

 Karlsruhe Reports in Informatics 2010,10
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

On the Usefulness of Weight-Based
Constraints in Frequent Subgraph
Mining

 Frank Eichinger, Matthias Huber, Klemens Böhm

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197554755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

On the Usefulness of Weight-Based Constraints
in Frequent Subgraph Mining?

Frank Eichinger, Matthias Huber, and Klemens Böhm

Karlsruhe Institute of Technology (KIT), Germany
{eichinger, matthias.huber, klemens.boehm}@kit.edu

Abstract. Frequent subgraph mining is an important data-mining tech-
nique. In this paper we look at weighted graphs, which are ubiquitous in
the real world. The analysis of weights in combination with mining for
substructures might yield more precise results. In particular, we study
frequent subgraph mining in the presence of weight-based constraints and
explain how to integrate them into mining algorithms. While such con-
straints only yield approximate mining results in most cases, we demon-
strate that such results are useful nevertheless and explain this effect. To
do so, we both assess the completeness of the approximate result sets, and
we carry out application-oriented studies with real-world data-analysis
problems: software-defect localization, weighted graph classification and
explorative mining in logistics. Our results are that the runtime can im-
prove by a factor of up to 3.5 in defect localization and classification and
7 in explorative mining. At the same time, we obtain an even slightly
increased defect-localization precision, stable classification precision and
obtain good explorative mining results.

1 Introduction

Graph mining has drawn a lot of attention recently. One important technique is
frequent subgraph mining [24], with applications in chemistry and web mining [8],
databases [25] etc. It is often used as a building block of some higher-level analysis
task such as cluster analysis or graph classification [10]. With the latter, frequent
subgraph patterns are mined from a set of classified graphs. A standard classifier
is then learned on the subgraph features discovered.

Though frequent subgraph mining is an established technique, relying on
the pure graph structure is not always sufficient: Many real-world problems cor-
respond to weighted graphs. For instance, think of transportation graphs [9].
Weights represent costs, the average speed etc. In software engineering, edge-
weighted call graphs (see Figure 1 for an example) have turned out to be ben-
eficial for software-defect localization [4]. To take both the graph structure and
the weights into account when mining weighted graphs, one can analyze weights
in a preprocessing or in a postprocessing step, before or after the actual (un-
weighted) subgraph mining takes place [5, 9, 12]. However, both variants have

? Technical Report 2010-10, Faculty of Informatics, Karlsruhe Institute of Technology.

main()
a()67

b()
2

c()
5

9

Fig. 1. Example call graph. Edges represent method calls, edge weights call frequencies.

issues: Discretizing numerical values to categorical labels during preprocessing
might loose important information, as edges with similar weights can fall into
different intervals. Postprocessing in turn is not always efficient. This is because
the mining algorithm first ignores the weights and might generate a huge number
of subgraphs. The second step however discards most of them.

A cheaper way to perform frequent subgraph mining with weights is approxi-
mate graph mining [7, 21]. Another approach is constraint-based mining [19, 27].
Constraints can be used to prune the search space and speed up mining. We for
our part investigate approximate frequent subgraph mining with weight-based
constraints. This is promising, since various higher-level analysis tasks imply
meaningful weight-based constraints, as we will show. In a classification scenario,
to give an example, a natural constraint would demand weights in the subgraph
patterns with a high discriminativeness. While constraints lead to smaller result
sets, we hypothesize that those application-specific constraints do not lower the
result quality of the higher-level problem. However, not every constraint is good
for pruning in a straightforward way. Literature has introduced anti-monotone
constraints [11, 19, 27]: When using them for pruning, the algorithm still finds
all patterns. However, most weight-based constraints are not anti-monotone, for
the following reason: Graph topology and weights are independent of each other,
at least in theory. Example 1 illustrates that weight-based properties of graphs
may behave unpredictably when the support changes. Thus, pruning a pattern
at a certain point bears the risk of missing elements of the result.

Example 1. Think of an upper-bound constraint defined as a numerical thresh-
old tu on the average weight of a certain edge a→b in all supporting graphs:
avg(a→b) ≤ tu. This would prevent mining from expanding a pattern f where
avg(a→b) > tu. For the moment, suppose that f was expanded by one edge
nevertheless, resulting in pattern f ′. Then, fewer graphs in the database might
support f ′. Depending on the edge weights in the non-supporting graphs, the
average weight of that edge in f ′ might decrease – f ′ might satisfy the constraint.

Despite this adverse characteristic, we study frequent subgraph mining with
non-anti-monotone weight-based constraints in this paper. The rationale is that
certain characteristics of real-world graphs give way to the expectation that
results are good. Namely, there frequently is a correlation between the graph
topology and the weights in real-world weighted graphs.

Example 2. Consider a road-map graph where every edge is attributed with the
maximum speed allowed. Large cities, having a high node degree (a topological

property), tend to have more highway connections (high edge-weight values)
than smaller towns. This is a positive correlation.

In software engineering, a similar observation holds: Think of a node in
a weighted call graph representing a small method consisting of a loop. This
method tends to invoke a few different methods only (low degree), but with high
frequency (high weights). This is a negative correlation.

Our notion of approximate constraint-based frequent subgraph mining is as
follows: Given a database of weighted graphs, find subgraphs satisfying a mini-
mum frequency constraint and user-defined constraints referring to weights. Note
that the subgraphs returned are unweighted – weights are considered only in the
constraints. In this study, we investigate the following question:

Problem Statement. What is the completeness and the usefulness of results ob-
tained from approximate weight-constraint-based frequent subgraph mining?

In concrete terms, we study the degree of completeness of mining results
compared to non-constrained results. To assess the usefulness of an approximate
result, we consider the result quality of higher-level analysis tasks, based on
approximate graph-mining results as input.

To deal with this problem, this article features the following points:
Weight-Constraint-Based Mining. We say how to extend standard pattern-
growth algorithms for frequent subgraph mining with pruning based on weight-
based constraints. We do so for gSpan [22] and CloseGraph [23].
Application to Real-World Problems. We describe different data-analysis
problems that make use of frequent subgraph mining of weighted graphs from
domains as diverse as software engineering and logistics. We say how to employ
weight-based constraints to solve these problems efficiently.
Evaluation. We report on the outcomes of a broad evaluation from very differ-
ent domains and analysis settings. A fundamental result is that the correlation
of weights with the graph structure indeed exists, and we can exploit it in real-
world analysis problems. In particular, graph mining with constraints leads to
a speedup of up to 3.5 with the same quality of results in classification and
software-defect localization and 7 in explorative mining while obtaining satisfac-
tory results.

Paper Organization: Section 2 contains preliminaries. Section 3 introduces
weight-based constraints, Section 4 explains their integration into algorithms.
Section 5 describes application settings, and Section 6 contains the evaluation.
Section 7 discusses related work. Section 8 concludes.

2 Preliminaries

Definition 1. A labeled weighted graph is a six-tuple: G := (V,E,L, l,W,w).
V is the set of vertices, E ⊆ V × V the set of edges, L a set of categorical
labels, l : V ∪E → L a labeling function, W ⊆ R the domain of the weights and
w : E →W a function which assigns weights. E(G) denotes the set of edges etc.

{}

0-edge

s s’ t

1-edge

2-edge

...

Fig. 2. A pattern-growth search space with conventional isomorphism-based prun-
ing (s′) and constraint-based pruning (t, new in this contribution).

All graphs can be directed or undirected (e ∈ E ordered/unordered). All
techniques discussed in this paper can easily be extended to cover weighted
nodes (w : V ∪ E →W) and tuples of weights (W ⊆ Rn, n ∈ N).

Definition 2. Frequent subgraph mining is the task of finding all subgraph
patterns f ∈ F with a support of at least supmin in a graph database D :=
{g1, ..., g|D|}. The support of a subgraph f is support(f,D) := |{g|g ∈ D∧f ⊆ g}|
where ‘⊆’ denotes a subgraph-supergraph relationship. In short, f ∈ F ⇐⇒
support(f,D) ≥ supmin.

Note that subgraph isomorphism considers labels but not weights.

Definition 3. Closed-graph-mining algorithms discover only subgraph patterns
which are closed. A graph f is closed if no other graph pattern f ′ is part of the
result set F which has the same support and is a proper supergraph of f (f ⊂ f ′).

Closed mining algorithms produce more concise result sets and make use
of pruning opportunities. Pattern-growth-based algorithms for (closed) frequent
subgraph mining [24], such as gSpan [22] and CloseGraph [23], perform a depth-
first search in a pattern-search space. Starting from some small graph pattern,
they extend it by systematically adding edges and determining the support of
the result. If it satisfies the supmin criterion, the algorithm keeps extending it.
Otherwise, the pattern is pruned, and the search backtracks.

Example 3. Figure 2 is a pattern-growth search space: The leaves cannot be
extended further due to the supmin criterion. s′ is pruned as it is isomorphic to
node s already discovered. The dashed edge with node t stands for constraint-
based pruning, which we introduce in the following.

Definition 4. A constraint c in constraint-based mining is a Boolean predicate
which any f ∈ F must fulfill. Formally, in constraint-based frequent subgraph
mining, f ∈ F ⇐⇒ (support(f,D) ≥ supmin ∧ c(f) = true).

Constraint predicates can be categorized into several classes. Most impor-
tant is anti-monotonicity, as such constraints allow for effective pruning. (See
Section 7 for further classes.)

Definition 5. c is anti-monotone ⇐⇒ (∀f ′ ⊆ f : c(f) = true ⇒ c(f ′) = true)

A prominent example of anti-monotone constraints is the frequency criterion:
If a graph has a support of at least supmin, all its subgraphs have the same or a
larger support. Therefore, anti-monotone constraints are the basis for all a priori
and pattern-growth mining algorithms: They stop extending patterns when the
current one does not satisfy the constraint, without missing any patterns. Most
constraints based on weights are not anti-monotone [19].

3 Weight-Based Constraints

In this section, we define the weight-based constraints we investigate in this
paper. We do not deal with anti-monotone constraints, since we are interested
in investigating approximate mining results from non-anti-monotone constraints.
However, the techniques would work with anti-monotone constraints as well.

Definition 6. A weight-based measure is a function E(p) → R which assigns
every edge of a graph pattern p a numerical value. The function takes the weights
of the corresponding edges in all embeddings of p in all graphs in D into account.

Depending on the actual problem, one can assign some numerical or cate-
gorical value such as a class label to each graph. Measures like InfoGain and
PMCC make use of such values, in addition to the weights. We discuss example
measures later. – If labels are not unique, subgraphs can be embedded at several
positions within a graph. We consider every single embedding of a subgraph to
calculate a measure for an edge.

Definition 7. A lower bound predicate cl for a pattern p is a predicate with the
following structure:

cl(p) := (∃ e1 ∈ E(p) : measure(e1) > tl) ∨ (|p| < sizemin)

An upper bound predicate cu in turn is as follows:

cu(p) := (@ e2 ∈ E(p) : measure(e2) > tu) ∨ (|p| < sizemin)

A weight-based constraint, applied to a pattern p, is a set containing cl, cu, or
both, connected conjunctively.

The lower- and upper-bound predicates let the user specify a minimum and
maximum interestingness based on the measure chosen. We comment on the two
predicates as well as on parameter sizemin in Section 4. Note that Definition 7
requires to consider all edges of a pattern p. This is necessary, as illustrated in
Example 1. The value of the measure of any edge of p can change when the set
of graphs supporting p changes.

Weight-Based Measures

Any function on a set of numbers can be used as a measure. We have chosen
to evaluate three measures with a high relevance in real data-analysis problems
– none of them is anti-monotone. Two of them, InfoGain and PMCC , require
the existence of a class associated with each graph. Such classes are available,
e.g., in any graph-classification task, and the goal of the mining process is to
derive subgraph patterns for a good discrimination between the classes. We also
use the variance, which does not depend on any class. It is useful in explorative
mining scenarios where one is interested in subgraphs with varying weights.

Example 4. If one wants to search for patterns p with a certain minimum vari-
ance of weights, one would specify the measure ‘variance’, the threshold value tl
and set sizemin to 0. The constraint then is ‘∃ e : variance(e) > tl’. This could
be useful when analyzing logistics data, where one wants to find subgraphs with
unbalanced load or highly varying transportation times.

Besides the measures described in the following, many further measures from
statistics and data analysis can be used similarly to build weight-based con-
straints. This includes, say, different attribute-selection measures known from
decision-tree induction [1, 16, 20].

Information Gain. The InfoGain [16], is a measure based on entropy. It is
a value between 0 and 1 and quantifies the ability of an attribute A to dis-
criminate between classes in a dataset (without a restriction to binary classes).
It is frequently used in decision-tree induction and feature selection [16, 20]. In
the context of weighted graphs, A refers to the weights of a certain edge of a
subgraph pattern in all embeddings in all graphs in the graph database D.

Pearson’s Product-Moment Correlation Coefficient (PMCC). The corre-
lation coefficient is widely used to quantify the strength of the linear dependence
between two variables. See [20] for a definition. In our graph-mining context,
these two variables are the weight of a certain edge in a subgraph pattern in all
embeddings in graphs in D and their binary classes. For our purposes, positive
and negative correlation have the same importance, and we use the absolute
value. Then PMCC is a value between 0 and 1 as well.

Variance. The variance quantifies the variation of the values of a random vari-
able Y . It is a positive value without upper bound. In our scenarios, Y is the set
of weights of a certain edge in all subgraph patterns in all embeddings in D.

4 Weight-Based Mining

We now describe how to integrate weight-based constraints into pattern-growth-
based frequent subgraph mining. We first focus on vanilla pattern-growth algo-
rithms before turning to closed mining. The basic idea is to use weight-based
constraints – even if they are not anti-monotone – to prune the search space.

Example 5. Figure 2 illustrates pattern-growth mining with and without weight-
based constraints. Without such constraints, s′ and its successors are pruned, as
s′ is isomorphic to s. With weight-based constraints, the search is additionally
pruned at pattern t. The dashed edge extends its parent, and t including the
new edge violates a weight-based constraint. Note that it is not necessarily the
newly added edge itself which violates the constraint, but any edge in t.

In concrete terms, we treat the lower and upper-bound predicates cl and cu
(as defined in Definition 7) in weight-constraint-based mining as follows:

Approach. When a pattern p does not satisfy cl or cu, the search is pruned. If
it is cu that is not satisfied, p is added to the mining result, otherwise not.

The rationale behind an upper bound is to speed up mining by pruning the
search when a sufficiently interesting edge weight is found. Therefore, we use it
to prune the search, but save the current pattern. For example, if the user wants
to use the graph patterns mined for classification, a pattern with one edge with a
very discriminative weight will be fair enough. Clearly, larger graphs can still be
more discriminative. Setting the threshold therefore involves a trade-off between
efficient pruning and finding relevant graphs. Section 6.3 will show that small
changes in the upper bound do not change the results significantly. It is therefore
sufficient to rely on few different threshold values to obtain satisfactory results.
With a lower bound, the user specifies a minimal interestingness. This bound
stops mining when the value specified is not reached. The rationale is that one
does not expect to find any patterns which are more interesting. However, this
might miss patterns. The parameter sizemin (cf. Definition 7) controls this effect.
Pattern-Growth Algorithms. Algorithm 1 describes the integration into pat-
tern-growth-based frequent subgraph mining algorithms such as gSpan [22]. The
algorithm works recursively, and the steps in the algorithm are executed for every
node in Figure 2. Lines 1–2, 9–13 and 20 are the generic steps in pattern-growth-
based graph mining [24]. They perform the isomorphism test (Lines 1–2), add
patterns to the result set (Line 9) and extend the current pattern (Line 11),
leading to a set of frequent patterns P . The algorithm then processes them
recursively (Lines 12–13) and stops depth-first search when P is empty (Line 20).

Lines 4–7 and 15–17 are new in our extension. Instead of directly adding
the current pattern into the result set, the algorithm first checks the sizemin

parameter (Line 4). Only if the minimum size is reached, it calculates the weight-
based measures (Line 5). Line 7 checks the constraints (if cl or cu is not set, the
thresholds are zero or ∞, respectively; cf. Definition 7). If they are not violated,
or the minimum size is not reached, the algorithm saves the pattern to the

Algorithm 1 pattern-growth(p,D, supmin, tl, tu, sizemin, F)

Input: current pattern p, database D, supmin, parameters measure, tl, tu and sizemin

Output: result set F
1: if p ∈ F then
2: return
3: end if
4: if |p| ≥ sizemin then
5: calculate weight-based measures for all edges
6: end if
7: if (∃ e1 : measure(e1) > tl ∧ @ e2 : measure(e2) > tu) ∨ (|p| < sizemin) then
8: if (algorithm 6= CloseGraph ∨ p is closed) then
9: F ← F ∪ {p}

10: end if
11: P ← extend-by-one-edge(p,D, supmin)
12: for all p′ ∈ P do
13: pattern-growth(p′, D, supmin, tl, tu, sizemin, F)
14: end for
15: else
16: if ∃ e : measure(e) > tu then
17: F ← F ∪ {p}
18: end if
19: end if
20: return

result set (Line 9) and continues as in generic pattern growth (Lines 12–13).
Otherwise, the algorithm prunes the search, i.e., it does not continue the search
in that branch. Note that this step is critical, as it determines both the speedup
and the result quality. As mentioned before, we always save the last pattern
before we prune due to upper bounds (Lines 16–17). This leads to result sets
which are larger than those from standard graph mining when the constraints
are applied in a postprocessing step.

One can realize constraints on more than one measure in the same way, by
evaluating several constraints instead of one, at the same step of the algorithm.
As mentioned before, mining with weight-based constraints produces a result set
with unweighted subgraph patterns. In case one needs weighted subgraphs in the
result set, arbitrary functions, e.g., the average, can be used to derive weights
from the supporting graphs in the graph database.

Closed Mining. Closed mining returns closed graph patterns only. When deal-
ing with weight-based constraints, we deviate from this characteristic. We favor
graphs which are interesting (according to the measures) over graphs which are
closed. This is because the weight-based constraints might stop mining when ‘in-
teresting enough’ patterns are found. Extending the CloseGraph [23] algorithm is
slightly more complicated than pattern growth as described before. CloseGraph
performs further tests in order to check for closedness (Line 8 in Algorithm 1). In
our extension, these tests are done after weight-based pruning. Therefore, when
the search is pruned due to a constraint, it might happen that the algorithm

misses a larger closed pattern. In this case it adds patterns to the result set
which are not closed.
Implementation. The extensions we describe here are compatible with any
pattern-growth graph miner. We for our part use the ParSeMiS graph-mining
suite [15] with its gSpan [22] and CloseGraph [23] implementations.1

5 Weighted Graph Mining Applied

We now say how to exploit the information contained in the weights of graphs
in different application scenarios building on weight-constraint-based frequent
subgraph mining.
Software-Defect Localization. The purpose of defect localization is to help
software developers finding defects.2 In our case, the result is a list of suspicious
methods, sorted by their likelihood to contain a defect. A developer can then
inspect the code starting with the top-ranked method. More precisely, we focus
on non-crashing occasional bugs, which are notoriously difficult to find. Crashing
bugs in turn would be relatively easy, as stack traces are available. Occasional
bugs are hard to localize as they only occur with some input data. Our approach
builds on the comparison of weighted call graphs (cf. Figure 1), representing
different executions of the same program. Every graph is labeled as failing or
correct, depending on whether the program execution has returned a false or a
correct result. As any approach for defect localization, the method described in
the following cannot discover any kind of bug. It can however detect defects of
a frequently occurring category: defects leading to infections that influence the
control structure of a program, i.e., those changing the call-graph structure or a
call frequency (an edge weight).

In order to obtain the likelihood of a method to contain a defect, we look at
two kinds of evidence: weight-based measures and subgraph structures. Firstly,
we consider the measure of edges, computed by the constraint-based-mining
algorithm. In our implementation, a method (represented as a node) inherits
the normalized maximum value from all outgoing edges in all patterns in the
result as its weight-based likelihood:

Pw(m) := normalize(max(measure({(m,x)|(m,x) ∈ E ∧ x ∈ V})))

where V and E are the unions of the vertex and edge sets of all subgraph pat-
terns in the result set, and measure applied to a set calculates the measure of
every element separately. We use the maximum, as one node might have many
outgoing edges which are not related to the defect at all. From preliminary exper-
iments with different measures applied in a postprocessing setting, we know that
entropy-based measures such as InfoGain are best suited for defect localization.

1 We provide our extensions for ParSeMiS online:
http://sdqweb.ipd.kit.edu/wiki/ParSeMiS-Extensions

2 We use the following terminology [26]: Defects in source code can lead to an infected
program state, which ultimately might become visible as a failure.

Fig. 3. Two typical fragments from a small unconnected graph in the logistics dataset.

Secondly, we look at the subgraph structures. The result sets mined with
weight-based constraints let us define another likelihood based on support. They
contain a higher number of interesting graphs with interesting edges (according
to the measure chosen) than a result set from vanilla graph mining. Therefore,
it seems promising not only to give a high likelihood to edges with interesting
weights. We additionally consider nodes (methods) occurring frequently in the
graph patterns in the result set. We calculate this structural likelihood similar
to a support in the result set F :

Ps(m) :=
|{f |f ∈ F ∧m ∈ f}|

|F |

The next step is to combine the two likelihoods. We do this by averaging the
normalized values. Preliminary experiments have shown that using these two
kinds of evidence yields a more precise localization of defects.

Finding out how well defect-localization techniques perform requires an eval-
uation measure. Defining such a measure is not difficult, as we, the experimen-
tators, know the defects. We use the position of the real defect in the generated
list of suspicious methods. This position quantifies the number of methods to
look into in order to find the defect.
Weighted-Graph Classification. Subgraph patterns from weighted graphs
cannot directly be used for classification. With unweighted graphs, it is com-
mon to use binary feature vectors, indicating which subgraph is included in a
graph [10]. Every such vector corresponds to a graph in the graph database. In
the following, we explain how we assemble feature vectors including weights to
use them for classification. We use one feature in the vector for every edge in
every frequent subgraph mined. These features are numerical and stand for the
corresponding weight in the original graph. If a graph does not contain a certain
subgraph, the corresponding features are null values.

Example 6. We construct a feature vector for the graph in Figure 3. Imagine that
there are two frequent subgraphs, A→E→F and L→M . The vector consists of
the values of the edges A→E, E→F and L→M : (25, 29, 53).

In cases where labels in the subgraph patterns are not unique, the position of
an edge in a subgraph describes a certain edge. In case of multiple embeddings of
a pattern, we use aggregates of the weights from all embeddings. This encoding
allows to analyze every edge weight in the context of every subgraph.

Finally, any classifier featuring numerical attributes and null values can
work with the vectors to learn a model or to make predictions. Arbitrary eval-
uation measures for classification can quantify the predictive quality of the
weighted-graph-classification problem. We for our part use the established mea-
sures accuracy and AUC (area under the ROC curve; see, e.g., [20]).
Explorative Mining. Besides automated analysis steps following graph min-
ing, another important application is explorative mining. Here, the results are
interpreted directly by humans. One is interested in deriving useful informa-
tion from a dataset. In our weight-constraint-based scenario, such information
is represented as subgraphs with certain edge-weight properties in line with the
constraints. For instance, the logistics dataset is well suited for explorative min-
ing. As motivated in Example 4, one might be interested in subgraphs featuring
edges with high or low variance.

Evaluation in this context is difficult, as it is supposed to provide information
for humans. Therefore, it is hard to define a universal measure. In this study, we
focus on basic properties of the dataset mined, in particular the size of the sub-
graphs. This size can be seen as a measure of expressiveness, as larger subgraphs
tend to be more significant.

6 Experimental Evaluation

We now investigate the characteristics of pruning with non-anti-monotone con-
straints, given several real-world analysis problems. We do so by comparing dif-
ferent application-specific quality criteria with the speedup in runtime as well as
by assessing the completeness of approximate result sets. While other solutions
to the real-world problems (without weighted graph mining) might be conceiv-
able as well, studying them is not the concern of this article. Furthermore, we
do not aim at demonstrating that the analysis of weighted graphs is beneficial
compared to non-weighted graphs. Other studies have shown the adequateness
of weighted graphs for analysis problems in various domains [4, 9, 12]. We first
describe the datasets in Section 6.1. We then present the experimental settings
in Section 6.2 and the results in Section 6.3.

6.1 Datasets

Software-Defect Localization. We investigate the dataset from [5], which
consists of classified weighted call graphs. In concrete terms, the dataset consists
of 14 defective versions of a Java diff tool taken from [3]. Every version was
executed exactly 100 times with different input data, resulting in roughly the
same number of graphs representing failing and correct executions.3 The graphs

3 We provide the defective programs and the graphs used online:
http://www.ipd.kit.edu/~eichi/papers/eichinger10on/

are quite homogeneous; the following numbers describe one of the 14 datasets.
The mean number of nodes is 19.6 (standard deviation σ = 1.9), the mean
number of edges is 23.8 (σ = 4.6), but the edge weights are quite diverse with a
mean value of 227.6 (σ = 434.5).
Logistics. This dataset is the one from [9]. It is origin-destination data from
a logistics company, attributed with different information. The graphs are as
follows: Transports fall into two classes with full truckload (TL) and less than
truckload (LTL). The transports from the two classes form two sets of graphs,
which we label accordingly. We further arrange transports (edges) with a similar
weight of the load in one graph. Next, as the spatial coordinates in the dataset
are fine grained, we combine locations close to each other to a single node,
e.g., locations from the same town. We use the time needed to get from origin to
destination as edge weight. The duration is a crucial parameter in transportation
logistics, and there is no obvious connection to the class label. The dataset
describes a weighted-graph-classification problem, i.e., predict if a graph contains
fully or partly-loaded transports.

Finally, the dataset consists of 51 graphs. The two class labels are evenly dis-
tributed, the mean number of nodes is 234.3 (σ = 517.1), and the mean number
of edges is 616.1 (σ = 2418.6). As indicated by the high standard deviations, this
is a very diverse dataset, containing some very large graphs. The large graphs
are not problematic for mining algorithms in this case, as most graphs are un-
connected, and the fragments are quite small. Besides heterogeneous structural
properties, the edge weights with a mean value of 73.2 (σ = 50.9) are quite close
to each other. Figure 3 is a part of one of the logistics graphs.

6.2 Experimental Settings

In our experiments we compare a regular CloseGraph implementation to ours
with weight-based constraints. In preliminary experiments, CloseGraph per-
formed much better than gSpan with our datasets while generating subgraphs of
the same predictive quality. We evaluate the quality of the results with scenario-
specific evaluation measures (cf. Section 5) along with the runtime. We use a
single core of an AMD Opteron 2218 with 2.6 GHz and 8 GB RAM for all
experiments. We mine with a supmin of 3 in all experiments with the defect-
localization dataset and with a supmin of 8 in all experiments with the logistics
data. We set the sizemin to 0 in all experiments, as we are interested in the pure
results with the different lower and upper bounds.
Software-Defect Localization. In this scenario, we compare our results based
on edge-weight-based pruning with a vanilla graph-mining technique. To be fair,
we repeat the experiments from [5] with slight revisions4 and the same supmin (3).
We use upper-bound constraints on the two class-aware measures.
Weighted-Graph Classification. For classification experiments, we use both
datasets. In the software-defect-localization dataset, we predict the class labels

4 In [5], a zero in the feature vectors indicates that a certain call does not occur. We
now use null values, as this allows for a fair comparison to our new approach.

failing or correct, in the logistics dataset the truck-load labels TL and LTL (cf.
Section 6.1). We mine the graph databases with different upper-bound-constraint
thresholds on the two class-aware measures and assemble feature vectors, as de-
scribed in Section 5. We then use them along with the corresponding class labels
in a 10-fold-cross-validation setting with standard algorithms. In concrete terms,
we use the Weka implementation [20] of the C4.5 decision tree classifier [16] and
the LIBSVM support-vector machine [2] with standard parameters. For scalabil-
ity reasons, we employ a standard chi-squared feature-selection implementation
[20] for dimensionality reduction before applying LIBSVM.
Explorative Mining. For explorative-mining experiments, we investigate dif-
ferent lower-bound-constraint thresholds on variance in the logistics dataset. We
compare their quality and runtime with mining runs without constraints.

6.3 Experimental Results

Software-Defect Localization. Figure 4(a) displays the runtimes of InfoGain
and PMCC with different upper-bound thresholds on all 14 versions of the
dataset. The InfoGain constraint is always faster than the execution time with-
out pruning, irrespective of the threshold. For low threshold values (0.01 to 0.04),
InfoGain reaches speedups of around 3.5. PMCC in turn always performs better
than InfoGain, and reaches speedups of up to 5.2. This is natural, as the calcula-
tions to be done during mining in order to derive the measures are more compli-
cated for InfoGain (involving logarithms) than for PMCC . For high thresholds
(0.32 to 0.8) on both measures, the runtime increases significantly. This is caused
by less pruning with such thresholds.

Figure 4(c) contains the results in defect localization without pruning and
with InfoGain and PMCC pruning with various upper bounds. The figure shows
the average position of the defect in the returned ranking of suspicious methods,
averaged for all 14 versions. The InfoGain almost always performs a little bit (a
fifth ranking position for the two lowest thresholds) better than the baseline (‘no
pruning’). As the baseline approach uses InfoGain as well, we explain this effect
by the improved structural likelihood computation (Ps, cf. Section 5), which
takes advantage of the edge-weight-based pruning. The PMCC curve is worse in
most situations. This is as expected, as we know that entropy-based measures
perform well in defect localization (cf. Section 5). Figure 4(d) contains the defect-
localization results for the 14 different versions. We use the average of the three
executions with the best runtime (thresholds 0.01 to 0.04). The figure reveals
that the precision of localizations varies for the different defects, and the curve
representing the InfoGain pruning is best in all but two cases. Concerning the
threshold values, observe that small changes always lead to very small changes
in the resulting defect-localization precision, with mild effects on runtime.

Next to the defect-localization results, the performance of classifiers learned
with the software dataset is very high. The values with InfoGain-pruning only
vary slightly for the different thresholds on both classifiers, the SVM (accuracy :
0.982–0.986; AUC : 0.972–0.979) and the decision tree (accuracy : 0.989–0.994;
AUC : 0.989–0.994). Although the variance is very low, higher thresholds yield

40
60
80
100
120
140
160

se
co
nd

s no pruning
InfoGain
PMCC

0
20
40
60
80
100
120
140
160

0.01 0.02 0.04 0.08 0.16 0.32 0.64 0.8

se
co
nd

s

upper bound threshold

no pruning
InfoGain
PMCC

(a) Runtimes for the software dataset.

100

200

300

400

se
co
nd

s

0

100

200

300

400

0.05 0.1 0.25 0.5 0.75

se
co
nd

s

upper bound threshold

no pruning InfoGain PMCC

(b) Runtimes for the logistics dataset.

1 5
2

2,5
3

3,5
4

de
fe
ct
 p
os
iti
on

1
1,5
2

2,5
3

3,5
4

0.01 0.02 0.04 0.08 0.16 0.32 0.64 0.8

de
fe
ct
 p
os
iti
on

upper bound threshold

no pruning InfoGain PMCC

(c) Average defect position.

3

5

7

9

de
fe
ct
 p
os
iti
on

no pruning
InfoGain
PMCC

1

3

5

7

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

de
fe
ct
 p
os
iti
on

dataset number

no pruning
InfoGain
PMCC

(d) Average position for each defect.

0

2

4

6

8

0

100

200

300

400

pa
tt
er
n
siz
e

se
co
nd

s

0

2

4

6

8

0

100

200

300

400

50 100 250 500 750 100025005000

pa
tt
er
n
siz
e

se
co
nd

s

lower bound threshold
no pruning runtime pattern size

(e) Runtimes & quality, logistics dataset.

2
4
8
16
32
64
128

m
be

r o
f p

at
te
rn
s

no const. reference
1
2
4
8
16
32
64
128

1 0.8 0.64 0.32 0.16 0.08 0.04 0.02 0.01

nu
m
be

r o
f p

at
te
rn
s

upper bound threshold

no const. reference
const. const. & postproc.

(f) Comparison of approximate result sets.

Fig. 4. Experimental results.

slightly higher values in most cases. This is as expected, as less pruning leads
to larger graphs, encapsulating potentially more information. With PMCC , the
values are very close to those before, and one can make the same observation.

Logistics. Figure 4(b) shows the runtimes of both measures with different
upper-bound thresholds. With an upper bound of up to 0.10 on InfoGain or
PMCC , our extension runs about 2.9 times faster than the reference without
pruning. For larger upper bounds on PMCC , graph mining with our extension
still needs only half of the runtime. InfoGain becomes less efficient for larger
values, and for a high threshold of 0.75 it needs the same time as the algo-
rithm without edge-weight-based pruning. As before, PMCC performs better
than InfoGain.

In the experiments, the performance of classifiers does not depend on the
upper bound, independent of the threshold. We evaluated the same values as in
Figure 4(b). For the InfoGain measure, accuracy and AUC of the SVM are 0.902
and 0.898, and they are a little lower with the decision tree: 0.863 and 0.840. For
PMCC , the results are the same for most upper bounds. Only for the bounds 0.50

and 0.75, where less pruning takes place and more subgraphs are generated, the
results are slightly better (decision tree only). Next to classification performance,
the runtimes change only slightly when the threshold values change.

These results demonstrate that the edge weights in this dataset are well
suited for classification. Further, the degree of edge-weight-based pruning did
not influence the results significantly. Therefore, InfoGain and PMCC obviously
are appropriate measures. With low upper-bound values on both measures, the
runtime can be improved by a factor of about 2.9, while the classifiers have
almost the same quality. On the other side, these results also show that the graph
structure of this particular dataset is less important to solve the classification
problem than the edge weights.

Besides the performance of classification, we also evaluate the variance mea-
sure in an explorative mining setting on the logistics dataset. Figure 4(e) shows
the runtimes with several lower bounds along with the corresponding averaged
subgraph-pattern sizes (in edges) in the result set. At the lowest threshold (50),
the runtime already decreases to 73% of the runtime without pruning. At the
highest value (5,000), the runtime decreases to 7% only, which is a speedup of 13.
At the same time, the average subgraph size decreases from 7 to 1. Therefore,
values between 250 and 1,000 might be good choices for this dataset (depending
on the user requirements), as the runtime is 3 to 7 times faster, while the average
subgraph size decreases moderately from 7.4 to 6.1 and 4.6.

Completeness of Approximate Result Sets. We now investigate the com-
pleteness of our result sets and look at the defect-localization experiments with
InfoGain-constraints another time. Figure 4(f) refers to these experiments with
the approximate constraint-based CloseGraph algorithm, but displays the sizes
of result sets (averaged for all 14 versions). We compare these results with a non-
approximate reference, obtained from a non-constrained execution, where we re-
move all subgraph patterns violating an upper bound afterwards. Our constraint-
based mining algorithms save all patterns violating upper bounds before pruning
the search (cf. Section 4). For comparison, we apply the same postprocessing as
with the reference and present two variants of constraint-based mining: The pure
variant (‘const.’) and the postprocessed one (‘const. & postproc.’). Comparing
the two postprocessed curves, for thresholds of 0.64 and larger, constraint-based
result sets have the same size as the reference and are smaller for thresholds
of 0.32 and lower. Preliminary experiments with different supmin values have
revealed that the difference between the curves decreases (supmin of around 20
instead of 3) or vanishes (supmin of 70). The pure result sets (those we used in
the experiments before), are always larger than closed mining, even if no con-
straints are applied. To conclude, our approximate result sets contain less than
half of the patterns as the non-approximate reference, for small supmin and up-
per bound values. However, the pure result sets obtained from constraint-based
mining in a shorter runtime (cf. Figure 4(a)) contain many more interesting
subgraph patterns (see curve ‘const.’), which is beneficial for the applications.

7 Related Work

Weighted-Graph Mining. Even though weighted graphs are ubiquitous in the
real world, we are only aware of a few studies analyzing weighted graphs with
frequent subgraph mining. They focus on the specific analysis problem, rather
than proposing general weighted graph mining techniques.

Jiang et al. [9] consider logistic networks where edges represent single trans-
ports and are annotated with several weights such as distance between two nodes
and the weight of the load. With each weight, a different weighted graph can be
constructed. In order to derive labels for graph mining from the edge weights,
the authors use a binning strategy. Each weight is partitioned into ranges of the
same size, giving a few (7 to 10) distinct labels. The binning strategy for dis-
cretization may curb result accuracy, for two reasons: (1) The particular scheme
does not take the distribution of values into account. Thus, close values may be
assigned to different bins. (2) The discretization leads to a number of ordered
(ordinal) intervals, but the authors treat them as unordered categorical values.
For example, the information that ‘medium’ is between ‘small’ and ‘large’ is lost.

Nowozin et al. [12] do discretization as well before it comes to frequent sub-
graph mining. They study image-analysis problems, and images are represented
as weighted graphs. The authors represent each point of interest by one vertex
and connect all vertices. They assign each edge a vector consisting of image-
analysis-specific measures. Then they discretize the weights, but with a method
more sophisticated than binning. The weight vectors are clustered, resulting in
categorical labels of edges with similar weight vectors. However, the risk of los-
ing potentially important information by discretization is not eliminated: (1) It
might still happen that close points in an n-dimensional space fall into different
clusters. (2) Even when value distributions are considered, the authors do so in
the context of the original graphs. When frequent subgraph mining is applied
afterwards, the distributions within the different subgraphs can be very different,
and other discretizations could be more appropriate.

Eichinger et al. [5] have proposed a postprocessing approach. They use weight-
ed call graphs for software-defect localization, representing correct and failing
program executions. The edge weights represent call frequencies (cf. Figure 1).
The authors first assemble a table containing every edge weight in every subgraph
mined. They then use feature selection to obtain an ordered list of edges repre-
senting potentially erroneous pieces of code. This approach avoids the shortcom-
ings of discretization and analyzes numerical weights instead of discrete intervals.
However, the two steps of graph mining and feature selection are executed se-
quentially. This gives way to further improvements in terms of runtime when the
features selected later are mined directly. In this paper we investigate such an
approach, based on approximate weight-based constraints.
Constraint-Based Mining. Pioneering work [11] has introduced constraints
for frequent itemset mining. The authors define the two constraint properties
anti-monotonicity (cf. Section 2) and succinctness. Both help to speed up mining.
[13] has introduced convertible constraints for itemsets, focusing on aggregate
constraints. [6, 14] has carried forward constraint-based mining to sequences.

More recently, constraint-based graph mining has been proposed. Wang et al.
[19] build on the constraint classes introduced in [11], extended by monotone con-
straints, and categorize various graph-based constraints into these classes. Then
the authors develop a framework to integrate the different constraint classes into
a pattern-growth graph-mining algorithm. They use anti-monotone constraints
to prune the search space and monotone constraints to speed up the evaluation
of further constraints. Further, they use the succinctness property to reduce
the size of the graph database. Wang et al. also propose a way to deal with
some weight-based constraints. For the average-weight constraint, they propose
to omit nodes and edges with outlier values from the graphs in the database.
They do so to shrink the graph size and to avoid the evaluation of such ‘unfavor-
able’ elements. This can lead to incomplete result sets. Furthermore, situations
where such constraints lead to significant speedups are rare, according to the
evaluation of the authors with one artificial dataset, and they do not make any
statements regarding result quality. In [27], Zhu et al. extend [19] by refining the
classes of constraints and integrating them into mining algorithms, but they do
not consider weights.

Although the techniques proposed work well with monotone, anti-monotone
or succinct constraints and their derivations, most weight-based constraints, as
defined in Section 3, do not fall into these categories [19]. (See Example 1 for an
illustration.) They are not convertible as well, even if such constraints might seem
to be similar. The weights considered in convertible constraints stay the same for
every item in all transactions, while weights in graphs can be different in every
graph in D. Therefore, the established constraint-based-mining schemes cannot
use weight-based constraints for pruning while guaranteeing completeness.

Mining Significant Graph Patterns. In many settings, frequent subgraph
mining is followed by a feature-selection step. This is to ease subsequent pro-
cesses such as classification and to identify the most significant features. The
different proposals use various objective functions for feature selection. Work
such as [21] has identified this two-step approach of mining and selecting to be
the computational bottleneck in many graph-mining applications. On the one
side, generating large numbers of frequent subgraphs to choose from is expensive.
On the other side, the selection process can be expensive as well. Recent studies
to investigate scalable algorithms demonstrate this [7, 10, 17, 18, 21]. They deal
with the direct mining of patterns satisfying an objective function, instead of
following the two-step approach. In other words, the subgraph sets mined might
be incomplete with regard to the frequency criterion, but contain all (or most)
graphs with regard to some other objective function. One can consider these
functions to be constraints, as they narrow down the mining results. But they
do not necessarily fall into any of the constraint classes mentioned before. Ob-
jective functions are either based on their ability to discriminate between classes
or numerical values associated with the graphs [10, 18] or on some topological
similarity measures [7, 17, 21]. To sum up, various researchers have studied scal-
able mining of graph patterns, with much success. However, they have not taken
weights into account.

In our work, we use measures building on edge weights as objective functions,
to decide which graphs are significant. The usage of weights allows for a more
detailed analysis, as compared to only the graph structure. Like the previous
approaches, ours does not necessarily produce graph sets which are complete
with regard to frequency or some other hard constraint.

8 Conclusions

In this paper we have dealt with mining of weighted graphs, which are ubiquitous
in the real world. The analysis of weights in addition to the graph structure
bears the potential of more precise mining results. We have integrated non-anti-
monotone constraints based on weights into pattern-growth frequent subgraph
mining algorithms. This leads to improved runtime and approximate results.
The goal of our study was to investigate the quality of these results. Besides
an assessment of result completeness, we have evaluated its usefulness, i.e., the
result quality of higher-level real-world analysis problems based on this data.

Our study shows that a correlation of weights with the graph structure exists
and can be exploited. Frequent subgraph mining with weight-based constraints
has proven to be useful – at least for the problems investigated. With the software
dataset, we have obtained speedups of 3.5. This allows for analyses of larger
software projects. At the same time, the results in defect localization even are a
little more precise, and the classification performance is stable. In the logistics
dataset, we have achieved a speedup of 2.9 while obtaining the same classification
performance. In explorative mining, the speedup is around 7 while obtaining
good results.

Acknowledgments

We thank Zahir Balaporia (Schneider National, Inc.) and Chris Clifton (Purdue
University) for providing us with the logistics dataset [9].

References

1. C. Borgelt. A Decision Tree Plug-In for DataEngine. In European Congress on
Intelligent Techniques and Soft Computing (EUFIT), 1998.

2. C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines.
Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

3. I. F. Darwin. Java Cookbook. O’Reilly, 2004.

4. F. Eichinger and K. Böhm. Software-Bug Localization with Graph Mining. In C. C.
Aggarwal and H. Wang, editors, Managing and Mining Graph Data. Springer, 2010.

5. F. Eichinger, K. Böhm, and M. Huber. Mining Edge-Weighted Call Graphs to
Localise Software Bugs. In ECML PKDD, 2008.

6. M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining
with Regular Expression Constraints. In VLDB, 1999.

7. M. A. Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. ORIGAMI: Mining
Representative Orthogonal Graph Patterns. In ICDM, 2007.

8. A. Inokuchi, T. Washio, and H. Motoda. Complete Mining of Frequent Patterns
from Graphs: Mining Graph Data. Mach. Learn., 50(3):321–354, 2003.

9. W. Jiang, J. Vaidya, Z. Balaporia, C. Clifton, and B. Banich. Knowledge Discovery
from Transportation Network Data. In ICDE, 2005.

10. T. Kudo, E. Maeda, and Y. Matsumoto. An Application of Boosting to Graph
Classification. In NIPS, 2004.

11. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory Mining and
Pruning Optimizations of Constrained Associations Rules. In SIGMOD, 1998.

12. S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir. Weighted Substructure
Mining for Image Analysis. In Conf. on Computer Vision and Pattern Recognition
(CVPR), 2007.

13. J. Pei, J. Han, and L. V. S. Lakshmanan. Pushing Convertible Constraints in
Frequent Itemset Mining. Data Min. Knowl. Discov., 8(3):227–252, 2004.

14. J. Pei, J. Han, and W. Wang. Mining Sequential Patterns with Constraints in
Large Databases. In CIKM, 2002.

15. M. Philippsen et al. ParSeMiS: The Parallel and Sequential Mining Suite. Available
at http://www2.informatik.uni-erlangen.de/EN/research/ParSeMiS/.

16. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
17. S. Ranu and A. K. Singh. GraphSig: A Scalable Approach to Mining Significant

Subgraphs in Large Graph Databases. In ICDE, 2009.
18. H. Saigo, N. Krämer, and K. Tsuda. Partial Least Squares Regression for Graph

Mining. In KDD, 2008.
19. C. Wang, Y. Zhu, T. Wu, W. Wang, and B. Shi. Constraint-Based Graph Mining

in Large Database. In Asia-Pacific Web Conf. (APWeb), 2005.
20. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, 2005.
21. X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining Significant Graph Patterns by

Leap Search. In SIGMOD, 2008.
22. X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In ICDM,

2002.
23. X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. In

KDD, 2003.
24. X. Yan and J. Han. Discovery of Frequent Substructures. In D. J. Cook and L. B.

Holder, editors, Mining Graph Data. Wiley, 2006.
25. X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-Based Similarity Search in Graph

Structures. Trans. Database Syst., 31(4):1418–1453, 2006.
26. A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann, 2009.
27. F. Zhu, X. Yan, J. Han, and P. S. Yu. gPrune: A Constraint Pushing Framework

for Graph Pattern Mining. In PAKDD, 2007.

	2010,10_Titelbl.pdf
	eichinger10on_pdfa.pdf

