiser, 2009].

Finally, the study by Lawitzky and colleagues [Lawitzky et al., 2008] focuses
on integrating a power-management subsystem into an embedded real-time op-
erating system based on the OKL4 microkernel [Open Kernel Labs, 2009]; their
approach combines dynamic frequency and voltage setting with deadline-based
real-time scheduling. Our work differs from theirs in two aspects: first, their
approach focuses more on the algorithms and policies of processor power man-
agement, but leaves the actual implementation in the kernel. In contrast, our work
investigates how energy management and can be exposed from the kernel and de-
vice drivers in order to provide more flexibility in terms of energy-management
policies. Second, their approach focuses on processor power management, while
our work also explores power management of peripheral devices.

2.5.5 Summary
To summarize, approaches relevant and related to our own work fall into four
categories: approaches for traditional operating systems, approaches for verti-
cally structured system; approaches for virtualized systems, and approaches for
microkernel-based systems.

Approaches to power management in traditional operating systems do not ad-
dress the specific problems of operating-system modularization. We conjecture
many of those approaches, particularly their policies and algorithms, are valid
and applicable in modular operating systems in principle, provided a system-level
support for modular power management is in place; it is our key goal to provide
such a surrounding and enabling framework.

36

2.5. RELATED APPROACHES 37

Approaches for vertically structured systems, at least in their pure form, ren-
der it hard to achieve resource and energy accountability for shared drivers and
operating-system services. In contrast, it was one of the key goals of our work to
explicitly track and account the energy spent in service or driver components.

Approaches for virtualized systems share many goals, insights, and ideas of
our own work; however, those approaches are typically focused on virtualization
systems only, and do not address the problems and specifics of other instances of
modular operating systems, such as microkernel-based systems. Also, many of
the proposed schemes mechanisms were explicitly designed to leverage existing
system-level resource-management primitives where possible; in contrast, it was
our explicit goal to explore how resource-management primitives can be changed
or transformed to allow exposed energy management across module boundaries.

Finally, approaches for microkernel-based systems are typically geared to-
wards embedded computers such as mobile phones; as such, they heavily focus
on extended battery lifetime, by exploiting low-power states of the hardware; in
contrast, our work also concentrates on the problem of distributed energy account-
ing and budgeting in modular operating systems, and on the problems arising if a
virtualization layer is integrated into the operating-system stack.

37

38 CHAPTER 2. BACKGROUND AND RELATED WORK

38

Chapter 3

Energy-aware Modular Operating
Systems

In this section, we present the design of a novel framework for managing energy
in distributed, multi-layered operating-system environments, as they are becom-
ing common in today’s computer systems. Our framework strives to enable en-
ergy awareness and energy management if the resource-management subsystem
is distributed and scattered among operating system modules rather than being
centralized and monolithic. The presented approach targets multi-component and
multi-layered operating systems; concept-wise, we do not limit ourselves to spe-
cific scenarios such as the server or mobile domain; we believe our findings to
be valid and applicable to any modular operating system, whether it may run on
a mobile device or on a server. The chapter is organized as follows: Section 3.1
presents an overview, which defines the problem we intend to solve and the de-
sign goals we strive to obey, and introduces the key concepts of our approach.
Section 3.2 presents our general model for energy management in modular op-
erating systems. Section 3.3 presents our exposed and modularized approach to
energy accounting. Section 3.4 presents our exposed and modularized approach
to energy allocation. Section 3.5 explains the design of two interaction protocols
that coordinate how energy-management data and decisions are propagated be-
tween different modules. Finally, Section 3.6 details how we deal with virtualized
resources and devices, respectively the energy aspects thereof.

39

40 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

3.1 Overview
Our approach strives to enable energy awareness and energy management if re-
source-management subsystems are distributed and scattered among operating-
system modules rather than being centralized and monolithic; to that end, it pro-
vides the mechanisms needed for communicating energy-management–related in-
formation between modules; for overcoming the semantic loss of energy-mana-
gement information and structure induced by module isolation; and for dealing
with the increasing complexity and interdependency of multiple notions and hi-
erarchies of energy-consuming activities on the one hand, and the varying types,
sharing levels, and paths to hardware devices on the other hand.

3.1.1 Goals

We begin by stating a set of primary design goals our approach should reflect:

Flexibility in energy-management algorithms and objectives Our approach
must be flexible enough to support diversity in energy-management sche-
mes. Specifically, the approach should be flexible in terms of manage-
ment objectives, and in management algorithms. Primary objectives of
computer energy management are reducing power consumption and heat,
avoiding power and temperature peaks, and enabling energy budgeting and
accounting. There exists a variety of algorithms to achieve those energy-
management objectives; a valid solution must be flexible and extensible
enough to suit the diversity of both objectives and algorithms.

Efficient support for modularity and isolation Modern operating systems con-
sist of multiple components isolated from each other. Any approach to
managing energy in a modular operating system must provide interfaces
that allow overcoming the semantic loss between modules; it must perform
efficiently across isolation boundaries and protection domains; and it must
comprise all the different types of resources, activities, and their interde-
pendencies. However, the approach must also retain the desired isolation
properties of modular operating systems, and enable preserving isolation
guarantees for energy and thermal characteristics across activities and the
computer users running them.

Preserve compatibility and enable customizability Finally, modern operating-
system environments often employ some form of virtualization to preserve
compatibility to legacy code; at the same time, special interfaces and ab-
stractions such as a native programming interfaces and abstractions allow

40

3.1. OVERVIEW 41

the system to remain open to customization. Hence, distributed energy man-
agement must cater for both appropriate virtualization and compatibility of
energy effects, and for managing energy in presence of custom operating-
system abstractions and mechanisms.

3.1.2 Approach
We present a novel framework for managing energy in distributed, multi-layered
operating systems. The framework provides the following key contributions:

A Model for Modularization-Aware Energy Management As first contribution,
we model the operating system as a set of modules comprising resources,
activities, and energy-policy managers; the energy management then be-
comes a feedback loop involving one or more of such operating-system
modules. We furthermore propose to solely rely on the notion of energy
as the base abstraction. Energy quantifies the physical effects of power con-
sumption in a distributable way and can be partitioned and translated from
a global, system-wide notion into a local, component or user-specific one.

Exposed and Distributed Energy Accounting As second contribution, we pro-
pose a distributed energy-accounting approach, which accurately tracks back
the energy spent in the system to originating activities. In particular, the
presented approach incorporates both the direct and the side-effect energy
consumption spent along the path from an application down to the hard-
ware; such a path may involve transitioning through system-service mod-
ules, virtualization layers, or subsequent driver components, and thus result
in additional energy consumption on other devices.

Exposed and Distributed Energy Allocation As third contribution, we propose
to expose suitable resource and energy allocation mechanisms from drivers
and other resource managers to the respective energy-management subsys-
tems. Exposed allocation enables dynamic and remote regulation of energy
consumption in a policy-neutral way, allowing policies and algorithms to
be contained in separate modules, where they can be tuned or exchanged
individually.

Energy-Management Interaction Protocol As the fourth contribution, we ex-
plore two suitable interaction protocols for communicating energy-manage-
ment information in a modular operating system. Exposing mechanisms for
energy accounting and allocation requires propagating energy-accounting
state and resource-allocation decisions between involved modules. Differ-
ent communication protocols are thinkable; we postulate that the optimal

41

42 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

protocol is largely defined by two opposing factors, the timeliness require-
ments of the energy policies, and the performance overhead induced by
module isolation. We explore two different protocols, a synchronous and an
asynchronous variant.

Virtualization of Energy Effects As fifth and final contribution, our framework
supports accounting and allocation of energy not only for physical devices
but also for virtual devices. Platform virtualization is a convenient mech-
anism for enabling legacy support while advancing the actual operating-
system structure underneath; supporting a notion of virtual energy provides
the additional benefit of a development path towards fine-grain energy-
aware resource management for virtualized applications. Energy-awareness
in a guest operating system is not only beneficial for hosting legacy appli-
cation workload; with the ongoing trend to perform the device control in
unprivileged driver domains [Fraser et al., 2004, LeVasseur et al., 2004],
it also allows drivers and service modules running in virtual machines to
leverage the energy-virtualization capabilities for managing their own ser-
vices.

3.1.3 Scope of the Approach

The presented approach targets multi-component, multi-layered, and multi-server
operating systems, including microkernel-based and hypervisor-based operating
systems, and with or without platform virtualization layers. We evaluate our ap-
proach on a single-node, x86-based, stationary computer system (See Section 5).
Conceptually, however, we are not limiting ourselves to specific scenarios such as
the server or mobile domain, and believe our findings to be valid and applicable
to any modular operating system, whether it may run on an embedded device or
on a large server system. Conversely, we are not focusing on energy-management
problems that are particular to specific hardware scenarios such as preserving bat-
tery life on mobile systems or balancing temperatures across multi-processor or
multi-node systems. Since few research approaches have focused on the area of
energy management for modular operating systems so far, our approach focuses
on system-level support for energy management, that is, on mechanisms and in-
frastructure rather than on policy and strategies. We hope that our findings may
serve as a starting point, or piece in the foundation of modular operating-system
energy management.

42

3.2. A MODEL FOR MODULAR ENERGY MANAGEMENT 43

3.2 A Model for Modular Energy Management

Current approaches to operating-system energy management are tailored to sin-
gle building-block operating-system designs, where one kernel instance manages
all software and hardware resources. Our first step towards energy management
for modularized operating systems is to break up this centralized system-design
paradigm, and to instead model the operating system as a set of modules and
subsystems. Each of the operating system modules has a specific task; some are
responsible for controlling a hardware device; others export a service, a set of li-
brary functions, or other software resources for use by activities. As the operating-
system tasks are distributed, so are the energy-management subsystems: Control
and monitoring of hardware power and temperature states reside within the driver
modules controlling the actual devices, while control and monitoring of applica-
tions are managed by the modules exporting and managing the notions of activity
in the system.

Energy-Management Components

We propose a unified energy-management model, which strives to reflect the dif-
ferent notions of activities and energy consuming resources, as well as their isola-
tion and interdependencies. The model is illustrated by Figure 3.1; it consists of
resources and resource drivers, client activities, and policy managers:

Policy
manager

Resource driver 1

Resource driver 2

Energy-consuming
 resource 2

energy accounting

Energy-consuming
 resource 1

Client
Client

Client Activity

energy allocation

Figure 3.1: A model for modular energy management. Resource drivers are re-
sponsible for managing hardware or software resources respectively; the energy
consumption of resources is accounted back to the original clients. Energy man-
agement is modeled as feedback loop performing resource allocation based on
incoming accounting and monitoring data; policy managers represent the policies
and strategies used to implement the feedback loop; all modules may (but need
not) reside in different components or protection domains.

43

44 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

Resources represent energy-consuming devices or software abstractions. Exam-
ples are hardware devices such as processors, main memory, or disk de-
vices, and software abstractions such as communication channels, or virtual
devices. Resources are controlled and catered for by a resource provider,
or resource driver; the primary task of the driver is control the hardware or
software resource and to multiplex client activity among it. A main charac-
teristic of resources and providers is that they can be stacked: that is, low-
level resource providers export rudimentary hardware abstractions (e.g., a
virtual network or disk device); higher-level resource providers refine and
export them as more elaborate abstractions (e.g., as socket, or file).

Client Activities represent consumers of resources and thus clients of resource
providers. We treat energy consumption and heat dissipation as the result
of such resource consumption. Examples of client activities are processes
or threads, as defined by UNIX or Windows, or more complex containers
such as a whole process hierarchy belonging to an application or even a
complete guest operating system. As with resources and providers, client
activities can be stacked upon each other, and an activity may consume
low-level resources to provide higher-level resources. As an obvious result,
client activities can act as resource provider themselves as well.

Policy managers represent the subsystems responsible for deciding in which per-
formance or power state the hardware should be put into, and how alloca-
tion of resources to activities should take place. In centralized operating
systems, the policy-management subsystem is entangled with the resource-
provider subsystems in the kernel. In contrast, modular operating systems
may feature multiple policy-manager components, at different position in
the hierarchy and with different scopes, each responsible for a set of subor-
dinate resources and their energy consumption.

3.2.1 Unified Notion of Energy

Objectives, policies, and mechanisms of operating-system energy management
are diverse; the underlying management infrastructure must be unified and gen-
eral enough to encompass that diversity. Energy accounting, budgeting, and other
application-centric aspects of energy management furthermore require that the
management infrastructure allows the effects of energy consumption to be at-
tributed to different applications or users.

We therefore propose to use the notion of energy as the base abstraction in
our system. Our idea of using energy as base unit is inspired by the currentcy
budgeting model in ECOSystem, although ECOSystem is tailored towards mono-

44

3.2. A MODEL FOR MODULAR ENERGY MANAGEMENT 45

 SR1
HR1 10J

Energy HR1

HW-Resource Provider 1

Client Activity 2

Hardware
Resource 1

Hardware
Resource 2

Software
Resource 1

Software
Resource 2

Client Activity 1

Client Activity

Policy
Manager

Constraint
CA1: < 5J/s
CA2: < 10J/s

HR1: <5J/s [<20°C]
Constraint

 CA1 CA2
HR2 10J 10J

Energy SR1

 CA3 CA4 CA5
SR2 2J 4J 4J

Energy SR2

 SR1 SR2
HR2 5J 10J

Energy HR2

HW-Resource Provider 2

SW-Resource Provider 2

SW-Resource Provider 1

Client Activity Client Activity 3

Figure 3.2: Using energy as basic notion for distributed energy management.
Energy acts as a quantifiable and partitionable base unit, for different types of
software and hardware resources and activities. Resource providers perform ac-
counting and balances on the base of energy. Policy managers express energy-
management goals only via energy constraints. Temperature effects and goals
must be translated using thermal device models.

lithic operating systems, as detailed in Section 2.5 [Zeng et al., 2003]. Two rea-
sons speak in favor of such an approach: First, energy allows the infrastructure
to quantify and manage power consumption in a uniform way, and serves as a
coherent base metric to unify and integrate management schemes for different
hardware devices. For example, using energy as the base unit enables accumu-
lating the (energy) consumption of a client activity among multiple devices to a
single, but meaningful value. Second, energy quantifies the energy effects in a
way that they are partitionable among multiple clients and users. Again, to give
an example, resource providers can use energy as a base unit to divide their own
energy allotments among the client activities they serve (see Figure 3.2).

However, using energy as sole unit also requires that energy-management poli-
cies and goals are expressed in form of energy constraints. In the following sub-
section, we will explain how this can be done for the other commonly observed
and explored energy effect in computers: the temperature.

45

46 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

3.2.2 Translating Temperature and Thermal Models

With its unifying and partitioning properties, energy is in contrast to thermal con-
ditions of the computer; device temperatures are neither unifying nor partition-
able. Operating temperatures of different hardware devices such as processors,
main memory, and disks, are highly dependent on device-internal physical char-
acteristics such as thermal conductivity and absorption of the materials used. As
such, they are not comparable, let alone accumulatable, for different types of de-
vices. Moreover, while temperature variations go along with variations in energy
consumption, their time scales are very different: energy consumption reacts and
changes quickly depending on the activity and workload on a device, while tem-
perature changes take significantly more time [Merkel and Bellosa, 2006]. As a
consequence, attributing the temperature of a device to individual activities using
it is much harder, if not impossible, than to attribute its energy consumption.

Fortunately we can avoid using temperature as a base unit while still encom-
passing thermal effects in our system. Thermal effects can be translated and ex-
pressed as energy constraints, by means of a thermal model. Research has pro-
posed several approaches to modeling thermal behaviors of computer systems and
devices: Skadron and colleagues model thermal behavior in architecture-level
power and performance simulators [Skadron et al., 2003b]. Bellosa and col-
leagues derive, based on a thermal model, the temperature of a processor from its
energy consumption at runtime [Bellosa et al., 2003]. Merkel and colleagues use
a similar model to distinguish hot and cold processes [Merkel and Bellosa, 2006].
Heath and colleagues have built a complete software suite that emulates temper-
atures based on simple layout, hardware, and component utilization data [Heath
et al., 2006].

Our framework requires that thermal conditions and constraints are expressed
as energy conditions and constraints; doing this allows us to attribute thermal
behavior such as device temperatures to individual activities, and also allows us
to translate global thermal constraints into energy budgets specific to individual
activities and to individual devices.

3.2.3 Energy-Management Feedback Loop

As described in Section 2.2, the main tasks of operating-system energy manage-
ment are to monitor and control energy-related aspects of both hardware devices
and the applications running atop. We formulate the procedure of energy manage-
ment as a feedback loop consisting of three steps:

Step 1 Monitoring energy consumption and accounting it to client activities.

46

3.3. EXPOSED AND DISTRIBUTED ENERGY ACCOUNTING 47

Step 2 Analyzing the accounting data, and making an allocation decision based
on an energy policy.

Step 3 Implementing the decision by modifying hardware power states or by al-
locating or reallocating energy-consuming resources to activities.

In the first step, the system must determine the current energy state of each
resource and account it to the originating activities using the resource. This step
must be performed by the resource drivers responsible for managing the particular
hardware or software resources. In the second step, the system must propagate the
energy-accounting information to the associated policy managers; their task is to
analyze the accounting data and use it as input for the particular policy. If needed,
the policy managers make a decision to change hardware power or performance
states, or to (re-)allocate resources. In the final step, the policy managers carry
out their decisions, by propagating them to the respective resource drivers, which
eventually put them through he on the resources.

Modular Policy Management

The basic rationale behind our model is the rule of separation of policy from mech-
anism, a long-standing [Levin et al., 1975] and common [Raymond, 2004] guide-
line for operating-system design. Our basic assumption is that energy-management
policies change more rapidly than the underlying mechanisms they require, since
they depend on the objectives and on the deployment environment of the operating
system. Separating policy from mechanism thus allows to preserve flexibility and
customizability of energy management. We therefore model the policy as sepa-
rate energy-policy manager, whereas the two other steps, energy accounting and
allocation, are mechanisms, bound to the respective resource providers.

Since the system is distributed, energy-policy managers cannot assume direct
control or access over resources; instead, they require remote mechanisms to ac-
count and allocate the energy. Hence, by separating policy from mechanism, we
translate our general goal of distributed energy management into the two specific
aspects of exposed and distributed energy accounting and exposed and dis-
tributed energy allocation; these are the subject of the following sections.

3.3 Exposed and Distributed Energy Accounting
Energy accounting refers to the systematic monitoring of data relevant for the
energy-management process. It has been identified as a crucial task for operating-
system energy management for quite some time [Neugebauer and McAuley, 2001].
Our model uses energy as basic unit, thus we narrow the accounting process down

47

48 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

to the problem of providing accurate data on the energy consumption per client
activity and resource.

Ultimately, the purpose of energy accounting is to answer questions like “How
much power is a given resource consuming at the moment?” or “How much of
the power consumption on a given resource can be attributed to a given activity?”.
Indirectly, energy accounting should also answer questions like ”How much heat
is generated on a given device?” However, we leave such subsequent questions up
to the policy managers, which we thus treat a black box in terms of accounting.
The energy-accounting process is illustrated by Figure 3.3; it consists of three sub-
steps : i) determining or estimating device-energy consumption; ii) attributing it to
individual activities; and iii) exposing the accounting records to policy managers.

3.3.1 Determining Device-Energy Consumption
Many modern computers and devices have limited or no hardware support for de-
termining energy consumption at runtime. While they often provide feature-rich
facilities to measure performance-related statistics (such as performance counters
in processors [Levine and Roth, 1997, Intel, 2010]), they typically lack compara-
ble capabilities for power or energy consumption. Computers and devices do often
feature some form of thermal sensors [Naveh et al., 2006]; however, raw thermal
information is of little use for accounting purposes, as it cannot be partitioned
among client activities.

As a result, energy-estimation schemes have become a crucial task for energy
management. Research has proposed several estimation models for computer de-
vices, including models for processors [Bellosa et al., 2003,Joseph and Martonosi,
2001], and for peripheral devices such as disks [Allalouf et al., 2009] or network
interface cards [Zeng et al., 2003]. Those models typically leverage hardware ef-
fects that are not directly related to energy but measurable in software. Examples
of such effects are processor performance states, measurable via hardware coun-
ters, and device usage, measurable by monitoring client activity in software. From
these effects, the estimation models derive the energy consumption, which often
includes calibration of some sort. As device types — sometimes even devices
of the same type —, often vary in terms of measurable effects and their corre-
lation with power consumption, individual estimation schemes are necessary for
individual types of devices.

From these observations we draw two important conclusions for our manage-
ment model: first, determining or estimating the energy of a physical device is a
low-level, hardware-specific task that requires detailed knowledge of the partic-
ular device. Second, the actual estimation model and subsequent measurement
tasks may vary among device types, sometimes even between individual devices
of the same type. Our framework therefore requires each driver of an energy-

48

3.3. EXPOSED AND DISTRIBUTED ENERGY ACCOUNTING 49

consuming device to account its own energy consumption to client activities; we
leave it open to the implementation, how the driver achieves this requirement. We
will present two implementations for processor and disk devices when presenting
our prototype in Chapter 4.

3.3.2 Attributing Device-Energy Consumption
Once current device-energy conditions are known, the next step consists of at-
tributing them to client activities. Device drivers usually deal with low-level no-
tions of client activities such as threads (for processors), address spaces (for main
memory), or device requests (for disks, network interfaces, or other peripheral
devices). Ultimately, however, goal is to attribute energy to logical entities such
as applications, users, user groups, or other principals and domains, which are
vessels, or containers, encompassing the low-level notions [Banga et al., 1999].

 Disk-Resource
 Provider

Policy
Manager

Disk

req
req

Client Activity 2

Client Activity 1

attribute

propagate

 Client1 Client2
Disk 3+2J 3+3J

estimate

access idle

Figure 3.3: Exposed energy-accounting process. Device-energy consumption
is estimated by means of an estimation model. The energy consumption is at-
tributed to activities, for example when requests are issued or finished. Requests
are mapped to activities by means of a resource domain identifier, and separated
into an idle and an access energy portion. Energy-accounting records are finally
exposed and propagated to energy-policy managers.

To match diversity in logical principals, we introduce the construct of a schedul-
ing domain. For resource drivers performing the energy accounting, the domain is
merely an attribute of their low-level client activities, emitted to policy managers
for identification. A management interface enables the scheduler to choose differ-
ent (or common) identifiers for different client activities. A policy manager can
denote the same identifier for several address-spaces belonging to a single appli-
cation, or for several virtual processors belonging to a single virtual machine. The

49

50 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

result of such grouping is that resource drivers will charge energy consumption to
the same scheduling domain. This approach can be regarded as a basic adoption of
the resource-container concept in [Banga et al., 1999], although with much fewer
semantics.

When attributing energy consumption to client activities, we break down the
energy consumption into access and idle consumption. Access consumption con-
sists of the energy spent when using the device. This portion of the energy con-
sumption can be reduced by controlling client activity (e.g, the number of client
requests issued over time). Idle consumption, in turn, is the minimum energy
consumption of the device, which it needs even when it does not serve requests.
Energy management cannot control this portion; however, it still needs to be ac-
counted and attributed properly to the originating activities.

Many modern hardware devices support multiple active power states: modern
processors, for instance, support different frequency and voltage settings [Naveh
et al., 2006]. Similarly, although not yet available by default, multi-speed disks
allow lowering the spinning speed during phases of low disk utilization [Guru-
murthi et al., 2003]. Also similarly, multi-technology disk systems integrating
magneto-electronic and solid-state hardware, enable multiple device states with
respect to performance and energy consumption [Narayanan et al., 2009]. Obvi-
ously, using multi-activity devices have implications on both the accounting and
the allocation step of our energy-management model. To retain fairness, we pro-
pose to decouple the power state of a multi-speed device from the accounting of
its idle costs. Clients that do not use the device are charged for the lowest active
power state. Higher idle consumptions are only charged to the clients are actively
using the device.

3.3.3 Exposing Device-Energy Consumption
Having determined and attributed energy consumption, the resource driver prop-
agates the accounting records to the corresponding policy managers. The policy
managers leverage the accounting information to retrieve a global view on the
energy and thermal conditions for subordinate devices and activities.

An important question with regard to the exposure of energy consumption is
when a resource driver should communicate those internal records to external pol-
icy managers. The internal events when accounting data accrues are ultimately
dictated by the way the driver-internal resource allocation takes place, which is
implementation-specific. Examples of such events are the generation or termina-
tion of resource requests, for instance, when processor threads start up or termi-
nate, or when network interface requests are issued or completed. However, the
propagation of accounting data does not necessarily have to occur at those inter-
nal events; rather, the propagation should take place whenever the energy-policy

50

3.3. EXPOSED AND DISTRIBUTED ENERGY ACCOUNTING 51

managers require the data. We therefore propose different management protocols,
which are unified for both energy accounting and allocation. We will discuss them
later, in Section 3.5.

3.3.4 Energy Accounting of Software Resources
Our energy-management model allows hierarchical arrangements of resources and
activities: resource providers may become activities on other resources them-
selves; however, as a result, activities of interest for accounting may operate on
software resources rather than directly on raw hardware.

 SR1
HR1 6+10J

Policy
Mgr.

 CA1 CA2
HR1 3+6J 3+4J
HR2 1+3J 1+2J

idle access

SW-Resource Provider 1

Client Activity 2

SW-Resource 1

Client Activity 1

 SR1
HR2 2+5J

Energy HR1

Energy SR1

Energy HR2

HW-Resource Provider 1

HW-Resource Provider 2

HW-Resource 1 HW-Resource 2

Figure 3.4: Recursive accounting of software energy consumption; for each client,
the resource driver reports idle and active energy to the energy manager. The
driver is assumed to consume resources itself, whose energy consumption is ap-
portioned recursively to the two clients.

To account the energy consumption of a software resource, our approach must
incorporate the energy spent by a given activity in all services, and by all devices
along the path from the software resource down to hardware devices. For that pur-
pose, all resource drivers perform energy accounting in our infrastructure, those
responsible for managing a raw hardware device, and those responsible for soft-
ware resources. Since provisioning software resources may involve interacting
with several different other resources, we perform recursive accounting of the en-
ergy spent in the system: at the lowest level, each driver of a raw physical device
determines the energy spent for fulfilling a given request and passes the cost infor-
mation back to its client. If the driver requires other devices to fulfill a request, it
charges the additional energy to its clients as well. As a result, recursive account-
ing yields a distributed matrix of software-to-hardware transactions, consisting of
the idle and the active energy consumption of each physical device required to

51

52 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

provide a given software resource (Figure 3.4). Each device driver is responsible
for reporting its own vector of the physical device energy it consumes to provide
its software abstraction. Since idle consumption of a device cannot be attributed
directly to requests, each driver additionally provides an “electricity meter” per
clients. The meter indicates the client share in the total energy consumption of the
device, including the cost already charged with the requests. A client can query
the meter each time it determines the energy consumption of its respective clients.
Note that, with infrequently used devices, such a scheme may induce a fairness
problem in that the first client using a device after a long period of idleness may
get accounted all the idle energy waster previously. At present, however, we leave
this problem open and use the same idle accounting scheme independent of the
utilization patterns of individual devices.

Finally, we also note that in monolithic operating systems, resource consump-
tion paths may involve recursive consumption of other resources as well: think
of a UNIX network socket as an example; provisioning the socket not only re-
quires energy for networking interface card but also processing energy for queu-
ing requests, checksumming, et cetera. However, monolithic operating systems
are typically vertically structured, with the kernel at the bottom always executing
on behalf of the application atop having invoked it. In modular operating systems
such simple layering is impossible. A software resource may be serviced by a
separate resource provider layered alongside the clients in a separate protection
domain rather than below, in the kernel.

3.4 Exposed and Distributed Energy Allocation
To enable flexible and extensible definition of energy policies, our framework
requires each driver to expose suitable resource-allocation mechanisms to external
policy managers. Policy managers leverage the allocation mechanisms to ensure
that energy consumption matches the desired constraints.

Resource-allocation mechanisms relevant for energy management can be dis-
tinguished into hardware and software mechanisms. Hardware mechanisms typi-
cally provide a means to change power consumption of a device, offering several
modes of operation with different energy and performance coefficients. The main
reason to offer hardware mechanisms is to enable the operating system to dynami-
cally adapt the hardware performance to the actual load situation, avoiding energy
waste. Software-based mechanisms, in turn, rely on the assumption that energy
consumption depends on the level of utilization, which is ultimately dictated by
the number of device requests. Adapting the request rate in software then helps to
control the energy consumption of hardware.

Again, our model uses energy as basic unit, and we narrow the task of ex-

52

3.4. EXPOSED AND DISTRIBUTED ENERGY ALLOCATION 53

 CPU-Resource
 Provider

Policy
Manager

CPU

Client Activity 2 Client Activity 1

Pending decision

?
Response

Client1/Client2?

Thread2

Client1
PSTATE

Thread1

Figure 3.5: Exposed energy-allocation process, illustrated using the example of
processor scheduling. Events where processor-allocation decisions are pending
are propagated from the processor-resource provider to associated policy man-
agers. Allocation decisions are performed by the policy managers based on their
energy policies. The decisions are re-injected into the resource provider and then
carried out by its internal dispatching logic. Decisions contain updated scheduling
state as well as updated processor power or other hardware state.

posed energy allocation down to the problem of providing accurate means for
controlling energy consumption per activity and resource. We leave subsequent
questions (e.g., thermal control or balancing) up to the policy managers. The
energy-allocation process is illustrated by Figure 3.5; it consists of the following
sub-problems: i) exposing pending resource-allocation decisions from resource
providers to policy managers ii) re-injecting the responses back from policy man-
agers to resource providers.

3.4.1 Exposing Resource-Allocation Decisions
To regulate energy spent on a device or resource, each driver must vector pending
allocation decisions to the policy managers. Typical allocation decisions pose
questions such as “Given two runnable activities and a resource, which should
be scheduled?” or “Given a set of runnable activities and a resource, in which
hardware state should the resource be put into?”.

Having received a pending resource-allocation decision, the policy manager
first answers the decision based on the gathered energy-accounting state and its

53

54 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

own policy. It then re-injects updated resource-allocation decisions, thereby en-
suring that resource and energy consumption matches the desired constraints.
Resource-allocation responses typically contain updated information about how
the driver should schedule requests to its resource(s), until the next decision arises.

Note that our framework provides allocation mechanisms for both hardware
devices and, where required, for software resources, which corresponds to our
recursive approach for energy accounting of software resources. Regulating the
client activity on a software resource implicitly regulates the energy consumption
of all subordinate hardware devices required to provide that software resource.

3.4.2 Interface-Design Considerations
Designing the actual interface for propagating allocation decisions, responses, and
power state changes is implementation-specific; we present implementations for
both processor and disk devices when presenting our prototype, in Chapter 4. To
identify activities, we continue to use the scheduling domain construct. When
exposing resource-allocation decisions, the driver uses the domain identifier to
denote the resource consumers involved in the particular decision.

To give an example of such an interaction, a processor driver exposes preemp-
tions and blockings of its subordinate virtual processors to a scheduling-policy
manager. Thread preemption or blocking may occur, for example, if a thread in-
vokes a blocking system call, or if the processor allotment of the current thread
ends and a new one must be selected for execution. Having received notice about
the pending decision, the scheduling policy manager inspects its own per-thread
energy-accounting records and selects an appropriate new thread for execution,
according to its scheduling policy. It propagates the selection to the resource
driver, which, in turn, realizes the policy by scheduling the thread accordingly.

In the example above, pending decisions are exposed at the time of their occur-
rence, that is, the instance a thread blocks or is preempted. Likewise, the response
follows immediately upon the call as well. Such a protocol may become costly,
if resource driver and policy manager reside in different isolated components. We
therefore propose to use different interaction protocols, with varying degree of
sychronizity, depending on the requirements of the particular energy management
policy. We will discuss them in detail in the following paragraph.

3.5 Energy-Management Interaction Protocol
Separating policy from mechanism in energy accounting and allocation requires
us to propagate information about energy accounting and allocation between re-
source drivers and policy managers. Multiple communication schemes are think-

54

3.5. ENERGY-MANAGEMENT INTERACTION PROTOCOL 55

able to coordinate the interaction between resource drivers and policy managers;
we refer to those schemes as energy-management interaction protocols.

The accrual of accounting data and the occurrence of allocation decisions are
defined by resource and driver-internal characteristics. The propagation of those
events to policy managers, however, does not necessarily need to occur at the same
time. Policy managers may reside in a different protection domain, and crossing
boundaries can incur significant processing overhead; a protocol that immediately
pushes out accounting or allocation events whenever they arise also has the highest
performance overhead.

Resource
 driver
 Energy-consuming

 resource

Client Client

?

Energy
manager

Resource
 driver
 Energy-consuming

 resource

Client Client pending decision

?

resolve

Energy
manager resolve

record

synchronous

asynchronous

Figure 3.6: Adaptive, exposed resource-management communication. En-
ergy managers can trade timeliness for performance by choosing between low-
overhead, asynchronous, and higher-overhead, synchronous communication.

We postulate that the actual accuracy and granularity requirements ultimately
depend on the energy-allocation policy. We assume that the time span between
accounting and allocation events in the resource provider, and the need to pro-
cess them in the policy manager is variable, and propose to trade timeliness for
performance whenever the particular policy permits it. In our framework, we pro-
pose two different energy-management interaction protocols, a synchronous and
an asynchronous variant, each with different characteristics in terms of accuracy
and performance. The protocols are illustrated by Figure 3.6. We leave it up to
policy managers to decide which protocol to use for which particular resource.
We will present implementations and an evaluation for both protocols and for
both processor and disk devices when presenting our prototype in Chapter 4. In
the following, we explain the mechanics and characteristics of the two protocols.

55

56 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

3.5.1 Synchronous Interaction Protocol
The synchronous protocol is based on a rendezvous between the resource provider
and the policy manager at the time a particular allocation event occurs. The pro-
tocol consists of a callback from the resource provider to the policy manager and
a callback response from the manager to the provider. The callback contains ac-
counting and scheduling state normally internal to the resource provider; the call-
back response, in turn, resolves the pending scheduling decision(s) and potentially
changes hardware power states. Since protection domains must be crossed for that
purpose, the protocol may become costly. On the other hand, it permits resolving
pending resource decisions under direct participation of the policy manager.

3.5.2 Asynchronous Interaction Protocol
The asynchronous protocol is based on the idea of tracing events without propa-
gating their occurrence anywhere. The protocol design and mechanics are inspired
by previous work on using event logging for multi-processor scheduling [Stoess
and Uhlig, 2006, Uhlig, 2005], albeit that work focused on multi-processor sys-
tems rather than on energy management. Asynchronous tracing records the oc-
currence of a particular scheduling event within a data structure shared between
resource provider and policy managers. Shared memory does not require transi-
tion between protection domains, thus the mechanism allows low-overhead, bulk
data transport of energy-accounting and other resource state. The state can later
on be evaluated and inspected by the policy manager. Since the policy manager
does not directly participate in the communication then, pending resource deci-
sions cannot be resolved instantly.

We therefore additionally declare default, shortcut policies that can be used
by the resource providers together with the asynchronous communication. If the
policy manager selects the asynchronous protocol for a given resource, it implic-
itly agrees to the shortcut policy that allows the resource provider to resolve the
pending decision internally. In other words, the policy manager must map its own
energy-management goals to the local shortcut policy in the resource driver.

3.5.3 Discussion
Our adaptive communication scheme is based on the insight that there is a fun-
damental trade-off between exposed and timeliness resource management. Our
scheme integrates that trade-off into the resource-management process by offer-
ing it to the policy manager as a “knob”. To give an example, our system allows
the policy manager responsible for processor scheduling to let the kernel (i.e., the
processor resource provider) either synchronously vector out any thread schedul-

56

3.6. ENERGY VIRTUALIZATION 57

ing decision and its resolution — a scheme widely referred to as scheduler activa-
tions [Anderson et al., 1991] — or to let the kernel apply an internal default policy
such as a proportional-share scheduling scheme [Waldspurger and Weihl, 1994],
but, at the same time record the occurrence of scheduling decisions together with
other accounting state to a shared buffer. The former scheme allows strict isola-
tion with respect to processor energy (or time, the policy itself is exchangeable)
for the price of an expected performance decrease, while the latter scheme expect-
edly increases performance but gives up fine-grain energy isolation.

Note that, at present, we leave the question of how and when the particular
protocol should be chosen open; future work must investigate how the selection
of protocol can be facilitated in a flexible way, for example, by offering a dynam-
ically configurable system, or by allowing different scheduling domains to use
different protocols at runtime. As of now, however, our approach is limited, both
in design and evaluation, to an exploration of the two protocols.

3.6 Energy Virtualization
As stated in Section 3.1, a widely used vehicle to provide compatibility in op-
erating systems is platform virtualization, which provides one or more identical
copies of the underlying hardware and enables arbitrary applications and operating
systems to be executed atop without or with very few modifications. Virtualiza-
tion layers have become very popular, and can be found in many traditional and
modular operating systems. Virtual environments are a striking example where
distributed, multi-layered energy management can be beneficial: on the one hand,
only guest operating systems can pursue fine-grain energy management and keep
up guest-intrinsic application or user specific service demands. On the other hand,
only the hypervisor and host-level resource-management subsystems can control
global, machine-wide energy requirements and conditions. Host-level resource
management also remains the resort that enforces given energy requirements for
malicious, defect, or simply energy-unaware guests.

A key constraint of virtualization is that the interface between physical and
virtual world is defined through the hardware-like specification of each virtual de-
vice. This design results in a strict separation that allows guest-internal software
to execute without considering the fact that it does not run on real hardware. While
this is advantageous in terms of transparency and separation of concerns, it also
leads to semantic loss between the different levels of virtualization environments:
information does not easily pass the strict interfaces separating physical and vir-
tual worlds. The result is that resource management is separated into pieces as
well: At host-level, hypervisor and driver modules have direct control over hard-
ware devices and their energy consumption, and can obtain coarse-grained per vir-

57

58 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

tual machine information on how energy consumption is spent on the hardware.
However, the host level does not possess any knowledge of the energy consump-
tion of individual virtualized applications. The guest operating systems, in turn,
have intrinsic knowledge of their own applications, but operate on deprivileged
virtualized devices, without direct access to physical hardware.

Energy

Hypervisor

Guest OS

Net

Virtualization Layer

Disk CPU

APP APP APP APP APP APP

vNet vDisk vCPU vEnergy

Guest OS

Figure 3.7: Host-level energy-management capabilities enable coarse-grain, but
enforceable energy policies; guest-level energy-management capabilities enable
fine-grain, application-specific schemes. Virtualization of device-energy effects is
key to enable energy management for virtual devices.

To overcome the semantic loss, our framework supports energy accounting
and allocation not only for physical devices but also virtual devices. That is, our
framework enables guest operating systems using a virtual device to determine
their own energy share on that device. For virtualization environments, the ad-
vantage of having support for virtualized energy is actually twofold: first, it en-
ables guest-level resource-management subsystems to leverage their application-
specific knowledge for performing fine-grain energy management. Second, it en-
ables drivers and other operating-service modules also running in a virtual ma-
chine to recursively determine the energy for their own services.

The main difference between a virtual device and other software services and
abstractions lies in its interface: a virtual device closely resembles its physical
counterpart. For virtualization of energy effects, however, this constraint is some-
what artificial, as most current hardware devices offer no direct way to query en-
ergy consumption anyway, and require estimation schemes based on other device
characteristics. For those cases, we require that the virtualization layer emulates
the relevant behavior for the virtual devices, supporting energy estimation in the

58

3.6. ENERGY VIRTUALIZATION 59

guest without major modifications to the guest’s energy accounting. Note that we
are not concerned with providing exact legacy-compatible hardware power seman-
tics for virtual devices such as the virtualized power states proposed by Nathuji
and colleagues [Nathuji and Schwan, 2007]; rather, our ultimate goal is to enable
the guest to use the same driver for virtual and for real hardware.

59

60 CHAPTER 3. ENERGY-AWARE MODULAR OPERATING SYSTEMS

60

Chapter 4

Application to an L4-Based
Operating System

Based on our design principles, we have developed a distributed, multi-level ener-
gy-management framework for a microkernel-based component operating system.
We use an instance of the L4 microkernel family as the privileged microkernel.
Our system permits the development of custom operating-system modules, but
simultaneously retains legacy compatibility to existing applications by means of
a platform-virtualization layer. Our environment runs on IA-32 hardware and
supports Linux 2.6.9 guest operating systems.

Our prototype currently supports management of two main energy consumers,
processor and disk. Processors are directly managed by the microkernel, while
the disk is managed by a special user-level driver. Our prototype supports pro-
cessor and disk-energy management both for physical and for virtual devices. To
that end, it features distributed and recursive mechanisms for accounting and al-
locating energy both to complete virtual machines and to individual virtualized
applications. Our prototype system forms an instance of a modular operating sys-
tem that can be practically used in modern computing environments. As such, we
consider it a good and realistic candidate for evaluating our energy-management
design principles and considerations.

The chapter is organized as follows: Section 4.1 presents our prototypical
architecture. Section 4.2 presents the device models we used for processor and
disk-energy estimation. Section 4.3 presents our implementation of exposed and
distributed energy accounting. Section 4.4 presents our implementation of ex-
posed energy allocation. Section 4.5 presents how we preserve compatibility to
legacy resource management, while enabling support for energy-aware improve-
ments. Section 4.6 finally explains how we implemented exemplary policies for
processor and disk-energy management, both at the host-level and at the guest-
level of our operating system.

61

62 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

4.1 Prototype Environment

Our application and evaluation prototype is a microkernel-based component op-
erating system. The system permits the development of individual, custom-built
operating-system modules and applications at user level; simultaneously, it re-
tains legacy compatibility to applications written for existing operating systems
by means of a platform-virtualization layer (Figure 4.1). Legacy compatibility
currently extends to applications built for the Linux kernel.

 L4 µ- kernel

Linux 2.6.9

APP APP APP APP APP APP APP APP

Linux 2.6.9

CPU

vDISK vCPU

VMM
vDISK vCPU

VMM Driver VM
vCPU

 VMM
DISK

Energy
Mgr.

APP APP APP APP APP APP APP APP

Native L4
App.

Figure 4.1: Prototype architecture. Our energy-management framework is inte-
grated into an L4-based component operating system. Virtualization is a key part
of the operating system, catering for both application compatibility and device
driver reuse.

We use an instance of the L4 microkernel family as the privileged microker-
nel. L4 provides core abstractions for isolation and resource management, but
leaves more complex operating-system functionality up to user-level components.
Likewise, L4 only provides basic abstractions for device isolation and interrupt
management, and leaves all other coordination of peripheral devices up to exter-
nal user-level drivers. Our platform-virtualization layer allows modified Linux
guest operating systems to run on top of L4 instead of on bare hardware. For
managing guest–operating-system instances, the prototype includes a user-level
virtual-machine monitor, which maps the virtualization logic onto L4’s core ab-
stractions. To provide user-level disk-driver services, our framework also uses
virtualization, and employs special device driver virtual machines, each of which
reuses standard Linux disk-driver logic for hardware control.

With respect to energy management, our prototype currently supports two
main energy consumers: processor and disk. To that end, our prototype imple-
ments exposed mechanisms for distributed energy accounting and allocation. For

62

4.1. PROTOTYPE ENVIRONMENT 63

policy management, our prototype features a host-level policy manager responsi-
ble for controlling the energy consumption of physical processors and disks. It is
complemented by an optional energy-aware guest operating system redistributing
its host-level power allotment among its own applications. Since the energy-aware
guest operating system requires virtualization of the energy effects of processor
and disk, our prototype also implements a recursive accounting and allocation
scheme for virtualized devices.

The remainder of this section presents our basic prototype architecture. We
first describe the principles of the L4 microkernel as they are required to under-
stand our energy-management prototype. We afterwards describe the core design
of our L4 based virtualization layer. We finally present the architecture of our
energy-management prototype which we have built on top of L4 and the and L4
virtualization environment.

4.1.1 The L4 Microkernel

L4 is the privileged kernel used in our prototypical component operating system.
Since our system features a platform virtualization layer, the microkernel also acts
as hypervisor; we will use the term microkernel to denote both. L4 was initially
developed by Jochen Liedtke at GMD, Germany, at IBM Watson Research Cen-
ter, NY, USA, and at the University of Karlsruhe, Germany. Liedtke implemented
early kernel versions in assembly code for x86 processors. Several follow-up
versions, with diverging goals, application programming interfaces, and corre-
sponding implementations, were developed at Dresden University of Technology,
Germany, at the University of New South Wales, Sydney, Australia, at NICTA in
Sydney, Australia, and at the University of Karlsruhe, Germany. At present, L4
is available for a large number of architectures and platforms, including IA-32,
AMD-64, ARM, PowerPC, Alpha, and MIPS.

L4Ka::Pistachio

In our prototype, we use a recent IA-32 implementation of the L4 microkernel,
code-named L4Ka::Pistachio. L4Ka::Pistachio is an ongoing research effort of
the System Architecture Group at the University of Karlsruhe [L4 Development
Team, 2009a]. L4Ka::Pistachio implements the L4 specification, Version X.2 Rev.
6, which is co-authored by the members of the System Architecture Group [L4
Development Team, 2009b]. We will hence use the term L4 for both the abstract
kernel and our concrete implementation.

63

64 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

L4 Mechanisms and Abstractions

L4 is a state-of-the-art microkernel, which provides a minimal set of abstractions
designed to build extensible systems on top [Liedtke, 1995]. L4 provides two core
abstractions for user-level resource management: threads and address spaces; it
further provides two mechanisms for inter-component coordination and resource
management: synchronous communication (IPC) and recursive rights delegation
(mapping); finally, it provides basic abstractions for device and interrupt handling:

Threads provide the context for three different operating-system concepts: exe-
cution, communication, and scheduling. In their first role, L4 threads serve
as the basic abstraction of user-level control flow, by referring to execu-
tion state such as instruction and stack pointer, or general-purpose registers.
In their second role, threads serve as endpoints for the kernel IPC primi-
tive. L4 therefore associates IPC state with each thread, to keep track of
attempted or ongoing IPC operations and their particular form and content.
In their last role, L4 associates scheduling information such as time-slice
lengths, time quanta, or priorities with each thread, and employs an internal
(currently priority-based round-robin) scheduler that dispatches the threads
using a default policy.

Address Spaces are the abstraction for memory protection and isolation [Liedtke,
1995]. On x86 platforms, the address space abstraction also extends to the
I/O space connecting peripheral devices [Stoess, 2002]. Thus L4 enables
isolation for memory and devices using the same core abstraction. Address
spaces are passive in that that they are not directly accessible from user
level, but only via the threads living within.

IPC is a rendezvous-based, synchronous communication mechanism in L4. Both
a send and a receive operation exist. While L4 permits sending to unique
destinations only, it allows the use of wild-cards as receive destination. As
system calls are expensive, and for reasons of atomicity, L4 also offers co-
alesced send and receive operations. L4 supports message contents of dif-
ferent complexity, with registers, strings, and virtual-memory mappings as
transferable objects. Finally, L4 supports the specification of timeouts for
blocking IPCs.

Mapping is the main primitive for user-level resource management in L4. A
mapping provides a notion of a transferable resource permission. By means
of mapping, L4 allows address spaces to transfer their right to access a given
resource — a memory page or an I/O port on x86 hardware — to other ad-
dress spaces. The resource right can either be copied into the destination

64

4.1. PROTOTYPE ENVIRONMENT 65

(meaning that it remains in the source address space), or moved (meaning
that it is removed from the source address space). Furthermore, the re-
source right can be restricted underway. As the destination address space is
free to re-map its own rights to other, subordinate address spaces, resource
mapping occurs in a a recursive manner. In L4, the mapping primitive lever-
ages the IPC mechanism presented beforehand; that is, an IPC can contain
special message items denoting a resource mapping from the source to the
destination. For revocation of rights, however, L4 provides separate, asyn-
chronous kernel primitive that does not require explicit consent from any of
the existing right receivers.

Device and Interrupt handling With respect to management of peripheral de-
vices, L4 only provides basic abstractions for device-memory isolation and
interrupt delivery, and leaves all other management up to external user-level
drivers. Isolation of I/O device memory is handled via recursive right del-
egation, as already explained. Interrupts and exceptions are handled by
means of IPC. For each external interrupt line, L4 creates an in-kernel in-
terrupt thread, which will send a special interrupt request message to an at-
tached handler thread whenever the interrupt occurs. Similarly, whenever a
synchronous processor exception occurs, L4 synthesizes an exception mes-
sage on behalf of the faulting user level thread to a designated per-thread
exception handler.

4.1.2 L4-Based Virtualization

Providing compatibility to existing and widely-used operating systems (such as
Linux or Windows) can be termed a “classic” issue for microkernel-based sys-
tems. Being able to run existing applications on a microkernel is not only desir-
able for the practical purpose of enhancing its general usability and prevalence; it
is also often a prerequisite for scientific research, since evaluation of any operating
system typically requires running standard benchmarks or near-realistic scenarios.
Consequently, approaches to shoehorning some monolithic operating system on
top of a microkernel for compatibility purposes have a comparatively long history
and tradition in the history of microkernels [des Places et al., 1996, Härtig et al.,
1997, Krieger et al., 2006]. Our prototype makes use of L4-based virtualization;
in the following, we therefore first briefly sketch the history and origins of such
approaches, and then detail our the L4Ka virtualization environment we have used
for implementation.

65

66 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

L4Linux and Derivatives

The first “virtualization” endeavor for the L4 microkernel was L4Linux, a port of
the Linux operating system on top of the L4 microkernel. L4Linux is fully binary
compatible to Linux on x86 platforms — however, the authors needed to change
a significant portion of the architecture-dependent parts of the Linux kernel code
base. Originally L4Linux was not developed with virtualization in mind; rather,
the effort was undertaken to evaluate the performance of microkernel-based sys-
tems [Härtig et al., 1997]. However, as virtual-machine monitors regained interest
afterwards, particularly those for commodity hardware platforms [Rosenblum and
Garfinkel, 2005], some debate was spent on the question whether L4Linux could
be termed a virtualization solution, and whether microkernels and hypervisors
share common goals and techniques [Hand et al., 2005, Heiser et al., 2006]. Re-
search has found that there is a substantial similarity between para-virtualization
systems and microkernel systems alike L4Linux: para-virtualization, as in in
the Xen virtual-machine monitor [Barham et al., 2003] or VMware’s VMI ap-
proach [Amsden et al., 2006], means porting an existing guest operating system
to a hypervisor; L4Linux means porting Linux to a microkernel. Moreover, there
even exist some approaches to providing true virtualization on L4 using x86 pro-
cessor extensions [Biemueller and Dannowski, 2007].

As a general result, virtually all approaches to commodity operating-system
compatibility for L4 are nowadays advocated as virtualization environments [Härtig
et al., 2005, Heiser, 2009, Uhlig et al., 2004, LeVasseur et al., 2004]. Still, how-
ever, most of those approaches — including Karlsruhe’s virtualization environ-
ment, which serves as the basis for our energy management framework — can be
seen as refinement of the original L4Linux approach.

L4Ka Virtualization Environment

Our energy-management prototype leverages the L4Ka para-virtualization envi-
ronment. The environment is developed and maintained by the L4 team at the
University of Karlsruhe; it is a derivative of the L4Linux approach, allowing modi-
fied Linux guest operating systems to run on top of L4 (Figure 4.2). At present, the
environment supports Linux a para-virtualized version of the Linux 2.6.9 kernel,
which we also use in our prototype. In the environment, the L4 kernel itself acts as
the privileged hypervisor, responsible for partitioning processor(s), physical mem-
ory, device driver memory, and interrupts. For managing guest–operating-system
instances, the environment includes a user-level virtual-machine monitor running
as a normal L4 program. The virtual-machine monitor provides the virtualization
service based on L4’s core abstractions; it can be described as an interface layer
that translates virtualization API invocations — sensitive instructions, in other

66

4.1. PROTOTYPE ENVIRONMENT 67

words — into microkernel API invocations of the underlying L4 architecture. For
performance reasons, a large fraction of the user-level translation code executes
in-place, within the address space of guest operating systems. If necessary, for
instance for reasons of security, the in-place part calls into an external monitor
module, which runs in a separate address space and has extended privileges. In
the following, we briefly explain the mechanics of the L4Ka virtualization envi-
ronment for processor and memory, as they are required to understand our im-
plementation of our energy-management prototype; more details can be found
in [LeVasseur, 2009, LeVasseur et al., 2004, LeVasseur et al., 2008, Uhlig et al.,
2004].

monitor

 L4 µ- kernel

External
Monitor

Guest OS

APP APP

CPU

APP APP APP APP

IN-PLACE VMM
main

vCPU

APP APP

top-level

Figure 4.2: L4Ka virtualization architecture. An in-place virtual-machine moni-
tor part virtualizes guest–operating-system functionality within the guest address
space, using two L4 threads, monitor and main. If necessary, for instance for rea-
sons of security, the in-place part calls into an external module, which runs in a
separate address space and has extended privileges. For each guest address space
and virtual processor, the virtual-machine monitor spawns an additional L4 thread,
to host guest user code. Each user thread on a virtual processor is dispatched by
the main thread on that processor.

Processor and Memory Virtualization

The L4Ka virtual-machine monitor virtualizes physical processors by mapping
kernel and application contexts of guest Linux instances to corresponding L4
threads. Likewise, the virtual-machine monitor virtualizes physical memory by
mapping guest kernel and application memory onto different L4 address spaces.
The resulting architecture constitutes a three-level hierarchy: At the highest level,

67

68 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

a per-processor top-level virtual-machine dispatcher thread runs in the address
space of the privileged external monitor and serves as dispatcher for virtual pro-
cessors. At the second level, each virtual processor is represented by an address
space and two threads representing the guest kernel. One guest kernel thread,
named main, serves as the execution context for the virtualized guest–operating-
system code; the other thread, named monitor, acts as the in-place resource man-
ager and scheduler of main. Finally, at the third and lowest level, the virtualization
environment spawns an L4 address space per user-level application, and, within
it, an L4 thread per virtual processor, to execute guest user code. Each user thread
on a virtual processor is scheduled by the main thread on that processor.

To give two examples how processor and memory virtualization works, let
us consider the functionality for returning from the guest kernel to a guest ap-
plication. and the workings of memory virtualization. For returning from the
guest kernel to a guest application, the virtual-machine monitor logic translates
the iret instruction, issued by the guest kernel on the main thread to transfer
control to a user-level program, into an IPC reply message to the waiting user-
level thread representing that program. The reply message transfers control from
the guest kernel’s execution context to the application that was originally selected
by the Linux kernel for activation. For memory virtualization, the virtual-machine
monitor translates the modification of a guest page table by the Linux kernel into
an invocation of the associated virtualization routine running in-place, in the con-
text of the main thread. Should the in-place module afterwards require a mapping
of physical page frame, it requests, via L4 IPC, the external monitor to grant it
access to that frame. The external monitor in turn responds to that request using
again L4 IPC and a piggybacked page mapping.

4.1.3 User-Level Device Drivers
L4 leaves most of the management of peripheral devices to user-level driver com-
ponents, and only provides basic abstractions for I/O-memory isolation and for
interrupt delivery. As a result, in an L4-based system, peripheral devices are
managed mainly by a corresponding user-level device driver. The driver must be
granted access to device registers by means of L4 mappings; also, it must register
itself as interrupt handler for device-specific interrupts. The driver is then respon-
sible for managing the low-level device functions such as hardware states, control
registers, and interrupt delivery and acknowledgement; it is also responsible for
exporting some sort of device abstraction and for mediating shared access to the
device from multiple clients. Research has explored multiple techniques to facili-
tate the development of user-level device drivers for microkernels [Liedtke et al.,
1991, Goel and Duchamp, 1996, Forin et al., 1991]. In general, however, writing
and maintaining drivers from scratch is a fairly tedious task, requiring a lot of

68

4.1. PROTOTYPE ENVIRONMENT 69

development effort both for low-level, device-specific code and for user-specific
functionality.

L4 Driver Reuse

An alternative approach to provide user-level device drivers is to reuse driver code,
for instance from operating systems with an existing driver code base such as
Linux or Windows. Many research approaches on driver reuse required a spe-
cial interface or glue code [Maren, 1999, Appavoo et al., 2002b] transplanting
the driver logic from its original environment into the microkernel world. To
overcome the problems associated with this glue code, we leverage a different
approach for driver reuse, which is — again — based on virtualization. Details
can be found in [LeVasseur et al., 2004]; shortly described, our approach runs
the unmodified device driver, together with its original operating system as a glue
layer, in a virtual machine. Porting the driver then becomes a matter of developing
a fairly simple translation layer mediating requests between clients and the guest
operating system the driver is embedded in.

4.1.4 Energy-Management Framework
Our energy-management prototype currently supports two main energy consumers:
processor and disk. In our prototype, processors are directly managed by L4,
while the disk is managed by a special device driver virtual machine implementing
the driver-reuse approach. To implement our design concepts, we have extended
the microkernel and the driver virtual machine with appropriate functionality that
provides and exports accounting and allocation of processor respectively disk en-
ergy to external policy managers.

For processor-energy accounting, we leverage an existing estimation scheme
based on hardware performance counters. For disk-energy accounting, we use a
time-based approach that attributes the disk power consumption linearly to dif-
ferent device states. To provide exposed processor-energy allocation, we have
implemented a modified version of the L4 kernel, which exports an interface to
direct kernel processor scheduling from user-level policy managers. Similarly, the
disk-driver virtual machine exposes an interface that allows disk requests from in-
dividual clients to be regulated remotely from the host-level policy manager.

Host-Level Energy Management

As a control center for host-level energy management, our prototype features a
policy manager application (hence called energy manager), responsible for con-
trolling the energy consumption of physical processors and disks. Using our dis-

69

70 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

 L4 µ- -kernel
CPU

Energy
Mgr.

 Energy-aware guest OS

APP APP APP APP

vDISK vCPU
VMM

Disk driver OS

DISK

Guest-level
Energy management

Host-level
Energy management

vCPU
VMM

Figure 4.3: A host-level policy manager controls system-wide energy con-
straints and enforces them among guest virtual machines and native L4 applica-
tions. An energy-aware guest operating system is capable of performing its own,
application-specific energy management.

tributed accounting scheme, the energy manager periodically obtains, per client
virtual machine, the processor and disk-energy consumption from the microker-
nel and disk-driver virtual machine, and matches them against a given power limit.
To bring both in line, it responds by invoking the exposed allocation mechanisms
for the processor and disk devices.

Guest-Level Energy Management

The energy manager is responsible for managing complete virtual machines and
native L4 applications. To let guest virtual machines pursue more fine-grained,
application-level energy management, we have complemented the host-level part
with an (optional) energy-aware guest operating system, which redistributes its
virtual machine wide power allotment among its own, subordinate applications.
In analogy to the host-level, where physical devices are allocated to virtual ma-
chines and L4 threads, the guest operating system regulates the allocation of vir-
tual devices to ensure that its applications do not spend more energy than their
alloted budget.

Since the energy-aware guest operating system requires virtualization of the
energy effects of processor and disk, our prototype implements the recursive ac-
counting and allocation scheme for virtualized devices. That is, the virtual-machi-
ne monitor creates, for each client virtual machine using a processor or disk de-

70

4.2. DEVICE-ENERGY MODELS 71

vice, a local view on the current energy consumption on its virtual processor or
disk devices; it thereby enables the guest to pursue its own energy-aware resource
management. The virtual energy-accounting records are based on the physical
energy records from the microkernel and disk-driver virtual machine.

Note, that our energy-aware guest operating system is an optional part of the
prototype: it provides the benefit of fine-grained energy management for Linux-
compatible applications. For all energy-unaware guests, our prototype resorts to
the coarser-grained host-level management, which achieves the constraints regard-
less whether the guest-level subsystem is present or not.

4.2 Device-Energy Models

In the following section, we present the device-energy models that we use to base
for processor and disk accounting on. We generally break down the energy con-
sumption into access and idle consumption. Access consumption consists of the
energy spent when using the device. Idle consumption, in turn, is the minimum
power consumption of the device, which it needs even when it does not serve
requests. Many current microprocessors support multiple active power modes,
and similar technology exists in multi-speed disks. There is no conceptual limit
to the number of power states, and by design, we decouple the power states of
multi-speed devices from the accounting of its idle costs. Implementation-wise,
however, we are currently limited to two device states only: access and idle.

4.2.1 Processor-Energy Model

In the following section, we will detail how we estimate the processor energy
at runtime, using an estimation model based on processor performance counters.
Current IA-32 processors do not have any support for directly determining their
energy consumption at runtime. Instead of direct measurement, our prototype
must therefore resort to an estimation scheme to monitor processor-energy con-
sumption.

Non-Linear Correlation of Processor Time and Energy

A fairly trivial approach to estimate processor energy is to assume that the process-
or-energy consumption of an activity correlates linearly with its time spent on the
processor. Research has shown that such a method tends to yield accurate and
stable results for early IA-32 architectures such as Pentium II [Rohou and Smith,
1999]. However, experiments also have shown that the approach is not accurate

71

72 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

enough for more modern IA-32 microprocessors. Even for compute-intensive ap-
plications, generating a hundred percent of processor load, the variance in power
consumption can be as much as about 20 W on a Pentium IV processor [Bellosa
et al., 2003]. This is a considerable amount, given that the idle-power consump-
tion of that processor is about 12 W. For our framework, we therefore resort to an
energy estimation scheme that is more accurate and provides a higher resolution
than the simple processor-time based approach.

Performance-Counter–based Energy Estimation

Our framework uses a different approach and bases processor-energy estimation
on the rich set of performance counters featured by modern IA-32 microproces-
sors. Originally designed for evaluating performance characteristics of processors
or the workload running atop, performance counters give detailed information on
the occurrence of processor-internal events, like past clock cycles, cache misses,
or pipeline stalls. As such, however, performance counters can also be (ab-)used
for estimating, at runtime, who has used how much processor energy on the pro-
cessor.

Event Pentium IV Pentium D
2 GHz [nJ] 3 Ghz [nJ]

time-stamp counter 6.17 14.2
unhalted cycles 7.12 12.9

µop queue writes 4.75 0.8
retired branches 0.56 8.4

mis-predicted branches 340.46 234.2
memory retired 1.73 5.98

MOB load replay 29.96 43.2
ld miss 1L retired 13.55 8.81

Table 4.4: Set of performance-counter events and their energy contributions on
two Pentium microprocessors.

Performance-counter–based processor-energy estimation has been explored
and documented in [Bellosa et al., 2003, Joseph and Martonosi, 2001, Kellner,
2003]; for the sake of clarity, and since we use a custom calibration scheme, we
will shortly describe the approach here. With the performance-counter approach,
each performance-counter event is assigned a weight representing its contribu-
tion to the overall processor energy. The weights are retrieved by means of of a
calibration procedure, which counts events during test runs of applications with
constant and known power consumptions. For m sample applications and n dif-

72

4.2. DEVICE-ENERGY MODELS 73

ferent events, the calibration results in an energy vector ~e:

~e = (e1, e2, ..., em)

respectively a matrix Pmn denoting n performance-counter–event occurrences
for each of the m sample applications:

Pmn = [pi,j] (1 ≤ i ≤ m, 1 ≤ j ≤ n)

The problem of estimating the energy from performance counters can be de-
scribed as an optimization problem: find n unknowns solving m equations. For
the sake of simplicity, we assume linear correlations between performance-counter
events and energy, thus the problem constitutes an (over-determined) system of n
unknowns and m linear equations. A solution for such a problem can be ap-
proximated using standard mathematical algorithms such as the Least-Squares
method or the Simplex algorithm for linear-programming problems (see, e.g.,
[Rao, 1996]). We used the Least-Squares method in our implementation, which
tries to find ~xT = (x1, x2, ..., xn) minimizing the sum of the squared differences
between the data values and their corresponding modeled values:

min
~x
||Pmn~x− ~e||2

To simplify estimation, and since we assume each performance-counter event
to contribute positively to the overall energy consumption, we further add the
following constraint:

xi ≥ 0 (1 ≤ i ≤ n)

Performance-Counter Calibration for Pentium Processors

Table 4.4 lists the weights for a Pentium IV processor and for the Pentium D pro-
cessor that we used for evaluation. The weights for the Pentium IV processor were
taken from the study in [Kellner, 2003], which uses about a dozen different sample
applications stressing different parts of the processor. To determine the weights
for the Pentium D processor used in our evaluation, we ran similar calibration ex-
periments using the same sample applications as in the study, but with a different
solver: while the original study used dqed, a netlib Fortran subroutine imple-
menting the least squares method [Hanson and Krogh, 1995], we used the llsp
subroutine from OpenOpt, a universal numerical optimization package that inter-
faces with many different algorithms for solving optimization problems [National
Academy of Sciences of Ukraine, Cybernetics Institute, 2009].

73

74 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

The particular selection of performance counters is a matter of experiment-
ing empirically during calibration. Quite promising correlations were found with
counters for ALU integer operations, load/store operations and cache references
[Bellosa et al., 2003]. The sample applications consist of three groups: the first
group stresses the processor ALU, for instance by operating entirely on registers
using instructions such as bswap or xor; the second group operates on registers
and memory (including caches); the third and final group consists of other pro-
grams performing standard computer algorithms such as a checksum algorithms,
or the cryptographic algorithms SHA-1 and RIPEMD-160.

Note that, while both the Pentium IV and the Pentium D offer a fairly large
amount of eight performance-counter registers that can be read out concurrently,
many modern processors such as Intel Atom or Core 2 processors only two such
registers. Recent research has shown, however, that a more elaborate and general
calibration procedure than the one described above can yield viable energy models
even with the limited number of registers available in contemporary microproces-
sors [Snowdon, 2009]. We chose the current model for pragmatic reasons, since
an implementation was already available to us; we do not see, however any con-
ceptual limit to extend our current formulation with more sophisticated models or
calibration schemes.

Energy Estimation at Runtime

Once the weights are determined, estimating the energy at runtime becomes a
rather simple task (See Figure 4.5): to obtain the processor-energy consumption
during a certain period of time, for instance, during execution of a virtual ma-
chine, the framework sums up the number of events that occurred during that pe-
riod, multiplied with their corresponding weights. Distinguishing idle from access
energy is also straightforward: the time-stamp counter, which counts clock cycles
regardless whether the processor is halted or not, yields an accurate estimation of
the processor’s idle consumption.

4.2.2 Disk-Energy Model
Disk drives are a major contributor to the overall power consumption of a com-
puter system. Although a typical modern disk drive shows a power consumption
in the range of 5 W-15 W, which may seem relatively low if taken individually, the
storage subsystem of a server or data centers typically consists of a fairly large
amounts of such disks, often organized in an array or a multi-tier disk hierarchy.
As a result, the overall power consumption of the storage subsystem can be sub-
stantial, particularly in server systems and data centers, and may very well exceed
the power consumption of the processors [Carrera et al., 2003, Schulz, 2007].

74

4.2. DEVICE-ENERGY MODELS 75

VM

CPU

VM

R

entry exit

CPU

Virtual Machine

Processor

8 0 0
2 2 0

9 3 1

5 9 0

2 1 0
2 4 0

8 9 1

9 9 0

CPU

VM

Figure 4.5: Runtime energy estimation of a virtual machine via performance coun-
ters. The advances of performance-counter values between context switches re-
flect the energy consumption of each individual virtual machine.

As with processors, existing disk systems typically do not provide support
(e.g., sensors) for measuring their energy consumption at runtime. We therefore
again resort to an estimation scheme to monitor disk-energy consumption. We
currently do not consider mechanisms for suspending a disk in our implementa-
tion; for lack of availability, we also do not consider multi-speed disks as well.
We thus distinguish two different power states only: access and idle. Note again
that, as with the processor-energy estimation, we did not focus on developing or
exploring accurate disk-energy modeling schemes in our work; rather, we chose
an estimation model easy to implement but sufficiently accurate. We again do not
see any conceptual limit, however, to extend or replace the current formulation
with more sophisticated schemes, such as the one recently proposed in [Allalouf
et al., 2009].

Constant and Fixed Portions of Disk-Energy Consumption

Storage components consume energy when idle, which fits our model that breaks
device-energy consumption into an idle and an access portion. The idle part is re-
quired to drive the spindle and electronic control components; since we currently
do not support spinning down disks in our implementation, we assume that the
idle part does not vary with changing workloads at runtime. The access portion,
in turn, is induced by disk seek resulting from disk activity, and must be attributed
to those applications causing it.

75

76 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

Request-Based Disk-Energy Estimation

Our disk-energy estimation model differs from the processor model in that it uses
a time-based approach rather than event sampling. Instead of attributing energy
consumption to events, we attribute energy consumption to different device states,
and calculate the time the device requires to transfer requests of a given size.

To determine the transfer time of a request — which is equal to the time the
device must remain in active state to handle it —, we divide the size of the re-
quest by the disk’s transfer rate in bytes per second. Although we ignore several
parameters that affect the energy consumption of requests, (e.g., seek time or the
rotational delays), our evaluation shows that our simple approach is quite accu-
rate. Our observation is generally substantiated by the study in [Zedlewski et al.,
2003], which indicates that a 2-parameter model (distinguishing between idle and
access energy) is inaccurate only because of sleep-modes, which we disregard for
our approach anyway.

4.3 Distributed Energy Accounting
Our framework requires each driver of a resource to determine its energy con-
sumption and to account the consumption to clients. Resources can be physical
devices, like a disk or network controller, or refined software abstractions, like
socket or a virtualized hardware device. Clients may be guest applications, native
L4 applications, and complete virtual machines.

For accounting energy consumption of physical devices, our infrastructure
uses the device-energy models presented above: Access consumption is charged
directly to each request, after the request has been fulfilled. The idle consumption,
in turn, cannot be attributed to specific requests; rather, it is alloted to all clients
in proportion to their respective utilization. For use by the energy manager and
others, the driver grants access to its accounting records via shared memory and
updates the records regularly.

In this section, we explain how we implemented runtime energy accounting
and allocation for processor and disk devices. We detail how these mechanisms
enable both virtual-machine wise and native-application wise energy accounting
for hardware devices, and recursive energy accounting for virtualized software
devices.

4.3.1 Processor-Energy Accounting

Our processor-energy model relies on collecting performance-counter values at
runtime. To accurately attribute the processor energy to virtual machines or other

76

4.3. DISTRIBUTED ENERGY ACCOUNTING 77

user contexts, we record the performance counter at times of preemption respec-
tively dispatching of L4 threads. The recording mechanism instruments context
switches between L4 threads within the microkernel; at each switch, the cur-
rent values of the performance counters must be recorded and associated with
the thread preempted at the switch. Since our policy management resides out-
side the kernel, the records must be made accessible to user level, for use by
policy-manager modules. According to the design principle of adaptive energy-
management interaction protocols (Section 3.5), we provide two different mecha-
nisms for energy accounting, a synchronous and an asynchronous variant.

Synchronous Propagation of Performance Counters

The synchronous variant exports performance counters at the time of occurrence,
that is, on context switches. The variant consequently requires each L4 context
switch to be propagated to user level. However, a context switch constitutes both
an accountingx and an allocation event — an old thread is preempted and a new
thread must be selected — and is therefore important both for exposed energy ac-
counting and allocation. We therefore use a unified notification scheme for both
accounting and allocation, called preemption IPC. We present the scheme in detail
in Section 4.4.1; shortly described, a preemption IPC is a message that L4 to a des-
ignated user-level scheduler thread, which serves as the user-level policy manager
of the preempted thread (Figure 4.6). Being notified about the context switch, the
policy manager then takes a snapshot of the performance-counter values relevant
for energy management and records the snapshot into a shared memory buffer for
analysis.

 L4 µ- kernel

Energy
Mgr.

CPU
PMC

Preemption IPC
Reply

VM1
VM2 L4 APP

Figure 4.6: Synchronous processor-energy accounting: L4 vectors thread pre-
emption events to user-level policy managers. The policy manager records a
performance-counter sample, estimates the energy consumption of the past in-
terval and re-injects pending scheduling decisions with a reply.

77

78 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

Asynchronous Propagation of Performance Counters

Since control transfers between kernel and user space are costly, our framework al-
ternatively allows the policy manager to select an asynchronous accounting mech-
anism, which separates the occurrence of performance-counter accumulation (at
the time of context switches) from their analysis and the derivation of the energy
consumption. The price for retrieving records asynchronously is a potential time
delay since the policy manager is not notified instantly.

 L4 µ- kernel

Energy
Mgr. PMC

Buf record

CPU
PMC

VM1
VM2 L4 APP

Figure 4.7: Asynchronous processor-energy accounting: L4 collects the
performance-counter traces at thread preemption events and records them in a
memory buffer, which is also accessible to the policy manager. Individual L4
threads can be pooled based on their scheduling domain identifier; L4 only records
transitions between domains.

The asynchronous accounting variant instruments context switches between
L4 threads; at each context switch, the instrumentation code records the current
values of the performance counters into a buffer in memory, which is shared be-
tween L4 and the user-level policy manager (Figure 4.7). The instrumentation
code also records the scheduling-domain number of each thread, which can be
freely set by the policy manager. We assume that the identities of individual
threads within a scheduling domain are not relevant to the user-space policy man-
ager; for reasons of performance, L4 therefore ignores context switches between
such threads and only records those transitions taking place in between domains.

Processor-Energy Estimation and Accounting

With either of the mechanism, the user-level energy manager is provided with
a record of performance-counter snapshots at the time of thread (or scheduling-
domain) context switches. To estimate and account processor-energy consump-
tion, the energy manager must analyze the record and derive from it the consump-
tion of each client virtual machine or application. To attribute a portion of the esti-
mated energy consumption to an application or virtual machine, the manager sums

78

4.3. DISTRIBUTED ENERGY ACCOUNTING 79

up the advances of performance counters during scheduling times of all threads
belonging to the corresponding application or virtual machine. The advances are
weighted with energy weights according to our processor-energy model.

Rather than charging the complete energy consumption to the active virtual
machine or application, the energy manager subtracts the idle cost and splits it
between all virtual machines and applications running on that processor. The time-
stamp counter, which is included in the recorded performance counters, provides
an accurate estimation of the processor’s idle cost:

/*
* apportion idle energy (pmc[0] = TSC) to all clients

*/
for (id = 0; id < max_clients; id++)

client[id].pidle +=
weight[0] * pmc[0] / max_clients;

/*
* calculate access energy (pmc[1] ... pmc[8])

* charge to current clients

*/
for (p=1; p < 8; p++)

client[cur_id].paccess += weight[p] * pmc[p];

4.3.2 Disk-Energy Accounting
To provide disk service, our framework reuses legacy Linux disk-driver code by
executing it inside a virtual machine, an approach originally proposed in [LeV-
asseur et al., 2004]. The driver functionality is exported via a translation module
that mediates requests between the device driver and external client virtual ma-
chines (Figure 4.8). The translation module runs within the same address space
as the device driver and handles all requests sent to and from the driver by means
of an extra server thread. It receives disk requests from client virtual machines,
translates them to basic Linux block I/O requests, and passes them to the original
device driver. When the device driver has finalized the request, the module again
translates the result and returns it to the client virtual machine.

Request-Based Disk-Energy Accounting

The translation module has access to all information relevant for accounting the
energy dissipated by the associated disk device. We implemented accounting
completely in this translation module, without changing the original device driver.
The module estimates the energy consumption of the disk using the energy model

79

80 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

Disk-Driver VM

Energy
Mgr.

Disk

 Translation Module

req

Linux

Disk-Energy
Trace Buffer

Rec

VM1 VM2

req

Figure 4.8: Disk-energy accounting. The translation module in the driver esti-
mates the disk energy, apportions it to clients, and stores the energy-accounting
data in a memory buffer shared between the driver and the energy manager.

presented above. When the device driver has completed a request, the transla-
tion module estimates the energy consumption of the request, depending on the
number of transferred bytes:

/* estimate transfer cost for size bytes */
client[current].daccess += (size / transfer_rate) *
(active_disk_power - idle_disk_power);

Because the idle consumption is independent of the requests, it does not have
to be calculated for each request. However, the driver must recalculate it periodi-
cally, to provide the energy manager with up-to-date energy-accounting records of
the disk. For that purpose, the driver invokes the following procedure periodically
every 50 ms:

/*
* estimate idle energy since last time

*/
idle_disk_energy = idle_disk_power * (now - last)

/ max_clients;
for (i = 0; i < max_clients; i++)

client[i].didle += idle_disk_energy;

Propagation of Disk-Energy Records

Similar to propagation of processor-energy–accounting records, our prototype
also provides two different protocols for propagating disk-energy–accounting records,
a synchronous and an asynchronous variant. Again, we use a single mechanism

80

4.3. DISTRIBUTED ENERGY ACCOUNTING 81

for disk-energy accounting and allocation, and present the details of the mecha-
nism later when detailing exposed disk-energy allocation (Section 4.4.2). In short,
both the synchronous and asynchronous variant use a shared-memory segment
to access energy accounting records. Whenever a request has been finished, the
translation module records the access costs of the request into the segment, to-
gether with an identifier of the disk client. The idle-accounting procedure in the
listing above also uses the segment to share idle-energy records with the energy
manager. The difference between synchronous and asynchronous variants is that
the synchronous one additionally lets the translation module send a notification
message to the energy manager whenever a disk client issues requests to the client.

4.3.3 Recursive Energy Accounting
In the design chapter, we have argued that modular operating-system environ-
ments require energy management not only for raw hardware devices, but also
for refined software resources (Section 3.3). Particularly in virtualization environ-
ments, we must enable both host-level and guest-level energy management, and
cater for managing energy consumption of both physical hardware devices and
of virtual software devices. Our framework therefore supports energy accounting
not only for physical devices but also for virtual devices.

For that purpose, the framework is capable of attributing the energy consump-
tion of virtual devices to originating guest applications running within a virtual
machine. Conceptually, such energy accounting works similar to physical devices,
where energy consumption is attributed to native L4 applications or to complete
virtual machines. However, an important difference remains: while a physical
device request consumes energy on the particular device only, fulfilling a virtual
device request issued by a client may involve interacting with several different
physical devices. With respect to energy accounting of virtual devices, it is there-
fore not sufficient to focus on single physical devices; rather, accounting must
incorporate the energy spent recursively in the virtualization software layer or
subsequent service layers and modules used to provide software resources.

Recursive, Request-Based Disk-Energy Accounting

We therefore perform a recursive, request-based accounting of the energy spent in
the system. Since our framework currently supports accounting of processor and
disk energy, the only case where recursive accounting is required occurs in the vir-
tual disk driver located in the driver virtual machine. The cost for the virtualized
disk consists of the energy consumed by the disk and the energy consumed by the
processor while processing the requests. Hence, our disk driver also determines
the processing energy for each request in addition to the disk energy as presented

81

82 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

above. Like with accounting of physical disks, we again instrumented the trans-
lation module in the disk-driver virtual machine to determine the active and idle
energy of the processor per client virtual machine.

Driver VM Energy
Mgr.

vCPU DISK

vDISK1 vDISK2

 vdisk1 vdisk2
disk 3+2J 3+3J
CPU 4+4J 4+6J

 L4 µ -kernel
CPU

 driver VM
CPU 6+12J

idle

access

Figure 4.9: Recursive accounting of disk-energy consumption; for each client
virtual machine and physical device, the driver reports idle and active energy to
the energy manager. The disk driver is assumed to consume 8 J processor idle
power, which is apportioned equally to the two clients.

The Linux disk driver combines requests to get better performance and de-
lays part of the processing in work-queues and tasklets. When determining the
active processor energy, it would be infeasible to track the processor-energy con-
sumption of each individual request. Instead, we retrieve the processor-energy
consumption at times and apportion it between the requests. Since the driver
runs in a virtual machine, it relies on the energy-virtualization capabilities of our
framework to retrieve a local view on its own processor-energy consumption (we
present details on our implementation of energy virtualization in Section 4.5.2).

The Linux kernel constantly consumes a certain amount of energy, even if it
does not handle disk requests. According to our energy model, we do not charge
idle consumption with the request. To be able to distinguish the idle driver con-
sumption from the access consumption, we approximate the idle consumption of
the Linux kernel when no client virtual machine uses the disk.

To account active processor consumption, we assume constant values per re-
quest, and predict the energy consumption of future requests based on the past.
Every 50th request, we retrieve the driver’s processor-energy consumption and
adjust the expected cost for the next 50 requests. The following code illustrates
how we calculate the cost per request. In the code fragment, the static vari-
able unacc cpu energy keeps track of the deviation between the consumed en-
ergy and the energy consumption already charged to the clients. The function
get cpu energy() returns the energy (idle and active) consumed by the virtual
processor since the last query:

82

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 83

/*
* subtract idle processor consumption

* of driver virtual machine

*/
unacc_cpu_energy -= drv_idle_cpu_power * (now - last);

/*
* calculate cost per request

*/
num_req = 50;
unacc_cpu_energy += get_cpu_energy();
unacc_cpu_energy -= cpu_req_energy * num_req;
cpu_req_energy = unacc_cpu_energy / num_req;

4.4 Exposed, Energy-Aware Resource Allocation
Like with accounting, our framework requires each driver to expose its resource
allocation mechanisms to policy-manager subsystems possibly residing in dif-
ferent modules or protection domains. Policy managers leverage the allocation
mechanisms to ensure that device-energy consumption matches the desired energy
policies. In this section, we first explain how we implemented exposed processor-
energy allocation by means of a user-controlled processor scheduling facility for
L4; we then detail our device driver enhancements for exposed disk-energy allo-
cation.

4.4.1 User-Controlled Processor Scheduling for L4

The time a particular activity spends on a processor directly correlates directly
with the energy consumption and heat dissipation it causes there (although the
correlation does not need to be linear, as we have explained in Section 4.2.1).
Controlling processor scheduling is therefore paramount for any processor-energy
policy management. In the following section, we will describe the user-controlled
processor scheduling facility we have designed and implemented for the L4 mi-
crokernel. We will begin with describing the limitations of existing kernel-based
schedulers and then motivate, how we enhanced flexibility and extensibility of
processor allocation through user-controlled processor scheduling. Again, our
prototype provides two different scheduling protocols, a synchronous and an asyn-
chronous variant, which we will describe in given order. Note, that our approach
focuses on the software side of the scheduling problem, since hardware aspects
such as setting different frequency or voltage states can be easily exposed by giv-

83

84 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

ing access to the respective hardware registers, or by encapsulating the functional-
ity in a simple interface. Once user-level policy managers have sufficient knowl-
edge and control to define and dispatch different processor-scheduling domains
— which our software approach, in turn, strives to provide —, they can freely use
such hardware mechanisms in addition to the software control.

Limitations of Kernel-Based Processor Scheduling

Traditionally, processor scheduling has been performed at kernel level, mostly for
reasons of performance and complexity. Processor scheduling is widely regarded
as too entangled with other operating system concepts — control flow, commu-
nication, accounting, interrupt handling, to name a few — to be easily removed
without degrading efficiency. For that reason, virtually all microkernels that are
of practical relevance employ a kernel scheduler, with the rationale that a micro-
kernel must be efficient to be usable at all.

However, kernel-managed scheduling requires a kernel policy that allocates
threads to processors. As long as user-level resource management conforms to
that kernel policy, kernel scheduling is convenient, and enables development of
concurrent programs or overlapping computations. However, as soon as user-
level management claims freedom in scheduling, the kernel policy bars the way
to the flexibility the microkernel ultimately strives to provide.

Flexibility through User-Directed Processor Scheduling

In our framework, all energy-policy management resides outside the kernel. As a
result, kernel-level scheduling with a specific standard scheduling policy is partic-
ularly burdensome. We therefore explore the design of a microkernel architecture
that strives to expose all scheduling from the kernel to user level. The key idea
of our approach is simple: whenever the microkernel encounters a situation that
is ambiguous with respect to scheduling, we hand over the decision to user-level.
For that purpose, we enhance all kernel operations with an additional interface that
allows the kernel to resolve the ambiguity based on the user’s decision. While the
general idea of exporting kernel scheduling to the user is not new [Appavoo et al.,
2002a, Tucker and Gupta, 1989, Anderson et al., 1991, Marsh et al., 1991, Leslie
et al., 1996, Ford and Susarla, 1996], existing approaches are limited to single
protection domains. In contrast, our approach relies on a generic scheme that is
neutral to address spaces or other protection mechanisms.

User-directed scheduling exports the control over processor resource manage-
ment to applications, allowing them to develop domain-specific policies (Figure
4.10). The advantage of user-level scheduling is obvious: It permits flexible defi-
nition of the systems’ scheduling behavior. The potential drawback is evident as

84

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 85

well: It increases kernel–user interaction and thus potentially reduces efficiency.
Since both flexibility and performance are desirable properties for our framework,
we explore two different points in the trade-off space, a synchronous and an asyn-
chronous scheduling protocol. The synchronous, pure user-level scheduling vari-
ant, exports all scheduling decisions from the kernel to user-level schedulers. Such
a solution provides the flexibility of adapting the scheduling policy to the target
scenario without changing the microkernel; it allows, for instance, to exchange
an energy-driven scheduler with a more throughput-oriented one for those envi-
ronments where processor-energy management is not required. Also, it allows
individual policies to be applied in different scheduling domains, enabling, for
instance, guest operating systems to accurately pursue and direct their own inter-
nal, resource management. As the synchronous protocol induces substantial per-
formance overhead, we additionally offer an asynchronous scheduling protocol,
which retains a kernel-level scheduling policy for performance reasons, but still
keeps user-level schedulers informed about the occurrence and history of kernel
scheduling events via an asynchronous tracing mechanism.

To summarize, we are aware of potential performance problems of user-direct-
ed scheduling; nevertheless, we expect our work to be an insightful step towards
the development of extensible and flexible processor-energy allocation schemes.
In the following paragraphs, we first describe the scheduling-relevant aspects of
the original L4 version. We afterwards present the changes we have made in order
to provide synchronous and asynchronous processor scheduling.

Original L4 Scheduling Behavior

In it original implementation, threads are scheduled by L4, according to an in-
ternal round-robin strategy, without user-level components taking notice. L4’s
kernel scheduler resembles traditional process schedulers of monolithic operating
systems. All runnable threads are enqueued into a processor-local ready queue.
Timer interrupts, blocking kernel operations, and user-initiated thread switches
trigger the invocation of the L4 kernel scheduler, which chooses the next running
thread based on the kernel policy. L4 provides an interface that allows user-level
programs to adjust scheduling parameters. For that purpose, L4 arranges threads
into a hierarchy, by associating a scheduler thread with each thread.

While user-level schedulers can tweak the kernel scheduling policy, core sche-
duling behavior such as the policy itself cannot be changed. As a result, a sched-
uler that requires a policy different to the default kernel policy needs to pursue
complicated steps to implement it. The root cause is that there is no visible differ-
ence between the thread currently running and other runnable threads. For a user-
level scheduler, all its subordinate threads appear to be running at the same time.
To implement its own strategy, a scheduler must thus prevent L4 from selecting

85

86 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

 L4 µ- kernel
CPU

Native L4
App.

Energy
Mgr.

Legacy guest OS

APP APP APP APP

vDISK vCPU
VMM VMM

 Energy-aware guest OS

APP APP APP APP

vDISK vCPU
VMM VMM

legacy
scheduling

energy-based
scheduling

energy-based
scheduling

throughput
scheduling

Native L4
App.

Figure 4.10: Flexibility through user-level scheduling. User-controlled scheduling
allows different policies to be implemented in different sub-domains. At the host-
level, the energy manager can implement an energy-aware or a more throughput-
oriented scheme; at the same time, guest-level schedulers can implement both
legacy scheduling and energy-aware scheduling, depending on their own capa-
bilities; L4 does not implement a policy, but merely carries out user-specified
scheduling decisions onto subordinate virtual machines respectively virtualized
applications.

the “wrong” thread, by making sure that all threads except the one it itself desig-
nates to run are not runnable. Assuring that is awkward and inefficient; threads
may change their own state when invoking kernel operations, and the scheduler re-
quires a complex state machine to ensure correct states while on-going operations
are handled gracefully.

Synchronous User-Level Scheduling for L4

With the synchronous scheduling protocol variant, the basic idea of our new archi-
tecture is a very simple one: L4 does not perform any kernel scheduling anymore.
It jettisons all scheduling-related context information such as time-slices, priori-
ties, or run queues, and reduces thread semantics to the notion of execution (and
communication) state. The timer interrupt becomes a “normal” interrupt again,
treated like all other external interrupts; other timing semantics vanish from the
kernel as well.

Lacking in-kernel scheduling, our new microkernel will execute the currently
running thread (in its notion of execution context) unconditionally, until a block-
ing kernel event or operation (hence called preemption) occurs. To give user-level
schedulers full control over the dispatching, L4 vectors out any thread preemption

86

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 87

to an associated scheduler thread, by means of a preemption IPC. A preemption
IPC is a coalesced send and receive operation to the scheduler, where the pre-
empted sender automatically blocks waiting for a reply message. To re-grant pro-
cessor time, the scheduler thread responds by sending back an IPC reply message,
which again results in the destination thread running until the next preemption
occurs (see Figure4.11). Note, that the notion of preemption IPC already exists
in the original L4 kernel, but with different semantics related to time-quanta [L4
Development Team, 2009a]. To designate schedulers, the kernel keeps the sched-
uler hierarchy concept as it is in the original L4 version, and associates a user-
configurable scheduler thread with each thread.

IP
SP

GPRegs
Time

Thread Scheduler

Preemption IPC

Scheduler

IPC Reply

Thread

CPU CPU

OS

User
Level

CPUs

IP’
SP’

GPRegs’

Figure 4.11: Synchronous scheduling control via preemption IPCs. A preemp-
tion IPC is a coalesced send and receive operation to the scheduler, where the
preempted sender automatically blocks waiting for a reply message. To re-grant
processor time, the scheduler responds by sending back a reply message, which
again results in the destination thread running until the next preemption occurs.

For reasons of convenience, a preemption IPC contains the current thread’s
execution state such as instruction and stack pointer, and general-purpose regis-
ters. It also contains information of all other threads involved in the particular
scheduling event. A reply may contain updated state, which is then transparently
installed into the thread’s user frame. Transferring the execution state allows the
schedulers to inspect thread execution context; updating the state with the reply
eases typical scheduler operations such as sending signals or switching to a dif-
ferent user-level thread. Note that, to facilitate processor-energy accounting, the
message does not have to contain any performance counter records; being notified
about preemptions instantly, the user-level schedulers and energy managers can
obtain the performance-counter snapshots themselves.

87

88 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

Synchronous Scheduling on Kernel Operations

In the original L4 version, kernel operations involving threads often lead to schedul-
ing events that are processed and handled by the in-kernel scheduler. Our syn-
chronous version changes the semantics of all those events, as we will detail in
the following. Fortunately the number of such operations is very limited; besides
IPC, there are only three other kernel operations. For the sake of completeness
and importance, we also present the new semantics of the exception and interrupt
handling, although all changes to their handling are a direct consequence of the
changes in IPC semantics.

IPC Specifically, the transfer of an IPC always requires a scheduling decision, no
matter if it hands-off the processor from the sender to the destination, or if
it leaves more threads than it blocks. The original version resorts to a sim-
ple time-slice donation shortcut policy in case of a hand-off, circumventing
even the kernel-level scheduler [Elphinstone et al., 2007]. We instead treat
IPC according to our explicit model: the kernel always interposes the IPC
path, sending a preemption IPC to the associated scheduler. A special case
then arises with preemption IPC messages themselves, which are sent as
a result of a preemption or activation: for preemption traffic, the kernel di-
rectly transfers control from the sender to the receiver. This behavior is safe,
since a preemption IPC always blocks the sender waiting for re-activation
by the scheduler, and since no-one else except the receiving scheduler is
runnable.

Switch to Idle As most other kernels, L4 originally features an in-kernel, per-
processor idle thread that is invoked when no other thread is runnable, and
runs until the next external interrupt occurs. Our modified L4 version does
not contain any notion of idle thread anymore (with the minor exception
of some remaining idle functionality for compatibility at boot time). To
allow switching to low-power modes, L4 permits the top-level scheduler to
execute special idle instructions such as hlt on IA-32 based processors.

Thread Switch L4 originally offers a ThreadSwitch system call that donates
the current time slice from the caller to the callee; if no destination is
specified, the in-kernel scheduler selects the next thread to run. For our
new architecture, ThreadSwitch is a bogus operation, since only the cur-
rent thread is runnable; for reasons of compatibility ThreadSwitch is still
available, but now sends a preemption IPC to the invoker’s scheduler.

Exchange Registers The ExchangeRegisters system call allows a thread to
read or modify parts of the execution and communication state of another

88

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 89

thread, provided both threads are executing within the same address space.
To that end, it also allows the invoker to suspend or resume other threads.
In analogy to IPC, our new kernel therefore preempts the invoker, in case
multiple threads are involved in the operation.

Interrupts and Exceptions The implications of user-level scheduling on inter-
rupts all arise from the novel semantics of hierarchical scheduling dealt with
in the IPC path. On exceptions, L4 delivers a blocking IPC to the associ-
ated exception handler, with the same preemption logic being involved as in
regular IPCs. Likewise, whenever a thread is preempted by an external in-
terrupt, L4 sends a preemption message to the designated scheduler, which
is, in this case, the lowest common scheduler of the current thread and the
interrupt handler thread. Again, for reasons of performance, L4 piggybacks
the interrupt message to the preemption message, resulting in just a single
IPC being sent on each interrupt.

Synchronous Hierarchical Scheduling

Our re-designed synchronous scheduling behavior results in a hierarchical archi-
tecture that gives full control over the dispatching of each thread to parent sched-
uler threads. The hierarchy also defines how situations are resolved when multiple
threads become activated or preempted at the same time. In such cases, the kernel
actually sends a single preemption IPC only, but chooses as destination the lowest
common top-level scheduler of all involved threads (Figure 4.12). The kernel fur-
ther allows top-level schedulers to respond to such forwarded preemption IPCs on
behalf of the actual, lower-level schedulers; in other words, top-level schedulers
may send re-activation messages that pretend to be coming from the low-level
schedulers. The kernel therefore modifies the sender identifier appropriately when
executing the IPC path.

This scheme may seem complex at a first glance. In practice, however, it actu-
ally enables a straight-forward scheduling process at user level, which resembles
stack-based exception handling of processors, with the extension that exceptions
are routed in hierarchical fashion: that is, schedulers recursively donate proces-
sor time to a destination thread, waiting for a preemption IPC from any thread
within the hierarchy subordinate to that destination. Consider, as illustration, the
example depicted by Figure 4.12, where a thread sends an IPC message to a sec-
ond thread, which leaves both send and receive partner runnable. In that case the
kernel determines the top-level scheduler of both partners, and sends a preemp-
tion IPC containing notice of both activations. The top-level scheduler may then
decide to either activate one of the two partners, using an re-activation IPC de-
ceiving to be coming from their direct scheduler. Alternatively, it may decide to

89

90 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

leave both partners preempted and schedule a completely unrelated thread instead
(e.g., because that thread has higher priority).

S

… …

T1
T2

1

2

3

S
ch

ed
ul

in
g

H
ie

ra
rc

hy

Preemption
IPC

IPC SEND(T2)
1

2 3

Figure 4.12: Recursive Scheduler Hierarchy. While sending an IPC to T2 (1), T1
is preempted; the kernel sends a preemption IPC on behalf of T1, to the lowest
common scheduler S of T1 and T2 (2). S is free to choose the next running thread;
in the example, it puts through the IPC message by directly activating T2 (3).

Hierarchical scheduling models are a well-known approach to provide sched-
uler extensibility [Ford and Susarla, 1996,Goyal et al., 1996,Jones et al., 1997]. In
our architecture, the hierarchy serves similar purposes: it transfers local schedul-
ing decisions to local agents; and it transferring decisions involving multiple do-
mains to a top-level agent. Hierarchical redirection schemes have also been pro-
posed as a means to permit access-control in microkernel-based system [Jaeger
et al., 1999, Liedtke, 1992]. Our scheme leverages ideas from those approaches,
but for the different purpose of controlling processor scheduling rather than com-
munication security.

Asynchronous Scheduling Control via Event Tracing

The synchronous, preemption IPC based protocol propagates all scheduling deci-
sions to the user-level; it thus permits fine-grain isolation of processor time and
energy between threads. However, as the preemption message transfer requires
additional transitioning between the kernel and user-level, synchronous schedul-
ing incurs a performance overhead. Specifically, since some scheduling events
occur during the kernel IPC path — the sender blocks waiting for the unblocked,
activated receiver —, synchronous scheduling inherently penalizes threads that
frequently communicate with each other.

According to our design credo of adaptive energy-management interaction
protocols, our kernel offers a second, more relaxed protocol that uses event trac-

90

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 91

ing and policy shortcuts to optimize scheduling control. Whenever a processor-
scheduling policy does not require strict and timely notification of kernel schedul-
ing events, L4 can employ this alternative protocol to resolve scheduling deci-
sions; it comprises of two parts: and the recording of the scheduling event into
an in-memory buffer shared with the user-level scheduler, and the application of
a pre-defined shortcut policy. In our current architecture, we use a shortcut policy
that implements a time-based lottery scheduling policy [Waldspurger and Weihl,
1994, Uhlig et al., 2004].

next
OS

User
Level

Blocked
thread

Scheduler
Thread

CPU
CPUs

Figure 4.13: Relaxed, Asynchronous Scheduling Control via Event Tracing. L4
records the occurrence of thread context switches in a scheduler-accessible mem-
ory buffer, and resolves the pending decision internally, using a shortcut schedul-
ing policy.

In the asynchronous model, effectively all cases that block the current thread
and activate one destination — including IPC — become a shortcut scheduling de-
cision. The alloted strides determine which thread to grant the processor next. In
contrast to the synchronous protocol, the asynchronous protocol does require the
kernel to take performance-counter snapshots for energy accounting. The kernel
therefore piggybacks performance-counter snapshots onto the traces generated on
thread scheduling events. The energy manager can later on (e.g., at a timer inter-
rupt) analyze the buffer and reproduce the complete energy trace of its subordinate
threads, and use that to readjust processor allocation. We will present details on
energy policy management in Section 4.6.

The goal behind using scheduling shortcuts is to improve performance in pres-
ence of frequent scheduling events. While this resembles the original L4 schedul-
ing behavior with an in-kernel round-robin policy, there are still two important
differences: First, to still keep associated user-level schedulers informed about oc-
currence of scheduling events, the kernel also records the occurrence of the event
into a shared-memory buffer, which is mapped into the address space of the sched-

91

92 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

uler. Second, to allow user-level schedulers to perform processor allocation on
thread groups such as virtual machines, the kernel implements the shortcut policy
in hierarchical fashion: that is, each domain forms a basic processor-scheduling
group comprising all threads with that domain identifier. Strides can be set for
thread containers as well as for individual threads within the container; the kernel
scheduler first selects the particular thread group to be scheduled based on the top-
level tickets; in a second step, it then selects the thread within that group based on
the second-level tickets.

Note that, at present, our asynchronous protocol offers a single, global schedul-
ing policy; a natural improvement to that scheme would be to offer different re-
placeable kernel scheduling policies, potentially even with individual policies for
different subsystems in the hierarchy. While we believe that such an approach
may be promising in general, we are also aware of its potential problems: to im-
plement such policy replacement in practice, on can either offer a fixed set of
scheduling policies to user-level schedulers (as done in the K42 operating system,
for example [Appavoo et al., 2002a]); or, alternatively, one can provide means
for user-defined specialization of the kernel scheduler (as done in the Exokernel,
for example, using a safe language [Bershad et al., 1995]). The former approach
limits extensibility, however, and still requires user-level schedulers to agree with
the kernel on a pre-defined policy; the latter approach typically requires complex
and sophisticated safety-checks [Druschel et al., 1997].

4.4.2 Exposed Energy-Aware Disk Control
In this section we detail how we implemented an exposed allocation mechanism
regulating disk energy of individual clients. With respect to the problem of alloca-
tion, disk management is far less complex than the processor scheduling: Proces-
sor work units usually come as “threads”, which have non-uniform and non-fixed
demands that may be preempted before completion. Also, threads can interact
with each other through communication mechanisms. In contrast, disk devices
are request based, with each given request entailing a work unit whose amount
of work (or size) is known in advance and does not change. Furthermore, disk
requests are independent of each other on the software side (although individual
requests and their sequence of dispatching may influence the disk performance or
energy consumption), and individual requests are not preemptable once they have
been scheduled to the hardware device. Substantial differences also exist in the
timeliness requirements by hardware power management features. Transitioning
between different processor power states has become feasible even on the base
of individual threads [Flautner and Mudge, 2002, Weissel and Bellosa, 2002]. In
contrast, transitioning a disk between different active and idle states or between
different rotational speeds takes a significant amount of time [Gurumurthi et al.,

92

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 93

2003] and has a significant impact on disk reliability [Zhu et al., 2005].
For those reasons, our approach again focuses on the software side of the disk-

energy allocation. Since transitioning between states is expensive, the delay times
between transitions are rather high for standard disk-energy–management policies
(up to of a few seconds); as a result, hardware mechanisms such as setting sleep
states can be exposed in rather straight-forward manner, without any performance
implications. We find software-based mechanisms to be more suitable as vehicle
for exploring energy-management–protocol issues and efficiency problems than
hardware disk states.

Our current prototype implements an energy allocation scheme based on the
idea of power capping: the scheme allows external disk-energy–policy managers
to cap the active disk power consumption of individual client virtual machines
to a policy-specific budget. Although a rather simple scheme, power capping
has proven to be a powerful tool, which can serve two different purposes: First
setting a global, computer-wide energy budget can supplement hardware cooling
facilities, as they avoid power and thermal peaks that otherwise result in hardware
failures; power capping thus allows hardware and facility designers to use cheaper
hardware and cooling if the operating system can ensure a give power and thermal
limit can not be surpassed [Raghavendra et al., 2008, Govidan et al., 2009, Ro-
hou and Smith, 1999,Ainsworth et al., 2008,Hewlett-Packard Development Com-
pany, 2008]. Second, setting application-specific energy budgets allows energy
isolation between individual application domains. With our budgeting algorithm,
policy managers can stipulate individual disk power budgets, and the management
infrastructure enforces enforces them among all guest operating systems, native
applications, and service components.

Note that, in our infrastructure, reducing the disk request rate not only re-
duce the direct (access-energy) consumption of the disk; it also reduces the recur-
sive processor-energy consumption the disk driver requires to process, recompute,
and issue requests. Our implementation of the capping algorithm is simple: the
disk driver processes a client virtual machine’s disk requests only to a specific
request budget, and delays all pending requests. Again, our prototype offers a
synchronous and an asynchronous mechanism for disk-energy management. De-
pending on the mechanism used, the capping logic resides in the energy manager
or in the driver itself, as we will describe in the following.

Synchronous Propagation of Disk-Allocation Decisions

The synchronous disk-energy management variant notifies the energy manager
whenever a disk client issues a request to the disk driver; since the disk driver
implements request batching, the actual notification may comprise more than a
single request. The driver waits for a response from the energy manager before

93

94 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

proceeding (note that, at present, our driver is serialized at this point; however,
we could easily add multiple threads in the driver to provide concurrency among
multiple clients). Being notified about the pending requests, the energy manager
then retrieves accounting records and other request data from the memory segment
shared with the driver. To delay pending requests, the energy manager modifies
the request data accordingly; eventually, it dispatches a response to the waiting
driver. To implement notifications, data sharing, and agreement among data types
data structures, we leverage a high-level interface definition language (IDL) that
translates object interfaces into low-level L4 IPCs [Haeberlen et al., 2000]. The
following code snippet illustrates the synchronous scheme:

/*
* IO processing in the disk driver

*/
void process_io(client_t *client)
{

ring = &client->ring;

/* Notify manager and wait */
IDL_disk_request_client_stub(manager_tid, client);

for (i=0; i < client->requests; i++)
{

desc = &client->desc[ring->start];
ring->start = (ring->start+1) % ring->cnt;
initiate_io(conn, desc, ring);

}
}

/*
* Notification stub in the energy manager

*/
void IDL_disk_request_server_stub(client_t *client)
{

/*
* Client request data is shared between

* manager and driver

*/
client->requests = apply_disk_energy_capping(client);

/* IDL stub will respond with IPC */
}

94

4.4. EXPOSED, ENERGY-AWARE RESOURCE ALLOCATION 95

Asynchronous Propagation of Disk-Allocation Decisions

With the asynchronous variant, disk drivers and policy managers communicate
disk-energy–management events via shared memory only. As a result, the cap-
ping policy itself must reside in the driver, as a shortcut policy. The mechanics of
asynchronous disk throttling stay in analogy to asynchronous processor schedul-
ing, where a shortcut processor policy resides in the kernel as well. To put disk-
energy caps in effect, the energy manager changes corresponding client throttle
factors asynchronously, by modifying the values in the shared memory segment
appropriately; the following code snipped illustrates the asynchronous algorithm:

/*
* IO processing in the disk driver

*/
void process_io(client_t *client)
{

ring = &client->ring;

for (i=0; i < client->budget; i++)
{

desc = &client->desc[ring->start];
ring->start = (ring->start+1) % ring->cnt;
initiate_io(conn, desc, ring);

}
}

/*
* Update budget in the disk driver

*/
void update_bio_budget()
{

for(idx = 0; idx < MAX_CLIENTS; idx++)
{

/*
* Retrieve budgets from shared data structure

*/
client[idx]->budget =

get_throttle(client->client[idx]);
process_client_io(&client);

}
update_bio_budget_timer.expires =

jiffies + UPDATE_PERIOD;
add_timer(&update_bio_budget_timer);

}

95

96 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

4.5 Legacy Compatibility
To enable running applications written for existing operating systems, our frame-
work allows the execution of a para-virtualized Linux operating system on top of
L4. Virtualized operating systems pursue their own internal, resource manage-
ment, and we consider it to be a key criterion to fully preserve their semantics
as far as possible. On the other hand, our framework also allows for incremen-
tal improvements of such legacy operating systems. The following paragraphs
are devoted to a discussion on that matter. We will first discuss how our frame-
work enables faithful emulation of user-directed processor and disk-resource–
management decisions. We will then detail the enhancements we have added
to allow exchanging or adapting guest-internal policies — which are performance
oriented by tradition — with more energy-efficient policies.

4.5.1 Legacy Resource Management
A key goal of our approach is to preserve enough compatibility that the over-
all system can run existing applications. Like their native counterparts, virtual-
ized operating systems pursue their own, internal resource management: that is,
the guest operating systems manage and multiplex access to their virtual devices
from their subordinate applications. It is a primary goal of faithful virtualization
to fully preserve guest-internal resource-management semantics as far as possi-
ble. It is also worth noting, however, that the microkernel-based virtualization
approach, which we use in our prototype, is far more at risk to break guest seman-
tics than the virtualization-only approach, as done in Xen [Barham et al., 2003]
or VMware [VMware Inc., 2009a]. The main reason for the challenge lies in
the microkernel API: microkernel systems usually offer basic abstractions such as
threads, address spaces, or IPC [Liedtke, 1995, Herder et al., 2006], and leave it
up to user-level programs to provide a virtual platform. In contrast, virtualization-
only approaches typically provide virtual devices as first class abstractions (e.g.,
virtual processors, virtual physical memory, virtual network interfaces). Naturally,
it is easier to emulate a processor or a memory-management unit faithfully, if the
virtual processor or virtual memory-management unit is a first-class abstraction
provided by the kernel.

We envisage a system that preserves the advantageous system structure of
microkernel-based systems, allowing, for example, the development of a virtual-
machine monitor or other services as a de-privileged user-level component; at the
same time, however, the system should provide the same level of faithful virtu-
alization as known from pure virtualization systems; it was therefore a first goal
to accurately emulate guest-level resource management in our prototype, in the
following, we will describe how we attain legacy compatibility both with disk and

96

4.5. LEGACY COMPATIBILITY 97

with processor resource management.

Legacy Disk Scheduling

Preserving legacy disk semantics is a simple and straight-forward task, and does
not require any additional means beyond establishing a virtual disk architecture.
The simplicity stems from two reasons: first, our current prototype supports access
to storage at the (coarse) granularity of virtual disks subsystem only. Second, disk
requests are typically independent from each other, with no interaction occuring
in between them once they have been issued to the virtual disk driver.

Legacy Processor Scheduling

With regards to legacy processor semantics, our faithful scheduling architecture
plays a key role, as it enables effective, hierarchical, and accurate user-directed
scheduling. Our approach enables scheduling that is fully directed by the user-
level energy manager and the kernels of guest operating systems. A three-level
scheduling hierarchy (see Figure 4.14) allows the user-level virtual-machine mon-
itor to schedule its subordinate virtual machines according to a host-level energy
policy (by means, e.g., of an energy-proportional scheduler). Scheduling at the
guest level, however, is completely up to the guest operating system: our re-
cursive approach allows the directives of guest schedulers to be faithfully em-
ulated and mapped to the L4 kernel thread interface. As a result, our scheme
allows local components to faithfully emulate their own scheduling policies; at
the host-level, the energy manager can choose to implement different policies
for processor-energy management, with varying thermal or power-centric goals;
guest-level schedulers, however, can still rely on the infrastructure to ensure that
their own application-specific policies are carried out on their own subordinate
applications as well.

4.5.2 Support for Energy-Aware Improvements
Beyond preserving original legacy semantics at guest level, our framework also
allows existing guest–operating-system code to be “improved” for better support
for energy management. Our approach is driven by the idea of para-virtualization,
where guest operating systems are slightly modified to run on virtual hardware
that is not fully compatible to existing physical hardware. Similarly, we also per-
form small modifications of existing resource-management guest code in order to
enable the guests to perform application-specific management of processor and
disk energy . Our framework therefore supports accounting and control not only
for physical but also of virtual devices.

97

98 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

Top Level Monitor /
Main

User

Guest Kernel Guest User Applications VM Mgmt.

UserUser

Scheduler
relationship

Figure 4.14: 3-Tier scheduling architecture supporting legacy guest–operating-
system scheduling. At the lowest level, a root-scheduler thread located in an the
external resource monitor allocates processor time to complete virtual machines.
At the second level, two threads running within the guest address space redis-
tribute their time allotment among the guest kernel and subordinate applications.

As already explained, the main difference between a virtual device and other
software services and abstractions lies in its hardware-like interface: a virtual
device closely resembles its physical counterpart. However, most current devices
offer no hardware interface to query energy or power consumption, and the most
common approach to determine the energy consumption is to estimate it based
on certain device characteristics, which are assumed to correlate with the energy
consumption of the device. By emulating the according behavior for the virtual
devices, we support energy estimation in the guest without major modifications to
the guest’s energy accounting. Our ultimate goal is to enable the guest to use the
same driver for virtual and for real hardware. In the remainder of this section, we
describe how we support energy accounting of virtual processors and disks.

Virtual Processor-Energy Accounting

For virtualization of physical energy effects of the processor, we provide, to each
virtual machine, a set of virtual performance-counter registers, which give guest
operating systems a private view of their current energy consumption. The virtual
model relies on the recording of performance counters at times of thread preemp-
tions, which we presented in Section 4.3.1.

Like their physical counterparts, each virtual processor has a set of virtual
performance counters, which factor out the events of other, simultaneously run-
ning virtual machines. If a guest operating system determines the current value
of a virtual performance counter, an emulation routine in the in-place monitor
obtains the current hardware performance counter and subtracts all advances of
the performance counters that occurred when other virtual machines were run-

98

4.5. LEGACY COMPATIBILITY 99

 L4 CPU
PMC

Guest OS vPMC = pPMC –
 PMCOtherVMs

PMC
Buf

vCPU
vPMC

Energy
Mgr.

Figure 4.15: Virtualizing performance counters via per–virtual-machine records
of the physical counter advances recorded during execution of the virtual machine.

ning (Figure 4.15). The hardware performance counters are made read-accessible
to the in-place virtual-machine monitor by setting a control register flag in the
physical processors (the guest operating system itself is not granted direct read
access; the in-place monitor intercepts and emulates all corresponding instruc-
tions on its behalf). The advances of other virtual machines are derived from the
performance-counter records collected in the energy manager. To be accessible by
the in-place virtual machine monitor, the energy manager maps the corresponding
data structures read-only into the address space of the guest operating system.

Virtual Disk-Energy Accounting

In contrast to the processor, our disk-energy–estimation schemes does not rely on
on-line measurements of sensors or counters; rather, it is based on known param-
eters such as the disk’s power consumption in idle and active mode and the time
it remains in active mode to handle a request. Directly translating the energy con-
sumption of physical devices from our run-time energy model to the parameter-
based model of the respective guest operating system would yield only inaccurate
results. The virtual machine would have to calibrate the energy consumption of
the devices to calculate the energy parameters of the virtual devices. Furthermore,
parameters of shared devices may change with the number of virtual machines,
which contradicts the original estimation model. To ensure accuracy in the long
run, the guest would have to query the virtual devices regularly for updated param-
eters. For our current virtual disk-energy model, we therefore use a para-virtual
device extension. We expose each disk-energy meter as an extension of the virtual
disk device; energy-aware guest operating systems can take advantage of them by
customizing the standard device driver appropriately.

99

100 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

4.6 Energy-Policy Management

Our framework presently implements energy policies at two different layers in the
system: a global host-level energy manager implements processor and disk-energy
allocation policies for whole virtual machines and for native L4 applications. An
energy-aware guest operating system is responsible for for energy management
at the level of individual virtualized applications, within virtual machines. In
the following, we explain how we implemented our management polices in the
respective components; we begin by detailing the inner workings of the host-
level energy manager; we then present our energy-aware guest operating system
that redistributes its own virtual machine-wide allotments to its own, subordinate
applications.

4.6.1 Host-Level Energy Management

Our host-level energy manager currently implements an energy-isolation policy,
which enforces device-power budgets for virtual machines and native applica-
tions. Energy isolation comprises both processor and disk devices, and relies on
the accounting and allocation mechanisms of the microkernel and driver virtual
machine described previously. The energy manager is co-located with the exter-
nal monitor module, which is responsible for global, host-level resource manage-
ment. As a result, it is also co-located with the top-level scheduler responsible
for dispatching virtual machines and native applications. The actual management
policy consists of an initialization procedure and a subsequent policy algorithm.
During initialization, the manager determines a power limit for each virtual ma-
chine or native application and device type, which may not be exceeded during
runtime. The processor-power limit reflects the active processor power a virtual
machine is allowed to consume directly. The disk-power limit reflects the overall
active power consumption the disk-driver virtual machine is allowed to spend in
servicing a particular client, including the processor energy spent for processing
requests. Note that, nevertheless, the driver’s processor and disk energy are ac-
counted separately. Finding an optimal policy for allotment of power budgets was
not the focus of our work; at present, the limits are set to static values.

Note that, our work presently focuses on the mechanisms of energy manage-
ment rather than on policies; as a result, both our processor and our disk-energy
management policies are rudimentary, and mainly serve the purpose of validating
the principal operativeness of our mechanisms. Future work has to be done to
explore the large body of existing algorithms and policies for operating-system
energy management, and its applicability to modular operating systems.

100

4.6. ENERGY-POLICY MANAGEMENT 101

Processor-Energy Management

For processor-energy management, we implemented an energy-based lottery-sche-
duling policy [Uhlig et al., 2004,Waldspurger and Weihl, 1994] that allots propor-
tional processor-energy shares to virtual processors and applications. Unlike the
original algorithm, where the lottery tickets represent the permission to access the
processor for a given amount of time, the tickets in our algorithm permit access
to the processor for a given amount of energy. Effectively, the policy algorithm
dynamically throttles the energy consumption of virtual processors and L4 appli-
cations by computing the energy-ticket allotments accordingly.

A key feature of lottery scheduling is that it does not impose fixed upper
bounds on processor utilization: the shares have only relative meaning, and if one
virtual processor or application does not fully utilize its share, the scheduler allows
other, competing ones to steal the unused remainder. An obvious consequence of
dynamic upper bounds is that energy consumption will not be constrained either,
at least not with a straight-forward implementation of lottery scheduling.

We solve this problem by creating a distinct idle application per physical pro-
cessor, which is guaranteed to spend all alloted time with issuing halt instructions.
With synchronous processor scheduling, the idle application is merely a matter
of executing the hlt instruction within the root scheduler. With asynchronous
scheduling, we create a special idle L4 thread that is assigned its own processor
time allotment and executes the hlt in a tight loop. The x86 hardware raises an
exception whenever user-level software executes the hlt instruction transitioning
the processor into halted mode. For privileged threads such as the root scheduler
or the idle application, L4 translates the exception directly into the real hlt after-
wards. Initially, no processor share is alloted to the idle application, thus all other
virtual processors and applications will be favored on the processor if they require
it, yet isolated from each other with different energy allotments.

To cap energy consumption globally, the energy manager can increase the
processor-energy shares of the idle application — in other words, execute hlt

more often in the synchronous scheduling case, or increase the processor time
allotment of the idle L4 thread in the asynchronous scheduling case —, which
implicitly decreases the shares of real virtual processors and applications. The
idle application, in turn, directly translates the remaining processor time into halt
cycles. Our approach guarantees that energy limits are effectively imposed; but
it still preserves the advantageous processor stealing behavior for all other virtual
processors. Since the policy is kept out of the kernel, it can easily be improved
with little effort; it can even be exchanged by a more throughput-oriented one for
those environments where processor-energy management is not required. Note
that our approach of using an idle application is conceptually separate from our
general energy-accounting scheme described in Section 4.4: the amount of idle

101

102 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

energy (which, according to our estimation model, results from the advancement
of the time-stamp counter during hlt) is apportioned among the actual virtual
machines and L4 applications running on the processor.

Our infrastructure for processor-energy management offers two different meth-
ods for accounting and allocation: synchronous and asynchronous. We therefore
provide two different host-level policy implementations as well, which we detail
in the following:

Synchronous Processor-Energy Management With the synchronous account-
ing and allocation protocol, the policy algorithm is invoked whenever the top-level
processor scheduler selects the next virtual processor or native L4 application to be
granted the physical processor; this selection process takes place regularly when-
ever the timer interrupt fires, and on occasion, when the presently running ap-
plication or virtual processor is blocked, yields the processor voluntarily, or an
interrupt occurs. The kernel preemption logic vectors all those preemptions to
the top-level scheduler co-located with the energy manager. The policy algorithm
uses the energy-accounting records to determine the actual energy consumption
per application and virtual machine; it selects the next virtual machine or applica-
tion to run by executing a lottery according to the definition of lottery scheduling
algorithm [Waldspurger and Weihl, 1994]. With the synchronous protocol, the
user-level scheduler effectively runs the policy itself; it carries it through by means
of re-dispatching the threads selected to run. The user-level scheduler algorithm
looks as follows:

/*
* Calculate active processor power:

* paccess : last access-energy consumption

* stsc : cycles passed when client was running

*/
client[cur_id].appower = client[cur_id].paccess /

client[cur_id].stsc;
client[cur_id].paccess = 0;
client[cur_id].stsc = 0;

word_t esum = 0;

for (word_t id = 0; id < num_clients; i++)
{

if (client[id].state != vm_state_runnable)
continue;

102

4.6. ENERGY-POLICY MANAGEMENT 103

/*
* Calculate the energy ticket:

* ticket: the client CPU allotement

*/
client[id].eticket =

client[id].ticket / client[id].appower;
esum += client[id].eticket;

}

if (esum)
{
word_t lottery = rand() % esum;
word_t winner = 0;

for (word_t id = 0; i < num_clients; i++)
{

if (client[id].state != vm_state_runnable)
continue;

winner += client[id].eticket;
if (lottery < winner)

return client[id];
}

}
return NO_RUNNABLE_CLIENT;

To calculate the energy-based lottery ticket (eticket) for a given client vir-
tual machine or application, we divide the original client allotment (ticket) by
the client’s active power. When determining the active power, we currently con-
sider the last execution periods only; an alternative approach would be to use
exponential averages of multiple past execution periods. Note, that we base the
calculation of lottery tickets on the active power consumption, that is, on the en-
ergy consumption of a client divided by the cycles is has consumed. As a result,
the scheduler disregards the the overall energy consumption of the client, which
may be low despite high active power, if the client does not use the processor very
often. An alternative policy taking actual energy into account, is to divide the
energy by the total cycles rather than the cycles of the client. Since the scheduler
algorithm runs outside the kernel, we can easily pursue changes. For evaluation,
however, we use the active power policy, since it better demonstrates the advan-
tages of extensible processor-energy allocation.

Asynchronous Processor-Energy Management With the asynchronous proto-
col, implementation of processor allocation is split among the kernel — where
shortcut policies still reside — and the user-level policy manager. Here, the L4

103

104 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

kernel implements a time-based lottery-scheduling policy itself, alloting propor-
tional time shares to threads; however, the kernel also provides an interface that
allows (privileged) user-level programs to adjust the lottery tickets. The host-level
energy manager leverages the interface and maps an energy-lottery scheduling
policy on to the kernel scheduler by adjusting the alloted time tickets dynami-
cally, in a feedback loop. The feedback loop is invoked periodically, every 100
ms. It first obtains the processor-energy consumption of the past interval by query-
ing the accounting records provided by the kernel at times of preemptions. It then
compares the actual power consumption with the desired power limits multiplied
with the time between subsequent loop invocations. If they do not match for a
given virtual machine or application, the manager aligns them by recomputing
and setting the kernel-level (time-based) tickets through a kernel interface.

for (word_t i = 0; i < num_clients; i++)
{
/*
* Calculate client active power from L4 traces

* paccess: access-energy consumption

* stsc : cycles burned

*/
client[id].paccess = L4_PMC_GetAccessEnergy();
client[id].stc = L4_PMC_GetTSC();
client[id].appower = client[id].paccess /

client[cur_id].stsc;

/*
* Gracefully approximate L4 ticket based on budget

*/
u64_t appower = client[id].appower;
u64_t apbudget = client[id].apbudget;

if (appower > apbudget)
client[id].eticket -=20;

else
client[id].eticket +=20;

L4_SetTicket(client[id], client[id].eticket);

}

104

4.6. ENERGY-POLICY MANAGEMENT 105

Disk-Energy Management

For disk-energy management, we have implemented a feedback loop to recompute
throttle factors every 200 ms. It first obtains the disk energy consumption of the
past interval by querying the accounting infrastructure. The current consumptions
are used to predict future consumptions. For each disk, the loop compares the cur-
rent energy consumption of each virtual disk client with the desired power limit
multiplied by the time between subsequent invocations. If they do not match for a
given virtual disk, the manager regulates the device consumption by recomputing
and propagating disk throttle factors to the driver virtual machines. If the syn-
chronous interaction protocol is used, the energy manager uses the throttle factors
to throttle client disk requests by itself, whenever requests are propagated from the
driver. If the asynchronous interaction protocol is used, the manager passes the
throttle factors to disk-driver subsystem, which internally uses the factors to com-
pute the request allotments per guest. When computing the disk-throttle factor, the
manager takes the past period into consideration, and calculates an offset ∆t that
is added to the current factor to retrieve the new throttle factor. The calculation
occurs according to the following formula:

∆t =

 1
dta

(tl − t) + el−ec
|el−ec|

:

{
ec > el, t > tl
ec < el, t < tl

dta
dta−1(t− tl) + el−ec

|el−ec|
: else

In this formula, ec denotes the energy consumed, el the energy limit per period,
and t and tl and denote the present and past disk throttle factors; finally, dta
denotes an adjustment factor determining how much the past difference in throttle
factors (|tl − t|) should contribute to the new factor. In practice, we used an
adjustment factor of 4 (i.e., 25 per cent). Resulting throttle factors effectively
range from 0 to a few thousand:

#define DTA 4
static u64_t last = 0;
u64_t tdelta = now - last;

for (word_t i = 0; i < num_dclients; i++)
{

/*
* Calculate disk client active disk power:

* daccess: access-energy consumption

* tdelta : time passed since last invocation

*/
client[id].daccess = DiskDD_AEnergy();

105

106 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

dclient[id].adpower =
(dclient[id].daccess / tdelta);

client[id].daccess = 0;

/*
* Calculate disk throttle factor

* dthrottle: current throttle factor

* odthrottle: old throttle factor

*/

u64_t adpower = dclient[id].adpower;
u64_t adbudget = dclient[id].adbudget;
u64_t dthrottle = dclient[id].dthrottle;
u64_t odthrottle = dclient[id].odthrottle;

if (adpower > adbudget)
{

if (dthrottle >= odthrottle)
dthrottle -=

((dthrottle - odthrottle) / DTA);
else

dthrottle -=
(DTA * (odthrottle - dthrottle) / (DTA-1));

}
else
{

if (dthrottle <= odthrottle)
dthrottle +=

((odthrottle - dthrottle) / DTA);
else

dthrottle +=
(DTA * (dthrottle - odthrottle) / (DTA-1));

}

dclient[id].odthrottle = dclient[id].dthrottle;
dclient[id].dthrottle = dthrottle;

DiskDD_SetThrottle(dclient[id], client[id].dthrottle);

}

106

4.6. ENERGY-POLICY MANAGEMENT 107

4.6.2 Guest-Level Energy Management –
An Energy-Aware Guest Operating System

For guest-application specific energy management, we have incorporated the fa-
miliar resource-container concept into a standard version of our para-virtualized
Linux 2.6 adoption. Our implementation relies on a previous approach to use re-
source containers in the context of processor-energy management [Bellosa et al.,
2003, Weissel and Bellosa, 2004]. We extended the original version with support
for disk energy. No further efforts were needed to manage virtual processor en-
ergy; we only had to virtualize the performance counters to get the original version
to run (Figure 4.16).

Similar to the host-level subsystem, the energy-aware guest operating system
performs scheduling based on energy criteria. In contrast to standard schedulers,
it uses resource containers as the base abstraction rather than threads or processes.
Each application is assigned to a resource container, which then accounts all en-
ergy spent on its behalf. To account virtual processor energy, the resource con-
tainer implementation retrieves the (virtual) performance-counter values on con-
tainer switches, and charges the resulting energy to the previously active container.
A container switch occurs on every context switch between processes residing in
different containers.

Driver VM

E-Mgr.

L4 µ- kernel
PMC

Energy-aware guest OS

APP APP APP APP

vDISK vCPU
vPMC

CPU
PMC

Ext

DISK vCPU
vPMC

Figure 4.16: Energy-aware guest operating system. The guest OS performs
application-specific energy management, based on the virtual processor and disk-
energy extensions of our framework. The implementation leverages the resource-
container concept, integrated into a standard version of our para-virtualized Linux
2.6 adoption.

To account virtual disk energy, we enhanced the client side of the virtual de-

107

108 CHAPTER 4. APPLICATION TO AN L4-BASED OPERATING SYSTEM

vice driver, which forwards disk requests to the device driver virtual machine.
Originally, the custom device driver received single disk requests from the Linux
kernel, which contained no information about the user-level application that caused
it. We added a pointer to a resource container to every data structure involved in a
read or write operation. When an application starts a disk operation, we bind the
current resource container to the corresponding page in the page cache. When the
kernel writes the pages to the virtual disk, we pass the resource container on to the
respective data structures (i.e., buffer heads and bio objects). The custom device
driver in the client accepts requests in form of bio objects and translates them to a
request for the device driver virtual machine. When it receives the reply together
with the cost for processing the request, it charges the cost to the resource con-
tainer bound to the bio structure. To control the energy consumption of virtual
devices, the guest kernel redistributes its own, virtual-machine–wide power limits
to subordinate resource containers, and enforces them by means of preemption.
Whenever a container exhausts the energy budget of the current period (presently
set to 50 ms), it is preempted until a refresh occurs in the next period. A simple
user-level application retrieves the virtual machine wide budgets from host-level
energy manager and passes them onto the guest kernel via special system calls.

108

Chapter 5

Evaluation

In this chapter, we present experimental results we obtained from our prototype.
Our main goal is to demonstrate that our infrastructure provides a viable solution
to manage energy in distributed, multi-layered operating systems. We consider
two aspects as relevant: the effectiveness of our mechanisms for energy account-
ing and allocation; and the performance overhead induced by those mechanisms.

The chapter is organized as follows: Section 5.1 presents the experimental
setup we used for our evaluation. Section 5.2 presents experiments measuring the
effectiveness of distributed energy accounting and allocation at two layers, host
level and guest level. Section 5.3 presents experiments quantifying the impact of
exposed energy accounting and allocation on the performance of selected bench-
marks. Section 5.4 presents a summary and review of our experimental results.

109

110 CHAPTER 5. EVALUATION

5.1 Evaluation Setup

For processor measurements, we used a Pentium D 830 with two cores, each at
3 GHz, running on an Intel 945G motherboard equipped with 2 GBytes RAM.
Our implementation is currently limited to single processor systems; we therefore
enabled only one core, which always ran at its maximum frequency. When idle,
the core consumes about 42 W; under full load, power consumption may be 100 W
and more. We performed disk measurements on a Maxtor Diamond Max Plus 9
IDE hard disk with 160GBytes in size, for which we measured an active power of
about 6.7 W and idle power of about 4.1 W.

We validated our internal, estimation-based accounting mechanisms by means
of an external high-performance data acquisition system (DAQ), which measured
the real disk and processor energy consumption. The DAQ system from National
Instruments comprises three SCC-AI06 modules, a SC-2345 shielded carrier for
the SCC modules, a PCI-6220 data acquisition card, and LabView software in
version 7.1.1. We connected the acquisition system with the voltage lines of the
processor and disk device, and measured the current by means of precisions resis-
tors, with a sampling rate of 1 kHz.

5.2 Effectiveness of Energy Management

The first set of experiments evaluates the effectiveness of accounting and allo-
cating energy consumption, which was one of the essential objectives of energy
management. The specific effectiveness goals of our prototype are to enable accu-
rate and comprehensive energy accounting and allocation both for whole virtual
machines and for virtualized guest applications. In the following we first present
experiments evaluating the accuracy of processor and disk energy accounting; we
then present experiments evaluating host-level allocation of processor and disk en-
ergy; we finally present experiments on guest-level allocation of processor energy
and on faithful legacy processor scheduling.

Note that, although our infrastructure provides two different interaction proto-
cols for processor and disk energy management each, we did not perform all ex-
periments with all combinations, since no additional insights would have emerged
from doing so. Rather, we ran each experiment with a selected combination of
protocols only. An exception to that rule occurs in the last experiment, where we
compare the faithfulness of legacy processor scheduling under different protocol
combinations.

110

5.2. EFFECTIVENESS OF ENERGY MANAGEMENT 111

5.2.1 Processor and Disk-Energy Accounting
To evaluate our approach of distributed energy accounting, we measured the over-
all energy required for using a virtual disk. For that purpose, we ran a synthetic
disk stress test within a Linux guest operating system. The test runs on a virtual
hard drive, which is multiplexed on the physical disk by the disk driver virtual ma-
chine. The test performs almost no computation, but generates heavy disk load.
By opening the virtual disk in raw access mode, the test bypasses guest-kernel
caches and causes the file I/O to be performed directly to and from user-space
buffers. The test permanently reads (writes) consecutive disk blocks of a given
size from (to) the disk, until a given total size has been transferred. We per-
formed the test for block sizes from 0.5 KByte up to 64 KByte. We obtained
the required energy per block size to run the benchmark from our accounting in-
frastructure. In the experiment, we used the asynchronous energy-management
interaction scheme for both processor and for the disk.

 30

 40

 50

 60

 70

 80

0.5K
1K 2K 4K 8K 16K

32K
64K

P
ow

er
 (W

at
t)

Block size (bytes)

base power (all:CPU)
idle power (driver:disk)

 (driver:CPU)
active power (driver:disk)

 (driver:CPU)
	 (clientVM:CPU)

external DAQ (CPU+Disk)

Figure 5.1: Energy distribution for processor and disk during the disk stress test
(read case). The thin bars show the real processor and disk power consumption,
measured with an external DAQ system.

The results for read and write case are shown in Figure 5.1 and Figure 5.2 re-
spectively. For each size, the figures show the consumption of disk and processor
power by the client and the device-driver virtual machine. The lower-most part
of each bar shows the base processor-power consumption required by core com-
ponents such as the microkernel and the user-level virtual-machine monitor parts
(36 W); this part is consumed independently of any disk load. The upper parts of

111

112 CHAPTER 5. EVALUATION

 30

 40

 50

 60

 70

 80

0.5K
1K 2K 4K 8K 16K

32K
64K

P
ow

er
 (W

at
t)

Block size (bytes)

base power (all:CPU)
idle power (driver:disk)

 (driver:CPU)
active power (driver:disk)

 (driver:CPU)
	 (clientVM:CPU)

external DAQ (CPU+Disk)

Figure 5.2: Energy distribution for processor and disk during the disk stress test
(write case). The thin bars show the real processor and disk power consumption,
measured with an external DAQ system.

each bar show the access and idle power consumption caused by the stress test,
broken into processor and disk consumption. Since the client virtual machine is
the only consumer of the hard disk, it is accounted the complete idle disk power
(4.1 W) and processor power (9.4 W) consumed by the driver virtual machine.
Since the benchmark saturates the disk, the access disk power consumption of the
disk driver mostly stays at its maximum (2.6 W), which is again accounted to the
client virtual machine as the only consumer. Access processor power consump-
tion in the driver virtual machine heavily depends on the block size and ranges
from 8.4 W for small block sizes down to less than 1 W for large ones; on aver-
age, the read case requires more processing (power) than the write case, which
is owed to the read throughput being higher than the write throughput, and with
it the number of requests per second to process. Note that the overhead for vir-
tualization — both in terms of time and energy — is considerable: in our case,
the processor energy costs for processing a virtual disk request may even surpass
the costs for handling the request on the physical disk. Finally, access processor
power consumption in the client virtual machine varies with the block sizes as
well, but at a substantially lower level; the lower level comes unsurprising, as the
benchmark bypasses most parts of the disk driver in the client operating system.

The thin bar on the right of each energy histogram shows the real power con-
sumption of the processor and disk, measured with the external DAQ system.

112

5.2. EFFECTIVENESS OF ENERGY MANAGEMENT 113

Overall, the results demonstrate that our framework is capable to comprehensively
account and attribute the energy required to satisfy disk requests in a modular
operating system. The internal accounting records largely correspond with the
external measurements.

5.2.2 Host-Level Processor-Energy Allocation
To validate our host-level processor-allocation subsystem, we compared the ef-
fects of energy-aware scheduling against normal, time based scheduling. For that
purpose, we simultaneously ran two Linux virtual machines with distinct energy
profiles, and compared their effective power consumption under different schedul-
ing policies. We ran a customized benchmark application in each of the virtual
machine, resulting in predictable power consumption: the first benchmark appli-
cation, alu, stresses the processor’s ALU, using x86 bswap (byte swap), adc
(add with carry), and inc (increment) instructions, which operate on processor
registers only. If unconstrained, the alu benchmark consumes about 40 W ac-
cess power. The second benchmark, pushpop, stresses both processor registers
and memory, by executing series of push and pop instructions. If unconstrained,
pushpop consumes about 63 W access power. Mechanics and peculiarities of the
benchmarks are unimportant here; we chose them since their power consumption
is significantly different.

Figure 5.3 shows the effective power consumption of both virtual machines,
as a stacked histogram, for five different scheduling policies. All experiments
were done with the synchronous scheduling protocol, that is, with the scheduler
running completely outside the kernel. The five different scheduling policies are,
from left to right:

TIME (10/10) The scheduler operates on the basis of processor time rather than
on processor energy, and each virtual machine is alloted a ticket of 10 shares
(i.e., both virtual machines are alloted the same amount of time).

EAS (10/10) The scheduler operates on the basis of processor energy, and again,
each virtual machine is alloted a ticket of 10 shares (i.e., both virtual ma-
chines are alloted the same amount of energy).

TIME (10/5) The scheduler operates on the basis of processor time, but allots the
virtual machine running pushpop twice as much time shares as the virtual
machine running alu.

EAS (10/5) The scheduler operates on the basis of processor energy, but allots
the virtual machine running pushpop twice as much energy shares as the
virtual machine running alu.

113

114 CHAPTER 5. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

10/10: TIME EAS 10/5: TIME EAS EAS-CAP (10/10)

A
cc

es
s

P
ow

er
 (W

at
t)

(VM:alu)
(VM:pushpop)

DAQ-AN

Figure 5.3: Effective power consumption of two virtual machines with different
initial power characteristics, for five different energy allocation policies.

EAS-CAP (10/10) The scheduler operates on the basis of processor energy, allots
both virtual machines the same amount of 10 energy shares, and additionally
caps the access power at 25 W.

Note that the power limits are effective limits; strictly spoken, both alu and
pushpop still consume the same amount of power per second when running; the
scheduler merely reduces each virtual-machine time allotment accordingly, with
the result that, over time, the limits are effectively obeyed. The thin bar on the
right of each power bar stack shows the real power consumption of the proces-
sor, measured with the external DAQ system. The results demonstrate that our
framework is capable to accurately apportion the available energy among different
virtual machines, and to cap the total energy consumption to user-defined limits
while still adhering to virtual-machine specific energy allotments. The scheduling
infrastructure is extensible, allowing the policy to be quickly adapted to the actual
workload or deployment situation without having to exchange the privileged part
of the operating system. Finally, as with the experiments on accounting, the inter-
nal accounting and allocation again corresponds with the external measurements.

114

5.2. EFFECTIVENESS OF ENERGY MANAGEMENT 115

5.2.3 Host-Level Disk-Energy Allocation
To validate the capabilities of disk-energy allocation, we performed a second ex-
periment on a virtual disk, this time with two clients that simultaneously require
disk service from the driver. The clients interface with a single disk-driver virtual
machine, but operate on distinct hard disk partitions. We set the driver access
power limit of client virtual machine 1 to 1W and the limit of client virtual ma-
chine 2 to 0.5 W, and periodically obtained driver energy and disk throughput over
a period of about 2 minutes. Note that, while those limits concern the disk, they
implicitly reduce processor energy as well. For the experiment, we used the asyn-
chronous energy-management interaction protocol schemes for both the processor
and disk.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 10 20 30 40 50 60 70 80 90 100
 110

 120

D
is

k
P

ow
er

 (W
at

t) VM1
VM2

external DAQ

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100
 120

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Time (seconds)

VM1
VM2

Figure 5.4: Disk-power consumption and throughput of two constrained disk tests
simultaneously running in two different guest virtual machines.

Figure 5.4 shows both distributions; we set the limit about 60 seconds after
having started the measurements. Note that the implementation causes a short
spike of both throughput and energy immediately after having set the respective
limits. We attribute the spike to the algorithm’s deficiency to level off changing
throttle limits more quickly. Overall, however, our experiment demonstrates the
driver’s capabilities to virtual-machine–specific control over energy consumption.
Again, internal accounting and control corresponds with external measurements.

115

116 CHAPTER 5. EVALUATION

5.2.4 Para-Virtualized Processor-Energy Management
In the next experiment, we evaluated the benefits of guest-level energy manage-
ment; to that end, we compared the effects of enforcing power limits at the host-
level against the effects of guest-level enforcement using a para-virtual guest-level
energy-management facility. In the first part of the experiment, we ran two in-
stances of the compute-intensive bzip2 application within an energy-unaware
guest operating system. In the unconstrained case, a single bzip2 instance causes
an access processor-power consumption of more than 50 W. The guest, in turn,
is alloted an overall processor access power of only 40 W. As the guest is not
energy-aware, the limit is enforced by the host-level subsystem. We used the
asynchronous protocol variant for host-level processor energy allocation. In the
second part, we used an energy-aware guest, which complies with the alloted
power itself. It redistributes the budget among the two bzip2 instances using the
resource-container facility. Within the guest, we set the application-level power
limits to 10 W for the first, and to 30 W for the second bzip2 instance. Again,
power limits are effective limits and the resource-container implementation only
reduces task running times accordingly.

 0

 10

 20

 30

 40

 50

 60

host-level mgmt. guest-level mgmt.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

P
ow

er
 (W

at
t)

Th
ro

ug
hp

ut
 (B

lo
ck

s/
se

c)

active power measured by host (VM:complete)
active power measured by guest (VM:bzip2-1)

		 (VM:bzip2-2)
 throughput (VM:bzip2-1)

		 (VM:bzip2-2)

Figure 5.5: Host-level versus guest-level energy redistribution. The figure shows
effective power consumption and throughput of two bzip2 applications, with en-
ergy limits enforced either at host-level or at guest-level.

The results are shown in Figure 5.5. For both cases, the figure shows over-
all access processor power of the guest virtual machine in the leftmost bar, and

116

5.2. EFFECTIVENESS OF ENERGY MANAGEMENT 117

the throughput broken down to each bzip2 instance in the rightmost bar. For the
guest-level management case on the right side, we additionally obtained the power
consumption per bzip2 instance as seen by the guest’s energy-management sub-
system itself; it is drawn as the bar in the middle. Note that the guest’s view of
the power consumption is slightly higher than the view of the host-level energy
manager. Hence, the guest imposes somewhat harsher power limits, and causes
the overall throughput of both bzip2 instances to drop compared to host-level
control. We do not have a definite answer as to where the drop stems from, but
attribute the differences in estimation to the clock drift and inaccurate guest–timer-
interrupt delivery to the client.

However, the results are still as expected: host-level control enforces the bud-
gets independent of the guest’s particular capabilities — but the enforcement treats
all guest’s applications as equal and thus reduces the throughput of both bzip2

instances proportionally. In contrast, guest-level management allows the guest to
respect its own user priorities and preferences: it allots a higher power budget to
the first bzip2 instance, resulting in a higher throughput compared to the second
instance.

5.2.5 Preserving Legacy Processor Scheduling
The next experiment is devoted to validating the effectiveness of our infrastructure
to preserve legacy scheduling semantics in guest operating systems. We show how
synchronous processor scheduling is able to preserve legacy semantics in para-
virtual guest operating systems, whereas both the asynchronous and the original
scheduler architectures — at least in a straight-forward implementation —, both
trade performance for accurateness.

To determine the implications of user-level scheduling on normal application
workloads, we tested how an increasing amount of workload running in distinct
virtualized applications — and thus on distinct L4 threads — affects the respon-
siveness of the overall guest operating system. For that purpose, we generated I/O
load on a Linux guest by executing the netperf benchmark, which we stressed
from an external client through a Gigabit network interface card. At the same
time, we also generated processing load within the same virtual machine, using
cpuload, a small user program that loops forever counting bits of a dummy value.
We stressed the virtualization of guest–operating-system scheduling logic by exe-
cuting a growing number of cpuload instances in parallel to the netperf appli-
cation. As a result a growing number of Linux guest applications and subsequent
L4 threads hosting them become runnable at the same time.

The results are given in Figure 5.6. The figure draws netperf over the in-
creasing number of cpuload instances, with the synchronous, the asynchronous,
and the original scheduling logic. The figure additionally shows the results with

117

118 CHAPTER 5. EVALUATION

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

1000.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
et

P
er

f T
hr

ou
gh

pu
t [

M
B

/s
ec

]

Number of Concurrent CpuLoad Instances

Native

Original

UL-Scheduling (Sync.)

UL-Scheduling (Async.)

Figure 5.6: Accuracy of legacy processor-scheduling semantics, measured as drop
in netperf throughput with increasing number of concurrent cpuload instances
for different interaction protocols, as well as for the original L4 implementation
and native Linux.

the same setup running in a native environment, that is, with Linux running on
bare hardware. Not shown is the processor utilization, which we measured dur-
ing all test runs: with no cpuload instance running, utilization was 19, 33, 36,
and 45 per cent in the native, original, synchronous scheduling, and asynchronous
scheduling cases. Whenever more than one cpuload was running, utilization
rose to 100 per cent. The benefits of synchronous user-level scheduling become
evident with the increasing number of cpuload instances. With the synchronous
protocol, netperf throughput stays constant, a behavior that is conforming to
the outcome of the native installation, where netperf throughput remains undis-
turbed from additional cpuload instances as well. However, with both the asyn-
chronous and the original versions, netperf throughput drops with increasing
numbers of cpuload instances. We can attribute that behavior to the L4 ker-
nel scheduler counteracting the intentions of the Linux guest scheduler. The syn-
chronous scheduling architecture allows the virtual-machine monitor to accurately
map Linux scheduling and dispatching decisions to the underlying L4 threads,
since the kernel does not perform any implicit scheduling decisions. In contrast,
both the asynchronous and the original L4 scheduling architecture do perform
scheduling decisions at timer interrupts — the asynchronous version based on its
time-based stride scheduling policy, and the original version based on its round-
robin scheduler. The asynchronous version still improves on the original version,
in that it allows L4 scheduling decisions to be tracked and the resulting distribution
of processor time and energy to be accounted; also it allows the virtual machine

118

5.3. PERFORMANCE OF ENERGY MANAGEMENT 119

scheduler to allocate processor time to whole virtual machines (thread groups)
rather than to individual threads only. Still both the asynchronous user-level and
the original scheduler architecture may lead to situations where L4 scheduler de-
cisions contradict Linux scheduler decisions.

Note that the purpose of the experiment is not to show that using a kernel-level
scheduler inherently leads to poor network performance. More accurate schedul-
ing (and better throughput results) can also be achieved with the asynchronous and
the original L4 scheduling architecture, by means of user code that prevents the L4
kernel scheduling policy from selecting the “wrong” thread for dispatching. Such
a scheme could be either implemented by modifying the guest–operating-system
scheduler to become aware of and coordinate with the L4 kernel scheduler, or by
adding functionality to the virtual-machine monitor that makes sure all threads
except the one Linux designates to run are not runnable. Both solutions are not
generic, however, in that they still leave a global policy in the host kernel.

5.3 Performance of Energy Management
The second set of experiments strives to quantify the performance overhead as-
sociated with our accounting and allocation infrastructure. In the following, we
first evaluate the costs of adding the user-controlled processor-energy manage-
ment logic to the microkernel. We then evaluate the impact of combined processor
and disk management in terms of disk throughput and of processor utilization.

5.3.1 Performance of Processor Management
To evaluate the performance impact of our processor-scheduling architecture, we
deemed two questions as relevant: first, we wanted to evaluate how expensive
our scheduling architecture is in terms of the basic absolute overhead. Second,
we wanted to find out how those basic costs are reflected in overall application
performance.

To quantify the basic overhead of adding user-level scheduling logic to the
kernel, we compared the performance of IPC on the original L4 version against
the same operation on our new L4 version. We used a ping-pong IPC micro-
benchmark that creates a pair of communicating threads that perform message
transfers back and forth. The benchmark measures round-trip time for different
message sizes; since transfer times are short, the benchmark conveys messages
repeatedly. Figures 5.8 and 5.7 list the results in µs, for messages within address
spaces (intra-AS) and across address spaces (inter-AS).

With the original scheduling architecture, IPC costs are about 0.18µs for intra-
AS and about 0.5µs for inter-AS IPCs. With the asynchronous protocol, IPC costs

119

120 CHAPTER 5. EVALUATION

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
in

 µ
se

c

Message size (bytes)

Intra-AS (O)
Intra-AS (A)
Intra-AS (S)

Figure 5.7: Intra-address space IPC costs of L4 with support for user-level
scheduling in the synchronous (S) and asynchronous (A) version, compared to
the original (O) version.

increase to about 1.0µs and 1.4µs. A large portion of these costs stems from the
hardware costs for reading out performance counters: the rdpmc instruction re-
quires about 0.042µs, thus reading out 8 performance counters alone yields an
overhead of about 0.34µs. We attribute the rest of performance degradation for
the asynchronous scheme to the changed kernel scheduling protocol and imple-
mentation. For the synchronous scheduling protocol, IPC costs increase dramat-
ically to 10.5µs and 11µs respectively. This comes unsurprising, as each IPC is
interposed by the user-level scheduler, requiring extra transitions between threads
and from kernel to user level.

Our micro-benchmark tests give us detailed insights on a specific hot spot of
our architecture and protocols; however, they are not necessarily a predictor for
overall application performance. To quantify those effects at application level,
we ran another set of benchmarks as within a virtual machine, and compared their
results across the different scheduler protocols. We ran three different benchmarks
within a Linux guest operating system instance: i) a compile of the Linux kernel
2.4.20, with the source code served out of a ram disk in memory to avoid I/O
operations, ii) the netperf benchmark, which we stressed from the local client
via the loop-back device, and iii) netperf, this time stressed from an external
client through a Gigabit network interface card. Since this benchmark is I/O-
bound, we additionally measured processor utilization during the run (all other
benchmarks in this experiment showed a processor utilization of 100 per cent).

The results are depicted in Table 5.9. For the sake of completeness, the fig-

120

5.3. PERFORMANCE OF ENERGY MANAGEMENT 121

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
in

 µ
se

c

Message size (bytes)

Inter-AS (O)
Inter-AS (A)
Inter-AS (S)

Figure 5.8: Inter-address space IPC costs of L4 with support for user-level
scheduling in the synchronous (S) and asynchronous (A) version, compared to
the original (O) version.

Workload Native Original ASYNC SYNC
Kernel build [min] 1:47 1:58 1:58 2:07
Netperf Local [MB/sec] 5738 5463 5326 4348
Netperf Remote [MB/sec] 942 941 941 926
Netperf Remote CPU util. [per cent] 19 33 36 45

Table 5.9: Kernel-build time [min] and Netperf throughput T [MB
sec

] of our asyn-
chronous and synchronous scheduling protocols, compared to the original infras-
tructure.

ure additionally shows the results with the same setup running in a native en-
vironment, that is, with Linux running on bare hardware. With asynchronous
scheduling, kernel-build performance stays on par with the original version, while
netperf performance loss is 2.5 per cent in throughput in the local case, and 9
per cent in processor utilization in the remote case. With synchronous scheduling,
the performance loss relative to original is 7.5 per cent for kernel build, 20.4 per
cent in throughput for local netperf, and 1.6 per cent in throughput and 36 per
cent in processor utilization for remote netperf.

121

122 CHAPTER 5. EVALUATION

5.3.2 Performance of Combined Disk and Processor Manage-
ment

Finally, we wanted to evaluate the performance of our energy-management in-
frastructure in a more complex scenario. For that purpose, we evaluated the
performance impact of our management infrastructure on the throughput of our
disk-driver subsystem. We used the same disk benchmark we already used for
evaluating disk accounting; again, we ran the benchmark in its own guest virtual
machine, on a virtual disk provided by a driver virtual machine. We disabled all
processor and disk budgets and let the benchmark run unconstrained, but with
the infrastructure for energy accounting and allocation still in place. We then
compared the setup against an original version of the virtualization environment
lacking any energy-management infrastructure. We measured performance for
all protocol combinations, that is, for synchronous and asynchronous processor
scheduling, and for synchronous and asynchronous disk scheduling. Note that
we compare the performance of two virtualization environments; a performance
comparison of the original virtual disk driver against native drivers is not of our
interest here; it can be found in [LeVasseur et al., 2004].

 0

 0.5

 1

 1.5

 2

 0.5 1 2 4 8 16 32 64

M
et

ric
 re

la
tiv

e
to

 n
at

iv
e

disk block size (KB)

Read throughput
Write throughput

Read CPU utilization
Write CPU utilization

Figure 5.10: Throughput and processor utilization of our management infrastruc-
ture (asynchronous processor scheduling and disk scheduling) for disk streaming
read and write, relative to native virtualization for disk streaming read and write.

The results are depicted in Figures 5.10, to 5.13. Disk throughput is largely
identical to the original version, independent whether protocols are asynchronous
or synchronous. With synchronous processor scheduling, but asynchronous disk
scheduling, throughput is higher than original, but only slightly, increasing from
46 to 48 MBytes/sec on average. Processor utilization, in turn, increases in all ver-
sions, asynchronous and synchronous ones. The increase occurs at a low level in
absolute terms, but is still significant relatively: with asynchronous processor and
disk scheduling, utilization increases from 5.1 to 6.1 per cent on average. With

122

5.3. PERFORMANCE OF ENERGY MANAGEMENT 123

 0

 0.5

 1

 1.5

 2

 0.5 1 2 4 8 16 32 64

M
et

ric
 re

la
tiv

e
to

 n
at

iv
e

disk block size (KB)

Read throughput
Write throughput

Read CPU utilization
Write CPU utilization

Figure 5.11: Throughput and processor utilization of our management infrastruc-
ture (asynchronous processor scheduling, synchronous disk scheduling) for disk
streaming read and write, relative to native virtualization.

 0

 0.5

 1

 1.5

 2

 0.5 1 2 4 8 16 32 64

M
et

ric
 re

la
tiv

e
to

 n
at

iv
e

disk block size (KB)

Read throughput
Write throughput

Read CPU utilization
Write CPU utilization

Figure 5.12: Throughput and processor utilization of our management infrastruc-
ture (synchronous processor scheduling, asynchronous disk scheduling) for disk
streaming read and write, relative to native virtualization.

asynchronous processor scheduling but synchronous disk scheduling, utilization
rises to 6.2 per cent on average. With synchronous processor scheduling but asyn-
chronous disk scheduling, utilization rises to 7.3 per cent on average, and with
synchronous processor and disk scheduling, utilization rises to 7.6 per cent on
average. We credit the differences in throughput and processor utilization to the
different mechanics of scheduling and interrupt handling in the different versions.

Note that, in general, the performance overhead is lower relatively with smaller
block sizes. We believe that this effect stems from a high absolute overhead of our
energy-management infrastructure, which, however, has less impact with small
block sizes since there, the absolute virtualization overhead is quite high as well.
Altogether, however, we do take the results as a general indicator of serious per-

123

124 CHAPTER 5. EVALUATION

 0

 0.5

 1

 1.5

 2

 0.5 1 2 4 8 16 32 64

M
et

ric
 re

la
tiv

e
to

 n
at

iv
e

disk block size (KB)

Read throughput
Write throughput

Read CPU utilization
Write CPU utilization

Figure 5.13: Throughput and processor utilization of our management infrastruc-
ture (synchronous processor scheduling and disk scheduling) for disk streaming
read and write, relative to native virtualization.

formance drawbacks with synchronous scheduling in the current version of the
prototype. Future work needs to be done to evaluate how this overhead can be
mitigated further, for instance, by using module isolation concepts that are less
costly than the address space we are currently limited to in our prototype.

5.4 Summary
In summary, we draw the following conclusions from our experiments:

Effectiveness of energy management Our experiments show that our prototype
is capable of accurately accounting processor and disk energy consump-
tion to different notions of applications at runtime. Results show that our
framework deals with layering and interdependencies, as exemplified by
our virtualized disk service, for which we track down energy consumption
to both the physical processor and the physical disk. Internal accounting
records furthermore correspond with external measurements of processor
and disk energy consumption. Our experiments also show that our proto-
type is capable of accurately allocating processor and disk energy to dif-
ferent notions of applications. Results show that our framework stipulates
the energy consumption of individual hardware devices, for complete vir-
tual machines at the host-level, and for individual virtualized applications
running within energy-aware guest operating systems. Our allocation mech-
anisms are extensible in terms of energy-management implementation and
policies. They allow, for instance, scheduling to be quickly changed from
energy-oriented to throughput-oriented. Finally, our synchronous proces-

124

5.4. SUMMARY 125

sor scheduling scheme enables better and more accurate user-controlled
scheduling than existing microkernel architectures.

Performance of energy management Our experiments comparing our prototype
against vanilla versions of the L4 microkernel and the virtualization envi-
ronment running atop yields mixed results and do not allow us to draw a
uniform or definitive conclusion: overheads for our processor energy man-
agement may be dramatic (up to factor 10x) for selected micro-benchmarks
scenarios, but range from 0 to 9 per cent respectively 7.5 to 36 per cent at
application layer, depending on the desired accuracy of scheduling. Over-
heads for combined processor and disk management are zero with respect
to disk throughput, and limited to an increase in processor utilization, from
5.1 to at most 7.6 per cent, that is, by at most 49 per cent. Altogether, the
performance results indicate that there is a trade-off between accuracy and
performance in energy management, and therefore support our belief that it
should be up to policy developer to choose the point in the trade-off space
— which our infrastructure enables by offering different management proto-
cols. Note again that, at present, we leave the question open how and when
the particular protocol should be chosen and leave it up to future work to
investigate an appropriate (and possibly runtime) configuration mechanism.

125

126 CHAPTER 5. EVALUATION

126

Chapter 6

Conclusion

This chapter concludes the thesis. We begin with summarizing its contributions
in Section 6.1; we then state suggestions for future work in Section 6.2.

6.1 Contributions of the Thesis
This thesis addresses the problem of how operating-system energy management
can be facilitated in presence of operating-system structures becoming increas-
ingly modularized. We have developed a framework for system-level support for
managing energy in distributed, multi-layered operating-system environments, as
they are becoming common in today’s computer systems. Our framework strives
to enable energy-awareness and energy management if the resource-management
subsystem is distributed and scattered among operating-system modules, rather
than being centralized and monolithic. The thesis makes the following research
contributions:

A Model for Modularization-Aware Energy Management Instead of treating
operating-system energy management as centralized and privileged, we mo-
del it as a feedback loop involving resources, activities, and energy-policy–
management modules in different compartments. We furthermore propose
to solely rely on the notion of energy as the base abstraction, as it quantifies
energy effects a distributable and partitionable way.

Exposed and Distributed Energy Accounting and Allocation We propose dis-
tributed and exposed energy-accounting and energy-allocation mechanisms
for extensible energy management between policy managers and resource
providers. Exposed accounting thereby allows policy managers to track
how the energy is spent in the system, from originating activities down to
the hardware devices. Exposed allocation enables them to dynamically and

127

128 CHAPTER 6. CONCLUSION

remotely control energy consumption and other effects for both software
activities and hardware devices.

Energy Management Interaction Protocols Exposing energy accounting and al-
location requires propagating accounting state and resource-allocation de-
cisions between involved modules. Different communication protocols are
thinkable; we postulate that the optimal protocol is largely defined by two
opposing factors, the timeliness requirements of the energy policies, and the
protocol performance overhead induced by module isolation. We explore
two different protocols, a synchronous and an asynchronous variant.

Virtualization of Energy Effects Virtualization layers have become very popu-
lar in operating systems, and a de-facto standard to solve legacy-compatibili-
ty problems; we therefore support a notion of virtualized energy effects,
to provide the additional benefit of a development path towards fine-grain,
energy-aware resource management for virtualized applications.

Prototype Implementation To demonstrate our framework design we have built
a prototype for a microkernel-based component operating system. We use
an instance of the L4 microkernel, and, atop, a platform-virtualization layer
providing compatibility to Linux applications. Our prototype supports pro-
cessor and disk energy management both at the physical and at the virtual
layer. To that end, it features distributed and exposed mechanisms for ac-
counting and allocation of processor and disk energy both to complete vir-
tual machines and to individual virtualized applications. We have validated
our approach in two aspects, in the effectiveness and in the performance of
our energy accounting and allocation mechanisms.

Validation of Effectiveness Our experimental results show that our prototype is
capable of accurately accounting and allocating processor and disk energy
consumption to different notions of applications at runtime. Our frame-
work deals with layering and interdependencies, as exemplified by a virtu-
alized disk service, for which we track down energy consumption on both
the processor and the physical disk. Internal accounting records cumula-
tively correspond with external measurements of processor and disk energy
consumption. Our allocation mechanisms enable extensible policies, which
can be quickly changed from energy-oriented to throughput-oriented.

Validation of Performance Our experimental results further highlight the inter-
play between accuracy and performance of energy management: overheads
for processor energy management may be dramatic for micro-benchmarks,
but percolate to application level at a more moderate level, where they range

128

6.2. SUGGESTIONS FOR FUTURE WORK 129

range from 0 to 36 for different application benchmarks. Overheads for
combined processor and disk energy management are zero in terms of disk
throughput and limited to an increase in processor utilization, from 5.1 to
at most 7.6 per cent, all depending on the desired accuracy of energy man-
agement. We draw the conclusion it should be up to developers of energy
management policies, which point in the trade-off space between accuracy
and performance to choose; our energy management infrastructure strives
to enable those different decisions to be put in effect, by offering different
management protocols.

6.2 Suggestions for Future Work
We see our work as a support infrastructure to develop and evaluate energy man-
agement strategies for modular operating systems. We consider three areas to be
important for future work:

First, and foremost, our work is currently focused on energy-management
mechanisms rather than on policies; while we do evaluate our mechanisms with
a small set of policies, future work has to be done to explore the large body of
existing algorithms and policies for operating-system energy management, and
its applicability to modular operating systems. First steps towards this direction
could be to investigate more complex processor or disk-energy–management poli-
cies such as thermal management [Merkel and Bellosa, 2006], or energy-efficient
caching and pre-fetching [Papathanasiou and Scott, 2004]

Second, while our work focused on mechanisms for modular energy manage-
ment, there is still a large opportunity for improving our proposed mechanisms.
For example, we have put a strong emphasis on software mechanisms, since we
expect that hardware mechanisms such as sleep states can be integrated in rather
straight-forward fashion; still, future work has to be done to thoroughly explore
the interplay of different hardware power states on the one side, and distributed
energy accounting and modular policy management on the other side. As another
example, at present, we offer two protocols for energy management interaction,
but leave the question open how and when the particular protocol should be cho-
sen; future work must investigate how the selection of protocols can be facilitated
in a flexible way, for example, by offering a dynamic configuration system, or
by allowing different scheduling domains to use different protocols at runtime.
Also, future work needs to be done to investigate if the performance overheads of
the present mechanisms can be mitigated. Particularly the synchronous protocol
schemes presently add serious performance (and subsequently energy) overhead,
which have to be offset from potential energy savings achieved through our in-
frastructure. A potential performance optimization would be to put policy man-

129

130 CHAPTER 6. CONCLUSION

agement modules into more light-weight protection domains than address spaces,
in order to lower the overhead of transitioning between policy modules and device
drivers.

Third, our implementation and particularly the evaluation focused on single-
node, x86-based stationary computer system. Future work needs to be done to
investigate how our approach proves effective in other application scenarios such
as servers with multiple processors or devices, or the embedded and mobile space.
First steps in this direction could be the extension of our distributed processor ac-
counting and allocations schemes towards multi-processor systems, which could
enable energy-aware load migration or thermal balancing; or the development of
a uniform accounting and allocation policy and scheme for managing battery life-
time in mobile, modular operating systems.

130

Acknowledgements

First, and foremost, I would like to thank my advisor Frank Bellosa. Without his
assistance and encouragement this work would not have been possible. I would
also like to thank Gernot Heiser, my secondary reviewer, for spending his pre-
cious time for reading my thesis and attending my defense. During my graduate
program, I had the pleasure to supervise and work with several thesis students, no-
tably Max Laier, Michael Schilli, Sebastian Reichelt, Sebastian Biemüller, Chris-
tian Lang, and Marcus Reinhardt. With their projects, insights, and experiences
they contributed quite some bits and pieces to my own PhD thesis project.

I would like to thank the members of the System Architecture Group at Uni-
versity of Karlsruhe for providing a collegial work environment. I would notably
like to thank my roommate Andreas Merkel for the discussions and idea bounc-
ing, and James McCuller for providing a most professional IT environment and
for being a colleague I enjoyed chatting and sharing thoughts with. I am also
thankful to the present and former members of the L4 crowd at Karlsruhe, notably
Uwe Dannowski, Joshua LeVasseur, Espen Skoglund, and Volkmar Uhlig, with
whom I enjoyed working on L4Ka microkernel technology and many other fun
projects. Special thanks go to Volkmar Uhlig personally, for the many interesting
and inspiring discussions I had with him (not only about work matters), and for
encouraging and helping me to get an internship position at IBM Research for half
a year during my PhD program.

Credits go to my kids Hannah and Jonas, for showing me day to day that life
has more to offer than just profession and career. Finally I want to thank my
beloved Katrin for untertaking with me both graduate studies in particular and
life in general, and for sharing and helping to alleviate the many situations of
self-doubt and loneliness that are inevitably part of the PhD endeavor.

131

132

Bibliography

[Accetta et al., 1986] Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian,
A., and Young, M. (1986). Mach: A new kernel foundation for UNIX develop-
ment. In Proceedings of the Summer 1986 USENIX Technical Conference and
Exhibition, pages 93–112, Atlanta, GA, USA.

[Adams and Agesen, 2006] Adams, K. and Agesen, O. (2006). A comparison of
software and hardware techniques for x86 virtualization. In Proceedings of
the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2–13, San Jose, CA, USA.

[Ainsworth et al., 2008] Ainsworth, P., Echenique, M., Padzieski, B., Villalobos,
C., Walters, P., and Landon, D. (2008). Going green with IBM Systems Direc-
tor. IBM Red Book.

[Allalouf et al., 2009] Allalouf, M., Arbitman, Y., Factor, M., Kat, R., Meth, K.,
and Naor, D. (2009). Storage modeling for power estimation. In Proceedings
of the The Israeli Experimental Systems Conference, pages 107–121, Haifa,
Israel.

[Amsden et al., 2006] Amsden, Z., Arai, D., Hecht, D., Holler, A., and Subrah-
manyam, P. (2006). VMI: An interface for paravirtualization. In Proceedings
of the 2006 Ottawa Linux Symposium, pages 363–378, Ottawa, Canada.

[Anand et al., 2004] Anand, M., Nightingale, E. B., and Flinn, J. (2004). Ghosts
in the machine: Interfaces for better power management. In Proceedings of the
2nd International Conference on Mobile Systems, Applications, and Services,
pages 3–23, Boston, MA, USA.

[Anderson et al., 1991] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and
Levy, H. M. (1991). Scheduler activations: Effective kernel support for the
user-level management of parallelism. In Proceedings of the 13th Symposium
on Operating System Principles, pages 95–109, Pacific Grove, CA, USA.

133

134 BIBLIOGRAPHY

[Appavoo et al., 2002a] Appavoo, J., Auslander, M., DaSilva, D., Edelsohn, D.,
Krieger, O., Ostrowski, M., Rosenburg, B., Wisniewski, R., and Xenidis, J.
(2002a). Scheduling in K42. White Paper, IBM Research.

[Appavoo et al., 2002b] Appavoo, J., Auslander, M., DaSilva, D., Edelsohn, D.,
Krieger, O., Rosenburg, M. O. B., Wisniewski, R., and Xenidis, J. (2002b).
Utilizing Linux kernel components in K42. Technical report, IBM Watson
Research.

[Aron et al., 2001] Aron, M., Deller, L., Elphinstone, K., Jaeger, T., Liedtke, J.,
and Park, Y. (2001). The SawMill framework for virtual memory diversity.
In Proceedings of the 6th Asia-Pacific Computer Systems Architecture Confer-
ence, pages 3–10, Bond University, Gold Coast, QLD, Australia.

[Banga et al., 1999] Banga, G., Druschel, P., and Mogul, J. C. (1999). Resource
containers: A new facility for resource management in server systems. In Pro-
ceedings of the 4th Symposium on Operating Systems Design and Implementa-
tion, pages 45–58, Berkeley, CA, USA.

[Barham et al., 2003] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the art
of virtualization. In Proceedings of the 19th Symposium on Operating System
Principles, pages 164–177, Bolton Landing, NY, USA.

[Bellosa, 2000] Bellosa, F. (2000). The benefits of event-driven energy account-
ing in power-sensitive systems. In Proceedings of the 9th ACM SIGOPS Euro-
pean Workshop, pages 37–42, Kolding, Denmark.

[Bellosa et al., 2003] Bellosa, F., Weissel, A., Waitz, M., and Kellner, S. (2003).
Event-driven energy accounting for dynamic thermal management. In Pro-
ceedings of the Workshop on Compilers and Operating Systems for Low Power,
pages 37–42, New Orleans, LA, USA.

[Benini et al., 2000] Benini, L., Bogliolo, A., and Micheli, G. D. (2000). A sur-
vey of design techniques for system-level dynamic power management. IEEE
Transactions on Very Large Scale Integration Systems, 8(3):299–316.

[Bershad et al., 1995] Bershad, B. N., Chambers, C., Becker, D., Sirer, E. G.,
Fiuczynski, M., Savage, S., and Eggers, S. (1995). Extensibility, safety and
performance in the SPIN operating system. In Proceedings of the 15th Sympo-
sium on Operating System Principles, pages 267–284, Copper Mountain, CO,
USA.

134

BIBLIOGRAPHY 135

[Bianchini and Rajamony, 2004] Bianchini, R. and Rajamony, R. (2004). Power
and energy management for server systems. IEEE Computer, 37(11):68–76.

[Biemueller and Dannowski, 2007] Biemueller, S. and Dannowski, U. (2007).
L4-based real virtual machines – an API proposal. In Proceedings of the 1st
International Workshop on MicroKernels for Embedded Systems, pages 36–42,
Sydney, Australia.

[Brill, 2007] Brill, K. G. (2007). The invisible crisis in the data center: The
economic meltdown of moore’s law. White Paper, The Uptime Institute.

[Carrera et al., 2003] Carrera, E. V., Pinheiro, E., and Bianchini, R. (2003). Con-
serving disk energy in network servers. In Proceedings of the 2003 Interna-
tional Conference on Supercomputing, pages 86–97, San Francisco, CA, USA.

[Chase et al., 2001] Chase, J., Anderson, D., Thakur, P., and Vahdat, A. (2001).
Managing energy and server resources in hosting centers. In Proceedings of
the 18th Symposium on Operating System Principles, pages 103–116, Banff,
Canada.

[Chou et al., 2001] Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D.
(2001). An empirical study of operating system errors. In Proceedings of the
18th Symposium on Operating System Principles, pages 73–88, Banff, Canada.

[Citrix Systems Corporation, 2009] Citrix Systems Corporation (2009). Citrix
XenServer. http://www.citrix.com/xenserver.

[Colarelli and Grunwald, 2002] Colarelli, D. and Grunwald, D. (2002). Massive
arrays of idle disks for storage archives. In Proceedings of the 2002 Interna-
tional Conference on Supercomputing, pages 1–11, Baltimore, MD, USA.

[Delaluz et al., 2001] Delaluz, V., Kandemir, M., Vijaykrishnan, N., Sivasub-
ramaniam, A., and Irwin, M. J. (2001). Hardware and software tech-
niques for controlling dram power modes. IEEE Transactions on Computers,
50(11):1154–1173.

[Delaluz et al., 2002] Delaluz, V., Sivasubramaniam, A., Kandemir, M. T., Vi-
jaykrishnan, N., and Irwin, M. J. (2002). Scheduler-based DRAM energy man-
agement. In Proceedings of the 39th Design Automation Conference, pages
697–702, New Orleans, LA, USA.

[des Places et al., 1996] des Places, F. B., Stephen, N., and Reynolds, F. D.
(1996). Linux on the OSF Mach3 microkernel. In Proceedings of the Con-
ference on Freely Distributable Software, pages 33–46, Boston, MA, USA.

135

http://www.citrix.com/xenserver

136 BIBLIOGRAPHY

[Druschel et al., 1997] Druschel, P., Pai, V. S., and Zwaenepoel, W. (1997). Ex-
tensible kernels are leading OS research astray. In Proceedings of 6th Workshop
on Hot Topics in Operating Systems, pages 38–42, Cape Cod, MA, USA.

[Economou et al., 2006] Economou, D., Rivoire, S., Kozyrakis, C., and Ran-
ganathan, P. (2006). Full-system power analysis and modeling for server envi-
ronments. In Proceedings of the Workshop on Modeling, Benchmarking, and
Simulation, Boston, MA, USA.

[Elnozahy et al., 2002] Elnozahy, M., Kistler, M., and Rajamony, R. (2002).
Energy-efficient server clusters. In Proceedings of the 2nd Workshop on Power-
Aware Computing Systems, pages 179–196, Cambridge, MA, USA.

[Elnozahy et al., 2003] Elnozahy, M., Kistler, M., and Rajamony, R. (2003). En-
ergy conservation policies for web servers. In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, pages 59–67, Seattle, WA,
USA.

[Elphinstone et al., 2007] Elphinstone, K., Greenaway, D., and Ruocco, S.
(2007). Lazy scheduling and direct process switch — merit or myths? In
Proceedings of the 3rd Workshop on Operating System Platforms for Embed-
ded Real-Time Applications, pages 69–77, Pisa, Italy.

[Engler et al., 1995] Engler, D. R., Kaashoek, M. F., and O’Toole, J. (1995). Ex-
okernel: An operating system architecture for application-level resource man-
agement. In Proceedings of the 15th Symposium on Operating System Princi-
ples, pages 251–266, Copper Mountain, CO, USA.

[Ethier, 2004] Ethier, S. (2004). Application-driven power management. In
Proceedings of the SDR 04 Technical Conference and Product Exposition.,
Phoenix, AZ, USA.

[Fan et al., 2001] Fan, X., Ellis, C. S., and Lebeck, A. R. (2001). Memory con-
troller policies for DRAM power management. In Proceedings of the 2001
International Symposium on Low Power Electronics and Design, pages 129–
134, Huntington Beach, CA, USA.

[Fan et al., 2007] Fan, X., Weber, W.-D., and Barroso, L. A. (2007). Power pro-
visioning for a warehouse-sized computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, pages 13–23, San Diego,
CA, USA.

[Felter et al., 2005] Felter, W., Rajamani, K., Keller, T., and Rusu, C. (2005).
A performance-conserving approach for reducing peak power consumption in

136

BIBLIOGRAPHY 137

server systems. In Proceedings of the 2005 International Conference on Su-
percomputing, pages 293–302, Cambridge, MA, USA.

[Femal and Freeh, 2005] Femal, M. E. and Freeh, V. W. (2005). Boosting data
center performance through non-uniform power allocation. In Proceedings of
the 2nd International Conference on Autonomic Computing, pages 250–261,
Seattle, WA, USA.

[Filani et al., 2008] Filani, D., He, J., Gao, S., Rajappa, M., Kumar, A., Shah, P.,
and Nagappan, R. (2008). Dynamic data center power management. Trends,
issues, and solutions. Intel Technology Journal, 12(1):59–68.

[Flautner and Mudge, 2002] Flautner, K. and Mudge, T. N. (2002). Vertigo: Au-
tomatic performance-setting for Linux. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, pages 105–116, Boston,
MA, USA.

[Flinn and Satyanarayanan, 1999] Flinn, J. and Satyanarayanan, M. (1999).
Energy-aware adaptation for mobile applications. In Proceedings of the 17th
Symposium on Operating System Principles, pages 48–63, Charleston, SC,
USA.

[Ford and Susarla, 1996] Ford, B. and Susarla, S. R. (1996). CPU inheritance
scheduling. In Proceedings of the 2nd Symposium on Operating Systems De-
sign and Implementation, pages 91–105, Berkeley, CA, USA.

[Forest, 2008] Forest, W. (2008). Revolutionizing data center efficiency. The
Uptime Institute Green Enterprise Computing Symposium.

[Forin et al., 1991] Forin, A., Golub, D., and Bershad, B. (1991). An I/O system
for Mach 3.0. In Proceedings of the 2nd USENIX Mach Symposium, pages
163–176, Monterey, CA, USA.

[Fraser et al., 2004] Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A.,
and Williamson, M. (2004). Safe hardware access with the Xen virtual machine
monitor. In Proceedings of the 1st Workshop on Operating System and Archi-
tectural Support for the On-Demand IT Infrastructure, Boston, MA, USA.

[Gefflaut et al., 2000] Gefflaut, A., Jaeger, T., Park, Y., Liedtke, J., Elphinstone,
K., Uhlig, V., Tidswell, J. E., Deller, L., and Reuther, L. (2000). The SawMill
multiserver approach. In Proceedings of the 9th ACM SIGOPS European Work-
shop, pages 109–114, Kolding, Denmark.

137

138 BIBLIOGRAPHY

[Goel and Duchamp, 1996] Goel, S. and Duchamp, D. (1996). Linux device
driver emulation in Mach. In Proceedings of the USENIX 1996 Annual Tech-
nical Conference, pages 65–74, San Diego, CA, USA.

[Goldberg, 1972] Goldberg, R. P. (1972). Architectural Principles for Virtual
Computer Systems. PhD thesis, Division of Engineering and Applied Physics,
Harvard University, Cambridge, MA, USA.

[Gomaa et al., 2004] Gomaa, M., Powell, M. D., and Vijaykumar, T. N. (2004).
Heat-and-run: leveraging SMT and CMP to manage power density through
the operating system. In Proceedings of the 11th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 260–270, Boston, MA, USA.

[Govidan et al., 2009] Govidan, M. S. S., Lefurgy, C., and Dholakia, A. (2009).
Using on-line power modeling for server power capping. In Proceedings of the
2009 Workshop on Energy Efficient Design, Austin, TX, USA.

[Govil et al., 1995] Govil, K., Chan, E., and Wasserman, H. (1995). Comparing
algorithms for dynamic speed-setting of a low-power CPU. In Proceedings of
the 1st Annual International Conference on Mobile Computing and Network-
ing, pages 13–25, Berkeley, CA, USA.

[Goyal et al., 1996] Goyal, P., Guo, X., and Vin, H. M. (1996). A hierarchical
CPU scheduler for multimedia operating systems. In Proceedings of the 2nd
Symposium on Operating Systems Design and Implementation, pages 107–121,
Berkeley, CA, USA.

[Green Hills Software, 2009] Green Hills Software (2009). INTEGRITY real-
time operating system. http://www.ghs.com/products/rtos/
integrity.html.

[Gurumurthi et al., 2003] Gurumurthi, S., Sivasubramaniam, A., Kandemir, M.,
and Franke, H. (2003). DRPM: Dynamic speed control for power manage-
ment in server class disks. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, pages 169–179, New York, NY, USA.

[Haeberlen et al., 2000] Haeberlen, A., Liedtke, J., Park, Y., Reuther, L., and Uh-
lig, V. (2000). Stub-code performance is becoming important. In Proceedings
of the 1st Workshop on Industrial Experiences with Systems Software, pages
31–38, San Diego, CA, USA.

[Hand et al., 2005] Hand, S., Warfield, A., Fraser, K., Kotsovinos, E., and Ma-
genheimer, D. (2005). Are virtual machine monitors microkernels done right?

138

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html

BIBLIOGRAPHY 139

In Proceedings of 10th Workshop on Hot Topics in Operating Systems, pages
95–99, Santa Fe, NM, USA.

[Hansen, 1970] Hansen, P. B. (1970). The nucleus of a multiprogramming sys-
tem. Communications of the ACM, 13(4):238–241.

[Hanson and Krogh, 1995] Hanson, R. and Krogh, F. (1995). Solving nonlinear
least squares and nonlinear equations. http://www.netlib.org/opt/
dqed.f.

[Härtig et al., 2005] Härtig, H., Hohmuth, M., Feske, N., Helmuth, C., Lacko-
rzynski, A., Mehnert, F., and Peter, M. (2005). The Nizza secure-system ar-
chitecture. In Proceedings the 1st International Conference on Collaborative
Computing: Networking, Applications and Worksharing, San Jose, CA, USA.

[Härtig et al., 1997] Härtig, H., Hohmuth, M., Liedtke, J., and Schönberg, S.
(1997). The performance of µ-kernel based systems. In Proceedings of the
16th Symposium on Operating System Principles, pages 66–77, Saint Malo,
France.

[Heath et al., 2006] Heath, T., Centeno, A. P., George, P., Ramos, L., Jaluria, Y.,
and Bianchini, R. (2006). Mercury and Freon: temperature emulation and
management in server systems. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 106–116, San Jose, CA, USA.

[Heath et al., 2002] Heath, T., Pinheiro, E., Hom, J., Kremer, U., and Bianchini,
R. (2002). Application transformations for energy and performance-aware de-
vice management. In Proceedings of the 11th Conference on Parallel Architec-
tures and Compilation Techniques, pages 121–130, Charlottesville, VA, USA.

[Heiser, 2005] Heiser, G. (2005). Secure embedded systems need microkernels.
;login: the USENIX Association newsletter, 30(6):9–13.

[Heiser, 2008] Heiser, G. (2008). The role of virtualization in embedded systems.
In Proceedings of the 1st workshop on Isolation and integration in embedded
systems, pages 11–16, Glasgow, Scotland.

[Heiser, 2009] Heiser, G. (2009). Hypervisors for consumer electronics. In Pro-
ceedings of the 6th IEEE Consumer Communications and Networking Confer-
ence, pages 614–618, Las Vegas, NV, USA.

[Heiser et al., 2007] Heiser, G., Elphinstone, K., Kuz, I., Klein, G., and Petters,
S. M. (2007). Towards trustworthy computing systems: Taking microkernels
to the next level. ACM Operating Systems Review, 41(4):3–11.

139

http://www.netlib.org/opt/dqed.f
http://www.netlib.org/opt/dqed.f

140 BIBLIOGRAPHY

[Heiser et al., 2006] Heiser, G., Uhlig, V., and LeVasseur, J. (2006). Are virtual-
machine monitors microkernels done right? ACM Operating Systems Review,
40(1):95–96.

[Herder et al., 2006] Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanen-
baum, A. S. (2006). MINIX 3: a highly reliable, self-repairing operating sys-
tem. ACM Operating Systems Review, 40(3):80–89.

[Hewlett-Packard Development Company, 2008] Hewlett-Packard Development
Company (2008). Dynamic Power Capping TCO and Best Practices. White
Paper.

[Hildebrand, 1992] Hildebrand, D. (1992). An architectural overview of QNX. In
Proceedings of the Workshop on Micro-kernels and Other Kernel Architectures,
pages 113–126, Seattle, WA, USA.

[Huang et al., 2003] Huang, H., Pillai, P., and Shin, K. G. (2003). Design and im-
plementation of power-aware virtual memory. In Proceedings of the USENIX
2003 Annual Technical Conference, pages 57–70, San Antonio, TX, USA.

[Hunt and Larus, 2007] Hunt, G. C. and Larus, J. R. (2007). Singularity: rethink-
ing the software stack. ACM Operating Systems Review, 41(2):37–49.

[Intel, 2010] Intel (1999-2010). Intel Architecture Software Developer’s Manual
Volume 3: System Programming Guide. Intel Corporation.

[Isci et al., 2006] Isci, C., Buyuktosunoglu, A., Cher, C.-Y., Bose, P., and
Martonosi, M. (2006). An analysis of efficient multi-core global power man-
agement policies: Maximizing performance for a given power budget. In Pro-
ceedings of the 39th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 347–358, Washington, DC, USA.

[Jaeger et al., 1999] Jaeger, T., Elphinstone, K., Liedtke, J., Panteleenko, V., and
Park, Y. (1999). Flexible access control using IPC redirection. In Proceedings
of 7th Workshop on Hot Topics in Operating Systems, pages 191–196, Rio Rico,
AZ, USA.

[Jones et al., 1997] Jones, M. B., Roşu, D., and Roşu, M.-C. (1997). CPU reser-
vations and time constraints: Efficient, predictable scheduling of independent
activities. In Proceedings of the 16th Symposium on Operating System Princi-
ples, pages 198–211, New York, NY, USA.

[Joseph and Martonosi, 2001] Joseph, R. and Martonosi, M. (2001). Run-time
power estimation in high performance microprocessors. In Proceedings of the

140

BIBLIOGRAPHY 141

2001 International Symposium on Low Power Electronics and Design, pages
135–140, Huntington Beach, CA, USA.

[Kansal and Zhao, 2008] Kansal, A. and Zhao, F. (2008). Fine-grained energy
profiling for power-aware application design. In Proceedings of the 1st Work-
shop on Hot Topics in Measurement and Modeling of Computer Systems, pages
26–31, Annapolis, MD, USA.

[Kellner, 2003] Kellner, S. (2003). Event-driver temperature control in operating
systems. Undergraduate thesis, Department of Computer Science, Distributed
and Operating Systems Group, University of Erlangen-Nürnberg, Germany.

[Kerby, 2007] Kerby, B. (2007). Managing Data Center Power and Cooling.
Dell, Inc.

[Kivity et al., 2007] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A.
(2007). kvm: the Linux virtual machine monitor. In Proceedings of the Ottawa
Linux Symposium 2007, pages 225–230, Ottawa, Canada.

[Klein et al., 2009] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell,
T., Tuch, H., and Winwood, S. (2009). seL4: Formal verification of an OS
kernel. In Proceedings of the 22th Symposium on Operating System Principles,
pages 207–220, Big Sky, MT, USA.

[Krieger et al., 2006] Krieger, O., Auslander, M., Rosenburg, B., Wisniewski,
R. W., Xenidis, J., Silva, D. D., Ostrowski, M., Appavoo, J., Butrico, M.,
Mergen, M., Waterland, A., and Uhlig, V. (2006). K42: Building a complete
operating system. In Proceedings of the 1st ACM SIGOPS EuroSys conference,
pages 133–145, Leuven, Belgium.

[Kumar et al., 2003] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and
Tullsen, D. M. (2003). Single-isa heterogeneous multi-core architectures: The
potential for processor power reduction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 81–92, San
Diego, CA, USA.

[L4 Development Team, 2009a] L4 Development Team (2009a). L4 X.2 Refer-
ence Manual. University of Karlsruhe, Germany.

[L4 Development Team, 2009b] L4 Development Team (2009b).
L4Ka::Pistachio. http://l4ka.org/projects/pistachio.

141

http://l4ka.org/projects/pistachio

142 BIBLIOGRAPHY

[Lawitzky et al., 2008] Lawitzky, M. P., Snowdon, D. C., and Petters, S. M.
(2008). Integrating real time and power management in a real system. In Pro-
ceedings of the 4th Workshop on Operating System Platforms for Embedded
Real-Time Applications, pages 35–44, Prague, Czech Republic.

[Lebeck et al., 2000] Lebeck, A., Fan, X., Zeng, H., and Ellis, C. (2000). Power-
aware page allocation. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 105–116, Cambridge, MA, USA.

[Lefurgy et al., 2003] Lefurgy, C., Rajamani, K., III, F. L. R., Felter, W. M.,
Kistler, M., and Keller, T. W. (2003). Energy management for commercial
servers. IEEE Computer, 36(12):39–48.

[Leslie et al., 1996] Leslie, I. M., McAuley, D., Black, R., Roscoe, T., Barham,
P. T., Evers, D., Fairbairns, R., and Hyden, E. (1996). The design and imple-
mentation of an operating system to support distributed multimedia applica-
tions. IEEE Journal of Selected Areas in Communications, 14(7):184–197.

[LeVasseur, 2009] LeVasseur, J. (2009). Device-driver reuse via virtual ma-
chines. PhD thesis, School of Computer Science and Engineering, University
of New South Wales, Sydney, Australia.

[LeVasseur et al., 2004] LeVasseur, J., Uhlig, V., Stoess, J., and Götz, S. (2004).
Unmodified device driver reuse and improved system dependability via virtual
machines. In Proceedings of the 6th Symposium on Operating Systems Design
and Implementation, pages 17–30, San Fransisco, CA, USA.

[LeVasseur et al., 2008] LeVasseur, J., Uhlig, V., Yang, Y., Chapman, M., Chubb,
P., Leslie, B., and Heiser, G. (2008). Pre-virtualization: soft layering for virtual
machines. In Proceedings of the 13th Asia-Pacific Computer Systems Architec-
ture Conference, pages 1–9, Hsinchu, Taiwan.

[Levin et al., 1975] Levin, R., Cohen, E., Corwin, W., Pollack, F., and Wulf, W.
(1975). Policy/mechanism separation in HYDRA. In Proceedings of the 5th
Symposium on Operating System Principles, pages 132–140, Austin, TX, USA.

[Levine and Roth, 1997] Levine, F. E. and Roth, C. P. (1997). A programmer’s
view of performance monitoring in the PowerPC microprocessor. IBM Journal
of Research and Development, 41(3):345–356.

[Li et al., 1994] Li, K., Kumpf, R., Horton, P., and Anderson, T. (1994). A quan-
titative analysis of disk drive power management in portable computers. In

142

BIBLIOGRAPHY 143

Proceedings of the USENIX Winter 1994 Technical Conference, pages 279–
292, San Francisco, CA, USA.

[Liedtke, 1992] Liedtke, J. (1992). Clans & Chiefs. In Proceedings of the 12th
GI/ITG Fachtagung Architektur von Rechensystemen, pages 294–305, Kiel,
Germany.

[Liedtke, 1993] Liedtke, J. (1993). Improving IPC by kernel design. In Proceed-
ings of the 14th Symposium on Operating System Principles, pages 175–188,
Asheville, NC, USA.

[Liedtke, 1995] Liedtke, J. (1995). On µ-Kernel construction. In Proceedings of
the 15th Symposium on Operating System Principles, pages 237–250, Copper
Mountain, CO, USA.

[Liedtke et al., 1991] Liedtke, J., Bartling, U., Beyer, U., Heinrichs, D., Ruland,
R., and Szalay, G. (1991). Two years of experience with a µ-kernel based OS.
ACM SIGOPS Operating Systems Review, 25(2):51–62.

[Lu et al., 2000] Lu, Y.-H., Chung, E.-Y., Simunic, T., Benini, L., and Micheli,
G. D. (2000). Quantitative comparison of power management algorithms.
In Proceedings of the Conference on Design Automation and Test in Europe,
pages 20–26, Paris, France.

[Lu and Micheli, 2001] Lu, Y.-H. and Micheli, G. D. (2001). Comparing system-
level power management policies. IEEE Design & Test of Computers,
18(2):10–19.

[Malone and Belady, 2006] Malone, C. and Belady, C. (2006). Metrics to char-
acterize data center & IT equipment energy use. In Digital Power Forum,
Richardson, TX, USA.

[Mandagere et al., 2007] Mandagere, N., Diehl, J., and Du, D. H.-C. (2007).
Greenstor: Application-aided energy-efficient storage. In Proceedings of the
24th IEEE Conference on Mass Storage Systems and Technologies, pages 16–
29, San Diego, CA, USA.

[Maren, 1999] Maren, K. T. V. (1999). The Fluke device driver framework. Mas-
ter’s thesis, Department of Computer Science, University of Utah, Salt Lake
City, UT.

[Marsh et al., 1991] Marsh, B. D., Scott, M. L., LeBlanc, T. J., and Markatos,
E. P. (1991). First-class user-level threads. In Proceedings of the 13th Sympo-
sium on Operating System Principles, pages 110–21, Pacific Grove, CA, USA.

143

144 BIBLIOGRAPHY

[Merkel and Bellosa, 2006] Merkel, A. and Bellosa, F. (2006). Balancing power
consumption in multiprocessor systems. In Proceedings of the 1st ACM
SIGOPS EuroSys conference, pages 403–414, Leuven, Belgium.

[Microsoft Corporation, 2009] Microsoft Corporation (2009). Hyper-V. http:
//www.microsoft.com/hyper-v-server/.

[Microsoft Corporation and Intel Corporation, 2009] Microsoft Corporation and
Intel Corporation (2009). A Dynamic Approach to Power Budgeting. Microsoft
Corporation, Intel Corporation.

[Moore et al., 2005] Moore, J. D., Chase, J. S., Ranganathan, P., and Sharma,
R. K. (2005). Making scheduling ”cool”: Temperature-aware workload place-
ment in data centers. In Proceedings of the USENIX 2005 Annual Technical
Conference, pages 61–75, Anaheim, CA, USA.

[Mudge, 2001] Mudge, T. (2001). Power: A first-class architectural design con-
straint. IEEE Computer, 34(4):52–58.

[Narayanan et al., 2008] Narayanan, D., Donnelly, A., and Rowstron, A. I. T.
(2008). Write off-loading: Practical power management for enterprise stor-
age. In Proceedings of the 6th Conference on File and Storage Technologies,
pages 253–267, San Jose, CA, USA.

[Narayanan et al., 2009] Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S.,
and Rowstron, A. (2009). Migrating server storage to SSDs: analysis of trade-
offs. In Proceedings of the 4th ACM SIGOPS EuroSys conference, pages 145–
158, Nürnberg, Germany.

[Nathuji, 2008] Nathuji, R. (2008). Mechanisms for coordinated power manage-
ment with application to cooperative distributed systems. PhD thesis, School
of Computer Science and Engineering, Georgia Institute of Technology, GA,
USA.

[Nathuji et al., 2009] Nathuji, R., England, P., Sharma, P., and Singh, A. (2009).
Feedback driven QoS-aware power budgeting for virtualized servers. In In Pro-
ceedings of the International Workshop on Feedback Control Implementation
and Design in Computing Systems and Networks, pages 13–28, Paris, France.

[Nathuji and Schwan, 2007] Nathuji, R. and Schwan, K. (2007). VirtualPower:
Coordinated power management in virtualized enterprise systems. In Proceed-
ings of the 21th Symposium on Operating System Principles, pages 265–278,
Stevenson, WA, USA.

144

http://www.microsoft.com/hyper-v-server/
http://www.microsoft.com/hyper-v-server/

BIBLIOGRAPHY 145

[Nathuji and Schwan, 2008] Nathuji, R. and Schwan, K. (2008). VPM tokens:
virtual machine-aware power budgeting in datacenters. In Proceedings of the
17th international symposium on High performance distributed computing,
pages 119–128, Boston, MA, USA.

[Nathuji et al., 2008] Nathuji, R., Somani, A., Schwan, K., and Yogendra, J.
(2008). CoolIT: Coordinating facility and IT management for efficient data-
centers. In Proceedings of the 1st Workshhp on Power-Aware Computing and
Systems, San Diego, CA, USA.

[National Academy of Sciences of Ukraine, Cybernetics Institute, 2009]
National Academy of Sciences of Ukraine, Cybernetics Institute (2009).
Openopt Framework. http://openopt.org.

[Naveh et al., 2006] Naveh, A., Rotem, E., Mendelson, A., Gochman, S.,
Chabukswar, R., Krishnan, K., and Kumar, A. (2006). Power and thermal man-
agement in the Intel Core Duo processor. Intel Technology Journal, 10(2):109–
122.

[Neugebauer and McAuley, 2001] Neugebauer, R. and McAuley, D. (2001). En-
ergy is just another resource: energy accounting and energy pricing in the
nemesis OS. In Proceedings of 8th Workshop on Hot Topics in Operating
Systems, pages 67–72, Schloß Elmau, Oberbayern, Germany.

[Ng and Chen, 1999] Ng, W. T. and Chen, P. M. (1999). The systematic improve-
ment of fault tolerance in the rio file cache. In Proceedings of the 29th IEEE
Annual International Symposium on Fault-Tolerant Computing, pages 76–83,
Washington, DC, USA.

[Open Kernel Labs, 2009] Open Kernel Labs (2009). OKL4. http://www.
oklabs.com.

[Papathanasiou and Scott, 2004] Papathanasiou, A. E. and Scott, M. L. (2004).
Energy efficient prefetching and caching. In Proceedings of the USENIX 2004
Annual Technical Conference, pages 255–268, Boston, MA, USA.

[QNX Corporation, 2009] QNX Corporation (2009). QNX power man-
agement. http://www.qnx.com/developers/docs/6.3.0SP3/
neutrino/sys_arch/power.html.

[Raghavendra et al., 2008] Raghavendra, R., Ranganathan, P., Talwar, V., Wang,
Z., and Zhu, X. (2008). No ”power” struggles: coordinated multi-level power

145

http://openopt.org
http://www.oklabs.com
http://www.oklabs.com
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/sys_arch/power.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/sys_arch/power.html

146 BIBLIOGRAPHY

management for the data center. In Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 48–59, Seattle, WA, USA.

[Ranganathan et al., 2006] Ranganathan, P., Leech, P., Irwin, D. E., and Chase,
J. S. (2006). Ensemble-level power management for dense blade servers. In
Proceedings of the 33th Annual International Symposium on Computer Archi-
tecture, pages 66–77, Boston, MA, USA.

[Rao, 1996] Rao, S. S. (1996). Engineering Optimization: Theory and Practice.
John Wiley & Sons Inc.

[Rasmussen, 2006] Rasmussen, N. (2006). Cooling strategies for ultra-high den-
sity racks and blade servers. White Paper, American Power Conversion Cor-
poration.

[Raymond, 2004] Raymond, E. S. (2004). The Art of UNIX Programming. Ad-
dison-Wesley.

[Rohou and Smith, 1999] Rohou, E. and Smith, M. D. (1999). Dynamically man-
aging processor temperature and power. In Proceedings of the 2nd Workshop
on Feedback-Directed Optimization.

[Rosenblum and Garfinkel, 2005] Rosenblum, M. and Garfinkel, T. (2005). Vir-
tual machine monitors: Current technology and future trends. IEEE Computer,
38(5):39–47.

[Sachs et al., 2004] Sachs, D. G., Yuan, W., Hughes, C. J., Harris, A., Adve, S. V.,
Jones, D. L., Kravets, R. H., and Nahrstedt, K. (2004). Grace: A hierarchi-
cal adaptation framework for saving energy. Technical Report UIUCDCS-R-
2004-2409, Department of Computer Science, University of Illinois, Urbana-
Champaign, IL, USA.

[Sales, 2005] Sales, J. (2005). Symbian OS Internals: Real-time kernel program-
ming. John Wiley & Sons Inc.

[Schulz, 2007] Schulz, G. (2007). Storage power and cooling issues heat up.
Online Article, enterprisestorageforum.com.

[Seltzer et al., 1996] Seltzer, M. I., Endo, Y., Small, S., and Smith, K. A. (1996).
Dealing with disaster: Surviving misbehaved kernel extensions. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Implementation,
pages 213–227, Berkeley, CA, USA.

146

BIBLIOGRAPHY 147

[Skadron et al., 2003a] Skadron, K., Stan, M. R., Huang, W., Velusamy, S.,
Sankaranarayanan, K., and Tarjan, D. (2003a). Temperature-aware computer
systems: Opportunities and challenges. IEEE Micro, 23(6):52–61.

[Skadron et al., 2003b] Skadron, K., Stan, M. R., Huang, W., Velusamy, S.,
Sankaranarayanan, K., and Tarjan, D. (2003b). Temperature-aware microar-
chitecture. In Proceedings of the 30th Annual International Symposium on
Computer Architecture, pages 2–13, New York, NY, USA.

[Snowdon, 2009] Snowdon, D. (2009). Operating System Directed Power Man-
agement. PhD thesis, School of Computer Science and Engineering, University
of New South Wales, Sydney, Australia.

[Snowdon et al., 2007] Snowdon, D. C., Petters, S. M., and Heiser, G. (2007).
Accurate on-line prediction of processor and memory energy usage under volt-
age scaling. In Proceedings of the 7th ACM International Conference on Em-
bedded Software, pages 84–93, Salzburg, Austria.

[Snowdon et al., 2009] Snowdon, D. C., Sueur, E. L., Petters, S. M., and Heiser,
G. (2009). Koala: A platform for OS-level power management. In Proceed-
ings of the 4th ACM SIGOPS EuroSys conference, pages 289–302, Nürnberg,
Germany.

[Stemm and Katz, 1997] Stemm, M. and Katz, R. H. (1997). Measuring and re-
ducing energy consumption of network interfaces in hand-held devices. IEICE
Transactions on Communications, E80-B(8):1125–31.

[Stoess, 2002] Stoess, J. (2002). I/O-FlexPages on the x86-architecture. Un-
dergraduate thesis, System Architecture Group, University of Karlsruhe, Ger-
many.

[Stoess and Uhlig, 2006] Stoess, J. and Uhlig, V. (2006). Flexible, low-overhead
event logging to support resource scheduling. In Proceedings of the 12th In-
ternational Conference on Parallel and Distributed Systems, pages 115–120,
Minneapolis, MN, USA.

[Sugerman et al., 2001] Sugerman, J., Venkitachalam, G., and Lim, B.-H. (2001).
Virtualizing I/O devices on VMware workstation’s hosted virtual machine
monitor. In Proceedings of the USENIX 2001 Annual Technical Conference,
pages 1–14, Boston, MA, USA.

[Sullivan, 2000] Sullivan, R. F. (2000). Alternating cold and hot aisles provides
more reliable cooling for server farms. White Paper, The Uptime Institute.

147

148 BIBLIOGRAPHY

[Sun Microsystems Corporation, 2009] Sun Microsystems Corporation (2009).
VirtualBox. http://www.virtualbox.org.

[Swift et al., 2003] Swift, M. M., Bershad, B. N., and Levy, H. M. (2003). Im-
proving the reliability of commodity operating systems. In Proceedings of the
19th Symposium on Operating System Principles, pages 77–110, Bolton Land-
ing, NY, USA.

[Tanenbaum et al., 2006] Tanenbaum, A. S., Herder, J. N., and Bos, H. (2006).
Can We Make Operating Systems Reliable and Secure? IEEE Computer,
39(5):44–51.

[Tolia et al., 2009] Tolia, N., Wang, Z., Ranganathan, P., Bash, C., and Marwah,
M. (2009). Unified thermal and power management in server enclosures. In
Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on
Packaging and Integration of Electronic and Photonic Systems, MEMS, and
NEMS, San Francisco, CA, USA.

[Tucker and Gupta, 1989] Tucker, A. and Gupta, A. (1989). Process control and
scheduling issues for multiprogrammed shared-memory multiprocessors. In
Proceedings of the 12th Symposium on Operating System Principles, pages
159–166, Litchfield Park, AZ, USA.

[Uhlig, 2005] Uhlig, V. (2005). Scalability of Microkernel-Based Systems. PhD
thesis, System Architecture Group, University of Karlsruhe, Germany.

[Uhlig et al., 2004] Uhlig, V., LeVasseur, J., Skoglund, E., and Dannowski, U.
(2004). Towards scalable multiprocessor virtual machines. In Proceedings of
the 3rd Virtual Machine Research and Technology Symposium, pages 43–56,
San Jose, CA, USA.

[Verma et al., 2008] Verma, A., Ahuja, P., and Neogi, A. (2008). pMapper:
Power and migration cost aware application placement in virtualized systems.
In Proceedings of the ACM/IFIP/USENIX 9th International Middleware Con-
ference, pages 243–264, Leuven, Belgium.

[Verma et al., 2009] Verma, A., Dasgupta, G., Nayak, T. K., De, P., and Kothari,
R. (2009). Server workload analysis for power minimization using consolida-
tion. In Proceedings of the USENIX 2009 Annual Technical Conference, pages
39–48, San Diego, CA, USA.

[VMware Inc., 2007] VMware Inc. (2007). VMware Distributed Power Manage-
ment concepts and use. White Paper, VMware Inc.

148

http://www.virtualbox.org

BIBLIOGRAPHY 149

[VMware Inc., 2009a] VMware Inc. (2009a). Vmware ESX. http://www.
vmware.com/products/esx.

[VMware Inc., 2009b] VMware Inc. (2009b). VMware Mobile Virtualization
Platform. http://www.vmware.com/products/mobile.

[VMware Inc., 2009c] VMware Inc. (2009c). VMware Workstation. http://
www.vmware.com/products/workstation/.

[Waldspurger and Weihl, 1994] Waldspurger, C. A. and Weihl, W. E. (1994). Lot-
tery scheduling: Flexible proportional-share resource management. In Pro-
ceedings of the 1st Symposium on Operating Systems Design and Implementa-
tion, pages 1–11, Monterey, CA, USA.

[Wang and Wang, 2009] Wang, X. and Wang, Y. (2009). Co-con: Coordinated
control of power and application performance for virtualized server clusters. In
Proceedings of the 17th IEEE International Workshop on Quality of Service,
pages 1–9, Charleston, SC, USA.

[Weiser et al., 1994] Weiser, M., Welch, B. B., Demers, A. J., and Shenker, S.
(1994). Scheduling for reduced CPU energy. In Proceedings of the 1st Sym-
posium on Operating Systems Design and Implementation, pages 13–23, Mon-
terey, CA, USA.

[Weissel and Bellosa, 2002] Weissel, A. and Bellosa, F. (2002). Process cruise
control – event-driven clock scaling for dynamic power management. In Pro-
ceedings of the International Conference on Compilers, Architecture and Syn-
thesis for Embedded Systems, pages 238–246, Grenoble, France.

[Weissel and Bellosa, 2004] Weissel, A. and Bellosa, F. (2004). Dynamic thermal
management for distributed systems. In Proceedings of the 1st Workshop on
Temperature-Aware Computer Systems, München, Germany.

[Weissel et al., 2002] Weissel, A., Beutel, B., and Bellosa, F. (2002). Cooperative
IO - a novel IO semantics for energy-aware applications. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation, pages 117–
130, Boston, MA, USA.

[Welch, 1995] Welch, G. F. (1995). A survey of power management techniques
in mobile computing operating systems. ACM Operating Systems Review,
29(4):47–56.

[Wichmann, 1968] Wichmann, B. (1968). A modular operating system. In In
Proceedings of Information Processing 68, North-Holland Publishing Com-
pany, pages 548–556, Amsterdam, Netherlands.

149

http://www.vmware.com/products/esx
http://www.vmware.com/products/esx
http://www.vmware.com/products/mobile
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/workstation/

150 BIBLIOGRAPHY

[Xen.org, 2009] Xen.org (2009). Xen credit-based CPU scheduler. http://
wiki.xensource.com/xenwiki/CreditScheduler.

[Zedlewski et al., 2003] Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishna-
murthy, A., and Wang, R. (2003). Modeling hard-disk power consumption. In
Proceedings of the 2nd Conference on File and Storage Technologies, pages
217–230, San Francisco, CA, USA.

[Zeng et al., 2005] Zeng, H., Ellis, C. S., and Lebeck, A. R. (2005). Experiences
in managing energy with ECOSystem. IEEE Pervasive Computing, 4(1):62–
68.

[Zeng et al., 2002] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. (2002).
ECOSystem: managing energy as a first class operating system resource. In
Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 123–132, San Jose,
CA, USA.

[Zeng et al., 2003] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. (2003).
Currentcy: unifying policies for resource management. In Proceedings of the
USENIX 2003 Annual Technical Conference, pages 43–56, San Antonio, TX,
USA.

[Zhu et al., 2005] Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., and Wilkes, J.
(2005). Hibernator: Helping disk arrays sleep through the winter. In Proceed-
ings of the 20th Symposium on Operating System Principles, pages 177–190,
Brighton, UK, USA.

[Zhu et al., 2004] Zhu, Q., David, F. M., Devaraj, C. F., Li, Z., Zhou, Y., and Cao,
P. (2004). Reducing energy consumption of disk storage using power-aware
cache management. In Proceedings of the 10th International Conference on
High-Performance Computer Architecture, pages 118–129, Madrid, Spain.

150

http://wiki.xensource.com/xenwiki/CreditScheduler
http://wiki.xensource.com/xenwiki/CreditScheduler

	Abstract
	Zusammenfassung
	Introduction
	The Problem
	Approach
	Validation
	Organization

	Background and Related Work
	Overview
	Energy Management in Operating Systems
	Modularization in Operating Systems
	Energy Management and Modular Operating Systems
	Related Approaches
	Energy Management for Traditional Operating Systems
	Energy Management for Vertically Structured Systems
	Energy Management for Virtualized Systems
	Energy Management for Microkernel-Based Systems
	Summary

	Energy-aware Modular Operating Systems
	Overview
	Goals
	Approach
	Scope of the Approach

	A Model for Modular Energy Management
	Unified Notion of Energy
	Translating Temperature and Thermal Models
	Energy-Management Feedback Loop

	Exposed and Distributed Energy Accounting
	Determining Device-Energy Consumption
	Attributing Device-Energy Consumption
	Exposing Device-Energy Consumption
	Energy Accounting of Software Resources

	Exposed and Distributed Energy Allocation
	Exposing Resource-Allocation Decisions
	Interface-Design Considerations

	Energy-Management Interaction Protocol
	Synchronous Interaction Protocol
	Asynchronous Interaction Protocol
	Discussion

	Energy Virtualization

	Application to an L4-Based Operating System
	Prototype Environment
	The L4 Microkernel
	L4-Based Virtualization
	User-Level Device Drivers
	Energy-Management Framework

	Device-Energy Models
	Processor-Energy Model
	Disk-Energy Model

	Distributed Energy Accounting
	Processor-Energy Accounting
	Disk-Energy Accounting
	Recursive Energy Accounting

	Exposed, Energy-Aware Resource Allocation
	User-Controlled Processor Scheduling for L4
	Exposed Energy-Aware Disk Control

	Legacy Compatibility
	Legacy Resource Management
	Support for Energy-Aware Improvements

	Energy-Policy Management
	Host-Level Energy Management
	Guest-Level Energy Management – An Energy-Aware Guest Operating System

	Evaluation
	Evaluation Setup
	Effectiveness of Energy Management
	Processor and Disk-Energy Accounting
	Host-Level Processor-Energy Allocation
	Host-Level Disk-Energy Allocation
	Para-Virtualized Processor-Energy Management
	Preserving Legacy Processor Scheduling

	Performance of Energy Management
	Performance of Processor Management
	Performance of Combined Disk and Processor Management

	Summary

	Conclusion
	Contributions of the Thesis
	Suggestions for Future Work

	Acknowledgements
	Bibliography

