

 Karlsruhe Reports in Informatics 2010,9
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Parallelizing an Index Generator for
Desktop Search

David J. Meder ; Walter F. Tichy

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Parallelizing an Index Generator for
Desktop Search

David J. Meder and Walter F. Tichy

Institute for Program Structures and Data Organization (IPD)
University of Karlsruhe

76131 Karlsruhe, Germany
{meder, tichy}@ipd.uni-karlsruhe.de

Abstract. Experience with the parallelization of an index generator for
desktop search is presented. Several configurations of the index generator
were compared on Intel platforms with 4, 8 and 32 cores. The optimal
configurations were not intuitive and markedly different for the three
platforms. For finding the optimum, detailed measurements and experi-
mentation were necessary. Several recommendations for parallel software
design follow from this case study.

1 Introduction

Developing multi-threaded applications for multicore computers is challenging.
Since little knowledge about parallelizing non-numeric applications is available,
it is appropriate at this time to perform case studies about parallelizing a wide
range of applications. By documenting these case studies, such as the BZip2 case
study [4] or the examples covered in [7], a rational process for parallel software
design might emerge. In this vain, we conducted and documented an in-depth
study of parallelizing desktop search. Desktop search is performed on a PC, lap-
top, smart phone, or similar. In its simplest form, it returns a list of files that
contain a given combination of search terms. The search uses an inverted index
that lists for every term the files in which the term occurs. We chose desktop
search for several reasons: It is a wide-spread, non-numeric application available
on virtually every computing device with a file system, and it is worth paral-
lelizing. The application is simple enough to permit experimenting with many
alternatives, yet challenging enough in that the optimal solution is not obvious.
It is also an I/O intensive application. In an earlier study, Pankratius et al.
[5] conducted a competition among student teams to parallelize desktop search.
Surprisingly, the team with the best performance used software transactional
memory, while the team in second place used locks. However, the two solutions
were not comparable, because the teams stored different amounts of data in the

Technical Report 2010-9, Institute for Program Structures and Data Or-
ganization (IPD), University of Karlsruhe, Germany, May 11, 2010.

index. Furthermore, the competition was performed under time pressure. Quite
naturally the question arose what the best performance would be, given enough
time to try out several alternatives. We present our approach on how to par-
allelize the index generation of desktop search using locks. We present results
for three different platforms: a 4-core and a 8-core Intel platform in our lab and
a 32-core Intel platform made available through Intel’s public manycore testing
lab [2].

2 What to parallelize and how?

Before writing any concurrent code, one has to identify the components that
can and should be parallelized. In case of the index generator, there are at least
three parts which could be parallelized independently or in combination.

Filename generation: Traverse the directory hierarchy to generate the names
of the files to be indexed (Stage 1).

Term extraction: Scan files and extract terms (Stage 2).
Index update: Add the extracted terms to an index structure (Stage 3).

At the outset of the project, we faced a number of questions: Which of those
stages are the dominant ones and worth parallelizing? Is it traversing the file
system from some root, opening and scanning individual files, or building the
index? Or is the disk the slowest part, in which case there is no hope for signif-
icant speed up? None of these questions was answerable without measurement.
Furthermore, it was unclear how to parallelize stages 1 and 3.

2.1 Stage 1: Filename Generation

Traversing the directory hierarchy from a given root is an I/O intensive pro-
cess, whose performance depends on variables such as the number of directories,
the number of files contained in directories, the number, transfer rate and seek
times of the installed drives, and the buffering of the operating system. Paral-
lelizing directory traversal is difficult, because directory trees are unbalanced.
Another problem is how to distribute the filenames to multiple term extractors
in a balanced way, since the file lengths are uneven. Work queues, round-robin
distribution, assignment based on file lengths, or work stealing are the main op-
tions considered. Concurrent access to the filename data structure or the work
queues was likely to slow everything down. We didn’t even know whether it was
worth parallelizing filename generation.

2.2 Stage 2: Term Extraction

The most I/O intensive job of the index generator is reading the files. It was
unclear how many threads could be employed in stage 2 before the file system
bottlenecked; furthermore, the best configuration was likely to be dependent
on platform characteristics, such as clock rate of cores, size of caches, and I/O

performance. A single configuration was not going to be optimal for all platforms.
Another question was how to handle duplicates of terms: Terms typically appear
multiple times in a given document. Should a term be entered into the index
every time it is found, or should the term extractor construct a condensed word
list without duplicates from each file and then insert the list of terms all at
once? The former technique might overwhelm the index with locking requests,
while the latter approach might simply duplicate work that the index was well
prepared to handle anyway.

2.3 Stage 3: Index Update

The main question concerns the relative speeds of index update and term ex-
traction. Would it be enough to let the extractor threads update the index with
a synchronized update method, or would it pay to have a separate process for
index update that received sets of terms via a buffer? Is synchronization the
bottleneck? If so, there is a way to avoid synchronization entirely, by applying a
pattern we call ”Join Forces”. The idea behind this pattern is to let each term
extractor build its own index and join the indices at the end. This approach
would eliminate all synchronization, except for a barrier before the join opera-
tion. Would it be enough to join the indices with a single thread, or should a
parallel reduction setup with multiple joining processes be used?

3 Parallelization

To answer some of the questions posed in the previous section, we needed to
get some facts about the performance of the various stages. The first step was
to set up a benchmark. It consists of about 51.000 ASCII text files, containing
many small files and five large text files. On the whole the file set contains
about 869 MB of data, created by extracting plain text versions from word
processor files. Handling complex word processor formats directly in the term
extractor would have been too distracting at the time, even though it would be
an interesting extension now. Plain text made scanning faster, but it also made
the parallelization problem harder: the faster the term extractor runs, the less
opportunity for speedup exists.

Next, we implemented a sequential version of the index generator and timed
the individual parts. The execution times are shown in Table 1. Generating
filenames only takes 5 seconds, or between 2 to 5 percent of total runtime. With
this information, it was clear that parallelizing the file system traversal was
unnecessary. To avoid synchronization operations, we decided to use a single
thread for stage 1, which would generate the complete set of filenames in main
memory before starting term extraction.

The next question was whether scanning the files was worth parallelizing, or
whether the whole program was I/O-bound. To decide this, we built an empty
scanner, i.e., a loop that simply reads each file byte by byte, but without any
term extraction. Reading the benchmark from start to finish takes between 77-80

Table 1. Execution times for sequential index generation

Execution time (s)
filename

generation
read files

read files and
extract terms

index
update

4-core platform 5.0 77.0 88.0 22.0
8-core platform 4.0 47.0 61.0 29.0
32-core platform 5.0 73.0 80.0 28.0

seconds on the three platforms. Extracting the terms adds another 7-14 seconds.
(For more complex formats, this part would take longer.) Now it was obvious
that the sequential version was not I/O bound. For safety, a back-of-the envelope
comparison with disk transfer and seek times confirmed that there was enough
I/O bandwidth for reading multiple files in parallel. However, we still needed
a balanced work distribution. After trying a distribution that took file sizes
into account, we found that simply assigning files round-robin was the fastest
approach. Given k term extractors, the filename generator fills k vectors with
filenames in round-robin fashion. Each term extractor then processes its private
vector of filenames without any interference or synchronization. Running the
filename generator concurrently with the term extractors proved to be highly
inefficient, because of a pair of lock operations for every filename generated and
consumed.

The most difficult part was the interaction with the index. With a few tests,
it became clear that having a single index for all threads was not always a good
choice. But we didn’t know what the right balance was. Only experimentation
would answer this question. The next section provides some of the data points.
In some of the experiments, we used the auto-tuner by Schäfer et al. [7], but
couldn’t use it throughout, because this auto-tuner was built for C#, while our
implementation was written in C++ for extra speed.

The problem of how to handle term duplicates was not answered by mea-
surement, but by analysis. The question was whether each term extractor should
implement a private index for eliminating duplicates, or whether term extractors
should insert terms immediately (and potentially repeatedly) into a shared index.
The latter solution would be similar to the distributed map-reduce implementa-
tion in [1]. But we thought that the former solution had a higher performance
potential. The lookup time would be about the same for both methods. However,
the shared index must also store the filename associated with the term. This in
turn means that once a term has been looked up in the index, a search must
check whether the pair (term, filename) had been added previously (duplicate).
This linear search for duplicates is eliminated entirely if the term extractor enters
the list of terms per file en bloc, without duplicates: Since each file is scanned
exactly once, we need not check whether the filename already exists in this case.
We chose to implement this approach in all configurations. This choice also has
the benefit of passing large chunks of data from term extractor to index, which

reduces the number of buffering and locking operations. Perhaps the distributed
map-reduce implementation of index generation would also benefit from this
technique.

We implemented the index with a hash map provided by the Boost C++
Library. The duplicate elimination in the term extractors uses a hash set. Both
data structures use the FNV1 hash function [3] to calculate the hash values.

4 Performance Results

The following three alternative implementations of the index generator have been
compared:

Implementation 1: Use a single shared index and lock it on update.
Implementation 2: Replicate the shared index and join the replicates at the

end.
Implementation 3: Same as Implementation 2, but don’t join indices (because

the search can work with multiple indices in parallel).

We ran those implementations on three systems: A 4-core Intel machine (Intel
Core2Quad Q6600, 2.4 GHz, 4 GB RAM, Windows 7 64 bit), a 8-core Intel
machine (Intel Xeon E5320, 1.86 GHz, 8 GB RAM, Ubuntu 8.10 64 bit) and a
32-core Intel machine (Intel Xeon X7560, 2.27 GHz, 8 GB RAM, RHEL 4 64
bit). Each of the implementations was run using different numbers of threads for
term extraction, index update, and index joining, as discussed in section 2. Any
combination of thread counts – for example Implementation 2 running with 3
threads for term extraction, 3 threads for index update and 1 thread for joining
indices – was run 5 times on each system. We report the averages per platform.

The sequential implementation on the 4-core machine takes about 220 sec-
onds. All three parallel implementations achieve nearly the same speed-up of
about 4.7 (see Table 2).

Table 2. Execution time and speed-up for the best configurations on the 4-core Intel
machine. Each configuration tuple (x, y, z) describes the number of threads used in
term extraction, index update, and index join.

4-core Intel machine
best config. exec. time (s) speed-up variance

Sequential - 220.0 - -
Implementation 1 (3, 1, 0) 46.7 4.71 0.0%
Implementation 2 (3, 5, 1) 46.9 4.70 -0.21%
Implementation 3 (3, 2, 0) 46.4 4.74 +0.85%

The 8-core machine executes the sequential implementation in about 105
seconds which is almost twice as fast as on the 4-core machine. The different im-
plementations achieve different speed-ups as shown in Table 3. Implementation

1 takes the most time to execute whereas Implementation 3 achieves the best
speed-up of about 2.12 on this machine.

Table 3. Execution time and speed-up for the best configurations on the 8-core Intel
machine. Each configuration tuple (x, y, z) describes the number of threads, used in
term extraction, index update, and index join.

8-core Intel machine
best config. exec. time (s) speed-up variance

Sequential - 105.0 - -
Implementation 1 (3, 2, 0) 59.5 1.76 0.0%
Implementation 2 (6, 2, 1) 57.7 1.82 +3.4%
Implementation 3 (6, 2, 0) 49.5 2.12 +16.5%

On the 32-core machine, the sequential implementation takes about 90 sec-
onds, which is significantly faster than on the 4-core machine. In contrast to the
4-core system, the different implementations achieve different speed-ups as shown
in Table 4. The performance results for this system show that Implementation
1 takes longest to execute with a speed-up of about 1.96 while Implementation
3 achieves a total speed-up of 3.5.

Table 4. Execution time and speed-up for the best configurations on the 32-core Intel
machine. Each configuration tuple (x, y, z) describes the number of threads, used in
term extraction, index update, and index join.

32-core Intel machine
best config. exec. time (s) speed-up variance

Sequential - 90.0 - -
Implementation 1 (8, 4, 0) 45.9 1.96 0.0%
Implementation 2 (8, 4, 1) 36.4 2.47 +26.0%
Implementation 3 (9, 4, 0) 25.7 3.50 +78.6%

5 Lessons Learned and Conclusion

There are typically numerous ways to parallelize an application, and index gen-
eration is no exception. To arrive at a fast parallel implementation, one should
proceed as follows:

1. Use benchmarks and measurements to identify the components with the
highest parallelization potential.

2. Beware of bottlenecks, such as I/O operations and shared data structures
with locks.

3. Develop alternative parallel designs.
4. Use back-of-the-envelope analysis with data from 1. to explore alternatives.
5. Experiment with alternatives, where necessary. In particular, test different

thread allocations.
6. Use an auto-tuner to speed up exploring the design space.

We presented a rational development process; however this is not how it
really happened. We went through a number of dead ends caused by some of
the reasons pointed out by Parnas et al. [6]: A lot of design details emerged
while implementing the application, and we were influenced by design ideas from
previous experience. But presenting a rational process is beneficial nevertheless,
as Parnas pointed out [6]:

”Those who read the software documentation want to understand the
programs, not to relive their discovery. By presenting rationalized docu-
mentation we provide what they need.”

By contributing this case study we hope to help make parallel software design a
more rational and goal-oriented process.

In the future we will analyze how to integrate the search query functionality
and parallelize it as well, for instance by using multiple indices. Better work
distribution strategies, more file formats, larger benchmarks, and more platforms
are additional work items.

Acknowledgments. We thank Dr. Victor Pankratius for many fruitful discus-
sions and Christoph Schäfer for experiments with his auto-tuner. We also thank
Intel for making the Manycore Testing Lab available.

References

1. Dean J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters,
Sixth Symposium on Operating Systems Design and Implementation (2004)

2. Intel Manycore Testing Lab, http://software.intel.com/en-us/articles/intel-many-
core-testing-lab/ March 2010.

3. Noll, L.C.: FNV hash http://isthe.com/chongo/tech/comp/fnv/ March 2010
4. Pankratius, V., Jannesari, A., Tichy, W.F.: Parallelizing BZip2: A Case Study in

Multicore Software Engineering, IEEE Software, 70-77, November 2009
5. Pankratius, V., Adl-Tabatabai, A., Otto, F.: Does Transactional Memory Keep Its

Promises? Results from an Empirical Study. Technical Report 2009-12, University
of Karlsruhe (2009)

6. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE Trans. Softw. Eng. 12, 251–257 (1986)

7. Schäfer, C.A., Pankratius, V., Tichy, W.F.: Engineering Parallel Applications with
Tunable Architectures. International Conference on Software Engineering (2010)

	2010,9_Titelbl.pdf
	Meder_Tichy_2010-1.pdf

