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Deutsche Zusammenfassung (German Summary)

Der Begriff Netzwerk begegnet uns im Alltag inzwischen unweigerlich und regelmäßig.
Konzepte wie Bekanntschaftsbeziehungen und Straßensysteme geben diesem Begriff seit je-
her Relevanz, jedoch ist es der Technisierung einerseits, und der massiven Verfügbarkeit
von Daten andererseits zuzuschreiben, dass heute zahllose Sachverhalte mit Hilfe von Netz-
werken modelliert werden. Politische Zusammenhänge, wissenschaftliche Kollaborationen
in der Forschungsliteratur und bei Patenten, Kommunikationsnetze, Abhängigkeiten in der
Ökonomie, Proteininteraktion in Organismen, Räuber-Beute-Beziehungen in Ökosystemen
oder Freundschaften bei Facebook, all diese Sachverhalte stellen nur einen bescheidenen
Auszug dessen dar, was heute alles als Netzwerk verstanden wird. Doch es kommt nicht
von ungefähr, dass ein solches Spektrum mit Hilfe von Netzwerken beschrieben und gehand-
habt wird. Netzwerke sind bestens dazu geeignet, komplexe Zusammenhänge verwertbar zu
repräsentieren.

Instanzen von Netzwerken wie oben genannt bestehen oft aus Hunderten oder sogar Mil-
lionen von Knoten und zumeist noch mehr Relationen zwischen diesen. In zahlreichen An-
wendungen ist es von großem Interesse grobe Inhomogenitäten und dicht verbundene Sub-
netzwerke zu identifizieren, um Zusammenhänge, Interaktionen und Funktionsweisen besser
zu verstehen und gezielter Einfluss auf das Netzwerk nehmen zu können. Verfahren die dieses
leisten sind Algorithmen zum Clustern von Graphen. Graphen sind dabei die mathematische
Formalisierung der Netzwerke.

Der E-Mail Verkehr innerhalb der

Fakultät für Informatik an der Uni-

versität Karlsruhe (TH) bildet unmit-

telbar ein sich entwickelndes Netzwerk

aus Kollaborationen und sozialen Kon-

takten. Seit Oktober 2006 arbeiten

wir mit der Abteilung Technische In-

frastruktur (ATIS) zusammen und sam-

meln anonymisierte Statistiken über ver-

sandte E-Mails innerhalb der Fakultät.

Ein großer Vorteil dieses Datensatzes

besteht darin, dass die Datenquelle und

-verarbeitung sehr verlässlich ist und

viel Hintergrundwissen dazu vorhanden

ist. Wir betrachten Mitarbeiter als die

Knoten eines Netzwerkes und verbinden

zwei Knoten mit einer Kante wenn diese

im Kontakt via E-Mail stehen, gewichtet mit der Anzahl ausgetauschter Nachrichten in einem festgelegten

Zeitraum. Das hier dargestellte Netzwerk berücksichtigt die E-Mails des ersten Quartals 2007. Die Gruppierung

(Kästen) teilt die Mitarbeiter der Fakultät in die einzelnen Lehrstühle auf, während die Knotenfarben eine Clus-

terung repräsentieren, welche ein Algorithmus ohne Hintergrundwissen gefunden hat.

Für die Algorithmik stellt sich die Herausforderung, effiziente und praktikable Algorith-
men zur Clusterung von Graphen zur Verfügung zu stellen. Dabei geht es nicht allein darum,
gut funktionierende Algorithmen für konkrete Anwendungen oder Datensätze zu entwickeln,
sondern um den systematischen Entwurf von Algorithmen für formal sauber gefasste Pro-
bleme und deren Analyse und Evaluation unter Betrachtung angemessener Qualitätskriterien.
Zentraler gemeinsamer Nenner sind Clusterungen, die auf der Intuition beruhen, dichte Teil-
graphen, die untereinander nur lose verbunden sind, zu identifizieren. Ein noch weitgehend
unbearbeitetes, wenngleich naheliegendes Feld ist die Übertragung auf dynamische Szenarien.
Diese Arbeit behandelt sowohl Themen aus dem statischen als auch aus dem dynamischen
Graphenclustern. Dabei spielt die praktische Anwendbarkeit von Maßen und Verfahren eine
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ebensogroße Rolle, wie deren theoretische Fundierung. Experimentelle Evaluationen stützen
sich sowohl auf Fallbeispiele und Anwendungsdaten als auch auf systematisch generierte Zu-
fallsinstanzen. Im Folgenden wird ein Überblick über die Ergebnisse dieser Arbeit geschaffen.

Statisches Graphenclustern

Verfahren zum Clustern von Graphen basieren zum Teil auf der direkten Identifikation von
dichten Teilgraphen oder einem speziellen Schnittprozess. Vorwiegende Praxis bilden je-
doch Verfahren, welche die Maximierung eines bestimmten Qualitätsmaßes anstreben, indem
Knoten sukzessiv zusammengeballt werden. Ein solches Maß dient dann als Zielfunktion zur
Maximierung und als Qualitätskriterium zur Messung der Güte einer Clusterung zugleich.
Daher muss es wohlgewählt sein, denn es muss auch ein sinnvolles Verfahren ermöglichen,
welches eine effiziente Maximierung dieses Maßes erzielen kann. Das allgemeine Paradigma
für Clusterungen, dichte Cluster mit schwacher Verbindung zu finden, lässt jedoch vielerlei
Formalisierungen zu, jeweils mit Stärken und Schwächen. Eine wesentliche Rolle in dieser
Arbeit spielt ein inzwischen weit verbreitetes Qualitätsmaß für Graphenclusterungen, Modu-
larity , dessen Anwendung in verschiedenen Feldern Einzug gehalten hat, bevor jegliche the-
oretische Analyse davon vorlag. Auf dem Gebiet des statischen Graphenclusterns sind die
wesentlichen Ergebnisse, welche in dieser Dissertation erarbeitet werden, die folgenden:

Qualitätskriterium Modularity. In einer theoretischen Untersuchung dieses Maßes wird
unter anderem der Beweis geliefert, dass das Entscheidungsproblem, ob eine gegebene
Graphenclusterung optimal bezüglich Modularity unter allen möglichen Clusterungen ist,
NP-vollständig ist. Dies ist eine Bestärkung der gängigen Praxis eine sogenannte gierige
Heuristik zur Identifikation von Clusterungen mit hoher Modularity zu nutzen. Für diesen
Ansatz wird jedoch gezeigt, dass er im Allgemeinen keine relative Approximationsgüte zulässt.
Das Konzept auf dem die Definition von Modularity beruht ist die Normierung eines einfachen
Qualitätsmaßes für Clusterungen mit der erwarteten Qualität bei zufälliger Kantenstruktur.
Das Zufallsmodell welches diesen Erwartungswert zulässt wird aufgedeckt und ein Vergleich
mit alternativen Umsetzungen vollzogen. In einer systematischen experimentellen Evaluation
wird durch einen Vergleich mit anderen etablierten Qualitätsmaßen und Algorithmen zum
Clustern von Graphen eine Grundlage für die Nutzung von Modularity und dessen gieriger
Maximierung geschaffen, welche nicht von einzelnen Fallbeispielen abhängt.

Exaktes und Schnelles Clustern. Es werden zwei spezielle Ausrichtungen des Graphen-
clusterns behandelt. Zum einen wird ein Rahmenwerk für ganzzahlige lineare Programme
dargelegt. Dadurch lassen sich zahlreiche Qualitätsmaße als Zielfunktionen formulieren, und
verschiedene Nebenbedingungen wie die maximale Größe von Clustern oder deren Anzahl
so formulieren, dass ein optimales Ergebnis berechnet werden kann, wenngleich mit hohem
Berechnungsaufwand. Zum anderen wird ein sehr schneller Algorithmus zur Graphenclus-
terung entwickelt, der – im Gegensatz zu dem vorherrschenden Prinzip – kein einzelnes Qua-
litätsmaß maximiert, sondern auf lokalen strukturellen Argumenten basiert und trotz dieser
Unabhängigkeit von einzelnen Maßen, Clusterungen von hoher messbarer Qualität liefert. Mit
diesem Algorithmus lassen sich Graphen clustern, deren Größe gegen eine Milliarde Elemente
strebt, eine bislang unerreichte Größenordnung.

Vergleichen von Clusterungen. Lässt ein Sachverhalt mehrere Modellierungen als Graph
zu, oder ist durch externe Information eine Einteilung der Knoten bekannt, so besteht oft
der Bedarf zu messen, wie ähnlich sich zwei Graphenclusterungen sind. Es wird aufgezeigt
welche Nachteile die gängige Praxis hat, rein mengenbasierte Vergleichsmaße zu nutzen. Da-
rüberhinaus wird eine systematische Erweiterung solcher Maße auf graphenbasierte Maße
vorgeschlagen, und die Übereinstimmung deren Verhaltens mit intuitiven Forderungen in
einer Evaluation bestätigt.
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Ein Abstecher in die Netzwerkanalyse

Selbstverständlich ist das Graphenclustern ein wesentlicher Bestandteil der Netzwerkanalyse,
doch Synergien mit anderen Teilgebieten sind offensichtlich: Hat man eine gute Clusterung
eines Graphen gefunden, so helfen Visualisierungen diese zu begreifen. Zudem hilft die gleich-
zeitige Betrachtung weiterer Eigenschaften der Knoten über die Clusterzugehörigkeit hinaus,
wie zum Beispiel deren Wichtigkeit im Graphen, die Clusterung zu interpretieren. Der Bedarf
einer Visualisierungsmethode für große Graphen mit einer Partitionierung der Knotenmenge
motiviert diesen Umweg durch die Netzwerkanalyse, der die folgenden Ergebnisse liefert:

Analytische Visualisierungen Partitionierter Graphen. Es wird ein Verfahren zur
Zeichnung großer Graphen vorgestellt, welches den Fokus auf einer Gruppierung der Knoten-
menge hat. Durch ein kräftebasiertes Verfahren zur Positionierung von Knoten wird einerseits
die Struktur innerhalb jeder Gruppe lesbar dargestellt, und andererseits werden auch Ten-
denzen von Verbundenheit zwischen Gruppen oder Teilen von solchen berücksichtigt. Kom-
biniert wird dies mit der Art der Darstellung von Elementen, beispielsweise deren Größe und
Farbe, welche netzwerkanalytische Eigenschaften wie Zentralität anzeigt. Der Nutzen dieses
Verfahrens wird dann in einem Anwendungsbeispiel demonstriert, in dem der Einfluss von
Peer-To-Peer Netzwerken im Internet auf die Netzlast untersucht wird. Insbesondere die so-
genannte Core-Dekomposition eines Graphen, eine Einteilung der Knoten bezüglich dem Grad
ihrer Verbundenheit im Graphen, erweist sich dabei als relevantes Merkmal von Knoten.

Zufallsgraphen mit Festgelegter Core-Dekomposition. Motiviert durch die Beobach-
tung dass die Core-Dekomposition eine große Bedeutung für die Funktionsweise von Netz-
werken hat, wird ein Algorithmus vorgestellt und evaluiert, der Zufallsgraphen mit festgelegter
Core-Dekomposition erzeugt und zudem die typische Gradverteilung von echten, unüberwacht
wachsenden Netzwerken aufzeigt.

Clustern Zeitlich Veränderlicher Graphen

Reale Netzwerke sind in vielen Fällen von veränderlicher Natur, so dass sowohl Kanten als
auch Knoten in einem zeitlichen Verlauf aus dem Netzwerk gelöscht, oder in das Netzwerk
eingefügt werden. Ein solches Szenario wirft zum einen kanonische Forderungen auf, wie
beispielsweise ein ressourcenschonendes Update von Clusterungen aber auch neue Fragestel-
lungen: Kann man eine gute Clusterung eines großen Netzwerks so pflegen, dass eine Verän-
derung des zugrundeliegenden Graphen schnell in eine sinnvolle Änderung der Clusterung
umgesetzt wird? Kann man dabei garantieren, dass die gepflegte Clusterung stets eine gewisse
Qualität hat? Kann man aus der zeitlichen Entwicklung einer Clusterung schließen, wie sich
Trends in dem Netzwerk in Zukunft verhalten werden? Beweisbare theoretische Resultate
spielen hierbei eine ebensogroße Rolle wie die experimentelle Evaluation neuer Konzepte. Die
wesentlichen Ergebnisse zum dynamischen Clustern sind:

Ein Zufallsgenerator für Dynamische Graphen. Um experimentelle Evaluationen
fundiert durchführen zu können werden auch in dynamischen Szenarien systematisch erzeugte
Zufallsinstanzen benötigt. Es wird ein Generator für dynamische Netzwerke mit Clusterstruk-
tur entwickelt, dessen Dynamik auf einem konsistenten Wahrscheinlichkeitsmodell bezüglich
einer veränderlichen Basis-Clusterung beruht.

Online-Dynamische Clusterverfahren. Es werden zwei Ansätze verfolgt, mit denen
eine Clusterung eines Graphen nach einer Veränderung des Graphen gepflegt werden kann.
Zum einen wird eines der wenigen statischen Clusterverfahren, welche eine gewisse Qualitäts-
garantie der Clusterung erfüllen, voll dynamisiert. Dabei ergeben sich interessante Einsichten
in die Dynamisierung von minimalen Schnittbäumen, auf denen das Verfahren basiert. Zum
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anderen werden sowohl der gängigste als auch der derzeit schnellste bekannte Clusteralgorith-
mus zur statischen Maximierung des Qualitätsmaßes Modularity dynamisiert. Dabei wird
gezeigt, dass die vorgeschlagenen Algorithmen in der Praxis drei wesentliche Kriterien er-
füllen: Im Vergleich zu Clusterungen welche mit Hilfe der statischen Algorithmen gefunden
werden, haben die Clusterungen der dynamischen Algorithmen eine höhere Qualität, sie wer-
den schneller gefunden, und die Ähnlichkeit aufeinanderfolgender Clusterungen ist größer.
Für eine Anwendung bedeutet dies, dass zwischen zwei aufeinanderfolgenden Zeitschritten
keine großen Veränderungen der Clusterung erwartet und verarbeitet werden müssen.

Offline-Dynamische Clusterverfahren. Im Gegensatz zum vorigen Fall steht in einem
Offline-Szenario eine vergangene zeitliche Sequenz von Graphen zur Verfügung. Diese kann
beispielsweise eine Sammlung monatlicher Zusammenfassungen eines dynamischen Netz-
werkes darstellen. Es steht also beim Clustern eines Zeitschrittes mehr Information zur Ver-
fügung als bei einem Online-Szenario, denn alle Zeitschritte können nun zugleich bearbeitet
werden. Hier stellt sich die Frage nach einer dynamischen Clusterung dieser Sequenz, für
die einerseits die Kriterien aus dem Online-Szenario gelten, also die Güte der einzelnen Clus-
terungen pro Graph aus der Sequenz und die Ähnlichkeit aufeinanderfolgender Clusterungen
– welche im Offline-Szenario noch besser realisiert werden kann. Andererseits soll nun zusätz-
lich ein Verfolgen einzelner Cluster über die Zeit hinweg ermöglicht werden. Damit wären
Trends in der Entwicklung von Clustern beobachtbar. Es wird ein Rahmenwerk zum op-
timalen Lösen vielerlei Formalisierungen dieser Offline-Problemstellungen dargelegt, welches
auf ganzzahliger linearer Programmierung beruht. Desweiteren wird ein schnelles und prak-
tikables Verfahren vorgestellt, welches diese Aufgabenstellung löst. An einem Fallbeispiel
wird der Nutzen dieses Verfahrens demonstriert.
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Chapter 1

Introduction

=

Graphs excel at hiding their structure. Graph clustering aims at revealing
their structure. A decent algorithm for graph clustering can find the four
densely knit groups in this graph.
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Section 1.1

Preface

Fly, you fools!

(Gandalf the Grey,
at the Bridge of Khazad-Dûm,
The Lord of the Rings, J.R.R. Tolkien, 1954)

What is the structure of a network? There are many ways to answer this ques-
tion, depending on the point of view. And considering the myriad issues modeled by

networks, there are many points of view. An integral trait of most networks are groupings
within. In this thesis we shall take on a view which focuses on such groupings and considers
them a defining property of the structure of a network.

We inevitably encounter the term network on a regular basis. Roads and social relations
always gave relevance to this concept, however, it is due to mechanization and today’s massive
availability of data that nowadays countless circumstances are modeled by networks. Scientific
collaboration, communication grids, economic or political dependencies, protein interaction
and friends at facebook are but examples of what we understand as networks. Yet it is
no coincidence that networks serve to describe such a variety of issues, this concept is very
suitable for representing complex interrelations.

Clusters in networks are areas where elements are rather densely interconnected. This
intuition leads to the general paradigm describing graph clusterings, which is intra-cluster
density and inter-cluster sparsity. Depending on the field of application, the literature on
networks knows many names for clusters and clusterings1, such as natural groups, modules,
community structure or large scale inhomogeneities. Also depending on the application is the
meaning of a clustering. Consider a sports club and the network of friendship among its mem-
bers. Suppose the club is split due to a dispute between the manager and the trainer, then it
is quite likely that a cluster of members, i.e., a group of close friends, decides en bloc to whom
to affiliate [230]. In the network of facebook contacts, the most recent headline will spread
quickly inside a cluster, before propagating further. By the same principle, a computer virus
will quickly spread inside a dense infrastructure. In turn, however, if only few connections to
other clusters exist, it might be feasible to contain the virus by guarding or cutting off those
few links. A fascinating variant of this idea is being tackled in the field of biochemistry. Pro-
teins are part of any living organism, they consist of chains of amino acids and their blueprints
are encoded in the genes of an organism. Proteins serve as the main protagonists within and
between cells and one of their major tasks is signal transduction. Networks based on this func-
tion are called protein-protein interaction networks [22]. Recent advances in the detection and
the measurement of these interactions lead to the hope that inhibiting certain such interactions
can stop diseases from spreading through an organism. Clustering methods in protein-protein
interaction networks [155] help to identify those interactions that are critical to spreading.

1In order to avoid confusion, note that the term clustering refers to both the set of clusters and to the
activity of finding such a set, as a gerund of the verb to cluster.
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Figure 1.1.1. Clustered network model for a SAT-instance
of the hardware requirements of a multipli-
cation unit

As another example from biology, consider an ecosys-
tem consisting of many species. If we model this as a
network such that connections between species repre-
sent predator-prey relationships and other dependen-
cies in terms of sustenance, then the extinction of one
species will immediately and most heavily affect its
cluster. A final example are logical expressions. A
SAT-instance is a formula consisting of a number of
true-false variables, connected by ands, ors and nega-
tions. To see whether there is a configuration of these
variables such that the overall instance yields a logi-
cal true is a very fundamental and hard problem. If
we find a cluster in the network of variables, where
connections represent dependencies of variables, we
can attempt to solve this cluster, which represents a
smaller and easier problem, separately. Figure 1.1.1
shows a network derived from a SAT-instance, colors
represent clusters of variables.

Graph clustering has become a central tool for the
analysis and the exploration of networks in general,
with applications ranging from the field of social sci-
ences to biology and to the growing field of complex systems. The principal requirement for
graph clustering is an algorithm which identifies the clustering. Challenges abound for such
an algorithm, with the most obvious being a sound formalization of what a good clustering
actually is. The paradigm of intra-cluster density and inter-cluster sparsity2 leaves much
room for possible mathematical formalizations, and as a result of that, many have been pro-
posed. Frankly speaking, there is neither a universal formula that works best for all networks,
nor an algorithm which is suitable for all instances. The composition of networks can be so
diverse that no single concept has proven itself superior in general. For any algorithm one
can construct a network which it fails to cluster in accordance with human intuition.

Nevertheless, clustering methods are needed and several approaches have been proposed
which behave very well on a large number of instances. One particularly widespread algorithm
tries to find a clustering which yields a high value of modularity. Modularity quantifies the
abovementioned paradigm as a quality measure for clusterings, it has recently been coined
by Michelle Girvan and Mark Newman [178]. This measure and a simple algorithm based
on it have quickly spread into diverse fields, despite a lack of sound arguments of their
appropriateness. However, in many areas of science, the mere availability of an algorithm
which is easy to use and appears to work reasonably well silences many legitimate doubts. A
major part of this thesis is dedicated to scrutinizing the theoretical properties of this measure
and its behavior in practice. Two obvious points motivate looking into different approaches
for clustering: On the one hand, specific properties of modularity introduce a subtle but
undeniable bias into clusterings identified by the above algorithm. On the other hand, as
soon as the size of a network approaches a million elements, the algorithm becomes infeasible.
Such huge instances can be road networks, parts of the world wide web or huge social networks.
These two points motivate the work on Orca, a measure-independent clustering algorithm
for huge networks and one of the first attempts to cluster networks which approach billions
of elements. Given a good graph clustering algorithm, a visualization such as the one shown
in Figure 1.1.1 is a first means to get an impression of the result of the algorithm. In an
interlude between the clustering of static and of dynamic networks, a visualization technique
for clustered or otherwise partitioned networks is proposed and exemplified, and a foray into
other areas of network analysis which are related to graph clustering is conducted. Most

2This paradigm is often coined intra-cluster density versus inter-cluster sparsity, as the two postulations
generally compete.
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networks listed in the examples above are no fixed instances. They are subject to changes
as elements leave or join the network and ties are established or broken. A quick update of
an identified clustering, after something changes in the network, is just as important as a
long-term analysis of trends present in the clustering of a network. The third large part of
this thesis is concerned with clusterings of changing networks. The following section gives an
overview of this thesis.

Thesis Outline and Contribution

Three general topics are addressed in this dissertation, these are static graph clustering,
related topics in network analysis and dynamic graph clustering. We provide fundamental
work for prevalent practice in static graph clustering and establish new tools for this field.
The design of a technique for analytic visualizations of graph clusterings then briefly leads to
other topics of network analysis and applications thereof. We then return to graph clustering,
however, considering dynamic instances and presenting advances for both theoretical and
practical online problems and propose methods for offline dynamic graph clustering. Each
topic constitutes a separate chapter and is subdivided into sections, which make up fairly
self-contained units. Parts of this thesis have previously been published in [42, 43, 45, 44,
101, 68, 69, 70, 72, 19, 102, 116, 11, 12, 13, 14, 33, 34, 103, 120, 117, 118, 115]. We will point
out the respective publications and coauthors in the corresponding chapters and sections. The
following is a brief summary of the results obtained in the individual chapters and sections.

Chapter 2 – Static Graph Clustering

This chapter is concerned with algorithms for the identification of graph clusterings. In
contrast to later parts, we here deal with static, unchanging graphs. In the preface we
introduce the topic and discuss existing approaches.

Section 2.2 – On Modularity Clustering. We investigate the complexity of a particu-
larly widespread approach for graph clustering, modularity-maximization. After we establish
the NP-completeness of the corresponding decision problem, we investigate the behavior of
the commonly applied greedy agglomerative heuristic for this task. We devise an integer
linear programming formulation and review a few benchmark networks and previously found
clusterings in the light of optimality.

Section 2.3 – Lucidity-Driven Graph Clustering. The probabilistic setup modularity
is build upon is scrutinized, and a discrete probability space defined, which supports the defi-
nition of this measure. At the same time, this result points out that the original assumptions
for modularity require both loops and parallel edges to be allowed. We then set up modu-
larity ’s underlying paradigm of “quality compared to expected quality” (lucidity) and derive
three other implementations of it. In a systematic experimental evaluation we finally investi-
gate the behavior of modularity and these variants on a ground-truth random generator and
on established clustering algorithms, and then evaluate lucidity-driven clustering algorithms
that operate as greedy agglomerative heuristics.

Section 2.4 – ILPs for Graph Clustering. In this section we assemble an overview of
integer linear programming (ILP) formulations for graph clustering, using three different qual-
ity measures as objective functions. Our formulations allow different additional constraints
such as bounds for cluster sizes. Modularity-optimal clusterings for numerous well-known
example networks are computed and basic tools for engineering the ILPs are evaluated.

Section 2.5 – Orca. The focus is now turned towards huge graphs, i.e., instances compris-
ing up to several million elements which cannot be clustered with most established algorithms.
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We describe Orca, a fast clustering algorithm based on contraction and reduction operations
that are not motivated by a single quality measure for clustering, but instead rely on local
density. Although we intentionally avoid the bias towards a particular quality measure, such
as modularity , Orca competes well with established modularity-based algorithms in terms
of this measure. In an experimental evaluation on huge networks, we compare Orca to other
algorithms for large instances.

Section 2.6 – Comparing Clusterings. As the final part of the chapter on static graph
clustering, this section veers towards changing graphs and changing clusterings; more pre-
cisely, we address comparison measures for clusterings. Examining established measures for
comparing sets, we show why these measures are inadequate for the task of comparing graph
clusterings. The crucial point is that the set of edges must not simply be ignored. We then
design a new measure and systematically transfer whole families of set-based measures to the
context of graph clusterings. Finally, we show which measures comply with basic postulations
for the comparison of clusterings.

Chapter 3 – A Foray into Network Analysis

In this chapter we take a somewhat broader look into network analysis techniques other than
graph clustering. The general motivation is that such techniques can help to understand the
results of a clustering algorithm in the context of other structural properties of the network.
In fact the tool we propose is then employed in a non-clustering application which focuses on
the core decomposition of a network, a concept we ultimately take a proper detour to.

Section 3.2 – LunarVis—Analytic Visualizations of Large Graphs. Arguably the
single most important addition to a clustering algorithm is a means to present the result in
an informative way. For an exploratory setting, we propose LunarVis, a new layout paradigm
for drawing large networks, with a focus on decompositional properties. This visualization
technique employs a combination of group-internal and -external force-directed procedures to
reveal the structure of connectivity in a segmented graph. In addition to this, the layouts
LunarVis produces easily accommodate results of other measurements performed on the net-
work as visual properties, such that a comprehensive impression of the structure of a network
is allowed for.

Section 3.3 – Overlay-Underlay Exploration Driven by Analytic Visualizations.
In a case study on the traffic caused by peer-to-peer networks such as Gnutella, we put the
results of the preceeding section to good use. We employ LunarVis in an analysis of the
overlay- (in the Gnutella network) and underlay-traffic (in the physical Internet) caused by
Gnutella, thereby revealing both correlations between the two and specific discrepancies to a
simulated peer-to-peer network, where peering is based on random choices. Visual analytics
then guides a focused investigation.

Section 3.4 – k-Core-Driven Random Graphs using Preferential Attachment.
Since the core decomposition of a network proved to be a crucial property in the above
case study, we set our focus on it, in this section. We establish tight bounds on a number
of properties of the core decomposition and prove how it can be preserved when altering a
network. This leads us to a simple algorithm for generating random networks that precisely
incorporate any predefined core decomposition, and can even accommodate the mechanism
of preferential attachment. In an experimental case study on the task of simulating the
Autonomous Systems graph of the Internet, we then compare our generator with others.
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Chapter 4 – Clustering a Dynamic Graph

In this chapter we finally dare to tackle dynamic graph clustering. In the preface of this
chapter we introduce possible problem statements, discuss related literature, and establish
the necessary notational conventions.

Section 4.2 – A Generator for Dynamic Clustered Random Graphs. An integral
part of most experimental evaluations are random instances. As an aide for our later ex-
periments we here describe a ready-to-use generator for dynamic random graphs with an
implanted clustering structure. The generator is driven by a gradually changing ground-truth
clustering, which motivates changes in the graph, according to a sound probabilistic setup.

Section 4.3 – Modularity-Driven Clustering of Dynamic Graphs. In the tradition
of Chapter 2, we now return our focus to modularity-driven clustering. Based on the cur-
rently fastest and the most widespread heuristics for modularity-maximization, we develop
algorithms for dynamically updating clusterings after a graph changes. A particular focus is
set on the search space of these update algorithms. In an experimental evaluation we com-
pare dynamic and static algorithms in several setups. The results reveal that our dynamic
algorithms (i) save runtime, (ii) yield higher modularity and (iii) much smoother clustering
dynamics than their static versions, with small search spaces working best.

Section 4.4 – Dynamic Min-Cut Tree Clustering. Our second approach for dynamic
graph clustering focuses on provable quality. Building upon an algorithm for static graph
clustering which provides such guarantees, we develop an algorithm that efficiently maintains
these guarantees for a changing graph, yielding many insights into the dynamics of minimum
s-t-cuts. For almost all combinatorial cases, an asymptotic speed-up can be ascertained,
which is confirmed by first experiments. We project how our results can be generalized to
minimum-cut trees.

Section 4.5 – Time-Dependent Graph Clustering. Finally we turn to offline settings
of dynamic graph clustering. We investigate feasible formulations which generally aim at a
balance between the quality of individual static clusterings and a smooth transition between
them. After we describe an ILP formulation which theoretically accommodates most such
formulations, we propose time expanded graph clustering as a practical approach. In a case
study we describe good parametric choices and show the potential of this method.

Chapter 5 – Epilogue

This concluding chapter accommodates all the remaining parts that do not fit anywhere else.

Section 5.1 – Data Sets and Applications. The many data sets that were used in this
thesis, and in applications of graph clusterings that have not yet been mentioned, are briefly
and informally described in this section, alongside a quick note on how they have been used.

Section 5.2 – Side Notes. On the one hand, this informal section is dedicated to the many
excellent students I worked with as an advisor, on the other hand I seize the opportunity to
say a few words about other activities that successfully distracted me during my time as a
PhD student.

Section 5.3 – Conclusion. This final section concludes my thesis.
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My Two Pennies’ Worth

Boon and bane closely accompanied graph clustering as I pursued it, halfway between theory
and applicability. The guiding idea to both focus on the practical performance of concepts
for clustering and also investigate their theoretical properties and foundations leads to a fine
line between satisfying both directions and acting as an easy target for criticism from either
or even both directions. Frankly speaking, it is easier to concentrate on one direction and
jettison the other. In particular, you will have an easier time increasing your cursed, all-
important count of publications. That said, I do not regret having chosen this path, since
one without the other is simply less than half the fun.

Writing Style. I generally emphasize a word when it is a term that is now being defined
properly, or whenever a word is somehow crucial. I use slanted font for terms which have
previously been defined properly, and might differ from a näıve intuition of the term in some
subtle way. There is but one conclusion in this thesis, at the very end. Individual sections are
introduced and summarized at their beginning, with my personal and informal two pennies’
worth at the end of each such introductory part, followed by a convenient listing of the main
results and an outlook. The prefaces to each of the three chapters differ from this, they
introduce the respective area and then state the driving questions for that chapter and the
answers found, followed by a summarizing outlook. I mostly avoid abbreviations, with a few
exceptions which avoid lengthy insertions. I object to the common practice of citing, which
usually consists of shaping sentences around lengthy and syntactically relevant substitutes
for the cited work and adding an “invisible” key as a reference to it. For brevity, I solely
use abbreviated keys, such as “[5]”, for citations, and either have them serve as a syntactical
element or act as a phantom. I dislike \eqref.



Section 1.2

Preliminaries, Graphs, Clusterings

I believe that the volcanic rock of Skye
contributes to the pungent aroma. . .

(Michael Jackson, whisky writer and expert,
on Talisker, 10 year old)

Anybody can imagine a network. While this might sound näıve, it certainly has its
part in the fact that graph theory is among the rather quickly accessible fields of mathe-

matics. The basic tools and observations can be understood without having studied countless
lemmata that deal with nigh incomprehensibly abstract matter. Quite obviously, it is a fal-
lacy to conclude that this renders the problems one asks in graph theory less challenging.
However, it does make assembling preliminaries and notation a lot easier. We will summa-
rize general preliminary information such as notation and definitions used throughout this
work in the following, but will introduce more exotic concepts in the chapters and sections
where they are actually used; we even dare to repeat a few specific things here and there,
if they appear indispensable to comprehension. Frankly speaking, anybody who is familiar
with graph theory can skip the following subsection without any worries, as we universally
stick to common notational conventions. The notation used for quantifying properties of
clusterings in Section 1.2.2 might be worth looking at, briefly. As a final note, in these short
preliminaries we try to cover the basic terms and definitions required in this thesis; however,
many concepts reach far beyond what can be introduced here. In particular, we refer the
reader to established literature [106, 58] and references therein for quite a few topics, such
as complexity of problems, asymptotic running times of algorithms, linear programming and
integer linear programming.

Before we start, a word concerning the terms “network” and “graph” should be said. Gen-
erally speaking a graph is the mathematical formalization of a network. Thus, the termgraph vs. network

network usually denotes a real-world instance which stems from some application like route
planning in road networks or network design for electric circuits. Since networks are nowa-
days “observed” in myriad contexts that are not only very diverse but sometimes also seem
slightly absurd, it comes as no surprise that many people have in mind different notions when
speaking of networks. The graph that corresponds to a network dispels all vagueness and
ambiguity about the contained entities and yields a formal description one can work with,
mathematically. In this work, however, we shall use these two terms almost interchangeably
and resort to whichever is more commonly used in the context. That said, we will never
handle a network without actually having a mathematical formalization of it in mind. The
crucial point is that sometimes finding the correct or the most appropriate graph model for
a network is more difficult and decisive than a later analysis.
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1.2.1 Graphs

Good books on graphs and graph theory include [143] and [78]. However, this work largely
belongs to the field of network analysis, the science that leaves purely theoretical issues to
graph theory and concerns itself with methods and tools that help to answer questions about
real networks. Such techniques thus apply graph theory. In this work we will largely adopt
the notational conventions of a good book on network analysis [46].

Basic Definitions and Properties. A graph G = (V,E) is a tuple consisting of the set graph, node, edge

V of nodes and the set E of edges. An edge e is a unordered pair e = {u, v} of two nodes;
we say that e connects or links u and v, such that u and v are the endnodes of e. We
denote the cardinality |V | of the set V of nodes as n := |V |, and the cardinality |E| of the n,m

set E of edges as m := |E|. Except for some specifically mentioned cases where we make a
distinction, the terms node and vertex are equivalent. Given an edge e = {u, v} we say that vertex

e is incident to u (and to v), and that—by virtue of edge e—nodes u and v are adjacent. As adjacent, incident

a shorthand we often abbreviate adjacency and incidence by e ∼ v or u ∼ v, respectively. e ∼ v, u ∼ v
Arriving at the first term which needs disambiguation as the literature on graphs does not
agree about its meaning, we deal with simple graphs in most of this work. In this work, a simple

simple graph neither contains edges that constitute loops, i.e., edges that are incident twice
to the same vertex, nor parallel edges, i.e., E cannot contain the same edges multiple times. loop,

parallel edges
Needless to say, the notion of an unordered pair and a set do not allow such anyway, strictly
speaking. However in some cases we will consider non-simple graphs and thus allow both non-simple

loops and parallel edges. In that case the set E of edges will become a multiset of edges, i.e.,
allowing multiplicities of elements which lead to parallel edges, and an edge will also become
a multiset, such that a loop {v, v} is possible.3 The number of edge incidences a node has is
called its degree. While for simple graphs this is exactly the number of edges it is incident to, degree, ∆

for non-simple graphs we have to doubly count loops.4 The maximum degree in a graph is
often denoted by ∆, however, due to conventions in the literature this variable will sometimes
have a different meaning. Unless otherwise noted we will use simple graphs.

Connectivity and Paths in Graphs. For two nodes v0 and vk in a graph G, a walk W walk

between u and v is a sequence of nodes and edges of G such that W = v0, e1, v1, e2, . . . , ek, vk
with ei = {vi−1, vi} for all 1 ≤ i ≤ k. A path is a walk that does not contain any edge more (simple) path

than once, and a path that does not even contain any node more than once is a simple path.
A path which ends where it starts, i.e., v0 = vk, is called a cycle, or a simple cycle if no node (simple) cycle

except v0 = vk is contained more than once. The number of used edges in a walk or a path
is its length. The length of the shortest path between two nodes u, v of a graph G is their length

distance, it is usually defined to be infinity if there is no such path. The diameter of a graph distance, diameter

is the maximum distance between nodes present in a graph. A graph that contains no cycles
is a tree. tree

We call H = (V ′, E′) a subgraph of a graph G = (V,E) if H constitutes a graph, and
V ′ ⊆ V and E′ ⊆ E. We often use the notion of an induced subgraph. Such a subgraph (induced) sub-

graph
H = (V ′, E′) is either specified by its set V ′ of nodes, in which case E′ contains exactly those
edges of E that in G are solely incident to nodes in V ′, or by its set E′, in which case V ′

contains exactly those nodes of V that in G are incident to at least one edge in E′; formally
speaking this translates to E′ := {{u, v} | u, v ∈ V ′, {u, v} ∈ E} and V ′ := {v ∈ V | ∃{u, v} ∈
E′}. We write H = G[V ′] and H = G[E′] in the former and the latter case, respectively. A
graph G is connected if there is a path between any pair of two nodes in G, i.e., any node (dis-) connected

can be reached by starting from any other node and traversing a subset of edges, otherwise
G is disconnected. The connected components of a graph G are all maximal5 subgraphs Hi

connected
components

3In the literature, graphs that contain parallel edges are often called multigraphs, and graphs that do not
contain loops are often called loop-free.

4Sadly, we have already reached a point which is beyond what some literature I dealt with cares about.
5The term maximal is used as usual, i.e., no element can be added without violating some property.
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of G which are connected. A subgraph T of a graph G which is a maximal tree is a spanning
tree. If a connected component containing edge e becomes disconnected by removing e, wespanning tree

call e an isthmus or a bridge. Figure 1.2.1 depicts a network, which is already cast into aisthmus, bridge

Eve

Walter

Dave

Carol

Trudy

Alice

Bob

Figure 1.2.1. A social net-
work of seven persons, an edge
between two persons repre-
sents friendship.

graph: the nodes V represent persons and the relations between
them—friendship in this example—are modeled by the set E
of edges. Alice has degree 3 and the edge {Alice,Bob} is an
isthmus. The subgraph induced by Bob, Carol and Eve, that
triangle, is called a clique, as it is edge-maximal; a clique on iclique

nodes is denoted Ki.

Direction and Weight. In some rare cases we will use—and
explicitly say so—the notion of a directed graph. An edge e indirected graph

a directed graph is an ordered pair e = (u, v) of nodes, i.e., the
edge is not a mutual relationship but has a source and a target .6source, target

A notion we shall more often use is that of a weighted graph.weighted graph

A weighted graph G is a triple G = (V,E, ω) with V and E
defined as above, and with an edge weight function ω : E → D,edge weight

with some domain D. Modeling anything related to, e.g., the
strength of a relation or the distance of two nodes, ω maps each
edge e to an edge weight ω(e). We define ω({u, v}) = 0 if {u, v} /∈ E. Instead of ω({u, v}) we
will usually denote the weight of an edge {u, v} by ω(u, v). The domain of ω usually is [0, 1]
but sometimes R+

0 or even R, we shall announce any deviation from [0, 1]. In much of this
work we will generalize assertions from unweighted to weighted graphs, in some cases simply
claiming a proof to be easy to see. In most such cases it is helpful to keep in mind that a
generalization must yield the result of the unweighted case if we resort to default weights such
as 0 and 1. For a node v, we define the weight ω(v) of a node as the sum of the weights of

weight of a node,
ω(v)

incident edges, doubly counting loops. In case we allow parallel edges, ω(e) is the weight of
the single edge e, whereas ω({u, v}) is the sum of weights of edges between nodes u and v.
The analogon for unweighted graphs is A(u, v) which counts the number of (parallel) edges
between u and v. The sum of the weights of all edges in a graph is denoted by W . WheneverA(u, v)

W a weight immediately corresponds to a cost we adhere to conventions and substitute ω(e) by
c(e). The weight of a path in a weighted graph is the sum of the weights of the edges used.c(e)
Thus, the distance between two nodes is the weight of the lightest path between them.weighted distance

It is important to see the difference between a weight expressing the strength of a tie (high
values indicate an important, strong edge) and a weight quantifying the distance between
nodes (low values indicate important edges). For the notion of path lengths, distances aredistance vs.

similarity
required, while more often the other case is used: High edge weights correspond to a high
similarity or togetherness of the incident nodes.

Sets, Quantors and Enumerators. We often enumerate over sets of tuples of nodes. It
is worth announcing three particularly notorious variants. For simplicity in enumerations we
assume that V is ordered, such that for any two distinct nodes u, v either u > v or u < v
holds. We denote the set of multisets of two nodes that can be connected by an edge in a
non-simple graph as V × = {{u, v} | u ≥ v, u ∈ V, v ∈ V }, with m̃ := |V ×| =

(
n
2

)
+ n. The setV ×, m̃

of all 2-tuples, i.e., ordered pairs from V is V 2 = {(u, v) | u ∈ V, v ∈ V }. Finally, the set ofV 2

all unordered pairs of nodes is denoted by
(
V
2

)
, and thus E ⊆

(
V
2

)
in simple graphs. We shall(

V
2

)
sometimes use one notion in an enumerator and then a different notation in the enumerand,
e.g., “

∑
(u,v)∈V 2 ω({u, v}) < 2W ⇒ the graph is not simple”, it might help to put straight

that this will be done on purpose. For convenience we abbreviate extending and reducing
sets: Given a set A and elements e and e′, we write A+ e := A ∪ {e} and A− e := A \ {e}.A + e, A − e

6Directed edges are often called arcs in the literature.
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Simple Operations and Constructs. A node v’s (standard) neighborhood is N(v) :=
{w ∈ V | {v, w} ∈ E}, and the set of vertices within distance d of v is denoted as the
d-neighborhood Nd(v) = {w ∈ V | w 6= v,distance(v, w) ≤ d}. A contraction of G by

neighborhood
Nd(v)

contraction of G
N ⊆ V means replacing set N by a single super-node η, and leaving η adjacent to all former
adjacencies u of vertices of N , with edge weight equal to the sum of all former edges between
N and u. Analogously we can contract by a set E′ ⊆ E.7 A cut of a graph is a partition of cut

V into two sets, it is sometimes also identified by the subset of edges which connect between
those sets. A cut can also “cut” only a subset U ⊆ V . The weight of a cut is always the sum weight of a cut

of the weights of the edges between the two sets. We often call a cut (U1, U2) of U ⊆ V a
2-partition of U in order to stress that U1 ∩ U2 = ∅ and that U1 ∪ U2 = U . The adjacency
matrix Adj(G) of graph G is an n × n matrix with entries aij = ω(vi, vj) . The normalized

(normalized) ad-
jacency matrix
Adj(G), AdjN(G)adjacency matrix AdjN(G) of graph G is D−1Adj(G) where D is the n × n diagonal matrix

with entries dii = ω(vi). The (unnormalized) Laplacian L of a graph is D −Adj(G). Laplacian L

1.2.2 Clusterings

C1

C2

C3

Figure 1.2.2. An example
clustered graph with k = 3
and m(C) = 17 and m(C)c =
52

Given an unweighted graph G = (V,E). Let C = {C1, . . . , Ck}
be a partition of V , with each Ci being non-empty. We call C
a clustering of G and the elements Ci clusters. The clus- clustering, cluster

ter which contains node v is denoted by C(v). We identify
a cluster Ci with the node-induced subgraph of G, i.e., the
graph G[Ci] := (Ci, E(Ci), ω|E(Ci)), where E(Ci) := {{v, w} ∈
E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1E(Ci) is the set of intra-

cluster edges and E \ E(C) the set of inter-cluster edges, with intra-, inter-
cluster|E(C)| =: m(C) and |E \ E(C)| =: m(C). The set E(Ci, Cj) m = E(C), m(C)

denotes the set of edges connecting nodes in Ci to nodes in Cj .
E(Ci, Cj)We denote the number of non-adjacent intra-cluster pairs of

nodes as m(C)c, and the number of non-adjacent inter-cluster
pairs as m(C)c. Further, we generalize degree deg(v) to clusters m(C)c, m(C)c

as deg(C) :=
∑
v∈C deg(v). deg(C)

A clustering is trivial if either k = 1 (C1), or all clusters
contain only one element, i.e., are singletons (CV ). We denote the set of all possible clusterings
of a graph G with Ψ (G). We call a graph of which all connected components are cliques a
clustergraph and FC , the set of edges to be added or deleted in order to transform a given clustergraph

graph and clustering C into an according clustergraph, the cluster editing set of C. cluster editing set
FC

Weighted Graphs. When using edge weights, all the above definitions generalize naturally
by using ω(e) instead of 1 when counting edge e. For the purpose of clustering, weights
are considered to represent similarities unless otherwise noted. Consider a weighted graph
G = (V,E, ω), then ω(C) (ω(C)) denotes the sum of the weights of all intra-cluster (inter- ω(C), ω(C)
cluster) edges, W denotes the sum of all edge weights. To further simplify notation we use
ω(E′) =

∑
e∈E′ ω(e). The maximum edge weight in a graph is called ωmax. Not quite so

obvious are the definitions of ω(C)c and ω(C)c, as here a weight needs to be assigned to an ω(C)c, ω(C)c

absent edge, or rather, we need to quantify how much edge mass is missing, compared to “full
connectivity”. While this is trivial for unweighted graphs, in the weighted case we follow [46]
and postulate a reasonable maximum weight M to compare to. We shall discuss this issue in M

more detail in Section 2.3, but until then we assume that M = max(domain(ω))—which often

is 1. Thus we get: ω(C)c =
∑
Ci∈C

(|Ci|
2

)
·M−ω(C) and ω(C)c = (

(
n
2

)
−∑Ci∈C

(|Ci|
2

)
)·M−ω(C).

If parallel edges in a graph are allowed, the graph should be regarded as being weighted and
again a maximum weight M should be set. Otherwise the latter definitions cannot be used.

7This quite probably introduces a loop on η; depending on the context this must not be forgotten.
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Indices. We measure the quality of clusterings with a range of quality indices, discussed,
e.g., in [46], however, we set our focus on the indices modularity [178] (mod), inter-cluster
conductance [48] (icc), coverage [46] (cov) and performance [213] (perf) in this work, since
they are the ones studied most. In the sections to come we shall regularly mention, discuss or
exhibit peculiarities of these indices, thus we try to be brief and technical at this point. For
earlier and (partly) profound discussions of these indices we refer the reader to the given ref-
erences and to further pointers therein. We usually indicate weighted formulae by a subscript
as in, e.g., covω.

Coverage. The most simple index realizing a traditional measure of clustering qualitycoverage

is coverage. The coverage(C) of a graph clustering C is defined as the fraction of intra-cluster
edges (or ω(C)) within the complete set of edges (or W ):

cov(C) :=
m(C)
m

=
m(C)

m(C) +m(C) covω(C) :=
ω(C)
W

=
ω(C)

ω(C) + ω(C) (1.2.1)

Intuitively, large values of coverage correspond to a good quality of a clustering. However,
one principal drawback of coverage is, that the converse is not necessarily true: Coverage
takes its largest value of 1 in the trivial case where there is only one cluster. Finding a
clustering with k ≥ 3 clusters with optimal coverage(C) is equivalent to finding a k-mincut,
which is NP-hard [24];8 moreover, requiring clusters to adhere to certain size constraints, such
as some minimum size, is also NP-hard [216].

Figures 1.2.3-1.2.4 exhibit a general problem of quality indices: Although coverage is
normed to the interval [0, 1], it is still often hard to associate a specific value with a meaningful
intuition of goodness. Usually some comparison or a rough idea about how well other graphs
of a given family can be clustered is helpful, we shall see below how the index modularity
attempts this. Coverage favors coarse clusterings, and its domain remains [0, 1] for non-simplecoarse clusterings

graphs and for weighted graphs. Despite all criticism, coverage’s simplicity and indisputability
do make it a useful base measure, if one keeps in mind its penchant for coarseness.

Figure 1.2.3. A random split of a G(20, 0.5), i.e., tak-
ing 20 nodes and adding each possible
edge e ∈

(
V
2

)
with probability 0.5; cov-

erage is 0.66.

Figure 1.2.4. A meaningful clustering of a six-sided
tube, which contains a few additional ir-
regular interconnections; it yields a cov-
erage of 0.43.

Performance. The index performance partly remedies the main drawback of coverage.performance

It is defined as the fraction of node pairs, that are clustered correctly, i.e. those connected

8Since this is an optimization problem, the corresponding decision problem is NP-hard and the actual
problem is NPO-hard. For simplicity we omit this distinction, and shall do so in all of this work without
further notice, aside from a somewhen reminder.
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node pairs that are in the same cluster and those non-connected node pairs that are separated
by the clustering. The unweighted case yields:

performance(C) :=
m(C) +mc(C)

1
2n(n− 1)

(1.2.2)

The range of unweighted performance is [0, 1] for simple graphs. Loops do not change things,
but parallel edges do, as now the case mentioned in the above section applies: Sticking to
the normalization in Equation 1.2.2 yields an unbounded domain of performance, and trying
to adhere to the domain [0, 1] requires harsher normalization by means of some maximum
adjacency between nodes. This strongly suggests viewing this as a weighted problem, using
a “reasonable” maximum weight M (or adjacency) between nodes, as follows: M

performanceω =
ω(C) +Mm(C)c +Mm(C)− ω(C)

1
2n(n− 1)M

(1.2.3)

In the terms ω(C)c and ω(C)c the weight between a non-adjacent pair of nodes is M , and the
weight between (weakly) adjacent nodes is the gap between the weight of the corresponding
edge and M . The literature does not agree on a value for M , however we strongly advocate
using max(domain(ω))—or ωmax if the former is not at hand—we shall make a case for this
in Section 2.3; then the range of performance always is [0, 1]. Maximizing performance is
NP-hard [202] as it is reducible to graph partitioning.

The drawback of performance is that in sparse networks, which most real-world net-
works indeed are, the value of mc(C) clearly dominates the formula, supporting rather fine
clusterings. For a rough impression, the clustering in Figure 1.2.2 has a performance of fine clusterings

(17 + 52)/78 ≈ 0.89; Figure 1.2.3 and Figure 1.2.4 yield 0.66 and 0.89, respectively.

Inter-Cluster Conductance. Inter-cluster conductance (or inter-cc) measures the inter-cluster
conductance

worst bottleneck constituted by cutting off a cluster from the graph, normalized by the degree
sums thereby cut off. Inter-cc is based on the measure conductance [145], which seeks the
“cheapest”cut (S, V \S) (with S ⊆ V ) in a graph (measured by ϕ, the fractional term of Equa-
tion 1.2.4). The conductance of a clustering is then defined as the minimum conductance of
each cluster. However, determining the minimum conductance cut in a graph is NP-hard [24],
and thus this measure is ill-suited for measuring clustering quality. In turn, the cut induced
by a cluster should have a very low conductance in a good clustering. Following [48] we
can thus examine how good bottlenecks induced by clusters are (instead of all cuts inside bottleneck

a cluster), which yields the meaningful (and computable) formula given in Equation 1.2.4.
We shape this measure such that it yields 1 for good clusterings. For brevity we only give
a weighted formula, which can canonically be used for unweighted graphs (ω(v) → deg(v),
ω(C)→ |E(C)|): conductance ϕ of

a cut

iccω(C) := 1−max
C∈C

ω(E(C, V \ C))

min
(∑
v∈C

ω(v),
∑

v∈V \C
ω(v)

)
︸ ︷︷ ︸

conductance ϕ of cut (C, V \ C)

(1.2.4)

Inter-cc is a worst-case measure, and this fact should be kept in mind. Thus, a clustering has worst-case
measure

a small inter-cc, if there exists at least one cluster C0, that is rather strongly connected to
V \C0, compared to the density of C0 and V \C0. A non-isolated singleton cluster immediately
results in a value of 0. In Figures 1.2.2, 1.2.3 and 1.2.4 inter-cc yields 0.80, 0.61 and 0.40,
respectively. The range of inter-cluster conductance is always [0, 1], even for unweighted and
non-simple graphs. We refer the reader to [48] for a discussion on why not to use intra-cluster
conductance, which is the analogon to inter-cc inside clusters.

For clusterings of large real-world graphs it is rather common that inter-cc equals 0, due
to some small degeneracy that may occur someplace. For this reason we also define the less
capricious measure average inter-cc, in order to still have a meaningful measure of bottlenecks: average inter-cc
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iccav
ω (C) := 1− 1

|C|
∑
C∈C

ϕ(C, V \ C) (1.2.5)

Modularity. Since in the following we shall dedicate two whole sections to exploring
the intricacies of this index, we here keep the introduction of the measure modularity brief.modularity

Modularity has recently been proposed [178] in an attempt to find an apt remedy to the
disadvantages of coverage. Citing the authors, the driving idea for modularity was to take
coverage “minus the expected value of the same quantity in a network with the same community
divisions, but random connections between the vertices.” The stated formula was shortly after

measure
− expectation

clarified in [57] and translates to

mod(C) :=
∑

{u,v}∈V ×

(
A(u, v)

m
δuv

)
−

∑
(u,v)∈V 2

(
deg(u) · deg(v)

4m2
δuv

)
, (1.2.6)

with δuv =

{
1 if C(u) = C(v)

0 otherwise
,

and A(u, v) = number of (parallel) edges between u and v.

using Kronecker’s symbol δuv as an indicator function. However, the original formulation
did not take into account loops and used as an enumerator for the first term u ∈ V, v ∈ V ,
thus miscounting coverage for non-simple graphs. On simple graphs the formulae coincide.
Certainly this can be neglected in many practical cases, but we strongly suggest using the
above formulation since the probabilistic model behind modularity requires loops and parallel
edges to be sound. A simple way to equivalently rephrase Equation 1.2.6 is:

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

, (1.2.7)

The literature has seen quite a few obfuscated or straight-out wrong formulations for mod-
ularity , due to the above issue or some otherwise sloppy enumeration. Since originally (and
by a few follow-up studies) loops and parallel edges were disregarded, the original defini-
tions are inconsistent, if such were allowed. Even worse, there have been studies that use a
loop-agnostic definition of modularity , but then discuss under which preconditions loops can
be simplified [23] without changing the modularity-optimal clustering. Mildly phrased, the
results in that paper should not be trusted. Since the founding probabilistic assumptions for
modularity are not sound without loops and parallel edges, as we shall see in a more thorough
discussion in Section 2.3, it is meaningful to faithfully generalize the formulations in [178] and
[57], as is done in Equations 1.2.6 and 1.2.7.

A generalization of modularity to weighted edges, such that its restriction to weights 0weighted edges

and 1 yields the unweighted version, is straightforward, as proposed in [172]. We again state
the formula we use, in order to disambiguate between formulations in previous works and to
settle the loop-issue. Again our formula coincides with that of [172] for simple graphs.

modω(C) :=
ω(C)
W︸ ︷︷ ︸

covω

− 1

4W 2

∑
C∈C

(∑
v∈C

ω(v)

)2

︸ ︷︷ ︸
E(covω)

(1.2.8)

The formula of modularity reveals an inherent trade-off: To maximize the first term, many
edges should be contained in clusters, whereas the minimization of the second term is achieved
by splitting the graph into many clusters with small total degrees each, or at least with a
rather balanced total degree. The range of modularity is [−0.5, 1] (see Lemma 2.2.1) for all
graphs, where the least values are attained by bipartite graphs (and the obvious clustering)
and 1 is approached by disjoint cliques. In Figures 1.2.2, 1.2.3 and 1.2.4 modularity yields
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0.46, 0.13 and 0.32, respectively. The second value already indicates that modularity does
not see much deviation from randomness in Figure 1.2.3, however we leave deeper discussions
on modularity for the sections to come.

1.2.3 Basic Comparison Measures

In this thesis we will regularly have to quantify the similarity of two sets or of two vectors.
For this basic task a number of formulae exist, and we briefly list the relevant ones in the
following; for deeper insights and a much broader view we recommend [209]. Let ~a and ~b be

two vectors of length n with entries ~ai and ~bj , and let X and Y be two sets. In most cases
using vectors poses a generalization of the formula for sets, however we explicitly list both
cases for simplicity. The simple matching coefficient for ~a and ~b and for X and Y is given by simple matching

coefficient

sm(~a,~b) :=

n∑
i=1

(~ai ·~bi) sm(X,Y ) := |X ∩ Y | . (1.2.9)

The lack of normalization prohibits the use of these formulae for representative quantification,
which leads to the cosine coefficient defined by cosine coefficient

cos(~a,~b) :=

∑n
i=1(~ai ·~bi)√∑n

j=1 ~a
2
j ·
√∑n

`=1
~b2`

cos(X,Y ) :=
|X ∩ Y |√
|X| · |Y |

. (1.2.10)

This measure is very commonly used. Considering the geometric interpretation of the epony-
mous cosine of the angle between vectors ~a and ~b, we can see that this measure is bounded by
the interval [0, 1]. This measure has the property that it is length-invariant regarding vectors
and that it is rather insensitive for values close to 1. The latter fact can be a drawback, and
it is sometimes addressed by taking the arccos of cos(~a,~b) and renormalizing by 2π. The
overlap coefficient takes a different point of view and is defined by overlap coefficient

ov(~a,~b) :=

∑n
i=1(min{~ai,~bi})

min{∑n
i=1 ~ai,

∑n
i=1

~bi}
ov(X,Y ) :=

|X ∩ Y |
min{|X|, |Y |} . (1.2.11)

The overlap coefficient does not take the size of the larger set (or the values of the “larger”
vector) into account, a fact which must be handled with care. Collinear vectors can even
yield the same value as almost unrelated vectors, if one of the latter vectors is very long. The
commonly used Jaccard coefficient remedies this disadvantage and is defined by Jaccard coefficient

jac(~a,~b) :=

∑n
i=1(~ai ·~bi)∑n

i=1 ~ai +
∑n
i=1

~bi −
∑n
i=1(~ai ·~bi)

jac(X,Y ) :=
|X ∩ Y |
|X ∪ Y | , (1.2.12)

which is very intuitive—at least for sets. However, for vectors an extended Jaccard coefficient
is more commonly used, the Tanimoto coefficient. This measure avoids a zero denominator,

Tanimoto
coefficient

which can occur in the Jaccard coefficient, but at the same time it yields the Jaccard coefficient
if restricted to sets, i.e., binary vectors:

tan(~a,~b) :=

∑n
i=1(~ai ·~bi)∑n

i=1 ~a
2
i +

∑n
i=1

~b2i −
∑n
i=1(~ai ·~bi)

(1.2.13)

Finally, individual variants of so-called match coefficients for sets are commonly found in the match coefficients

literature. Among them are the following asymmetric and symmetric formulations, which we
will explicitly point out when used:

maasym(X,Y ) :=
|X ∩ Y |
|X| masym(X,Y ) :=

|X ∩ Y |
max{|X|, |Y |} (1.2.14)





Chapter 2

Static Graph Clustering

The fabled “karate club” network, Holy Grail of toy examples, archon of
benchmark sets. Nodes model members of a university-based karate club
and edges model social ties. Wayne W. Zachary assembled this data in the
70s in a sociological case study to explain why the club split up the way
it did [230]. Caused by an “unequal flow of sentiments and information
across the ties” of this social network, a “factional division led to a for-
mal separation of the club”. Node shapes, left-hand circles vs. right-hand
squares, correspond to the real division, boxes and colors indicate the result
of modularity optimization and greedy maximization, respectively.
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Section 2.1

Preface to Static Graph Clustering

‘Oh yes,’ said Frankie, ‘but we’d have to get it
out first. It’s got to be prepared.’

‘Treated,’ said Benjy.
‘Diced.’

(The Hitchhiker’s Guide to the Galaxy,
novel, Douglas Adams, Pan Books, 1979)

How can we identify a graph clustering? In short, this question is the essence of
the field of graph clustering. While there are other important aspects of graph clus-

tering such as measures to compare clusterings or means to represent a clustering in a well-
perceivable way including visualizations, the core issue are algorithms for finding good graph
clusterings, or clustering algorithms, in brief. The paradigm of intra-cluster edge-densityclustering

algorithms
versus inter-cluster edge-sparsity leads the way, but only on a very high and abstract level.
Inextricably connected to this paradigm is its mathematical formalization in the shape of a
quality index that measures how well the guideline is met. We have seen four such indices in
Section 1.2.2. In fact, indices are an integral part of many clustering algorithms.

A more generous overview of the field calls for a few words about what graph clustering
is not. The field of graph partitioning strongly differs from general graph clustering in thatnot graph

partitioning
the number and possibly the size of clusters are crucial input parameters and the paradigm
of graph clustering becomes a secondary criterion. As an example, an important application
domain yielding very large graphs to be partitioned arises in the area of scientific computing:
nodes of a problem instance are distributed evenly among a number of parallel processors in
a way that—roughly speaking—minimizes the amount of delaying communication, i.e., the
number of edges between the subsets [165]. For an overview and recent advances on the topic of
graph partitioning we recommend [166, 165] and further references therein. Note furthermore
that graph clustering is related but essentially different from the field of data clustering wherenot data

clustering
data points are embedded in a high dimensional feature space and no explicit edge structure
is present; for recent advances and a survey see, e.g., [40]. We refrain from pointing out
specific discrepancies, as this has thoroughly been done in the literature [46, 89, 195]. In
this thesis we exclusively treat clusterings as true partitions of the set of nodes of a graph.no overlaps

Thus, we do not allow clusters to overlap on the one hand, or leave nodes unclustered on the
other hand. While in some applications this might be reasonable, it is a slightly different field
indeed and thus not discussed herein. For further work on this topic see [223, 179, 76, 153],
and in particular [170], where a first faithful generalization of modularity and other indices
to overlapping clusterings is made. Another arguable point concerning the nature of graph
clusterings is the paradigm of parameter-free community discovery [148]. In this thesis we do

parameter-
free commu-

nity discovery not fully agree that parameter-free methods are superior, although they do have undeniable
advantages. A central point where a parameter can be of prime interest is granularity; the
ability to explore clusterings at a coarser or a finer granularity can be essential.
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2.1.1 Clustering Methodologies

Clustering algorithms can assume a bewildering variety of shapes. Roughly speaking, there are
two dimensions in which graph clustering algorithms differ in a very general view: (i) How
strongly does the method rely on a quality index? (ii) What hierarchical orientation does
the algorithm take? In Figure 2.1.1 a couple of algorithms we shall encounter in this work

(ii) hierarchical orientation

bottom-up top-downnon

(i
)
b
a
si
s

in
d
ex

st
ru
ct
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greedy
modularity

centrality
removal

Orca

local
modularity

MCL

GMC

ICCmin-cut
tree

CPM

Figure 2.1.1. A rough classification of a few graph cluster-
ing algorithms described below

are classified by these two criteria. On the y-axis (i),
a method that does not rely on any specific quality in-
dex or a combination of indices usually performs some
structural operations, such as contractions or perco-
lation, which conform to the paradigm without actu-
ally touching an explicit, global index. Orthogonally
to (i), algorithms can either iteratively agglomerate
nodes into clusters (“bottom-up”) or recursively cut
the graph into clusters (“top-down”), which yields the
x-axis (ii); either approach constructs a whole hierar-
chy of intermediate clusterings. Some algorithms do
not work hierarchically (“non”), they either directly
identify the clustering or shift nodes in a procedure of
local optimization. The fact that most index-driven
methods work hierarchically is partly due to the fact
that most quality indices for graph clusterings have
turned out to be NP-hard to optimize and rather resilient to effective approximations, see
e.g., Section 2.2 and [216, 24, 145] for modularity , coverage, performance and inter-cluster
conductance, respectively, allowing only heuristic approaches towards optimization. Stepwise
cutting and agglomerating can easily be cast into such heuristics. The exception to this, a
method based on minimum-cut trees, is described in Section 4.4. We clearly refrain from
giving an extensive overview of the field and again refer the reader to the good overviews and
introductions in [46, 89, 195]. In the following we discuss the clustering algorithms which are
related to the work conducted in this chapter.

2.1.2 Greedy Agglomeration

It is common knowledge that there is no single best strategy for graph clustering, which justi- greedy modularity
maximization

fies the plethora of existing approaches. An archetypical and particularly simple method,
greedy

greedy modularity maximization, proposed in [57], (“global modularity” in Fig. 2.1.1), is
probably the most widespread method applied in practice nowadays. This method clearly
exemplifies an index-based bottom-up (agglomerative) algorithm, as it is solely based on dendrogram

dendrogram current clustering

Figure 2.1.2. An intermediate step of an index-driven
and agglomerative clustering approach, illus-
trated by the intermediate clustering C̃ and
the dendrogram

modularity [178] and operates as follows: A tempo-
rary clustering C̃ is initialized as the singleton cluster-
ing CV . Then, in an iteration of at most n− 1 steps,
those two clusters are merged of which a merge yields
the highest increase in modularity among all pairs of
clusters in C̃. Figure 2.1.2 illustrates a late step of
this procedure on our example graph. The grey clus-
ters have already been assembled by a number of past
merges, and the red-bordered cluster is the result of
the current merge operation. The dendrogram (beside
the graph in the figure) is a means to keep track of
a clustering procedure; the bottom leaves of the den-
drogram are the initial singletons and each internal
node represents the merge of its two children. Since
the internal nodes are ordered vertically, any horizon-
tal line drawn through a dendrogram corresponds to
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an intermediate clustering. Generally speaking, after n − 1 steps, the quality of each in-
termediate clustering is measured and the one with the highest value is the final result. In
the particular case of modularity , the single peak is reached as soon as no merge yields any
positive increase. We shall detail this in the following two sections. In Figure 2.1.1 we coined
this method “global”, as it globally and greedily seeks the best agglomeration. We forego a
deeper discussion of this method at this point as we return to it in Sections 2.2 and 2.3.

Variants and Similar Approaches. The technique proposed in [57] caused a surge of
follow-up studies on various applications, possible adjustments and related methodologies,
see, e.g., [90, 231, 168, 185]. Moreover, an array of heuristic algorithms has been proposed
to optimize modularity . These are based on a greedy agglomeration [173, 57], on spectral
division [175, 226], simulated annealing [126, 191], extremal optimization [81] and the Potts
spin glass model [191] to name but a few prominent examples. A particularly close relative of
it, which abandons global greedyness, has recently been presented in [38]. Here a significant
speedup is achieved by only locally deciding about agglomeration and hierarchically reducing
the graph repeatedly. This conceptually simple but effective local method of greedy modular-locally greedy

ity maximization constructs consecutive hierarchy levels of a clustering. By letting each node
decide (on the basis of improving modularity) to which neighboring cluster/node to affiliate,
clusters take shape. As soon as no node wishes to change its affiliation any more, each stable
set of affiliated nodes is contracted. Then, on the graph of contracted nodes, this procedure
is repeated. It is worth noting that, on a rough scale and concerning its scope of application,
this approach is similar to Orca, a fast clustering technique which we shall describe and
compare to the approach of [38] in Section 2.5. A crucial difference is that Orca builds a
clustering without any bias towards modularity but instead relies on local graph-structural
properties.

Applications of the above methods range from protein interaction dependencies to recom-
mendation systems, social network analysis and even embeddings of neural networks (see, e.g.,
[231, 168, 185]). Although modularity has proven to be a rather reliable quality measure, it is
known to behave artificially to some extent. A phenomenom that can regularly be observed
in practice has been explored by Fortunato and Barthélemy [90]. They describe a resolution
limit of modularity-based methods, a restrictive tendency of modularity to detect communi-resolution limit

ties of specific size categories that depend on the size of the input. In my personal opinion,
recent attempts to circumvent this resolution limit by either altering the index modularity
or the agglomeration process as, e.g., presented in [62] so far failed to succeed. Some results
in that work outright contradict the resolution limit [90]. Following a similar approach but
a different aim, in [219] the authors try to speed up the agglomeration process. A balanced
dendrogram of the clustering process is enforced by an altered objective function. The much
finer resulting clustering, its quick computation and its lower modularity then do not come
as a surprise, as they all are rather obvious consequences of an adulterated merging series,
which faithfully obeys something else than modularity .

Another related approach has recently been described as a technical report in [153]. Here,
clusters are built up by iterative node agglomerations according to a different fitness function,
which is tunable for granularity (coarseness) and based on the ratio of connectedness within
and between clusters. In a random order, nodes then build up neighborhoods around them by
adding nodes that increase the fitness of their cluster. Although only unaffiliated nodes serve
as new centers of neighborhoods, by intention this procedure can result in nodes belonging to
more than one cluster. An interesting approach this work introduces is as follows: To find the
most stable and significant clustering in a graph, the algorithm is run multiple times, each
time with a slightly increased tuning parameter; then the largest range of the parameter for
which the algorithm yields the same number of clusters is considered the most articulate in
the graph.
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2.1.3 Other Selected Clustering Approaches

In this section we point out and briefly describe a selection of algorithms for graph clustering
which we will return to in this thesis. For further details on these algorithms we kindly refer
the reader to the references given in the following. By any means this selection is far from
comprehensive.

Clique Percolation Method. Approaches which avoid the usage of a particular index
for maximization often exhibit a certain elegance. Among these approaches is the clique
percolation method, CPM [76, 182]. Although the authors allow this method to yield over- clique percolation

method, CPM
lapping clusters, we briefly mention it here due to its interesting procedure: Starting with a

Figure 2.1.3. The clustering found by
CPM, allowing overlaps
(red nodes).

small clique in the graph, e.g., a K3 or a K5, this subgraph “transpires”
or “percolates” through the network as follows: Iteratively one node of
the clique is swapped for another node in the graph, thus finding an-
other neighboring clique. All regions identified by a connected clique
percolation then induce clusters, and usually quite a few nodes are left
unclustered. If overlaps are explicitly disallowed, this number increases.
Drawbacks of this method include the difficult parametric choice of a
suitable clique size and its rather high running time in practice; there
are no proven theoretical bounds, to the best of my knowledge. An imple-
mentation of the clique percolation method including a GUI is available
from the authors, and a reasonable extension to weighted networks is at
hand. Figure 2.1.3 illustrates an outcome of CPM using a K4.

Removal of Central Edges. The rather exotic term percolation
might come as a surprise for the above procedure, as it is nowhere close
mathematical percolation theory, which investigates the properties of
regular networks under a random edge-failure process. For this reason I
initially mixed the above method up with the following approach, which
is reminiscent of percolation theory : Iteratively remove the most central
edges from a graph and stop at a predefined threshold; then, let the connected components in-
duce the clusters. In Figure 2.1.1 this approach is named “centrality removal”. It might seem
counterintuitive to remove central edges, but consider centrality measures such as shortest-
path betweenness (see Section 3.1.3): Here, an edge is very central if it lies on many shortest shortest-path be-

tweenness
paths between pairs of nodes—something an isthmus certainly qualifies for. See Section 3.1
for details on centrality.

Recently Girvan and Newman [178] proposed algorithms which follow the above procedure.
There is an interesting sidenote to their method. The authors required a good criterion for
choosing at which stage during the removal process the best clustering is found. Probably
unaware of existing measures, they presented modularity for this purpose. Only a few months
later Newman et al. published a new method [57], described in Section 2.1.2 above, which
solely relies on modularity maximization and abandons the arduous but meaningful removal
process.

The running time of the removal algorithm [178] is dominated by the repeated recompu-
tation of edge betweenness values, for which no efficient dynamization is known. Brandes’
algorithm [41] computes edge betweenness most quickly, using linear space and O(nm) and
O(nm+n2 log n) time in unweighted and weighted graphs, respectively; this yields a running
time of O(nm2) for an unweighted clustering algorithm, which strongly limits the range of
networks this method is applicable to. One remedy would be to intermit the eager recompu-
tation of edge betweenness for a number ` > 1 of edge removals. The authors of [178] claim
that this seriously compromises clustering quality (modularity in their claim). The student
thesis [37] of Abian Blome, a smart student of mine, disproved this claim to a certain extent. `-betweenness

Blome introduced and evaluated two modifications to the vanilla algorithm: Betweenness
values are recomputed every ` > 1 steps, and only a certain range of the resulting clusterings



22 Static Graph Clustering

are actually measured, i.e., after only very few edge removals in a network of thousands of
edges no measurement is performed. Roughly summarizing the results regarding this context
yields that setting ` = n

10 effects only a marginal decrease in modularity on a set of real-world
instances and artificially generated random graphs, but a strong speed-up factor of n

5 .

Iterative Conductance Cutting. An established algorithm which partially relies on the
bottleneck-based quality measure conductance (see Section 1.2.2) is iterative conductance
cutting, abbreviated ICC. This top-down approach, introduced in [145], recursively splits theiterative conduc-

tance cutting ICC
graph, always using a cut with low conductance. Since it is NP-hard to find a cut with mini-
mum conductance, a polylogarithmic approximation is used instead: The nodes are ordered
by their entries in the eigenvector of the second largest eigenvalue of the normalized adjacency
matrix AdjN. Then that split of this order is used which yields a cut of minimum conduc-
tance. The algorithm stops cutting as soon as the current minimum-conductance cut exceeds
a predefined threshold. We later use this established clustering method for comparison. The
running time of this algorithm depends on the threshold and the method used for eigenvalue
computations. We briefly jaunt into the ideas behind such spectral approaches below.

Minimum-Cut Tree Clustering. We shall only be very brief here, as we dedicate Sec-
minimum-cut

tree clustering
tion 4.4 to this exceptional graph clustering approach [87], where we turn to a dynamic version
of the algorithm. The exciting point about this approach is that it actually guarantees a cer-
tain quality of the clustering. A compact representation of the set of all minimum s-t-cutsguaranteed bot-

tleneck quality
in a modified graph Gα and certain nesting properties of this set are exploited such that its
computation immediately yields a clustering that guarantees a meaningful bottleneck quality
inside each cluster (high density) and between clusters (sparsity). An input parameter α tunes
these guarantees and, in doing that, the coarseness of the clustering. Although the running
time of this approach amounts to about O(n3

√
m)—depending on the employed method for

computing minimum s-t-cuts—its algorithmic beauty and its unique feature to allow for a
guarantee set this method apart from most other graph clustering approaches. In Section 4.4
we also briefly investigate how much quality we have to give up if we try to speed up the
algorithm by only approximating minimum s-t-cuts.

Markov Clustering. Introduced by van Dongen [213], Markov clustering, MCL simulatesMarkov clus-
tering, MCL

a random walk through a network. Such a random walk has a high probability to stay inside a
dense cluster for a while before leaving it for a new cluster. Roughly speaking, instead of a true
simulation, the transition matrix of the random walk, derived from Adj(G), is taken to therandom walk

eth power in the expansion stage, which corresponds to computing the transition probabilities
of a walk of length e. Then, in an inflation stage, each element of the matrix is taken to the
rth power, in order to either emphasize (r > 1) heterogeneity in the likelihood of the random
walk to linger at a node, or weaken it (r < 1). Repeatedly, these stages are performed and
the matrix renormalized as to be stochastic, until either a fixed point or a recurrent state
is reached. At that point the connected components the iterated transition matrix defines
induce the clustering. It is argued [213] that in most cases such a stable condition is attained.
The running time of MCL is dominated by the matrix multiplications and by the number
of repetitions until convergence. With mild assumptions on the graph and an additional
pruning step, a running time of O(n∆2) can be stated. While setting the parameters e and
r to suitable values is not always trivial, we use this established and sound method in later
comparisons.

Geometric Minimum Spanning Tree Clustering. The method geometric minimum
spanning tree clustering, GMC [48], again uses a spectral approach. The eigenvectors of the dGMC

second largest eigenvalues of AdjN are used for a geometric embedding of the nodes as follows:
In dimension ι the entries of the ιth eigenvector define the position of the nodes. Building a
new graph Gg on the nodes in this geometric embedding, Euclidean distances serve as edge
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weights. Then, a minimum spanning tree1 T of Gg is built. A clustering can then be deduced
by deleting all edges in T of weight (i.e., distance between nodes) greater than a threshold
τ , and having the connected components of T define the clustering Cτ . As a neat property,
the authors prove that the resulting clustering does not depend on the choice of T , in case
this tree is not unique. Among the n − 1 possible clusterings for different values of τ , the
final clustering is then chosen to be that Cτ which maximizes a given quality index (or the
average of a combination of indices). We shall later include GMC in a comparison. Given
only few eigenvectors are used, the running time of GMC is dominated by the computation
of the minimum spanning tree which can be solved in time O(mα(m,n)).2

Spectral Approaches. Clustering techniques based on the spectrum of a graph have be- spectral
approaches

come numerous. Since in this thesis we use ICC, GMC and MCL, which either employ eigen-
vectors or are related to them, we here scratch the surface of spectral clustering. We recom-
mend [215, 98] for good introductions and [56] for advanced topics. Considering the Laplacian
of a graph G (see Section 1.2.1), a first and fundamental observation is as follows: The multi-
plicity of the eigenvalue 0 of L equals the number of connected components. We can see this connected

components
by observing that the indicator vector3 1S of a connected component S is an eigenvector of
L and that the set of all such indicator vectors spans the eigenspace of 0.

Since connected components are easy to identify anyway, consider G to be connected.
Roughly speaking, finding a non-trivial cut of minimum weight in G is NP-hard [216], however,
a spectral approach can be viewed as a relaxed version of such problems. As an example,
consider the ratio cut , which is reasonably close to the paradigm of graph clustering: Find ratio cut

a k-partition (A1, . . . , Ak) of V such that
∑k
i=1(ω(Ai, V \ Ai)/|Ai|) is minimized. It can be

shown that, if we drop the discreteness of assigning a node to a cluster Ai, we can, e.g., find
an approximate ratio cut by the eigenvector of the second smallest eigenvalue of L.

The clustering algorithm MCL is based on random walks, where the transition from node
v to one of its neighbors u is done with probability proportional to ω(v, u). Quite obviously,
the matrix of transition probabilities is closely related to L and Adj, which again is the gist
of the matter. We shall stop here and divert any further matters to the above references.

Further Approaches. Related to MCL is an effective bottom-up strategy called walktrap walktrap

[187] that iteratively updates a distance measure based on local random walks, which gov-
erns hierarchical agglomerations. This algorithm has been shown to be very fast in practice
and to yield clusterings of good quality, which motivates our including it in a comparison to
Orca in Section 2.5. A very recent and particularly interesting technique has been presented
in [220]. The authors transfer the concept of scan statistics [111], which measure the density scan statistics

of data points in a sliding window, to graphs. The scan statistic the authors propose is coined
Poisson discrepancy, and allows to assign a p-value4 to each cluster, quantifying its statistical
significance. A simple greedy algorithm is given for actually constructing a clustering, which
offers a parameterized tuning of coarseness alongside an indicator how strong a chosen clus-
tering is. Although this work makes strong assumptions on a random graph model underlying
the probabilistic statements, I see much potential in this approach due to its sound setup to
employ statistical significance and the success of scan statistics in the field of data mining. A
comparative study of this algorithm with established methods has yet to be conducted.

1A minimum spanning tree is a spanning tree of minimum total edge weight.
2The function α(m,n) is the inverse Ackermann function, an extremely slowly growing function which in

practice never is larger than 4.
3An n-dimensional vector with entry i equal to 1 if node vi is in S, and 0 otherwise.
4Given a sample of a random experiment and assuming some null hypothesis (i.e., underlying probabilistic

model), the p-value is the probability of obtaining a result at least as extreme (i.e., unfavorable to the null
hypothesis) as the one that was observed in the experimental sample.
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2.1.4 Summarizing Remarks

Countless formalizations of the paradigm of intra-cluster edge-density versus inter-cluster
edge-sparsity exist, however, the overwhelming majority of algorithms for graph clustering
relies on heuristics. The measure modularity and its greedy agglomerative maximization has
immediately received considerable attention in several disciplines, and in particular in the
complex systems literature. Apart from the fact that modularity turned out to be in good
accordance with human intuition for a surprising variety of networks, three factors significantly
sped its rise: (i) No single parameter has to (can) be tuned, such that no deeper knowledge
about the algorithm is necessary when using one of the ready-to-use implementations available
in the Internet. (ii) Both the formula of modularity and an implementation of the greedymodularity’s pros

algorithm are not at all demanding, mathematically. (iii) On reasonably modeled real-world
instances, the greedy algorithm hardly ever produces nonsense clusterings. Putting aside all
the drawbacks modularity and its greedy maximization have, these points together set them
apart from a great lot of other clustering algorithms that might very well be at least as good
in many applications. However, modularity is far from being the universal answer to graph
clustering problems. Issues pointed out in previous works and in this thesis emphasize that
other techniques are indispensable.

Motivating Questions. The main issues that motivate the work in this chapter on staticquestions

graph clustering can be phrased as follows. Modularity has spread like wildfire, in turn both
the theoretical and the systematic properties of this measure are not well understood, such
that its massive use in practice as both a measure and an optimization criterion proverbially
cries out for a thorough foundation. As the weird myth that the above greedy algorithm
has an asymptotic running time of O(n log2 n) in sparse graphs [57] is a mere myth indeed,
a logical question is: How should we cluster graphs which this approach cannot handle due
to their sheer size? Suppose we want to compare clusterings on a structural basis, either for
finding a consensus, hand-pick the best solution or investigate the dynamics of a clustering,
how can we quantify the distance between two clusterings?

Answers in this Thesis. Addressing these questions we accomplish the following in thisanswers

chapter. We provide a foundation for modularity and answer a number of open questions
concerning this measure. In particular, we prove the conjectured hardness of optimizing
modularity both in the general case and with the restriction to cuts. Comparing modularity
to other quality indices and a ground truth clustering, we characterize the behavior of this
measure. We provide theoretical bounds on the performance of the greedy agglomerative
approach and systematically evaluate its behavior on artificially generated graphs. Moreover,
we state and scrutinize the probability space which legitimates modularity , and integrate it
into a framework of expectation-based measures, arriving at an ample corroboration of its
feasibility. We give an integer linear programming formulation into which several indices fit,
and perform an evaluation of first engineerings steps thereof. We propose and experimentally
evaluate Orca, a clustering algorithm designed to handle huge graphs and to not be biased
by a single index like modularity . We engineer comparison measures from the field of data
mining so as to take into account the structure of a graph and systematically test their
compliance to reasonable postulations for distance measures for graph clusterings, alongside
that of traditional set-based measures.

Parts of this chapter have previously been published in [42, 43, 45, 44, 101, 68, 69, 70, 72,
115]. (We will point out the respective publications in the corresponding sections.)

2.1.5 Outlook

Among the many open problems we mention in the sections of this chapter, one particular issue
is worth pointing out here, as it seems to be a logical next step. Although the literature has
seen myriad alternative approaches towards faster agglomerative modularity maximization,
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Figure 2.1.4. The beauty of a dendrogram should not overshadow its potential as a tool for
algorithm analysis and engineering. Nodes start as singletons (red, bottom), their
merges are represented by internal nodes (blue), until the algorithm’s stopping
criterion applies (yellow nodes); the remaining merges (green nodes) are thus not
performed. Lumps in the dendrogram correspond to regions of the graph where
the clustering algorithm performs numerous merge operations consecutively.

truly engineering an algorithm as to perform particularly well on specific species of graphs,
such as those derived from road networks or others incorporating a strong power-law in their
degree distribution, has not yet been done. Such an engineering would include the criterion
speed, but also quality, as sometimes trapping local maxima of modularity will have to be
avoided. In fact the dendrogram can be a valuable tool for this task, as it yields insights both
about a clustering algorithm and about an instance, Figure 2.1.4 shows the dendrogram of
the greedy modularity algorithm applied to a larger graph, a connected 1000-nodes excerpt
from the DBLP [4] coauthorship graph (see Section 5.1.3). I see much potential in such an
engineering, as it works towards more performant and reliable methods for the practitioner. I
conjecture that a meta-heuristic could be included into a simple algorithm, choosing between,
say, two different modes of operation depending on some quickly measurable property of the
graph as, e.g., its clustering coefficient.

Taking a bird’s view, the practitioner needs a very simple and decent heuristic for choosing
an appropriate clustering algorithm in the first place. Using modularity introduces a strong
bias into the result of a clustering algorithm, and for many applications, especially those
with inhomogenously large and/or dense clusters, modularity probably fails to grasp the true
community structure inside a network.



Section 2.2

On Modularity Clustering

That which is common to the greatest number
has the least care bestowed on it.

(Aristotle, 384 BC – 322 BC,
Greek philosopher, student of Plato,
teacher of Alexander the Great;
fortunately wrong for [42, 43, 44, 45])

Just like any other quality index for clusterings (see, e.g., [46, 89] for performance,
coverage and intra-cluster conductance), modularity certainly does have specific draw-

backs such as non-locality and scaling behavior (see below) or resolution limit [90] as discussed
in Section 1.2.2. However, being aware of these peculiarities, modularity can very well be
considered a robust and useful measure that closely agrees with intuition on a wide range of
real-world graphs, as observed by myriad studies.

In this section we study the problem of finding clusterings with maximum modularity ,
thus providing theoretical foundations for past and present work based on this measure.
More precisely, we proof the conjectured [175] hardness of maximizing modularity both in the
general case and the restriction to cuts, and give an integer linear programming formulation
to facilitate optimization without enumerating all clusterings. Since the most commonly
employed heuristic to optimize modularity is based on greedy agglomeration, we investigate
its worst-case behavior. In fact, we give a graph family for which the greedy approach yields
an approximation factor no better than two. In addition, our examples indicate that the
quality of greedy clusterings may heavily depend on the tie-breaking strategy utilized—in
the worst case, no approximation factor can be provided. These performance studies are
concluded by clustering some previously considered networks optimally (via an ILP), which
yields further insights.

Most of the content collected in this section has been published in at least one work I
coauthored, the corresponding publications are [42, 43, 44, 45], which are based on joint
work with Ulrik Brandes, Daniel Delling, Marco Gaertler, Martin Höfer, Zoran Nikoloski and
Dorothea Wagner.5 The driving force was always the long standing (at least in my personal
reckoning) goal to prove the NP-completeness. In the end, of the rather large group of involved
researchers, it was Martin Höfer who had the decisive idea for a reduction that worked.

Main Results

• Modularity can be defined as a normalized tradeoff between edges covered by clusters
and squared cluster degree sums. (see Equation 2.2.1)

5Interestingly the “Symposium on Theoretical Aspects of Computer Science” (STACS) rejected our fun-
damental theoretical results on a measure which is massively used in practice by researchers in diverse fields
as being insignificant. I couldn’t disagree more.
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• There is a formulation of modularity maximization as an integer linear program. (Sec-
tion 2.2.2)

• There is a clustering with maximum modularity without singleton clusters of degree
1 and without clusters representing disconnected subgraphs. Isolated nodes have no
impact on modularity. (Corollary 2.2.1, Lemmata 2.2.2, 2.2.3)

• The clustering of maximum modularity changes in a global, non-trivial fashion even for
simplest graph perturbations. (Section 2.2.3.1)

• For any clustering C of any graph G it holds that − 1
2 ≤ modularity ≤ 1. (Lemma 2.2.1)

• Finding a clustering with maximum modularity is NP-hard, both for the general case
and when restricted to clusterings with exactly or at most two clusters. (Theorems 2.2.1
and 2.2.2)

• With a worst tie-breaking strategy, the greedy agglomeration algorithm has no worst-
case approximation factor, with an arbitrary tie-breaking strategy the worst-case factor
is at least 2. (Theorems 2.2.3 and 2.2.5)

• A clustering of maximum modularity for cliques of size n consists of a single cluster,
for cycles of size n of approximately

√
n clusters of size

√
n each. (Theorems 2.2.6

and 2.2.7)

Future Work. Building upon the results of this section, the development of a clustering
algorithm with provable performance guarantees should be addressed in the future. The
special properties of the measure, its popularity in application domains and the absence of
fundamental theoretical insights hitherto, render further mathematically rigorous treatment
of modularity necessary, especially on specific classes of graphs.

2.2.1 Preliminaries

Throughout this section we will assume that graphs are connected, since this slightly simplifies
notation; moreover, we restrict ourselves to unweighted, loop-free, simple graphs. Dropping
these restrictions does not impair the hardness results which also implies that unweighted
formulas for modularity are sufficient. Recalling the definitions from Section 1.2.2, we shall
mostly be using the compact formula:

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

, (2.2.1)

However, for the derivation of an ILP formulation, which will be done first, the alternative
formulation is more suitable, as it already incorporates Kronecker’s symbol as a placeholder
for a {0, 1}-variable (recall V × and V 2 from Section 1.2.2):

mod(C) =
∑

{u,v}∈V ×

(
A(u, v)

m
δuv

)
−

∑
(u,v)∈V 2

(
deg(u) · deg(v)

4m2
δuv

)
, (2.2.2)

with Kronecker’s symbol δuv =

{
1 if C(u) = C(v)

0 otherwise
,

and A(u, v) = number of (parallel) edges between u and v.
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2.2.2 Maximizing Modularity via Integer Linear Programming

The problem of maximizing modularity can be cast into a very simple and intuitive integer lin-
ear program (ILP). Given a graph G = (V,E) with n := |V | nodes, we define n2 decision vari-
ables Xuv ∈ {0, 1}, one for every pair of nodes u, v ∈ V . The key idea is that these variables
can be interpreted as an equivalence relation (over V ) and thus form a clustering as follows:

“Nodes u and v share a cluster iff Xuv = 1.”equivalence
relation

In order to ensure consistency, we need the following constraints, which guarantee

reflexivity ∀ u : Xuu = 1 ,

symmetry ∀ u, v : Xuv = Xvu , and (2.2.3)

transitivity ∀ u, v, w :

Xuv +Xvw − 2 ·Xuw ≤ 1
Xuw +Xuv − 2 ·Xvw ≤ 1
Xvw +Xuw − 2 ·Xuv ≤ 1

.

This formulation has been used, e.g., in [46] and in diverse variations for set partitioning prob-
lems, for a first pointer into that field see [184]. Observe that by reflexivity, in Equation 2.2.2
a loop on v ∈ V always yields δvv = 1, regardless of the shape of the clustering. The objective
function of modularity can thus be simplified to the equivalent objective functionsimplified ob-

jective function ∑
{u,v}∈(V2)

(
A(u, v)− deg(u) · deg(v)

2m
δuv

)
. (2.2.4)

This ILP can be simplified by pruning redundant variables and constraints, leaving only
(
n
2

)
variables and

(
n
3

)
constraints. We shall delve into further details and variant formulations in

Section 2.4 and revisit an adaptation to dynamic graphs in Section 4.5.1.

2.2.3 Fundamental Observations

In the following, we identify basic structural properties that clusterings with maximum mod-
ularity fulfill. We first focus on the range of modularity , for which Lemma 2.2.1 gives the
lower and upper bound.

Lemma 2.2.1 Let G be an undirected and unweighted graph and C ∈ Ψ (G). Then −1/2 ≤mod ∈ [− 1
2
, 1]

modularity ≤ 1 holds.

Proof. Let mi = |E(C)| be the number of edges inside cluster C and me =∑
C 6=C′∈C |E(C,C ′)| be the number of edges having exactly one end-node in C. Then the

contribution of C to modularity is:

mi

m
−
(mi

m
+
me

2m

)2

.

This expression is strictly decreasing in me and, when varying mi, the only maximum point
is at mi = (m−me)/2. The contribution of a cluster is minimized when mi is zero and me is
as large as possible. Suppose now mi = 0, using the inequality (a+ b)2 ≥ a2 + b2 for all non-
negative numbers a and b, modularity has a minimum score for two clusters where all edges are
inter-cluster edges. The upper bound is obvious from our reformulation in Equation (2.2.2),
and has been observed previously [90, 231, 63]. It can only be actually attained in the specific
case of a graph with no edges, where coverage (the first term) is defined to be 1.E = ∅ ⇔ mod = 1

As a result, any bipartite graph Ka,b with the canonic clustering C = {Ca, Cb} yields the
minimum modularity of −1/2. The following four results characterize the structure of a

G bipartite
 mod = − 1

2
clustering with maximum modularity .

Corollary 2.2.1 Isolated nodes have no impact on modularity.isolated nodes
don’t matter
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Corollary 2.2.1 directly follows from the fact that modularity depends on edges and degrees,
thus, an isolated node does not contribute, regardless of its association to a cluster. Therefore,
we exclude isolated nodes from further consideration in this work, i. e., all nodes are assumed
to be of degree greater than zero.

Lemma 2.2.2 A clustering with maximum modularity has no cluster that consists of a single deg(v) = 1
⇒ v no singleton

node with degree 1.

Proof. Suppose for contradiction that there is a clustering C with a cluster Cv = {v} and
deg(v) = 1. Consider a cluster Cu that contains the neighbor node u. Suppose there are a
number of mi intra-cluster edges in Cu and me inter-cluster edges connecting Cu to other
clusters. Together these clusters add

mi

m
− (2mi +me)

2 + 1

4m2

to modularity. Merging Cv with Cu results in a new contribution of

mi + 1

m
− (2mi +me + 1)2

4m2

The merge yields an increase of
1

m
− 2mi +me

2m2
> 0

in modularity , because mi +me ≤ m and me ≥ 1. This proves the lemma.

Lemma 2.2.3 There is always a clustering with maximum modularity, in which each cluster disconn. clusters
never necessary

consists of a connected subgraph.

Proof. Consider for contradiction a clustering C with a cluster C of mi intra- and me inter-
cluster edges that consists of a set of more than one connected subgraph. The subgraphs in C
do not have to be disconnected in G, they are only disconnected when we consider the edges
E(C). Cluster C adds

mi

m
− (2mi +me)

2

4m2

to modularity. Now suppose we create a new clustering C′ by splitting C into two new clusters. create C′ from C
Let one cluster Cv consist of the component including node v, i.e., all nodes, which can be
reached from a node v with a path running only through nodes of C, i.e., Cv =

⋃∞
i=1 C

i
v,

where Civ = {w | ∃(w,wi) ∈ E(C) with wi ∈ Ci−1
v } and C0

v = {v}. The other nonempty
cluster is given by C − Cv. Let Cv have mv

i intra- and mv
e inter-cluster edges. Together the

new clusters add
mi

m
− (2mv

i +mv
e)

2 + (2(m−mv
i ) +m−mv

e)
2

4m2

to modularity(C′). For a, b ≥ 0 obviously a2 + b2 ≤ (a + b)2, and hence modularity(C′) ≥
modularity.

Corollary 2.2.2 A clustering of maximum modularity does not include disconnected clusters. no disconn.
clusters

Corollary 2.2.2 directly follows from Lemma 2.2.3 and from the exclusion of isolated nodes.6

Thus, the search for an optimum can be restricted to clusterings, in which clusters are con-
nected subgraphs and there are no clusters consisting of nodes with degree 1.

6Observe that in the proof of Lem. 2.2.3 C = C′ can only hold if we allow isolated nodes, which we don’t
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(a) (b) (c) (d)

Figure 2.2.1. Clusters are represented by different grays. Comparing Figures (a) and (b) shows non-local behavior;
the clique K3 with leaves in Figure (c) is doubled in Figure (d), which shows scaling behavior.

2.2.3.1 Counterintuitive Behavior

In the last section, we listed some intuitive properties like connectivity within clusters for
clusterings of maximum modularity . However, due to the enforced balance between coverage
and the sums of squared cluster degrees, counter-intuitive situations arise. These are non-
locality, scaling behavior, and sensitivity to satellites.

Non-Locality. At first view, modularity seems to be a local quality measure. Recalling
Equation 2.2.1, each cluster contributes separately. However, the examples presented in
Figures 2.2.1a and 2.2.1b exhibit a typical non-local behavior. In these figures, clusters are
represented by shades of gray. By adding an additional node connected to the leftmost node,
the optimal clustering is altered completely. According to Lemma 2.2.2 the additional nodenon-local behavior

has to be clustered together with the leftmost node. This leads to a shift of the rightmost
black node from the black cluster to the white cluster, although locally its neighborhood
structure has not changed.

Sensitivity to Satellites. A clique with leaves is7 a graph of 2n nodes that consists of
a clique Kn and n leaf (or satellite) nodes of degree one, such that each node of the clique
is connected to exactly one leaf node. For a clique we show in Section 2.2.6 that the trivial
clustering with k = 1 has maximum modularity . For a clique with leaves, however, thesingleton leaves

disallowed
optimal clustering changes to k = n clusters, in which each cluster consists of a connected
pair of leaf and clique nodes. Figure 2.2.1c shows an example.

Scaling Behavior. Figures 2.2.1c and 2.2.1d display the scaling behavior of modularity .
By simply doubling the graph presented in Figure 2.2.1c, the optimal clustering is altered
completely. While in Figure 2.2.1c we obtain three clusters each consisting of the minor
K2, the clustering with maximum modularity of the graph in Figure 2.2.1d consists of two
clusters, each being a graph equal to the one in Figure 2.2.1c.doubling in-

stances changes C
This behavior is in line with the previous observations in [90, 168], which state that the size

and the structure of clusters in the optimum clustering depend on the total number of links
in the network. Hence, clusters that are identified in smaller graphs might be combined to a
larger cluster in a optimum clustering of a larger graph. The formulation of Equation 2.2.1
mathematically explains this observation as modularity optimization strives to optimize the
trade-off between coverage and degree sums. This provides a rigorous understanding of the
observations made in [90, 168].

7Typically, leaves are the degree-1 nodes of a tree.
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Figure 2.2.2. An example graph G(A) for the instance A = {2, 2, 2, 2, 3, 3} of 3-Partition. Node
labels indicate the corresponding numbers ai ∈ A.

2.2.4 NP-Completeness

It has been conjectured that maximizing modularity is hard [57], but no formal proof was
provided. We next show that that decision version of modularity maximization is indeed
NP-complete.

Problem 1 (Modularity) Given a graph G and a number K, is there a clustering C of G, Modularity

for which modularity(C) ≥ K?

Note that we may ignore the fact that, in principle, K could be a real number in the range
[−1/2, 1], because 4m2 ·modularity(C) is integer for every partition C of G and polynomially
bounded in the size of G. Our hardness result for Modularity is based on a transformation
from the following decision problem.

Problem 2 (3-Partition) Given 3k positive integer numbers a1, . . . , a3k such that the sum 3-Partition∑3k
i=1 ai = kb and b/4 < ai < b/2 for an integer b and for all i = 1, . . . , 3k, is there a partition

of these numbers into k sets, such that the numbers in each set sum up to b?

We show that an instance A = {a1, . . . , a3k} of 3-Partition can be transformed into an
instance (G(A),K(A)) of Modularity, such that G(A) has a clustering with modularity at

least K(A), if and only if a1, . . . , a3k can be partitioned into k sets of sum b = 1/k ·∑k
i=1 ai

each.
It is crucial that 3-Partition is strongly NP-complete [106], i.e. the problem remains NP- strongly NP-

complete
complete even if the input is represented in unary coding. This implies that no algorithm can
decide the problem in time polynomial even in the sum of the input values, unless P = NP.
More importantly, it implies that our transformation need only be pseudo-polynomial.

The reduction is defined as follows. Given an instance A of 3-Partition, construct a the reduction

graph G(A) with k cliques (completely connected subgraphs) H1, . . . ,Hk of size a =
∑3k
i=1 ai

each. For each element ai ∈ A we introduce a single element node, and connect it to ai nodes element node

in each of the k cliques in such a way that each clique member is connected to exactly one
element node. It is easy to see that each clique node then has degree a and the element
node corresponding to element ai ∈ A has degree kai. The number of edges in G(A) is
m = k/2 ·a(a+ 1). See Figure 2.2.2 for an example. Note that the size of G(A) is polynomial
in the unary coding size of A, so that our transformation is indeed pseudo-polynomial.
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Before specifying bound K(A) for the instance of Modularity, we will show three prop-
erties of maximum modularity clusterings of G(A). Together these properties establish the
desired characterization of solutions for 3-Partition by solutions for Modularity.

Lemma 2.2.4 In a maximum modularity clustering of G(A), none of the cliques H1, . . . ,Hkno Hi is split

is split.

We prove the lemma by showing that every clustering that violates the above condition canreductio ad
absurdum

be modified in order to strictly improve modularity .
Proof. We consider a clustering C that splits a clique H ∈ {H1, . . . ,Hk} into differentlet C split H

clusters and then show how to obtain a clustering with strictly higher modularity . Suppose
that C1, . . . , Cr ∈ C, r > 1, are the clusters that contain nodes of H. For i = 1, . . . , r we
denote by ni the number of nodes of H contained in cluster Ci, mi = |E(Ci)| the number of
edges between nodes in Ci, fi the number of edges between nodes of H in Ci and element
nodes in Ci, di be the sum of degrees of all nodes in Ci. The contribution of C1, . . . , Cr to
modularity(C) is

1

m

r∑
i=1

mi −
1

4m2

r∑
i=1

d2
i .

Now suppose we create a clustering C′ by rearranging the nodes in C1, . . . , Cr into clusters
C ′, C ′1, . . . , C

′
r, such that C ′ contains exactly the nodes of clique H, and each C ′i, 1 ≤ i ≤ r,create C′ from C

the remaining elements of Ci (if any). In this new clustering the number of covered edges
reduces by

∑r
i=1 fi, because all nodes from H are removed from the clusters C ′i. This labels

the edges connecting the clique nodes to other non-clique nodes of Ci as inter-cluster edges.
For H itself there are

∑r
i=1

∑r
j=i+1 ninj edges that are now additionally covered due to the

creation of cluster C ′. In terms of degrees the new cluster C ′ contains a nodes of degree a.
The sums for the remaining clusters C ′i are reduced by the degrees of the clique nodes, as
these nodes are now in C ′. So the contribution of these clusters to modularity(C′) is given by

1

m

r∑
i=1

mi +

r∑
j=i+1

ninj − fi

− 1

4m2

(
a4 +

r∑
i=1

(di − nia)2

)
.

Setting ∆ := modularity(C′)−modularity(C), we obtain∆ = improvement

∆ =
1

m

 r∑
i=1

r∑
j=i+1

ninj − fi

+
1

4m2

((
r∑
i=1

2dinia− n2
i a

2

)
− a4

)

=
1

4m2

(
(4m

r∑
i=1

r∑
j=i+1

ninj − 4m

r∑
i=1

fi +

(
r∑
i=1

ni
(
2dia− nia2

))
− a4

)
.

Using the equation that 2
∑r
i=1

∑r
j=i+1 ninj =

∑r
i=1

∑
j 6=i ninj , substituting m = k

2a(a+ 1)
and rearranging terms we get

∆ =
a

4m2

(
− a3 − 2k(a+ 1)

r∑
i=1

fi +

r∑
i=1

ni

(
2di − nia+ k(a+ 1)

∑
j 6=i

nj

))

≥ a

4m2

(
− a3 − 2k(a+ 1)

r∑
i=1

fi +

r∑
i=1

ni

(
nia+ 2kfi + k(a+ 1)

r∑
j 6=i

nj

))
.

For the last inequality we use the fact that di ≥ nia+ kfi. This inequality holds because Ci
contains at least the ni nodes of degree a from the clique H. In addition, it contains both the
clique and element nodes for each edge counted in fi. For each such edge there are k−1 other
edges connecting the element node to the k − 1 other cliques. Hence, we get a contribution
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of kfi in the degrees of the element nodes. Combining the terms ni and one of the terms∑
j 6=i nj we obtain

∆

≥ a

4m2

(
− a3 − 2k(a+ 1)

r∑
i=1

fi

)
+

a

4m2

(
r∑
i=1

ni

(
a

r∑
j=1

nj + 2kfi + ((k − 1)a+ k)

r∑
j 6=i

nj

))

=
a

4m2

(
− 2k(a+ 1)

r∑
i=1

fi +

r∑
i=1

ni

(
2kfi + ((k − 1)a+ k)

r∑
j 6=i

nj

))

=
a

4m2

(
r∑
i=1

2kfi(ni − a− 1)) + ((k − 1)a+ k)

r∑
i=1

r∑
j 6=i

ninj

)

≥ a

4m2

(
r∑
i=1

2kni(ni − a− 1) + ((k − 1)a+ k)

r∑
i=1

r∑
j 6=i

ninj

)
.

For the last step we note that ni ≤ a− 1 and ni− a− 1 < 0 for all i = 1, . . . , r. So increasing
fi decreases the modularity difference. For each node of H there is at most one edge to a
node not in H, and thus fi ≤ ni. By rearranging terms and using the inequality a ≥ 3k we
get

∆ ≥ a

4m2

r∑
i=1

ni

(
2k(ni − a− 1) + ((k − 1)a+ k)

r∑
j 6=i

nj

)

=
a

4m2

r∑
i=1

ni

−2k + ((k − 1)a− k)

r∑
j 6=i

nj


≥ a

4m2
((k − 1)a− 3k)

r∑
i=1

r∑
j 6=i

ninj

≥ 3k2

4m2
(3k − 6)

r∑
i=1

r∑
j 6=i

ninj .

As we can assume k > 2 for all relevant instances of 3-Partition, we obtain ∆ > 0. This ⇒ ∆ > 0

shows that any clustering can be improved by merging each clique completely into a cluster.
Next, we observe that the optimum clustering places at most one clique completely into a
single cluster.

Lemma 2.2.5 In a maximum modularity clustering of G(A), every cluster contains at most
Hi ⊆ C
⇒ Hj * C

one of the cliques H1, . . . ,Hk.

Proof. Consider a maximum modularity clustering. Lemma 2.2.4 shows that each of the
k cliques H1, . . . ,Hk is entirely contained in one cluster. Assume that there is a cluster C reductio ad absur-

dum
which contains at least two of the cliques. If C does not contain any element nodes, then the
cliques form disconnected components in the cluster. In this case it is easy to see that the
clustering can be improved by splitting C into distinct clusters, one for each clique. In this no element node

⇒ easy
way we keep the number of edges within clusters the same, however, we reduce the squared
degree sums of clusters.

Otherwise, we assume C contains l > 1 cliques completely and in addition some element
nodes of elements aj with j ∈ J ⊆ {1, . . . , k}. Note that inside the l cliques la(a− 1)/2 edges some element

nodes
are covered. In addition, for every element node corresponding to an element aj there are
laj edges included. The degree sum of the cluster is given by the la clique nodes of degree a
and some number of element nodes of degree kaj . The contribution of C to modularity(C) is
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thus given by

1

m

 l

2
a(a− 1) + l

∑
j∈J

aj

− 1

4m2

la2 + k
∑
j∈J

aj

2

.

Now suppose we create C′ by splitting C into C ′1 and C ′2 such that C ′1 completely contains acreate C′ from C
single clique H. This leaves the number of edges covered within the cliques the same, however,
all edges from H to the included element nodes eventually drop out. The degree sum of C ′1
is exactly a2, and so the contribution of C ′1 and C ′2 to modularity(C′) is given by

1

m

 l

2
a(a− 1) + (l − 1)

∑
j∈J

aj

− 1

4m2


(l − 1)a2 + k

∑
j∈J

aj

2

+ a4

 .

Considering the difference ∆ = modularity(C′)−modularity(C) we note that∆ again

∆ = − 1

m

∑
j∈J

aj +
1

4m2

(
(2l − 1)a4 + 2ka2

∑
j∈J

aj − a4
)

=
2(l − 1)a4 + 2ka2

∑
j∈J aj

4m2
−

4m
∑
j∈J aj

4m2

=
2(l − 1)a4 − 2ka

∑
j∈J aj

4m2

≥ 9k3

2m2
(9k − 1)

> 0,

as k > 0 for all instances of 3-Partition. Since the clustering is improved in every case, it

∆ > 0 again

is not optimal. This is a contradiction.

The previous two lemmas show that any clustering can be strictly improved to a clustering
that contains k clique clusters, such that each one completely contains one of the cliques
H1, . . . ,Hk (possibly plus some additional element nodes). In particular, this must hold for
the optimum clustering as well. Now that we know how the cliques are clustered we turn to
the element nodes. As they are not directly connected, it is never optimal to create a cluster
consisting only of element nodes. Splitting such a cluster into singleton clusters, one for each
element node, reduces the squared degree sums but keeps the edge coverage at the same value.
Hence, such a split yields a clustering with strictly higher modularity. The next lemma shows
that we can further strictly improve the modularity of a clustering with a singleton cluster of
an element node by joining it with one of the clique clusters.

Lemma 2.2.6 In a maximum modularity clustering of G(A), there is no cluster composedno excl. clusters
for element-nodes

of element nodes only.

Proof. Consider a clustering C of maximum modularity and suppose that there is an elementreductio ad
absurdum

node vi corresponding to the element ai, which is not part of any clique cluster. As argued
above we can improve such a clustering by creating a singleton cluster C = {vi}. Suppose
Cmin is the clique cluster, for which the sum of degrees is minimal. We know that Cmin

contains all nodes from a clique H and eventually some other element nodes for elements aj
with j ∈ J for some index set J . The cluster Cmin covers all a(a− 1)/2 edges within H and∑
j∈J aj edges to element nodes. The degree sum is a2 for clique nodes and k

∑
j∈J aj for

element nodes. As C is a singleton cluster, it covers no edges and the degree sum is kai. This
yields a contribution of C and Cmin to modularity(C) of

1

m

(
a(a− 1)

2
+
∑
j∈J

aj

)
− 1

4m2

((
a2 + k

∑
j∈J

aj

)2

+ k2a2
i

)
.
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Again, we create a different clustering C′ by joining C and Cmin to a new cluster C ′. This create C′ from C
increases the edge coverage by ai. The new cluster C ′ has the sum of degrees of both previous
clusters. The contribution of C ′ to modularity(C′) is given by

1

m

(
a(a− 1)

2
+ ai +

∑
j∈J

aj

)
− 1

4m2

(
a2 + kai + k

∑
j∈J

aj

)2

,

so that, using ∆ = modularity(C′)−modularity(C) ∆ again

∆ =
ai
m
− 1

4m2

(
2ka2ai + 2k2ai

∑
j∈J

aj

)

=
1

4m2

(
2ka(a+ 1)ai − 2ka2ai − 2k2ai

∑
j∈J

aj

)

=
ai

4m2

2ka− 2k2
∑
j∈J

aj

 .

At this point recall that Cmin is the clique cluster with the minimum degree sum. For this
cluster the elements corresponding to included element nodes can never sum to more than
a/k. In particular, as vi is not part of any clique cluster, the elements of nodes in Cmin can
never sum to more than (a− ai)/k. Thus,∑

j∈J
aj ≤

1

k
(a− ai) <

1

k
a ,

and so ∆ > 0. This contradicts the assumption that C is optimal. ∆ > 0 again

We have shown that for the graphs G(A) the clustering of maximum modularity consists of
exactly k clique clusters, and each element node belongs to exactly one of the clique clusters.
Combining the above results, we now state our main result:

Theorem 2.2.1 Modularity is strongly NP-complete. NP-completeness

Proof. For a given clustering C of G(A) we can check in polynomial time whether
modularity(C) ≥ K(A), so clearly Modularity ∈ NP. Modularity

∈ NP
For NP-completeness we transform an instance A = {a1, . . . , a3k} of 3-Partition into an

instance (G(A),K(A)) of Modularity. We have already outlined the construction of the
graph G(A) above. For the correct parameter K(A) we consider a clustering in G(A) with transferring K

the properties derived in the previous lemmas, i. e., a clustering with exactly k clique clusters.
Any such clustering yields exactly (k − 1)a inter-cluster edges, so the edge coverage is given
by ∑

C∈C

|E(C)|
m

=
m− (k − 1)a

m

= 1− 2(k − 1)a

ka(a+ 1)
= 1− 2k − 2

k(a+ 1)
.

Hence, the clustering C = (C1, . . . , Ck) with maximum modularity must minimize deg(C1)2 +
deg(C2)2 + . . . + deg(Ck)2. This requires a distribution of the element nodes between the
clusters which is as even as possible with respect to the sum of degrees per cluster. In the must evenly distr.

element nodes
optimum case we can assign to each cluster element nodes corresponding to elements that
sum to b = 1/k · a. In this case the sum up of degrees of element nodes in each clique cluster
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is equal to k · 1/k · a = a. This yields deg(Ci) = a2 + a for each clique cluster Ci, i = 1, . . . , k,
and gives

deg(C1)2 + . . .+ deg(Ck)2 ≥ k(a2 + a)2 = ka2(a+ 1)2.

Equality holds only in the case, in which an assignment of b to each cluster is possible. Hence,
if there is a clustering C with modularity(C) of at least

K(A) = 1− 2k − 2

k(a+ 1)
− ka2(a+ 1)2

k2a2(a+ 1)2
=

(k − 1)(a− 1)

k(a+ 1)

then we know that this clustering must split the element nodes perfectly to the k clique
clusters. As each element node is contained in exactly one cluster, this yields a solution
for the instance of 3-Partition. With this choice of K(A) the instance (G(A),K(A)) of. . . solves 3-

Partition
Modularity is satisfiable only if the instance A of 3-Partition is satisfiable.

Otherwise, suppose the instance for 3-Partition is satisfiable. Then there is a partitionif and only if

into k sets such that the sum over each set is 1/k · a. If we cluster the corresponding graph
by joining the element nodes of each set with a different clique, we get a clustering of mod-
ularity K(A). This shows that the instance (G(A),K(A)) of Modularity is satisfiable if
the instance A of 3-Partition is satisfiable. This completes the reduction and proves the
theorem.

This result naturally holds also for the straightforward generalization of maximizing mod-
ularity in weighted graphs. Instead of using the numbers of edges the definition of modularityholds for mod ω

employs the sum of edge weights for edges within clusters, between clusters and in the total
graph.

2.2.4.1 Special Case: Modularity with a Bounded Number of Clusters

A common clustering approach is based on iteratively identifying cuts which are good with
respect to some quality measures, see for example [17, 130, 146]. The general problem being
NP-complete, we now complete our hardness results by proving that the restricted optimiza-
tion problem is hard as well. More precisely, we consider the two problems of computing
the clustering with maximum modularity that splits the graph into exactly or at most two
clusters. Although these are two different problems, our hardness result will hold for both
versions, hence, we define the problem cumulatively.

Problem 3 (k-Modularity) Given a graph G and a number K, is there a clustering C ofk-Modularity

G into exactly/at most k clusters, for which modularity(C) ≥ K?

We provide a proof using a reduction that is similar to the one given recently for showing the
hardness of the MinDisAgree problem of correlation clustering [108]. We use the problem
Minimum Bisection for Cubic Graphs (MB3) for the reduction:

Problem 4 (Minimum Bisection for Cubic Graphs) Given a 3-regular graph G with nMB3

nodes and an integer c, is there a clustering into two clusters of n/2 nodes each such that it
cuts at most c edges?

This problem has been shown to be strongly NP-complete in [51]. We construct an instance
of 2-Modularity from an instance of MB3 as follows. For each node v from the graphthe reduction

G = (V,E) we attach n− 1 new nodes and construct an n-clique. We denote these cliques as
cliq(v) and refer to them as node clique for v ∈ V . Hence, in total we construct n different

node clique
cliq(v)

new cliques, and after this transformation each node from the original graph has degree n+2.
Note that a cubic graph with n nodes has exactly 1.5n edges. In our adjusted graph there
are exactly m = (n(n− 1) + 3)n/2 edges.

We will show that an optimum clustering which is denoted as C∗ of 2-Modularity inC∗
the adjusted graph has exactly two clusters. Furthermore, such a clustering corresponds to a
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minimum bisection of the underlying MB3 instance. In particular, we give a bound K such
that the MB3 instance has a bisection cut of size at most c if and only if the corresponding
graph has 2-modularity at least K.

We begin by noting that there is always a clustering C with modularity(C) > 0. Hence,
C∗ must have exactly two clusters, as no more than two clusters are allowed. This serves to
show that our proof works for both versions of 2-modularity, in which at most or exactly two
clusters must be found.

Lemma 2.2.7 For every graph constructed from a MB3 instance, there exists a cluster- ∃ C with
mod >0

ing C = {C1, C2} such that modularity > 0. In particular, the clustering C∗ has two clusters.

Proof. Consider the following partition into two clusters. We pick the nodes of cliq(v) for
some v ∈ V as C1 and the remaining graph as C2. Then

modularity = 1− 3

m
− (n(n− 1) + 3)2 + ((n− 1)(n(n− 1) + 3))2

4m2

=
2n− 2

n2
− 3

m
=

2

n
− 2

n2
− 3

m
> 0 ,

as n ≥ 4 for every cubic graph. Hence modularity > 0 and the lemma follows.

Next, we show that in an optimum clustering, all the nodes of one node clique cliq(v) are
located in one cluster:

Lemma 2.2.8 For every node v ∈ V there exists a cluster C ∈ C∗ such that cliq(v) ⊆ C. cliq(v) en bloc

Proof. For contradiction we assume a node clique cliq(v) for some v ∈ V is split in two reductio ad absur-
dum

clusters C1 and C2 of the clustering C = {C1, C2}. Let ki := |Ci ∩ cliq(v)| be the number of
nodes located in the corresponding clusters, with 1 ≤ ki ≤ n− 1. Note that k2 = n− k1. In
addition, we denote the sum of node degrees in both clusters excluding nodes from cliq(v) by
d1 and d2:

di =
∑

u∈Ci,u 6∈cliq(v)

deg(u).

Without loss of generality assume that d1 ≥ d2. Finally, we denote by m′ the number of edges
covered by the clusters C1 and C2.

We define a new clustering C′ as {C1 \ cliq(v), C2 ∪ cliq(v)} and denote the difference of create C′ from C
the modularity as ∆ := modularity(C′)−modularity(C). We distinguish two cases depending ∆
in which cluster the node v was located with respect to C: In the first case v ∈ C2 and we
obtain: case 1: v ∈ C2

modularity(C) =
m′

m
− (d1 + k1(n− 1))2

4m2
+

(d2 + (n− k1)(n− 1) + 3)2

4m2
,

modularity(C′) =
m′ + k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2
and

∆ =
k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2

+
(d1 + k1(n− 1))2

4m2
+

(d2 + (n− k1)(n− 1) + 3)2

4m2
.

We simplify expression of ∆ as follows:

∆ =
1

4m2

(
4mk1(n− k1)− d2

1 − (d2 + n(n− 1) + 3)2 + (d1 + k1(n− 1))2 + (d2 + (n− k1)(n− 1) + 3)2
)

=
1

4m2

(
4mk1(n− k1) + (2k2

1 − 2nk1)(n− 1)2 − 6k1(n− 1) + 2(d1 − d2)k1(n− 1)
)

≥ k1

4m2

(
4m(n− k1)− 2(n− k1)(n− 1)2 − 6(n− 1)

)
.



38 Static Graph Clustering

We can bound the expression in the bracket in the following way by using the assumption
that d1 ≥ d2 and 1 ≤ k1 ≤ n− 1:

(n− k1)
(

4m− 2(n− 1)2
)
− 6(n− 1)

≥ (n− k1)
(

4m− 2(n− 1)2 − 6(n− 1)︸ ︷︷ ︸
=:B

)
(2.2.5)

and, thus, it remains to show that B > 0. By filling in the value of m and using the facts
that 2n2(n − 1) > 2(n − 1)2 and 6n > 6(n − 1) for all n ≥ 4, we obtain B > 0 and thus
modularity strictly improves if all nodes are moved from cliq(v) to C2.⇒ cliq(v) ⊆ C2

In the second case the node v ∈ C1 and we get the following equations:case 2: v ∈ C1

modularity(C) =
m′

m
− (d1 + k1(n− 1) + 3)2

4m2
+

(d2 + (n− k1)(n− 1))2

4m2
,

modularity(C′) =
m′ + k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2
, and

∆ =
k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2

+
(d1 + k1(n− 1) + 3)2

4m2
+

(d2 + (n− k1)(n− 1))2

4m2
.

We simplify expression of ∆ as follows:

4m2∆ = 4mk1(n− k1) + (2k2
1 − 2nk1)(n− 1)2

− 6(n− k1)(n− 1) + 2(d1 − d2)(k1(n− 1) + 3)

≥ 4mk1(n− k1)− 2k1(n− k1)(n− 1)2 − 6(n− k1)(n− 1))

Recall 1 ≤ k1 ≤ n− 1, and filling in the value of m, we obtain

4mk1 − 2k1(n− 1)2 − 6(n− 1) = 2k1(n2(n− 1)− (n− 1)2) + 6nk1 − 6(n− 1) > 0 ,

which holds for all k1 ≥ 1 and n ≥ 4. Also in this case, modularity strictly improves if all
nodes are moved from cliq(v) to C2.⇒ cliq(v) ⊆ C2

The final lemma before defining the appropriate input parameter K for the 2-
Modularity and thus proving the correspondence between the two problems shows that
the clusters in the optimum clusterings have the same size.

Lemma 2.2.9 In C∗, each cluster contains exactly n/2 complete node cliques.C∗ evenly di-
vides node-cliques

Proof. Suppose for contradiction that one cluster C1 has l1 < n/2 cliques. For completenessreductio ad
absurdum

of presentation we use m′ to denote the unknown (and irrelevant) number of edges covered
by the clusters. For the modularity of the clustering is given in Equation 2.2.6.

modularity(C∗) =
m′

m
− l21(n(n− 1) + 3)2

4m2
− (n− l1)2(n(n− 1) + 3)2

4m2
(2.2.6)

We create a new clustering C′ by transferring a complete node clique from cluster C2 tocreate C′ from C
cluster C1. As the graph G is 3-regular, we lose at most 3 edges in the coverage part of
modularity :

modularity(C′) ≥ m′ − 3

m
− (l1 + 1)2(n(n− 1) + 3)2

4m2
(2.2.7)

+
(n− l1 − 1)2(n(n− 1) + 3)2

4m2
.
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We can bound the difference ∆ = modularity(C′)−modularity(C) in the following way: ∆

∆ ≥ − 3

m
+

(l21 + (n− l1)2

4m2
− (n− l1 − 1)2)(n(n− 1) + 3)2

4m2

= − 3

m
+

(2n− 4l1 − 2)

n2

≥ − 3

m
+

2

n2

=
2

n2
− 6

n3 − n2 + 3n

> 0 ,

for all n ≥ 4. The analysis uses the fact that we can assume n to be an even number, so ∆ > 0

l1 ≤ n
2 − 1 and thus 4l1 ≤ 2n− 4.

This shows that we can improve every clustering by balancing the number of complete
node cliques in the clusters – independent of the loss in edge coverage.
Finally, we can state theorem about the complexity of 2-Modularity:

Theorem 2.2.2 2-Modularity is strongly NP-complete. NP-completeness

Proof. Let (G, c) be an instance of Minimum Bisection for Cubic Graphs, then we
construct a new graph G′ as stated above and define K := 1/2− c/m. transferring K

As we have shown in Lemma 2.2.9 that each cluster of C∗ that is an optimum clustering
of G′ with respect to 2-Modularity has exactly n/2 complete node cliques, the sum of
degrees in the clusters is exactly m. Thus, it is easy to see that if the clustering C∗ meets the
following inequality

modularity(C∗) ≥ 1− c

m
− 2m2

4m2
=

1

2
− c

m
= K ,

then the number of inter-cluster edges can be at most c. Thus the clustering C∗ induces a
balanced cut in G with at most c cut edges.

This proof is particularly interesting as it highlights that maximizing modularity in general
is hard due to the hardness of minimizing the squared degree sums on the one hand, whereas
in the case of two clusters this is due to the hardness of minimizing the edge cut.

2.2.5 The Greedy Algorithm

In contrast to the abovementioned iterative cutting strategy, another commonly used approach
to find clusterings with good quality scores is based on greedy agglomeration [99, 140]. In greedy

agglomeration
the case of modularity , this approach is particularly widespread [173, 57]. In Section 2.3
we conduct a systematic evaluation of the practical behavior of this algorithm on generated
graphs; here we focus on theoretical results and on a few examples from the literature.

The greedy algorithm starts with the singleton clustering and iteratively merges those
two clusters that yield a clustering with the best modularity , i. e., the largest increase or
the smallest decrease is chosen. After n− 1 merges, the clustering that achieved the highest
modularity is returned. The algorithm maintains a symmetric matrix ∆ with entries ∆i,j :=
modularity(Ci,j) −modularity, where C is the current clustering and Ci,j is obtained from C
by merging clusters Ci and Cj . Note that there can be several pairs i and j such that ∆i,j

is the maximum, in these cases the algorithm selects an arbitrary pair. The pseudo-code for
the greedy algorithm is given in Algorithm 1. An efficient implementation using sophisticated
data-structures requires O

(
n2 log n

)
runtime. Note that n − 1 iterations is an upper bound

and one can terminate the algorithms when the matrix ∆ contains only non-positive entries.
We call this property single-peakedness, it is proven in [57]. Since it is NP-hard to maximize single-peakedness

modularity in general graphs, it is unlikely that this greedy algorithm is optimal. In fact, we
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Algorithm 1: Greedy Algorithm for Maximizing Modularity

Input: graph G = (V,E)
Output: clustering C of G
C ← singletons1

initialize matrix ∆2

while |C| > 1 do3

find {i, j} with ∆i,j is the maximum entry in the matrix ∆4

merge clusters i and j5

update ∆6

return clustering with highest modularity7

sketch a graph family, where the above greedy algorithm has an approximation factor of 2,
asymptotically. In order to prove this statement, we introduce a general construction scheme
given in Definition 2.1. Furthermore, we point out instances where a specific way of breaking
ties of merges yield a clustering with modularity of 0, while the optimum clustering has a
strictly positive score.

Modularity is defined such that it takes values in the interval [−1/2, 1] for any graph and
any clustering. In particular the modularity of a trivial clustering placing all vertices into
a single cluster has a value of 0. We use this technical peculiarity to show that the greedy
algorithm has an unbounded approximation ratio.

Theorem 2.2.3 There is no finite approximation factor for the greedy algorithm for findingno finite apx.
factor

clusterings with maximum modularity.

Proof. We present a class of graphs, on which the algorithm obtains a clustering of value
0, but for which the optimum clustering has value close to 1/2. A graph G of this class is
given by two cliques (V1, E1) and (V2, E2) of size |V1| = |V2| = n/2, and n/2 matching edges
Em connecting each vertex from V1 to exactly one vertex in V2 and vice versa. See Figure
2.2.3 for an example with n = 14. Note that we can define modularity by associating weights
w(u, v) with every existing and non-existing edge in G as follows:

w(u, v) =
Euv
2m
− deg(u) deg(v)

4m2
,

where Euv = 1 if (u, v) ∈ E and 0 otherwise. The modularity of a clustering C is then derived
by the summing the weights of the edges covered by C

modularity(C) =
∑
C∈C

∑
u,v∈C

w(u, v)

Note that in this formula we have to count twice the weight for each edge between different
vertices u and v (once for every ordering) and once the weight for a non-existing self-loop for
every vertex u. Thus, the change of modularity by merging two clusters is given by twice the
sum of weights between the clusters.

Now consider a run of the greedy algorithm on the graph of Figure 2.2.3. Note that
the graph is n/2-regular, and thus has m = n2/4 edges. Each existing edge gets a weight
of 2/n2 − 1/n2 = 1/n2, while every non-existing edge receives a weight of −1/n2. As the
self-loop is counted by every clustering, the initial trivial singleton clustering has modularity
value of −1/n. In the first step each cluster merge along any existing edge results in an
increase of 2/n2. Of all these equivalent possibilities we suppose the algorithm chooses to
merge along an edge from Em to create a cluster C ′. In the second step merging a vertex
with C ′ results in change of 0, because one existing and one non-existing edge would be
included. Every other merge along an existing edge still has value 2/n2. We suppose the
algorithm again chooses to merge two singleton clusters along an edge from Em creating a
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(a) (b)

Figure 2.2.3. (a) Clustering with modularity 0; (b) Clustering with modularity close to 1
2

cluster C ′′. Afterwards observe that merging clusters C ′ and C ′′ yields a change of 0, because
two existing and two non-existing edges would be included. Thus, it is again optimal to merge
two singleton clusters along an existing edge. If the algorithm continues to merge singleton
clusters along the edges from Em, it will in each iteration make an optimal merge resulting
in strictly positive increase in modularity . After n/2 steps it has constructed a clustering C
of the type depicted in Figure 2.2.3a. C consists of one cluster for the vertices of each edge of
Em and has a modularity value of

modularity(C) =
2

n
− n

2
· 4n2

n4
= 0.

Due to the single-peakedness of the problem [57] all following cluster merges can never increase
this value, hence the algorithm will return a clustering of value 0.

On the other hand consider a clustering C∗ = {C1, C2} with two clusters, one for each
clique C1 = V1 and C2 = V2 (see Figure 2.2.3b). This clustering has a modularity of

modularity(C∗) =
n(n− 2)

n2
− 2

4n2

16n2
=

1

2
− 2

n
.

This shows that the approximation ratio of the greedy algorithm can be infinitely large,
because no finite approximation factor can outweigh a value of 0 with one strictly greater
than 0.

The key observation is, that the proof considers a worst-case scenario in the sense that
greedy is in each iteration supposed to pick exactly the “worst” merge choice of several equiv-
alently attractive alternatives. If greedy chooses in an early iteration to merge along an edge proof exploits

non-determinism
from E1 or E2, the resulting clustering will be significantly better. As mentioned earlier,
this negative result is due to formulation of modularity , which yields values from the interval
[−1/2, 1]. For instance, a linear remapping of the range of modularity to the interval [0, 1],
the greedy algorithm yields a value of 1/3 compared to the new optimum score of 2/3. In
this case the approximation factor would be 2.

Next, we provide a decreased lower bound for a different class of graphs and no assumptions w/o non-
determinism

on the random choices of the algorithm.

Definition 2.1 Let G = (V,E) and H = (V ′, E′) be two non-empty, simple, undirected,
and unweighted graphs and let u ∈ V ′ be a node. The product G ?u H is defined as the G ?u H
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graph (V ′′, E′′) with the nodeset V ′′ := V ∪V ×V ′ and the edgeset E′′ := E ∪E′′c ∪E′′H where

E′′c :=
{
{v, (v, u)} | v ∈ V

}
and

E′′H :=
{
{(v, v′), (v, w′)}
| v ∈ V, v′, w′ ∈ V ′′, {v′, w′} ∈ E

}
.

Figure 2.2.4. Example: the
graph K4 ?u P1.

An example is given in Figure 2.2.4. The product G ?u H
is a graph that contains G and for each node v of G a copy
Hv of H. For each copy the node in Hv corresponding to
u ∈ H is connected to v. We use the notation (v, w′) to refer
to the copy of node w′ of H, which is located in Hv. In the
following we consider only a special case: Let n ≥ 2 be an
integer, H = (V ′, E′) be an undirected and connected graph
with at least two nodes, and u ∈ V ′ an arbitrary but fixed node. We denote by Cgk the
clustering obtained with the greedy algorithm applied to Kn ?u H starting from singletons
and performing at most k steps that all have a positive increase in modularity . Furthermore,
let m be the number of edges in Kn ?u H.

Based on the merging policy of the greedy algorithm we can characterize the final clus-
tering Cgn. It has n clusters, each of which includes a vertex v of G and his copy of H.

Theorem 2.2.4 Let n ≥ 2 be an integer and H = (V ′, E′) be a undirected and connectedmodularity
of Kn ?u H

graph with at least two nodes. If 2|E′|+ 1 < n then the greedy algorithm returns the cluster-
ing Cg := {{v} ∪ {v} × V ′ | v ∈ V } for Kn ?u H (for any fixed u ∈ H). This clustering has a
modularity score of

4m2 ·modularity(Cg) = 4m ((|E′|+ 1) · n)− n (2|E′|+ 1 + n)
2
.

The proof of Theorem 2.2.4, which relies on the graph construction described above, it can
be found in an associated technical report [43], but is omitted here for brevity. The nextproof omitted

corollary reveals that the clustering, in which G and each copy of H form individual clusters,
has a greater modularity score. We first observe an explicit expression for modularity .

Corollary 2.2.3 The clustering Cs is defined as Cs := {V } ∪ {{v} × V ′ | v ∈ V } and, ac-modularity of Cs

cording to Equation 2.2.2, its modularity is

4m2 ·modularity(Cs) = 4m

(
|E′|n+

(
n

2

))
− n (2|E′|+ 1)

2

− (n · (n− 1 + 1))
2
.

If n ≥ 2 and 2|E′|+ 1 < n, then clustering Cs has higher modularity than Cg.

Theorem 2.2.5 The approximation factor of the greedy algorithm for finding clusterings withapx.-factor ≥ 2

maximum modularity is at least 2.

The quotient modularity(Cs)/modularity(Cg) asymptotically approaches 2 for n going to in-
finity on Kn ?u H with H a path of length 1/2

√
n. The full proof of Theorem 2.2.5 is also

available in [43].

2.2.6 Optimality Results

2.2.6.1 Characterization of Cliques and Cycles

In this section, we provide several results on the structure of clusterings with maximum
modularity for cliques and cycles. This extends previous work, in particular [90], in which
cycles and cycles of cliques were used to reason about global properties of modularity . For
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readability of the many small results we generally postpone proofs to the mini-appendix of proofs in appendix

this section without further notice. A first observation is that modularity can be simplified
for general d-regular graphs as follows.

Corollary 2.2.4 Let G = (V,E) be an unweighted d-regular graph and C = {C1, . . . , Ck} ∈ modularity on
d-regular graphs

Ψ (G). Then the following equality holds:

modularity =
|E(C)|
dn/2

− 1

n2

k∑
i=1

|Ci|2 . (2.2.8)

The correctness of the corollary can be read off the definition given in Equation 2.2.2 and the
fact that |E| = d|V |/2. Thus, for regular graphs modularity only depends on cluster sizes
and coverage.

Cliques We first deal with the case of complete graphs. Corollary 2.2.5 provides a simplified
formulation for modularity . From this rewriting, the clustering with maximum modularity
can directly be obtained.

Corollary 2.2.5 Let Kn be a complete graph on n nodes and C := {C1, . . . , Ck} ∈ Ψ (Kn). modularity of Kn

Then the following equality holds:

modularity = − 1

n− 1
+

1

n2(n− 1)

k∑
i=1

|Ci|2 . (2.2.9)

Thus, maximizing modularity is equivalent to maximizing the squares of cluster sizes. Using
the general inequality (a + b)2 ≥ a2 + b2 for non-negative real numbers, the clustering with
maximum modularity is the 1–clustering. More precisely:

Theorem 2.2.6 Let k and n be integers, Kkn be the complete graph on k · n nodes and C modularity of
Kkn

a clustering such that each cluster contains exactly n elements. Then the following equality
holds:

modularity =

(
−1 +

1

k

)
· 1

kn− 1
.

For fixed k > 1 and as n tends to infinity, modularity is always strictly negative, but tends to
zero. Only for k = 1 modularity is zero and thus is the global maximum.

As Theorem 2.2.6 deals with one clique, the following corollary provides the optimal result
for k disjoint cliques.

Corollary 2.2.6 The maximum modularity of a graph consisting of k disjoint cliques of size modularity of
k ×Kn

n is 1− 1/k.

The corollary follows from the definition of modularity in Equation 2.2.2. Corollary 2.2.6
gives a glimpse on how previous approaches have succeeded to upper bound modularity as it
was pointed out in the context of Lemma 2.2.1.

Cycles Next, we focus on simple cycles, i. e., connected 2-regular graphs. According to modularity on
cycles

Equation 2.2.8, modularity can be expressed as given in Equation 2.2.10, if each cluster is
connected which may safely be assumed (see Corollary 2.2.2).

modularity =
n− k
n
− 1

n2

k∑
i=1

|Ci|2 . (2.2.10)

In the following, we prove that clusterings with maximum modularity are balanced with
respect to the number and the sizes of clusters. First we characterize the distribution of
cluster sizes for clusterings with maximum modularity , fixing the number k of clusters. For
convenience, we minimize F := 1−modularity, where the argument of F is the distribution
of the cluster sizes.
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Proposition 2.2.1 Let k and n be integers, the set D(k) :=
{
x ∈ Nk

∣∣∣∑k
i=1 xi = n

}
, and

the function F : D(k) → R defined as

F (x) :=
k

n
+

1

n2

k∑
i=1

x2
i for x ∈ D(k) .

Then, F has a global minimum at x∗ with x∗i =
⌊
n
k

⌋
for i = 1, . . . , k − r and x∗i =

⌈
n
k

⌉
for

i = k − r + 1, . . . , k, where 0 ≤ r < k and r ≡ n mod k.

Proposition 2.2.1 is based on the fact, that, roughly speaking, evening out cluster sizes de-
creases F . Due to the special structure of simple cycles, we can swap neighboring clusters
without changing the modularity . Thus, we can safely assume that clusters are sorted ac-
cording to their sizes, starting with the smallest element. Then x∗ is the only optimum.
Evaluating F at x∗ leads to a term that only depends on k and n. Hence, we can characterize
the clusterings with maximum modularity only with respect to the number of clusters. The
function to be minimized is given in Lemma 2.2.10:

Lemma 2.2.10 Let Cn be a simple cycle with n nodes, h : [1, . . . , n]→ R a function defined|C| on cycles

as
h(x) := x · n+ n+

⌊n
x

⌋(
2n− x ·

(
1 +

⌊n
x

⌋))
,

and k∗ be the argument of the global minimum of h. Then every clustering of Cn with maxi-
mum modularity has k∗ clusters.

The proof of Lemma 2.2.10 builds upon Proposition 2.2.1, it can be found in the appendix.
Finally we obtain the characterization for clusterings with maximum modularity for simple
cycles.

Theorem 2.2.7 Let n be an integer and Cn a simple cycle with n nodes. Then every clus-optimal modu-
larity on cycles

tering C with maximum modularity has k cluster of almost equal size, where

k ∈
[

n√
n+
√
n
− 1,

1

2
+

√
1

4
+ n

]
.

Furthermore, there are only 3 possible values for k for sufficiently large n.

The rather technical proof of Theorem 2.2.7 is based on the monotonicity of h.

2.2.7 Examples Revisited

Applying our results about maximizing modularity gained so far, we revisit three example
networks that were used in related work [230, 177, 175]. More precisely, we compare published
greedy solutions with respective optima, thus revealing two peculiarities of modularity . First,
we illustrate a behavioral pattern of the greedy merge strategy and, second, we relativize the
quality of the greedy approach.

The first instance is the karate club network of Zachary originally introduced in [230] andZachary’s
karate graph

used for demonstration in [177]. The network models social interactions between members of
a karate club. More precisely, friendship between the members is presented before the club
split up due to an internal dispute. A representation of the network is given in Figure 2.2.5.
The partition that has resulted from the split is given by the shape of the nodes, while
the colors indicate the clustering calculated by the greedy algorithm and blocks refer to a
optimum clustering maximizing modularity , that has been obtained by solving its associated
ILP. The corresponding scores of modularity are 0.431 for the optimum clustering, 0.397
for the greedy clustering, and 0.383 for the clustering given by the split. Even though this
is another example in which the greedy algorithm does not perform optimally, its score is
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Figure 2.2.5. Karate club network of Zachary [230]. The different clusterings are coded as fol-
lows: blocks represent the optimum clustering (with respect to modularity), colors
correspond to the greedy clustering, and shapes code the split that occurred in
reality.

comparatively good. Furthermore, the example shows one of the potential pitfalls the greedy
algorithm can encounter: Due to the attempt to balance the squared sum of degrees (over the
clusters), a node with large degree (white square) and one with small degree (white circle)
are merged at an early stage. However, using the same argument, such a cluster will unlikely
be merged with another one. Thus, small clusters with skewed degree distributions occur.

The second instance is a network of books on politics, compiled by V. Krebs and used Krebs’ books on
politics

for demonstration in [175]. The nodes represent books on American politics bought from
Amazon.com and edges join pairs of books that are frequently purchased together. A rep-
resentation of the network is given in Figure 2.2.6. The optimum clustering maximizing
modularity is given by the shapes of nodes, the colors of nodes indicate a clustering calcu-
lated by the greedy algorithm and the blocks show a clustering calculated by Geometric MST
Clustering (GMC), which is introduced in [68], using the geometric mean of coverage and
performance, see Section 2.1.3 for details on GMC. The corresponding scores of modularity
are 0.527 for the optimum clustering, 0.502 for the greedy clustering, and 0.510 for the GMC
clustering. Similar to the first example, the greedy algorithm is suboptimal, but relatively
close to the optimum. Interestingly, GMC outperforms the greedy algorithm although it does GMC outperforms

greedy
not consider modularity in its calculations. This illustrates the fact that there probably are
many intuitive clusterings close to the optimum clustering that all have relatively similar
values of modularity . In analogy to the first example, we observe the same merge-artifact,
namely the two nodes represented as dark-grey triangles.

As a last example, Figure 2.2.7 reflects the social structure of a family of bottlenose
dolphins off the coast of New Zealand, observed by Lusseau et al. [157], who logged frequent Lusseau’s dol-

phins
associations between dolphins over a period of seven years. The clustering with optimum
modularity (blocks) achieves a modularity score of 0.529 and, again, the greedy algorithm
(colors) approaches this value with 0.496. However, structurally the two clusterings disagree
on the two small clusters, whereas a clustering based on iterative conductance cutting [146]
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Figure 2.2.6. The networks of books on politics compiled by V. Krebs. The different clusterings
are coded as follows: blocks represent the clustering calculated with GMC, colors
correspond to the greedy clustering, and shapes code the optimum clustering (with
respect to modularity).

Figure 2.2.7. Social network of bottlenose dolphins introduced in [157] and clustered in [178].
The different clusterings are coded as follows: blocks represent the clustering with
maximum modularity, colors represent the result of the greedy clustering, and
shapes code the community structure identified with the iterative conductance cut
algorithm presented in [146].
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(shapes) achieves the same quality (0.492), but disagrees with the optimum only on the
smallest cluster and on the refinement of the leftmost cluster.

Summarizing, the three examples illustrated several interesting facts. First of all, an
artifical pattern in the optimization process of the greedy algorithm is revealed: The early
merge of two nodes, one with a high and one with a low degree, results in a cluster which will
not be merged with another one later on. In general, this can prevent finding the optimum
clustering. Nevertheless, it performs relatively well on the given instances and is at most
10% off the optimum. However, applying other algorithms that do not optimize modularity ,
we observe that the obtained clusterings have similar scores. Thus, achieving good scores
of modularity does not seem to be too hard on these instances. On the one hand, these
clusterings roughly agree in terms of the overall structure, on the other hand, they differ
in numbers of clusters and even feature artifacts such as small clusters of size one or two.
Considering that all three examples exhibit significant community structure, we thus predict
that there are many intuitive clusterings being structurally close (with respect to lattice
structure) and that most suitable clustering algorithms probably identify one of them.

Appendix of Omitted Proofs

Proof. [of Corollary 2.2.5] Coverage of C can be expressed in terms of cluster sizes as follows:

|E(C)| =
(
n

2

)
−

k∑
i=1

∏
j>i

|Ci| · |Cj | =

(
n

2

)
− 1

2

k∑
i=1

∏
j 6=i
|Ci| · |Cj |

=

(
n

2

)
− 1

2

k∑
i=1

|Ci| ·
∑
j 6=i
|Cj | =

(
n

2

)
− 1

2

k∑
i=1

|Ci| · (n− |Ci|)

=

(
n

2

)
− 1

2

(
n2 −

k∑
i=1

|Ci|2
)

= −n
2

+
1

2

k∑
i=1

|Ci|2 .

Thus, we obtain

modularity = − 1

n− 1
+

1

n(n− 1)

k∑
i=1

|Ci|2 −
1

n2

k∑
i=1

|Ci|2

= − 1

n− 1
+

1

n2 · (n− 1)

k∑
i=1

|Ci|2 ,

which proves the equation.

Proof. [of Proposition 2.2.1] Since k and n are given, minimizing F is equivalent to minimiz-
ing

∑
i x

2
i . Thus let us rewrite this term:

k∑
i=1

(
xi −

n

k

)2

=

k∑
i=1

x2
i − 2

n

k

k∑
i=1

xi + k ·
(n
k

)2

=

k∑
i=1

x2
i − 2

n2

k
+
n2

k

⇐⇒
k∑
i=1

x2
i =

k∑
i=1

(
xi −

n

k

)2

︸ ︷︷ ︸
=:h(x)

+
n2

k

Thus minimizing F is equivalent to minimizing h. If r is 0, then h(x∗) = 0. For every other
vector y the function h is strictly positive, since at least one summand is positive. Thus x∗ is
a global optimum.
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Let r > 0. First, we show that every vector x ∈ D(k) that is close to (nk , . . . ,
n
k ) has

(in principle) the form of x∗. Let x ∈ D ∩ [
⌊
n
k

⌋
,
⌈
n
k

⌉
]k, then it is easy to verify that there

are k − r entries that have value
⌊
n
k

⌋
and the remaining r entries have value

⌈
n
k

⌉
. Any

‘shift of one unit’ between two variables having the same value, increases the corresponding
cost: Let ε :=

⌈
n
k

⌉
− n

k and xi = xj =
⌈
n
k

⌉
. Replacing xi with

⌊
n
k

⌋
and xj with

⌈
n
k

⌉
+ 1,

causes an increase of h by 5 + 2ε > 0. Similarly, in the case of xi = xj =
⌊
n
k

⌋
and the

reassignment xi =
⌈
n
k

⌉
and xj =

⌊
n
k

⌋
− 1, causes an increase of h by 2 > 0.

Finally, we show that any vector of D(k) can be reach from x∗ by ‘shifting one unit’
between variables. Let x ∈ D(k) and with loss of generality, we assume that xi ≤ xi+1 for
all i. We define a sequence of elements in D(k) as follows:

1. x(0) := x∗

2. if x(i) 6= x, define x(i+1) as follows

x
(i+1)
j :=


x

(i)
j − 1 if j = min{` | x(i)

` > x`} =: L

x
(i)
j + 1 if j = max{` | x(i)

` < x`} =: L′

x
(i)
j otherwise

Note that all obtained vectors x(i) are elements of D(k) and meet the condition of x
(i)
j ≤ x

(i)
j+1.

Furthermore, we gain the following formula for the cost:∑
j

(
x

(i+1)
j

)2

=
∑
j

(
x

(i)
j

)2

+ 2
(
x

(i)
L′ − x

(i)
L + 1

)
.

Since L < L′, one obtains x
(i)
L′ ≥ x

(i)
L . Thus x∗ is a global optimum in D(k).

Proof. [of Lemma 2.2.10] Note, that h(k) = F (x∗), where F is the function of Proposition 2.2.1
with the given k. Consider first the following equations:

k∑
i=1

(x∗i )
2 = (k − r) ·

⌊n
k

⌋2

+ r ·
⌈n
k

⌉2

= (k − r) (n− r)2

k2
+ r

(
(n− r)
k

+ 1

)2

=
n− r
k

((n− r) + 2r) + r =
n2 − r2

k
+ r

=
1

k

(
n2 −

(
n−

⌊n
k

⌋
k
)2
)

+ n−
⌊n
k

⌋
k

= 2n
⌊n
k

⌋
− k

⌊n
k

⌋2

+ n−
⌊n
k

⌋
k

= n+
⌊n
k

⌋(
2n− k

(⌊n
k

⌋
+ 1
))

Since maximizing modularity is equivalent to minimize the expression k/n + 1/n2
∑
i x

2
i

for (xi) ∈
⋃n
j=1D

(j). Note that every vector (xi) can be realized as clustering with connected
clusters. Since we have characterized the global minima for fixed k, it is sufficient to find the
global minima by varying k.

Proof. [of Theorem 2.2.7] First, we show that the function h can be bounded by the inequalities
given in 2.2.11 and is monotonically increasing (decreasing) for certain choices of k.

kn+
n2

k
≤ h(k) ≤ kn+

n2

k
+
k

4
. (2.2.11)
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In order to verify the Inequalities 2.2.11, let εk be defined as n/k − bn/kc (≥ 0). Then the
definition of h can be rewritten as follows:

h(k) = kn+ n+
⌊n
k

⌋(
2n−

(
1 +

⌊n
k

⌋)
k
)

= kn+ n+
(n
k
− εk

)(
2n−

(
1 +

n

k
− εk

)
k
)

= kn+ n+
2n2

k
− (1− εk)n− n2

k
− 2nεk + (1− εk)kεk + nεk

= kn+
n2

k
+ (1− εk)εkk .

Replacing the term (1−εk)εkk by a lower (upper) bound of 0 (k/4) proves the given statements.
Second, the function h is monotonically increasing for k ≥ 1/2 +

√
1/4 + n and monoton-

ically decreasing for k ≤ n/
√
n+
√
n − 1. In order to prove the first part, it is sufficient to

show that h(k) ≤ h(k + 1) for every suitable k.

h(k + 1)− h(k) = (k + 1)n+ n+

⌊
n

k + 1

⌋(
2n−

(
1 +

⌊
n

k + 1

⌋)
(k + 1)

)
− kn− n−

⌊n
k

⌋(
2n−

(
1 +

⌊n
k

⌋)
k
)

= n+ 2n

(⌊
n

k + 1

⌋
−
⌊n
k

⌋)
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋
+ k

((
1 +

⌊n
k

⌋) ⌊n
k

⌋
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋)

Since b·c is discrete and |bxc − bx− 1c| ≤ 1, one obtains:

h(k + 1)− h(k) =


n−

⌊n
k

⌋2

−
⌊n
k

⌋
if
⌊
n
k

⌋
=
⌊

n
k−1

⌋
3n−

⌊n
k

⌋2

−
⌊n
k

⌋
+ 2k

⌊n
k

⌋
otherwise

(2.2.12)

Since 3n− bn/kc2 − bn/kc+ 2k bn/kc > n− bn/kc2 − bn/kc, it is sufficient to show that n−
bn/kc2−bn/kc ≥ 0. This inequality is fulfilled if n− (n/k)2−n/k ≥ 0. Solving the quadratic
equations leads to k ≥ 1/2 +

√
1/4 + n.

Using the above bound, for the second part, it is sufficient to show that

kn+
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
≥ 0 , (2.2.13)

since this implies that the upper bound of h(k+ 1) is smaller than (the lower bound of) h(k).
One can rewrite the left side of Inequality 2.2.13 as:

kn+
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
= −n+

n2

k(k + 1)
− k + 1

4
.

Since h(k) − h(k + 1) is monotonically decreasing for 0 ≤ k ≤ √n, it is sufficient to show
that h(k) − h(k + 1) is non-negative for the maximum value of k. We show that the lower
bound h−(k) := −n+ n2/(k + 1)2 − (k + 1)/4 is non-negative.

h−

(
n√

n+
√
n
− 1

)
= −n− n

4
√
n+
√
n

+
n2(n+

√
n)

n2
=
√
n− n

4
√
n+
√
n︸ ︷︷ ︸

≤ 1
4

√
n

≥ 0
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Summarizing, the number of clusters k (of an optimum clustering) can only be contained in
the given interval, since outside the function h is either monotonically increasing or decreasing.
The length of the interval is less than

1

2
+

√
1

4
+ n− n√

n+
√
n︸ ︷︷ ︸

=:`(n)

+1 .

The function `(n) can be rewritten as follows:

`(n) =

√(
1
4 + n

) (√
n+
√
n
)
− n√

n+
√
n

≤
(
n+ 1+ε

2

√
n
)
− n√

n+
√
n

≤ 1 + ε

2

√
n

n+
√
n
, (2.2.14)

for every positive ε. Inequality 2.2.14 is due to the fact that(
1

4
+ n

)(√
n+
√
n

)
≤ n2 + n

√
n+

1

4

(
n+
√
n
)

≤ n2 + 2
1 + ε

2
n
√
n+

(1 + ε)2

4
n

=

(
n+

1 + ε

2

√
n

)2

,

for sufficiently large n.



Section 2.3

Lucidity-Driven Graph Clustering

When I consider what people generally want
in calculating, I found that it always is a
number. I also observed that every number is
composed of units, and that any number may
be divided into units. Moreover, I found that
every number which may be expressed from
one to ten, surpasses the preceding by one
unit: afterwards the ten is doubled or tripled
just as before the units were: thus arise
twenty, thirty, etc. until a hundred: then the
hundred is doubled and tripled in the same
manner as the units and the tens,
up to a thousand;
. . . so forth to the utmost limit of numeration.

(Abū Ja’far Muh. ammad
ibn Mūsā Al-Khwārizmı̄, ca. 820,
eponym of the term “algorithm”)

Being aware that optimality and even reasonable approximability are out of reach, when
trying to find a graph clustering with good modularity (see Section 2.2), is certainly

crucial and justifies the use of heuristics for this purpose. However, if we take a more practical
view, other questions are more pressing. Why should modularity be based on coverage,
an index which is almost infamous for its simplicity and its downside (see Section 1.2.2)?
What happens if we plug in a different index, and shouldn’t we normalize by division instead
of subtraction? Are the—rather sloppily stated—probabilistic assumptions modularity is
based upon supported by an actual probability space? Finally and most importantly, does
the behavior of modularity agree with human intuition and with that of other established
quality indices for clusterings? Can a heuristic maximization of it compete with established
algorithms?

In this section we answer these questions to a large extent. We formally state and investi-
gate the founding paradigm for modularity , which we coin the lucidity8 of a clustering, as the
trade-off between the achieved quality and the expected quality for random networks incorpo-
rating the intrinsic properties of the original network. Furthermore we explore a probability
space for random networks that fulfills the assumptions underlying modularity . Using this
space, exchanging coverage by the more meaningful index performance as the base measure
leads to an equivalent lucidity-index—a fact which corroborates the feasibility of modularity .
As a byproduct of the derivation thereof, the ILP formulation (see Sections 2.2.2, 2.4) leads

8Being synonymous to clarity, distinctness, the term lucidity, stemming from the Latin root lux (light),
lucidus (bright, clear), was chosen for this measure which, states how “clearly” a clustering is represented by
a graph’s structure.
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to the NP-hardness of the problem MinMixedMultiPartition, which is a generalization of
the cut-type outlook onto modularity .

As a prequel to our experimental evaluation, we show how a geometric interpretation al-
lows us to harness the capabilities of a data structure for fully dynamic convex hulls in order
to greedily maximize lucidity with a divisive normalization in a way similar to that discussed
in Section 2.2.5 and in O(n2 log n) time. Perhaps the part of most practical relevance is the
systematic experimental evaluation of three realizations of the lucidity paradigm, including
modularity . Our results confirm that lucidity (and modularity) does behave in strong agree-
ment with human intuition and with other indices, thus supporting its usage. With results
that support the feasibility of lucidity as a quality index we then systematically let greedy
maximization algorithms find clusterings. We compare the goodness of these algorithms in
terms of clustering quality to that of other clustering algorithms on a set of random pre-
clustered graphs and complement our findings with results on real data. Our results indicate
the feasibility of the paradigm in that, on the whole, the proposed algorithms surpass the
benchmark algorithms, and in that the generality of the approach is justified by specific real-
izations of lucidity excelling on diverse tasks and on real-world data. In particular, we suggest
L÷perf as a strong community detection algorithm if a low or constant number of clusters is

to be expected, L−∗ (modularity) as a good all-round measure and reject L÷cov as it is too
sensitive to graph density.

Summarizing, this section together with the preceeding one clarifies much of which has
never been known or clearly stated about modularity and unfurls a sound theoretical and
probabilistic background and a founding paradigm for this quality index, which has already
spread into many fields of science. On the whole, my work on modularity did not really lead
to evidence that this index is inferior, a prevalent opinion among quite a few colleagues of
mine when I started my work. A few parts of this section have been published in [101] in
less detail, based on joint work with Marco Gaertler and Dorothea Wagner. However, at
that time our idea was to find a foundation of modularity which truly coincides with that
of statistical significance. Despite the fact that we soon realized that this was not possible
without throwing away most of the original ideas, the name significance stuck and manifested
in the name of that publication. It took a while to actually do away with it. At the same
time as this thesis, most of this section will be published in [115], based on joint work with
Marco Gaertler, Florian Hübner and Dorothea Wagner.

Main Results

• We state the founding clustering paradigm of modularity , lucidity L�M(C), which con-
siders the trade-off between achieved quality and expected quality. (Section 2.3.2)

• There is a discrete probability space (Ω, p) that fully supports modularity in its orig-
inal spirit, and that yields a closed expression for the probabilities of all graphs in Ω.
(Section 2.3.2.1, Equation 2.3.6 and Lemma 2.3.2)

• (Ω, p) must allow loops and parallel edges, otherwise some assumptions about modular-
ity need to be dropped. (Section 2.3.2.1)

• We state sufficient conditions for a probability space to support modularity . For a
weighted version of modularity we give a random process which yields a space that
fulfills these sufficient conditions. (Lemma 2.3.3, Algorithm 2 and Lemma 2.3.4)

• By solely dropping the postulation for expected edge degrees we can state a probability
space for loop-free graphs, confer most previous results and state a loop-free modularity .
(Section 2.3.2.1)

• We derive four implementations of the lucidity-paradigm L−cov, L÷cov, L−perf and L÷perfusing
coverage, performance, subtraction and division. (Section 2.3.2.2)
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• L−covis equivalent to L−perf , i.e., substituting coverage by performance in the concept of
modularity yields an equivalent index. (Section 2.3.2.3 and Lemma 2.3.6)

• It is NP-complete to find an L−perf -optimal clustering. (Corollary 2.3.3)

• By the cut-view onto modularity , the problem MinMixedMultiPartition is NP-
hard, and its restrictions to smaller partitions need not be coarsenings of an optimal
MinMixedMultiPartition. (Section 2.3.2.4 and Corollary 2.3.4)

• There are algorithms and data structures (using geometry and a dynamic convex hull)
that support the greedy maximization of the proposed implementations of lucidity in
O(n2 log n). (Section 2.3.3, Lemmata 2.3.7, 2.3.8, Algorithms 3, 4)

• A systematic experimental evaluation on generated graphs yields that lucidity agrees
with human intuition, the ground truth of a graph generator and other established
quality indices. (Section 2.3.4.2)

• Greedily maximizing lucidity competes well with established clustering algorithms in
terms of coverage, performance and inter-cluster conductance (and lucidity itself),
which is corroborated on real-world networks. (Sections 2.3.4, 2.3.4.3)

Future Work. An old question about modularity has recently resurfaced, as Ulrik Bran-
des asked me if it were possible to really transfer the concept of statistical significance to
clustering. I still agree that this is tempting and should be addressed. Apart from the ques-
tion about the computational complexity of L÷perf , a pressing issue is whether modularity is
fixed parameter tractable. While Theorem 2.2.2 (NP-hardness of 2-Modularity) shatters
the hope that |C| could serve as a good parameter for such an approach, there might be a
different parameter such as degmax, or, ultimately, another hardness result.

2.3.1 Preliminaries

Although considering only simple graphs suffices for most insights, we require loops and par-
allel edges later and thus start out general straight away. We often consider only unweighted
graphs but will say so explicitly. Recall from Section 1.2.1 that since we now allow non-simple
graphs, we write both edges and edge sets E as multisets, such that {v, v} ∈ E is allowed (a non-simple graphs

loop) and E = {{u, v}, {u, v}} (two parallel edges). Recall further our convenient notations
(u, v), V ×, V 2, ω({u, v}), ω(e) and ω(v), as well as di (ωi) for the degree (weight) of cluster
Ci.

2.3.2 The Lucidity Paradigm

In the lucidity paradigm a good clustering is characterized by having a high quality compared lucidity paradigm

to the value the clustering obtains for a random network that reflects specific structural
properties that are expected to be present in the graph, as predefined in an appropriate quality vs.

expected quality
null hypothesis. The structural properties of a graph can include characteristics such as the
sequence of degrees, the number of nodes, the clustering coefficient, the degree distribution
etc. These properties do not determine a graph completely but define a family of graphs
incorporating them. A configuration then is a specific instantiation of these properties, i.e., a
specific graph. Every realization of the lucidity paradigm requires a quality measure, a null
hypothesis based on a set of such characteristics, and a mode of comparison of these.

The concept of lucidity is related to the notion of p-values in statistical hypothesis testing. relation
to significance

The p-value of a value t observed for a random variable T is the probability that under the
assumption of a given null hypothesis, T assumes a value at least as unfavorable to the null
hypothesis as the observed value t. In general, the null hypothesis is rejected, if the p-value is
smaller than the statistical significance level. However, in our concept we do not reject a null
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hypothesis, which we assume to reasonably describe observed graphs. Instead, we compare
the achieved quality of a clustering to the expected value, in order to judge its relevance.

Definition 2.2 Given a quality index M and a clustering C, we define the lucidity L�M of alucidity L�M
clustering C as the corresponding quality index respecting our paradigm in the following way:

L�M(C) :=M(C) � EΩ[M(C)] , (2.3.1)

where EΩ[M] is the expected value of the quality index M for the clustering C with respect to
a suitable probability space Ω and � is a binary operator on real numbers.

The key intuition of the lucidity paradigm is that a clustering is lucid, if the edges support a
good community structure that is unlikely to emerge if links were inserted at random but re-
specting intrinsic properties of the graph. As, in this paradigm, modularity (Equation 2.3.2)mod = L−cov
employs coverage (Equation 1.2.1) and subtraction, the concept of lucidity is a true gener-
alization of modularity . For convenience we repeat the definition of modularity in the two
formulations which we will be using in this section.

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

, (2.3.2)

or alternatively and equivalently:formulas for
modularity

mod(C) =
∑

{u,v}∈V ×

(
A(u, v)

m
δuv

)
−

∑
(u,v)∈V 2

(
deg(u) · deg(v)

4m2
δuv

)
, (2.3.3)

with δuv =

{
1 if C(u) = C(v)

0 otherwise
,

and A(u, v) = number of (parallel) edges between u and v.

2.3.2.1 A Probabilistic Setup

The question that motivates this subsection is: Is there a sound probability space underlying
the definition of modularity? The random models proposed below are thus not intended to

probabilities for
modularity

be particularly elegant or universal, but they serve as a support for modularity and lucidity .

p(e) = 3·2
2·m2

u

e

v3 4

43

43

4

2
2

2

5

3 3

u

v

Figure 2.3.1. Input graph with original node de-
grees inducing probabilities.

In the following we discuss a suitable probability space
(Ω, p) required for Definition 2.2, which we use through-
out this paper. We restrict ourselves to the unweighted
case for now and discuss a weighted setup later. In their
definition of modularity , the authors of [178] and [57] sug-
gest setting the probability of a randomly inserted edge to
become {u, v} (u 6= v) to deg(v) deg(w)/2m2. The moti-
vation for this, and thus the assumed underlying princi-
ple by which the graph is built, is a random process that
inserts m edges into the disconnected set of n nodes, of
which both ends then connect to node x with probability
proportional to the degree deg(x) of x in the input, i.e.,
deg(x)/2m. However, the model also assigns a probability
of (deg(v))2/4m2, to a loop on v, a fact rarely mentioned
explicitly. Thus we obtain

p(e) :=

{
deg u deg v

2m if e = {u, v}, u 6= v
(deg v)2

4m if e = {v, v}
. (2.3.4)

As follows, this setup is unbiased, i.e., probability masses of edges add up to 1:p(e) normed to 1
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∑
{u,v}∈V ×

p[e = {u, v}] =
∑

v>w∈V

deg v degw

2m2︸ ︷︷ ︸
non-loops

+
∑
v∈V

(deg v)2

4m2︸ ︷︷ ︸
loops

(2.3.5)

=
∑
v,w∈V

deg v degw

4m2
=

1

4m2

(∑
v∈V

deg v

)2

=
1

4m2
(2m)2 = 1

In the case that edges are not allowed to form loops (a question the literature does not
agree on, even for simple graphs) the above assumptions are incorrect and overestimate the
number of intra-cluster edges, since the intra-cluster edge mass contributed by loops has to
be distributed elsewhere. We discuss such a setting later in this section. However, we are not incorrect for sim-

ple graphs
aware of a manageable solution if parallel edges were disallowed.

Thus, the discrete probability space (ΩE , p) for edge insertions uses as ΩE all unordered
pairs (two-element multisets) {u, v} ∈ V ×, and p({u, v}) is defined as above. Clearly, the (ΩE , p)

probability function p is nonnegative, and the sample space ΩE is normed to 1 by Equa-
tion 2.3.7. A trial consisting of m edges being drawn independently as elementary events
from ΩE , by symmetry and using the above probabilities, yields an expected number9 of
(deg(u) deg(v))/(2m) (parallel) edges between u and v, for two nodes u 6= v, and an ex-
pected number (deg(v))2/(4m) of self loops on v. These very values are used in the definition
of modularity in Equation 2.3.3. We shall discuss a resulting probability space for graphs
below.

By fixing the number m of edges and expected node degrees, the above setup is rather
restrictive. In the lucidity paradigm, different random models are conceivable, if other or less
properties of a graph are considered to be fixed according to the application. An example other setups

would be not to fix the number m of edges to be inserted in the probabilistic model, but
to allow any (possible) number of non-parallel edges instead. Then, one could still use edge
probabilities proportional to those used in Equation 2.3.5 in order to obtain probabilities
for graphs. However, this will not yield the expected coverage as stated in the formula of
modularity (a minimalist counterexample is easy to find). Note that this does not disprove
the existence of a different setup which yields the formula of modularity . However, given the
ideas of the founders of modularity and the fact that a sound probability space for graphs in
accordance with its formula can be given (see below), we restrict ourselves to that setup in
this work.

Since an edge set E′ is a multiset of elementary events in ΩE , we may build upon this setup
and define the discrete probability space (Ω, p) for graphs as follows. Let Ω consist of all m- (Ω, p)

element multisets of elementary events in (ΩE , p), which is a subset of the set of all multisets
over ΩE . We can now trivially identify the family of all graphs on n (labeled) nodes and m
(unlabeled) edges with Ω. The probability for a specific graph H = (V,E′) in this family can
then be chosen to directly reflect the edge probabilities (see Equation 2.3.4) in the definition
of modularity : Using edge probabilities p(e) as defined in (ΩE , p) (see Equation 2.3.4), in
space (Ω, p), let

p(H) :=
∏
e∈E′

p(e)︸ ︷︷ ︸
prob. of one ordering

of the events in E′

· m!∏
e∈E′

se!︸ ︷︷ ︸
number of orderings

which yield E′

(se = multipl. of e in E′) (2.3.6)

be the probability of the event that the m elementary events from ΩE result in the multiset
E′ and thus induce H. Particular attention has to be paid to the multiplicity si of elementary
events (i.e., graphs) of Ω occurring in the set of all series of m elementary events of ΩE . For

9This quantity was claimed to be the probability of an edge existing between

u vu and v in [57], however, multiplication by m clearly yields the expected number of edges.
The righthand graph yields 8/7 > 1 for edge {u, v} for this number.
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our graph H it does not make a difference in which order this multiset is drawn, thus, several
series can lead to the same graph (i.e., elementary event in Ω).10

From the above construction of (Ω, p) a random process for graph creation is immediate:a suitable
random process

draw m edges independently, each according to (ΩE , p). Equations 2.3.4 and 2.3.5 yield that
this model is unbiased, yielding m expected edges. Again, since edges are drawn indepen-
dently, it is easy to see that this probability space is sound, i.e. that p(H) ≥ 0 and that∑
H∈Ω p(H) = 1. The former claim is trivial by Equations 2.3.6 and 2.3.4, and the latter

can be seen as follows. As opposed to the above, suppose for now the drawings to be labeled,
i.e., it matters in which order edges are drawn, and let this setup be (Ω̇, p). Then we obtain
|V ×|m = m̃m different elementary events δ̇ in Ω̇ (some of which represent identical graphs,
merely with edges added in a different order). Analogous to (Ω, p) (Equation 2.3.6), we maym̃ = |V ×|
now define p(δ̇) =

∏
e∈δ̇ p(e) for all δ̇ ∈ Ω̇, and get the following lemma:

Lemma 2.3.1 The probability spaces (Ω̇, p) and (Ω, p) are normed to 1.(Ω̇, p) and (Ω, p)
are normed to 1

Proof. ∑
δ̇∈Ω̇

∏
e∈δ̇

p(e) =
∑
E′∈

(V ×)m

∏
e∈E′

p(e) =
( ∑
e∈V ×

p(e)
)m

= 1m = 1 . (2.3.7)

The first two equalities exploit the independence of p(e) and reorder terms, and the third
equality holds by Equation 2.3.5. Given that (Ω̇, p) is normed to 1, for (Ω, p) we only have
to summarize terms that represent the same unordered multiset (graph) as shown in Equa-
tion 2.3.6 and obtain that (Ω, p) is normed to 1.
What is left to show is that for any given graph G and clustering C(G), E(cov(C)) in (Ω, p)
equals the term in modularity (see Equation 2.3.3):

Lemma 2.3.2 For any given graph G and clustering C(G), in (Ω, p) it holds that:(Ω̇, p) yields
modularity

E(cov(C)) =
∑

(u,v)∈V 2
deg(u) deg(v)

4m2 δuv . (As above se denotes e’s multiplicity.)

Proof.

E(cov(C)) = E

(∑
e∈E(C) se

m

)
=

1

m
E

 ∑
e∈E(C)

se

 =
1

m

∑
e∈E(C)

E(se)

=
1

m

 ∑
e={u,v}∈E(C)

u 6=v

deg(u) deg(v)

2m
+

∑
e∈E(C)
e={v,v}

(deg(v))2

4m

 (2.3.8)

=
∑

(u,v)∈V 2

deg(u) deg(v)

4m2
δuv

Examining the above proof we can see that any distribution that (i) fulfills Equation 2.3.4
and (ii) surely uses a total number m of edges, has the property described in Lemma 2.3.2.suff. cond. for

such a space
Moreover we can immediately see that the additional postulation that expected node degrees
should be fixed is also fulfilled.

Corollary 2.3.1 The expected edge degree of node v in (Ω, p) is deg(v) (from G).E(deg(v))
= deg(v)

10This multiplicity is accounted for by the second factor in Equation 2.3.6. This factor can be seen as
follows: there are m! possibilities to order m events, but since the si drawings of event i are indistinguishable,
si! of these m! orderings are identical; as this applies to the multiplicities of all events, we obtain the given
factor. It equals m! iff se = 1 for all e ∈ E′, and 1 iff se = m for some e ∈ E′.
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Proof.

EΩ(deg(v)) =
∑
u∈V
u6=v

deg(u) deg(v)

2m
· 1 +

(deg(v))2

4m
· 2

= deg(v)

(
2m− deg(v)

2m
+
deg(v)

2m

)
= deg(v)

The above proof uses the discussed edge probabilities; note that a self loop (second sum-
mand) contributes 2 to the deg(v). Concluding, we now have a sound probabilistic setup for
unweighted graphs for the lucidity paradigm.

u v

w C1

C2

(a) G, C(G)

1
16
u v

w 1
4

1
4

1
4

1
8

1
16

(b) p(e)

Figure 2.3.2. Given G (a), Equation 2.3.4 yields
probabilities p(e) (b)

An Instructive Example. The following tiny ex-
ample illustrates this model. Let graph G = (V,E) in
the righthand Figure 2.3.2a be given, with n = 3,m =
2, alongside a clustering C. Figure 2.3.2b states the
edge probabilities according to Equation 2.3.4, com-
prising m̃ =

(
n
2

)
+ n = 6 possible edges. To simplify

things we first consider only one random edge: The
family H1 of the 6 graphs on three nodes and only
one edge are easily listed, their probabilities match
the corresponding edge probabilities.

u v

w

H1
a

(a) pa = 1
4

u v

w

H1
b

(b) pb = 1
16

u v

w

H1
c

(c) pc = 1
16

u v

w

H1
d

(d) pd = 1
4

u v

w

H1
e

(e) pe = 1
4

u v

w

H1
f

(f) pf = 1
8

Figure 2.3.3. Family H1 of graphs induced by (Ω1, p); only one random edge is inserted in Ω1

Due to the independence of edge drawings, we can now build the required probability
space (Ω2, p) inducing the family H2 of graphs on 3 nodes and 2 edges by building the
Cartesian product Ω1 × Ω1. This yields 62 outcomes in Ω2, whose probabilities are obtained (Ω2, p)

= Ω1 × Ω1
by multiplying those of the participating members of Ω1. Of these outcomes m̃ occur once
(two parallel edges) and

(
m̃
2

)
occur twice (different insertion orders lead to the same graph).

Figure 2.3.4 shows two of the 21 possible graphs in H2. The probability in 2.3.4a is double
the product of the edges, due to two possible insertion orders.

u v

w

H2
a

(a) p(H2
a) = 1

8

u v

w

H2
c

(b) p(H2
c ) = 1

16

Figure 2.3.4. Two examples graphs from
Ω2 and their probabilities as
consistent with the formula
of modularity.

1
4

1
2

1
4

(a) G with p(e) (b) p(H) = max

Figure 2.3.5. A graph G and one of its
most likely random variants
H. Outcome G has lower
probability.

Consider now the clustering C of G depicted in Figure 2.3.2a. Equation 2.3.2 yields

mod(C) = 1
2 − 32+12

4·22 = − 1
8 , and in particular E(cov) = 5

8 . To see that this coincides with
the expected coverage in Ω2 (i.e., H2) regarding C, as theoretically proven in Lemma 2.3.2,
we can list all 21 different members of H2 and check that

∑
H∈H2

p(H)cov(C)H = 5
8 (see
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(h)
p = 1

128
cov = 1

u v

w C1

C2

(i)
p = 1

64

cov = 1
2

u v

w C1

C2

(j)
p = 1

256
cov = 1

u v

w C1

C2

(k)
p = 1

32

cov = 1
2

u v

w C1

C2

(l)
p = 1

32
cov = 1

u v

w C1

C2

(m)
p = 1

32
cov = 1

u v

w C1

C2

(n)
p = 1

8

cov = 1
2

u v

w C1

C2

(o)
p = 1

16

cov = 1
2

u v

w C1

C2

(p)
p = 1

8

cov = 1
2

u v

w C1

C2

(q)
p = 1

32

cov = 1
2

u v

w C1

C2

(r)
p = 1

16
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Figure 2.3.6. All graphs in H2 with positive coverage for C, yielding E(cov(C)) = 5
8
. Note that graphs with non-

parallel edges occur twice in Ω2, hence their double probability.

Figure 2.3.6 for completeness). As an interesting side note, the example in Figure 2.3.5 shows
that this setup does not necessarily grant the highest probability to the very graph used asp(G) 6= max

the blueprint for the probability space. In Figure 2.3.5 p(H) = 1
4 and p(G) = 1

8 .

The Weighted Case. A generalization of modularity to weighted edges, such that itsweighted edges

restriction to weights 0 and 1 yields the unweighted version, is straightforward, as proposed
in [172]. We again state the formula we use, in order to disambiguate between formulations
in previous works:

modω(C) :=
ω(C)
W︸ ︷︷ ︸

covω

− 1

4W 2

∑
C∈C

(∑
v∈C

ω(v)

)2

︸ ︷︷ ︸
E(covω)

(2.3.9)

Analogous to unweighted edges, this formula assumes for expected edge weightsE(ω(e))

E(ω(e)) :=

{
ω(u)ω(v)

2W if e = {u, v}, u 6= v
(ω(v))2

4W if e = {v, v}
. (2.3.10)

Note that for our view (but not necessarily in the application’s view) parallel edges are obsolete
(even disruptive, notationally) in this setting if we allow the edge weight function ω to go
beyond 1 as ω : E → R+

0 and simply summarize parallel edges to one “heavier” edge. For
simplicity we shall do this in the following.

Analogous to Equation 2.3.5 we can see that the choices in Equation 2.3.10 are unbiased,E(W ) = W

as the expected total edge mass E(W ) equals W . However, we have left the field of discrete
probabilities, and describing a continuous probability space for this setup is not as easy, as
we cannot simply draw m edges independently but have to continuously distribute an edge
mass W . Analogous to Lemma 2.3.2 we can prove the following lemma

Lemma 2.3.3 A probability distribution for weighted graphs will justify Equation 2.3.9 if itsuff. cond. for
a space

fulfills the following two properties:11

(i) expected edge weights are as in Equation 2.3.10,

(ii) random graphs surely have a total edge mass equal to W .

11As in the unweighted case this does not rule out the existence of different setups.
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We will not define a probability distribution for weighted graphs, but describe a rather
simple random process, which produces a distribution which fulfills these two proper-
ties. The general idea of this (arguably realistic) process is that each edge starts ex- no space but a

random process
actly with its expected weight (as in Equation 2.3.10). Then in an arbitrary number of
handshakes between random edges, two participants contest about their combined edge
mass. The mass is divided up in a new random way between the two, but such that the

f1
f2

0 1c
Figure 2.3.7. density d

expected ratio of the two halves matches the ra-
tio of their respective expected weights. Suppose
the two handshaking edges are e` and er with ex-
pected weights a` and ar, and actual edge weights
x` and xr, respectively. Let c := a`/(a` + ar) be

the fraction that e` expects to get. We define a piecewise uniform density function d(x) as
depicted in Figure 2.3.7 as follows:12

d(x) =

{
1−c
c =: f` if 0 ≤ x ≤ c
c

1−c =: fr if c < x ≤ 1
. (2.3.11)

Having drawn x from d(x), the available weight x` +xr is divided up such that e` gets a part
of size x · (x` + xr) and er gets a part of size (1− x) · (x` + xr). Algorithm 2 summarizes this
procedure.

Algorithm 2: Random Process for Weighted Graphs

Set ai and xi as in Eq. 2.3.10 ∀ei = {u, v} ∈ V × V1

for #T runs do2

unif. at rand. choose edges {`, r} ∈
(
V ×

2

)
// choose contestants3

c← a`
a`+ar

// `’s expected fraction4

draw12 x ∼ d(x) as in Equation 2.3.11 // see Figure 2.3.7 for d(x)5

x` ← x(x` + xr) and xr ← (1− x)(x` + xr) // distribute x` + xr6

return Graph G with edge weights xi7

Lemma 2.3.4 Given a weighted graph G and a clustering C(G). Algorithm 2 yields a distri- random process
yields modularity

bution of graphs with E(covω) as used in Equation 2.3.9.

Proof. We use Lemma 2.3.3 for the proof. Property (ii) is trivially fulfilled as edge mass
W is introduced in line 1 and only moved between edges later. To see property (i) we use
induction over the number of runs as coupled experiments.
Ind. start: In the beginning xi = ai for all ei by line 1.
Ind. hypothesis: For all t′ up to some t ≤ T : E(xi) = ai for all ei.
Ind. step: Given E(xi) = ai for all ei after run t. For the expected value of x in line 1 we get:

E(x) =

∫ 1

0

xd(x)dx =

∫ c

0

xf`dx+

∫ 1

c

xfrdx = f`
c2

2
+ fr

1− c2
2

=
1− c
c

c2

2
+

c

1− c
1− c2

2
=
c− c2

2
+

c

1− c
(1− c)(1 + c)

2
= c

And thus after t+ 1 we get Et+1(xi) = Et(xi) for all ei not chosen in run t+ 1. For the two
affected edges we get (xr analogously):

E(xt+1
` ) = E(x · (x` + xr)) = E(x) · (Et(x`) + Et(xr)) =

a` · (a` + ar)

a` + ar
= a`

12In practice, random draws with density d can be done, e.g., as follows. First decide which side of c
to use with the help of a single Bernoulli trial that chooses ` with prob. p(`) = c · f` = 1 − c (and r with
prob. p(r) = (1− c) · fr = c). Then, choose a value x uniformly at random within the chosen interval.
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By the linearity of the expectation operator, it is easy to see that the expected node
weights in this model are E(ω(v)) = ω(v) as in G, only the edge weights in Equation 2.3.10
are needed for the proof analogous to the unweighted case (see Corollary 2.3.1).

The Loop-Free Case. As discussed above, the expected edge weights (see Equations 2.3.4loop-free case

and 2.3.10) in the formula of modularity assume that loops are possible (see Equation 2.3.5).
Suppose now we disallow loops, but still adopt the intuition that a randomly inserted edge
should become incident with node v with probability proportional to deg(v) in the unweighted
case. Analogous to Figure 2.3.1 and the derivation of modularity , we can now derive the
probability of a random edge in a loop-free setup to become:loop-free p(e)

pø({u, v}) =
deg(u)

2m
· deg(v)

2m− deg(u)︸ ︷︷ ︸
=pø((u,v))

“first connect to u then to v”

+
deg(v)

2m
· deg(u)

2m− deg(v)︸ ︷︷ ︸
=pø((v,u))

“first connect to v then to u”

=
deg(u) deg(v) · (deg(u) + deg(v))

2m · deg(u)deg(v)
using deg(v) = 2m− deg(v) (2.3.12)

Analogous to Equation 2.3.5 we can observe that this setup is normed, i.e., that the sum of
all edge probabilities sum up to one. For easier summation we suppose for a moment thatnormed

the graph was directed, and we write the above probability for edge {u, v} as the sum of the
probabilities of the two directed edges (u, v) and (v, u), as in the derivation of Equation 2.3.12.
Note that without loops we now do not use V × but rather {{u, v} ⊆ V | u 6= v}.∑

{u,v}∈V
u6=v

pø({u, v}) =
∑

{u,v}⊆V
u6=v

(pø((u, v)) + pø((v, u)))

=
∑
v∈V

∑
u∈V
u 6=v

pø((v, u)) =
∑
v∈V

∑
u∈V
u6=v

deg(v) deg(u)

2m · deg(v)

=
1

2m

∑
v∈V

deg(v)

deg(v)

∑
u∈V
u 6=v

deg(u) =
1

2m

∑
v∈V

deg(v)

deg(v)
deg(v) = 1

Using arguments from the previous sections we can now setup a discrete probability space
(Ωø, pø) for loop-free graphs in an analogous way. By drawing m independent edges according(Ωø, pø)

to Equation 2.3.12 we obtain probabilities for graphs similar to Equation 2.3.6 and a lemma
analogous to Lemma 2.3.1. Even our arguments concerning a weighted version (using total
weight W ) and a random process for weighted graphs in Section 2.3.2.1 carry over, yielding
an expected edge weight of Eø(ω(u, v)) = ω(u)ω(v) · (ω(u)+ω(v))/(2ω(u)ω(v)), using ω(v) :=
2W − ω(v) (compare to Eq. 2.3.12). A variant modularityø for loop-free graphs could thus
be defined as (compare to Formulas 2.3.3 and 2.3.9):loop-free

modularity

modø(C) :=
∑

{u,v}⊆V
u6=v

(
ω(u, v)

W
− ω(u)ω(v) · (ω(u) + ω(v))

2W · ω(u)ω(v)

)

It is important to note that this formulation does not fulfill Corollary 2.3.1: the intuition of
making random edges incident to v with probability proportional to deg(v) (and its weighted
analogon) does not generally preserve expected node degrees (weights) in the loop-free model.E(deg(v))

� deg(v) !
Devising such a model is much harder, simply using p({u, v}) = deg(u) deg(v)/(normalized)
does not work. Excluding parallel edges makes issues even worse, thus we stop here and
postpone such thoughts to future work.
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2.3.2.2 Implementations of the Lucidity Paradigm

The building blocks presented above enable us to study four implementations of the lucidity
paradigm, namely, coverage and performance as quality indices and subtraction and division
as the binary operators. Using coverage and subtraction, modularity is one of these imple-
mentations. For a discussion of performance [213] in weighted graphs we refer the reader
to [46]. However, one aspect needs particular attention: Performance evaluates node pairs
based on their being connected or not. Switching to weighted edges now requires a meaningful
assumption (see [46]) about a maximum edge weight M to compare to, in order to measure,
e.g., how missing inter-cluster edges contribute. The above main references for performance weighted perfor-

mance
are not specific about M and thus three possible choices for M are immediate: ωmax of G,
1 (being the maximum allowed edge weight), or W . The canonic formulation is (compare
Equation 1.2.3)

perfω =
ω(C) +Mm(C)c +Mm(C)− ω(C)

1
2n(n− 1)M

. (2.3.13)

We first need to derive its expected value, which is slightly more laborious compared to using
coverage. In particular any choice for M which is a parameter dependent on G (such as ωmax)
becomes a random variable in (Ω, p). Even worse, it is not independent of other edge weights,
which renders the expected performance something we cannot easily specify, using our models
from Section 2.3.2.1. However, there is a more fundamental objection against using ωmax: in
a random model it is a highly questionable assumption that for each drawn graph weights
are compared to the maximum edge weight occurring in this particular draw. On the other
hand, keeping the value of ωmax in G as a fixed constant for all draws raises the question why
exactly G should pose the maximum edge weight for the whole probability space—a value
any other single draw from the space will attain with zero probability. As a better choice for
M , the range of the weight function ω should be used. This can be 1 if the application yields
this limit, or W (we shall see later, that the exact choice does not have a decisive influence).
Thus, in the following we assume M to be some choice of a constant, which enables us to
compute the expected performance. This leads to the following lemma:

Lemma 2.3.5 Using the probability space described in Section 2.3.2.1 and an arbitrary but E(perf)

fixed constant M , the expected value of performance is (for unweighted edges set ω(e) ≡ 1 =
M)

∑
C∈C(

∑
v∈C ω(v))2/W +M(n2 −∑C∈C |C|2)− 2W

n(n− 1)M

Proof. For a simpler representation we split Equation 2.3.13 into edges (first term in numera-
tor) and non-edges (last three terms in numerator). Again we use (Ω, p), i.e., Equation 2.3.10
for expected edge weights.

E

(
ω(C)

1
2n(n− 1)M

)
︸ ︷︷ ︸

E1

=
1

4W

∑
C∈C

(∑
v∈C ω(v)

)2
1
2n(n− 1)M

=
1

2W

∑
C∈C

(∑
v∈C ω(v)

)2
n(n− 1)M
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E

(
Mm(C)c +Mm(C)− ω(C)

1
2n(n− 1)M

)
︸ ︷︷ ︸

E2

=

E

 ∑
e={u,v}∈E
C(u) 6=C(v)

(M − ω(e)) +
∑

{u,v}/∈E
C(u)6=C(v)

M


1
2n(n− 1)M

=

1
2

∑
C∈C

∑
C′∈C\C

∑
(v,w)∈C×C′

(
M − ω(v)ω(w)

2W

)
1
2n(n− 1)M

=
M(n2 −∑C∈C |C|2)

n(n− 1)M
−

1
4W

∑
C∈C

∑
v∈C ω(v)(2W −∑v∈C(ω(v)))

1
2n(n− 1)M

=
M(n2 −∑C∈C |C|2)

n(n− 1)M
−

1
4W 4W 2 − 1

4W

∑
C∈C(

∑
v∈C ω(v))2

1
2n(n− 1)M

=
M(n2 −∑C∈C |C|2)

n(n− 1)M
− 2W − 1

2W

∑
C∈C(

∑
v∈C ω(v))2

n(n− 1)M

E(perfω) = E1 + E2 =

1
W

∑
C∈C

(∑
v∈C

ω(v)

)2

− 2W +M

(
n2 −

∑
C∈C
|C|2

)
n(n− 1)M

(2.3.14)

We can now state an overview summarizing the formulas of the resulting four implemen-
tations of the lucidity paradigm in Table 2.3.1. Note that the weighted versions of lucidity
are true generalizations of the unweighted cases, since setting each weight to 1 yields the un-
weighted formulas. Thus, we restrict our analyses to the weighted case. The straightforward
weighted variant of L−cov has been described by [172]. Based on Table I we now define thefour implem.

of lucidity
following implementations:

L−cov := cov − E[cov] (equals modularity) L÷cov :=
cov

E[cov]
(2.3.15)

L−perf := perf − E[perf]︸ ︷︷ ︸
absolute variants (subtractive)

L÷perf :=
perf

E[perf]︸ ︷︷ ︸
relative variants (divisive)

(2.3.16)

measure coverage performance

M m(C)
m

m(C)+m(C)c
0.5·n(n−1)

E[M]
∑
C∈C

(∑
v∈C deg(v)

2m

)2 ∑
C∈C((

∑
v∈C deg(v))2/m−(

∑
v∈C 1)2)+n2−2m

n(n−1)

Mω
ω(C)
W

ω(C)+Mm(C)c+(Mm(C)−ω(C))
0.5·n(n−1)M

E[Mω]
∑
C∈C

(∑
v∈C ω(v)

2W

)2 ∑
C∈C(

∑
v∈C ω(v))2/W+M(n2−∑C∈C |C|2)−2W

n(n−1)M

Table 2.3.1. Quality indices and expected values (M : maximum edge
weight in the model). The subscript “ω” indicates
edge-weighted versions.
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As we shall see in Section 2.3.4, some of these implementations differ significantly in their
behavior, although they are all derived from the same paradigm. However, to our surprise
we found that L−perf and L−cov, are in fact equivalent, which we show in detail in the following
subsection. However, we can already make an interesting preliminary observation towards
that result:

Corollary 2.3.2 A constant M for weighted L−perf is a scaling factor, which means that an
constant M is a
factor in L−perf

observation L−perf(C(G)) ≥ L−perf(C′(G)) is M -invariant.

Proof. From Lemma 2.3.5 it it not hard to see, that some terms from perfω have survived
in E(perfω), which for simplicity we denote by Φ: Φ

Φ = Mm(C)c +Mm(C) =
1

2
M(n2 −

∑
C∈C
|C|2) (2.3.17)

Rewriting and summarizing L−perf yields the following term, which uses M only as a factor in
the denominator, as an inverse scaling factor.

L−perf = perfω − E(perfω)

=
ω(C) + Φ− ω(C)

1
2 · n(n− 1)M

−
∑
C∈C(

∑
v∈C ω(v))2/W + 2Φ− 2W

n(n− 1)M

=
ω(C)− ω(C)− 1

2W

∑
C∈C(

∑
v∈C ω(v))2 −W

1
2n(n− 1)M

(2.3.18)

We refrain from a discussion of the usage of lucidity on graphs with a fuzzy clustering,
which allows clusters to overlap, i.e., nodes may belong to several clusters. However we point
the reader to two recent works which consistently generalize modularity to the overlapping
case. These are [180], which also proposes a generalization to directed graphs, and [170]
which discusses the former and proposes sound improvements. Summarizing, the introduction
of belonging factors of nodes to clusters, as proposed by these two works, can immediately
be applied to coverage and performance and thus also to the implementations of lucidity
discussed herein, but not necessarily to any implementation.

2.3.2.3 The Equivalence of L−perf and L−cov

As we have seen in Section 2.2.2, L−cov can be optimized via ILP13 formulation: Constraints
ensure a consistent partition of the nodes by formalizing an equivalence relation on the nodes,
deciding whether two nodes are in the same cluster. The linear objective function follows
directly from the weighted version of Equation 2.3.3:

weighted L−cov =
∑

{u,v}∈V ×

(
ω(u, v)

W
Xuv

)
−

∑
(u,v)∈V 2

(
ω(u)ω(v)

4W 2
Xuv

)
(2.3.19)

with Xuv = [δuv =]

{
1 if u, v in same cluster

0 otherwise

A similar formulation is possible for L−perf . Using the same framework of constraints it
is not hard to see that a linear objective function can be derived from Table 2.3.1. We first rewriting L−perf
build upon the formula for L−perf derived in Equation 2.3.18, and rewrite it, working towards
a similar shape as used in Equation 2.3.19:

13ILP stands for integer linear program.
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weighted L−perf =
ω(C)− ω(C)− 1

2W

∑
C∈C(

∑
v∈C ω(v))2 −W

1
2n(n− 1)M

=

∑
{u,v}∈V 2

ω(u, v)Xuv −
∑

{u,v}∈V 2

ω(u, v)(1−Xuv)−
∑

(u,v)∈V 2

ω(u)ω(v)

2W
Xuv −W

1
2n(n− 1)M

=

2
∑

{u,v}∈V 2

ω(u, v)Xuv −
1

2W

∑
(u,v)∈V 2

ω(u)ω(v)Xuv − 2W

1
2n(n− 1)M

=

∑
{u,v}∈V 2

ω(u, v)

W
Xuv −

∑
(u,v)∈V 2

ω(u)ω(v)

4W 2
Xuv

1

4W
n(n− 1)M︸ ︷︷ ︸

a

− 1
1

4W n(n− 1)M︸ ︷︷ ︸
b

(2.3.20)

We now trim Formula 2.3.20 by removing the second summand (b) and the (main) de-
nominator (a), which are both invariant under Xuv and obtain Formula 2.3.19. This yields
the following lemma:

Lemma 2.3.6 (Equivalence of L−perf and L−cov) The problem of optimizing L−perf and thatL−perf
.
= L−cov

of optimizing L−cov are equivalent, furthermore

L−cov(G, C1) > L−cov(G, C2) ⇐⇒ L−perf(G, C1) > L−perf(G, C2) (2.3.21)

This lemma together with the NP-completeness of optimizing modularity [44], immediately
gives us the following corollary:

Corollary 2.3.3 Given a graph G (weighted or unweighted) and a real L. It is NP-completeL−perf NP-complete

to decide whether there is a clustering C(G) with L−perf(C(G)) ≥ L.

The deduction of the equivalence in Lemma 2.3.6 implies that a linear relation between the
values of L−perf and L−cov for a given instance G and an arbitrary clustering C(G) can be given

in the form L−perf = a(G) · L−cov + b(G). Coefficients a and b both depend on the instance G
and are the very terms mentioned above (see Equation 2.3.20). Together with the fact that
both L−perf and L−cov can attain the value 0, even for the respective optimum clusterings, this
yields that relative approximation guarantees do not easily carry over in either direction. In
any way, to our best knowledge, no positive results on the approximability of either L−perf or

L−cov exist.
We briefly discuss how Formula 2.3.18 can be trimmed further, such that in Formula 2.3.22

we obtain a very simple but equivalent objective function for maximizing L−cov (or L−perf) in,
e.g., an ILP (note that Xuu ≡ 1):L−cov simplified ∑
{u,v}∈V ×

(
ω(u, v)

W
Xuv

)
−

∑
(u,v)∈V 2

(
ω(u)ω(v)

4W 2
Xuv

)

=
∑

{u,v}∈(V2)

(
ω(u, v)

W
Xuv

)
+
∑
v∈V

(
ω(v, v)

W

)
︸ ︷︷ ︸

X-invariant

−
∑

{u,v}∈(V2)

(
ω(u)ω(v)

2W 2
Xuv

)
−
∑
v∈V

(
(ω(v))2

4W 2

)
︸ ︷︷ ︸

X-invariant

∼=
∑

{u,v}∈(V2)

((
ω(u, v)− ω(u)ω(v)

2W

)
Xuv

)
(2.3.22)
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2.3.2.4 The Relation to MinMixedMultiPartition

Note that the ILP formulation in Equation 2.3.22 has an equivalent metric version, i.e.,
Xuv = 1 iff nodes u and v are in different clusters. The problem thus changes to minimizing
the same objective function: Instead of maximizing the edge contributions inside clusters, we
minimize those in between. It becomes obvious that the problem of optimizing this index cut-type view of

modularity
is equivalent to finding the minimum weight edge set inducing a (multi-)partition on the
complete graph K on V , where edge weights g are equal to the (simplified) term in brackets
in Equation 2.3.22. Given an unweighted instance of L−cov (i.e., modularity), edge weights in
K are multiples of 1/m, thus we can assume g ∈ Z. We formalize the general form of this
problem as follows:

Definition 2.3 (MinMixedMultiPartition) Consider an undirected graph K = (V,E), MinMixed-
MultiPartition

an edge weight function g : E → Z and a rational number L. Is there a partition of V into
disjoint subsets V1, . . . , Vm (m ≥ 1) such that the sum of weights of edges whose endpoints lie
in different subsets is at most L?

By the fact that optimizing L−cov is NP-hard, we thus obtain the following corollary:

Corollary 2.3.4 The problem MinMixedMultiPartition is NP-hard.
MinMixed-
MultiPartition
is NP-hard

For a weighted L−cov instance, a similar observation holds, if we assume that original edge
weights are rational, ω(e) ∈ Q. Although many similar hardness results on cuts in graphs
exist, we are not aware of a proof of this particular variant. Well known hardness results
in this context have been presented, e.g., by [106] for GraphPartition or MaxCut, and
by [61] for MinimumMultiwayCut, where in a positively weighted graph a set of terminals
T ⊆ V has to be separated. Note that MinMixedMultiPartition is not, as it might seem,
a straightforward generalization of the NP-hard problem MixedMinCut (i.e., MaxCut),
in that the set of cut edges of a MixedMinCut is a subset of the set of edges cut by
MinMixedMultiPartition, as can be disproven by the simple example in Figure 2.3.8.

MixedMinCut
* MinMixed-
MultiPartitionMoreover instances exist where the solution to MinMixedMultiPartition is the trivial

partition {V } (e.g., in the case of exclusively positive weights), such that for obvious reasons
no MixedMinCut can be deduced. This emphasizes the relevance of Corollary 2.3.4.

2.3.3 Lucidity-Clustering Algorithms

With the optimization of L−cov being NP-complete ([45]; [44]) encourages the usage of heuristics
or approximations. In this section, we briefly describe the algorithms we use for lucidity
maximization. Throughout our experiments, we employ a greedy heuristic approach, allowing lucidity-greedy

heuristic
for a consistent evaluation of the four variants of lucidity, as follows.

For a given lucidity measure L the greedy algorithm starts with the singleton clustering
and iteratively merges those two clusters that yield the largest increase or the smallest decrease
in L. After a maximum of n− 1 merges the intermediate clustering that achieved the highest

a b

c d

1

−2−2
−4−4

−10
B C

Figure 2.3.8. The (unique) minimum multi-partition C with cost(C) = −22 does not directly
induce the (unique) minimum bipartition B with cost(B) = −17.
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value of L is returned. Thus, this approach is parameter-free, and not even the number of
clusters has to be specified as a parameter in advance. Note that this procedure can thus
return a complete hierarchy of clusterings. The algorithm maintains a symmetric matrixhierarchical

∆L with entries ∆Li,j equaling L(Ci,j) − L(C), where C is the current clustering and Ci,j is∆L

obtained from C by merging clusters Ci and Cj . The pseudo-code for the greedy algorithm is
given in Algorithm 3.14 Apart from a number of engineering approaches on this fundamental
algorithm, a recent work [181] explores, among other things, how in a postprocessing stage
the result of this greedy approach can be improved. In particular, the authors investigate how
large clusters can later be split up in order to make up for previous decisions of the greedy
approach which were not optimal. In this work, however, we refrain from delving into the
many variants of this pure greedy approach that can be found in the literature, for the sake
of brevity.

Algorithm 3: Greedy Lucidity

Input: Graph G = (V,E, ω)
Output: Clustering C of G
C ← Singletons, initialize L1

Initialize matrix ∆L (with ∆Lij ∼= change in L when merging Ci and Cj)2

while |C| > 1 do3

Find {i, j} with ∆Li,j = arg max ∆Lij4

Merge clusters Ci and Cj5

Update ∆L6

L← L+ ∆Li,j7

Return intermediate clustering with highest lucidity8

Let ∆L be defined by matrices ∆M and ∆E[M], denoting the additive changes inM and
in E[M], respectively. For coverage and performance it is not hard to see that elements ∆Mij

and ∆E[M]ij only depend on E(Ci), E(Cj) and E(Ci, Cj), i.e., on local information. Then,
when merging Ci and Cj , entries ∆Mpq of unaffected clusters do not change, while entries
in rows and columns i and j are updated as follows: ∆Mk,(ij) := ∆Mk,i + ∆Mk,j , where
C(ij) = Ci ∪ Cj (and ∆E[M] is updated analogously). From Equations 2.3.15 and 2.3.16merge is local

and quick
it becomes clear that for the absolute variants this transfers to ∆L, while for the relative
variants all entries of ∆L change, even those of unaffected clusters.

2.3.3.1 Runtime Analysis

Both absolute variants of lucidity share the same asymptotic running time. Employing a
standard data structure for clusterings, one observes that Step 1 and 8 run in O(n) time.
Matrix ∆L is initialized in O(n2) time. The loop at Step 3 is executed n − 1 times. Step 4
runs in O(n) time, if we store the rows of ∆L as heaps. Merging two clusters (Step 5) and
updating L (Step 7) require at most linear time.15 Thus, updating ∆L dominates, which
consists of O(n) insertions and deletions from heaps, requiring O(log n) each. This yields the
following lemma:

Lemma 2.3.7 Algorithm 3 runs in O(n2 log n) time for the absolute variants.O(n2 logn)

Adapting Lemma 2.3.7 to the relative variants yields a runtime of O(n3), since a merge
entails an update of n2 matrix entries. However, in Lemma 2.3.8 and Algorithm 4 we improve
this upper bound.

It is not hard to see that the first local optimum of L, that the absolute greedy heuristic
attains, is its global optimum, since then the matrix ∆L is non-positive, allowing no further

14For compactness of representation we accept a few repetitions from Section 2.2.5.
15Note that we need not initialize the full matrix, as only merges along connected pairs of nodes allow for

positive changes, while this tweak is helpful, practically, it does not lower the asymptotic runtime.
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increase in L or any entry ∆Lxy. In case the number of clusters is dependent on n, i.e.,
|C| ∈ ω(1), this may result in an asymptotic decrease in running time.

2.3.3.2 Quick Divisive Merge

In this section we describe how for relative variants, the running time for updating ∆L can
be reduced by avoiding explicit matrix updates. We give an algorithm that updates ∆L in
O(n log n) amortized time using a geometric embedding.

We store matrix ∆L by a point set P in the plane as follows and as depicted in Figure 2.3.9.
geometric rep.
for L÷∗

Each entry {i, j} is represented by a point pij with coordinates pij := (M(Ci,j),E[M(Ci,j)]) =
(M+∆Mij ,E[M]+∆E[M]ij). Thus, each point encodes the measure (y-axis) of a clustering
and its expectation (x-axis). Since these are both non-negative, all points are in quadrant one.
We additionally insert one point R = (M(C),E[M(C)]) that represents the current clustering.

M
(C
)

E[M(C)]
O

R

convex
hull

tangent
query

point
set Ppmax

Figure 2.3.9. Each cross encodes the quality of some
merge, with pmax yielding the highest quo-
tient. Instead of all crosses, O moves antipo-
dally by R−pmax (gray arrow). Due to some
earlier step, O has already been shifted away
from (0, 0).

SinceM and E[M] update additively, we
can update each point p in the plane, af-
ter merging two clusters Ck and Cl, as fol-
lows: First, for a linear number of points
p (i.e., those involving Ck and Cl), we set
pi,(kl) ← pi,k + pi,l − R. By doing so we
actually both delete and introduce a linear
number of points. Second, for all points
P , including those newly introduced, we set
p← p+ (pkl−R). These steps maintain the
data structure.

There are two crucial observations: First,
instead of uniformly setting p← p+(pkl−R),
we can save Ω(n2) such updates by only
shifting the origin: O ← O − (pkl − R).
Second, at any time, the merge maximizing
L÷∗ corresponds to the point pmax that max-
imizes y(p)/x(p). Point pmax must lie on the
convex hull of P , and can be found by a tangent query through the origin O. Such a query

move origin,
find max. on
conv. hullreports the tangents on the hull that pass through a given point. Initially O is set to (0, 0),

but each merge shifts this imaginary origin, which serves as the vantage point of the tan-
gent queries. Figure 2.3.9 illustrates these observations. We thus need a data structure that
maintains the convex hull of a fully dynamic point set P and that allows for quick tangent
queries.

In fact [49] present such a data structure, using so-called kinetic heaps. It uses linear
space (i.e., O(n2), in our case), handles both insertions into and deletions from P , as well as
tangent queries to the convex hull in amortized time O(log n). This data structure is described
more extensively in the dissertation of [139], where, among other things, it is proven that the
amortized performance of this data structure is in fact optimal. Since detailing this data
structure is far beyond the scope of this paper, we just give a rough idea and use it as a
black box. The points are stored in several instances of a semi-dynamic data structure that
supports deletions. Insertions result in new instances, which are merged with rank degree a supporting

data structure
log n by a semi-dynamic data structure that supports constant time deletions. Then, the core
data structure is built which maintains the convex hull of two such merged sets. On top of
that data structure, a kinetic heap is then built, which finally handles queries and operations.
A kinetic (or parametric) heap is a generalization of a priority queue, such that the entries are
linear functions that change over time. The authors use interval trees as secondary structures
for answering containment queries.

Given this data structure, Algorithm 4 performs the update in Line 6 of Algorithm 3 in
time O(n log n). First, a tangent query from O to the convex hull of P finds pmax (Line 1) in
time O(log n). Then, after storing the merge of Cl and Ck (Line 2) in at most linear time, a
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linear number of points pi,k and pi,l are replaced by a new point pi,(kl) (Line 3). After each
such replacement the convex hull of P is maintained in time O(log n) by the data structure.
Finally, reference point R is set to the newly improved coordinates (Line 4), and origin O is
shifted (Line 5) in constant time. This last step is crucial in terms of running time, since it
saves the update of all Ω(n2) points in P . Thus, we arrive at the following:

Lemma 2.3.8 By employing quick divisive merge (Algorithm 4), Algorithm 3 runs in
O(n2 log n) time for the relative variants.O(n2 logn)

Algorithm 4: Quick Divisive Merge

Input: ∆M,∆E[M], data structure with of points P as described above, reference R,
(shifted) origin O

Output: Best merge, updated matrices ∆′M,∆′E[M]
Find pmax = pkl with tangent query through R1

Merge clusters Ck and Cl of point pkl = pmax2

For all clusters Ci insert pi,(kl) := pi,k + pi,l −R, delete pi,k, pi,l3

R← pmax4

O ← O − (pkl −R)5

Note that the above lemma generalizes to all implementations of lucidity, where a merge of
two clusters entails an addition of corresponding entries of ∆L (or of ∆Mw and ∆E[Mw]).

2.3.4 Experimental Evaluation

The aim of this section is to experimentally evaluate the behavior of lucidity and of lucidity-
based clustering algorithms in a systematic way. We proceed in two steps and start with thetwo questions:

measure lucidity itself:

1. Lucidity vs. Human Intuition. The key idea of this part is to evaluate how well
lucidity quantifies the human intuition of the quality of a graph clustering. In a first1. lucidity vs.

human intuition
step we examine the behavior of lucidity on generated ground-truth clusterings. These
generated clusterings are built by a basic random generator which features an unarguable
and intuitive mechanism for tuning the clarity of the implanted clustering. We thereby
check whether our implementations of lucidity yield results that are in accordance with

. . . on
ground truth

human intuition of “better” or “worse” clusterings.

We then cluster the generated graphs with established clustering algorithms and repeat
our measurements of lucidity . This second set of experiments is less controlled than that. . . on bench-

mark algorithms
which uses the generator, but reduces the dependency of our findings on the generator’s
clustering. Next we turn to lucidity-driven clustering.

2. Quality of Greedy Lucidity. The experiments described above serve to corroborate
that lucidity may be used to quantify the goodness of a graph clustering. In this2. quality of

greedy lucidity
second setup, we then try to find out how well lucidity-driven algorithms, and the
proposed greedy agglomerative algorithms in particular, work in practice. To this end,
we use three established quality indices and lucidity itself, and systematically measure
the quality of the clusterings found by our lucidity-based clustering algorithms from
Section 2.3.3. Here we again use our generator for clustered random networks with

. . . wrt. lu-
cidity and

other measures scalable clarity. We thereby compare our algorithms to three established ones which
serve as benchmarks. The question we want to answer is: How well do lucidity-based
clustering algorithms compete with other algorithms in terms of quality?

The reason for using several measures and algorithms for a comparison is simple: it is
folklore in the field of graph clustering that there is no single best strategy or measure,
thus the reader needs several vantage points for assessing our results.



2.3 Lucidity-Driven Graph Clustering 69

In the following section we describe the general model used for the experimental evaluation,
then we present and discuss the results on the two questions stated above.

2.3.4.1 The Experimental Setup

We employ an adaption of the benchmark used in [47, 48]. For further details on this ex-
perimental setup we refer the reader to these references and restrict ourselves to a brief
sketch at this point. Starting with a fixed set V = {1, . . . , n} of nodes, a random parti-
tion generator P(n, s, ν) partitions V into (P1, . . . , Pk). For the distribution of |Pi| we use the generator

|Pi| ∼ N (s, sν ), with s = n/k. This simple process constrains |Pk| (and possibly even pre-
decessors); this is dealt with by setting |Pk| = n −∑i<k |Pi| iff this yields ||Pk| − s| < s/3,
otherwise the partition is rejected and a new one drawn. Given a partition, this is used as
the clustering. Then, for all e ∈ V × edges are introduced inside and between clusters with
probabilities pin and pout, respectively. Finally a random weight ω is assigned to each edge pin, pout

with ω ∼ U([0, pin])16 or ω ∼ U([0, pout]), respectively. In case the resulting graph is dis-
connected, additional edges between random nodes of disconnected components are drawn.
In our experiments we used n = 100 and n = 1000, and choose k ∼ U([log n,

√
n]), ν = 4.

pout

pin

Asparse

A

AdenseAstrong

A ra
nd
.

Figure 2.3.10. Combinations of pin,
pout and their rough naming.

We roughly refer to combinations of pin and pout sup-
porting dense, sparse, strong and random community
structure by Adense, Asparse, Astrong and Arand., re-
spectively, as sketched out in Figure 2.3.10. A

We then let the lucidity algorithms, based on
Algorithm 3 and on the four variants (see Sec-
tion 2.3.2.2) compete with reference algorithms on
these instances. We restrict ourselves to Markov
Clustering (MCL) [213], Geometric MST Cluster-
ing (GMC) [48] and Iterative Conductance Cutting
(ICC)17 [145] for comparison and to lucidity , coverage, benchmark

algorithms
performance and inter-cluster conductance (see [46])
for measuring clustering quality alongside structural
aspects, such as the number of clusters. We keep the quality indices

number of algorithms for comparison limited as they
only serve as a benchmark. Although there exist a number of alternative approaches that
work towards the maximization of modularity (and could thus also be applied to lucidity), we
refrain from including any of them in our study as it has been repeatedly shown (please refer
to the references in the introduction of this section) that all these largely similar approaches
only marginally differ in both the structure of the identified clustering and the measured
modularity .

We systematically conducted experiments using 100 and 1000 nodes, for all combinations
of pin > pout in steps of 0.05. We repeated each setup, until mean measured qualities were
estimated to lie within a confidence interval of length 2 · 0.05 around the measured mean
with an α-level (probability) of 0.95. We separately required this level of significance for statistical

significance
each quality index measured. In total about one million total runs were conducted. Effective
runtimes of our very basic Java 1.5 implementations ranged from a few milliseconds for 100
nodes using absolute variants to several seconds for 1000 nodes using relative variants, on an
AMD Opteron 2.2 GHz. In addition to this systematic evaluation, we show exemplary results
on two real-world networks in Section 2.3.4.3.

As a side note, it is worth mentioning that methodologies for the experimental evaluation
of graph algorithms, either in a conceptual sense or in the context of algorithm engineering,

16The uniform distribution over the interval [a, b] is denoted as U([a, b])
17ICC uses a threshold which determines when the cutting strategy of the algorithm should stop, we use

0.4; for GMC we use embedding dimension 2 and the geometric mean of coverage, performance and inter-
cluster conductance as the objective function; for MCL we use expansion = 2 and reduction = 2; note that
while for ICC the threshold directly influences the number of clusters, the other two algorithms automatically
determine this number.
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are a big topic on its own right. Due to the non-generality of specific real-world networks
such as the well-known network of bottlenose dolphins [157], the karate club [230], phone
calls networks [38] etc., graph clustering methods have often been evaluated with artificially
generated graphs, most notably using so called ad hoc networks (see, e.g., [173, 63]). This
rather restrictive generation method divides a set of 128 nodes into four clusters of equal size
and then uses parameters pin and pout as above. Although our approach is more general,
we are aware that it is still far from comprehensive, and thus potentially subject to some
bias introduced by a dependency between the generator, the algorithm and even the quality
measures. Variant approaches for such evaluations have been proposed, e.g., by [91] and [25]
but a setup as general and as methodologically sound as proposed by [100] is beyond the
scope of this work, as is a quantitative discussion of the distances between found clusterings.
Section 2.6 gives an overview of the latter issue.

2.3.4.2 Computational Results

In this section we discuss the outcomes of our experiments. Since results for n = 100 largely
agreed with those for n = 1000 we chose to focus on the latter (larger) setup here. Due to the
equivalence of L−cov and L−perf , we denoted results as L−∗ . The plots use isolines (or contour
lines), which are curves where the evaluated function has a constant value as denoted by labelsisolines

on the isolines in the figures. This is comparable to elevation contour lines on topographic
maps, giving a good impression of the behavior of a function on two variables. We first
conduct experiments that evaluate how well lucidity is in accordance with human intuition
in terms of the quality of a given clustering, then we evaluate lucidity-based algorithms.

1. Lucidity-Scores on Generator and Benchmark Algorithms. We can assume that
the graph generation process described above yields clusterings whose qualities—according
to human intuition—clearly scale with pin and (inversely) with pout. Studying the quality1. lucidity vs.

human intuition
measures we use on the pregenerated clusterings gives some useful insights about the behavior
of these indices. Roughly speaking, for our results, one would expect high values in Astrong,
with some variety of descent towards Arand.. Figure 2.3.11 shows the results. As postulated for
a reasonable index, all indices clearly attain the highest values for Astrong. For most indices,
the slope of the quality level decreases with higher pout; since the number of inter-cluster pairs
of nodes increases more quickly than the number of intra-cluster nodes in our generator.18

The slopes for performance remain approx. constant, which is a favorable behavior, as it yields
a better comparability of clustering qualities of different graphs. This behavior is due to the
fact that both edges inside, and non-edges between clusters are considered (as compared to,
e.g., coverage). By Figure 2.3.11f L÷perf adopts this behavior, a fact that is not obvious from

the definition, but a property to keep in mind when using the index. Conversely, L−∗ does
not exhibit this behavior, which is in parts explained by its strong dependence on coverage
(remember from Section 2.3.2.2 that in L−perf , the terms referring to inter-cluster edges cancel

out). As one difference between coverage and L−∗ note that the latter is more discriminative
about Arand., yielding values close to 0. Inter-cc yields high values for Astrongand low values
for Arand., consistent with the intuition. Again, slopes decrease, but for a different reason:
The index inter-cluster conductance is sensitive to a large cut induced by a single small
cluster; since the ratio of inter- to intra-cluster edges for Asparse is lower than for Adense,
inter-cluster conductance generally yields higher values for Asparse. Summarizing, all three

summary
for gen.:

lucidity sound implementations of lucidity behave consistently in this test on the quality of a “ground-truth”
clustering with scalable clarity.

So far we know that our implementations of lucidity behave in a sound way on the gen-
erator’s clustering. Figure 2.3.12 shows how they assess the results of the algorithms MCLlucidity on bench.

algorithms
and ICC (here we omit GMC for brevity), being less controlled experiments. For Astrong these

18Roughly speaking, the ratio of intra- to inter-cluster edges is proportional to k. Thus, in our generator
and in many real networks, the statement holds.
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(f) L÷perf

Figure 2.3.11. Plotted results for achieved quality on the underlying generator’s clustering. The y-axis shows pin, the
x-axis shows pout. The isolines indicate combinations of pin and pout where the same quality (value
as label on isoline) has been measured.

algorithms probably identify a clustering which is very similar to the generator’s. Compar-
ing plots 2.3.12(a)-(c) to the corresponding ones in Figure 2.3.11 yields strong evidence for
this. All three agree about MCL not performing very well for Asparse, a fact coverage, perfor-
mance and inter-cluster conductance also agree on (see Figures 2.3.13b, 2.3.14b and 2.3.15b,
respectively). The main reason for this is that MCL tends to identify a very fine clustering
for Asparse (see Figure 2.3.16b). Interestingly, L−∗ sees worse quality in MCL’s clusterings for
Adense, as opposed by L÷perf .

19 The reason is MCL’s rather coarse clustering for that region,

something we will see L÷perfapprove of repeatedly below. To briefly discuss the results on ICC

note that L−∗ ’s values largely agree with those on the generator. Exhibiting a rather exotiv
behavior, L÷cov seems to approve of the generally rather fine clustering of ICC; note how the
number of clusters of ICC (see Figure 2.3.16d) correlates with L÷cov, especially for Asparse. The
general shape of the values of L÷perf strongly resembles that for the generator, a result all other

measures (except L÷cov) second. However, it does so at a lower absolute level; we shall see the
reason for this in Figure 2.3.16g, where it becomes obvious that in terms of the number of
clusters to be found, this measure disagrees with the behavior of ICC, i.e., that L÷perf favors
coarse clusterings.

19Keeping crossreferences rigorous and multiply referring to other figures in almost each sentence massively
obfuscates the text. We therefore refrain from most further references to plots in this section and hope that
the reader manages to find the relevant ones.
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(a) L−∗ on MCL
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(b) L÷cov on MCL
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(c) L÷perf on MCL
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(d) L−∗ on ICC
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(e) L÷cov on ICC
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(f) L÷perf on ICC

Figure 2.3.12. Plotted results for achieved lucidity on MCL’s and ICC’s clusterings (for a comparison to other mea-
sures on these clusterings review Figures 2.3.13-2.3.16)

Summary for Question 1. To summarize our findings, we can state that all three im-summary for
question 1.

plementations of lucidity behave very reasonably on the controlled, pregenerated clusterings,
with the small asset for L÷perf which seems to react to pin and pout in a largely independent
manner. Our experiments on the two benchmark algorithms MCL and ICC partially second
these results, but already suggest that L÷perf favors coarse clusterings in a mild manner, and

L÷perf coarse,

L÷cov fine
that L÷cov rather wildly favors fine clusterings. In turn, L−∗ appears not to depend too strong
on this, but instead mildly disfavors both extremes.L−∗ decent

2. Lucidity-Based Algorithms In this section we measure the quality of clusterings iden-2. greedy lucidity

tified with lucidity-based algorithms with three established indices and with lucidity itself.
We thereby compare the results with those of three other algorithms which serve as bench-
marks. Note that while a structural comparison with the generator’s clustering is possible, it
is not very meaningful, as this is not a “ground-truth” clustering in the traditional sense: weno ground

truth for Arand.
do not draw samples from an underlying distribution which is to be identified. Therefore it is
possible (and for Arand. very probable), that the algorithms find better clusterings (in terms
of quality) than the generator’s. Moreover different clusterings on the same graph can yield
the same objective quality in spite of heavily differing, structurally.

At a first glance, the statistical results for both relative variants (L÷cov and L÷perf) and for

L−∗ essentially differ for all three quality indices. Alongside the disagreement on the quality
indices, L÷cov tends to identify fine clusterings, i.e., 33 clusters on the average,while L÷perf finds
clusterings with a coarse granularity, i.e., 2.9 clusters on the average. The absolute variants
exhibit a surprisingly similar behavior to the initial clustering with respect to all quality
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Figure 2.3.13. Plotted results for values of performance achieved by the generator, the benchmark clustering algo-
rithms and the lucidity-based algorithms
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Figure 2.3.14. Plotted results for values of coverage achieved by the generator, the benchmark clustering algorithms
and the lucidity-based algorithms
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Figure 2.3.15. Plotted results for values of inter-cluster conductance achieved by the generator, the benchmark
clustering algorithms and the lucidity-based algorithms

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) generator (≈ 6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) algorithm MCL

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) algorithm GMC

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) algorithm ICC

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(e) greedy L−∗

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(f) greedy L÷cov

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(g) greedy L÷perf

Figure 2.3.16. Average number of clusters identified by the generator and the algorithms
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indices. The same holds for L÷perf with respect to coverage and inter-cluster conductance,
however, the behavior is different for performance, but still acceptable scores are attained. In
contrast, L÷cov clearly fails to achieve high values of coverage and inter-cluster conductance,
while its performance score is surprisingly good, a consequence of a very high number of
clusters. The benchmark algorithms do not substantially surpass the initial clustering in
general. Although the same holds for the lucidity algorithms, they shine for Arand., finding
higher quality clusterings than the generator (except L÷perf for coverage). lucidity-greedy

shine for Arand.

Summary for Question 2. In an overall assessment of the achieved clustering qual- summary for
question 2.

ity, the two absolute variants excel with respect to performance for almost all generated
instances. This is particularly meaningful since both do not yield inappropriately high num-
bers of clusters, which would artificially increase performance. With respect to coverage, L−∗ -greedy yield

high quality
the absolute variants are only surpassed by the few algorithms that produced a substantially
coarser clustering, among those L÷perf .

An interesting observation is, that, using the lucidity measures as quality indices them-
selves, the greedy algorithms attain the maximum corresponding score for most testsets. Lyx-greedy

best at Lyx
However, in the case of Astrong, the obtained differences in the lucidity measures are small
among most algorithms.

Explaining Some Artifacts. The high values of performance, attained by L÷cov for Asparse
comments on
artifacts

are due to the fact that the large number of clusters identified by this algorithm yields a large
fraction of non-connected pairs of nodes that are in different clusters. In turn, L÷cov producing
fine clusterings can be explained as follows. Each step of the algorithm increases coverage
and E[coverage], which are both bounded by 1. These values increase faster, if an already
large cluster is further enlarged. Thus, the fraction tends to 1 for coarse clusterings, causing
the L÷cov-algorithm to terminate early, since, clearly, coverage is monotonic in |C|.

2.3.4.3 Real Data

We have applied our algorithms to a number of real-world networks, due to limited space we
only present two prominent ones. Figure 2.3.17 shows how the variants of lucidity perform
on the karate club network, studied initially by [230]. The network represents friendship Zachary’s

karate club
between the 34 members of a university club that, due to an internal dispute, split up into
two groups (circular nodes on the left and square-shaped nodes on the right). Clearly, relative
performance lucidity (L÷perf) excels here, exactly reproducing the original division and thereby
surpassing even modularity in precision. Note that in cases the greedy algorithms have to
break ties, different clusterings of the same input may occur. In particular this is the case for
Figure 2.3.17a, which even yields the same value of L−cov as the profoundly different clustering
of the same network given in [173], but has been identified with the same (conceptually)
algorithm.

Figure 2.3.18 shows an anonymized graph of the email contacts at our department over
a period of three months (approx. 44300 emails). Nodes represent persons and weighted
edges represent the number of email contacts between two coworkers. The grouping depicts
the department’s internal structure while the node colors (gray values) show the findings of
community structure of the greedy algorithm based on L−∗ .20 Since this example is based on
the intuition that the graph structure reflects the grouping, we cleaned the network of artifact
nodes with no links to their reference cluster (approx. 7.5% of the original nodes).

20See Section 5.1.1 for more details on this data set.
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(a) L−∗ (modularity) (b) ILP-optimized L−∗

(c) L÷cov(boxes removed for readability) (d) L÷perf

Figure 2.3.17. Results of the greedy lucidity algorithms on Zachary’s karate club are in agreement with our experiments. The
upper right figure additionally shows the clustering with optimum L−∗ , while in all figures node shapes denote
the grouping in reality. While both the greedy and the ILP optimization of L−∗ are meaningful and close to
the real grouping, relative performance lucidity (Subfigure 2.3.17d) yields a bisection which exactly reproduces
the real grouping. The clustering L÷cov identifies is not unreasonable, but too fine and insensitive for some
applications.
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Figure 2.3.18. A network of email contacts at our department. The grouping depicts the department’s internal structure as a
reference, and the node colors (gray values) are the community detection result of L−∗ . Inside reference clusters,
L−∗ misclassifies only 6.8% of nodes, most of which are due to the highly ambiguous reference cluster A, which
is split in half by the algorithm. The clustering of L−∗ yields a noticeably higher (≈ 6%) coverage, which is
partly due to 9 clusters each being merged into other clusters they are strongly connected with. In terms of
inter-cluster conductance and all four realizations of lucidity, L−∗ slightly surpasses the reference. However, the
performance of the reference clustering is approx. 2.4% higher than that found by L−∗ . On the whole, a closer
investigation explains most disagreements between the two clusterings, e.g., note the artifact nodes in clusters
B,C,D and the strong connections between clusters A,E1, . . . , E4, which account for the aggregation done by
the algorithm. Please review Figure 2.6.6 for more details.



Section 2.4

ILPs for Graph Clustering

This is not a joke: They have moved the
deadline to one full day earlier.

You have less than two hours to submit.

(Daniel Delling, calling me at 10pm on the
evening before the last day before the
deadline for ISAAC’09. The organizers
corrected their mistake at 11:17pm)

This small section tries to summarize a few insights into the formulation of ILPs for
clustering tasks. We have already seen a feasible formulation in Section 2.2.2 alongside

a objective function for modularity , which was later used to find the modularity-optimal
clustering in example graphs; we briefly returned to that formulation in Section 2.3.2.3. How-
ever, there are a few obvious points that have not yet been covered. In particular, these are
objective functions for other indices such as performance and coverage within the proposed
framework of constraints, alternative sets of constraints and a few steps towards engineering
an ILP for speed. In fact the results in this section were gathered in the context of dynamic
graph clustering, but turned out to call for proper examination from a static point of view.

As a side note, a déjà vu that has become truly notorious among my colleagues, struck
me during my work on possible ILP formulations for modularity optimization: Whatever
clever ideas you put into an ILP formulation in order to reduce the set of variables, the set
of constraints or the running time, the very first and most plain formulation will work best
in the end. Of course this is partly due to sheer incompetence, but it is also a warning and
a lesson I learned: Engineering an ILP for speed requires profound insights and superficial
tweaks and even non-trivial ideas will probably not help immediately. The content of this
section has not been published before.

Main Results

• We propose ILP formulations for clustering problems using performance, modularity
and coverage as objective functions. The different setups model a node equivalence
relation, a node pseudometric and a node-cluster relation, all allow for various side
constraints. (Sections 2.4.1, 2.4.2 and 2.4.3, respectively)

• We report results on modularity optimization on well-known example networks, using
basic tools for engineering ILPs. Despite our rather simple setup, to the best of my
knowledge these results are the quickest running times for exact modularity optimiza-
tion on these benchmark networks that have so far been reported in the literature.
(Section 2.4.4)

Future Work. I strongly believe that there is potential in engineering an ILP for modularity
optimization. On the one hand, I have seen many cases where variants of greedy maximization
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yield very different results on the same graph instance, cases where näıve manual tuning
improved modularity , and cases where a postprocessing driven by backtracking merges or by
local optimization surprisingly fails or succeeds, which suggests that optimality can easily be
more than just a stone’s throw away. On the other hand, it is obvious that there are ideas
the engineering presented in Section 2.4.4 leaves untouched, e.g., clever strategies for tagging
constraints as lazy, column generation or orbitopal fixing [184]. Moreover a comparison in
terms of quality to strategies like semi-definite programming as done, e.g., in [8] would be
interesting.

2.4.1 Equivalence Relation

Viewing a clustering C = (C1, . . . , Ck) as an equivalence relation, two nodes are equivalent if
they belong to the same cluster. In turn every equivalence relation on a set of nodes induces a
clustering, using the equivalence classes as clusters. Analogous to Section 2.2.2 we define for
each pair {u, v} ∈

(
V
2

)
a binary decision variable Xer

uv
21 with the interpretation that Xer

uv = 1
if and only if u is equivalent to v and thus u and v belong to the same cluster. The set X er

of node equivalence variables thus are: X er

X er(V ) := {Xer
uv : {u, v} ∈

(
V

2

)
} with Xer

uv =

{
1 if C(u) = C(v)

0 otherwise
. (2.4.1)

We enforce consistency of these variables by modeling transitivity and integrality ; to this end transitivity

we add for each triple {u, v, w} and for each pair {u, v} the following linear constraints:

∀{u, v, w} ∈
(
V

3

)
:


Xer
uv +Xer

vw −Xer
uw ≤ 1

Xer
uv +Xer

uw −Xer
vw ≤ 1

Xer
uw +Xer

vw −Xer
uv ≤ 1︸ ︷︷ ︸

transitivity constraints for X er

, ∀{u, v} ∈
(
V

2

)
: Xer

uv ∈ {0, 1}︸ ︷︷ ︸
integrality constraints for X er

(2.4.2)

This formulation (at least a very similar one) has already been used in [99] in order to calculate
a clustering with maximum performance. It is easy to see that the other two properties of a
sound equivalence relation, (i) reflexivity and (ii) symmetry, can be omitted in this context:
(i) Since in a clustering a node is always inside a cluster, a reflexive variable Xer

vv always equals
1 and can thus be left out of any objective function (or set to 1). (ii) A objective function
for clusterings must implicitly assume Xer

vu = Xer
uv, therefore only one such variable is needed.

With the help of these these
(
n
2

)
variables Xer

vu and 3
(
n
3

)
constraints (not counting integrality

constraints) we can now list objective functions for performance (from [99]), modularity (see
Equation 2.3.19), and coverage:

coverage: max
∑

u<v∈V
ω(u, v) ·Xer

uv

performance: max
∑

u<v∈V
(2 ·A(u, v)− 1) ·Xer

uv (2.4.3)

modularity : max
∑

u<v∈V

(
ω(u, v)− ω(u) · ω(v)

2 ·W

)
·Xer

uv

In these equations A(u, v) is a binary constant with A(u, v) = 1 if and only if {u, v} ∈ E.
Note that coverage (trivial) and modularity (see Sec. 2.3.2.3) can immediately be formulated
in a weighted context, however we avoid the trouble for performance, which is, in its simple

21There is only one such variable for {u, v}, and Xer
uv = Xer

vu is the same variable just written differently.
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and unweighted form, derived as follows:

performanceILP =
∑
u<v

(A(u, v) ·Xer
uv + (1−A(u, v)) · (1−Xer

uv))

=
∑
u<v

(A(u, v) ·Xer
uv + 1−Xer

uv −A(u, v) +A(u, v) ·Xer
uv)

=
∑
u<v

(2 ·A(u, v)− 1) ·Xer
uv + constant

2.4.2 Pseudometric

A similar idea has been used in [54] to solve the problem of correlation clustering : However,
the authors used the same set of variables22, yet reversed their interpretation, i. e., Xpm

uv = 0
if and only if u is equivalent to v and thus u and v belong to the same cluster. Similar to the
above formulation, and yielding the same size of the ILP, we now get node distance variablesX pm

X pm:

X pm(V ) := {Xpm
uv : {u, v} ∈

(
V

2

)
} with Xpm

uv =

{
0 if C(u) = C(v)

1 otherwise
(2.4.4)

∀{u, v, w} ∈
(
V

3

)
:


Xpm
uv +Xpm

vw −Xpm
uw ≥ 0

Xpm
uv +Xpm

uw −Xpm
vw ≥ 0

Xpm
uw +Xpm

vw −Xpm
uv ≥ 0︸ ︷︷ ︸

triangle inequality constraints for Xpm

, ∀{u, v} ∈
(
V

2

)
: Xpm

uv ∈ {0, 1}︸ ︷︷ ︸
integrality constraints for Xpm

(2.4.5)

Note that Xpm can be interpreted as a pseudometric over {0, 1}, where two nodes have
distance 0 if and only if they belong to the same cluster and the constraints modeled by
Equation 2.4.5 represent the triangle inequality. Every program using the above equivalencetriangle inequality

relation model can be transformed into the pseudometric system by replacing each vari-
able Xer

uv by (1−Xpm
uv ) in every constraint and in the objective function and vice versa. TheXer

uv
.
= (1 −Xpm

uv )

objective functions that are induced by the quality indices are:

coverage: min
∑

u<v∈V
ω(u, v) ·Xpm

uv

performance: min
∑

u<v∈V
(2 ·A(u, v)− 1) ·Xpm

uv (2.4.6)

modularity : min
∑

u<v∈V

(
ω(u, v)− ω(u) · ω(v)

2 ·W

)
·Xpm

uv

2.4.3 Node-Cluster Relations

The above programs for an equivalence relation and pseudometric can be extended in order
to describe node-cluster relations. We defined an additional set Yer of n2 binary variables Y er

ujYer

with u ∈ V and 1 ≤ j ≤ n. This can be thought of as reserving n empty clusters beforehand,
represented by a dummy node j. With this in mind we can proceed exactly as above—but
we shall stick to an equivalence relation for brevity. The interpretation thus is that Y er

uj = 1
if and only if node u belongs to cluster Cj . Clusters that ultimately end up empty are simply
ignored. As with X er we need to couple this set Yer via transitivity constraints: if Xer

uv = 1,
then both u and v must belong to the same cluster, i.e. Y er

uj = 1 and Y er
vj = 1 for some j. We

can avoid requiring full transitivity among nodes by enforcing that no node tries to belong
to several clusters, i.e., the uniqueness constraints in Equation 2.4.9 replace the transitivityuniqueness

constraints
22We just renamed the variables for the sake of tractability.
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constraints in Equation 2.4.2. This yields :

Yer(V ) := {Y er
uj : {u, j} ∈ V × [1, . . . , n]} with Y er

uj =

{
0 if C(u) 6= Cj

1 if C(u) = Cj
(2.4.7)

∀{u, v, j} ∈
(
V

2

)
× [1, . . . , n] :


Y er
uj + Y er

vj −Xer
uv ≤ 1

Xer
uv + Y er

uj − Y er
vj ≤ 1

Xer
uv + Y er

vj − Y er
uj ≤ 1︸ ︷︷ ︸

transitivity of X er via one element of [1, . . . , n]

(2.4.8)

∀{u, j} ∈ V × [1, . . . , n] : Y er
uj ∈ {0, 1}︸ ︷︷ ︸

integrality constraints for Yer

n∑
i=1

Y er
ui = 1︸ ︷︷ ︸

uniqueness constraints for Yer

(2.4.9)

As the objective functions for the programs using the equivalence relation or the pseudometric
formulation solely depend on Xer and Xpm, respectively, they directly carry over. These,
slightly more,

(
n
2

)
+nk boolean variables X er and Yer use a set of 3n

(
n
2

)
+n constraints (again

neglecting integrality constraints). However, we can now set the maximum number of allowed
clusters to some number k, such that [1, . . . , n] as used above now is some smaller interval
[1, . . . , k] (see Section 2.4.6 below). This yields 3k

(
n
2

)
+ k constraints which is potentially

much less than those constraints required by Equation 2.4.2. Then, however k ∈ o(n) must
be a prerequisite, implying that a proper upper bound on the number of nonempty clusters
must be provided.

2.4.4 Engineering the ILP

Although it is not a central point of this work, we briefly sketch our findings on engineering
the above ILP formulations for the purpose of optimizing modularity . The instances used for
these experiments are frequently used in the related literature, we refer the reader to [44] for
further information and references. We used two different ILP solvers, the free solver package
lp solve [2] (version 5.5.0.10) and the commercial solver package CPLEX [1] (version 11.1). lp solve vs.

CPLEX
Starting out with the solver lp solve and the node equivalence formulation (Section 2.4.1), we
investigated what speedups can be achieved. Table 2.4.1 summarizes our findings. Variants
1-4 use node equivalence or pseudometric formulations on both solvers. As any constellation
of clusters will yield a large number of redundant constraints, it might serve to declare one
equation per triple to be lazy23, yielding variant 5. Variant 6 uses node-cluster constraints lazy constraints

and 7 again lazyness. As node-cluster constraints introduce symmetry, we tried, in variant
8, to break some of it by enforcing vi ∈ C` ⇒ i ≥ ` (n2/2 add. constraints), see [184, 144]
for details. Finally, in variant 9, we added to the node-cluster constraints user cuts24 given user cuts

by node distance constraints. We omit further combinations of the above, since they did not
yield significant insights.

Note that we did not perform the above tests to any degree of statistical significance, but
with 5 averaged repetitions with manually excluded outliers only. Using more sophisticated
ideas from [184, 144], further speedups might be possible using column generation or orbitopal
fixing, but still, for our task, symmetry removal cannot avoid enforcing transitivity amongst
all nodes. A deeper strategy for identifying suitable lazy constraints based on node distance
might be another option. Summarizing, a simple node pseudometric formulation clearly seems
best, with CPLEX generally having an advantage over lp solve, except for the surprisingly a simple form.

worked best
quick Football run. Our tests were executed on one core of an AMD Opteron 2218 running

23A lazy constraint is a necessary constraint but is only included into the problem description, if the solver
finds a solution that otherwise conflicts with the lazy constraint.

24A user cut is a redundant constraint that the solver can choose to include in order to find a better LP
relaxation.
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Table 2.4.1. Running times of variant ILP formulations. Experiments were aborted (dnf ) in case running times exceeded 24h.
The top three lines give general information on the networks and the modularity-optimal clustering.

Peterson Zachary Chesapeake Dolphins LesMis Polbooks Football

|V |/|E| 10/15 34/78 36/122 62/159 77/254 105/441 115/616
|C| 2 4 4 5 8 6 10
modularity 0.167 0.42 0.349 0.529 0.542 0.523 0.606

Var. 1 0.48s 2h 21m dnf dnf dnf dnf dnf lp solve, node equivalence

Var. 2 0.1s 1.74s 3.45s 1m 32s 3m.36s 54m 42s 1h 34m lp solve, node distance

Var. 3 0.35s 1.4s 0.52s 57.7s 22.6s 6m 15s 6h 44m CPLEX, node equivalence

Var. 4 0.03s 1.17s 0.741s 1m 34s 20.45s 10m 09s 5h 54m CPLEX, node distance

Var. 5 0.033s 3.18s 4.59s 4m 57s 7m 18s 2h 35m 1d 02h CPLEX, node distance, lazy

Var. 6 1m 54s dnf dnf dnf dnf dnf dnf CPLEX, node-cluster

Var. 7 7m 30s dnf dnf dnf dnf dnf dnf CPLEX, node-cluster, lazy

Var. 8 2.4s dnf 4h 32m dnf dnf dnf dnf CPLEX, n.-cl., break symm.

Var. 9 0.53s 44.3s 1m 32s 9h 54m 1d 4h dnf dnf CPLEX, n.-cl., user cuts

SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB of
L2 cache. The programs were run on Java version 1.6.0 04.

2.4.5 Edge-Cluster and Node-Cluster Relations

An alternative integer linear program using only variables which encode node-cluster and
edge-cluster relations has been proposed by Xu et al. [229]. Although the reported exemplary
running times are slower than ours, this approach is an interesting variant. The authors
introduced variables Yuk for nodes u ∈ V and indices 1 ≤ k ≤ n and Zek for edges e ∈ E
and indices 1 ≤ k ≤ n. The interpretation is that Yuk = 1 if and only if node u belongs toedge-cluster

relations
cluster k; and Zek = 1 if and only if the edge e has both its endpoints inside cluster k. In
order to ensure that the Y - and Z-variables are consistent, the following linear constraints
are added to the uniqueness constraints as above:25

∀ 1 ≤ k ≤ n ∀ {u, v} ∈ E :

{
2 · Z{uv},k ≤ Yuk + Yvk

Z{uv},k ≥ Yuk + Yvk − 1
(2.4.10)

In order to express the above objective functions, we additionally need variables storing the
numbers of nodes, edges or the sum of degrees inside the clusters. We define Snode

k , Sedge
k

and Sdeg
k as:

Snode
k :=

∑
u∈V

Yuk , Sedge
k :=

∑
e∈E

ω(e) · Zek , and Sdeg
k :=

∑
u∈V

deg(u) · Yuk .

Objective functions equivalent to the quality indices above can be written as follows:

coverage: max
∑

1≤k≤n
Sedge
k

performance: max
∑

1≤k≤n

(
2 ·
∑
e∈E

Zek −
(
Snode
k

)2)

modularity: max
∑

1≤k≤n

(
2 · ω(E) · Sedge

k −
(
Sdeg
k

)2)
.

25In fact, the authors of [229] do not mention the second constraint, but it is necessary.



2.4 ILPs for Graph Clustering 83

2.4.6 Side Constraints

From the myriad reasonable side constraints the above formulations allow, we just point out
that lower or upper bounds on the number or sizes of clusters can easily be realized: A
lower bound `n and an upper bound un on the number of clusters can be expressed by the `n ≤ |C| ≤ un
constraints given in Equation 2.4.11; note that simply stating an upper bound is more easily
done as mentioned at the end of Section 2.4.3.

∀ 1 ≤ j ≤ `n :
∑
u∈V

Y er
uj ≥ 1 and ∀ un < j ≤ n :

∑
u∈V

Y er
uj = 0 (2.4.11)

In order to force each of a collection of k clusters to contain at least `s and at most us
elements, the linear constraint given in Equation 2.4.12 for node-cluster relations. `s ≤ |C| ≤ us

∀1 ≤ j ≤ k : `s ≤
∑
v∈V

Y er
vj ≤ us (2.4.12)

We can also enforce these size constraints for all (non-empty) clusters without the use of
Yer, just using either X er (Equation 2.4.13) or X pm (Equation 2.4.14), by simply bounding
the maximum and the minimum number of other nodes a node u can sit together with in a
cluster:

∀ u ∈ V : `s ≤
∑
v 6=u

Xer
uv + 1 ≤ us (2.4.13)

∀ u ∈ V : `s ≤ (n− 1)−
∑
v 6=u

Xpm
uv + 1 ≤ us (2.4.14)

Note that the annoying 1 in these Equations is due to the missing reflexive variable Xer
uu. In

all the above cases, at most n additional constraints are necessary.



Section 2.5

Orca

In many ways I’m the burden
that divides us from the light

In many ways you’re the halo
that keeps my spirit alive

(The Chosen Pessimist,
In Flames)

Races exist in many fields of computer science. Among these are races for speed
such as the quickest average answer times to shortest path queries, races for storage

space such as the best compression factor for a database of 1TB of random text, and of
course, as seen in the preceeding sections, races for the best achieved quality in terms of some
task. While sometimes such races seem to depart from any challenge faced in reality, they
are more than often a decisive driving force behind progress. In this section we describe our
partaking in the race for clustering huge graphs.

During the last years, a wide range of huge networks has been made available to re-
searchers. In the exploration and the analysis of networks such as the World Wide Web,
social and natural networks and recommendation systems or protein dependencies, graph
clustering has become a valuable tool. Thus, clustering algorithms that can cope with huge
graphs and yield a good clustering in a reasonable timeframe are desirable. However, we
have to adjust our outlook onto graph clustering. In spite of technical advances, such as
computational puissance and fast storage media, instances of the size of several millions of
nodes still pose algorithmic challenges, and render techniques that are successfully applied on
smaller problems infeasible. For the design of a clustering algorithm for huge networks, the
emphasis must be on the feasibility of applying the algorithm on such problem instances in
practice, i.e., both space and time consumption must be practicable. We generally advocate
that modern clustering problems will hardly breach the limits of the main memory’s size of
modern server hardware, as the latter is subject to a race which seems to advance with a
speed at least equal to that of the size of clustering instances. We thus aim at an algorithm
which, given the instance fits into the main memory of a server, can also solve the instance in
the main memory in reasonable time, i.e., within hours, if the worst comes to the worst. With
these primary design goals at hand, otherwise crucial goals such as the quality of a clustering
must become secondary, but certainly must not forego much importance.

In this section we present the Orca reduction and contraction algorithm, a locally op-
erating, fast graph clustering algorithm, which is capable of handling huge instances that
state-of-the-art methods cannot cope with. Orca is able to cluster inputs with hundreds of
millions of edges in less than 2.5 hours, identifying clusterings with measurably high qual-
ity. Orca is designed to rely on simple structural observations that immediately translate
to intra-cluster density and inter-cluster sparsity, while avoiding the direct maximization of
some index. In fact, our approach explicitly avoids maximizing any single index value such
as modularity , but instead relies on simple and sound structural operations (we explain the
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reasons below). We evaluate the performance of Orca with respect to running time and sev-
eral quality measures for clusterings on a number of publicly available networks and compare
it to other graph clustering algorithms. Unlike most previous approaches, Orca works in a
local sense: it iteratively contracts dense regions to super-nodes which become the clustering
of the current iteration step.

After our ideas for a fast and locally operating clustering algorithm lay about for one
year without anybody finding time for it, we found a good student, Christian Schulz, to get
things started. Then, during the final weeks of our work on Orca, I attended a workshop
on the “Detection and visualization of communities in large complex networks” at UCL in
Louvain-la-Neuve, Belgium. Apart from the fact that this was probably the most worthwhile
conference I attended so far,26 I there learned about a recently devised serious competitor for
Orca (see below). It even followed a similar approach! The lesson I learned was that you
should not let good ideas lay about for one year, you might miss the chance to be the first to
enter an untrodden field. Parts of this work have previously been published in [72], based on
joint work with Daniel Delling, Christian Schulz and Dorothea Wagner.

Main Results

• We design and describe Orca, a state-of-the-art ultra-fast graph clustering algorithm,
based on contraction operations that are driven by local density instead of the maxi-
mization of one particular quality index. (Section 2.5.1)

• We systematically determine feasible values for the two parameters Orca can be tuned
by, and cluster two benchmark graphs. (Section 2.5.2)

• In an experimental evaluation on huge networks, Orca outperforms all but one com-
petitors. Only a local variant of greedy agglomeration [38] competes with Orca in
terms of feasibility. While it is faster on the whole, the scalability of our approach
seems better. (Section 2.5.3)

• In terms of quality, Orca and its competitor [38] compete with other state-of-the-art
algorithms (given the latter finish on an instance). Between them, no general assertion
which one to prefer can be made. For huge instances the choice ultimately depends
on the application and whether artifacts specific to modularity are acceptable or even
desired. If the answer is yes, one can follow [38], otherwise Orca is the better choice.
(Section 2.5.3)

Related Work. In order to facilitate a better positioning of this section into contempo-
rary literature on the topic, we recall the important pieces of related work from Section 2.1.2.
Provably good methods for graph clustering (e.g., [48, 87, 213]) by far cannot handle instances
of huge size, let alone algorithms for solving NP-hard optimization problems such as mod-
ularity optimization. Even quite a few heuristic approaches do not suggest themselves for
high speed-ups, e.g., the iterative removal of central edges [178], or the direct identification of
dense subgraphs [76]. Immediate candidates, however, are variants of greedy agglomeration,
since agglomeration criteria tend to behave far more stable than, e.g., centrality measures,
and can thus be computed more “superficially”. We will include two global such approaches in whom to

compare to?
our evaluation, the walktrap [187], and the greedy maximization of modularity as discussed
in 2.2.5 and 2.3.3, as these are the only ones with a fighting chance to keep up with Orca’s
low running times. However, we shall see that Orca’s sole true competitor is [38] in terms
of feasibility on huge networks. It is worth stressing again that this approach is similar to
Orca, on a rough scale. However, while this technique is explicitly designed to maximize
modularity—which it achieves quite well—and thus solely relies on one measure as the single
criterion, Orca builds a clustering without this bias towards modularity . Although modu-
larity has proven to be a rather reliable quality measure, it is known to behave artificially

26A thank-you to Marco Gaertler for pointing me at that workshop.
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to some extent. On top of that, we shall see in Section 2.5.3 that in some cases, the greedy
strategy terribly fails to achieve its aim.

Why not be Content with Maximizing Good Indices? The pressing reason for this
is that any known quality index can be tricked, i.e., exhibits pathological behavior in certain
situations. While this may be neglected for most reasonably modeled instances, a subtle
trend of index-maximized clusterings towards their specific behavior cannot be ignored, as
has been shown in [90] and in Section 2.2.3.1 for modularity , and in Section 1.2.2 for a
number of indices. Specifically, modularity ’s “compulsion” to produce balanced clusters can
be a severe weakness that must be kept in mind. In turn, this does not mean that established

potential bias
from index-

maximization quality measures should not be used; it is certainly reasonable to largely rely on them when
evaluating and even identifying clusterings; however, targeted maximization of one index
harbors the risk that on graphs which do not comply with the bias of that index, strange
results might occur. Thus, Orca has been designed to work on simple structural observations
that immediately translate to intra-cluster density and inter-cluster sparsity, avoiding direct
index maximization. In particular (and in contrast to modularity) Orca’s routines do not
enforce balanced clusters, and do not have local clustering decisions rely on overall graph
properties such as the average degree.

As an interesting side note, insights from previous sections suggest that the risk for max-
imization heuristics to deviate from optimality on a grand scale increases on larger networks.heuristics can

get very bad
We shall see this corroborated by the results of the algorithm from [38], which on some few in-
stances delivers astonishingly bad modularity scores (Section 2.5.3, especially on the instance
uk-2002).

Making a Case for Local Methods. Many widespread clustering algorithms iterate some
global mechanism a linear number of times, which is particularly typical for classic bottom-
up agglomerative approaches (e.g., greedy index maximization Section 2.2.5 or the walktrap
[187]), or they include some direct technique that is both time and space consuming (e.g.,
global Markov chains [213] or iterative conductance cutting [146]). Operating locally in graphs
avoids these issues, if local operations are simple and bounded in number. Apart from this
and their obvious eligibility for parallelization, more facts encourage local approaches. First,advantages of

local approaches
heuristics that maximize a clustering quality index are known to exhibit scaling behavior,
an effect which local methods might be able avoid, if they do not strongly rely on global
properties of the graph. Second, a limited set of local operations on a graph, e.g., iterating
over incident edges, allows for fast data structures that grant further speed-ups and fit most
graphs into the main memory of a server with 32GB of RAM. Third, local strategies are
better suited for dynamization. They potentially miss some global structure but since it is
natural to assume that local changes on graphs are of local semantics only, local decisions on
the clustering should suffice instead of rippling through the entire network.

Future Work. Orca would benefit from the adaptation of better rules for network hubs,
maybe based on some meta-decisions which again rely on global graph properties such as its
degree distribution. Furthermore a fast dynamic version is desirable, which, given the cluster-
ing of some snapshot and a graph update, recomputes only affected parts of the clusterings.

Preliminaries. We briefly recall a few items from Section 1.2.1. A node v’s (standard)
neighborhood is N(v) := {w ∈ V | {v, w} ∈ E}, and the set of nodes within distance d of v
is denoted as the d-neighborhood Nd(v) = {w ∈ V | w 6= v,dist(v, w) ≤ d}, where dist(v, w)

neighborhood
Nd(v)

denotes the length of the shortest path between v and w. In this section, ∆ is the maximum
degree in a graph, and we assume G to be connected, (and thus n ∈ O(m)). Otherwise the
input is split into connected components in linear time.
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2.5.1 The Orca-Algorithm

The general approach of Orca is as follows: Preliminarily prune the graph of irrelevant
nodes, then, iteratively identify dense neighborhoods and contract them into super-nodes; Orca in brief

after contraction repeat the second step on the next hierarchy level or, if this fails, remove
low-degree nodes and replace them by shortcuts. Do this until the whole graph is contracted.
Due to the widely agreed on fact that no quality function can be elected best in general, an
important design goal for Orca was to refrain from having any decision base on such an
index. Instead we only rely on fundamental and indisputable structural properties such as
the 2-core, the similarity of a subgraph to a clique and local sparsity. The following sections
detail each step of Orca in the order of their execution, things are then put together in
Section 2.5.1.6. We postpone technical details of our implementation and our data structures
to Section 2.5.3.

2.5.1.1 Core-2 Reduction

Algorithm 5: Core-2 Reduction

Input: Graph G = (V,E, ω)
Stack deleteMe1

deleteMe.addAll({v ∈ V | deg(v) < 2)2

while deleteMe.nonEmpty do3

v ← deleteMe.pop4

forall w ∈ N(v) do5

if deg(w) ≤ 2 then6

deleteMe.push(w)7

G.deleteNode(v)8

The initial preprocessing step of Orca is a
simple reduction of the instance to its 2-core.
Introduced in [201], the 2-core of a graph
is the maximal node-induced subgraph in
which each node has at least degree 2 (for
more details, see Section 3.1.3). Note that reduction

to 2-core
the running time of this procedure Core-2
Reduction is linear in m + n. The ratio-
nale behind this pruning step is as follows.
Nodes in the 1-core shell are tree-like appen-
dices, which are highly ambiguous to cluster
sensibly anyway (see Figure 2.5.2a). Since in
a reasonably modeled real-world network such appendices should not be large, we make the
straightforward assumption that any tree appendix is to be clustered together with its anchor
node in the 2-core, which is done in a postprocessing step. Depending on the nature of the
input, this step can significantly reduce the size of the actual problem instance.

2.5.1.2 Local Search for Dense Regions

We now describe an integral part of Orca, the elementary detection of dense regions. Roughly dense regions

speaking, a dense region R ⊆ V is a set of c nodes within distance d of some seed node v,
such that each node w ∈ R is within distance at most d of at least |Nd(v)|/γ other nodes
of Nd(v). This step is employed repeatedly and iteratively as will be described in the next
section. The pseudocode of this step is given in Algorithm 6, and its behavior is illustrated
in Figure 2.5.1.

Each call of the procedure Dense-Region-Local is parameterized by a seed node v
and two positive reals γ and d which set the required degree of density and the size of the
neighborhood to be explored, respectively. Low values of γ impose a stricter criterion on depth param. d

density, which leads to Dense-Region-Local returning smaller regions. First, the dense density crit. γ

region is initialized with the seed node v (Line 1). Then each candidate node, i.e., each node
w within distance d or less from v (Line 2), in turn has each node x ∈ Nd(w) increment its
seen-attribute (Lines 3-4). For each node this attribute thus stores how many nodes of Nd(v)
it considered a neighbor. The second part of this procedure now adds each node w ∈ Nd(v) to
the dense region, which has been seen by at least a γ-fraction of the nodes in Nd(v) (Lines 5- gather γ-dense

nodes
7) and returns the assembled region as in Figure 2.5.2b. Finally, the assembled dense region
(D,E(D)), being a node-induced subgraph of G, is returned. Note that also allowing nodes
in any N(w) into a region might produce undesirable “holes”. Furthermore, identifying dense
regions in a way analogous to the computation to k-cores would be significantly slower.
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1

2

1

v0

Figure 2.5.1. A run of Dense-Region-Local
starting at node v with γ = 4
and d = 1 assigns to each neigh-
bor of v the “seen by neighbors”
attribute.

Algorithm 6: Dense-Region-Local

Input: G = (V,E, ω), γ ∈ R+, depth d, seed v
Output: Dense region
denseRegion ← {v}1

forall w ∈ Nd(v) do2

forall u ∈ Nd(w) do3

u.seen++4

forall w ∈ Nd(v) do5

if w.seen ≥ |Nd(v)|
γ then6

denseRegion.add(w)7

return denseRegion8

The time complexity of this procedure is highly dependent on d. Setting d = 1 at most ∆
nodes each have their at most ∆ neighbors increment their attribute, yielding O(∆2). In the
worst case (G being a clique), this can amount to a running time of Ω(n2). However, as we
set our focus on practical instances, we ignore such pathological cases.

2.5.1.3 Contraction of Dense Regions

The second elementary operation on the graph is the contraction of a subgraph into a single
super-node. The main goal of Contraction is to reduce the size of the problem instance
by summarizing parts that have already been solved; Figure 2.5.2 illustrates its effect and
Algorithm 7 gives its pseudocode. Naturally, contracted subgraphs can participate in later

contract a
dense region

dense regions and thus grow even further. A useful byproduct of iterative contraction is the
construction of a hierarchy of clusterings. the general methodology of an instance

Algorithm 7: Contraction

Input: G = (V,E, ω), Nodes to contract D
create a super-node s in G1

forall edges e = {v, w} with v ∈ D, w ∈ V \ D do2

if {s, w} /∈ E then3

insert edge {s, w}, ω({s, w}) = 04

ω({s, w})← ω({s, w}) + ω({v,w})
|D|5

remove nodes D6

The contraction of a node-induced subgraph of G
is straightforward. A new node replaces the subgraph,
and is receives former adjacencies to other nodes are
replaced by new edges, weighted by their average ad-
jacency to the region. A rough upper bound on the
running time of such a Contraction clearly is O(m),
since each edge is touched only once. An amortized
analysis of the time complexity of a series of calls
of Algorithm Dense-Region-Local and Contrac-
tion will be given in the next section.

(a) The input instance, first it will be reduced to its
2-core by the removal of appendices.

Priority 1

Priority 4Priority 3

Priority 2

(b) Now, a set of local dense regions are
identified (colors).

0.143

0.333

0.25

0.25

(c) Each dense region is con-
tracted by priority.

Figure 2.5.2. Orca starts: On the 2-core, dense regions (by colors) are contracted in the order of contraction priority.
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2.5.1.4 Global Dense Region Detection

While procedure Dense-Region-Local identifies a dense region, and procedure Con-
traction reduces it to a super-node, the following algorithm, called Dense-Region-

Dense-Region-
Global orches-
tratesGlobal, orchestrates the calls to these local operations. Roughly speaking, a single run of

Algorithm 8: Dense-Region-Global

Input: G = (V,E, ω), γ ∈ R+, search depth d
PriorityQueue pq1

forall v ∈ V do2

denseRegion ← Dense-Region-Local(G, γ, d, v)3

pq.insert(v, ψ(denseRegion))4

List contractionList5

while !pq.isEmpty() do6

v ← pq.popMax()7

denseRegion ← Dense-Region-Local(G, γ, d, v)8

ExludeFromSearch(denseRegion)9

contractionList.add(denseRegion)10

forall denseRegion ∈ contractionList do11

Contraction(denseRegion)12

Dense-Region-Global assigns each node
to a prioritized dense region (Figure 2.5.2b),
and then abstracts the graph to the next hi-
erarchy level by replacing each dense region
by a super-node (Figure 2.5.2c). The crucial
observation is that Dense-Region-Global
reduces the size of the instance very quickly
and in a meaningful way, paving the way
for further and more far-reaching clustering
steps.

Given parameters γ and d as above,
Dense-Region-Global first calls for each
node v in the graph Dense-Region-Local
using v as the seed node. Each dense re-
gion returned is then inserted into a priority
queue with a priority key that expresses how
significant the region actually is, as indicated
in Figure 2.5.2b. This key is computed by evaluating the following simple function ψ that
measures the average edge weight mass incident with a node in the region: priority key ψ

ψ : P(V )→ [0, 1] D 7→
∑
e∈E(D) ω(e)

|D| , D ⊆ V

As mentioned in Section 2.1.3, a very recent alternative approach to accomplish this
ranking of anomalously dense local subgraphs, which we have yet to compare, is given in [220]
and uses spacial scan statistics from the field of data mining. However, we shall not detail it
here. After determining and queuing for each node v ∈ V its dense region, regions are popped
from the queue and contracted. Since we seek a proper partition of nodes, we first have to
reassemble dense regions excluding all nodes that are assigned to dense regions with a higher
priority by tagging them as invalid. Experiments showed that reordering the queue after such avoid overlaps

exclusions is costly and yields a minimal gain in quality, thus initial priorities are kept.
In total, n calls of Dense-Region-Local account for O(n∆2) and n priority queue

operations require O(n log n) time. During the course of all Contraction operations each
edge is touched at most twice, which yields an amortized time of O(m). Summing up, Dense-
Region-Global is in O(m+ n(∆2 + log n)).

2.5.1.5 Densification via Shortcuts

While initially, low degree nodes or appendices are pruned and assigned to clusters in a
canonical way (see Core-2 Reduction), this might not be desirable for super-nodes incor-
porating thousands of elementary nodes. However, such low degree elements are potentially
incompatible with a given choice of the threshold parameter γ Thus, we densify a graph, by densification with

shortcuts

0.5 0.5

1 2

3

0.25
1 2

Figure 2.5.3. Shortcuts using δ = 2, a shortcut between nodes 1 and 2, replaces node 3.
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replacing a low-degree node v with a clique construction of shortcuts among its neighbors as
in Figure 2.5.3. Similar to nodes removed during the Core-2 Reduction, such a node is
then potentially affiliated with the node it is most strongly connected to.

Algorithm 9: Shortcuts

Input: G = (V,E, ω)
δ ← minv∈V deg(v)1

forall v ∈ V do2

if deg(v) = δ then3

forall p = {v1, v2} | v1, v2 ∈ N(v), v1 6= v2 do4

if !∃ edge between v1 and v2 then5

create edge {v1, v2}, ω({v1, v2})← 06

ω1 ← ω({v, v1})7

ω2 ← ω({v, v2})8

ω({v1, v2})← ω({v1, v2}) + 1
1
ω1

+ 1
ω2

9

remove v10

Algorithm Shortcuts loops through all
nodes v with the minimum degree δ, en-
sure that all pairs {v1, v2} of nodes adja-
cent to v become connected and removes
v. The weight on the edge between {v1, v2}
is then set to its new conductivity, a con-
cept borrowed from electrical circuits: To
the old weight, which is 0 if the edge was
not present, the term 1/( 1

ω({v1,v}) + 1
ω({v2,v}) )

is added that expresses the conductivity of
the path π = v1, v, v2. The rationale is
that this adjustment maintains conductivi-
ties between all neighbors while densifying
the graph structurally, again enabling the
detection of dense regions. Analyzing the
time complexity very roughly yields a worst
case complexity of O(n ·∆2).

2.5.1.6 Putting Things Together

Algorithm 10: Orca

Input: G = (V,E, ω), d, γ ∈ R+

Core-2 Reduction(G)1

while |V | > 2 do2

Dense-Region-Global(G, γ, d)3

if |Vold| > 0.25|V | then4

Shortcuts(G,δ)5

else Store current clustering6

This section details the overall ap-
proach of Orca, i.e., Algorithm 10
which repeatedly calls all necessary pro-
cedures. After the Core-2 Reduction,
for as long as there are more than two
nodes left in the graph, Dense-Region-
Global and Shortcuts iteratively re-
duce and contract the graph. If at any
time no significant contraction is possible
(Line 4), Shortcuts removes low degree
nodes and compactifies the graph (Line 5). After each successful global contraction stage we
store the current clustering (Line 6). Orca returns the whole clustering hierarchy alongsideOrca’s output

evaluated quality indices for manual choice of the preferred clustering. Additionally a rec-
ommendation is given, based on quality indices. In practice, procedure Shortcuts is hardly
ever called, and no value of δ > 2 was ever used, leaving Shortcuts with a marginal im-
pact on running times. Only with ill-modeled graphs, pathological examples or unreasonableShortcuts rare

choices of γ does this procedure ever operate on a graph with size comparable to the input,
usually it is only called after a series of contraction steps. We discuss good choices for the
two parameters γ and d in the following section.

The total running time of Orca derives from its subroutines, and factor h, the number
of iterations of the main loop or, in other words, the depth of the clustering hierarchy, which
is n in the worst case, but always below log n in practice. However, since this work is on
practical performance, we refrain from a detailed analysis and close with our observation that
empirically the total running time of Orca sums up to O(log n(m+ n(log n+ ∆2))).

2.5.1.7 Engineering Orca

We here shortly discuss two small optimizations for Orca. It turns out that for particular
graphs with a few high-degree nodes the running time of Orca is dominated by the ∆2 term.
This particular observation has been made with other algorithms as well and seems to call for
researching some proper preprocessing of such nodes. Hence, we use a little tweak to reduce
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running times: After the Core-2 Reduction, we remove all nodes with a degree greater
than 4 ·√n from the graph, as these global hubs hardly indicate local density. Later we assign super-hubs are

factored out
such a node to the cluster which contains most of its neighbors.

At later iteration steps, it is possible that the current clustering still contains many sin-
gleton elementary nodes, which have not found their way into any dense region. In order to assigning leftover

nodes
reduce these undesirable clusters, we assign each singleton node to the cluster it is connected
to most strongly.

2.5.2 Parameters and Feasibility

This brief section yields insights on reasonable choices for the parameters γ and d and cor-
roborates the feasibility of Orca on two toy examples. Parameter testing was conducted
with the aid of two random generators that served as a source for graphs with an implanted
clustering structure.

Parameter Estimation. We employed two generators for random test instances: first, an
Attractor Generator, which is based on assigning nodes, randomly placed in the plane, to
clusters in a Voronoi fashion and connecting them with probability based on distance and
cluster affiliation; and second, a Significant Gaussian Generator which partitions the node
set into clusters and then interconnects nodes similar to the Erdős-Rényi model, using intra-
and inter-cluster edge-probabilities. We refer the reader to [71] for details on these generators, employed random

graph generators
where they are evaluated and shown to produce reasonable and variable pre-clustered graphs
with a tunable clarity. The latter generator is a slight variant of the generator described in
Section 2.3.4.1. In a broad study on smaller graphs with 50 to 1000 nodes (step size 50),
we varied the density parameter of the Attractor Generator from 0.5 (mostly disconnected
stars) to 2.5 (almost a clique) in steps of 0.1, and we varied the intra-edge probabilities of the
Significant Gaussian Generator between 0.1 (very sparse) and 0.7 (almost cliques) in steps of
0.1, having the ratio of inter-cluster edges range between 0.1 and 0.5 (0.05 step size). For each
such setup we performed 30 experiments and evaluated the results of Orca with respect to
performance, coverage and modularity .

The results of this parameter exploration revealed that setting depth d to 1 for unweighted d = 1 works best

graphs is the best choice in general. The main reason for this is that a broader candidate
neighborhood encourages “holes” inside clusters which at a later stage cannot be repaired.
Parameter γ, proved to be feasible for values between 2 and 10 for sparse graphs, with low values for γ

values working best in general.

Two Toy Examples. In the following we show clustering results for two graphs, one of
which is well known in the clustering community (and this thesis), and one that very fun-
damentally incorporates a clustering hierarchy. The latter graph is clearly organized into
16 small groups which themselves are organized into four groups, it was proposed in [153],
as a basic benchmark for hierarchy detection. Figure 2.5.4 shows Orca’s results, a clear Orca passes

benchmark test
success. The second example was compiled by Wayne Zachary [230] while doing a study on
the social structure of friendship between the members of a university sports club. The two
real-world factions are indicated by color in Figure 2.5.5. Using γ = 2 and d = 1, Orca clus-
ters this graph as illustrated in Figure 2.5.6, where hierarchy levels 1 to 3 are shown. Level Orca passes the

Zachary test
3 misclassifies only a single node (as usual, the notorious node number 10, in the original
numbering).

2.5.3 Experiments

Implementation Details. Another field with huge datasets in algorithm engineering is the
development of fast shortest path algorithms (see [74]). There we made the experience that in
most cases, the loss with respect to running times stemming from external libraries is rather
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Figure 2.5.4. Hierarchy levels 1 (grouping) and 3 (colors)
found by Orca.

Figure 2.5.5. Zachary in reality (cov = 0.87, perf = 0.62,
icc = 0.87, mod = 0.37).

(a) cov = 0.73, perf = 0.79, icc = 0.22,
mod = 0.39

(b) cov = 0.82, perf = 0.71, icc = 0.75,
mod = 0.40

(c) cov = 0.87, perf = 0.62, icc = 0.87,
mod = 0.37

Figure 2.5.6. Hierarchy levels 1 to 3 (left to right), using γ = 2 and search depth d = 1.

high. As the goal of Orca was the development of a fast clustering algorithm, our implemen-
tation is written in C++, using only the STL at some points. As priority queue we use a binary
heap, and we represent the graph as an adjacency array. In the following we report running
times and quality achieved by Orca, using fixed parameters γ = 2 and d = 1. For measuring
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(b) the data structure for G

Figure 2.5.7. A weighted graph G is represented
by three arrays.

Our tests were executed on one core of an AMD Opteron 2218
running SUSE Linux 10.3. It is clocked at 2.6 GHz, has 32
GB of RAM and 2 x 1 MB of L2 cache. The program was
compiled with GCC 4.2, using optimization level 3. The data
structure we used for the adjacency array representation of a
graph is best looked up in [67]. In fact, we observed that the
operations Orca performs most—the iteration over incident
edges—is very well supported by this data structure borrowed
from the field of route planning. Figure 2.5.7b shows how graph
G in Figure 2.5.7a is stored. Ids of nodes are implicitly stored
by the position in the upper array, and the value at that entry
is a pointer to the first of a node’s incident edges. However,
this edge is again only stored implicitly by the id of its second
incident node. The end of the list of a node’s incident edges is
easily determined by looking up the start of the next node’s first
edge. In a second, corresponding array we store edge weights.
It is easy to see that our data structure uses linear space, and
supports finding neighbors in linear time. Furthermore, after a
contraction, we build a new graph from scratch in linear time.
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Figure 2.5.8. Quality of the clustering hierarchy computed by Orca.
The inputs are the webgraph in-2004, the small world
citation network, and the road network of the US.

Inputs. We use three different types of in-
puts. Small world graphs, webgraphs and
road networks. The first group contains
three graphs. The first dataset represents
the Internet on the router level, it is taken
from the CAIDA webpage [52]. The second
graph is a citation network, obtained from
crawling citeseer [5]. The final dataset is
a co-authorship [20] network, which is ob-
tained from DBLP [4]. The second group of
inputs are webgraphs taken from [6]. Nodes
represent webpages, edges represent hyper-
links. We use four graphs, namely cnr-2000,
eu-2005, in-2004 and uk-2002. The final
group of inputs are road networks taken from
the DIMACS homepage [75]. We use three
graphs, the first one represents Florida, the
second one central USA while the last one
is the full road network of the US. Sizes are
given in Tables 2.5.1-2.5.3.

2.5.3.1 Hierarchy of Clusterings

We first evaluate the clustering hierarchy
computed by Orca. Figure 2.5.8 shows the
score of all quality indices and the number
of clusters for all levels of the hierarchy. For
brevity, we restrict ourselves to one repre-
sentative of each group of our inputs. As on
higher hierarchy levels, the number of clus-
ters decreases, coverage increases. It turns
out that inputs are too large (contain de-
generacies) for the worst-case index inter-
cluster conductance to yield reasonable in-
sights. Interestingly, modularity first in-
creases and later decreases, yielding a clear
preference. For sparse graphs performance is
known to favor fine clusterings, but the point
where performance severely decreases agrees
with what modularity favors. Summarizing,
Orca produces a reasonable clustering hier-
archy from which a user can choose his fa-
vorite. A good choice seems to be a level,
where performance, coverage, and modular-
ity score best. To keep things brief here, the
corresponding plots for the other graphs in-
stances we clustered are summarized at the
end of this section in Figure 2.5.9.

2.5.3.2 Comparison

Next, we compare our results with competing graph clustering algorithms. We evaluate the
global greedy modularity algorithm [57], the new local variant [38], and the walktrap [187].
We omit a number of other promising approaches, e.g., via simulated annealing [81], which
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are computationally too demanding for these instance sizes. The implementations of global
greedy and walktrap are taken from the igraph library [60], the code for local greedy is taken
from [39]. Note that in the following we only report the clustering with maximum modularity
for Orca, quality scores of other levels can be found in Figure 2.5.8 and 2.5.9.

Small World Graphs. Tab. 2.5.1 reports running times and quality scores achieved by
Orca and competing algorithms applying our three small world inputs. We observe excellent
running times for Orca with feasible quality scores. Moreover, we observe that in terms of
running time, global greedy and walktrap cannot compete with the local algorithms. Whilelocal algorithms

much faster
this is to be expected, note that they do not achieve better quality scores either. Comparing
Orca with local greedy we observe that Orca tends to produce finer clusterings. Roughly
speaking, quality scores are worse than for local greedy but still feasible. For the instance
citation, Orca fails to find a very good clustering, this is mainly due to many high degree
hubs—milestone papers or major surveys, where Orca seems to take too many simplification
steps (see Engineering Orca above). Please refer to Figure 2.5.9 for quality indices on
different hierarchy levels of Orca.

Webgraphs. Next, we focus on the scalability of our approach. The webgraphs we have
taken from [6] have similar properties but different sizes. It turns out that the global greedy
algorithm needs too much memory to be executed while walktrap takes too much time.
Hence, we compare Orca with the local greedy algorithm only, Tab. 2.5.2 reports running
times and quality scores. At a glance we observe that Orca provides good clusterings within
reasonable computation times. All graphs are clustered in less than 2.5 hours. Only for eu-
2005, we achieve a modularity score of less than 0.85, and do not agglomerate long enough
to find a better clustering. Interestingly, inter-cluster conductance is always almost zero for
Orca. This stems from the fact that, inter-cluster conductance, being a worst-case quality
index, always considers a clustering with at least one singleton a very poor clustering. While
this may make sense for small inputs, such a worst-case index is not reliable for large inputs.
As observed in Fig. 2.5.8, in most cases clusterings on a higher level score higher values.
Comparing Orca with local greedy, we observe that Orca has longer running times but
achieves comparable quality scores on these large inputs, neglecting inter-cluster conductance.
On cnr-2000 and eu-2005 local greedy has a slight advantage in terms of quality indices while
on in-2004 and uk-2002 Orca yields higher values. On these two instances, Orca outperforms

Orca com-
petes well

the local greedy method in terms of modularity—especially on uk-2002 by a surprisingly large
margin. Although the latter technique merges groups of nodes until no more improvement in
modularity can be attained, it seems to fundamentally run past the innate clustering structure

Table 2.5.1. Running times and quality of the algorithms on small world graphs.

Instance n/m Algorithm time [h:mm] clusters icc perf. cov. mod.

caida
Router

global greedy 0:20 1672 0.5667 0.9397 0.9052 0.7639
190 914 Walktrap 0:23 24952 0.0000 0.9858 0.7540 0.6693
607 610 local greedy < 0:01 442 0.6410 0.9720 0.8944 0.8440

Orca < 0:01 492 0.2105 0.9578 0.7113 0.6500

co-
Authors

global greedy 1:15 2930 0.5000 0.9187 0.8638 0.7413
299 067 Walktrap 0:55 37669 0.0000 0.9790 0.7089 0.6432
977 676 local greedy < 0:01 269 0.6196 0.9813 0.8486 0.8269

Orca < 0:01 2038 0.1733 0.9954 0.7274 0.7212

citations

global greedy 2:08 1927 0.2857 0.8253 0.9106 0.6650
268 495 Walktrap 0:51 16822 0.0000 0.9690 0.7449 0.6824

1 156 647 local greedy < 0:01 147 0.5983 0.9544 0.8593 0.8037
Orca < 0:01 4201 0.0000 0.9973 0.5649 0.5100
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Table 2.5.2. Running times and quality of the algorithms on webgraphs.

Instance n/m Algorithm time [s] clusters icc perf. cov. mod.

cnr-
2000

325 556 local greedy 8 242 0.8571 0.9799 0.9971 0.9130
5 565 376 Orca 28 110 0.0002 0.9632 0.9427 0.8567

eu-2005
862 664 local greedy 23 326 0.7668 0.9643 0.9708 0.9376

32 778 307 Orca 307 217 0.0002 0.9458 0.7965 0.7014

in-2004
1 382 908 local greedy 36 1004 0.0000 0.9931 0.9234 0.9094

27 560 318 Orca 313 740 0.0002 0.9877 0.9503 0.9288

uk-2002
18 520 486 local greedy 432 6280 0.0000 0.9981 0.5693 0.5671

529 444 599 Orca 8807 66595 0.0000 0.9995 0.8758 0.8749

Table 2.5.3. Running times and quality of the algorithms on road networks.

Instance n/m Algorithm time [s] clusters icc perf. cov. mod.

florida
1 070 376 local greedy 15 541 0.9845 0.9978 0.9971 0.9948
2 687 902 Orca 37 48 0.9609 0.9954 0.9913 0.9866

central
14 081 816 local greedy – – – – – –
33 866 826 Orca 1116 343 0.9319 0.9943 0.9966 0.9909

usa
23 900 746 local greedy – – – – – –
58 389 712 Orca 1317 209 0.9424 0.9980 0.9954 0.9933

of this network, since Orca identifies ten times as many clusters, with both a significantly
higher coverage and modularity . At this point it is worth noting that the size of the local

Orca’s modular-
ity higher than
mod.-based greedygreedy clustering monotonously scales with the number of nodes (except for the smallest

instance). This is paralleled by the predictable and artificial behavior of the modularity
index, favoring a balance of (small) degree sums within clusters over coverage. This might be
the reason for the algorithm’s behavior on uk-2002, which seems better clustered much finer.
Again, please refer to Figure 2.5.9 for quality indices on different hierarchy levels of Orca.

Road Networks. Unfortunately, walktrap and global greedy are way too slow for this input
and the implementation of the local greedy algorithm crashes with a segmentation fault, for
reasons unknown to us. Hence, we conclude that Orca is currently the only graph clustering
algorithm working on large instances of such kinds of inputs. As observable in Tab. 2.5.3, both only Orca

finishes
running times and quality scores are excellent. All quality indices score a value higher than
0.94 and most scores are on a high standard for many levels of the hierarchy, see Figure 2.5.9.
We need less than 22 minutes to construct all levels of the hierarchy. Note that although
usa is almost double the size of central, and Orca clusters the former even coarser; running
times are very similar. Together with the very high quality values, usa seems to be an easy
instance.
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Figure 2.5.9. Quality of the clustering hierarchy computed by Orca.
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2.5.4 Example: a Complete Orca-Run
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Figure 2.5.10. An illustrative complete run of Orca on a tiny example. Note the shortcutting of the brown node in
Figures (j)-(k). In Figure (n) Orca is actually finished, then the contracted subgraphs are unfurled.
In the end, the yellow node is left as a singleton cluster, as it did never actually take part in a dense
region. Figure (u) illustrates that a user is also presented clusterings from intermediate hierarchy
levels, such as given by the dashed subclustering.



Section 2.6

Comparing Clusterings

This chief, one Nosnra, is a grossly fat and
thoroughly despicable creature, sly and

vicious, loving ambush and backstabbing.

(Against the Giants,
Gary Gygax)

Suppose we are given a few clusterings, each one stemming from some individual
opinion on how to group the nodes of some graph. Can we quantify how much two

opinions differ? Consider another scenario: We require a good clustering algorithm for a
specific application, and we have access to a number of controlled preliminary experiments,
where we know the ground-truth clusterings of typical instances of the application. Can we
use this information to find a suitable clustering algorithm for the application? We could now
simply rely on some quality indices, which might work well. However, we could also choose
the algorithm which on the average is as close as possible to the ground truth on the test
instances. And as a final question, which anticipates Chapter 4, suppose a network changes
dynamically, and we are to cluster it periodically. Can we quantify how much the clustering
changes between two consecutive steps?

For each of these tasks we require a means to measure the distance between two clusterings.
After we have spent quite a few pages on quality measures, it is immediate that there exists
a mutual relation between the two concepts of quality and distance: On the one hand, one
could use the difference of the qualities of two clusterings as a distance measure, and on
the other hand, measuring the distance of a given clustering to some “optimal” clustering
could yield a measure of the quality of the clustering. However, there are pressing reasons
against this approach: The subjective dependence on the used quality measure and, more
importantly, the fact that completely different clusterings may yield the same quality value
and are thus judged to be equal. Current techniques for the comparison of clusterings mainly
use existing measures from the field of data mining [218], which have a crucial drawback:
they only consider the partition of nodes and ignore the structure of graphs.

In this section we address these drawbacks and introduce new approaches combining struc-
tural properties and qualitative aspects. In order to achieve this, we extend data mining
measures by adding qualitative features and introduce a new promising measure having its
origin in quality measurement. Since comparing clusterings requires keeping many dimensions
and aspects in consideration, we focus on the case of static comparison, i.e., the graph does
not chang, but give an outlook on the case where the underlying graphs of two clusterings
are allowed to differ. In an experimental evaluation we postulate certain traits of intuitive
behavior of distance measures in controlled experiments, and show that the drawbacks of data
mining measures are not only theoretical in nature but manifest often, and that our proposed
approaches comply with our postulations. Summarizing, extensions of established set-based
measures to graph-based measures are not trivial and need not lead to intuitive results, how-
ever, some do so, as we show. The new measure we propose, the editing set difference, can be
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recommended as a reasonable measure and can naturally cope with a dynamic setting, where
the edge set is allowed to change over time.

The vision of fully dynamic graph clustering is—again, at least in my personal reckoning—
long-standing. However, there are numerous points of uncertainty and unresolved questions
even in the static context, which holds back a theoretician. One of these concerns the com-
parison of clusterings, and thus motivated our work on it. Most of the material in this section
has been published in [68, 69, 70], based on joint work with Daniel Delling, Marco Gaertler
and Dorothea Wagner. In my eyes it is a very reasonable approach towards measures that
are specific to graph clustering and not provisionarily borrowed from data mining. However,
I suspect that in first works to come on dynamic graph clustering, measures described in
this section will initially have a hard time and will probably have to yield to traditional and
well known measures from data mining. The reason for this is simple: it is much harder to
convince people of two new and freshly designed concepts at once. We shall take that risk in
Section 4.3.

Main Results

• We conceive a systematic approach for extending whole classes of set-based distance
measures to graph-based measures. These classes are measures that use pair-counting,
overlaps or entropy. (Section 2.6.3.1)

• We design and advocate a new graph-structural distance measure ESD based on the
notion of the cluster editing-set.

• A controlled experimental evaluation exposes how traditional measures violate intuitive
postulations for distance measures and shows that our new measure ESD and some of
the extended measures comply, the extensions of the adjusted Rand index and Fred &
Jain’s index in particular. We thus arrive at sound recommendations on which measures
to use and what behavior to be aware of.

2.6.1 Preliminaries

Since we have not used these terms for a while now, recall from Section 1.2.2 that we call a
graph with disjoint cliques a clustergraph. Moreover, the cluster editing set FC is the set of clustergraph

edges to be added to or deleted from a given graph in order to transform the graph and a given
clustering C into an according clustergraph, i.e., such that the clusters constitute the cliques. cluster editing set

When comparing two clusterings we use C and C′, with k := |C|, l := |C′|. Furthermore, it
should be noticed, that all presented measures are given in a distance version, normalized to

distances
(not similarities)

the interval [0, 1], from equal/very close (0) to very distant/dissimilar (1). Although most of
the results in this Section can immediately be transferred to weighted graphs, we keep things
restricted to simple graphs here, since in this conceptual approach, weights will only disrupt
notation and introduce special cases.

2.6.2 Existing Distance Measure

In the following, we give a short overview of existing comparison techniques. Among them
are both measures based on quality and on comparing the partitions of node sets. The latter
are also called node-structural. node-structural

Quality-Based Distance. Quality-based measurements can be constructed by comparing quality-based

the scores of the two clusterings with respect to an arbitrary quality index such as coverage,
performance or modularity [46, 57]. Note, that a distance measured in such a way is highly
dependent on the used index. Furthermore, completely different clusterings can yield the
same value. Thus, we neglect purely quality-based distances in the following and focus on
measuring the distance based on the structure of the clusterings.
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Counting Pairs. In [218] some techniques based on counting pairs are presented. Summa-counting pairs

rizing, every pair of nodes is categorized based on whether they are in the same (or different)
cluster with respect to both clusterings. Four sets are defined: S11 (S00) is the set of unordered
pairs that are in the same (different) clusters under both clusterings, whereas S01 (S10) con-S11, S00, S01, S10

tains all pairs that are in the same cluster under C (C′) and in different under C′ (C). In
the following we present two representatives for this class: Rand and adjusted Rand mea-
sure. Rand introduced the distance function R given in Equation 2.6.1 in [189], it suffersRand R
from several drawbacks. For example, it is highly dependent on the number of clusters. One
attempt to remedy some of these drawbacks, which is known as adjusted Rand AR and givenadjusted

Rand AR
in Equation 2.6.1, is to subtract the expected value for clusterings with a hypergeometric
distribution of nodes, see [167].

R(C, C′) := 1− 2(n11 + n00)

n(n− 1)
, AR(C, C′) := 1− n11 − t3

1
2 (t1 + t2)− t3

, (2.6.1)

where t1 := n11+n10, t2 := n11+n01, and t3 := (2t1t2)/(n(n−1)) and t1 (t2) is the cardinality
of all pairs of nodes that are in the same cluster under C (C′).

Overlaps. Another counting approach is based on the k× l confusion matrix CM := (mij)overlaps

whose ij-entry indicates how many elements are in cluster Ci and C ′j , i.e., how large is theconfusion matrix

overlap, formally mij := |Ci∩C ′j |, for 1 ≤ i ≤ k and 1 ≤ j ≤ l. Several measures are based on
the confusion matrix. We restrict ourselves to the measure NVD, introduced by van Dongenvan Dongen

NVD
in [213], given in Equation 2.6.2. Other measures suffer from the obvious disadvantage of
asymmetries, thus we exclude them. We use a normalized version to keep the measure to the
interval [0, 1].

NVD(C, C′) := 1− 1

2n

k∑
i=1

max
j
mij −

1

2n

l∑
j=1

max
i
mij (2.6.2)

One major drawback of NVD is that the distance between the two trivial clusterings, i. e.,
k = 1, l = n, only yields a value of about 0.5. In addition, this measure suffers from the
drawback that only the maximum overlaps contribute, resulting counter-intuitive examples
are given in [163].

Information Theory. More promising approaches are based on information theory [59].entropy-based

Informally, the entropy H(C) of a clustering is the uncertainty of a randomly picked nodeentropy H
belonging to a certain cluster. The entropy of a clustering is always positive and is bounded
by log2(n), see [206]. An extension of entropy is the mutual information I(C, C′). The mutualmutual in-

formation I
information of two clusterings is the loss of uncertainty of one clustering if the other is given.
With P (i) := |Ci|/n and P (i, j) := (|Ci∩C ′j |)/n, entropy and mutual information are defined
as follows.

H(C) := −
k∑
i=1

P (i) log2 P (i) , I(C, C′) :=

k∑
i=1

l∑
j=1

P (i, j) log2

P (i, j)

P (i)P (j)
(2.6.3)

Note that mutual information is positive and bounded by min{H(C),H(C′)} ≤ log2(n). In
the following we present two representatives in this class, namely one introduced by Fred &
Jain in [140] and variation of information, introduced by Meila in [162].Fred & Jain FJ

variation of in-
formation VI

FJ (C, C′) :=

{
1− 2I(C,C′)

H(C)+H(C′) , if H(C) +H(C′) 6= 0

0 , otherwise
(2.6.4)

VI(C, C′) := H(C) +H(C′)− 2I(C, C′) (2.6.5)
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The first measure FJ , given in Equation 2.6.4, is a normalized version of the mutual infor-
mation and stated as a distance function. The case differentiation is used to deal with the
degenerated case of two trivial clusterings, i. e., k = l = 1.

The second measure VI is motivated by an axiomatic approach and given in Equation
2.6.5. In [163], it is shown that VI is the only measure fulfilling several axioms. However,
these axioms seem to be inadequate in the special case of graph clustering. According to

axiomatic
approach

these axioms, the movement of a node v from one cluster Ci to another cluster Cj must be
equivalent to first splitting v off from Ci and then merging it with Cj . Figure 2.6.1 shows an
example regarding this axiom: intuitively d(C, C′′) should be greater than d(C, C′)+d(C′, C′′) of
which both terms represent minor changes, but according to the axiom d(C, C′′) = d(C, C′) +
d(C′, C′′) must hold. This measure is not normalized and the two possible normalization
factors, which are 1/ log2(n) and 1/ log2(max{k, l}), mapping to the intervals [0, x], x ≤ 1 and
[0, 1] respectively, have significant drawbacks. Nevertheless, we use the log2(n) normalized
version for comparability with the other measures.

Drawbacks of the Data Mining Approach. All node-structural measures suffer from
the same drawback: They neglect the structure of the graph. The examples in Figure 2.6.2
clarify this circumstance. The figure shows four clusterings C1, C′1, C2 and C′2 on two graphs G1

and G2. A measure d not considering the structure of the graphs fulfills d(C1, C′1) = d(C2, C′2). graph structure is
ignored

Intuitively, the distance d(C1, C′1) has to be greater than d(C2, C′2) since the quality of C1 is
almost equal to that of C2, but C′1 has far lower quality than C′2. This drawback can become
arbitrarily grave when the edge set of the graph is allowed to change.

2.6.3 Engineering Graph-Structural Comparison Measures

In order to remedy some of the disadvantages of node-structural measures, we introduce the
concept of graph-structural measures. Since they are also based on the underlying graph graph-structural

measures
structure, they can include qualitative aspects for measuring the distance of two clusterings.
In the first part, Section 2.6.3.1, we extend node-structural measures, while a novel measure
is introduced in the second part, Section 2.6.3.2.

2.6.3.1 Extension of Node-Structural Measures

For consistency, all extended measures should meet the following requirement: If the under-
lying graph is complete, then both the graph- and node-structural version should yield the

(a) C (b) C′ (c) C′′

Figure 2.6.1. Two minor changes sum up to
a major one.

(a) C1 (b) C′1 (c) C2 (d) C′2

Figure 2.6.2. Two static comparisons of graph clusterings; if we ig-
nore edges, both yield the same distance.
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same value, since then the graph structure does not provide additional information. A second
objective is to adjust the three founding principles—counting pairs, overlaps and informa-
tion theory—of the existing measures themselves, instead of adjusting each implementation
separately.

Counting Local Pairs. Instead of categorizing every pair, we only consider those pairs,
that are connected by an edge. For a, b ∈ {0, 1} we define Eab := Sab ∩ E and eab := |Eab|.
It is obvious that Sab = Eab holds for complete graphs. Thus, we obtain the graph-basedgraph-based

pair counting
versions Rg and ARg of the Rand and adjusted Rand measure given in Equation 2.6.6:Rg,ARg

Rg(C, C′) := 1− e11 + e00

m
, ARg(C, C′) := 1− e11 − t3

1
2 (m(C) +m(C′))− t3

, (2.6.6)

where t3 := (m(C)m(C′))/m. Note, that m(C) = e11 +e10 and m(C′) = e11 +e01, respectively,
hold.

Degree-Based Overlaps. Measures based on overlaps can be transformed into graph-
structural measures by a slight modification in the definition of the confusion matrix as
follows. The ij-th entry of the degree-based confusion matrix CM d := (md

ij) indicates thegraph-based
overlaps

sum of the degrees of the nodes that are both in Ci and C ′j , formally md
ij := deg(Ci ∩ C ′j).

Note, that if G is d-regular graph, then the equality CM = CM d/d holds. In certain cases,
this may lead to different normalization factors. The extension of NVD is given in Equation
2.6.7.NVDg

NVDg(C, C′) := 1− 1

4m

k∑
i=1

max
j
md
ij −

1

4m

l∑
j=1

max
i
md
ij (2.6.7)

The equivalence of the node- and the graph-structural variant of the normalized van Dongen
measure for regular graphs follows from m = dn/2 and mij = md

ij/d.

Edge Entropy. The entropy defined in Section 2.6.1 solely depends on the node set, thus
we extend it to the edge-set using the following paradigm: Instead of randomly picking a
node from the graph for measuring the uncertainty, we pick the end of an edge randomly. Asgraph-based

entropy
a consequence, a node with high degree has a greater impact on the distance. The formal
definition of edge entropy HE and edge mutual information IE is given in Equation 2.6.8 and
2.6.9.

HE(C) := −
k∑
i=1

PE(i) log2 PE(i) , (2.6.8)

IE(C, C′) :=

k∑
i=1

l∑
j=1

PE(i, j) log2

PE(i, j)

PE(i)PE(j)
, (2.6.9)

where PE(i) := deg(Ci)/2m and PE(i, j) := deg(Ci ∩ C ′j)/2m. Note that for regular graphs,
the entropy and the edge entropy coincide. The extensions of FJ and VI are given in
Equation 2.6.10 and 2.6.11.FJ g,VIg

FJ g(C, C′) :=

{
1− 2IE(C,C′)

HE(C)+HE(C′) , if HE(C) +HE(C′) 6= 0

0 , otherwise
(2.6.10)

VIg(C, C′) := HE(C) +HE(C′)− 2IE(C, C′) (2.6.11)

The equivalence of the node- and the graph-structural variant for regular graphs results from
the equality of entropy and edge entropy for complete graphs. Meila showed in [163] that
VI ≤ log2(n) also holds for weighted clusterings. Since the degree of a node can be interpreted
as node weight our log2(n)-normalization maps to the interval of [0, 1].
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2.6.3.2 A Novel Approach for Measuring Graph-Structural Distance

Although the extensions introduced in the previous section incorporate the underlying graph
structure, they are not directly suitable for comparing clusterings on different graphs. In that
case elements not existent in both graphs will have to be excluded from consideration. As a
first step to solve this task, we consider the restriction to graphs with the same node set, but
potentially different edge-sets. Our approach is motivated by the cluster editing set problem cluster editing set

(see, e.g., [65]) which can be phrased as follows: What is the minimum number of edge-deletion
and edge-insertion operations that suffice to change a given graph into a clustergraph? This
problem has been shown to be NP-hard and fixed parameter tractable with the (size of the)
solution as the parameter; please refer to the above reference and to further pointers therein.
In our setting we do not require an optimal clustering (i.e., the “closest” clustergraph) to
compare to, as we already have two reference clusterings at hand, which we can compare to.
Based on this notion, we introduce the editing set difference defined in Equation 2.6.12. editing set differ-

ence ESD

ESD(C, C′) =
|FC ∪ FC′ | − |FC ∩ FC′ |

|FC ∪ FC′ |
= 1− |FC ∩ FC′ ||FC ∪ FC′ |

(2.6.12)

The editing set difference takes the cluster editing set of each of the graphs wrt. their given
clusterings, and computes the geometric difference of these two sets. Edges which either both
sets delete or add or which both sets leave untouched do not contribute to the distance. Small
cluster editing sets correspond to significant clusterings. By comparing the two clusterings
with a geometric difference, we obtain an indicator for the structural difference of the two
clusterings. It easy to see, that in the case of static comparison, ESD is a metric. The example
in Figure 2.6.3 illustrates how ESD operates. A noticeable property of ESD is the fact that
two bad clusterings, which both need to edit many edges to reach their clustergraphs, will
have a large normalizing term in the denominator. They will thus only have a large distance
from each other if their editing sets largely differ. Clearer clusterings, which already are very
close to their clustergraphs, are more sensitive to different editing sets. This is a property
which we conjecture to be in agreement with intuition, and we shall come back to it in our
postulations below. As a side note, in fully dynamic graph clustering, if large batches of

Figure 2.6.3. In the upper row, two clusterings C and C′ (on the same graph) are given. The
second line highlights their individual editing sets, deletions are red and insertions
are green. The final figure then shows the edges that contribute to the distance
(dashed) and those that only partake in the normalization (light, solid), as they
are in both editing sets.
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updates are to be expected, ESD might be improved if the sets of edges to be inserted and
those to be deleted are handled separately. However, this point is not pursued any further in
this work.

2.6.4 Experiments and Evaluation

We evaluate the introduced measures on two setups. The first focuses on structural properties
of clusterings, the second concentrates on qualitative aspects:experimental

setup

Initial and Random Clusterings. The tests consist of two comparisons, each including
clusterings with the same expected intrinsic structure of the partitions, i. e., the expected
number of clusters and the size of clusters. The first comparison uses one significant
clustering and one uniformly random clustering, while the second one uses two uniformly
random clusterings.

Local Minimization. The setup consists of two parts, each comparing a reference clustering
with a clustering of less significance. The two parts differ in the significance of the
reference clustering.

The intuition of the first test is to clarify the drawbacks of the node-structural measures,
while the second setup verifies the obtained results. We use the attractor generator intro-
duced in [71] which uses geometric properties based on Voronoi Diagrams to generate initial
clusterings. The Voronoi cells represent clusters and the maximum Euclidean distance of two
nodes being connected is determined by a perturbation parameter. All tests use n = 1000
nodes and are repeated until the maximal length of the 0.95-confidence intervals is not larger
than 0.1.

2.6.4.1 Initial- and Random Clusterings

The generated clustering is used as a significant clustering. For the random clustering we firstfirst test:
GvR vs. RvR

pick k uniformly at random between 2 and 3
√
n for the number of clusters and assign each node

uniformly at random to the k clusters. Figures 2.6.4a and 2.6.4b show the measured quality
by the indices coverage, performance and modularity (see Section 1.2.2). The tests consists
of two cases. On the one hand, the comparison of the generated and a random clustering
(GvR) and on the other hand, the comparison of two random clusterings (RvR).

Postulations

1. A measure for comparing graph clusterings should differ in the two cases. For GvR, a
suitable measure should indicate a decreasing distance with the loss of significance ofGvR: dis-

tance ∼ clarity
the reference. Still, the distance of any clustering to a random clustering should always
be high.

2. For RvR two acceptable outcomes are possible: (i) On the one hand, one could claim that
the distance between two random clusterings should be independent of the underlying
graphs. (ii) On the other hand, the distance should decrease with the loss of significanceRvR: dis-

tance ∼ clarity
because two random clusterings on an almost complete graph are closer to each other
than on a graph with an existing significant clustering.

Results. Figure 2.6.4 shows the results for the node- and graph-structural measures. By
comparing Figure 2.6.4c and 2.6.4d it is evident that node-structural measures do not distin-node-structural

fails test
guish the two cases. Only Fred & Jain and adjusted Rand reflect the interpretation that the
distance to a random clustering is always maximal. However, the situation changes for the
graph-structural distance (Figures 2.6.4e and 2.6.4f). Only Rand and ESD capture the differ-
ence, while the remaining measures show nearly the same behavior as their node-structural



2.6 Comparing Clusterings 105

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x x x
x x

x x x x x x x x x x x x x x x x x x x x x
x x x

x
+ + +

+ + + +
+ + + + +

+ +
+

+ +
+

+ +
+ +

+ + +
+

+ + + +

ρρ

m
e

a
s
u

re
d

 q
u

a
lit

y

x

+

coverage

performance

modularity

(a) Quality of initial clustering

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x x x
x x

x x
x x x x x

x
x x

x x x x x x x x x x x
x x x

x

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ρρ

m
e

a
s
u

re
d

 q
u

a
lit

y

x

+

coverage

performance

modularity

(b) Quality of random clustering

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ρρ

m
e

a
s
u

re
d

 d
is

ta
n

c
e

x

+

Rand

adj. Rand

van Dongen

Fred & Jain

norm. var. inf.

(c) GvR node-structural

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ρρ

m
e

a
s
u

re
d

 d
is

ta
n

c
e

x

+

Rand

adj. Rand

van Dongen

Fred & Jain

norm. var. inf.

(d) RvR node-structural

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

+

+
+

+ + + + + + + + + + + + + + + + + + + + + + + + + + +

ρρ

m
e

a
s
u

re
d

 d
is

ta
n

c
e

x

+

Rand (g)

adj. Rand (g)

van Dongen (g)

Fred & Jain (g)

norm. var. inf. (g)

ESD

(e) GvR graph-structural

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

+
+

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +

ρρ

m
e

a
s
u

re
d

 d
is

ta
n

c
e

x

+

Rand (g)

adj. Rand (g)

van Dongen (g)

Fred & Jain (g)

norm. var. inf. (g)

ESD

(f) RvR graph-structural

Figure 2.6.4. Results of the initial- and random clustering setup

counterparts. For GvR, the distance measured by Rand is decreasing with increasing density ESD and ARg
pass test

while for RvR the distance is invariant under the density. Furthermore, the measured distance
equals the node-structural measurement for RvR. ESD has the same behavior for GvR as
Rand, whereas RvR reflects the intuition that two random clusterings become more similar
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with loss of significance. Under the assumption that a comparison to a random clustering
should always be interpreted as maximal, adjusted Rand and Fred & Jain can be accepted.Fred & Jain OK

Nevertheless, the equivalence of the node- and the graph-structural versions of van Dongen
and the normalized variation of information is counterintuitive. This partly originates from
the fact, that attractors produce graphs that are close to regular for % > 0.5. Furthermore,
the clusters are equal in size. The strange behavior of Fred & Jain, van Dongen and the
variation of information for very small % stems from the fact that for small % attractors are
nearly stargraphs with k centers.

2.6.4.2 Local Minimization

Since there are several possible interpretations of graph-structural distance and the structural
similarity of the clusterings in Section 2.6.4.1, a second test is executed having a precise
intuition for graph-structural distance. Again, as a reference clustering we use the generated
clustering of an attractor graph. The second clustering of less significance is obtained fromsecond test:

ruining a C
the reference clustering by locally moving nodes from one cluster to another. Such a shift
is executed, if it maximally decreases a given index among all possible shifts. This is done
until no decrease of quality can be achieved or the number of moved nodes has reached a
maximum value of Mmax; leaving a considerably bad clustering. We now measure the distance
of each intermediate clustering to the initial clustering with our indices. In this setup, we
use modularity as the index to be decreased, the density is set to the values % = 0.5 (type
1) and % = 2.5 (type 2), and Mmax increases from 0 to 500 using steps of 5. As a control,
Figures 2.6.5a and 2.6.5b show the measured quality of the locally decreased clusterings on
increasing number of moved nodes.

Postulations

1. A suitable distance measure should first of all distinguish the two cases. In type 1 a
very clear clustering is iteratively deteriorated, which should immediately results in high
distances. In type 2 rather unclear clustering is further made worse, this should not

type 1 steeper
than type 2

yield distances as high as in type 1.

2. In addition, with increasing Mmax the distance curves of both types should flatten,
since in the beginning clustering structure is lost, but after a while only mere randomdistance curves

should flatten
partitions are further estranged from the original.

3. The total distance of type 2 must only very late reach the level of the distance in type
2, if at all, since type 1 always compares to clearer initial structure than type 2. Onlytype 1 ≥ type 2

when mere randomness is reached, can a distance close to 1 be accepted for type 2.

Results. Figure 2.6.5 shows the result for all measures on this specific setup. As shown
in Figures 2.6.5c and 2.6.5d, all node-structural measures hardly distinguish the two cases.
Evaluating the graph-structural measures (Figures 2.6.5e and 2.6.5f), the intuitive behavior
of Rand is verified. Furthermore, adjusted Rand and ESD distinguish both cases very well.

ESD and
ARg pass test

The remaining graph-structural measures show the same behavior as their node-structural
counterparts. Thus, the failure of van Dongen and the variation of information is confirmed.others mostly fail

Unlike in Section 2.6.4.1, Fred & Jain fails on this setup. The unexpected behavior of the
overlap and entropy based measures may be due to—as mentioned in Section 2.6.4.1—the
fact that for % = 0.5 and % = 2.5 attractor graphs have a fairly regular structure. As shown
in Section 2.6.1, the graph-structural versions of overlap- and entropy-based measures equal
the node-structural variants for regular graphs.

2.6.4.3 Real-World Scenario

In this section, we discuss a real-world instance in order to illustrate the advantages of graph-
structural measures over node-structural ones. As the input, we use an email graph (Fig-example:

email graph
ure 2.6.6) of Karlsruhe’s Fakultät für Informatik, similar to that in Section 2.3.4.3, stemming
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(c) type 1 node-structural distances
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(d) type 2 node-structural distances
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Figure 2.6.5. Results of the local minimization setup

from a different timespan. As a reference clustering, we group by departments. We addi-
tionally compute two clusterings by using the greedy modularity approach (see Section 2.2.5)
and the MCL algorithm [213]. Table 2.6.1 depicts the scores achieved by the quality mea-
sures coverage, performance and modularity . Table 2.6.2 gives an overview of the measured
distances between the abovementioned clusterings. We observe that the MCL-clustering is
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Figure 2.6.6. Karlsruhe email graph. Groups refer to the reference clustering, colors to the
clustering obtained by the greedy modularity algorithm.

Table 2.6.1. Quality scores achieved by the
reference clustering and those computed by the
greedy approach and by MCL. The input is the
Karlsruhe email graph.

reference greedy MCL
coverage 0.8173 0.8634 0.8182
performance 0.9387 0.8286 0.9238
modularity 0.7423 0.6725 0.7282

not as close to the reference than one could expect from the
figures in Table 2.6.1. All graph-structural distance measures
indicate a difference of more than 0.1. More interestingly, ESD
yields a lower score than graph-structural adjusted Rand. For
artificial data, the contrary is true (cf. Section 2.6.4). Most of
our graph-structural measures indicate a lower distance between
all clusterings than their node-structural versions. As all clus-
terings score similar quality values, and thus have quite a low
distance with respect to quality, the graph-structural measures

really incorporate qualitative aspects. Hence, they harmonize better with intuition than the
purely node-structural versions. As discussed in Section 2.6.1, the node-structural Rand
measure yields a very small value, due to the high number of small cluster. However, thisgraph-structural

⇒ closer
drawback appears to be remedied by the graph-structural version.

Table 2.6.2. Measured distances between the reference and two computed clusterings. One
clustering is obtained by MCL, the other one by the greedy modularity algorithm.
The input is the Karlsruhe email graph (cf. Figure 2.6.6).

reference reference greedy
measure type measure vs. greedy vs. MCL vs. MCL

quality modularity difference 0.0697 0.0140 0.0557
Rand 0.1233 0.0463 0.1466
adj. Rand 0.5765 0.3555 0.6549

node-structural van Dongen 0.2676 0.1834 0.3465
Fred & Jain 0.3137 0.1794 0.3876
variation of information 0.2425 0.1658 0.2904

graph-
structural

Rand 0.1963 0.1305 0.2452
adj. Rand 0.4689 0.2820 0.5730
van Dongen 0.2435 0.1714 0.3215
Fred & Jain 0.2828 0.1623 0.3581
variation of information 0.2107 0.1427 0.2549
ESD 0.7325 0.5382 0.7796



Chapter 3

A Foray into Network Analysis

In several cases, network analysis geared towards the media has brought to
the public an idea of what this field can accomplish. Notorious examples
include the 9/11 terrorist network, the Enron breakdown email network
and the network of shareholding among large German companies [133].
This visualization of the latter network, taken from [30], conveys infor-
mation obtained by network analysis, including the degree of involvement
(node size and edge width), importance (centrality of placement) and the
affiliation to an economic sector (color).
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Section 3.1

Preface to Network Analysis

Oi oi oi, me gotta hurt in ’ere
Oi oi oi, me small a ting is near,

Gonna bosh ’n gonna nosh
’n da hurt’ll disappear.

(Traditional,
Uthden Troll, Revised Edition,
Magic: The Gathering, WotC)

The title of Chapter 3 is a misnomer. By any means, graph clustering is an integral
part of network analysis and not a separate field. Thus, this brief chapter is actually

about other techniques of network analysis and their connection to graph clustering. The rise
of networks and of network analysis roots particularly strong in social network analysis. This
area spawned many concepts and methods that today experience a renaissance, empowered by
the ubiquity and availability of social and technical networks, especially on top of the internet
(another, technical network) and by a surge of interest in large networks—complex systems—
by a new breed of physicists [16]. Simply put, in the view of a graph clusterer the two driving
incentives for taking a broader look onto network analysis are: (i) Can other techniques help
to better understand, percept and interpret a graph clustering? (ii) Using other techniques as
a preprocessing step, can we find more meaningful clusterings? The latter issue has already
been pointed out in Section 2.1.5 and we will come back to it in Section 5.1.5 in the context of
finding the “right” clustering algorithm for a real-world instance. In this chapter we will focus
on the first issue, and thereby even dare to walk away from graph clustering for a moment.

3.1.1 Introductory Remarks

The starting point of this foray is the very central question about how to represent a clus-
tering in an informative and well-perceivable format. The fascinating field of graph drawing
has established many reasonable criteria for such representations. Guidelines like crossing
minimization, small total edge length or angular resolution in combination with constraintsgraph drawing

conventions
such as orthogonal edge routing or grid placement have led to a collection of very good draw-
ing techniques for a multitude of applications; a good introduction is [77]. Even for clustered
graphs, there are rigorous results about if and how drawings that comply with certain esthetic
requirements are possible. As a reference and a source of further pointers, in [92] the authors
consider clustered graphs1 for which it is known that and how they can be drawn without
edge crossings, cluster intersections and without edges passing through unrelated clusters. It
is then shown that every clustered graph for which such a drawing is possible can actually
be drawn in a way such that clusters are rectangles and edges are straight lines. Such graphs

1In graph drawing, a clustered graph is a graph and several nested and possibly incomplete clusterings,
such that any node can be in a whole hierarchy of clusters. Thus, cluster overlaps cannot occur but clusters
can be contained in other clusters and the clustering is no partition of V in general.
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are called c-planar , and the complexity of determing whether a clustered graph is c-planar is c-planar

open.

While such fundamental work is crucial, the networks this thesis aims at are much larger
than those to which sophisticated layout methods can be applied to and range from hundreds
to hundreds of thousands of nodes. Graph drawing conventions need to step back and be-
come secondary criteria when dealing with thousands of elements. However, the result of a large graphs ⇒

different focus
clustering algorithm still requires a good presentation, and while a table with simple listings
of the members of clusters might suffice for some purposes, it does not foster any further
understanding of the clustering and its background, let alone a single quality index.

Motivating Questions. Being more specific, we ask the following questions: Can we draw questions

a large graph and a partition of the set of nodes—either stemming from a clustering or any
other decomposition—in a way such that the partition itself and its properties, e.g., the sizes
of the subsets, are well-readable? This means that each element of the graph should still be
visible and that additional element- and group-level properties, such as the importance of a
node or the connectivity of a subset to some other, should also be included, in order to deepen
the understanding of the partition. Can such an approach be applied in practice, where a long
term goal requires network analysis to guide the way towards ideas for a solution? Which
properties of the network turn out to reveal the most useful information? We then turn
to the k-core decomposition, a network analysis tool which we describe below. The k-core
decomposition is regarded as an increasingly important structural property of a graph [80]—
and yielded crucial insights regarding the last question. Can we actually construct a graph
with a predefined k-core decomposition, and how well does this already describe a graph?

Answers in this Thesis. We start answering the above questions by describing LunarVis, answers

a tool for analytic visualizations of large graphs. LunarVis focuses on properties of a partition
of the set of nodes, e.g., a clustering. In a collaboration with the field of telematics we apply
LunarVis as a means of visual network analysis and show how this tool can actually reveal
those properties of a network which are a priori unknown but crucial for further analyses.
Motivated by the observed importance of the k-core decomposition we prove bounds for the
properties of this decomposition. We then design a random graph generator that complies
with a predefined k-core decomposition and allows to additionally accommodate the hyped
concept of preferential attachment [16].

Parts of this chapter have previously been published in [19, 102, 116, 11, 12, 13, 14, 33, 34].
(We will point out the respective publications in the corresponding sections.)

3.1.2 Outlook

Recall that point (ii) in the introductory paragraph above is not dealt with, in this Chapter.
Although we shall mention the issue in Section 5.1.5, I would like to stress what has already
been touched in the outlook of Section 2.1: Network analysis can not only help in engineering
clustering algorithms for speed and accuracy, it also has grand potential in serving as a meta-
heuristic which recommends a good clustering algorithm for an instance at hand, and maybe

network analy-
sis as a meta-
heuristiceven a good setting of parameters for it. The crucial point is to keep things simple, otherwise

such an approach shall never see the light of practical application.

3.1.3 Preliminaries

In contrast to the previous two chapters, we will not give an introduction to this vast field
but only introduce two central tools. A very good book on social network analysis and
its development is [94]. As a more technical reference and for further pointers we again
recommend [46].
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k-Cores. The concept of k-cores was originally introduced by Seidman [201] and generalized
by Batagelj and Zaversnik [29]. We shall only use k-cores in an unweighted and simple context.
Constructively speaking, the i-core of an undirected graph is defined as the unique subgraphi-core

obtained by iteratively removing all nodes of degree less than i. This is equivalent to the closed
definition of the i-core as the set of all nodes with at least i adjacencies to other nodes in the
i-core. The core number of a graph is the smallest integer i such that the (i+1)-core is empty,core number

and the corresponding i-core is called the core of a graph. A node has coreness i, if it belongscore of a graph
coreness to the i-core but not to the (i+ 1)-core. We call the collection of all nodes having coreness i

the i-shell . An edge {u, v} is an intra-shell edge if both u and v have the same coreness,i-shell

otherwise it is an inter-shell edge. An example core decomposition is shown in Figure 3.1.1.intra-, inter-shell

Note that generally not all i-cores induce a connected subgraph. The core decomposition of
a graph can be constructed in time O(max{m,n}) with a simple algorithm [28].

Figure 3.1.1. A k-core decomposition with 5 core shells. Note that the 3-shell is not connected,
but the 4-shell again is connected.

Centrality measures. A centrality measure quantifies the structural importance of ancentrality measure

element of a graph. The simplest such measure is the degree of a node. The literature
has seen quite a few reasonable centrality measures for both nodes and for edges—often a
measure can be applied to both, but we shall only measure nodes. For an overview we again
recommend [46].

The betweenness centrality measures for a node v or an edge e of a graph G its importancebetweenness
centrality

for the set of all s-t-connections in G. Roughly speaking, two main variants of betweenness
exist. The shortest-path betweenness [93, 21] is used when edge weights represent distances,shortest-path

betweenness
it is defined as follows: For a pair of nodes s, t ∈ V , let σst be the number of different shortest
paths (see Section 1.2.1) between s and t. The degree of involvement of a third node v in
σst is measured by σst(v) which is the number of shortest paths between s and t which pass

through v, such that δst(v) := σst(v)
σst

is the ratio of involvement of v. The shortest-path
betweenness of node v is then defined as the sum of its ratios of involvement for all pairs of
nodes:

cspbetw(v) :=
∑
s6=v

∑
t 6=v

δst(v) (3.1.1)
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Suppose now edge weights represent strengths or similarity, then the above notion has to
be changed. Instead of considering shortest paths the current-flow betweenness [174] measures current-flow

betweenness
a node’s involvement in an electrical network where current flows from s to t. An intuitive
view without a precise unterstanding of electrical networks and maximum-flows in networks
suffices to grasp the idea behind this definition. Suppose we let one unit of electrical current
pass through a graph G by having it enter G by a wire attached to node s and let it escape G
by a wire attached to node t. Then the balance bst(v) of a node v is bst(s) = 1, bst(t) = −1
and bst(v) = 0 for all v 6= s, t. Analogous to cbetw we now measure the involvement of a node
in terms of how much current passes through it, more precisely, for a node v we measure
how much current passes through the edges incident to v—and thus also once through v for
each pair of edges carrying incoming current and outgoing current. The throughput of v with throughput

respect to bst thus amounts to

τst(v) :=
1

2

(
−|bst(v)|+

∑
e∼v
|current(e)|

)
. (3.1.2)

Using this throughput we can now simply proceed as with cbetw, and define

ccf
betw(v) :=

1

(n− 1)(n− 2)

∑
s,t∈V

τst(v) . (3.1.3)

For someone with Electrical Engineering as a minor it is astounding to see that such basic
formulae, which for many decades students have been learning in their first week in the context
of electronic networks, have such a late and pronounced impact on network analysis. In the
following we will always use the appropriate version of betweenness without further discussion.
We refrain from introducing other interesting measures, such as the reach centrality [128] of reach centrality

a node, which—roughly speaking—is a node’s importance for shortest paths, and refer the
reader to [46].



Section 3.2

LunarVis—Analytic Visualizations
of Large Graphs

Before you criticize someone,
walk a mile in their shoes.

That way, you’ll be a mile from them,
and you’ll have their shoes.

(Jack Handey)

Tasks of network analysis with a very strict focus can often be done using tables,
numbers or plots alone. However, the faintest hope for an exploratory nature of an

analysis quite quickly calls for a visualization of the network. The observable trend to apply
the concept of network to anything consisting of more than one entity—this ranges from
perfectly reasonable to fairly absurd contexts—adds to this, as without visual exploration
unknown networks can hardly be unterstood. Current research activities in computer science
and physics aim at understanding the structural characteristics of large and complex networks
such as the Internet [183, 55], networks of protein interactions [228, 141], social networks [82]
and many others [176, 20]. A multitude of laws of evolution and scaling phenomena have been
investigated [154, 26], alongside studies on community structure, e.g. [57], and traditional
network analyses [46]. Heavily relying on mathematical models and abstract characteristics,
many of these techniques highly benefit from, or even depend on feasible advance information
about structural properties of a network, in order to properly guide or find starting points for
an analysis. The design of adequate visualization methods for complex networks is a crucial
step towards such advance information. Furthermore, due to the diversity of such analyses,
customized visualizations concentrating on user defined structural characteristics are required.
Along the lines of the more general issue in the field of information visualization, see e.g. [221],
visualizations of large networks naturally suffer a trade-off between the level of detail and the
visible amount of information. In other words, a detailed representation of a graph often
antagonizes the immediate perceptibility of abstract analytic information.

In this section we propose LunarVis, a layout paradigm that tackles the task of detailed
analytic visualizations for large graphs and their decomposition. Our approach incorporates
the strengths of abstract layouts, while individually placing all nodes and edges, i.e. without
hiding away potentially crucial details. Through sophisticated utilization of force directed
drawing techniques and the neat design of an apt global shape—a (partial) annulus—our
technique creates visualizations of networks that reveal analytic properties of decompositions
alongside properties of the shell connectivity at a glance, on the one hand, and offer insights
into the interior characteristics of shells on the other hand. An emphasis on either inter-
or intra-adjacencies can easily be adjusted. The technique works in three phases. In the
first, abstract phase, a network decomposition—e.g., a clustering—determines the general
shape of the layout, defining and arranging the drawing bounds of each annular segment.
The second phase initializes the drawing of individual nodes and estimates parameters and
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the third phase determines the final layout by means of sophisticated force-directed meth-
ods. Our paradigm offers many degrees of freedom that can incorporate any desired analytic
property, allowing for well readable simultaneous visualizations of complementary properties.
Simple user parameters tune the focus of our visualizations to either inter- or intra-segment
characteristics, and furthermore permit a scalable trade-off between the overall quality and
the required computational effort. The idea of nicely and perceptibly drawing graphs is not
new, however, research on large networks, with many conjectured mechanisms behind network
growth, evolution and functional structure, inspired a new family of visualizations. One might
call them analytic visualizations with an emphasis on abstract features and measurements,
or simply fingerprints. Traditional paradigms of graph drawing are certainly still valid for
such tasks, but have to find a compromise with new requirements. As an example, crossing
minimization becomes secondary at best, when visualizing thousands of nodes with a layout
that emphasizes network centrality. Thus, LunarVis is not a tool for investigating small-scale
substructures or for purely esthetic, energy-minimal drawings.

Our work on LunarVis was motivated by a fingerprint layout made with LaNet-vi (see be-
low). In a series of productive meetings with José Ignacio Alvarez-Hamelin, one of its authors,
we conceived a new method with many ideas for improvement, which were then engineered
until the technique reliably yielded informative and useful layouts. A less comprehensive
version of this section was published in [116], based on joint work with Marco Gaertler, José
Ignacio Alvarez-Hamelin and Dorothea Wagner. The name of our paradigm LunarVis has
been inspired by the semblance of our visualizations to the shape of the moon, sometimes
waxing, sometimes full, but always a nice sight.

Main Results

• We propose LunarVis, a new layout paradigm for drawing large networks, with a fo-
cus on decompositional properties. Numerous abstract features of the decomposition
can immediately be recognized in the visualizations produced by LunarVis, while all
elements are drawn. Our layouts offer good readability of the decompositional connec-
tivity and at the same time are capable of revealing subtle structural characteristics.
(Section 3.2.2)

• We employ an approach consisting of several concurrent and annealing force-directed
algorithms for determining a node’s position. (Section 3.2.2.2 and )

• The application of LunarVis in a number of domains produces informative layouts,
sometimes even suggesting yet unknown properties for a taxonomy. (Section 3.2.3)

Future Work. A simplification of the definition of forces might speed up LunarVis, in par-
ticular, in very large networks, forces could be summarized. For such networks, an interactive
zooming technique which is able to abstract certain visual entities even further would also be
helpful.

Related Work. In the past, several layout techniques have been developed driven by the
ambitious goal to properly visualize complex networks such as the Autonomous Systems
(AS) network. Two important approaches are the landscape metaphor [31] and network landscape

metaphor
fingerprinting [18], examples of which are shown in Figure 3.2.1 and Figure 3.2.2, respectively.
Introduced by Baur et al., the former modifies a conventional layout technique by a framework
of underlying constraints that are based on analytic properties. The global shape of the
network is induced by the position of structurally important elements, which automatically
conceal inferior parts. Thus, it reflects the “landscape” of importance, either in two or three
dimensions. The latter approach, LaNet-vi [18] uses analytic properties to define a suitable LaNet-vi

global shape, which in this case consists of concentric rings of varying thickness, one for each
level of the core decomposition (see Sect. 3.2.1.1). Then, the elements of the network are
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Figure 3.2.1. A 2.5-dimensional layout of the AS
network, utilizing the landscape
metaphor [31].

Figure 3.2.2. A fingerprint of the AS network made
with the visualization tool LaNet-
vi [18].

Figure 3.2.3. Visualization of the growth and topol-
ogy of the NLANR caching hierar-
chy [137] with Plankton [3]

Figure 3.2.4. Circle Segments [147] are used for vi-
sualizing multidimensional data sets.
Here, about 265000 data values are
drawn.

placed within these bounds, while the overall readability is achieved by showing only a small
sample of the edge set.

Figure 3.2.3 is a visualization of the NLANR web caching hierarchy, created with the
aged tool Plankton [3], which displays all nodes and edges of the NSF-sponsored web cachingPlankton

network. Although it has the look and feel of classic force-directed methods (for an overview
see e.g. [77]), it exploits the strongly hierarchical nature of the network, and its relatively
small size to directly determine a node’s position. The low asymptotic complexity of the
algorithm allows for an interactive emphasis of geographical or topological properties, and
for the visualization of temporal evolutions. Figure 3.2.4 displays 50 stock prices from the
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Frankfurt stock index over a period of 10 years. Thus, no actual graph is depicted, however,
the drawing technique [147] from the field of information visualization is somewhat related to Circle Segments

our approach, since it segments a circular drawing area. This pixel-per-value technique fills
each segment with one dimension of the data (i.e., one stock item), starting from the inside
and coloring pixels according to the stock value.

The above techniques have been applied in numerous tasks, serving as an aide in network
analyses. The method we present in the following synergizes assets of the above approaches
and remedies a number of shortcomings in order to provide a layout technique that finger-
prints a network (as LaNet-vi), but adds to this a much clearer visual realization of a number
of analytic properties, thus offering a high informative potential. Before describing our vi-
sualization technique, we state a few definitions and introduce some preliminary conventions
and concepts.

3.2.1 Preliminaries

3.2.1.1 Network Decompositions

Let G = (V,E) be an undirected graph. We call a partition P = {V0, . . . , Vk} of the set V
of nodes a decomposition with shells Vi. Recall from Section 3.1.3 the definition of the core shells

decomposition, as we borrow some of its nomenclature. Edges between or within shells are
canonically called inter- or intra-shell edges, respectively. The set of intra-shell edges of shell inter- and

intra-shell
Vi is called Ei.

The choice of suitable network decompositions primarily depends on the field of applica-
tion. In this section we focus on four different exemplary decompositions, k-cores, clusterings,
by reach centrality and by betweenness centrality. The betweenness centrality of a node states, betweenness

roughly speaking, how important it is for the set of all shortest paths through a network [93],
reach is a similar concept used in transportation networking [128], see Section 3.1.3 for details. reach

These decompositions are highly relevant as fundamental techniques for the analysis of large
networks, such as protein network analyses [228], recommendation networks [57] and social
sciences.

3.2.1.2 Reduction versus Abstraction

Visualizations of large networks usually suffer a trade-off between the details of shown el-
ements and the amount of represented information. Widely known concepts resolving this detail vs. overview

are abstraction, as can be seen in Figure 3.2.5, and the reduction of data to specific shells
or parts of interest, illustrated in Figure 3.2.6. While abstracted visualizations offer the best
readability of these properties, much detail is lost, as in Figure 3.2.5. In contrast, zoomed
visualizations as in Figure 3.2.6 allow for the exploration of small scale subgraphs and struc-
tural subtleties. We overcome this compromise by using the layout of an abstracted graph as
a blueprint but still draw all elements. Our goal is the visualization of all nodes and edges in blueprint plus

all elements
a manner both pleasing and informative on intra shell characteristics, in addition to reveal-
ing the characteristics of the given hierarchical decomposition. More precisely, we focus on
properties like the size of shells and the connectivity within and between shells.

3.2.2 The Layout Technique

In the following we detail our construction technique for LunarVis. The general underlying
shape of the layout is a (partial) annulus. Subgraphs, defined by some decomposition, are then annulus

individually molded into annular segments. The annulus has been chosen for three primary annular segments

reasons, first, it offers immediate readability of hierarchies and decompositional characteris-
tics. Second, it allows for an insightful segment-internal layout, and third, it provides a large
area for the drawing of edges, permitting the perception of segment connectivity at a glance,
which is a major focus of many applications. Roughly speaking, our approach divides up into
three distinct phases, the first of which sets out the abstract layout attributes of the annular 1. abstract layout
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Figure 3.2.5. Core-abstracted version of the AS graph
(May 1st, 2001). Each core-shell is rep-
resented by a node of size proportional
to its number of AS nodes. Edges are in-
duced by the number of inter-shell edges
(light edges are omitted).

Figure 3.2.6. A reduction of the 16-shell of the
left hand network, layouted with force-
directed methods. Darker nodes have a
higher degree within in this shell.

layout, such as the number of segments, their dimension and their placement. Based on these,
a heuristic computation of suitable parameters follows, which will then be employed in the2. parameter

estimation
third and last step. This last, and by far the most intricate and computationally demanding
step can be regarded as an iterative, segment-wise application of spring forces. These forces3. force-

directed layout
determine the final placement of each single node based on neighborhood attraction and re-
pulsion both inside and between segments. In the end, we scale the annulus to the desired
angular range and radial spreading and finally draw edges as straight lines with a high degree
of transparency. Optionally, the size of a node and its color may serve as additional dimensions
of information, yet ample use of these potentially overburdens a visualization. Algorithm 11
gives an overview of these three phases, which we describe in detail in the following sections.

Algorithm 11: LunarVis

Input: Graph G = (V,E)
Output: LunarVis Layout
Initialize abstract layout1

Compute appropriate parameters2

Initialize random node placement within segments3

for i = 1, . . . , `out do4

forall shells s do5

Project layout of s to middle square s6

for k = 1, . . . , `inter do Apply inter-shell forces to s7

for j = 1, . . . , `intra do Apply intra-shell forces to s8

Project new layout of s to annular segment s9

Finalize and scale annulus to desired format10

Draw transparent edges, color and resize nodes11
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3.2.2.1 Abstract Attributes

By any means, the informative potential of the our technique heavily relies on a suitable
rough, abstract layout. We propose as the general underlying shape of the visualization an
annulus, as shown in Figure 3.2.7. The shells si are lined up along a predefined angular range si

(here a full circle), placing the bottom (s1) and the top shell (s8) at the extremes. Thus,
shells correspond to annular segments. User-defined properties then determine the individual
dimensions of these segments, namely the angular width αi and the radial extent ri. In order αi and ri
to increase readability, small gaps βi that separate neighboring segments can be included. The βi
underlying annulus has an inner radius rin and an outer radius rout, which, together with the
angular range, define the total drawing area. In our experiments, setting the annular segments
to touch the inner rim and sizing them such that the largest shell also touches the outer rim,

s1

s2 s3

s4

s5s6
s7

s8

angular
width α2

angular
gap β4

radial
extent r1

radial
spread
rout

center

inner
radius
rins3

w

Figure 3.2.7. Overview of the annular blueprint of Lu-
narVis. In this current iteration of line 5 in
Algorithm 11, shell s3 is layouted.

offered the best readability. For consistency, we let the
number of nodes Vi per shell define the angular width
and the number of intra-shell edges Ei define the ra-
dial extent throughout this paper, since these proper-
ties are generally of immediate interest. Molded into
the underlying shape of annular segments, the shells
can now be layouted individually.

To give an impression of this step, and to point out
the utility of an additional scaling function for the ab-
stract layout, Tables 3.2.1 and 3.2.2 each show nine
layouts of the same network, using different scaling
functions for the radial extent and the angular width
of a shell. As canonic scaling functions, we used the
strictly monotonically growing functions square root
and logarithm. The network is a snapshot of the AS
network, decomposed into its core hierarchy. Individ-
ual nodes are left with a random placement, and the
total angle is π. Linear scaling enables the immediate
comparison of sizes, however, large values overshadow

scaling
more subtle variations that do not become obvious
without a logarithmic scaling of the radial extent. The
inter-shell edge distribution is revealed by logarithmi-
cally scaling angular widths. Next, we describe how
individual nodes are placed. For the sake of a better understanding we describe our parameter
settings afterwards in Sect. 3.2.2.3.

3.2.2.2 Force-directed Node Placement

Placing the individual nodes is by far the most computationally demanding task. Simple
strategies – random placement in the extreme – offer an easy recognition of the shells’ shapes,
however, more sophisticated techniques can additionally reveal the internal structure of the
shells while requiring more time and storage. Based on the forces proposed by Fruchterman
and Reingold [97] we use spring- and repulsion forces to iteratively have the nodes of each
shell adjust their position as suggested by their adjacencies and their geometric neighbors. In
the following we describe this procedure in detail.

As sketched out in Algorithm 11, our layout algorithm cycles through all shells a set
number (`out) of times by lines 4 and 5. The nodes of a shell are then first subjected to inter- `out

shell spring forces (repeated `inter times), thus moving towards their inter-shell adjacencies, `inter

and then, as a relaxational step, to intra-shell forces (repeated `intra times), see lines 7 to 8. `intra

To this end, we maintain a mapping of each shell, i.e. annular segment si, to a square si of size si
w = 2/3 ·rin, centered at the origin and rotated such that it faces its original annular segment
(see lines 6 and 9). This is illustrated in Figure 3.2.7 for the segment s3. Forces are applied to
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Table 3.2.1. Visualizations of the AS (1st March, 2005) using different scaling options for the abstract shape, i.e., the sizes of
the annular segments. Color and node size both emphasize the shell index.
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Table 3.2.2. Visualizations of the AS (1st March, 2005) using different scaling options. Color and node size emphasizes the
shell index. Compared to Table 3.2.1 an alternative set of parameters for scaling nodes, colors and the outer
radius has been chosen.
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s1

s2
s3

s4

s3

xrot

yrot

φmid

Figure 3.2.8. Forces for s3 (excerpt). Inter-shell
forces are caused by edges that link
s3 with annular segments (solid,
black). Intra-shell forces are stan-
dard attraction and repulsion of
nodes within s3. Dotted edges are
irrelevant at this stage.

the copies of nodes in the square si, and then, the new coordi-
nates of nodes in si are mapped back to the annular segment
si and its nodes are moved accordingly in line 9. Note that
nodes in si themselves exert inter-shell forces on their copies
in si. Figures 3.2.8 and 3.2.9 illustrate the intention of this
approach. First, note that a node coordinate (xv, yv) in a
square shaped working copy si is obtained by transforming
the circle coordinates (ρv, φv) in the annular segment si in a
canonical way, such that the angular position φv of v within si
is linearly mapped to the the x-coordinate xv within si, and
the radial position ρv to yv. The rotation of si then aligns
the y-axis of si with the middle axis (φmid) of si.

The crucial idea behind this setup is that inter-shell forces
pull nodes towards a specific side of the square, thus indi-
cating their linkage tendency, while intra-shell forces relax
the resulting crowding and unmask community structure and
disconnected components. In Figure 3.2.8, inter-shell forces
draw the triangle of nodes in the right of s3 towards s3 and
s4, while the nodes on the left, primarily being linked to other
shells are pulled towards s1, s2 and other adjacencies. The subsequent application of intra-
shell forces will keep the triangle grouped and separated from the rest, and will disperse and concurrent forces

relax the disconnected nodes on the left.
The areas of s3 in Figure 3.2.9 roughly sketch out where nodes, with a majority of adja- preferred

placements
cencies in shells as indicated, are drawn by inter-shell forces, before intra-shell forces relax

s3

s3

s5

s4
s6

s7
s8

s1

s2

Figure 3.2.9. Preferred node
locations

the layout. The size and placement of these areas are induced by the ab-
stract layout of the annular segments, see Figure 3.2.7 for comparison. This
fuzzy segmentation of each shell allows for a sophisticated interpretation of
a node’s position. Needless to say, we augmented our force-based algorithms
with several well known techniques, such as soft clipping [97] to guarantee
containment within shells, sentinel nodes that uncrowd segment borders [97]
and an increased sluggishness of nodes with high degree [96]. However, (anti-
)gravitational forces as well as simulated annealing [64], a randomized node
ordering or an impulse history [96] yielded no substantial increase in quality,
since that our technique does not aim at a highly optimized local layout. Al-
though we observed acceptable convergence behavior and independence from
the initial placement, we apply a simple exponential cooling, such that the
movement of nodes is increasingly slowed. This proved necessary since certain
constellations of adjacency can result in stubborn oscillations, especially if intra-shell forces
are used purely relaxational.

An important observation is, that applying inter- and intra-shell forces at the same time
naturally encourages force equilibria, but does not allow for a structurally targeted analysis. no equilibria

but emphasis
On the contrary, the separate application of inter- and intra-shell forces allows for a user-
defined emphasis on either shell-internal properties or global connectivity.

3.2.2.3 Parameters

Heuristic or experimental assessment of parameters is inevitable when using customized force-
directed methods. We base our forces on those proposed by Fruchterman and Reingold [97].
Alternative force models as proposed e.g. by Eades [77] or Frick et al. [96] did not prove
more suitable but increased the running time, partly due to the fact that equilibria are not
enforced.

For intra-shell forces we set the base spring length to Ci ·
√

(area/# vertices). The factor spring length

Ci turned out to yield best results, when set to a function negatively linear in the ratio of
vertices to the number of edges in shell i, i.e. dense shells require boosting the intra-shell
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Figure 3.2.10. A snapshot of the AS network taken at the 01.01.2006, decomposed by k-cores. Nodes with a high (low) degree
are colored blue (red) and the area of a node is proportional to its betweenness centrality (all on a logarithmic
scale). We chose a half circle for the total angular range and set the maximum shell at the right end.

spring length. For the artificially introduced sentinel nodes, which enforce a repulsion fromsentinel nodes

shell edges, we found that placing them 5% beyond the boundary and setting them to a
multiplicity of 10 works well. Depending on the decomposition, global factors for repulsion
forces and spring lengths between 1 and 1.5 and 1.2 and 1.5, respectively, worked best. Inglobal repulsion

fact, these two parameters were the only ones that required adjustment. Our inter-shell forces
work with a base spring length of half the inner radius. Both the spring length and the spring
force hardly needed additional tuning. Moreover, setting the edge length w of the squares siw

to significantly smaller values than 2/3 ·rin blurred inter-shell forces, while much larger values
exaggerated their range of effect.

As mentioned above, the iteration counters `out, `inter and `intra are pure user parameters,`*
since these govern the interaction and the emphasis of intra-shell and inter-shell aspects. In
fact, surprisingly low iteration numbers often proved better results than high numbers. As
a rule of thumb, the following settings are a good starting point: `out = 10, `inter = 10,
`intra = 5. In the majority of drawings we used the logarithm for most scalings, as it copes
best with power-law distributions and generally dampens overshadowing maxima.

3.2.3 Results

In the following, we present a selection of visualizations drawn with the LunarVis technique.
All visualizations offer many immediate insights. Nevertheless, knowledge about the drawing
process, i.e. how nodes are placed, allows for a more structurally oriented interpretation. For
computing our drawings, we used one core of an AMD Opteron 2218 processor clocked at
2.6 GHz, with 1 MB of L2 cache, running SUSE Linux 10.1. Our non-optimized development
implementations in Java required drawing times between a few seconds and several hours,
depending on the chosen number of iterations and the size of the network.

Figure 3.2.10 reveals numerous characteristics of the core decomposition of the AS network
at a glance. The well investigated fact that all shells primarily link to the core is immediatelyAS network

obvious, alongside the observation that the internal communities of the first 5 shells are well
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interconnected (strong connectivity near the outer rim), but not those of other shells. To low shells
interconnected

name just a few subtle facts visible in this drawing, note that mid-degree nodes can already
degree � shell

be found in the 3-shell, that nodes with low betweenness centrality are exclusively found in
low betw. ⇒:
low shelllow shells while the opposite is not true, and that in low- to mid-shells nodes with higher

degrees primarily link to lower shells, as they sit on the upper left.

Figure 3.2.11. The AS network, decomposed by a cluster-
ing. Nodes with a high (low) betweenness
are colored red (green).

Figure 3.2.12. A network created with BRITE [160], de-
signed to emulate the AS topology. All pa-
rameters are set as in Figure 3.2.11.

For Figure 3.2.11 and 3.2.12 a full annulus has been chosen due to the high number of
shells (56 and 45). Figure 3.2.11 diplays the AS network, decomposed by community structure AS vs. BRITE

that has been identified by a greedy modularity based clustering algorithm [57]. The clusters decomposition. =
clusteringare sorted by size. Figure 3.2.12 shows the same decomposition for a topology with the same

number of nodes and edges, created with BRITE [160], an AS topology simulator. Quite
clearly, BRITE fails to feature any of the peculiarities the AS network exhibits, such as high
inhomogeneity in community sizes, the large number of tiny clusters or the fact, that most
shells are almost exclusively connected to the two largest shells. An analysis yields clustering BRITE fails

coefficients of 0.002 and 0.375 for BRITE and the AS network, respectively, and transitivities
of 0.011 and 0.001, which agrees with these observations.

Figures 3.2.13-3.2.15 are drawings of AS network snapshots from spring 2002, 2004 and
2006, respectively. In all three drawings, k-cores are used for decomposition and color indi-
cates a node’s degree. In order to separate shells well but still keep the hierarchy obvious,
we chose an exemplary total angle of 80% of a full circle. Several well known evolutionary
facts about the AS network can be observed from these three drawings. To name a few, note evolution of

AS core-hierarchy
the general densification of the network, the increasing depth of the hierarchy, the rather
stable relative shell size with respect to the hierarchical position and, an observation yet to increasing depth,

stable rel. sizes
be investigated, a potential transition from a growing (max−1)-shell to its merge with the
max-shell.

Figure 3.2.16 illustrates the core decomposition of an email network as described in Sec-
tion 5.1.1. The nodes represent computer scientists at KIT, color coded by their department email graph

and sized by their betweenness, and edges are email contacts over a period of eight months.
As an exception, we used the sum of degrees for the radial extent with a square-root scaling
for this LunarVis layout. From the multitude of observable features we point out the fact
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Figure 3.2.13. AS netw., spring 2002,
core-decomposed

Figure 3.2.14. AS netw., spring 2004,
core-decomposed

Figure 3.2.15. AS netw., spring 2006,
core-decomposed

that community structure within departments is corroborated by the groupings in the top
core-shells. As an example, the dark blue department, although being well interconnected
(gathered), seems to have many contacts to lower shells, thus it sits at the inner rim of core
17. In the following two large Figures 3.2.17 and 3.2.18, the email network has been decom-
posed in a more intuitive way by the structure of the department of computer science which isdecomposition =

external data
divided up into a number of institutes, that now make up the annular segments. Figure 3.2.17
focuses on the structure inside each institute via a high value of `intra, yielding nicely filledhigh `intra

Figure 3.2.16. Email network of the computer science department at KIT. Nodes and edges
represent scientists and email contacts, respectively. The nodeset is decomposed
by cores and colored by department. The size of a node reflects its betweenness
centrality.
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segments and clear neighborhoods whithin. In most segments the chair and the secretary of
an institute are the most prominent and central nodes. In contrast, for Figure 3.2.18 a higher
value of `inter has been used to give more weight to the relations between institutes, such high `inter

that the internal structure still relaxes the layout in a meaningful way, but contacts between
institutes dominate the node positioning process.

Modern algorithms for route planning exploit numerous characteristics of road graphs
for efficient shortest path computations, for an overview see, e.g., [217]. Figures 3.2.19-
3.2.22 display road maps of the Czech Republic and of the city of Munich, provided by
PTV AG for scientific use, and Figures 3.2.23-3.2.24 display the European network of railway
connections, provided by HAFAS. On the left hand side betweenness centrality, indexed route planning

into eleven logarithmically scaled intervals, served as the decomposition, and the figures on decomposition =
betweennessthe right hand side are decomposed by reach centrality [128], colors are used vice versa.

The degree of a node is reflected by its size. The stunning similarity of all corresponding
drawings indicate that transportation networks share strong characteristics with respect to
both reach and betweenness. However, several details can be observed that reflect intrinsic
differences between these networks. Towards a taxonomy for transportation networks we
can immediately observe that the railway network has very few hubs, both with respect to
betweenness and reach. These are mainly capitals that, additionally, have exceptionally high taxonomy

degrees. The general correlation between reach and betweenness (color versus shell index)
corroborates the fact that railroads constitute a so-called scale-free network. This does not reach

∼ betweenness
apply to either road network, which is due to the fact that road networks tend not to have
unique shortest paths – recall Munich’s surrounding autobahn and Luxembourg’s rural nature. road networks 6=

railway networks
The road networks strongly resemble each other, however, observe that in Munich, nodes of
both maximum (autobahn segments) and minimum (residential dead-end streets) betweenness
have a rather small degree. This cannot be observed in Luxembourg, where only nodes of
minimum betweenness have an exceptionally small degree. From the facts revealed by the
edge connectivity, note that hardly any peripheral nodes are adjacent to nodes of maximum
centrality.
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Figure 3.2.17. This is an alternative visualization of the email network in Figure 3.2.16. The network is decomposed
by departments, with the largest one pointing upward. Color indicates the degree of a node, with red
representing a high degree, while the size of a node indicates its betweenness.
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Figure 3.2.18. Another alternative visualization of the email network in Figure 3.2.16, as on the previous page. This time
the emphasis has been set on inter-shell connectivity. Clearly, most departments are well connected, since
most nodes sit in the back of their segment, especially in large departments. For large to medium sized
departments, nodes of small degree and betweenness are the exception, alongside one or two nodes of large
betweenness that seem to serve as bridges to other departments. Note that the two red nodes (very large
degree), sitting near the inner rim, are well connected to many other departments.
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Figure 3.2.19. Luxembourg roads, decomposed by between-
ness, color indicates reach.

Figure 3.2.20. Luxembourg roads, decomposed by reach,
color indicates betweenness.

Figure 3.2.21. München roads, decomposed by between-
ness, color indicates reach.

Figure 3.2.22. München roads, decomposed by reach, color
indicates betweenness.

Figure 3.2.23. European railroads, decomposed by be-
tweenness, color indicates reach.

Figure 3.2.24. European railroads, decomposed by reach,
color indicates betweenness.



Section 3.3

Overlay-Underlay Exploration
Driven by Analytic Visualizations

I love the smell of bat guano in the morning.

(Vaarsuvius,
The Order of the Stick,

strip #20)

Many applications constituted the driving force behind the results of the previ-
ous section on LunarVis. One particularly interesting application concerns the analysis

of overlay- and underlay correlations in the Internet, and is described in this section. By
virtue of its case-study character, this section thus slightly differs in structure from the rest
of this work.

In recent times, the design of many real-world applications has changed from a monolithic
structure to modular, yet highly customizable services. Network implementations from scratch
are usually too time-consuming and expensive, and thus, these services are superimposed on
some already existing underlay infrastructure as an overlay. A well-known example arises
in logistics. The highways and streets we use everyday constitute a huge transportation
network. However, traffic in this network is far from structured. In fact, countless companies
and institutions rely on this network to accomplish their regular shipping of commodities and
services, and by doing so, they cause the traffic on the road network to develop in certain
patterns. In technical terms the road network constitutes an underlay network, while the
commodity exchange network of a set of companies, implicitly building upon this network,
forms an overlay network. The overlay network uses the underlay to actually realize its tasks.
Another underlay network of prime interest is the Internet, which serves as the workhorse of
countless data transfers, multimedia services and filesharing protocols. Almost anytime we use
the Internet, we participate in some overlay network that uses the physical Internet, comprised
of routers, links, cables, wires, to actually transmit the data packets. In turn, the Internet
itself started out as an overlay built over the telephone network underlay. Within the Internet,
a particular breed of overlays that has received a lot of attention lately are peer-to-peer (P2P)
applications [204], which range from file-sharing systems like Gnutella and Bittorrent, to real-
time multimedia streaming and VoIP phone systems like Skype and GoogleTalk. Clearly,
there is a crucial interdependence between overlay and underlay networks. In particular, the
emergence of overlay networks heavily affects and poses new requirements on the underlay.
The major advantage of overlays is that they provide high-level functionality while masking
the intrinsic complexity of the underlay structure. However, this abstraction entails a certain
trade-off, namely independence versus performance. To gain a deeper understanding of the
interdependency between the overlay and the underlay, this trade-off needs to be included in
in the corresponding analysis.

In fact, the long-term goal behind this study is much more far-reaching. Deutsche Telekom
Laboratories in collaboration with TU Berlin are considering a so called oracle which mediates
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between peer-to-peer applications and a provider, in order to arrive at a mutual advantage in
terms of load and performance. Although this fascinating project is actually taking shape2, we
shall in the following focus on our modest part in it, the preliminary study on the peculiarities
of Gnutella’s load on the Internet. On the one hand, our analysis, roughly speaking, points out
that and how Gnutella’s topology differs from randomly generated networks that mimic the
principles and prerequisites of Gnutella; this even leads to sound refinements of the simulation
which let us better understand the real-world instance. On the other hand—which in this
work is the more important point—this section showcases how the methodology of analyzing
networks by analytic visualizations offers a powerful and flexible tool.

The work in this section would not have been conducted without the admirable efforts of
my former colleague Marco Gaertler to incite and press ahead with our collaboration with the
group of Anja Feldmann and Vinay Aggarwal. Our collaborators moved from TU München
to Deutsche Telekom Laboratories / TU Berlin during our work, which was conducted within
the FET Open Project “DELIS”3 of the European Commission. Initially we were unsure
about a platform for presenting our work, which we first cast into a technical report [11]. We
were then surprised to receive an outstanding paper award [12]. Having finished LunarVis,
an improved tool for visual analysis for the task at hand, shortly later, this then led to our
work [13] appearing in the proceedings of the final DELIS3 workshop and in the list of “stories
of success”4, shortly followed by a journal inviting a revised version [14] of our contribution
to an issue on visualization-driven analysis. Finally, recognition!5 Most of the content of this
section has been published in one of the above works which are based on joint work with the
abovementioned coauthors and with Dorothea Wagner.

Main Results

• We introduce a theoretical model for overlay-underlay analysis using graph theoretic
concepts. (Section 3.3.1)

• In a case study which compares measured Gnutella to simulated random overlay com-
munication, we showcase how analytic visualizations, LunarVis in particular, help to
identify key characteristics of Gnutella. (Section 3.3.3)

• Gnutella is different from random overlay communication in specific ways. (Sec-
tion 3.3.3.2)

• Our observations lead to sound insights on Gnutella peering and motivate refined sim-
ulation parameters. (Section 3.3.3.3)

Related Work. Due to the explosive growth of P2P file sharing applications with respect
to total Internet traffic [204], there has been an unprecedented interest in their analysis [10,
15, 200]. Several attempts have been made to investigate the overlay-underlay correlations
in P2P systems. Using game theoretic models, Liu et al. studied in [156] the interaction
between overlay routing and traffic engineering within an Autonomous System (AS), which is
a network under a single administrative entity, normally corresponding to an Internet Service
Provider (ISP). An analysis of routing around link failures [200] finds that tuning underlay
routing parameters improves overlay performance. Most investigations tend to point out that
the overlay topology does not appear to be correlated with the underlay (e.g., [10]), but the
routing dynamics of the underlay do affect the overlay in ways not yet well understood. To
address the apparent lack of overlay-underlay correlation, some schemes, e.g., [171, 190], have
been proposed. More recently, [15] has made a case for collaboration between ISPs and P2P
systems as a win-win solution for both. This section follows some of the spirit of that latter
work.

2For an overview and further pointers, see http://www.net.t-labs.tu-berlin.de/research/isp-p2p/
3Dynamically Evolving, Large-scale Information Systems
4http://delis.upb.de/specials/story_of_success/delis_ispp2p.html
5Quoting Dr. John A. Zoidberg, Futurama

http://www.net.t-labs.tu-berlin.de/research/isp-p2p/
http://delis.upb.de/specials/story_of_success/delis_ispp2p.html
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(a) Both networks G and G′ with the map-
ping φ.

(b) Highlighting one edge e in G and the corre-
sponding path π(e) in G′.

Figure 3.3.1. Example of an overlay O := (G,G′, φ, π). The mapping φ is represented by dash
lines between nodes in G and G′.

3.3.1 Modeling Underlays and Overlays

In this section, we introduce our model and methodology for analyzing the relation between
under- and overlays as well as a first discussion about different modeling aspects. under- and

overlays
Basically, an overlay consists of a network structure that is embedded into another one.

More precisely, each node of the overlay is hosted by a node in the underlay and every edge
of the overlay induces at least one path between the hosting nodes (in the underlay) of its
endnodes. The formal definition is given in Definition 3.1.

Definition 3.1 An overlay is given by a four-tuple O := (G,G′, φ, π), where overlay

• G = (V,E, ω) and G′ = (V ′, E′, ω′) are two weighted graphs with ω : E → R ω, ω′

and ω′ : E′ → R,

• φ : V → V ′ is a mapping of the nodes of G to the nodeset of G′, and φ

• π : E → {p | p is a (un-/directed) path in G′} is a mapping of edges in G to paths in G′ π

such that {source(π({u, v})), target(π({u, v}))} = {φ(u), φ(v)}.
The interpretation of Definition 3.1 is that G models the overlay network itself, the graph G′

corresponds to the hosting underlay, and the two mappings establish the connection between
the two graphs. An example is given in Figure 3.3.1. As direct communications in the overlay,
which corresponds to the edges of G, is realized by routing information along certain paths
in the G′, not all parts of the underlay graph are equally important. In order to focus on
the relevant parts, we associate an induced underlay with an overlay. The corresponding
definition is given in 3.2.

Definition 3.2 Given an overlay O := (G = (V,E, ω), G′ = (V ′, E′, ω′), φ, π). The induced induced underlay

underlay Õ := H := (V ′′, E′′, ω′′) is a weighted graph, where

• V ′′ := {v ∈ V ′ | ∃ e ∈ E : π(e) contains v}, nodes

• E′′ := {e′ ∈ E′ | ∃ e ∈ E : π(e) contains e}, and edges

• ω′′(e′) :=
∑
e∈E

ω(e) · [e′ contained in π(e)].6 appearance weight
ω′′

6The definition of ω′′ is given in the Iverson Notation [149]. The term inside the squared parentheses is a
logical statement and depending on its value, the term evaluate to 1, if its value is true, and to 0 otherwise.
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(a) star topology (b) path topology

Figure 3.3.2. Examples of two overlays where only the topology in the underlay network G′

changes. Nodes in the overlay network are numbered with integers and edges are
drawn blue, while nodes in the underlay network are labeled with characters and
edges are drawn black. In both cases the routing π is done by a shortest-path
scheme.

property A B C D E
number of hosting nodes 1 1 1 1 8
number of edge in the overlay
network having an endnode in
the node

3 3 3 3 12

UN weighted degree (star top.) 1 1 1 1 4
UN weighted degree (path top.) 1 2 2 2 1
IU weighted degree (star top.) 3 3 3 3 12
IU weighted degree (path top.) 3 9 15 21 12

Table 3.3.1. Table with degree information of the examples given in Figure 3.3.2. The weighted
degree corresponds to the weighted degree in the underlay network (UN) and the
induced underlay (IU), respectively.

The weight function ω′′ is also called appearance weight.

In other words, the induced underlay corresponds to the subgraph of the underlay graph that
is required to establish the communication in the overlay graph. Note that the defined weight
can be interpreted as the load caused by the communication and thus is independent of aω′′ = load

caused by overlay
weighting in the underlay network.

3.3.1.1 Analysis

In the analysis of overlays, we focus on two important aspects: the identification of key
features with respect to the underlay and the comparison of different overlays.

The first part, the identification of key features, consists of standard tasks of network
analysis, e. g., determining important and relevant nodes or edges, clustering nodes with sim-
ilar patterns, and detecting unusual constellations. As existing techniques can be applied
to the overlay network and the induced underlay, these standard tasks are reasonably well
understood in the case of the analysis of a single network. However, these techniques do
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not incorporate the relationship between the two networks. An example showing such de-
pendencies is given in Figure 3.3.2 with the corresponding information about the degrees in
Table 3.3.1. We use the degree, which is a popular feature, for illustration. However in our degree and

weighted degree
studies we noted that these observations carry over to other characteristics. First note, that
the number of hosting nodes and the number of communications a node in the underlay par-
ticipates in gives a first impression about its role in the network. Both pieces of informations
can be read off the overlying graph G. However, they are completely independent from the
routing structure in the underlay. As the example illustrates, the degree of a node (in the
induced underlay) heavily depends on the routing structure. In the case of the star topology,
both the weighted degree in the underlying network and in the induced underlay are fairly
similar, here they are even proportional and clearly identify the center node of the star to
be central for the network. The situation drastically changes when using a path topology. star vs. path

topology
Although all communications start/terminate at node E, it is not very central. The nodes C
and D take on very active roles, due to the fact that most/all communication has to be routed
through them. In many cases, the information provided by the induced underlay sufficiently
codes the relation between the overlay and underlay networks, while still enabling us to use
standard notation of network analysis. On the other hand, there are some scenarios where
the provided view is too coarse. For example, it could make a difference, whether a heavy some details are

masked
edge is caused by a single heavy communication or by a multitude of small communications
or, conversely, whether all communication of a node in the induced underlay have only one
target in the overlay or are distributed over many targets.

One motivation for identifying key features is to build a proper model that can be used
for extensive simulations. For example, simulations are used to predict scaling behavior or motivation: model

for simulation
to experimentally validate heuristics, enhancements, or novel techniques. As such, it is a
major issue to structurally compare different overlays with each other. On the one hand, our
model already reflects all dependencies between the underlay and the overlay network and,
thus, it does not require the underlay network, embedding, or routing to be fixed for different
instances. On the other hand, due to this elaboration of our model, a simple matching of
nodes or edges will not suffice. Our idea is to match key features. For example, one can try
to match the appearance weight of an edge with structural properties of its endnodes. If both ω′′ vs. endnode
overlays have a sufficient number of such matches, it is reasonable to assume that they are
created by the same mechanism.

Both parts, the identification of key features and the comparison of overlays, benefit from
proper analytic visualizations that emphasize relevant aspects of the corresponding networks.
Before presenting two visualization techniques (Section 3.3.2), we briefly demonstrate our
model and methodology with some experimentally generated examples.

3.3.1.2 Examples

In the following, we demonstrate our model and methodology with simple examples. Before
looking at a specific overlay, we give two further intuitions.

First, assume a fixed given underlying network. The overlay communication can thus be
interpreted as a sampling process of pairs in the underlay. Depending on the application,
different patterns occur. For example, in services such as Internet broadcast, one can expect
few highly active nodes, which correspond to the hosts of the service while the majority of
nodes participate in only a few communications. Using the induced underlay, we can extract
such patterns and reconstruct the sampling parameters. Second, assume the underlying net-
work is unknown and acts as a black box, i. e., no information about routing policy and so on underlay as

black box
is available. By uniformly choosing a sample with sufficiently many communications as the
overlay, we can not only discover the underlay, but also partly reverse engineer the routing
mechanism of π. In the special case that the overlay network is complete, i. e., every pair

overlay can dis-
cover underlay
and πof node is connected, the appearance weight of the induced underlay is highly similar to the

(edge-)betweenness of the original underlying network.
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(a) uniform sampling (b) star-like sampling

Figure 3.3.3. Example of induced underlays for different overlay networks in the same underlying network. In the
left figure, the communication is uniformly at random distributed over the network and the color codes
the (relative) amount of participation. In the right figure, all communications use at least on red node
and select the other uniformly at random. In both cases, the thickness of an edge corresponds to the
appearance weight.

As an example, we consider an underlying network with 13 nodes and a 3-cycle topology,
i. e., nodes are cyclic-ordered and each node is connected to 3 of its immediate predecessors
and successors. Traffic is routed using shortest path scheme. For simplicity, we set the nodeset
of the overlay network to the nodeset of the underlay and thus φ to be the identity function.
We define two overlays: the first one O1 (uniform sampling) uses uniformly at random se-uniform sampling

lected pairs of nodes for communication, while in the second overlay O2 (star-like sampling)star-like sampling

the communication takes place between three predefined nodes and all other nodes chosen
uniformly at random. The resulting induced underlays are displayed in Figure 3.3.3. As can
be clearly seen, the short-cuts, i. e., edges that connect two nodes that have a distance of three,
have the largest appearance weight and all other edges have relatively small weights for the
uniform sampling. This is not surprising as the appearance weight resembles the betweenness
of edges. The situation drastically changes, when modifying the sampling mechanism. As
in the case of the induced underlay of O2, the edges relatively close to the initial set have
large weights and edges far away have small weights or do not appear at all. For example,
the non-existence of the edges {9, 10} is due to the fact that no shortest path between a red
node and any other node uses that edge. On the other hand, the edge {6, 7} is contained in
a shortest path, namely between 3 and 7. However, its absence reveals certain aspects of the
underlay routing, i. e., the routing between 3 and 7 will either use the path (3, 4, 7) or (3, 5, 7),
but never the path (3, 6, 7), which is an arbitrary choice that can be discovered.

3.3.2 Analytic Visualization

Although we have thoroughly discussed LunarVis and related visualization techniques—the
technique of Baur et. al. in [31] in particular—in Section 3.2, we here briefly recall the points
relevant to this case study. Both highlight a given hierarchical decomposition of the network
while displaying all nodes and edges. They have already been applied successfully to the
network of Autonomous Systems (AS), which is an abstraction of the physical Internet, yet
are highly flexible and can be easily adjusted to other networks.
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We use the concept of cores [29, 201] for the required hierarchical decomposition of the core
decompositionnetwork. Briefly recalling, the k-core of an undirected graph is defined as the unique subgraph

obtained by recursively removing all nodes of degree less than k. A node has coreness `, if
it belongs to the `-core but not to the (`+1)-core. The `-shell is the collection of all nodes
having coreness `. The core of a graph is the non-empty k-core such that the (k + 1)-core
is empty. Generally the core decomposition of a graph results in disconnected sub-graphs,
but in the case of the AS network we observe that all k-cores stay connected, which is a AS: all k-cores

connected
good feature regarding connectivity. Core have been frequently used for network analysis,
e. g., [104, 109].

The first technique employing the concept of cores was proposed by Baur et. al. in [31]. landscape
metaphor

More precisely, their algorithm lays out the graph incrementally starting from the innermost
shell, iteratively adding the lower shells. Their implementation uses the core decomposition
and a combination of spectral and force-directed layout techniques. This layout technique is a

Figure 3.3.4. An example visualization of the core decomposition
(segments) of the AS network using LunarVis. Each
nodes represent an AS with size and color reflecting
the size of its IP-space. Angular and radial extent of
a segment reflect the number of nodes and intra-shell
edges respectively. Note the extremely large AS (upper
left red node) in the minimum shell.

network fingerprint. Such pseudo-abstract
visualizations offer great informative poten-
tial by setting analytic characteristics of a
network into the context of its structure, re-
vealing numerous traits at a glance. The fin-
gerprint drawing technique LunarVis that
focuses on the connectivity properties of a
network decomposition has been presented
in Section 3.2, and shall be used here. Re-
call that LunarVis lays out each set of a
decomposition—which are the core-shells in
our case—individually inside the segments
of an annulus. The rough layout of Lu-
narVis is defined by analytic properties of
the decomposition, allowing the graph struc-
ture to determine the details. By virtue of
a sophisticated application of force-directed
node placement, individual nodes inside an-
nular segments reflect global and local char-
acteristics of adjacency while the inside of LunarVis

the annulus offers space for the exhibition
of the edge distribution. Combined with
well-perceivable attributes, such as the size
and the color of a node, these layouts of-
fer remarkable readability of the decompo-
sitional connectivity and are capable of re-
vealing subtle structural characteristics. For
more details we refer the reader back to Sec-
tion 3.2.

3.3.3 Case Study: Overlay Graphs of P2P Systems

In this section, we exemplify our analysis technique with a case study of a P2P overlay. peer-to-peer

For our analysis we choose Gnutella [227], an unstructured file-sharing system which relies Gnutella

on flooding connectivity pings and search queries to locate content. Each message carries pings and queries

a TTL (time to live) and message ID tag. To improve scalability, nodes are classified in a TTL, ID

two-level hierarchy, with high-performance ultrapeer nodes maintaining the overlay structure ultrapeer
by connecting with each other and forwarding only the relevant messages to a small number
of shielded leaf nodes. Responses to pings and queries are cached, and frequent pinging or leaf nodes

repeated searching can lead to disconnection from network. More details about Gnutella can
be found at [227].
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3.3.3.1 Sampling and Modeling the P2P Network

In order to analyze the overlay structure, we first need to identify a representative set of
connections, called edges, between nodes in the P2P network. To reduce the bias in oursampling edges

sample, we identify edges where neither of the two endnodes is controlled by us. We refer to
such nodes as remote neighbor servents. Due to message caching and massive churn in P2Pservents

caching and churn networks (we measured the median incoming/outgoing connection duration to be 0.75/0.98
seconds), a simple crawling approach using pings, e.g., as employed in [194], is not sufficient.crawling

insufficient However, pings identify nodes that should have been remote neighbor servents at some point.

We thus deploy a combination of active and passive techniques to explore the Gnutellaactive + pas-
sive exploration network [10]. Our passive approach consists of an ultrapeer that participates in the network

and is attractive to connect to. It shares 100 randomly generated music files (totaling 300 MBpassive: ultrapeer

in size) and maintains 60 simultaneous connections to other servents. The passive approach
gives us a list of active servents. The active approach consists of a multiple-client crawler thatactive: crawler

uses pings with TTL 2 to obtain a list of candidate servents. Since queries are difficult to
cache, we use queries with TTL 2 to obtain a set of remote neighbor servents. These servents
are then contacted actively to further advance the network exploration. This approach allows
us to discover P2P edges that existed at a very recent point of time. When interacting
with other servents, our crawler pretends to be a long-running ultrapeer, answering incoming
messages, sharing content, and behaving non-intrusively. This pragmatic behavior avoids
bans. The client uses query messages with broad search strings, e.g., mp3, avi, rar to obtain
maximum results. We then combine active and passive approaches by integrating the crawler
into the passive ultrapeer.

Using this setup, we sample the Gnutella network for one week starting April 14, 2005. Thediscovering
Gnutella

ultrapeer logs 352, 396 sessions and the crawler discovers 234, 984 remote neighbor servents,
a figure significantly higher than most reported results during this period. For each edge of
the Gnutella network we map the IP addresses of the Gnutella peers to ASes using the BGP

IP mapping
to underlay

table dumps offered by Routeviews [164] during the week of April 14, 2005. This results in
BGP, Routeviews

2964 unique AS edges involving 754 ASes, after duplicate elimination and ignoring P2P edges
inside an AS. For the random graph we pick end-points at the IP level by randomly choosing

comparison:
random overlay

two valid IP addresses from the whole IP space. These edges are then mapped to ASes in
the same manner as for the Gnutella edges. This results in 4975 unique edges involving 2095
ASes for the random network at the AS graph level. The different sizes of the graphs are
a result of the generation process: we generate the same number of IP pairs for random
network as observed in Gnutella, and apply the same mapping technique to both data sets,
which abstracts the graph of IPs and direct communication edges to a graph with ASes as
nodes and the likely underlay communication path as edges. This way, the characteristics of
Gnutella are better reflected than by directly generating a random AS network of the same
size as Gnutella network.

For our analysis, we apply the model and methodology from Section 3.3.1 as follows. The
overlay O = (G,G′, φ, π) as given in Definition 3.1 uses the direct communication in Gnutella
as graph G, the graph G′ corresponds to the hosting Internet, in our case the AS level. The
mapping φ corresponds to the IP to AS mapping, while π is the routing in the AS network.φ: IP → AS

π = BGP Apart from the already introduced induced underlay, we also investigate the network of
direct overlay communication, yet abstracted to the level of ASes in order to be comparable
to the induced underlay. Note that in a simplified model, where each communication causes
uniform costs, the appearance weight in the induced underlay (ω′′) corresponds to the total
load caused by the overlay routing in the underlay network. As exact traffic measurementsω′′ = load caused

in underlay
on each underlay link are non-trivial, this can be interpreted as an estimate of the actual load
on underlay links due to the overlay traffic.
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(a) P2P network (b) Random network

Figure 3.3.5. Visualization of the core decomposition of the overlay communication networks. Core-shells are drawn into
annular segments, with the 1-shell at the upper left. Angular and radial extent of a segment reflect the number
of nodes and intra-shell edges respectively. Inside each shell nodes are drawn towards their adjacencies. Colours
represent the degree of a node while the size represents their betweenness centrality. Edges are drawn with 10%
opacity and range from blue (small weight) to red (large weight).

3.3.3.2 Overlay-Underlay Correlation in a P2P System

Figure 3.3.5 shows visualizations of the direct overlay communication of both the network
and a random network. Employing LunarVis described in Section 3.3.2—and in Section 3.2 overlay in Lu-

narVis
in broad detail—these drawings focus on the decompositional properties of the core hierarchy.
Numerous observations can be made by comparing the two visualizations. Note, first, the
striking lack of intra-shell edges for all but the maximum shell in the Gnutella network (small G.: intra-edges

only in max. shell
radial extent). This is also true for edges between shells, as almost all edges are incident
to the maximum shell. This means that almost always at least one communication partner G.: “all roads lead

to max. shell”
is in the maximum shell, a strongly hierarchical pattern that the random network does not
exhibit to this degree. Note furthermore that in Gnutella, betweenness centrality (size of
a node) correlates well with coreness, a consequence of the strong and deep core hierarchy,
whereas in the random network the two- and even the one-shell already contain nodes with R.: coreness �

betweenness
high centrality, indicating that many peerings heavily rely on low-shell ASes. The depth
of the Gnutella hierarchy (26 levels) strongly suggests a highly connected network kernel of
ultrapeers, which are of prime importance to the connectivity of the whole P2P network.
However, note that the distribution of degrees (node colors) does not exhibit any unusual degree dist. simi-

lar
traits and that no heavy edges are incident to low-shell ASes, in either network.

Figure 3.3.6 visualizes the induced underlay communication of both the Gnutella network
and a random network, employing the same technique and parameters as in Figure 3.3.5. The underlay in Lu-

narVis
drawings immediately indicate the much smaller number of ASes and overlay nodes in the
Gnutella network. As a consequence, more heavy edges (red) exist and the variance in the fewer ASes ⇒

different load dist.
appearance weight (edge color) is more pronounced. This is because of the fact that not all
the ASes host P2P users (this is in accordance with our measurements in Section 3.3.3.1), as is
the case for the random network. Again, the distributions of degrees do not differ significantly. empty ASes
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(a) P2P network (b) Random network

Figure 3.3.6. Visualization of the core decomposition of the induced underly communication network. These drawings use the
same parameters as Figure 3.3.5.

For a closer comparison, Figure 3.3.7 shows a top-down view of the visualizations of com-
munication edges in Gnutella and random network. The visualization technique places nodes
with dense neighborhoods (tier-1 and tier-2 ASes) towards the center, and nodes with lesser
degrees (tier-3 customer ASes) towards the periphery. We can observe that while both net-
works have many nodes with large degrees in the center, the random network possesses several
nodes with large degree in the periphery. Gnutella, on the other hand, has almost no nodesR.: high degree

in periphery
with large degree in the periphery in either model. Moreover, this pattern is more pronounced
for Gnutella in the direct overlay communication model, while the random network is largely
similar in both models. In other words, it appears that Gnutella peering connections tend toGnutella peers

inside core of AS
lie in ASes in the core of the Internet where there may be high-bandwidth links available.

To further corroborate our observations, we investigate structural dependencies between
the induced underlay communication model and the actual underlay network, by compar-
ing the appearance weight with node-structural properties of the corresponding endnodes in
the original underlay. We focus on the properties degree and coreness, as both have been targeted

analysis
successfully applied for the extraction of customer-provider relationship as well as visualiza-
tion [207, 104], due to the ability of these properties to reflect the importance of ASes. We
systematically compare the weight of an edge with the minimum and maximum degree and
coreness of its endnodes. Figure 3.3.8 shows the corresponding plots.edge weight vs.

degree or coreness
From the plots of minimum and maximum degree, it is apparent that the appearance

weight of an edge and its endnodes’ degrees are not correlated in either the Gnutella orweight � degree

the random network, as no pattern is observable. Also, the distributions are similar as the
majority of edges are located in the periphery of the network where the maximum degree
of the endnodes is small. We thus hypothesize that the relation of load in the P2P network
and node degree in the underlying network is the same in both the Gnutella and the randomhere: R. ≈ G.

network. In other words, the Gnutella network does not appear to be significantly affected
by the node degree of underlay nodes.

However, considering the coreness reveals interesting observations. From the graphs ofweight vs.
coreness

minimum and maximum coreness in Figure 3.3.8, we can observe that although there is no
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(a) Gnutella (b) random network

Figure 3.3.7. Comparison of occurring communication in the P2P network and the Random network, using a landscape
metaphor visualization, see Section 3.3.2.

correlation in either of the two networks, their distributions are different. In the random
network the distributions are very uniform, which is a reflection of its random nature. But R.: uniform

in the case of Gnutella almost no heavy edge is incident to a node with small coreness, as
can be seen in the minimum-coreness diagram. Positively speaking, most edges with large G.:heavy edges �

low-core nodes
appearance weights are incident to nodes with large minimum coreness. Interpreting coreness
as importance of an AS, these Gnutella edges are located in the backbone of the Internet,
an important observation. The same diagram for the random network does not yield a
similarly significant distribution, thus denying a comparable interpretation. For instance, in
the random network, there exist edges located in the periphery that are heavily loaded. As here: R. 6= G.

an aside, backbone edges need not necessarily be heavily loaded in either network.
All these observations and analysis show that the Gnutella network differs from random

networks and there appears to be some correlation of Gnutella topology with the Internet
underlay.

3.3.3.3 Sensitivity Analysis for Refining the Model

The analyses conducted in Section 3.3.3.2 and the conclusions drawn, solely rely on analytic
visualizations. Based on these we now aim at a deeper understanding of the properties of
the underlay communication the P2P network induces. Modifying the generation process for from AV to

model refinement
the random networks in ways suggested by our observation, we are now able to conduct a
sensitivity analysis, in order to find parameters for the random network that lead to a more
aligned edge-coreness distribution with the observed P2P network.

It is both reasonable to assume that many nodes are in lower shells (customer ASes) and
that heavy nodes (ultrapeers) are in higher shells. Therefore we consider two modifications: refined peering
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Figure 3.3.8. Comparing appearance weight with minimum and maximum degree and coreness of the corresponding endnodes
in Gnutella and the random network. Each data point represents an edge, the x-axis denotes the appearance
weight and the y-axis reflects the degrees (coreness) of the endnodes. All axes use a logarithmic scale.

The low coreness communication restricts the IP-spaces that are available for communications
to those hosted by ASes with low coreness. Analogously the high coreness communication
uses only IPs located in ASes with high coreness. For reasons of space and simplicity we
present only the plots of two of our various experiments. In order to model the routing in the
Internet more accurately, we considered the AS network as directed and thus had to adjust the
coreness calculation properly. As a rule of thumb, the values roughly double compared to the
original scenario described in Section 3.3.3.2.7 Figure 3.3.9 shows the plots that corresponddirected routing

to the right four diagrams in Figure 3.3.8. Again a data point is plotted for each edge in
the induced underlay, with coordinates that correspond to its appearance weight (x-axis) and
to its minimum/maximum incident node coreness (y-axis). The corresponding plots of the
degree distributions are omitted as they did not differ much.

At a first glance we can observe that the restriction to low coreness communication does
not yield a significant difference to the corresponding plot of our initially unrestricted random
network (Figure 3.3.8 lower right). Although the distributions are shaped in a highly similar
manner, they differ in the maximum occurring appearance weight. On the other hand, the
high coreness communication exhibits a very different pattern. Its distributions are more
similar to those from Gnutella than the random ones. A very interesting observation, is thatcloser to Gnutella

although communicating IPs are located in ASes with high coreness, some routing paths use
low-coreness ASes.

7Undirected, i.e., bidirectional edges are replaced by two unidirectional edges, see [29] for details on cores
in directed graphs.
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Figure 3.3.9. Comparison of appearance weight with minimum and maximum coreness of the corresponding endnodes in tuned
random networks. In the first and second pairs of figures, the communicating IPs that are hosted by ASes with
low coreness (≤ 2) and with high coreness (≥ 25), respectively. Otherwise the plots use the same settings as in
the right hand half of Figure 3.3.8.

Interpreting these findings, we conclude that the observed part of Gnutella mainly cor-
responds to a large part of the network spanned by the ultrapeers and only few leaf nodes
are included. Typically ultrapeer nodes maintain a connection to a certain (small) number
of leaf nodes. On the other hand, the leaf nodes possess only slow Internet connections and
connect to the well-performing ultrapeers, who in turn shield them from a large amount of
P2P traffic, yet enable them to locate and share content. The well-know effect of rampant
free-riding corroborates our interpretation. More precisely, the phenomenon refers to the fact free-riders

hard to detect
that a large number of nodes remain online for very short durations, share no content, and
are only interested in finding content, while a small percentage of nodes participate in the
network for very long durations, and provide most of the content sought after in the network.
Hence, they participate in much more communications as compared to the other P2P nodes.



Section 3.4

k-Core-Driven Random Graphs using
Preferential Attachment

The first all-natural line of
fully cooked refrigerated entrees

(with no funny-sounding ingredients
you can’t pronounce).

(Harris Ranch ad,
some BART car, San Francisco)

Network analysis driven by visual analytics appears to work well, if it takes into
account the core decomposition of a network—especially if a focus on the structure

of connectivity in a network is needed. The last two sections showcased these tools and
showed us that for some networks the core structure can certainly be claimed to be of prime
relevance. This, however, immediately raises a family of theoretical questions centered around
the following: “What k-core hierarchies can exist with a given number of nodes and edges?”

By now, the k-core structure is commonly applied in order to identify central parts of net-
works, as it peels the network layer by layer, filtering out less important parts that are sparsely
connected with the remaining graph. Example applications are network fingerprinting with
LaNet-vi [18] or LunarVis (see Section 3.2), protein network analysis [228], or the exploration
of modern online social networks [82]. The interest in a special direction of this field, the
modeling of classes of graphs, has significantly increased recently, yielding studies of complex
systems such as the Internet, biological networks, river basins, or social networks. While
random graphs have been studied for a long time, the standard models appear to be inappro-
priate because they do not share certain abstract characteristics observed for those systems
(see below). A crucial field of application of graph generators is the simulated evolution of a
given network, granting insights in both its past development and its anticipated future be-
havior. One prominent example is the Internet at the Autonomous System level where various
models have emerged over the last few years, including BRITE [160], Inet [142], nem [158],
and various models presented by Pastor-Satorras and Vespignani [183]. While this network
has been observed to possess a very distinct k-core structure, kept track of over a long period
of time [104], all generating tools so far ignore this structure, and thus largely fail to do justice
to this significant property. Overall, up to our knowledge an approach to create networks with
a given k-core structure is missing so far.

In this section, we first establish a number of theoretical bounds related to the above
question. Building on these, we then develop a random network generator for a predefined
k-core structure. To address this issue we refine the abstract measurement of core sizes to a
core fingerprint that additionally includes information on the inter-connectivity of each pair
of shells. This allows us to design a simple and efficient method to incrementally generate
randomized networks with a predefined k-core structure, starting with the maximum core.
By utilizing two results on edge rewiring we achieve a structure that precisely matches the
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core fingerprint. We shall see that predefining the core fingerprint of a network still leaves
many degrees of freedom open. Since we focus on the network of Autonomous Systems
as a case study, we exploit this fact and optionally bias the randomness in the adjacency
of nodes towards preferential attachment, as described by Barabási and Albert [16]. This
paradigm of setting up links in a network has been proven to introduce a power-law degree
distribution, which has first been observed by Faloutsos et al. [86] for the Internet. Our
approach imposes almost no modifications on a vanilla realization of preferential attachment,
a fact that is reflected by our experimental results. We thus manage to coalesce two of the
most fundamental concepts in the theory of complex networks of the recent past, k-cores and
preferential attachment. To see how our generator performs in practice, we finally perform a
comparative evaluation with two well-known AS network8 generators, BRITE and Inet, and
with reality, based on a number of established criteria from network analysis. Our results
yield that our generator is highly suitable for the simulation of AS topologies, confirming the
importance of the core decomposition. Moreover we show that BRITE largely fails to capture
significant characteristics of the AS network, including its core decomposition, and that Inet
roughly matches the reference except for its general tendency to be too densely connected. A
major drawback of Inet is its generation time of several minutes, whereas our core generator
and BRITE create a topology within seconds. Despite the good fitness of our generator it
still offers degrees of freedom: The high customizability of our rather generic core generator
suggests several adaptations that can further increase the fitness to the specific peculiarities
of the AS network. Such adaptations to special networks can be realized by employing a
number of structural modifications such as swapping and rewiring without interfering with
the core decomposition.

Without the diligent work on a survey of Internet topology generators conducted by Lin
Huang (student’s thesis), a resourceful student of mine, this section would quite probably
lack its case study on the AS network. In my personal records, pondering about how to
wed the core fingerprint and preferential attachment correctly and efficiently, and brooding
over a succinct and conclusive proof together with my former colleague Michael Baur, was
among my most interesting pieces of algorithm design. At the same time this section marks a
turning point in my course of work, since after finishing it, I decided to finally dare approach-
ing dynamic clustering, something I postponed a bit until then. A preliminary version of
this section—in fact, a generator without using preferential attachment—has been published
in [33], based on joint work with Michael Baur, Marco Gaertler, Marcus Krug and Dorothea
Wagner. Due to an invitation to a journal, which followed the latter work, we then decided
to attempt integrating preferential attachment and finished a publication [34] which closely
resembles this section. I would like to thank Jorge Busch for pointing out a problem in the
first version of Lemma 3.4.1, and for valuable comments and a discussion on its resolution,
which we were then able to use in this revised version.

Main Results

• We establish tight bounds on the number of nodes and the number of edges present in
the cores of a network. (Lemma 3.4.3)

• Two fundamental operations on edges, rewiring and swapping do not change the k-core
decomposition of network (but allow to fully explore the theoretical bounds). (Lem-
mata 3.4.2 and 3.4.1)

• We present a simple and efficient algorithm for generating networks that strictly adhere
to a given k-core structure, called core fingerprint, and prove its correctness. (Sec-
tion 3.4.2 and Algorithm 12)

• k-core generation can be augmented as to use preferential attachment, yielding a power-
law degree distribution. (Section 3.4.2)

8AS stands for Autonomous Systems (in the Internet)
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• We exemplify the feasibility of our technique in a case study using the AS network of the
Internet, comparing our generator to the established topology generators BRITE [160]
and Inet [142], and to measurements of the real AS network. (Section 3.4.3)

Related Work on Random Models and Preferential Attachment. A plethora of
models for random graphs have been proposed in the past. The most prominent and
fundamental include the Erdős-Rényi model [85], also known as G(n,m), Gilbert’s model
G(n, p) [107] and the Watts and Strogatz model [222], which is also known as the small-world -G(n,m), G(n, p)

model. However, in a number of real-world graphs some properties have been identified that
are unlikely to emerge in these models, most notably a distribution of node degrees that
roughly obeys a power-law, a fact that has been identified by Faloutsos et al. [86]. More pre-power-law

cisely, the number of nodes with degree d is proportional to d−γ for some constant γ. Graphs
with this property are commonly referred to as scale-free. Barabási and Albert describe a
growth process coined preferential attachment [16] that generates graphs with such a degreepreferential

attachment
distribution. Starting out with an empty graph, this process iteratively adds a new node that
is adjacent to a fixed number of already existing nodes. The choice of a specific neighbor is
made with a probability proportional to the current degree of the nodes. In the following, we
closely adhere to the particularly efficient implementation of preferential attachment proposed
by Batagelj and Brandes [27].

Future Work. As mentioned above our generator is not tightly packed with constraints but
still offers space for adding in peculiarities of a specific family of networks. Thus, wheneverdegrees of freedom

the focus is on a particular application which must be simulated as best as possible in a
randomized way, such peculiarities may easily be built into the generator, filling some of its
degrees of freedom; we propose a few such approaches in Section 3.4.2.4.

3.4.1 Preliminaries

3.4.1.1 Core Decomposition

We briefly recall the concept of the core decomposition from Section 3.1.3, as it is fundamental
to this section, and introduce some refined nomenclature. A nested decomposition of G is
a finite sequence (V0, . . . , Vk) of subsets of nodes such that V0 = V , Vi+1 ⊆ Vi for i < k,nested

decomposition
and Vk 6= ∅. The concept of the core decomposition was originally introduced by Seidman [201]
and generalized by Batagelj and Zaversnik [29]. Constructively speaking, the i-core of ani-core

undirected graph is defined as the unique subgraph obtained by iteratively removing all nodes
of degree less than i. In the following we often use the existence of a removal order σ, whichσ

we further specify in Section 3.4.2.2. This is equivalent to the closed definition of the i-core
as the set of all nodes with at least i adjacencies to other nodes in the i-core. The core
number of a graph is the smallest i such that the (i+ 1)-core is empty, and the correspondingcore number

i-core is called the core of a graph. Figure 3.1.1 depicts the core decomposition of an examplecore of a graph

graph with a core number of 4. A node has coreness i, if it belongs to the i-core but notcoreness i

to the (i + 1)-core. Thus, the collection of all nodes having coreness i make up the i-shell.i-shell

An edge {u, v} is an intra-shell edge if both u and v have the same coreness, otherwise it is
an inter-shell edge. Informally speaking, the coreness of a node can be viewed as a robustintra- and

inter-shell edges
version of the degree, i. e., a node of coreness i retains its coreness even after the removal of
an arbitrary number of nodes of smaller coreness. The core decomposition can be computed
in linear time with respect to the graph size [28]. It has frequently been used for network
analysis, see e. g., [104, 109]. In the following section we state some observations on core
structures, that are crucial to our approach.
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Figure 3.4.1. Rewiring and swapping edges, the labels indicate the coreness of the nodes.

3.4.1.2 Edges in a Core Hierarchy

The following two lemmata summarize two facts about the relation of intra- and inter-shell
edges. Note that Lemma 3.4.1 corrects a flaw present in a previously published preliminary
version of this section [33]. We later exploit this interaction and interchangeability of edges
in our network generation algorithm.

Lemma 3.4.1 (Rewiring) Let G = (V,E) be a graph. Let u, v ∈ V be two non-adjacent 2 inter-shell e.
↔ 1 intra-shell e.

nodes with the same coreness and {u,w}, {v, w′} ∈ E two edges such that coreness (u) <
min{coreness (w) , coreness (w′)}. Then G′ := (V,E′) with E′ := E \{{u,w}, {v, w′}}∪{u, v}
has the same core decomposition as G. Conversely, let u, v ∈ V be two adjacent nodes with
the same coreness k and with at most k − 1 neighbors in higher cores, and w,w′ ∈ V such
that coreness (u) < min{coreness (w) , coreness (w′)} and {u,w}, {v, w′} 6∈ E. Then G′′ :=
(V,E′′) with E′′ := E \ {u, v} ∪ {{u,w}, {v, w′}} has the same core decomposition as G.

Lemma 3.4.2 (Swapping) Let G = (V,E) be a graph, u, v, w,w′ ∈ V be four nodes all
swapping intra-
shell edges

having the same coreness, {u, v}, {w,w′} ∈ E be two intra-shell edges, and {u,w}, {v, w′} 6∈ E.
Then the graph G′ := (V,E′) with E′ := E \{{u, v}, {w,w′}}∪{{u,w}, {v, w′}} has the same
core decomposition as G.

It is not hard to see that the correctness of both lemmata follows from the definition of cores.
The cumbersome prerequisites can be understood more easily by the concept of a removal
order that will be introduced later in Section 3.4.2.2. Informally speaking, Lemma 3.4.1 allows these lemmata in

prose
for most pairs of disconnected nodes of the same coreness to each remove one edge to some
nodes of higher coreness and instead become connected, and vice versa, without changing the
decomposition. Furthermore, according to Lemma 3.4.2 we can swap the endnodes of intra-
shell edges if this does not interfere with existing connections. Figure 3.4.1 illustrates these
two lemmata for an example graph. Using these statements, we can now establish (tight)
bounds of the sizes of cores and shells.

Lemma 3.4.3 (Size of i-Cores) Let G = (V,E) be a graph, (V0, . . . , Vk) its core decom- bounds on core-
and shell sizes

position and Gi := G[Vi] the i-core. Then the size of the i-core is bounded as follows:

i+ 1 ≤ |Vi| and
(i+ 1)i

2
≤ |Ei| . (3.4.1)

Let ni := |Vi \ Vi+1| be the number of nodes with coreness i and mi := |Ei \ Ei+1| the num-
ber of all edges whose endnodes with minimum coreness has coreness i for 0 ≤ i ≤ k (we
define Vk+1 := ∅ and Ek+1 := ∅). Then the size of the i-shell is bounded as follows:

0 ≤ ni ≤ |V | (3.4.2)⌈
i·|ni|

2

⌉
, if ni > i(

ni
2

)
+ ni · (i− ni + 1) , if ni ≤ i

}
≤ mi ≤

{
i · ni , if i < k

i · ni − i2+i
2 , if i = k

(3.4.3)
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Note that the bounds for the i-core (Eq. 3.4.1) are trivially obtained from the definition. The
bounds for the i-shell (Eq. 3.4.2 and 3.4.3), however, use the above two lemmata, i. e., the
shell has the minimum number of edges, if it has the maximum possible number of intra-shell
edges, since each such edge contributes twice, and a minimum number of inter-shell edges. Anintra-shell edges

“contribute twice”
analogous reasoning yields the upper bounds. We omit proofs for the bounds of this lemma
except of the following, which is the only one not obvious.

Proof. [Upper Bound in Eq. 3.4.3] By definition, there exists a removal order σ that iteratively
removes a node v from Vk with deg(v) ≤ k, such that eventually all nodes in Vk are removed.
We now count the maximum number of edges that still allow such an order of removal σ(v),
v ∈ Vk by adding up the number of edges the removed nodes in such a removal order can
maximally be incident to. For the first nk − (k + 1) nodes (which can be zero), the removal# edges

allowed by σ
order σ implies that the current node v can have a maximum degree of k. For the last k + 1
nodes (minimum number of nodes for a k-shell) however, the number of incident edges during
the removal order is even less, resulting in a (k + 1)-clique supported by (k2 + k)/2 edges.
Thus, we arrive at

(nk − (k + 1)) · k︸ ︷︷ ︸
by nodes beyond k + 1

+
(k + 1) · k

2︸ ︷︷ ︸
by clique of last k + 1 nodes

= k · nk −
k2 + k

2
(3.4.4)

edges in total, which proves the bound. It is easy to see that this bound is tight, since
our arguments induce an immediate construction. Note, that this bound also applies to lower
shells when excluding edges to higher shells.

3.4.2 Core Generator

In this section, we first introduce a set of relevant parameters for the construction of core
structures and discuss which combinations of these lead to feasible instances, i. e., are capable
of realizing a graph with a predefined core structure. Then we describe our basic algorithm
that generates such graphs, and point out several variations. As the 0-shell only contains
isolated nodes and in order to reduce technical peculiarities, we restrict ourselves to generating
graphs with an empty 0-shell.

3.4.2.1 Input Parameters

There are several possibilities to specify core structures. Of the quantitative approaches, the
most obvious is to give the number of nodes per shell, the number of intra-shell edges, and the# nodes per shell

number of inter-shell edges (for each pair of shells). This can be coded as a vector N ∈ Nk0edge-matrix

where ni is the number of nodes in the i-shell and a symmetric matrix M ∈ Nk×k0 , where mi,j

contains the number of edges connecting the i-shell with the j-shell. We call this the core
fingerprint. For example, the graph (omitting isolated nodes) given in Figure 3.1.1 has the
following fingerprint:

N := (4, 3, 2, 5) and M :=


3 1 0 0
1 2 2 0
0 2 0 6
0 0 6 10


Clearly, the implied sizes of the shells have to respect the bounds established in Lemma 3.4.3.
This kind of specification of core structures provides the maximum degree of freedom, i. e.,
the user can configure the size distribution of each shell and is only limited by constraints
ensuring consistency.
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Algorithm 12: Core Generator

Input: integer k, vector N ∈ Nk0 , valid symmetric matrix M ∈ Nk×k0

Output: graph G = (V,E)

V ← ∅; E ← ∅; targetNodes ← ∅1

for i← k to 1 do // introduce next shell2

list Vi ← {ni new nodes}3

σi : Vi → {1, . . . , ni} defined by σ−1
i (`) = Vi[`] ; // removal order4

u← Vi[ni] ; // last node in removal order5

list sourceNodes ← Vi \ {u} ; // u cannot source intra-edges6

list targetNodes[i] ← {u} ; // u into PA-list7

list unconnectable ← {u} ; // see line 228

for j ← i to k do // select target shell9

for m← 1 to mi,j do // introduce mij edges10

s← sourceNodes[random] ; // source of new edge11

C ← N(s) ∪ {s} ; // invalid target candidates12

if i = j then13

C ← C ∪ {` ∈ Vi | σ(`) < σ(s)} ; // ` violates σ14

C ← targetNodes[j] ; // target candidates list15

C.removeAllOccurences(C)16

t← C[random] ; // target of new edge17

E ← E ∪ (s, t)18

if outdeg(s) = i then // source saturated19

sourceNodes.remove(s)20

else if i = j and outdeg(s) ≥ ni − σi(s) then21

sourceNodes.remove(s) ; // no more intra-targets22

unconnectable.append(s) ; // store for inter-targets23

targetNodes[i].append(s) ; // populate PA-lists24

targetNodes[j].append(t)25

if i = j then26

sourceNodes.appendAll(unconnectable) ; // restore27

remove direction of edges28

list poorNodes ← {v ∈ Vi | deg(v) < i}29

list richNodes ← {v ∈ Vi | deg(v) > i}30

while poorNodes 6= ∅ do // rewire unsaturated nodes31

v ← poorNodes[random]32

w ← richNodes[random]33

C ← N(w) \N(v) ; // pivot candidates34

c← C[random]35

E ← E \ {{w, c}} ∪ {{v, c}}36

if deg(v) = i then // v saturated37

poorNodes.remove(v)38

if deg(w) = i then // w no longer rich39

richNodes.remove(w)40

V ← V ∪ Vi ; // shell i completed41

return graph G = (V,E)42
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(a) before rewiring (b) after rewiring

Figure 3.4.2. Example of rewiring. The fingerprint N = (0, 0, 7) and m3,3 = 11 resulted in the
left hand graph. Clearly, node 1 has insufficient degree. In the rewiring phase
we can choose either node 3 or 5 as the rich node. For the right hand graph we
selected node 3 and node 5 as the rich node and the pivot node, respectively.
Thus, we arrive at E = E \ {{3, 5}} ∪ {{1, 5}}.

3.4.2.2 Algorithmic Approach

Our generator builds a graph by iterativeley adding new shells beginning at the maximum
core. When adding a new shell we create nodes and edges according to the given core finger-start at max. core

print and take care to not change the coreness of nodes in previously built higher shells. The
detailed pseudo code is given in Algorithm 12.

In order to guarantee that the coreness of nodes in the i-shell will not exceed i, we define
an order σi which will be maintained as a valid removal order for this shell (line 4). It isσi per shell

of vital importance to ensure that for every node in Vi the sum of the number of neighbors
in the shell i with a higher value of σi and the number of neighbors in higher shells does
not exceed i. To model this, newly created edges are directed such that inter-shell edges

consider edges
directed, by

coreness and σi point from the lower shell to the higher shell and intra-shell edges are directed in accordance
to our predefined order σi and each node in Vi is restricted to a maximum out-degree of i
(line 20). For inserting an edge between nodes in different shells it is sufficient to choose any
non-adjacent node pair (lines 11-25). We are left to guarantee that the coreness is exactly i
and not less. An example where this not yet satisfied is given in Figure 3.4.2a.

While lines 3 to 27, called the element generation phase, avoid erroneously high values ofelement gen-
eration phase

coreness, the rewiring phase in lines 29 to 40 solves the problem of erroneously low values of
coreness by a sophisticated movement of edges. We choose a node v with insufficient degreerewiring phase

and a node w with degree greater than i. Then we select a neighbor c ∈ N(w) and replace
this adjacency by a new edge {v, c}.

Revisiting element generation, observe that some subtlety has been put into the choice
of incident nodes of new edges. We maintain a list of sourceNodes which contains all
nodes of the current shell i that can serve as the source of an edge. sourceNodes containslist

sourceNodes
all nodes of a shell at most once, excluding those with a saturated out-degree (see line 20).
However, in the special case of i = j, nodes that are unconnectable because they are already
connected to all nodes with a higher value of σ, must also be excluded (see line 22). These
nodes are not yet saturated and must thus be re-inserted into sourceNodes. Since edges
can be directed towards any higher shell, we maintain a list of targetNodes[i] for each shell
i throughout the algorithm. These lists are the key for realizing preferential attachment. Atkey for preferen-

tial attachment
any time targetNodes[i] contains each node of shell i with multiplicity equal to its degree
(by lines 24-25). We initialize targetNodes[i] with u = argmaxv∈Viσ(v) since u is a feasible
target for all v ∈ Vi. For each choice of s in line 11, s and its neighborhood N(s) have to be
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removed from the list of target nodes. In the special case of i = j, s must not connect to nodes
with a lower value of σ. This pruning is done in lines 12-16. Based on the observations in this
section, we analyze Algorithm 12 in terms of correctness and running time in the following
section.

3.4.2.3 Analysis of the Algorithm

Observation 3.4.1 Algorithm 12 generates valid core structures for the maximum number correct for
maxmii

of intra-shell edges, i.e. mii = i · ni − (i2 + i)/2.

Proof. Let m = i · ni − (i2 + i)/2. A node is removed from sourceNodes if either its
out-degree is equal to i or it is connected to all nodes with a higher value of σ, i.e. for
every s ∈ sourceNodes there is at least one valid target node t ∈ targetNodes. If
sourceNodes is empty we have inserted (ni − (i + 1)) · i + (i + 1) · i/2 = m edges (see
Equation 3.4.4).

Based on this observation Lemmas 3.4.4 and 3.4.5 prove the correctness of Algorithm 12 inductive proof

inductively.

Lemma 3.4.4 Given a valid matrix M , and a valid subgraph G(Vk, . . . , Vi+1) the generation element genera-
tion phase correct

phase constructs the subgraph G(Vk, . . . , Vi) such that M is obeyed and all nodes in V` have
coreness ≤ `, i ≤ ` ≤ k.

Proof. Let i = j. Lines 20 and 14 guarantee that σ is a valid removal order. Thus, all
nodes in Vi have coreness ≤ i and the coreness of all other nodes remains unchanged. Due to
Observation 3.4.1 the upper bounds in Lemma 3.4.3 can be attained, thus any valid mii can
be realized.

Let now i < j. Analogously, requiring outdeg(v) < k preserves the removal order and
thus a coreness of i or less for nodes in Vi. Again, the coreness of all other nodes remains
unchanged, and the upper bound in Lemma 3.4.3 can trivially be attained.

Since the above lemma shows that the element generation phase fits in all nodes and all
edges required by matrix M and grants to each node a coreness equal to or less than the coreness not ex-

ceeded
required value, we are left to prove that the rewiring phase refines the edge set such that
equality holds.

Lemma 3.4.5 Given a valid matrix M , and a valid subgraph G(Vk, . . . , Vi+1). If rewiring phase
correct

coreness (v) ≤ i holds for all v ∈ Vi, then the rewiring phase moves edges such that the sub-
graph G(Vk, . . . , Vi) is valid, i.e. M is obeyed and all nodes in V` have coreness `, i ≤ ` ≤ k.

Proof. The lemma is proven if equality holds in the invariant, i.e., the list poorNodes defined coreness exactly
met

in line 29 is empty. Suppose there exists at least one node v ∈ poorNodes, then, clearly core-
ness(v) < i. Assume now for contradiction all nodes in Vi have degree ≤ i, then, Lemma 3.4.3
is violated. Thus, there exists w ∈ richNodes ∈ Vi with deg(w) > i. Since deg(w) > deg(v),
C = N(w)\N(v) 6= ∅. Let c ∈ C, the new set of edges E′ = E \{{w, c}}∪{{v, c}} still obeys
M , decrements deg(w) and increments deg(v), increasing coreness(v) by at most one. Thus,
the rewiring phase maintains the stated invariant. Furthermore, due to the strict increase
and decrease of deg(v) and deg(w), respectively, |poorNodes| strictly decreases to 0, which
terminates loop 31.

By induction, Lemmas 3.4.4 and 3.4.5 yield that Algorithm 12 constructs a graph in
accordance with M and Vi, 0 ≤ i ≤ k, since the base case, i.e. the empty graph, is trivial.

In terms of running time the crucial parts of the algorithm are the updates and random
accesses of the lists sourceNodes, targetNodes, poorNodes, and richNodes and cre-
ation of the target candidate and pivot candidate lists (lines 16 and 34). We use array-backed
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lists to guarantee constant-time access to random elements. When we remove an element e,array-backed lists

we fill its position with the last element of the list, avoiding moving all successive elements of
e. Since we only have random access to the lists, preserving their orders is not required.

Lemma 3.4.6 The asymptotic running time of the generator in Algorithm 12 is bounded byrunning time

O((m2 + n2k) log(n)) .

Proof. The runtime of the element generation phase is dominated by the assembling of target
node candidates in line 16. Building a decision tree from C in O(n log n) time, based on the
ordering σ, we can prune list C in O(m log n+n log n) time per edge, which dominates lines 3
to 27.

The running time of the rewiring phase is dominated by determining the list of pivot
candidates in line 34 using O(n log n) time per rewiring. The total number of rewirings is
bounded by n · k. This dominates lines 29 to 40 as well as the element generation phase and
all peripheral steps. Assuming the graph is connected, in total, both phases sum up to a
running time of O((m2 + n2k) log(n)).

Since real-world networks seldom exhibit pathologic characteristics, we replaced the eager
computation of the candidate list in lines 12 to 17 by a lazy selection from targetNodes[i]

in practice
eager → lazy

that is repeated until a valid t has been drawn. Clearly this does not improve worst-case
running time but works faster for virtually all applications.

We performed our experiments on a recent standard PC, running SUSE Linux 10.2 with
an implementation in Java. Absolute running times ranged between 100 and 500 milliseconds
for the AS network which is comparable to BRITE. The running time of Inet is in the order
of minutes. See Section 3.4.3.1 for the description of these generators.

3.4.2.4 Refinements

Although the core fingerprint is the prime characteristic we focus on in this work, together
with the inclusion of a preferential attachment mechanism, a number of potentially describing
features of a network exist. In this section, we briefly discuss other relevant features, that canfuture work: pos-

sible refinements
easily be integrated in our generator.

Connectivity is a very basic characteristic of a network, boiling down to the number of
connected components. Building upon the core decomposition, this can be refined to the
number of connected components per shell. While the whole graph or even the i-core can be
connected, the i-shell can still have several disconnected components. If this is not desired,connectivity

within shells
the user can specify the number and the sizes of connected components. The generator will
then first create a spanning forest, where each tree is the seed of a component, and mark these
edges as not rewirable. Note that requiring a specific set of connected components restricts
the set of valid shell-connectivity matrices. However, this can be resolved by allowing the
number of edges or the number and sizes of connected components to slightly deviate from
the predefined values, depending on the user’s interests.

Returning our focus to the degree distribution, the approach described in Section 3.4.2.2,
depending on not a single parameter, can clearly be further elaborated. We tested two
variants of our implementation of preferential attachment. In the first variant, we require
the degree distributions of each shell as an input. Based on these we then pre-fill the array
targetNodes[i] in line 7 with the nodes in Vi, using the exact multiplicities as given by
the degree distribution and an ordering analogous to σ. This approach clearly biases thepredefined de-

gree distribution
preferential attachment process towards the desired degree distribution (see Figure 3.4.3).
Alternatively, we can solely rely on a post-processing step. In this case we can completely
abandon preferential attachment and simply apply a sequence of rewirings (Lemma 3.4.1) and
swappings (Lemma 3.4.2) in order to approach a given degree distribution. Although bothtargeted rewiring

these techniques yielded very good results, we exclude them from further evaluation, due to
their requiring rather specific parameters in addition to the core fingerprint.
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Figure 3.4.3. The number of nodes with degree at least d for the AS network, the original, and
the refined Core generator for January 2006. A graph generated by preferential
attachment of approximately the same size is shown for comparison.

3.4.3 Modeling the AS Network

An important application of a core-aware network generator is the simulation of the Internet
at the AS level. In this section we compare networks generated by our method and established AS-simulation

topology generators with three exemplary snapshot of the real AS network at the router level
taken by the Oregon Routeviews project [212] at midnight on January 1, 2002 (oix-full- Routeviews

snapshot-2002-01-01-0000), on January 1, 2006 (oix-full-snapshot-2006-01-01-0000), and on
July 1, 2007 (oix-full-snapshot-2007-07-01-0000). Table 3.4.1 shows the sizes of these graphs.

3.4.3.1 Topology Generators

The first methods to generate networks with Internet-like structure date back to the 1990s and
a multitude of techniques has been proposed since then. Among the most popular and widely
used tools we have chosen Inet-3.0 [142] and BRITE [160] for our comparison since these Inet, BRITE

are commonly included in other studies which cover a broader range of existing models [159,
142]. Although nem [158] also seems promising we do not take it into account because of
its limitation to networks not greater than 4000 nodes. We decided to not use the specific
degree distribution of the reference graph for our mechanism of preferential attachment. The
reason for this is, that a generation purely based on k-cores and raw preferential attachment
is much more instructive. The effect of using the reference degree distribution as a blueprint
are showcased in Figure 3.4.3.

The Internet topology generator Inet [142] generates an AS-level representation of the
Internet. Its developers claim that “it generates random networks with characteristics similar
to those of the Internet from November 1997 to February 2002, and beyond”. Basically, Inet
generates networks with a degree distribution which fits to one of the power laws originally power law degree

distribution
found by Faloutsos et al. [86], namely that the frequency of nodes with degree d is proportional
to d raised to a power of a constant α: f(d) ∝ dα. Since this law does not cover all nodes

AS 2002-01 AS 2006-01 AS 2007-07
Number of Nodes 12,485 21,419 25,787
Number of Edges 25,980 45,638 53,014

Table 3.4.1. Sizes of the AS network snapshots.
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and in order to match other relevant properties as well, optimizations for various specific
conditions were added to the original procedure over time. The complete generation method
is explained in [142]. Since the procedures of Inet are already customized to AS networks,
only a small number of input parameters can be specified: the total number of nodes, the
fraction of degree-one nodes, and the size of the square used for node placement in drawings.

The Boston university Representative Internet Topology gEnerator BRITE [160] can gen-
erate networks for different levels of the Internet topology. Beside this, it offers various other
options to customize the generation procedure.

Drawing area. The nodes of the generated topology are distributed in a square of a
certain size.BRITE’s

parameters
Node distribution. In the drawing area, nodes are either distributed uniformly at

random or Pareto.
Outgoing links. New nodes are connected with a specific number of outgoing links to

other, already existing nodes.
Connectivity. The neighborhood of a node is selected based on certain guidelines such

as geometric locality, preferential attachment, or a combination of both.
Procedure. Nodes can either be placed before the addition of edges or in an incremental

fashion. In the latter case each new node introduces a number of new edges that can only
connect to already existing nodes.

3.4.3.2 Characteristics

In [142], an extensive collection of characteristics is evaluated that judge the fitness of a
generated graph with respect to its real world counterpart. We repeated this evaluationcompared char-

acteristics
for a representative selection of these properties with a focus on the assessment of the core
generator. In the following, we summarize the properties we employed in our analysis.

General statistics. To see how well the generated networks fit to the most obvious
characteristics we computed some basic properties: the number of edges, the minimum and
the maximum degree. Note that all models strictly meet the given number of nodes, so the

min-, max-
, avg.-degree

number of edges corresponds to density and average degree.
Cores. The core decomposition is a significant structural property of an AS network. We

core
decomposition

compare not only the core number but the extensive core fingerprint.
Clustering coefficient. The clustering coefficient is a measure for the local density

around a node. It counts how many of a node’s pairs of neighbors are themselves adjacent.
clustering coeff.,

triangles, triples,
transitivity These values are averaged to get a single measure for the network. Closely related character-

istics are the numbers of triangles and triples and the transitivity [197].
Path length. We compare two properties based on path length: characteristic path

length, which is the average of the distances of all node pairs and average eccentricity. Theavg. path length,
eccentricity

eccentricity of a node is its maximum distance to all other nodes. Average eccentricity then
is the average of all nodes’ eccentricities.

Frequency versus degree. One of the classic power laws found by Faloutsos et al. [86]
is f(d) ∝ dα , that is, the frequency of nodes with degree d, is proportional to d raised to adegree

distribution
power of a constant α. Since this power law does not hold for nearly 2% of the highest degree
nodes, we use a modified version [50, 55]:

F (d) =
∑
i>d

f(i) ∝ dα .

Size of k-neighborhood. Another power law identified in [86] is N (k) ∝ kβ , where
N (k) is the sum over all nodes of their neighborhood sizes within distance k, i. e., N (k) =neighborhood size ∑
u∈V

∑
v∈V distk(u, v), where

distk(u, v) =

{
1 , if dist(u, v) ≤ k
0 , otherwise.
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AS 2002-01 Core BRITE Inet
Number of Nodes 12,485 12,485 12,485 12,485
Number of Edges 25,980 25,980 24,967 27,494
Minimum Degree 1 1 2 1
Maximum Degree 2,538 644 302 2,154
Core Number 20 20 2 9
Number of Triples 7,258,817 3,140,777 347,443 6,821,628
Number of Triangles 22,832 17,272 157 11,144
Transitivity 0.009 0.016 0.001 0.005
Clustering Coeff. 0.45 0.24 0.00 0.29
Avg. Path Length 3.63 3.69 5.09 3.29
Avg. Eccentricity 8.74 9.71 8.35 6.85

Table 3.4.2. Characteristics of the AS network of January 2002 and the three generators.

AS 2006-01 Core BRITE Inet
Number of Nodes 21,419 21,419 21,419 21,419
Number of Edges 45,638 45,638 42,835 58,069
Minimum Degree 1 1 2 1
Maximum Degree 2,408 662 411 3,572
Core Number 26 26 2 19
Number of Triples 12,161,105 5,631,122 637,716 30,643,658
Number of Triangles 46,256 36,052 177 75,770
Transitivity 0.011 0.019 0.001 0.007
Clustering Coeff. 0.38 0.17 0.00 0.53
Avg. Path Length 3.81 3.84 5.31 3.07
Avg. Eccentricity 8.52 10.36 8.63 6.45

Table 3.4.3. Characteristics of the AS network of January 2006 and the three generators.

Note that this characteristic can also be measured as an average over all nodes, and it is also
known as the number of pairs within k hops.

3.4.3.3 Evaluation

In the following, we detail the findings of our systematic evaluation. We gathered results on
the three generators as described in Sections 3.4.2 and 3.4.3.1 and on the real AS network
for all the properties listed in Section 3.4.3.2. The exact results for these properties can be
read off Tables 3.4.2, 3.4.3 and 3.4.4 for the years 2002, 2006 and 2007 respectively, and in
Figures 3.4.4-3.4.5.

Based on the previous studies we set appropriate parameters for the generators Inet and
BRITE. For Inet we have chosen the default input parameters except for the number of nodes
and the random seed. As the results in [161] suggest, we have used preferential attachment Inet and BRITE

settings
and incremental growth for BRITE. Furthermore, we add two edges for each new node to fit
the average degree of AS networks.

By construction, the numbers of nodes match the reference AS network, however, the
numbers of edges already differ heavily. While the number of edges is only slightly lower for
graphs generated by BRITE, and exactly fits the reference for the core generator (called Core
in the following), the edge set created by Inet is larger by one third. Inet denser

The well-known phenomenon of highly connected hubs in the AS network accompanied
by the power-law degree distribution is regarded as one of the most significant properties
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AS 2007-07 Core BRITE Inet
Number of Nodes 25,787 25,787 25,787 25,787
Number of Edges 53,014 53,014 51,571 76,467
Minimum Degree 1 1 2 1
Maximum Degree 2,391 838 393 5,168
Core Number 22 22 2 26
Number of Triples 13,889,150 6,759,443 757,653 56,514,215
Number of Triangles 39,646 29,612 174 162,889
Transitivity 0.009 0.013 0.001 0.009
Clustering Coeff. 0.33 0.15 0.00 0.65
Avg. Path Length 3.89 3.92 5.39 2.99
Avg. Eccentricity 10.24 10.64 8.72 6.52

Table 3.4.4. Characteristics of the AS network of July 2007 and the three generators.

of the Internet. Inet reproduces these quite well, but overstates the maximum degree. Indegree
distribution

contrast, the degree distribution of Core oscillates around the reference but fails to produce
nodes with a very high degree since preferential attachment is not extreme enough; the degree
distribution of BRITE suggests that the preference of new nodes to connect to existing hubs
is not strong enough either. These facts can be observed in Figure 3.4.4.

At a first glance, BRITE clearly fails to build up any kind of deep core structure (the
core number is 2). The reason for this becomes evident from the incremental generation

BRITE:
only 2-core

process of BRITE: the iterative addition of nodes incident to two new edges can simply be
reversed, resulting in a valid removal sequence for the 2-core that ultimately yields an empty
3-core. Figure 3.4.6 plots both the number of nodes and the number of edges per k-core
exemplary for January 2006. Inet builds up a decent core hierarchy but fails to attain a
sufficient depth, obviously resulting in larger mid-level shells, in terms of both nodes and
edges. By construction, Core perfectly matches the reference. The plots in Figure 3.4.5Inet too shallow

show the numbers of nodes and edges per k-shell, again exemplary for January 2006. They
confirm the above observations and additionally grant an insight into the absolute numbers
of elements per shell.

The shallow core structure created by BRITE is accompanied by a very low transitivity
alongside a negligible number of triangles and a tiny clustering coefficient, suggesting that
the BRITE graph is primarily composed of a set of paths of length two. The high average

BRITE con-
nectivity

path length further corroborates this conjecture, since by virtue of preferential attachment
hubs of high degree evolve, which, however, are interconnected via paths of length two by
construction.

The absolute numbers of triples and triangles as well as the transitivity and the clustering
coefficient are acceptable for both Core and Inet. The discrepancy of the latter generator from
the reference can quite generally be explained by the increased number of edges. The behavior
of Core with respect to these values is largely due to the absence of high-degree nodes, since,
intuitively speaking, star-shaped structures yield a high number of triples. The relativelyInet and Core

connectivity
high number of triangles thus yields an increased transitivity. The low clustering coefficient,
however, suggests, that there is large number of nodes with a sparse direct neighborhood.
Since, at the same time, Core exhibits a high number of triangles, the majority of these
triangles is incident to nodes with higher degree.

Figure 3.4.4 depicts the size of the neighborhood within k hops (sum over all nodes).
Note that the high average path length of BRITE mentioned earlier comes along with the
slow growth of the neighborhood size. The low average path length and the low average
eccentricity exhibited by Inet are, again, due to the large edge set. With respect to these
values, Core excels. Both the average path length and the k-neighborhood practically match
the reference.
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Figure 3.4.4. The number of nodes with a degree at least d (left) and the k-neighborhood for
distances k ∈ [0, 10] (right) for the AS network and the generated graphs for
January 2002, January 2006, and July 2007.
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match by construction.
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Chapter 4

Clustering a Dynamic Graph
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“The world is changing, I feel it in the earth, I feel it in the water, I smell it
in the air.” Even without Galadriel’s eldritch wisdom [210] we can see that
most networks we take a static view of, in fact change over time. Can we
transfer the questions we ask about static networks? What new challenges
await us? Should we even dare approaching a dynamic view if we know
that many questions about static networks are left unanswered?
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Section 4.1

Preface to Dynamic Graph Clustering

Yesterday we thought the world might end.
Today we’d be happy about that!

(Bastian Katz, paraphrasing spiegel.de’s
increasingly apocalyptic headlines concerning
the great financial crash late in 2008)

Exactly what is the essential question in the field of dynamic graph clustering?
The obvious foothold of dynamic clustering is that most networks in practice are not

static. On the contrary, networks evolve and so do their group structures. Along the lines of
classic dynamic problem statements, a canonic question can certainly be phrased as depicted
by Figure 4.1.1: A graph G is updated by some change ∆, yielding G′. Can we find pro-

G G′∆

C(G) C′(G′)
A(G, C,∆)

T (G′)T (G)

Figure 4.1.1. Problem setting of an update to a clustering C after a graph G changes (∆). Can
we find an algorithm A that renders this diagram close to being commutative?

cedures A that update the clustering C(G) to C′(G′) without re-clustering from scratch, but
work towards the same aim as a static technique T does? We shall call the static snapshots
of a changing graph time steps. Figure 4.1.1 depicts an online setting of clustering dynamictime step

online setting graphs, i.e., without further knowledge about future time steps, a solution to the current
single time step is to be found. To this end the clustering of the preceeding time step can
and should be built upon. Clusterings of further past time steps might also be consulted.
Without such a procedure A, we are left with re-clustering the updated graph instances G′

from scratch, which neither requires any new assumptions nor much further implementational
work. However, iteratively clustering time steps of a dynamic graph from scratch with a static
method has several disadvantages:

Running Time. Even though very fast clustering methods have been proposed recently
(e.g. [38] and Section 2.5), running times cannot be neglected for large instances or
environments where computing power is limited, as for example in sensor networks [196].

Local Optima. Whole families of clustering methods—modularity-based techniques in
particular—suffer from local optima, when maximized with common approaches, due
to their resilience to optimization. Dynamically maintaining a good solution has the
potential to overcome and avoid this pitfall, whereas re-clustering promises becoming
trapped in local optima over and over again.
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Smoothness.1 Most static clustering methods do not react in a continuous way to small
changes in a graph, they might even cause an oscillation of “orthogonal” clusterings.
This effect is highly undesirable in terms of both readability and practicality and can
easily be avoided in a dynamic setting.

Opposed to this setup, the offline setting of dynamic clustering also follows the traditional offline setting

notion of offline problems: The full timespan is known and a solution to a single time step can
be based on past and future time steps, possibly taking into account some global optimization
goal, which cannot be hoped for in an online setting, e.g., smoothness.1 The distinction
between these two setups, however, is slightly blurry concerning the recent literature, as
offline methods do not really take future information into account, but mostly deserve this
predicate for their emphasis on matching and comparing the clusterings of consecutive time
steps. We shall deal with the online setting in Sections 4.2-4.4 and touch the offline setting
in Section 4.5.

4.1.1 Related Work on Dynamic Clustering

Dynamic graph clustering has so far been a scarcely trodden field. Not a single method can
claim to be anything close to established. However, both on a theoretical side and in the
shape of case studies, some previous work exists on the topic; we will briefly review those
results related to the work in this thesis.

Recalling from Section 2.1.3 the concept of min-cut tree clustering, recent efforts by Saha
and Mitra [193, 192] suggested a method that was supposed to provably dynamically maintain
a clustering based on min-cut trees. Unfortunately we found a grave error in the methods dynamic min-cut

tree clustering
of the former work, and can give simple counter-examples. We will scrutinize these issues
and the corresponding static clustering technique [87] in Section 4.4. Other approaches can
roughly be divided up into those with an emphasis on the evolution of the graph and its
sequence of static clusterings, and those with an emphasis on quickly finding a new clustering
after a change in the graph.

Matching Offline Snapshots. Apart from the above, there have been attempts to track
communities over time and interpret their evolution, using a sequence of static time steps of
the network [132, 182], we will come back to this point of view in Section 4.5.2. The former
work [132] identifies communities of scientific works in a citation network, i.e., nodes represent
publications and directed edges represent citations. Their static clustering algorithm is based
on the cosine-similarity of the adjacency vectors of nodes. In an agglomerative approach, set-overlaps of

stable clusters
roughly speaking, the most similar nodes are merged, and only those identified clusters—or
parts of them—are actually used which are found in several modified runs of the algorithm
and thus considered stable. Then for the two time steps the authors use, an overlap criterion
is used to track clusters.

In the latter work [182] the clique percolation method (see Section 2.1.2) is again used.
The authors exploit the following neat (but arguably strongly counterintuitive) property of
this method: Given a graph and a clustering found by this method, then creating additional
edges in the graph leads to the algorithm finding either the same clustering as before or a
coarsening of it. To actually track clusters the authors thus also cluster the “union graph” of evolving CPM

two consecutive time steps, and match those clusters of different time steps that are contained
in the same “union cluster”.

Application-specific case studies using conceptually related matching techniques have been
performed for phenomena like web communities or blogspaces in the Internet in [211, 151].
The latter work proposes as a model the so-called time-graph, something remotely related to
the time-expanded graph, we shall propose later. In [9] a parameter-based dynamic graph
clustering method is proposed which allows offline user exploration and online clustering.

1We clarify this notion in Section 4.3.1.1, roughly speaking it refers to the degree of change between two
consecutive clusterings.
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Frames (time steps) of the graph are stored in hierarchical tiers which help to find a relevant
frame for a specific user query. The evolution of the clustering is approached via differential
graphs between frames, in which subgraphs are identified that are subject to heavy change,
by means of change in their edge set.

Online Approaches. An interesting approach is presented in [208] where the information-
theoretic minimum description length of the time steps of a graph sequence and their respec-minimum de-

scription length
tive clusterings is used to identify clusterings and points of change in both the graph and the
clusterings. Here the authors do not enforce a smoothness between the clusterings of time
steps, but do try to exploit consecutive similarities for speed. Again, the matching of clusters
between time steps is done with a separate technique, but once more using the minimum
description length.

Beyond graph theory, in data mining the issue of clustering an evolving data set hasdata mining

been addressed in, e.g., [53], where the authors pursue the goal of finding a smooth dynamic
clustering. The authors define the objective function of a clustering for a given time step of
a dynamic instance to consist of two parts. The snapshot quality sq is the quality of a static
data clustering, i.e., the quality regarding an n × n matrix Mt which describes the relations
between n data points, and the temporal costs ct, which are high if a clustering strongly differssq − ct

from its predecessor. A clustering is sought which optimizes the function

snapshot quality︷ ︸︸ ︷
sq(Ct,Mt) −

temporal costs︷ ︸︸ ︷
hc(Ct−1, Ct) , (4.1.1)

which quite obviously can be generalized to taking into account further past or future time
steps, and can thus even be cast into an offline problem. The authors use this concept on
two levels, first for defining a similarity relation between data points, and then for specifying
an objective function for a greedy agglomerative clustering approach. On a point basis, the
snapshost quality for two points’ similarity is the cosine similarity of the two points in terms
of the number of features shared with other points. The temporal cost is the correlation of the
time series which count the occurrences of the points in past time steps. Roughly speaking,
the objective function for clustering then consists of the snapshost quality of a clustering being
the sum of point similarities and a temporal cost which is defined by the similarity between
the current and the preceeding dendrograms which represent the agglomerative clustering. In
general terms, this is close to what we discuss in Sections 4.3 and 4.5, however, as our focus
is on graph clusterings, we clearly require functions different from those proposed in [53]. We
recommend the latter work for further references on dynamic clustering approaches in the
context of data mining. In [136] an explicitly bicriterial approach for low-difference updates
and a partial ILP2 are proposed, the latter of which we also discuss in Section 4.5.2.

4.1.2 Summarizing Remarks

Hitherto techniques for clustering dynamic graphs are newcomers. Very roughly speakingnew field

they can be divided up into two conceptional groups: The first group relies on purely static
clustering methods, be that established or homespun, and then, in a second step, apply an
additional technique for matching the clusters of consecutive time steps. The second group
consists of highly innovative pieces of work that propose novel techniques, either separately for
both of the above steps, or as an overall concept. The rather confusing collection of possible
optimization goals for dynamic graph clustering explains this tendency: While the problem
for static graph clustering already allows for much interpretation and many formalizations,
things seriously get worse when we add in dynamics. For this reason most techniques for
dynamic graph clustering are indeed able to offer arguments and case studies that support
their feasibility, but so far no conclusive arguments about their appropriateness have been
given and nothing close to a comparative or systematic evaluation.no estab-

lished results
2Integer Linear Programming



4.1 Preface to Dynamic Graph Clustering 161

Undeniably, techniques that solve a given clustering task for a changing network are neces-
sary and cannot wait until the field agrees on all underlying formalizations. In fact, we agree
with [53] in terms of their paradigmatic postulations for dynamic clustering and we will come
back to this in Section 4.5.2. However, in most of the following we shall address more clearly
defined problems and try to avoid either of the two above extremes, as we deem it inevitable build upon static

knowhow
to commence this field by building upon known results from static graph clustering.

Motivating Questions. Two general directions, for static graph clustering, spectral meth- questions

ods, e.g., [226], and techniques based on random walks [187, 213], do not lend themselves
well to dynamization due to their non-continuous nature, in mathematical terms. Variants
of index-based greedy agglomeration [57, 38], however, are well suited. Recalling from Sec-
tion 2.1, the literature on static graph clustering based on modularity maximization is quite
broad. To the best of our knowledge, however, there has been no attempt to dynamize any
approach for modularity maximization. Is an online dynamic approach for this algorithm
feasible and what can we hope for? Is there a way to dynamize a clustering algorithm in
the online setting for which actual rigorous properties are to be complied with? How can
we actually answer questions about the usefulness of a dynamic approach without also rely-
ing solely on handpicked real-world data? Is there a way to transfer knowhow from static
graph clustering to the offline setup? Can we avoid the introduction of many new degrees
of freedom—and thus uncertainty—which is inevitable when using some arbitrary matching
procedure for clusters between time steps?

Answers in this Thesis. We approach the above questions as follows. First we propose answers

and describe a ready-to-use generator for dynamic random clustered graphs, that then serves
as a tool for systematic evaluations and measurements. Our generator is based on the Erdős-
Rényi model [85], but adds (i) clustering structure, (ii) dynamics with respect to all properties
and (iii) a sound probabilistic setup for the evolution of both the graph and its ground-truth
clustering. We tackle the problem of updating a modularity-driven clustering by dynamizing
the currently fastest and the most widespread heuristics for modularity-maximization. With
respect to the three central criteria we postulate, speed, quality and smoothness, our algorithms
exhibit a clear superiority to their static counterparts, and we found strong evidence for a
locality assumption: local changes in a graph are to be reacted to in a largely local way. locality assump-

tion
Exhibiting many new insights into the structure of minimum s-t-cuts subjected to graph
dynamics, we show how the min-cut tree clustering algorithm can be dynamized—again
with positive results in a rigorous assessment with respect to the above three criteria. We
briefly sketch out how approximation factors for min-cut trees carry over to the guarantees
of this algorithm. Finally, we propose a novel approach towards true offline clustering which
explicitly avoids the introduction of multiple new procedures but solely relies on a reasonable
time-expanded graph model of a dynamic graph and on established techniques for static graph
clustering. This technique implicitly handles the task of matching the clusters of consecutive
time steps, and thus allows the exploration of cluster evolution “for free”.

Parts of this chapter have previously been published in [103, 120, 117, 118]. (We will point
out the respective publications in the corresponding sections.)

4.1.3 Preliminaries and Notation

In the following we coin the basic terms in the context of dynamic graphs and their clustering.
A dynamic graph G = (G0, . . . , Gtmax

) is a sequence of graphs, with Gt = (Vt, Et, ωt) being dynamic graph

the state of the dynamic graph at time step t. Informally speaking, the change ∆(Gt, Gt+1) time step

between time steps comprises a sequence (with pot. only 1 or 0 entries) of b atomic events
on Gt, which we detail below (see Tab. 4.1.1). In our online setting the sequence of changes
arrives as a stream, in the offline setting it is completely known in advance. online/offline
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Table 4.1.1. Atomic events in graphs; optional edge weights are in square brackets; the
superscripts of δ are often omitted, if irrelevant in the context.

description pseudocode symb. formal formal, abbrev. prerequisite
node insertion insert(u) δi V ← V ∪ {u} V + u u /∈ V
node removal remove(u) δr V ← V \ {u} V − u u ∈ V
edge creation connect(u, v [, ω]) δc E ← E ∪ {u, v} E + {u, v [, ω]} {u, v} /∈ E
edge removal discon(u, v) δd E ← E \ {u, v} E − {u, v} {u, v} ∈ E
weight increase incW(u, v, x) δ+ ω(u, v)← ω(u, v) + x ω(u, v) + x {u, v} ∈ E
weight decrease decW(u, v, x) δ− ω(u, v)← ω(u, v)− x ω(u, v)− x {u, v} ∈ E

4.1.3.1 Formalization of Graph Changes

A dynamic graph is composed of its static time steps and the changes in between them. Wegraph change

now formalize changes to graphs, which can, together with a starting state, fully define a
dynamic graph. In particular we discuss the changes we distinguish.

Atomic Events. We call the most elementary changes to a graph atomic events or atomicatomic events

changes. These cannot be broken up into smaller parts. Table 4.1.1 lists all atomic events and
their nomenclature. Most commonly, edge creations and removals take place, and they require

edge
creation/removal

the incident nodes to be present before and after the event. Given edge weights, changes to
weight change

these require the edge’s presence. Node creations and removals in turn only handle isolated
(degree zero) nodes, i.e., for an intuitive node deletion we first have to remove all incident

node
creation/removal

edges. If graph G′ results from applying an atomic event δ to graph G, we write δ(G) = G′.
In fact, we can take on the view of δ being a (bijective) function in G:δ

δ : G→ G (4.1.2)

G 7→ δ(G) (4.1.3)

Non-Atomic Changes. Since atomic events have a rather small impact, and quite a few
are necessary to, e.g., remove a non-isolated node from a graph, we generalize our view
to “larger” graph changes. Let ∆ = (δ1, . . . , δb) be a sequence of atomic events, then if

non-atomic
change

δb ◦ δb−1 ◦ 3 . . . ◦ δ1(G) = G′, we write ∆(G) = G′. We call ∆ a (non-atomic) change; this is
also a (bijective) function in G:∆

∆ : G→ G (4.1.4)

G 7→ ∆(G) (4.1.5)

Obviously, for any two weighted, simple, undirected graphs G,G′ ∈ G there exists a sequence
∆G,G′ = (δ1, . . . , δb) of atomic events δi, such that the subsequent application of the atomic
events δi (i = 1, . . . , b) yields G′. To refer to a graph change, we sometimes also write
∆(G,G′), especially if the particular sequence is not important—note that infinitely many
changes lead from G to G′.

Batch Updates. For the purpose of viewing a continuous stream of atomic events in a
discretized, manageable way, we coin the term batch update. For a clean definition of thesebatch update

batch updates we need one more special atomic event (Table 4.1.2):

Table 4.1.2. One more special atomic event

description pseudocode math formal formal, abbrev. prerequisite
time step event tStep δt t← t+ 1 t+ 1 (special)

3The term p ◦ q denotes the concatenation p(q()) of the functions p and q, i.e., q happens first.
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We now define a batch update as a graph change ∆ consisting of b + 1 ≥ 1 atomic events b

(δ1, . . . , δb+1) such that δb+1 is a time step event, and no other δi 6= δb+1 is a time step event.
Taking the view of a dynamic clustering algorithm, informally speaking, we use batch updates

time step events
delimit time steps

to summarize compound graph changes into scalable collections of b proper atomic events,
i.e., not time-steps, such that the trailing time step event indicates (to an algorithm) that a
readily updated clustering must now be supplied for output. Between time steps it is up to proper event

the algorithm how it maintains its intermediate clustering. Note that b can be 0, yielding
an empty change, or 1 yielding an atomic change. In the latter case, if the context is clear,
we often simply omit the trailing time step event. An atomic batch update is a single proper atomic batch up-

date
atomic event followed by a time step event.

4.1.3.2 Dynamic Clusterings and Preclusterings

Static clusterings have been discussed in depth in earlier parts of this work, and with these
at hand, the concept of a dynamic clustering bears no real surprises: A dynamic clustering dynamic

clustering
ζ of a dynamic graph G = (G0, . . . , Gtmax

) is a sequence (C0, . . . Ctmax
) of clusterings, such

ζ
that Ci is a clustering of Gi. In our view, a (online) dynamic clustering algorithm A is a
procedure which, given the state Gt of a dynamic graph G, a sequence of graph events ∆ with
∆(Gt) = Gt+1 and a clustering C(Gt) of the current state, returns a clustering C′(Gt+1) of
the current state. While the algorithm may discard C(Gt) and simply start from scratch, a dynamic cluster-

ing algorithm
good dynamic algorithm will harness the results of its previous work. If the context rules out
ambiguities, we often omit a sub- or superscript of C indicating a new clustering or different
time step. Furthermore, without listing all necessary arguments, we assume that a dynamic
clustering algorithm A has access to Gt, C(Gt) and ∆. Note that we assume an online setting
unless otherwise noted, in fact, until we reach Section 4.5.

A few generalizations of this definition are immediately imaginable. For example, a dy-
namic clustering algorithm might not merely rely on the current clustering and the graph
change in a Markov-like manner, but instead take into account a longer history. On the other Markov

vs. history
hand, if history is taken into account, then, certainly, knowing about future graph states
would help as well. This, however, would be an offline setting of dynamic graph clustering. online vs. offline

In this section we focus on the online situation (i.e. the future is unknown) and leave the
offline problem to Section 4.5.

Preclusterings. Suppose a change ∆ to G yields G′. If we take on the view of a dynamic
clustering that “listens” to a dynamic graph and tries to at least be well defined at all times,
we are pretty close to thinking in terms of the observer design pattern in programming. This preclustering for

well-definition
view is particularly helpful when pondering issues close to an implementation. In fact it is
pretty straightforward to define canonic updates to a clustering for each atomic event on the canonic updates

graph, as shown in Table 4.1.3. The only notable actions are the creation of a singleton cluster
upon node insertion and the removal of a node from its cluster—and the whole cluster, in

Table 4.1.3. Canonic updates for a clustering after atomic events on the graph

description formal, abbrev. canonic clustering update

node insertion V + u C̃ := C + {u}

node removal V − u C̃ :=

{
C \ {C(u)} if C(u) is a singleton in C
(C \ C(v)) ∪ {C(v) \ {v}} otherwise

edge creation E + {u, v [, ω]}  C̃ := Cedge removal E − {u, v}
weight increase ω(u, v) + x
weight decrease ω(u, v)− x
time step t+ 1 (C̃ :=) Ct+1 := A(G, C(G),∆)
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case it was a singleton—upon node removal. As discussed above, a time step (event) serves as
a signal to an algorithm to compute an updated clustering. We call a clustering C̃ which has
only been updated canonically and not explicitly output by a dynamic clustering algorithm,
a preclustering, and usually denote it by C̃. Obviously, this generalizes to non-atomic changes.preclustering C̃

From a theorist’s point of view it hardly matters whether a dynamic clustering algorithm
takes as the input Gt, C(Gt), ∆, or rather Gt+1, C̃(Gt+1), ∆, but for an actual implementation
this is a decision that does matter, as we shall see in our experiments in Section 4.3. However,
the concept of a preclustering offers more than just a formalism and a design decision for an
implementation: We could build upon the actions listed in Table 4.1.3 and state different
updates resulting in a “better” preclustering, helping an algorithm—we will do this in Sec-
tion 4.3. Until then, and unless noted otherwise, preclusterings will always be in accordance
to Table 4.1.3.

Online Dynamic Clustering Tasks. In this pargraph we briefly formulate reasonable
online problem statements for clustering dynamic graphs, in order to clarify our view of what
meaningful tasks are. These shall guide us in the sections to come. We will come back to
offline tasks in Section 4.5. The dynamic clustering problem is to update a given clusteringdynamic clus-

tering problem
with respect to a static clustering algorithm A when the associated graph changes.

Problem 5 Given a graph G, a clustering technique A, a clustering C = A(G) and a graph
change ∆, with ∆(G) = G′. Compute a clustering C′ = A(G′).

Naturally, Problem 5 can be solved by applying A to the modified graph G′. Adding postula-
tions for speed, quality and smoothness, we obtain various possible multicriteria formalizations,
which can involve somehow harnessing the previous result C, e.g.:

1. Add to Problem 5: with minimum running time.speed

2. Add to Problem 5: with maximum smoothness among all correct solutions.smoothness

These statements are reasonable for algorithms like centrality removal, min-cut tree clustering
or GMC. However, many clustering approaches such as those based on greedy index maxi-
mization are heuristic in nature and do not provide actual quality guarantees, furthermore
many are nondeterministic. Thus the terms correct solution and quality are hardly reasonable.
Softening these notions we get, e.g.:

3 Add to Problem 5: with maximum quality.quality

4 Add to Problem 5: with quality no less than α times the value a re-clustering from
scratch would yield and otherwise with minimum running time.

5 Add to Problem 5 and item 4: such that a certain smoothness is guaranteed.multicriteria

ti
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(a) Inserting an intra-cluster
edge yields two cliques.

ti
m
e

(b) Deleting an inter-cluster
edge changes density.

Figure 4.1.2. Examples of
counterintuitive behavior

We will quantify the notion smoothness later (see Section 4.3.1.1) us-
ing our work from Section 2.6, but we strongly argue that this criterion,
which, roughly speaking, avoids that other optimization criteria—or even
indeterminism—lead to orthogonal clusterings for two consecutive graphs
that hardly differ. Maintaining as much of a previous clustering as possi-
ble does not only increase the perceptibility of a result but also corresponds
to the mostly continuous nature of network evolution in general. In the field
of graph drawing, this additional restriction is also called the preservation of
the mental map [152].

In practice, the above formulations might still be too strong, but formu-
lation 5 is very close to what we pursue in Section 4.3 and we precisely use
formulation 1 in Section 4.4. We conclude with giving a thought-provoking
impulse. Obeying the paradigm of inter-cluster density vs. intra-cluster spar-
sity, one could expect that creating an additional intra-cluster edge should
only strengthen an existing clustering and vice versa. However, density cri-
teria can very well lead to counterintuitive behavior, as proposed in Fig-
ures 4.1.2a and 4.1.2b.
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(a) The initial friendships
G0 and C(G0)

4.1.3.3 An Example of a Dynamic Graph Clustering

The notions and definitions in the preceeding subsection are nothing deep,
however, their nomenclature potentially a bit overwhelming. This series of
figures illustrates an evolving network of friendships and a dynamic clustering
(colored splinegons) thereof, trying to exemplify these definitions. We take on
the view of a (fictive) clustering algorithm, which observes the changing graph
and springs into action (updates the clustering) as soon as a time step event
arrives, processing batch updates en bloc. Between time step events we only
have a preclustering (dashed), A does nothing there.

δi1+δt2
;

Walter

Dave

Trudy

Alice

BobEve

︸ ︷︷ ︸
(b) Eve joins in. . .

δi1 = insert(Eve)

δt2 ◦ δi1(G0) = G2
A
; C(G2)

δc3+δt4
;

Walter

Dave

Trudy

Alice

BobEve

︸ ︷︷ ︸
(c) . . . and connects to Bob

δc3 = connect(Eve,Bob)

δt4 ◦ δc3(G2) = G4
A
; C(G4)

δc5+δt6
;

Walter

Dave

Trudy

Alice

BobEve

︸ ︷︷ ︸
(d) Alice gets to know Walter

δc5 = connect(Alice,Walter)

δt6 ◦ δc5(G4) = G6
A
; C(G6)



three atomic
batch up-
dates:

∆1 = (δi1, δ
t
2)

∆2 = (δc3, δ
t
4)

∆3 = (δc5, δ
t
6)

(one proper
event plus
one delimiting
time step
event each,
b = 1)

δi7
;

Walter

Dave

Trudy

Alice

BobEve

Carol

(e) Carol joins in. . .
δi7 = insert(Carol)

δi7(G6) = G7 ; C̃(G7)

δc8
;

Walter

Dave

Trudy

Alice

BobEve

Carol

(f) . . . and connects to Bob
δc8 = connect(Carol,Bob)

δc8(G7) = G8 ; C̃(G8)

δd9
;

Walter

Dave

Trudy

Alice

BobEve

Carol

(g) Dave and Walter argue
δd9 = discon(Dave,Walter)

δd9(G8) = G9 ; C̃(G9)

δt10
;· · ·



one batch up-
date:

∆4 = δ7-10

(three proper
events plus
one delimiting
time step
event, b = 3)
see next Sub-
figure 4.1.3h
for the
clustering
thereof

︸ ︷︷ ︸
The lack of a time step event tells Algorithm A to treat δ4, δ5, δ6 as a compound event; thus, A does not compute C(G7−9)

· · ·;

Walter

Dave

Trudy

Alice

BobEve

Carol

(h) After δt10, A computes C(G10):

G10
A
; C(G10)

(trivial: δt10(G9) = G9 = G10)

δc11+δt12
;

Walter

Dave

Trudy

Alice

BobEve

Carol

︸ ︷︷ ︸
(i) Carol befriends Eve
δc11 = connect(Carol,Eve)

δt12 ◦ δc11(G10) = G12
A
; C(G12)

δc13+δt14
;

Walter

Dave

Trudy

Alice

BobEve

Carol

︸ ︷︷ ︸
(j) Alice likes Dave

δc13 = connect(Alice,Dave)

δt14 ◦ δc13(G12) = G14
A
; C(G14)



C(G10) from
the above
∆4, and two
more atomic
changes:

∆5 = (δc11, δ
t
12)

∆6 = (δc13, δ
t
14)

Figure 4.1.3. An example scene of a dynamic graph, various proper updates δ∗ transform the clustering structure and inter-
spersed time step events δt, delimiting batches ∆, call A to work on the current preclusterings C̃.



Section 4.2

A Generator for Dynamic Clustered
Random Graphs

Nowhere is longer safe
The earth moves under our feet

The great world tree Yggdrasil
Trembles to its roots

(Tattered Banners and Bloody Flags,
Amon Amarth)

The experimental evaluation of graph algorithms for practical use often involves
both tests on real-world data and on artificially generated data sets. In particular, the

latter are necessary for systematic and very specific and targeted evaluations. In the context
of dynamic clustering algorithms, roughly speaking, we are interested in the generation of
dynamic random graphs that feature a community structure of scalable clarity such that (i) the
graph changes dynamically by node/edge insertions/deletions and (ii) the graph incorporates
a clustering structure (communities), which also changes dynamically. Without such artificial
data, any evaluation of dynamic clustering algorithms for practical use will suffer. Despite
the wide variety of generators for random graphs, to the best of our knowledge, the literature
has not yet tackled such dynamically changing preclustered graphs.

The line of random graph generators for static graphs—at least for our purposes—reaches
back to the prominent and fundamental Erdős-Rényi model [85], also known as G(n,m),
Gilbert’s model G(n, p) [107]. This model was cast into a generator for random preclustered
graphs for the purpose of experiments on clustering algorithms in [47, 48]. We further this
line by adding an intuitive mechanism of dynamics to the preclustered Erdős-Rényi model.
For more detailed material on other graph generators we refer the reader to [222, 71, 34] and
references therein.

In this section we describe a random graph generator which is based on the Erdős-
Rényi [85] model but adds to it tunable dynamics and a tunable and evolving clustering
structure. More precisely, an evolving ground-truth clustering known by the generator mo-
tivates the changes to the graph by sound probabilities, such that the observable clustering
changes accordingly. Thus, our generated graphs have the following properties:

• dynamic, i.e., representing the change of a network in the course of discrete time

• clustered, i.e., exhibiting a clustered structure based on intra-cluster density versus
inter-cluster sparsity of edges

• random, i.e., generated according to a probabilistic model

One can think of the generator as a producer of events. They include small-scale events such
as the creation or removal of a single edge or the introduction or removal of a node (see
Section 4.1), but also large-scale clustering events, which cause clusters to gradually split or
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merge. Such a generator allows us to examine how dynamic clustering algorithms cope with
changing graphs with respect to an array of parameters such as its density, the clarity or the
granularity of the ground-truth clustering, the batch size of changes, the size distribution of
the ground-truth clusters, etc.

We detail our implementation as a module of the software tool visone and as a standalone
tool, alongside the data structures we use.4 Our software is free for use and download. Thus,
if you do not want to hassle with any further introduction or details, we point you straight
to Section 4.2.5.3 for how to download our implementation, and to Section 4.2.5.1 for input
parameters and for how to read the output file. Otherwise we cordially invite you to continue
reading and thoroughly learn about the mechanics of this generator.

While the field of random graphs and their generation is beautiful, and we even strayed
into it before, in Section 2.3, the necessity to actually have dynamic instances for the sys-
tematic evaluation of algorithms for dynamic graph clustering gave birth to this project. In
a number of cooperations we have laboriously collected several reliable real-world instances,
which are very valuable for a representative assessment of how algorithms behave in practice
(see Section 5.1.1). However, these instances are still few in number, they are very specific and
are often subject to a confidentiality agreement. For controlled and focused experiments, a
highly customizable generator is inevitable. The motivation behind this implementation was
to have each parameter represent a proper stochastic value with an intuitive interpretation
on the one hand and an effect which can precisely and mathematically be explained on the
other hand. In its current version, the generator is an easy-to-use Java package, which by
the choice of reasonable default values can be used off-the-shelf. Its compact binary output
can be parsed with a simple procedure as detailed in Section 4.2.5.1. Most of the content of
this section alongside the ready-to-use implementation has recently been made available in a
technical report [120], based on joint work with Christian Staudt. I hope our generator finds
application in the community it has been made for; we shall thoroughly use it in Section 4.3.

Main Results

• We provide a ready-to-use generator for dynamic random graphs with an implanted
clustering structure. The generator works off-the-shelf and is downloadable as a Java
package. (Sections 4.2.5 and 4.2.5.3)

• As the core of our generator, we devise a random process which follows a slowly changing
ground-truth clustering in a sound probabilistic setup: At any time, edge insertions and
deletions occur with a probability strictly proportional to specified values of pin and
pout. We propose a data structure which supports this process in O(log n) time per
update. (Section 4.2.4.5 and Lemma 4.2.1)

• We propose and implemented reasonable mechanisms for several ongoing dynamic pro-
cesses which simulate real evolving networks. Among these are the evolution (e.g., a
slow coarsening) of the ground-truth clustering, node volatility (churn) and a mapping
of the ground-truth clustering to a reference clustering. (Sections 4.2.4)

Future Work As promised in Section 4.2.3, a GUI-version of the generator as a module for
visone (a tool for the visualization and analysis of social networks) is waiting in the wings,
but has to hang on until dynamic graphs are fully incorporated into an upcoming official
release. Apart from engineering to reduce both space and running time consumption, there
are two main issues that we plan to address in the near future: First, while the specification
of values for our main parameters pin and pout is very handy it might sometimes be more
convenient to set values for the average degree of a node, both for intra- and for inter-cluster

4At the time of finishing this document, no official release of a version of visone supporting dynamic
graphs has been released. Thus we recommend the usage of the standalone version for the time being, see
Section 4.2.5.3 for more information.
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edges. This option will soon be integrated as it can easily be incorporated into the current
data structures. Second, an aspect of dynamics that has not yet been realized is a gradual
densification or sparsification of the network—or of parts of it.

Another algorithmic aspect is the question whether there is a different data structure for
weighted selection which is similarly fast but uses less space. Our approach uses quadratic
space but works very quickly and thus favors medium-size and very long running dynamic
graphs.

4.2.1 The Rough Picture

In order to provide the reader with an informal overview of our approach, we will now sketch
out an analogy of the generation process on a rough scale. In later sections we will thena real-world

analogy
delve into the details. We thus avoid technicalities here and leave a number of questions
open. With some slightly synthetic assumptions, the generator can be thought of as the head
of some department organizing his personnel (the nodes) which collaborates (via edges) into
groups (clusters).

Projects Come and Go. The head of department initially organizes his co-workers (i.e.,
the nodes of a graph) into groups such that each group works on a different project. From
time to time, projects are finished or new ones are launched; however—as in real life—projects
are not neatly scheduled sequentially, but they overlap or end before the next one arrives in
a pretty random fashion. In case a project ends, the persons that were handling it are now
available for other tasks, thus they are assigned to another project and assist the group which
has already been working on it. The head of department then merges the two groups. In caseclusters split

and merge
a new project is launched, a new group needs to be assigned to it; to this end, an existing
working group is split such that some people stay at the old project and others move on to
the new one. This is how groups (i.e., clusters) evolve.

Collaborations Arise and Conclude. Suppose now a certain set of projects is being
worked on. By any means people working on the same project (i.e., within the same group)
need to collaborate heavily and rely on one another. However, these collaborations do not popedge insertions

and deletions
up the instance a project is launched, but they gradually evolve. On the other hand, people in
different projects rarely need to collaborate. However, two persons that are newly separated
into different groups might not immediately shut down their collaboration but might do this
with some delay. This is how relations of collaboration (i.e., edges) evolve.

Co-Workers are Hired and Fired. Finally, as a process which is more often than not
(and in our case always) independent from projects, our department has a certain fluctuation
of personnel. On the one hand, new co-workers are employed and join some group – and
immediately build up collaborations (otherwise they don’t know what needs to be done).nodes join

and leave
On the other hand, people leave the department or are fired, immediately breaking up their
collaborations. The department might have a general tendency to grow, shrink or maintain
its average manpower. This is how the set of co-workers (i.e., nodes) evolves.

Plans vs. Reality. As a last preparation for the concepts described later, consider how
the department’s personnel chooses tables during lunch break. On the long run, each project
group will happily gather together for lunch to discuss open questions within their project.
Thus the grouping during lunch break will match the organizational structure. However, a
newly broken up group will still have a lot to discuss and might want to have lunch together;
conversely a newly merged group might not yet know each other. To summarize things,
the community structure during lunch follows the organizational structure with some delay.ground truth C

6= reference
Gradually the arising and concluding collaborations have it adapt to the group structure,
but an outside observer (during lunch break) will not be able to discern the project groups
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correctly until this has happened to a sufficient degree. This is how the observable group
structure (i.e., the set of observable clusters) evolves. It is crucial to grasp the difference
between what governs changes in collaboration (edges), namely the ground truth given by
the projects’ group structure, and the observable group structure that is more likely to be
discovered by observers (clustering algorithms) who can only see people and their current
collaboration structure (i.e., the graph).

However, as any observer is subjective, the clustering she observes will often differ from
the clustering the generator deems observable. Thus it is helpful to keep in mind that there
are three clusterings around: (i) a ground-truth clustering, which motivates the changes three clusterings

in the graph, (ii) a reference clustering which the generator deems observable, and (iii) the
clustering which a subjective observer identifies. In a static scenario the former two are equal,
and—given an algorithm that perfectly agrees with the generator—the latter two agree as
well.

4.2.2 Definitions and Preliminaries

The Static Case. Generators for static graphs with an implanted clustering structure have
been proposed and used in several works [222, 71, 34, 47, 48]. We only briefly review the idea
taken from [47], as it is an easy to use and intuitive technique, derived from one of the oldest
approaches on random graphs [85], and constitutes the base case for our dynamic generator.
The Erdős-Rényi model [85] creates for a given set V of n nodes an edge between each pair
of nodes with a uniform probability, such that the expected number of edges in the graph is
some fixed parameter. For brevity we pass over the large array of works that deal with such
random graphs.

The random preclustered graph generator [47] needs two such edge probabilities: the intra-
cluster edge probability pin for node pairs within clusters and the inter-cluster edge probability
pout for node pairs between clusters. Given such probabilities the generator then predeter- the static start

mines a partition of V in some fixed or random manner and sets the elements of the partition
to be the clusters. Given this clustering of an edgeless graph, edges are introduced according
to pin and pout as in Definition 4.1: pin and pout

Definition 4.1 For each pair of nodes {u, v}, its edge probability is defined as

p(u, v) =

{
pin(C) if u, v ∈ C
pout else

The choice of these two parameters that govern edge density, pin and pout, determines the
“clarity” of the clustering that is implanted into the random graph.

A typical evaluation run for some static graph clustering algorithm could thus look like
this: Take the above generator and preset some n and some |C|, then let pin and pout iterate
through some range of values and for each choice let the clustering algorithm tackle the output
graph. This can be done until, e.g., statistical significance with respect to some quality or
runtime measurement is attained, and shows how well the algorithm works on dense or sparse
graphs with a clear or rather obfuscated clustering structure. A comparison to the quality of

pin, pout

tune clarity
the ground-truth clustering known to the generator can be useful as well.

In order for the result to be a clustered graph according to the density vs. sparsity
paradigm, these probabilities pin and pout should be chosen such that ∀C : pin(C) > pout.
However, note that in the common case that the size of clusters is in o(|V |), the parameter
pout has great impact on obfuscating the clustering as it affects far more node pairs than pin;
this means that although the above condition holds true, far more inter-cluster edges than
intra-cluster edges may be expected. Being aware of this pitfall, we avoid the adaptation pout’s impact

of [71] where pout is replaced by the ratio of inter- to intra-cluster edges.
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Choices for Dynamics. As the reader might already suspect, our dynamic generator as
sketched out in section 4.2.1, is parameterized by a number of options to steer the randomness.
How often do groups split, are edges more prone to changes than nodes, how quickly do edges
adapt to the planned clustering? We postpone details on our procedures and parameters to
the next section, and start very simple.

In a nutshell, the generator maintains a clustering ζ in a sequence of discrete time steps.
This clustering indirectly steers where edges are randomly created or removed as it steers
the probabilities with which such events happen: Each cluster C has the universal or an
individually associated intra-cluster edge probability pin(C). Together with (the universal)
pout, the inter-cluster edge probability of the current graph Gt, this yields an edge probability
for each pair of nodes as noted above.

However, we do not only want to have dynamics in the set of edges, we also want the set
of nodes to dynamically change, and—as sketched out above—we even want the clustering to
change. After some brief words on visone, we detail these mechanics.

4.2.3 Java Implementation Based on Visone

This project was started as an extension to visone5, an application designed for the analysis
and visualization of social networks. Visone has been started as a project within the priorityvisone

program Algorithmics of Large and Complex Networks (SPP 1126) of Deutsche Forschungsge-
sellschaft (DFG), and is now maintained at Universität Konstanz. In a graphical user interface
this tool provides all general tools for graph manipulation and editing but also many methods
for tasks of visualization and analysis. A recent feature—which still has beta status—is the
support of dynamically changing networks and their smooth visualization [35], a tool of great
value for the initial evaluation of our generator, which we were lucky to have access to, thanks
to our co-workers Michael Baur and Thomas Schank.

Unfortunately, things recently slowed down in the development of a new release of vi-
sone. Depending on a usable and publicly available generator we thus moved away from our
prototypical version for visone to a standalone version. Although we still plan to integrate
our generator into visone, once a future official version that supports dynamic graphs is re-
leased, we do not discuss our visone-module any further, but just give a teaser screenshot
(Figure 4.2.1) of the plugin as a first impression and continue with detailing the standalone
generator.

4.2.4 Description of Generator Mechanics

In this section we detail the procedures we use to generate a dynamically changing preclustered
graph. We recommend an occasional glance at the generator’s schematic decision tree given
in Figure 4.2.2 for an overview. Technical details on how to use the Java tools are given later.

4.2.4.1 Decision Tree

Figure 4.2.2 shows the generator’s decision tree. Decision nodes are drawn as a rhombus
while operations are drawn as a rectangle. For each decision node a pseudo-random number
x ∈ [0, 1) is generated and then compared to p . If x ≤ p, the first branch will be taken,
if x > p, the second branch will be taken. Before we detail how decisions and operationsoverview:

decision tree
are done in later sections, we give a rough overview of how, given an initial instance, the
generator produces a single time step, a process which is iterated until the desired number of
time steps has been generated.

In each time step, two bigger decisions are made, the first of which is whether a change in
the clustering is to be attempted (with probability pω) or not (otherwise). In the affirmative
case, a split event is chosen with probability pµ, otherwise a merge event is chosen. The
second decision is whether to perform an edge event (with probability pχ) or a node event

5http://www.visone.info

http://www.visone.info
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Figure 4.2.1. Screenshot of visone and its toolbar for the dynamic generator

(otherwise). For an edge event we then decide—in a non-trivial manner—whether to add or
remove an edge, and which edge this shall be. For a node event a similar but simpler choice
of whether to add (with probability pν) or delete (otherwise) is made. When a new node is
added, it will instantly be connected to the existing nodes inside and outside of its cluster,
according to pin and pout, respectively. Conversely, when a node is removed, its incident edges
are also removed in the same step.

4.2.4.2 Initial Instance

The starting state of the dynamic graph is constructed in a way similar to [47, 101]. Given a
number n of initial nodes and a number k of initial clusters, we choose uniformly at random
for each node to which cluster it shall belong; i.e., for each node v, v ∈ Ci if x ∈ [i/k, (i+1)/k),
for a pseudorandom number x ∈ [0, 1). For each cluster this yields a binomially distributed
size around the expected size n/k. This converges toward the normal distribution for large initial cluster

sizes
n. Once each node is assigned to some cluster, edges are drawn. Each inter-cluster node pair
becomes connected with probability pout; each intra-cluster node pair becomes connected with
probability pin(C), which can be universal or specific to each cluster.

Biased Selection. If a uniform distribution of cluster sizes is not desired, a skewed distribu-
tion can be enforced. This is done by introducing an exponent β for the random number which
selects a cluster from the set of all clusters. Raising the pseudo-random number x ∈ [0, 1)
to the power of β, for some β ≥ 1, returns x′ ≤ x. The formerly uniform distribution of the
random number is thereby shifted to the lower end of [0, 1). In order to select an element
from an array a with bias we calculate the index

i = bxβ · |a|c (4.2.1)

and return the element at a[i]. Thus the elements at the beginning of the list have a higher
probability of being selected, depending on β.

As a method for imbalancing cluster sizes, biased selection is nothing particularly sophis-
ticated, but serves the general purpose and is very simple to implement and understand;

imbalance via
biased selection
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Figure 4.2.2. Schematic decision tree of the generator
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Figure 4.2.3. Expected fractions of |V | in each cluster for k = 4, using different values of β for biased selection.
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(c) k = 20, β = 2.0

Figure 4.2.4. Expected fractions of |V | in each cluster for k = 20, using different values of β for biased selection.

moreover, as visible in Figures 4.2.3 and 4.2.4, it favors few larger clusters and many smaller
clusters of similar size, a setting we frequently observed in real-world data sets, e.g., in the
network of Autonomous Systems in Figure 3.2.11. Note that choosing β ≤ 1 yields the oppo-
site effect, amassing probability mass at the upper end of the interval; this yields a different
scenario with several larger clusters and only few small ones. It could easily be substituted by
any other technique or requirements to cluster sizes; however, keep in mind that the dynamic
process of splitting an merging clusters deteriorates any fixed initial distribution of cluster
sizes—even though we again use biased selection here (see below). For the splits in particular
we plan future methods that try to stay as close as possible to the initial distribution of cluster
sizes. For a rough impression of the impact of β, observe the following formula which expresses distr. of biased

selection
the expected fraction of nodes in cluster Ci. They directly derive from Equation (4.2.1).

E

( |Ci|
n

)
= p(xβ ≤ i

k
)︸ ︷︷ ︸

p(place node in
Clusters C1,...,Ci)

− p(xβ ≤ i− 1

k
)︸ ︷︷ ︸

p(place node in
ClustersC1,...,Ci−1)

=
β

√
i

k
− β

√
i− 1

k
(4.2.2)

As an example, the expected fractional sizes of clusters for k = 4, k = 20 and k = 10
and different values of β according to Equation (4.2.2) are displayed in Figures 4.2.3, 4.2.4
and 4.2.5 respectively.

4.2.4.3 Dynamics in the Clustering

Since the main purpose of the generator is to produce test instances for clustering algorithms,
it has to maintain a valid clustering which governs edge density and which those clusterings
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Figure 4.2.5. Expected fractions of |V | in each cluster for k = 10, using different values of β ≤ 1.0 for biased selection.

found by algorithms can be compared to. On the other hand, as the generator allows the un-
derlying clustering to change dynamically, we maintain two separate clusterings of the graph.
We will call the clustering that is used by the generator itself to produce the edge structure
the current clustering ζ(Gt), being the ground truth which the graph dynamically tries to

current clus-
tering ζ(Gt)

adapt to (compare to the project groups in Section 4.2.1). We describe below how clusters
are split or merged in cluster events. The crucial point is that when a cluster operation hascluster events

just been initiated, the edge density of the graph still corresponds to the previous clustering,
which can consequently match or be close to the clustering that a good clustering algorithm
will identify in the graph. So in order to evaluate the performance of a clustering algorithm,
the generator has to have the previous clustering in store, which we will call the reference
clustering ζref(Gt). After several steps in which the edge distribution increasingly incorpo-

reference clus-
tering ζref(Gt)

rates the new ground truth, this clustering will become visible in the graph and the former
one will vanish. At some point determined by the generator, the cluster event is considered
completed, and ζref(Gt) is updated to incorporate the resulting change. We discuss below
how we determine this point in time called the threshold. Our implementation allows multiplethreshold

such processes simultaneously (but no cluster is multiply involved), i.e., further cluster events
can be initiated before the last one has concluded by reaching its threshold.

Splitting and Merging Clusters. A cluster C1 is split by distributing its nodes to two
new clusters C2 and C3 (formally written as C1 → (C2, C3)). The nodes are distributedsplit

using biased selection. The current implementation uses an exponent of 1, so the nodes are
distributed equally. Two clusters C1 and C2 are merged by combining their nodes to form amerge

new cluster C3, which we will denote with (C1, C2)→ C3. In case pin is universal we are done
for both cases; when using cluster-individual pin values, different methods can be imagined
for setting the pin of the resulting clusters:

a) For the split operation C1 → (C2, C3), C2 and C3 inherit their pin from C1. For
the merge operation (C1, C2) → C3, pin(C3) is set to the arithmetic mean of pin(C1)
and pin(C2). It might be an undesired effect of this method that the values tend toinherit/avg. pin

become more and more uniform in the course of time. Therefore, another method was
implemented:

b) The second method tries to estimate a Gaussian distribution from the initially given list
[pin(C1), . . . , pin(Ck)] and generates new pin values randomly according to this distribu-
tion. This is done in order to preserve the initial diversity of pin values over the course
of time. A new pin is determined via a random variable X with a Gaussian distribution,draw new pin

see Equation (4.2.3), where µ is the arithmetic mean of the list values and σ2 is the
variance of the list values relative to µ, see Equation (4.2.4).

X ∼ N(µ, σ2) (4.2.3)
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σ2 =
1

k

k∑
i=1

(pin(Ci)− µ)2 (4.2.4)

Then, X can is calculated as in Equation (4.2.5), where Y ∼ N(0, 1) is generated by
the method java.util.Random.nextGaussian :

X = σY + µ (4.2.5)

As this might result in values beyond feasibility, if X is not in [0, 1], it is recalculated
until it can be interpreted as a probability.

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5
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2.5

Figure 4.2.6. Estimated distribution for pIn=[0.1, 0.2, 0.5, 0.25]

Threshold for the Completeness of a Cluster-Event. As mentioned above, the ref-
erence (observable) clustering follows the current (ground-truth) clustering with some delay.

reference catches
up with ground
truthThe motivation for it is, that this reference is what the generator deems observable, and since

it takes some time for the graph to adapt to a changed ground-truth clustering, the latter
clustering is almost impossible to guess by an observer. Exactly when the reference clustering
is considered to have caught up—at least to some extent—is decided by the threshold value
and the edge densities within or between participating clusters. Note that as long as a split or
merge operation is in progress, the clusters participating cannot be involved in another oper-
ation. The resulting clusters become available again as soon as the operation is “completed”
to a sufficient degree. However, other concurrent operations are fine. concurrent cluster

events
Consider a merge operation (C1, C2)→ C3 and a split operation C3 → (C1, C2). We first

calculate the expected value for the number of edges between C1 and C2 according to pin and
pout as follows:

a := |C1| · |C2| · pout (split) (4.2.6)

b := |C1| · |C2| · pin(C3) (merge) (4.2.7)

We then count the actual number of edges, |E(C1, C2)|. For a split operation to be complete,
it should be close to a, and for a merge operation close to b. Exactly how close is determined
by the input parameter θ, which expresses a tolerance threshold. The generator decides the θ

completeness of a cluster operation according to

Completed(C3 → (C1, C2)) =

{
true if |E(C1, C2)| ≤ θ · b+ (1− θ) · a
false if |E(C1, C2)| > θ · b+ (1− θ) · a (4.2.8)

Completed((C1, C2)→ C3) =

{
true if |E(C1, C2)| ≥ θ · a+ (1− θ) · b
false if |E(C1, C2)| < θ · a+ (1− θ) · b (4.2.9)

For instance, if θ is 0, there is no tolerance and the cluster operation is not completed unless
the expected number of edges is reached exactly; a value of θ = 1 let means the operation is
instantly considered completed.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Random.html#nextGaussian()
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4.2.4.4 Deleting and Adding Edges and Nodes

Edge or Node? The generator now chooses whether to manipulate a single edge or a
node including its incident edges. By a single random choice an edge event is chosen withedge or node?

probability pχ, otherwise a node event takes place as follows.

Node Dynamics. A node event consists of one atomic node event and several associated
atomic edge events. In case a node event takes place, with probability pν a node is newlynode ins./del.

inserted into a cluster chosen, again using biased selection (see Section 4.2.4.2 above). Oth-
erwise a node is picked uniformly at random and removed. Note that both cases preserve
expected relative cluster sizes. Both operations usually incur changes to edges. The removalpreserves ∼ |C|
of node v is thus automatically preceeded by the deletion of its deg(v) incident edges. In
turn, inserting node v automatically entails the insertion of edges as for the initial instance.
As described in Section 4.2.4.2 the generator thus connects v to an existing node u with
probability p(v, u).

Batch Updates. A node event consists of several atomic events, which gives them much
more impact than a single atomic edge event. However, handling a number of events en bloc isbatch updates

very reasonable for a large and quickly changing network. Therefore we additionally introduce
parameter η, which enables and scales batch updates, i.e., time steps which explicitly compriseη

a number of atomic edge events of at least η. This parameter offers another dimension to
the generator: time steps no longer solely consist of either one edge event or one node event
(alongside its induced edge events), but of a scalable number of such events. With a given
η, the generator counts edge events and issues a time step event if at least η such events
have been performed since the last time step. Note that a bulky node event might contribute
several edge events at once, such that more that η edge events can occur before a time step
event is issued. As before, cluster events are issued or completed only once per time step.

4.2.4.5 Edge Dynamics.

After the decision to change an edge is made, the generator has to decide whether to add or
delete an edge. Ideally, the change should bring the graph closer to the aspired (ground-truth)towards

ground truth
clustering structure, while retaining some randomness. As in a dynamic scenario absent edges
are candidates for inclusion in forthcoming states, in the following it is useful to think in terms
of a graph and its complement graph: Ḡ = (V, Ē) with Ē =

(
V
2

)
\E. The first decision for edge

dynamics is whether to insert or to delete an edge. As all following decisions, this decision isdelete or insert

guided by probability masses. The probability masses for all insertions and deletions are:

PĒ :=
∑

{u,v}∈Ē
p(u, v) mass of all insertions (4.2.10)

PE :=
∑

{u,v}∈E
(1− p(u, v)) mass of all deletions (4.2.11)

Note that these masses are equal,s in the expected case:

E{PĒ} =
∑

{u,v}∈(V2)

p({u, v} ∈ Ē) · p(u, v) =
∑

{u,v}∈(V2)

(1− p(u, v)) · p(u, v)

E{PE} =
∑

{u,v}∈(V2)

p({u, v} ∈ E) · (1− p(u, v)) =
∑

{u,v}∈(V2)

p(u, v) · (1− p(u, v))

The choice between creating and removing an edge is made with probabilities proportional to
PĒ and PE . To such a simple random choice we refer to as weighted selection (Algorithm 18)weighted selection
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in the following:

operation← weightedSelection({add, delete}, {PĒ , PE}) (4.2.12)

As PE (PĒ) monotonically grows (shrinks) with the number of present edges, this mechanism
mildly and continuously works towards the expected number of edges. In the following we
describe how we proceed similarly for actually choosing a pair of nodes.

A Data Structure for Dynamic Random Choices. We briefly abstract from graphs
and now describe our data structure in more general terms. Suppose we are given a set O the general

data structure
of elements, with a weight ω(o) associated to each element o ∈ O. Given now a time series
T which in each time step with equal probability either inserts a new element o (with some
random weight ω(o)) into O or removes an element o ∈ O. How can we represent O such
that for each removal, the probability of o ∈ O to be removed is proportional to ω(o)?

We can store the elements in the nodes of a complete binary tree T . We define each node
of the complete binary tree to be a tuple

qi = (oi, ωi, li, ri) (4.2.13)

where oi is an element, ωi is the weight ω(oi) of this element, li = wi+1 + li+1 + ri+1 is the
sum of the weights in the left subtree and ri = wi+2 + li+2 + ri+2 is the sum of weights in the
right subtree. A leaf node q`’s weights l` and r` are simply 0.

Maintaining the property in Equation 4.2.13 is simple for both insertions and removals:
maintaining
probabilities

Inserting a new element o means adding a new leaf q = (o, ω(o), 0, 0) to T and then updating
all its ancestors by adding ω(o) to either li or ri, depending on the subtree that includes o.
Deleting an element o is done by replacing it by the last (leaf-)node o` of T and updating
the ancestors of o according to the change in weight, and the ancestors of o` by subtracting
ω(o`). Both operations thus require a logarithmic number of updates. We detail these simple
steps in Algorithms 14 and 15.

It remains to show how elements are removed with probability proportional to their weight.
The procedure for the selection of an element starts at the root node by drawing a random
number x from the interval [0, w+ l+ r). Now there are three possible ranges for x: if x ≤ w,
the element is returned; if w < x ≤ w + l, the carryover x − w is sent to the left subtree;
and if w + l < x < w + l + r, the carryover x − w − l is sent to the right subtree. The
procedure continues recursively from there until an element is returned after at most log2 n
steps (at a leaf). This is sketched out in Algorithm 13. We will show later that this achieves
proportionality to ω.

Data Structures for Selecting Pairs of Node. We return to the generator and use the
data structure proposed in the last subsection. After deciding whether to insert or remove
an edge, the generator has to select an affected pair of nodes. The selection should be done
in such a way that an existing edge with low p(u, v) (see Definition 4.1) should have a high
chance of being selected for deletion, and that an unconnected pair of nodes with high p(u, v)
should have a high chance of being selected for the insertion of a new edge. So a selection transfer to edges

process where every pair is weighted according to p(u, v) is desired. In fact we achieve this in
a way such that each insertion (deletion) takes place with a probability exactly proportional
to p(u, v) (1− p(u, v)).

The data structure we use for storing the current graph G(t) and complement graph Ḡ(t)
are trees as described above. The selection of a pair of nodes as an edge or a complement edge
happens in two stages: First, a source node6 is selected, then a target node. For the selection
of the source node of the edge, two binary trees, the source trees T̄s (for edge additions) and
Ts (for edge deletions), are build on V (t). Each element of a tree contains a node u and is first: source tree

weighted with w(u) = sum(u,v)∈Ē(t)p(u, v) and
∑

(u,v)∈E(t)(1− p(u, v)) respectively. To each

single node u ∈ V (t), two binary trees T̄t(u) and Tt(u), called target trees, are associated. then: target tree

6For readability we use the terms “source” and “target”, albeit we deal with undirected edges.
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The nodes of the former are the targets v of outgoing edges (u, v) in Ḡ(t) weighted by the
(addition-) weight w(v) = p(u, v) of that edge; analogously the nodes of the latter are the
targets v of outgoing edges (u, v) in G(t) weighted by the (deletion-) weight w(v) = 1−p(u, v)
of that edge. Below we give an example of such trees, and illustrate them in Figures 4.2.8
and 4.2.9.

Actually Deleting or Adding Edges. Having decided whether to add or delete an edge
(see Section 4.2.4.5) we can now use the above described trees. The source tree (Ts or T̄s) is
used to choose the source node of the change via the call to Algorithm 13. Then, using the
same algorithm with the appropriate target tree (Tt(v) or T̄t(v)) the target node is chosen.

We devised these data structures to enable quick dynamic maintenance of data structures
that let the generator adhere to sound probabilities. Each edge event is handled within
logarithmic runtime Θ(log(n)). This approach lets the edge structure converge to the aspired

update in
Θ(log(n))

clustering while allowing some randomness. If there are no cluster events to be completed,
this process yields a clustered graph which is stable apart from minor fluctuations. We now
give an example and then prove our claim about proportionality.
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9

pin(C1) = 0.6 pin(C2) = 0.7

pout = 0.1

C1

C2

Figure 4.2.7. The graph before the edge modifi-
cation. The accumulated weights
for edge addition is 3.6 from C1,
3.5 from C2, and 3.3 from inter-
cluster pairs.

Example Process for Edge Modification. We give an il-
lustrating example here of how a specific edge modification
is determined. Suppose the graph as shown in Figure 4.2.7
is given at the start of the current time step; suppose fur-
ther that the generator decides to modify the edge set during
the current time step (according to pχ, see Table 4.2.1). At
first, in accordance with Equations (4.2.10) and (4.2.11) the
probability masses for edge deletions and edge additions are
PĒ = 10.4 and PE = 9.3. Suppose now weightedSelection (see
Equation (4.2.12)) draws the random number 0.3 and thus de-
cides in favor of an edge addition operation.

Having decided to insert a new edge, now the tree T̄s is used
to choose a random source node for the new edge. Figure 4.2.8
shows what this tree could look like. Each node carries as
a weight the sum of the probabilities of its edges in Ḡ, i.e.,
the sum of the probabilities of its missing adjacencies in G—

these are the blue numbers. The red numbers depict how these weights are propagated
upward through the tree. Suppose Algorithm 13 now draws the random number 0.85, yielding
x = 0.85 · 20.8 = 17.68 for the initial tree search. At T̄s’s root node 1 we observe thatexample run

17.68 > w(1) + l(1) and thus the algorithm descends into the right subtree, passing on the
new value of x = 17.68− 1.8− 11.8 = 4.08. At node 3 we observe that 1.9 < 4.08 < 5.9 and
thus the left subtree is chosen, passing on x = 2.18. Then at node 6, since 1.3 < 2.18 the left
subtree is chosen, where we finally end up with the leaf node 12, which we thus take as the
source node of the new edge.

The target node of the new edge is chosen using the target tree of 12, which is given in
Figure 4.2.9. This tree stores all nodes of G which are not adjacent to 12, using the probabil-
ities of the corresponding potential edges as weights of these candidate nodes. Anticipating
our discussion below, Figure 4.2.10 shows the subintervals of [0, 2.7) that are equivalent to
the target tree depicted in Figure 4.2.9. Randomly drawing 0.44 yields x = 0.4 · 2.7 = 1.08.
Algorithm 13 chooses in this tree 3 as the target node. Concluding, edge {12, 3} is inserted.

Probabilities It is important to note that the way the algorithm chooses its specific edge
modification exactly complies with the following probability space: Set the probability of the
specific (possible) event ξu,v, such as “insert an edge between non-adjacent nodes u and v”,
to p(ξu,v) = proportional to p(u, v), thus enabling a fair random choice. It is not hard to
see, that the three steps: (i) choose between deletion and insertion, (ii) choose source node
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Figure 4.2.8. The source tree T̄s of the graph in Fig-
ure 4.2.7, which is used to determine the
source node for an edge insertion. Ran-
dom number 17.68 in [0, 20.8) guides Algo-
rithm 13 through the tree.
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Figure 4.2.9. The target tree T̄t(12) of node 12 (see Fig-
ure 4.2.7). Given the decision to insert an
edge starting at node 12, T̄t(12) is used
to determine the target node for the edge.
Random number 1.08 in [0, 2.7) guides Al-
gorithm 13 through the tree.
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Figure 4.2.10. The target tree in Figure 4.2.9 can equivalently be interpreted as an interval of
length 2.7 (total weight at root node), subdivided by the nodes’ weights, listed
in-order. The random choice now simply picks the node associated to the interval
containing the random number from [0, 2.7).

and (iii) choose target node, always use correctly normalized and/or combined conditional
probabilities, to remain consistent with the above model. The reason for this multi-step
procedure is simply an easier-to-handle representation of the different pieces of data. We
formulate this observation as a small lemma.

Lemma 4.2.1 (Probabilities) Weighted randomization using binary trees yields probabili- proportional
probabilities

ties p(insert edge between u and v) = proportional to p(u, v) (or to 1− p(u, v) for deletion) if
u and v are non-adjacent (adjacent), and 0 otherwise.

Proof. We will show that each of the three steps supports this proportionality. We use
insertions; deletions are analogous. As a first observation, note that a binary tree for the
selection of an element out of a given weighted set as above yields proportional probabilities:
The binary search through a tree is equivalent to dividing an array of length equal to the
total weight w+ l+ r of the tree’s root into intervals associated to the nodes of the tree with
length equal to the nodes’ inner weight w, as listed by an in-order traversal of the tree, and
then picking the interval that contains a random number between 0 and the total root weight.

Let ξu,v be the event that inserts an edge from u to v, furthermore, let ξu be the event that
an edge using u as the source node is inserted, and let ξinsert mean that an edge is inserted.
Suppose now u and v are already adjacent, then the target tree T̄t(u) does not contain the
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node v, and thus p(ξu,v) = 0. Otherwise, since trees preserve proportionality:

p(ξu,v | ξu) =
p(u, v)∑

w∈V
w�u

p(u,w)
(4.2.14)

p(ξu | ξinsert) =

∑
w∈V
w�u

p(u,w)

∑
x∈V

∑
w∈V
w�x

p(w, x)
(4.2.15)

p(ξinsert) =

∑
x∈V

∑
w∈V
w�x

p(w, x)

∑
x∈V

∑
w∈V
w�x

p(w, x)

︸ ︷︷ ︸
all possible edge insertions

+
∑
x∈V

∑
w∈V
w∼x

(1− p(w, x))

︸ ︷︷ ︸
all possible edge deletions

(4.2.16)

Equation (4.2.16) is not based on the arguments about trees but derives directly from Algo-
rithm 18. Combining Equations (4.2.14)-(4.2.16) we obtain the lemma.

4.2.5 A Ready-to-Use Java Implementation

In the following we detail—in the style of a user guide—how our generator can be downloaded,a user guide

called, and its output read.

4.2.5.1 Calling the Generator

The generator is launched as a command line tool. It generates a graph and writes it to files as
described in the following subsection. For details on the exact nature and effect of parameters,
please refer to Section 4.2.4, as we keep descriptions short here for quick reference. The Java
main class of the generator is DCRGenerator. The -g option lets us enter the parametersDCRGenerator

for a single graph. In order to generate multiple graphs at once, the -f option can be used
together with a file where each line specifies the parameters of a new graph. We can call for
help with the -h option. We now explain the syntax of a command line call, the parameters
are listed in Table 4.2.1. The syntax specified in Extended Backus Naur Form is as follows:

argument ::= "-h" | "-g" { keyval } | "-f" file

keyval ::= ikey "=" ival | dkey "=" dval | hkey "=" hval | fkeyval

ikey ::= "n" | "k" | "t_max" | "eta"

dkey ::= "p_in" | "p_out" | "p_nu" | "p_chi" | "p_omega" | "p_mu" | "theta" | "beta"

bkey ::= "enp" | "binary" | "graphml"

hkey ::= "p_inList" | "D_s"

hval ::= dval | list

list ::= "[" dval { "," dval } "]"

fkeyval = "outDir=" dir | "fileName=" fname

A syntactically correct value for ival is any string that can be parsed by the
java.lang.Integer.parseInt method. For dval, it is any string that can be parsed by
java.lang.Double.parseDouble. file may be any string from which a java.io.FileReader
can be constructed.

Using only p_in, a global pin for all clusters is used. The nodes are then distributed
over the clusters using the method of biased distribution described in Section 4.2.4.2. Using
p_inList overrides p_in and sets pin individually for each cluster. The length of this list has

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Integer.html#parseInt(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Double.html#parseDouble(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/FileReader.html#FileReader(java.lang.String)
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CLI key notatation domain default explanation

n n0 N 60 initial number of nodes in G0

p in pin [0, 1] 0.02 edge prob. for node pairs in same
cluster

p out pout [0, 1] 0.01 edge prob. for node pairs in
different clusters

k k N 2 initial number of clusters
t max tmax N 100 total number of time steps
p nu pν [0, 1] 0.5 given a node event, prob. that a

node will be added (1− pν for a
node deletion)

p chi pχ [0, 1] 0.5 prob. of an edge event (1− pχ for
a node event)

p omega pω [0, 1] 0.02 prob. of a cluster event
p mu pµ [0, 1] 0.5 given a cluster event, prob. of a

merge event (1− pµ for a split
event)

theta θ [0, 1] 0.25 tolerance threshold to accept new
clustering

beta β R 1.0 exponent of biased selection
method

eta η N 1 lower bound on edge events per
time step

p inList [pin(C1), . . . , pin(Ck)] [0, 1]k (not used) list of individual values of pin for
clusters, can be used instead of pin

D s [s1, s2, . . . , sk] Rk+ (not used) relative size dist. of of cluster sizes
in C(G0), can be used instead of β

enp gauss. est. {true, false} false new pin gauss. estimate (true) or
arithm. mean

outDir String ./ file output directory
fileName String 7 name of output file
binary {true, false} false true enables output as binary file

(extension .graphj)
graphml {true, false} false true enables output as GraphML

file (extension .graphml)

Table 4.2.1. Command line input parameters

to be equal to the number of initial clusters. Likewise, using beta manages the cluster sizes,
but stating a value for D_s overrides beta with an explicit list (again of the same length) of
numbers. In this case, weighted selection (Section 4.2.4.5) is used to distribute the nodes.
Any required parameter not specified by the user will be set to a default value, which are
listed in Table 4.2.1. Thus, calling the generator by

> java DCRGenerator −g

will produce a graph with only the default values. An example call of the generator could example call

look like this:

> java −j a r DCRGenerator −g t max=1000 n=100 k=5 p in =0.3 p out =0.02
eta=10 p omega=0.05 binary=true graphml=f a l s e
outDir=/myDynamicGraphsDirectory f i leName=mySampleDynamicGraph

7The default is composed from the current date as dcrGraph_yyyy-MM-dd-HH-mm-ss
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4.2.5.2 Output Formats

The generator supports two output formats, one of which is XML-based and should have
become the main output format of the generator. However, with the visone project it is
based on slowing down recently, we now recommend the binary format. Nonetheless we
describe both in the following.

Dynamic GraphML. For historical reasons our first output format is the XML-based
GraphML, which can be read, e.g., by a future release of visone, tools from the visone-library
or by a homemade XML-parser.8 For an introduction to the format we refer the reader to theoutput: GraphML

GraphML Primer9. GraphML allows for the definition of additional data attributes for nodes
and edges which are addressed via a key. These attributes can be static or dynamic, such
that dynamic information for our generated graphs is provided by visone-specific data tags.
At this time a general reference for the dynamic add-ons of visone is [35], a full description
of its dynamic add-ons to GraphML, however, still does not exist. Therefore we here provide
a preliminary technical description of the necessary extensions.

Code Sample 1 shows the definitions used by the generator. The static attribute
dcrGenerator.ID is the unique node identifier assigned by the generator. A dynamic attribute
visone.EXISTENCE denotes whether the node or edge is included in the graph at a time step.
The dynamic attributes dcrGenerator.CLUSTER and dcrGenerator.REFERENCECLUSTER con-
tain the ids of the cluster and reference cluster assigned to a node by the generator. These
are also mapped onto distinct colors for visualization, namely on visone.BORDERCOLOR and
visone.COLOR respectively. Code Sample 2 is an example for the representation of a node -
the node exists from time step 0 to step 55, remaining in cluster 1 and reference cluster 1.

Code Sample 1 Custom GraphML attributes used in the generator output

<key a t t r . name=”v i sone .EXISTENCE” a t t r . type=”boolean ” dynamic=”true ” f o r =”node ” id=”d7”/>
<key a t t r . name=”v i sone .EXISTENCE” a t t r . type=”boolean ” dynamic=”true ” f o r =”edge ” id=”d15”/>
<key a t t r . name=”v i sone .COLOR” a t t r . type=”s t r i n g ” dynamic=”true ” f o r =”node ” id=”d4”/>
<key a t t r . name=”v i sone .BORDERCOLOR” a t t r . type=”s t r i n g ” dynamic=”true ” f o r =”node ” id=”d5”/>
<key a t t r . name=”dcrGenerator .CLUSTER” a t t r . type=”i n t ” dynamic=”true ” f o r =”node ” id=”d100”/>
<key a t t r . name=”dcrGenerator .REFERENCECLUSTER” a t t r . type=”i n t ” dynamic=”true ”
f o r =”node ” id=”d101”/>
<key a t t r . name=”dcrGenerator . ID” a t t r . type=”i n t ” dynamic=”f a l s e ” f o r =”node ” id=”d102”/>

Code Sample 2 GraphML representation of a dynamic node

<node id=”n10”>
<data key=”d102”>10</data>
<data key=”d7”> f a l s e </data>
<data key=”d100 ” time=”0”>1</data>
<data key=”d5 ” time=”0”>#6376b3</data>
<data key=”d101 ” time=”0”>1</data>
<data key=”d4 ” time=”0”>#6376b3</data>
<data key=”d7 ” time=”0”> true</data>
<data key=”d7 ” time=”56”> f a l s e </data>

</node>

A Binary Format. In addition to the GraphML format, this version provides a custom
binary file format which occupies much less memory. A file can be parsed by loading the fileoutput: binary

into a java.io.DataInputStream. After two integers containing the length of the arrays, a
byte array for operation codes and an integer array for arguments follow. The dynamic graph
and the two associated clusterings can be reconstructed by iterating through the operation
codes from the first array and reading the corresponding number of integer arguments from
the second array. Node Id’s are assigned implicitly through the order in which the nodes are

8Since we happily used visone, we do not yet provide a convenient reader for dynamic GraphML.
9http://graphml.graphdrawing.org/primer/graphml-primer.html

http://graphml.graphdrawing.org/primer/graphml-primer.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io/DataInputStream.html
http://graphml.graphdrawing.org/primer/graphml-primer.html
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created. Table 4.2.2 shows the semantics of operation codes and arguments and Figure 4.2.11
illustrates the arrangement of data in the file. Code Section 3 is a sample of Java code
for reading this, see Section 4.2.5.3 for where to download this code. It reads the dynamic binary format

and a reader
clustered graph into an ArrayList of operations as listed in Table 4.2.2

Code Sample 3 Example code for parsing the binary .graphj file format

F i l e f i l e = new F i l e ( f i l e P a t h ) ;
Fi leInputStream fStream = new Fi leInputStream ( f i l e ) ;
DataInputStream dStream = new DataInputStream ( fStream ) ;

i n t opLength = dStream . readInt ( ) ;
i n t argLength = dStream . readInt ( ) ;

ArrayList<Byte> ops = new ArrayList<Byte>() ;
ArrayList<Integer> args = new ArrayList<Integer >() ;

f o r ( i n t i = 0 ; i < opLength ; ++i ) {
ops . add ( dStream . readByte ( ) ) ;

}

f o r ( i n t i = 0 ; i < argLength ; ++i ) {
args . add ( dStream . readInt ( ) ) ;

}

4.2.5.3 Download

Our dynamic generator for dynamic clustered random graphs can freely be downloaded and
used. The site that hosts a downloadable jar-file is maintained is http://i11www.iti. download

uni-karlsruhe.de/projects/spp1307/dyngen. Additional information and updates will
also be posted there, in particular, this includes any news on an upcoming implementation
as a module in an official release of visone.

1 1 3 1 2 6 7

21 1 2 2 1 2 1 1 1 3

ops

args

7

11

1 1 3 1 2 6 7 21 1 2 2 1 2 1 1 1 37 11stream

Figure 4.2.11. Arrangement of the data stored in the binary output of the generator.

operation op-code arg0 arg1

create node 1 id(C) id(Cref)
delete node u 2 id(u) -
create edge {u, v} 3 id(u) id(v)
remove edge {u, v} 4 id(u) id(v)
set cluster of u 5 id(u) id(C)
set reference cluster of u 6 id(u) id(Cref)
next time step 7 - -

Table 4.2.2. Binary file format

http://i11www.iti.uni-karlsruhe.de/projects/spp1307/dyngen
http://i11www.iti.uni-karlsruhe.de/projects/spp1307/dyngen
http://i11www.iti.uni-karlsruhe.de/projects/spp1307/dyngen
http://i11www.iti.uni-karlsruhe.de/projects/spp1307/dyngen
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4.2.6 Pseudocode

In this section we list a collection of procedures described in previous sections as pseudocode.
We generally assume that the function rand returns a real number drawn uniformly at random
from the interval [0, 1), as, e.g., implemented by the function java.lang.Math.random() in
Java. Moreover we assume that binary trees are stored in an array in the usual way, i.e., such
that the left and the right children of a node at index i are stored at index 2i and 2i + 1
respectively.

Algorithm 13: weightedTreeSelect

Input: weighted binary tree T (elements qi = (ei, wi, li, ri), root q0)
Output: random element qr with probability that qr is picked ∼ wr
x← rand() · (w0 + l0 + r0)1

i← 02

while true do3

switch x do // branch at current node4

case x ≤ wi5

return ei // terminate and return current node6

case wi < x ≤ (wi + li)7

x← x− wi8

i← 2i // branch to index of left child9

case wi + li < x10

x← x− wi − li11

i← 2i+ 1 // branch to index of right child12

Algorithm 13 describes how a node of a tree used for randomized selection is chosen in
logarithmic time in the size of the tree, which is a complete binary tree. Since a change to thetree selection

dynamic graph is performed after each such choice, we require procedures that keep a tree
consistent after nodes are deleted or added. We only give pseudocode for the case of deleting
a node from a tree in Algorithm 14; the case for the addition of a tree node is even simplernode deletion

and omitted. Note that the weight structure of a tree is updated in logarithmic time per tree
by the call to Algorithm 15. Four trees in total are affected per edge modification, and alltree updates

trees need updates if a node is added to or deleted from the graph.

Algorithm 14: weightedTreeDelete

Input: weighted binary tree T (elements qi = (ei, wi, li, ri), root q0), idel ∈ N
Output: updated tree T with idelth element deleted
if idel = imax then1

updateWeight(T ,idel, 0)2

remove qidel
3

else4

qtmp ← qimax5

weightedTreeDelete(T ,imax)6

qidel
← qitmp

7

updateWeight(T ,qidel
, widel

)8

Algorithm 14, which performs the deletion of elements, retains the tree’s properties of
being binary and complete; thus, the logarithmic time bounds for searching through themaintains bounds

changing tree are maintained. In fact, we observed that for the two source trees a simpler
method was consistently quicker in practice: on a deletion, simply set the node’s weight to 0.
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This method only virtually keeps the tree complete, but saves the effort of restructuring at
the cost of gradually letting it grow larger. In the following we list the rough pseudocode of lazy practice

the whole dynamic graph generator and its helper functions.

Algorithm 15: updateWeight

Input: weighted binary tree T (elements qi = (ei, wi, li, ri), root q0), i ∈ N, w ∈ R
Output: propagates new weight from ei to e0, to make T consistent
wi ← w1

while i > 0 do2

iparent ← bi/2c // compute the index of the parent node3

if i ≡ 0 mod 2 then // in this case qi is its parent’s left child4

liparent
← wi + li + ri5

else // otherwise qi is its parent’s left child6

riparent ← wi + li + ri7

i← iparent8

Algorithm 16: initial DCR graph

Input: n ∈ N, k ∈ N, β ∈ R or [s1, s2, . . . , sk] ∈ Rk, pout ∈ [0, 1], pin ∈ [0, 1] or
[pin(C1), . . . , pin(Ck)] ∈ [0, 1]k

Output: initial state G of a dynamic graph
G = (V,E)← ({}, {})1

for i← 0 to n do2

V ← V + new node u3

ζ = {C1, . . . , Ck} ← {{}, . . . , {}}4

for v in V do5

Ci ← biasedSelect(ζ, β) or Ci ← weightedSelect(ζ, [s1, s2, . . . , sk])6

Ci ← Ci + v7

for {u, v} in
(
V
2

)
do8

if rand() ≤ p(u, v) then9

E ← E + {u, v}10

Please note that for reasons of readability we do not delve into catching pathological cases
such as setting pin = pout = 0. We omit the domains and meaningful names of the input
parameters in the following and refer the reader to Table 4.2.1 for more information; however,
we naturally stick to the variables used throughout this section.
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Algorithm 17: binaryRangeSearch

Input: x ∈ R, a ∈ Rn, h ∈ N, l ∈ N
if l > h then1

return − 1 // element not found2

m← b l+h2 c3

if a[m] ≥ x then4

if m = 0 or a[m− 1] < x then5

return m6

else7

return binaryRangeSearch(x, a, l,m− 1)8

else9

if m = n− 1 or a[m+ 1] ≥ x then10

return m+ 111

else12

return binaryRangeSearch(x, a,m+ 1, h)13

Algorithm 18: weightedSelection(A,ω) (ws)

Input: A: set of elements, ω : A→ R+: weight function
Output: e: selected element
a[i]← ei ∈ A1

b[i]←∑i
j=0 ω(a[j])2

x← rand() ·∑j ω(a[j])3

i← binaryRangeSearch(x, b, 0, |b|)4

return a[i]5
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Algorithm 19: DCRGenerator (Standalone)

Input: n, k, β or [s1, s2, . . . , sk], pout, pin or [pin(C1), . . . , pin(Ck)], tmax, σ, pν , pχ, pµ,
pω, θ, gauss. est.

Output: dynamic graph G(t)
G0 = (V,E)← initialDCRGraph()1

for t← 1 to tmax do2

for event A→ B in ongoing events do3

if completed(A→ B) then update(ζref , A→ B)4

if rand() ≤ pω then5

if rand() ≤ pµ then6

if 2 clusters available then7

{Ci, Cj} ← randomPair(ζ)8

Ck+1 ← Ci ∪ Cj9

ζ ← ζ \ {Ci, Cj} ∪ Ck+110

if use gaussian estimate then pin(Ck+1)← gauss() else11

pin(Ck+1)← pin(Ci)+pin(Cj)
2

else12

if cluster available then13

Ci ← randomElement(ζ)14

Ck+1 ∪ Ck+2 ← Ci15

ζ ← ζ \ {Ci} ∪ {Ck+1, Ck+2}16

if use gaussian estimate then pin(Ck+1)← gauss() else17

pin(Ck+1)← pin(Ci)

i← 018

while i < η do19

if rand() ≥ pχ then20

if rand() ≤ pν then21

V ← V + new node u22

Ci ← randomElement(ζ); Ci ← Ci ∪ {u}23

for {u,v} in {{u,v} : v ∈ V \ {u}} do24

if rand() ≤ p(u, v) then E ← E + {u, v}; i← i+ 125

else26

u← randomElement(V )27

C(u)← C(u)− u ; V ← V − u28

i← i+ deg(v); E ← E \ {{u, v} : v ∈ V }29

else30

if n ≥ 2 and not (Gt consists of disjoint cliques and ongoing events = ∅)31

then
op← weightedSelect({create, remove}, {PE , PĒ})32

if op is remove then33

s← weightedTreeSelect(Ts), t← weightedTreeSelect(Tt(s))34

E ← E − {s, t}; i← i+ 135

else36

s← weightedTreeSelect(T̄s), t← weightedTreeSelect(T̄t(s))37

E ← E + {s, t}; i← i+ 138

update all trees involved in the changes39

return G(t)40



Section 4.3

Modularity-Driven Clustering of
Dynamic Graphs

. . . and I heard their leader’s hair
was two meters long!

(Ignaz Rutter, speculating about what
rumours will be told about our footbag
playing in ten years)

Maximizing the quality index modularity has become one of the primary methods
for identifying the clustering structure within a graph in practice, however, in a dy-

namic context it has not yet been touched. In this section we thus return our focus to the
quality function modularity, which we thoroughly discussed in Sections 2.2 and 2.3. Recalling
what we said in these above sections, modularity is the most prominent example of a clus-
tering technique which is heavily used nowadays but almost exclusively maximized in diverse
heuristic ways. The general fact that it suffers from local optima adds to the issue that it can
behave in a non-local manner (see Section 2.2), such that in a dynamic scenario a clustering
can expect rather volatile behavior and even oscillations—a conjecture we shall disprove. Still,
in practice it is certainly a reasonable approach to rely on modularity-driven clusterings for
some changing network, alongside the general postulations for dynamic clusterings as listed
in Section 4.1. For this task no work has been conducted so far.

In the following we investigate procedures A that find a good modularity-based clustering
C′(G′) without re-clustering from scratch, but building upon C(G). We present, analyze and
evaluate a number of concepts for efficiently updating modularity-driven clusterings. We prove
the NP-hardness of dynamic modularity optimization and develop heuristic dynamizations of
the most widespread [57] and the fastest [38] static algorithms, alongside apt strategies to
determine the search space. On a theoretical side, for our fastest procedure, we can even prove
a tight bound of Θ(log n) on the expected number of operations required. We then evaluate
these and a heuristic dynamization of an ILP10-algorithm, see Section 2.4. We compare
the algorithms with their static counterparts and evaluate them experimentally on random
preclustered dynamic graphs and on a large real-world instance. Our results are very favorable
for the dynamic approach. They expose that the dynamic maintenance of a clustering yields
higher quality than recomputation, guarantees much smoother clustering dynamics and much
lower runtimes. Additionally they yield strong evidence that small search spaces around the
epicenter of the graph change work best, and that actual local optimization (via an ILP)
around this epicenter is not the best choice.

Frankly speaking, this Section is not only the one I deem most valuable for future research
on practicable dynamic graph clustering, but it also contains those results that had to wait
so long for the more thorough understanding of modularity we eventually attained, and for
evidence of its practicality. On top of that, this section motivated my work on a generator for

10ILP stands for Integer Linear Program
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fully dynamic clustered random graphs in Section 4.2, which bred a ready-to-use platform.
Together with the fact that the results the evaluations of the approaches in this section
yield, so very clearly advocate a dynamic approach—in terms of speed, smoothness and even
quality—I felt that after finishing this work, the time is ripe for writing up my thesis. Without
the competent assistance of a smart student of mine, Christian Staudt, this study certainly
would not be in its current good shape. None of the content herein has yet been published.

Main Results

• The problem of updating a modularity-optimal clustering after a change in the graph
is NP-hard. (Section 4.3.2 and Corollary 4.3.1)

• We develop dynamizations of the currently fastest and of the most widespread heuristics
for modularity-maximization. For our fastest procedure we prove a tight bound on its
asymptotic runtime. (Section 4.3.3 and Theorem 4.3.1)

• We conduct an experimental evaluation of these algorithms, of their static counterparts
and of a dynamic partial ILP for local optimality. (Section 4.3.4)

• Our algorithms for dynamic updating (i) save runtime, (ii) yield higher modularity and
(iii) much smoother clustering dynamics than their static versions; the second point is
a particularly strong result, as the contrary might be expected. (Section 4.3.4)

• Heuristics perform better than the approach of being locally optimal at this task. (Sec-
tion 4.3.4.2)

• For update heuristics, surprisingly small search spaces work best, avoid local optima
well and adapt quickly and aptly to changes in the ground-truth clustering, which
strongly argues for the assumption that changes in the graph ask for local updates on
the clustering. (Section 4.3.4.3)

Future Work. A large variety of data formats exist already for static graphs. Although
tools for conversion are ubiquitous (or quickly conceived), things will get worse for dynamic
graphs. For this reason it will be a hard job to provide an easily usable tool for dynamic
graph clustering. Conversely, with the results of our evaluation at hand such a tool is quite
immediately the next step.

4.3.1 Preliminaries

4.3.1.1 Measuring the Smoothness of a Dynamic Clustering

For one of our prime criteria for a good dynamic clustering, its smoothness, we can now build
upon what we learned earlier, in the context of comparing two static graph clusterings in
Section 2.6. By comparing consecutive clusterings, we can quantify how smooth an algorithm
manages the transition between two steps, an aspect which is crucial to both readability
and applicability. As discussed in Section 2.6, an array of measures exist that quantify the
(dis)similarity between two partitions of a set. However, our results strongly suggest that most
of these widely accepted measures are qualitatively equivalent in all our (non-pathological)
instances. An example plot indicating this fact is given in Figure 4.3.2. This observation has
already been made in Section 2.6; moreover since the array of objections we there pose towards
a number of measures uniformly relies on pathological instances or extremal tendencies of a
measure, we omit a quantification of the similarity of these measures in terms of, e.g., a
correlation analysis of a series of reasonable dynamic clustered graphs. While this would
certainly be an interesting topic on its own right, for our purpose we are happy with our solid
observations on this. We thus restrict our view to the (graph-structural) Rand index [70],
being a well known representative; it maps two clusterings into the interval [0, 1], i.e., from
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equality to maximum dissimilarity (as a distance): Rg(C, C′) := 1 − (|E11| + |E00|)/m, with
E11 = {{v, w} ∈ E : C(v) = C(w) ∧ C′(v) = C′(w)}}, and E00 the analog for inequality. Lowsmoothness

distance values correspond to a smooth dynamic clustering.
When we compare two clustering C(G), C′(G′) of different graphs G = (V,E) 6= G′ =

(V ′, E′), the above measures are not well-defined. A canonical solution is to use the intersec-
tion of the two graphs, i.e., define G′′ = (V ′′, E′′) = (V ∩ V ′, E ∩E′), and compare C|V ′′(G′′)
and C′|V ′′(G′′). In fact any other workaround seems unfair: The intuitions of measures based
on either pair-counting, set overlaps or on entropy all do not conform to classifying elements
unknown in either G or G′ in any particular way—be it well-classified or ill-classified. Simply
ignoring “new” elements avoids introducing a bias due to particular dynamics in a graphs such
as growth or sparsification.

4.3.1.2 The Quality Index Modularity

We here return our focus to modularity. For background information and general insights into
the nature of this quality index for graph clusterings, the reader should refer to Chapter 2;
in the following we just repeat the crucial pieces. Modularity can be formulated as:

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

(weighted vers. analogous) (4.3.1)

Recall that, roughly speaking, modularity measures the fraction of edges which are covered
by a clustering and compares this value to its expected value, given a random rewiring of the
edges which, on average, respects node degrees. See Section 2.3 for further details.

4.3.2 The Hardness of DynModOpt

ModOpt, the problem of optimizing modularity is NP-hard (see Theorem 2.2.1)11, but mod-
ularity can be computed in linear time and lends itself to a number of simple greedy max-
imization strategies. We now state the hardness of updating an optimal clustering after a
graph change:

Corollary 4.3.1 (DynModOpt is NP-hard) Given graph G, a modularity-optimal clus-
tering Copt(G) and an atomic event ∆ to G, yielding G′. It is NP-hard to find a modularity-DynModOpt

is NP-hard
optimal clustering Copt(G′).

Proof. We reduce an instance G of ModOpt to a linear number of instances of DynMod-
Opt. Given graph G, there is a sequence G of graphs (G0, . . . , G` = G) of linear length such
that (i) G starts with G0 consisting of one edge e of G and its incident nodes u, v, (ii) G
ends with G, (iii) graph Gi+1 results from Gi and an atomic event ∆i. ModOpt can be
solved in constant time for G0 yielding Copt(G0). Subsequently solving DynModOpt for
instances Gi, Copt(Gi),∆i yielding Copt(Gi+1), we end with Copt(G`) = Copt(G), the solution
to ModOpt.
Corollary 4.3.1 leaves little hope for solving the update problem efficiently if we set the goal
to be modularity optimization and require algorithm A to conform, even if we do take the
effort to compute an optimal initial clustering—e.g., via an ILP. Since, furthermore, the static
problem is NP-hard and no approximations are known, we resort to heuristic updates.

4.3.3 Dynamic Clustering-Algorithms

Remember from Section 4.1 how we defined graph changes: A graph change ∆ can comprise
any number b of atomic events (see Table 4.1.1); the deletion of a node alongside its incident
edges is an example of such a compound event. In the view of a dynamic clustering algorithm
this is a batch update, delimited by a time step event, which indicates to an algorithm that abatch updates

11Since this is an optimization problem, we proved the NP-hardness of the corresponding decision problem
and the actual problem is NPO-hard. For simplicity we omit this distinction.
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readily updated clustering must now be supplied. Between time steps it is up to the algorithm
how it maintains its intermediate clustering, no measuring takes place then. Please review
Figure 4.1.3 for a quick recap.

A natural approach to dynamizing an agglomerative clustering algorithm is to break up locality
assumption

those local parts of its previous clustering, which are most likely to require a reassessment
after some changes to the graph. The half-finished instance is then given to the agglomerative
algorithm for completion. A crucial ingredient thus is a prep strategy S which decides on the prep strategy

search space which is to be reassessed. We will discuss such strategies later, until then we
simply assume that S breaks up a reasonable part of C(Gt−1), yielding C̃(Gt−1) (or C̃(Gt) if
including the changes in the graph itself). We call C̃ the preclustering and nodes that are preclustering

chosen for individual reassessment free (can be viewed as singletons). free node

4.3.3.1 Algorithms for Dynamic Updates of Clusterings

Algorithm 20: Global(G, C)
while ∃Ci, Cj ∈ C : dQ(Ci, Cj) ≥ 0 do1

(C1, C2)← arg max
Ci,Cj∈C

dQ(Ci, Cj)
2

merge(C1, C2)3

The Global Greedy Algorithm.
The most prominent algorithm for global greedy

modularity maximization is a global
greedy algorithm [57] (see also Sec-
tions 2.2 and 2.3), which we call Global
(Algorithm 20). Starting with single-
tons, for each pair of clusters, it deter-
mines the increase in modularity dQ that can be achieved by merging the pair and performs
the most beneficial merge. This is repeated until no more improvement is possible. As the
pseudo-dynamic algorithm sGlobal12, we let this algorithm cluster from scratch (CV ) at each
timestep, as a comparison to the dynamic approaches. By passing a preclustering C̃(Gt)
to Global we can define the proper dynamic algorithm dGlobal. Starting from C̃(Gt) this

dynamic: build
upon C̃

algorithm lets Global perform greedy agglomerations of clusters.

The Local Greedy Algorithm. In a recent work [38] the simple mechanism of the afore- local greedy

mentioned Global has been modified as to rely on local decisions (in terms of graph local-
ity), yielding an extremely fast and efficient maximization. We compared Orca to this

Algorithm 21: Local(G0...hmax , C0...hmax , P )

h← 01

repeat2

(G, C)← (Gh, Ch)3

repeat4

forall free v ∈ V do5

if max
v∈N(u)

dQ(u, v) ≥ 0 then
6

w ← arg max
v∈N(u)

dQ(u, v)
7

move(u, C(w))8

until no more changes9

Ch ← C10

(Gh+1, C̃h+1)← contract(Gh, Ch, P )11

h← h+ 112

until no more real contractions13

C(G0)← unfurl(Ch−1)14

method in Section 2.5. Instead of looking globally
for the best merge of two clusters, Local repeatedly
lets each node consider moving to one of its neigh-
bors’ clusters, if this improves modularity ; this poten-
tially merges clusters, especially when starting with
singletons. As soon as no more nodes move, the cur-
rent clustering is contracted, i.e., each cluster is con-
tracted to a single node, and adjacencies and edge
weights between them summarized. Then, the pro-
cess is repeated on the resulting graph which consti-
tutes a higher level of abstraction; in the end, the
highest level clustering is decisive about the returned
clustering: The operation unfurl assigns each elemen-
tary node to a cluster represented by the highest level
cluster it is contained in.

We again sketch out an algorithm which serves as
the core for both a static and a dynamic variant of
this approach, as shown in Algorithm 21. As the in-
put, this algorithm takes a hierarchy of graphs and
clusterings and a policy P which is decisive about the algorithm’s search space. In fact, P

12For historical reasons, sGlobal appears in plots as StaticNewman, dGlobal as Newman, sLocal as StaticBlon-
del and dLocal as Blondel, based on some of the algorithms’ authors.
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has its part in the graph contractions, in that P decides which nodes of the next level graph
should be free to move. Note that the input hierarchy can also be flat, i.e., hmax = 0, in that
case line 11 simply creates all necessary higher levels.

Again posing as a pseudo-dynamic algorithm, the static variant (as in [38]), sLocal, passes
only (Gt,C̃V ) to Local, such that it starts with singletons and all nodes freed, instead of a
proper preclustering. The policy P is set to tell the algorithm to also start from scratch onstatic variant

all higher levels and to not work on previous results in line 11, i.e., in C̃h+1 again all nodes in
the contracted graph are free singletons.

The dynamic variant dLocal remembers its old results. It passes the changed graph, a
current preclustering of it and all higher-level contracted structures from its previous run to
Local: (Gt, G

1,...,hmax

old , C̃, C1,...,hmax

old , P ). In level 0, the preclustering C̃ defines the set of freedynamic variant

nodes. In levels beyond 0, policy P is set to have the contract-procedure free only those nodes
of the next level, that have been affected by lower level changes (or their neighbors as well,
tunable by policy P ). Roughly speaking, dLocal starts by letting all free (elementary) nodes
reconsider their cluster. Then it lets all those (super-)nodes on higher levels reconsider their
cluster, whose content has changed due to lower level revisions. Thus, a run of Algorithm 21

dynamic:
build upon

previous levels restores a low-stress state which a run of the static algorithm could have produced, but avoids
recomputations in unrelated regions of the graph. In particular there is no risk that ambiguous
or near-tie situations are resolved in a complementary fashion without necessity.

ILP. While optimality is out of reach, the problem can be cast as an ILP; for convenience we
repeat some of what has been said in Section 2.2 and 2.4 and build upon it. A node-distancenode-distance

variables
relation (or pseudometric) between a set Ṽ of nodes (think Ṽ = V for now) indicates whether
nodes are in the same cluster:

X (Ṽ ) := {Xuv : {u, v} ∈
(
Ṽ

2

)
} with Xuv =

{
0 if C(u) = C(v)

1 otherwise
. (4.3.2)

∀{u, v, w} ∈
(
Ṽ

3

)
:


Xuv +Xvw −Xuw ≥ 0

Xuv +Xuw −Xvw ≥ 0

Xuw +Xvw −Xuv ≥ 0

; Xuv ∈ {0, 1} (4.3.3)

minimize modILP(G, CG) =
∑

{u,v}∈(Ṽ2)

(
ω(u, v)− ω(u) · ω(v)

2 · ω(E)

)
Xuv (4.3.4)

Note that the definition of Xuv (pseudometric) renders this a minimization problem. Since
runtimes for the full ILP reach days for more than 200 nodes, a promising idea pioneered
in [136] is to solve a partial ILP (pILP). Such a program takes a preclustering—of much smallerpartial ILP

complexity—as the input, and solves this instance, i.e., finishes the clustering, optimally via
an ILP; a singleton preclustering yields a true ILP (Ṽ = V ). We introduce two variants,
(i) the argument noMerge does not merge pre-clusters, and only allows free nodes to join
clusters or form new ones, and (ii) merge allows existing clusters to merge. For both variantsmerge, noMerge

we need to add constraints and terms to Equations 4.3.2-4.3.4. Roughly speaking, for (i),
variables YuC indicating the distance of node u to cluster C are introduced and triplets of
constraints similar to Equations 4.3.3 ensure their consistency with the X-variables; for (ii),
we additionally need variables ZCC′ for the distance between clusters, constrained just as in
Equations 4.3.3. In the following we sketch out these formulations.

The Full ILP. If we set Ṽ = V , i.e., all nodes are “free”, a full ILP formulation of
modularity-optimization is already possible with Equations 4.3.2-4.3.4. We merely have to
ensure the properties of an equivalence relation, reflexivity, symmetry and transitivity. Equa-
tion 4.3.3 represents transitivity, we can omit the other two: Reflexivity, Xuu = 0, is auto-
matically ensured since a node is always in the same cluster as itself. Symmetry, Xuv = Xvu,
is ensured since there is only one such variable.
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Elements are Nodes and Preserved Clusters. For the partial ILP we usually pre-
serve some clusters C̃ and have only some free nodes, so Ṽ ⊆ V . Nodes are allowed to join
other clusters and to form new ones, but preserved clusters can neither split nor merge. To
indicate whether a free node joins a cluster, we introduce the set of node-cluster distance node-cluster dis-

tance variables
variables similar to Equations 2.4.7-2.4.9 in Section 2.4.3:

Y(Ṽ , C̃) := {YuC : {u,C} ∈ Ṽ × C̃} with YuC =

{
0 if C(u) = C

1 otherwise
. (4.3.5)

We now need to couple these variables with X to ensure that if two nodes u, v join the same
cluster, their variable Xuv also reflects that they are clustered together. Moreover a node
must only join one cluster, and the objective function must evaluate such joins:

∀{u, v, w} ∈
(
Ṽ

2

)
× C̃ :


Xuv + YuC − YvC ≥ 0

Xuv + YvC − YuC ≥ 0

YuC + YvC −Xuv ≥ 0

; YuC ∈ {0, 1} (4.3.6)

∀u ∈ Ṽ :
∑
C∈C̃

YuC ≥ k − 1 (a node’s cluster must be unique) (4.3.7)

minimize modpartialILP
no merge

(G, C) =
∑

Xuv∈X (Ṽ )

(
ω(u, v)− ω(u) · ω(v)

2ω(E)

)
Xuv (4.3.8)

+
∑

YuC∈Y(Ṽ ,C̃)

(∑
w∈C

(
ω(u,w)− ω(u) · ω(w)

2ω(E)

))
YuC

Preserved Clusters may Merge. Finally, if we also allow pre-clusters to merge, we
can handle them just as we handle nodes. We thus additionally introduce cluster-distance
variables variables, which indicate whether two clusters merge: cluster-distance

Z(C) := {ZCD : {C,D} ∈
(C̃

2

)
} with ZCD =

{
0 merge(C,D)

1 − (4.3.9)

In order to ensure consistency, we need constraints as in Equations 4.3.3 for Z. Additionally,
just as for X we need to couple Z with Y, and let the objective function evaluate merging
clusters. In turn we must now drop the constraints in Equations 4.3.7, since now a node can
join more than one cluster—iff these clusters merge.

∀{C,D,E} ∈
(C̃

3

)
:


ZCD + ZDE − ZCE ≥ 0

ZCD + ZCE − ZDE ≥ 0

ZCE + ZDE − ZCD ≥ 0

(4.3.10)

∀{u,C,D} ∈ Ṽ ×
(C̃

2

)
:


ZCD + YuD − YuC ≥ 0

ZCD + YuC − YuD ≥ 0

YuC + YuD − ZCD ≥ 0

(4.3.11)

minimize modpartialILP
merge

(G, C) =
∑

Xuv∈X (Ṽ )

(
ω(u, v)− ω(u) · ω(v)

2ω(E)

)
Xuv (4.3.12)

+
∑

YuC∈Y(Ṽ ,C̃)

(∑
w∈C

(
ω(u,w)− ω(u) · ω(w)

2ω(E)

))
YuC

+
∑

ZCD∈Z(C̃)

∑
x∈C

∑
y∈D

(
ω(x, y)− ω(x) · ω(y)

2ω(E)

)ZCD
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Summary of ILP variants. In Table 4.3.1 we summarize which constraints are nec-
essary for which problem formulation. Preliminary experiments using techniques such as
breaking symmetry, orbitopal fixing or lazy constraints did not seem promising although a
thorough investigation might yield some mild speedup, see Section 2.4.4 for details on this.
Note that for the case where merging is allowed we could also have variables as in Equa-
tion 4.3.3 for Z∪X , and discard Y altogether. Note further that if in addition to the merging
of clusters we also allow splitting, we actually arrive at the full ILP again. The dynamic
clustering algorithms which first solicit a preclustering and then call ILP are called dILP. NoteILP and dILP

that they react on any edge event; accumulating events until a timestep occurs can result in
prohibitive runtimes.

Elemental Optimizer. The elemental operations optimizer, EOO, performs a limited num-EOO

ber of operations, trying to increase the quality. Specifically, we allow moving or splitting off
nodes and merging clusters, as listed in Table 4.3.2. Although rather limited in its options,
EOO is often used as a post-processing tool (see [181] for a discussion). Our algorithm dEOO
calls EOO at each time step, doing nothing inbetween.

Table 4.3.1. ILP variants

Name Constraint Set
Full 4.3.2-4.3.3
noMerge 4.3.2-4.3.3, 4.3.5-4.3.7
merge 4.3.2-4.3.3, 4.3.5-4.3.6, 4.3.9-4.3.11

Table 4.3.2. EOO operations, dis-/allowed via parameters

Operation Effect
merge(u,v) C ← (C \ {C(u), C(v)}) ∪ {C(u) ∪ C(v)}
shift(u,v) C(u)← C(u)− u, C(v)← C(v) + u
split(u) C ← (C \ C(u)) ∪ {{u}, (C(u)− u)}

Table 4.3.3. Summary of the reactions of the algorithms to graph events. Isolated nodes are
made singletons when inserted and simply deleted when removed. With “→ S” we
indicate that a prep strategy prepares a preclustering.

∆ Algorithms’ reactions
abbrev. sGlobal dGlobal sLocal dLocal dILP dEOO
E + {u, v} − → S − → S → S, pILP(args) -
E − {u, v} − → S − → S → S, pILP(args) -
ω(u, v) + x − → S − → S → S, pILP(args) -
ω(u, v)− x − → S − → S → S, pILP(args) -
t+ 1 Global Global Local Local - EOO

(Gt, CV ) (Gt, C̃) (Gt,CV ,all) (G0...hmax
t−1 , (Gt+1,

C̃, C1...hmax
t−1 , aff/nb) Ct+1,args)

4.3.3.2 Strategies for Building the Preclustering

We now describe prep strategies which generate a preclustering C̃, i.e., define the search space.
We distinguish the backtrack strategy, which refines a clustering, and subset strategies, which
free nodes. The rationale behind the backtrack strategy is that selectively backtracking thebacktrack strategy

clustering produced by Global enables it to respect changes to the graph. On the other hand,
subset strategies are based on the assumption that the effect of a change on the clusteringsubset strategies

structure is necessarily local. Both output a half-finished preclustering. We detail the two
approaches in the following two subsections.

Subset Strategies. A subset strategy is applicable to all dynamic algorithms. It frees asubset strategy

subset Ṽ of individual nodes that need reassessment and extracts them from their clusters. We
distinguish three variants which are all based on the hypothesis that local reactions to graph
changes are appropriate. Consider an edge event involving {u, v}. The breakup strategyBU

(BU) marks the affected clusters Ṽ = C(u) ∪ C(v); the neighborhood strategy (Nd) withNd
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parameter d marks Ṽ = Nd(u) ∪ Nd(v), where Nd(w) is the d-hop neighborhood of w; the
bounded neighborhood strategy (BNs) with parameter s marks the first s nodes found by a BNs
breadth-first search simultaneously starting from u and v.

The Backtrack Strategy. The backtrack strategy (BT) records the merge operations of backtrack strategy

Global and backtracks them if a graph modification suggests their reconsideration. We detail BT
below what we mean by “suggests”, but for brevity we can state that the actions listed for
BT provably require very little asymptotic effort and offer global a good chance to find an
improvement. Speaking intuitively, the reactions to a change in (non-)edge {u, v} are as clever backtrack-

ing
follows (weight changes are analogous): For intra-cluster additions we backtrack those merge
operations that led to u and v being in the same cluster and allow Global to find a tighter
cluster for them, i.e., we separate them. For inter-cluster additions we track back u and v isolate and

backtrack
individually, until we isolate them as singletons, such that Global can re-classify and potentially
merge them. Inter-cluster deletions are not reacted on. On intra-cluster deletions we again
isolate both u and v such that Global may have them find separate clusters. For more details
on these operations continue reading. Note that this strategy is only applicable to Global;
conferring it to Local is neither straightforward nor promising, as Local is based on node
migrations in addition to agglomerations. Anticipating this strategy’s low runtime, we can
give a bound on the expected number of backtrack steps for a single call of isolate, being the
crucial operation. We leave its formal proof to the more general Theorem 4.3.2 below:

Theorem 4.3.1 Assume that a backtrack step divides a cluster randomly. Then, for the
number I of steps isolate(v) requires, it holds: E{I} ∈ Θ(lnn). isolate is quick

To motivate the backtrack strategy we first detail some insights on the change in mod-
ularity if (i) the graph changes and (ii) we decide to move some nodes from one cluster to
another, in order to react to the change. Please note that all statements generalize trivially
to weighted edges. Let C ∈ C be a cluster and D ∈ {C ∪ ∅} be a cluster or the empty set. Let
further U ⊂ C be a subset of C, and define further the clustering D:

D := (C \ {C,D}) ∪ {C \ U,D ∪ U} (move U from C to D) (4.3.13)

The basis of modularity (Mod), coverage (Cov) and the expected value of coverage (ECov)
change when we move from clustering C to D; we can express these changes and the change how modularity

changes
∆ in modularity as follows:

∆Cov := Cov(D)− Cov(C) , ∆ECov := ECov(D)− ECov(C) , (4.3.14)

∆ := Mod(D)−Mod(C) = ∆Cov −∆ECov (4.3.15)

Table 4.3.4. Overview of how strategies handle graph events. Changes to edges’ weights are
analog to creations/removals. Degree-0 nodes are universally made singletons
when inserted and ignored when removed.

Event Reaction

BT BU, Ṽ = N, Ṽ = BN, Ṽ =

E + {u, v}

sep(u, v) C(u) = C(v)

iso(u), iso(v) C(u) 6= C(v)
C(u) ∪ C(v) Nd(u) ∪Nd(v) BFS{u, v}|s

E − {u, v}

iso(u), iso(v) C(u) = C(v)

− C(u) 6= C(v)
C(u) ∪ C(v) Nd(u) ∪Nd(v) BFS{u, v}|s
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Note that ∆ must be non-positive if C was optimal. If we generalize the definitions in Sec. 4.1.3
from clusters to general sets of nodes, then we can write these as:

∆Cov :=
E(U,D)− E(U,C \ U)

m
, (4.3.16)

∆ECov :=
1

4m2

(∑
B∈D

deg2(B)−
∑
B∈C

deg2(B)

)
(4.3.17)

=
1

4m2

(
deg2(D ∪ U) + deg2(C \ U)− deg2(D)− deg2(C)

)
(4.3.18)

=
deg(U)

2m2
(deg(D)− deg(C \ U)) (4.3.19)

Given a change in the graph we want to know whether moving from C to D is beneficial.
Thus, in addition to moving from C to D, we now move from G to G′, i.e., we change graph G
by, say, adding edge {v, w}. Analogously to the above we now define ∆′Cov, ∆′ECov and ∆′Mod.
We can now establish sufficient and necessary conditions for ∆′ to be positive if ∆ ≤ 0, the
following two Tabs. 4.3.5-4.3.6. We distinguish cases whether or not v and w are elements of
C, D or U . In both tables, this is done in the first column and the second columns give the
appropriate values of ∆′Cov and ∆′ECov. The last columns give tight conditions for ∆′ to be
strictly positive, i.e., for the case when moving such a set U from C to D increases modularity
in G′.

Summarizing, if we want to adapt a clustering to a change in a graph by moving a set Uhow to change
the clustering

of nodes between clusters, the given ranges for ∆ECov categorize exactly when a given set U
(specified by the first column) will increase modularity for the new graph G′. However, this
does not determine a specific set U—we still have to decide on this, but by the size of the
range for ∆ECov we can deduce some structure. Since we aim at a dynamization dGlobal of the
global agglomerative algorithm, a reasonable approach is as follows: Track back specific merge
operations of the static algorithm sGlobal until the most promising (according to Tabs. 4.3.5-
4.3.6) operations in terms of moving a set U are available; then let the algorithm finish the
clustering for G′. Of course this does not yield optimality by any means, nor does it identify
the best set U , but it gives Global a fighting chance to find a good improvement with minimum
effort, since exclusively the most promising parts of the clustering are broken up.

Table 4.3.5. The different effects on modularity if, after the creation of edge {v, w}, we move a
specific subset U of nodes from cluster C to cluster D.

preconditions formulae for ∆′
Cov and ∆′

ECov ∆ ≤ 0 and ∆′ > 0 iff

v, w /∈ C ∪D
∆′

Cov = m
m+1∆Cov ∆ECov ∈

∆′
ECov = ( m

m+1)2∆ECov [∆Cov, (1 + 1
m)∆Cov)

v ∈ C\U, w /∈ D or ∆′
Cov = m

m+1∆Cov ∆ECov ∈
w ∈ C\U, v /∈ D ∆′

ECov = ( m
m+1)2∆ECov − degG(U)

2(m+1)2
[∆Cov, (1 + 1

m)∆Cov + degG(U)
2m2 )

v ∈ C\U, w ∈ D or ∆′
Cov = m

m+1∆Cov ∆ECov ∈
w ∈ C\U, v ∈ D ∆′

ECov = ( m
m+1)2∆ECov [∆Cov, (1 + 1

m)∆Cov)
v /∈ C, w ∈ D or ∆′

Cov = m
m+1∆Cov ∆ECov ∈

w /∈ C, v ∈ D ∆′
ECov = ( m

m+1)2∆ECov + degG(U)
2(m+1)2

[∆Cov, (1 + 1
m)∆Cov − degG(U))

2m2 )
v ∈ U, w /∈ D or ∆′

Cov = m
m+1∆Cov ∆ECov ∈

w ∈ U, v /∈ D ∆′
ECov = ( m

m+1)2∆ECov [∆Cov, (1 + 1
m)∆Cov)

v ∈ U, w ∈ D or ∆′
Cov = m

m+1∆Cov + 1
m+1 ∆ECov ∈

w ∈ U, v ∈ D ∆′
ECov = ( m

m+1)2∆ECov + degG(U)
2(m+1)2

[∆Cov, (1 + 1
m)∆Cov + 2m+2−degG(U)

2m2 )

Table 2.1.: effect on modularity when shifting vertices between clusters after the edge {v, w} has been added - inter-cluster
edge addition, i.e. @C ∈ C : v, w ∈ C

8
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Table 4.3.6. For the removal of edge {v, w}, this table details effects analogously to Tab. 4.3.5.

preconditions formulae for ∆′
Cov and ∆′

ECov ∆ ≤ 0 and ∆′ > 0 iff

v, w /∈ C ∪D
∆′

Cov = m
m+1∆Cov ∆ECov ∈

∆′
ECov = ( m

m+1)2∆ECov [∆Cov, (1 + 1
m)∆Cov)

v, w ∈ C\U ∆′
Cov = m

m+1∆Cov ∆ECov ∈
∆′

ECov = ( m
m+1)2∆ECov − degG(U)

(m+1)2
[∆Cov, (1 + 1

m)∆Cov + degG(U)
m2 )

v, w ∈ D
∆′

Cov = m
m+1∆Cov ∆ECov ∈

∆′
ECov = ( m

m+1)2∆ECov + degG(U)
(m+1)2

[∆Cov, (1 + 1
m)∆Cov − degG(U)

m2 )

v, w ∈ U
∆′

Cov = m
m+1∆Cov ∆ECov ∈

∆′
ECov = ( m

m+1)2∆ECov + degG(D)−degG(C\U)
(m+1)2

[∆Cov, (1 + 1
m)∆Cov − degG(D)−degG(C\U)

m2 )
v ∈ U, w ∈ C\U or ∆′

Cov = m
m+1∆Cov − 1

m+1 ∆ECov ∈
w ∈ U, v ∈ C\U ∆′

ECov = ( m
m+1)2∆ECov + degG(D)−degG(C)−1

2(m+1)2
[∆Cov, (1 + 1

m)∆Cov − 2m+1+degG(D)−degG(C)
2m2 )

Table 2.2.: effect on modularity when shifting vertices between clusters after the edge {v, w} has been added - intra-cluster
edge addition, i.e. ∃C ∈ C : v, w ∈ C

9

Algorithm 22: backtrack(v)

(assume C(v) = merge(A,B)
as done by global)
C ← (C − C(v)) ∪ {A,B}1

Algorithm 23: isolate(v)

while |C(v)| 6= 1 do1

backtrack(v)2

Algorithm 24: separate(u, v)

while C(u) = C(v) do1

backtrack(u)2

In the following we detail our update proce-
dures which are motivated by the above discussion.
For these we require the helper algorithms given in
Algs. 22-24. Algorithm 22, backtrack(v), splits the
cluster containing v into those two parts it resulted
from. Algorithm 23, isolate(v), iteratively backtracks operations for the

backtrack strategy
those merges that involved v, until v is contained in
a singleton. Algorithm 24, separate(u, v), backtracks
those merges involving the cluster of u and v until u
and v are in different clusters.

Backtracking Inter-Cluster Edge Addition.
Since we assume for most graphs that the degree of
each cluster does not exceed m, we have the best
chances to increase modularity if we choose U to con-
tain either v or w and move U to the cluster containing
the other vertex (see sixth case in Tab. 4.3.5). Therefore, we define this part of our backtrack
strategy as isolate(u), isolate(v).

Backtracking Intra-Cluster Edge Addition. In this case it seems to be the best
choice to set U in such a way that it is a subset of C and contains either one of v or w, or
both (cases two and four in Tab. 4.3.5; regarding case four, note that D can be empty, which
implies degG(D) = 0). We thus define this backtrack case as separate(u, v). Since, however,
the expected number of backtrack operations is 2 if we assume that in each such split, u and
v are separated with probability 1/2 (see below for details), one might think that this is too
little an invested effort. We thus also tested an alternative which performs isolate(u) and
isolate(v); however this uniformly did not raise quality but only runtime and distance.

Backtracking Edge Deletions. For the case of edge deletions it is more difficult to
find good backtracking strategies. For additions we can try to reasonably reduce the sizes of
the affected clusters by splitting them into parts that either form new clusters or merge with
existing ones. The strategy in the case of deletions should thus be the inverse: Split off parts
of the clusters that are unaffected by the edge deletion and link them with the affected ones.
But how do we know which cluster to split? We leave this question unanswered, analytically,
and rely on common sense to define the following procedures:

• Inter-cluster edge deletion: do nothing (C̃ = C, but do call global, as usual)
• Intra-cluster edge deletion: isolate(u), isolate(v)
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Analysis of the isolate and the separate Operations. It is easy to see that the
expected number E{S} of backtrack steps S for a single call of separate(u, v) is 2, if we assume
that a backtrack step divides a cluster randomly and thus separates u and v with probability
1/2. Without further a priori knowledge this is a reasonable assumption; however, it is crucial
to note that all our findings (The. 4.3.1 in particular) remain valid for any arbitrary but fixed
constant probability instead of 1/2. For simplicity we use 1/2 in the following. Then, S is
distributed according to the geometric distribution with parameter 1/2 yielding E{S} = 2.

expect two
backtracks

from separate For the proof that the expected number E{I} of backtrack steps I for a single call of
isolate(v) is in Θ(lnn) (see Theorem 4.3.1), we require the following two lemmas for the
theorem that proves the bound.

Lemma 4.3.1 Let (Ω,A, P ) be a probability space, A1, . . . , An ∈ A independent events with
P (Ai) = p, i = 1, . . . , n. Then1st helping lemma

P

(
n⋃
i=1

Ai

)
= 1− (1− p)n .

(Proof omitted)

Lemma 4.3.2 Let i ∈ N0, j ∈ N. Then it holds that2nd help-
ing lemma ∫ ∞

0

(
1

2

)jx(
1−

(
1

2

)x)i
dx =

i!(j − 1)!

(j + i− 1)!
· 1

ln 2
· 1

i+ j
.

Specifically, for j = 1 the following equation holds:∫ ∞
0

(
1

2

)x(
1−

(
1

2

)x)i
dx =

1

ln 2
· 1

i+ 1

Proof. The proof uses induction over i, with integration by parts for the induction step, for
brevity we just give a proof sketch.∫ ∞

0

(
1

2

)jx
︸ ︷︷ ︸

g′

(
1−

(
1

2

)x)i
︸ ︷︷ ︸

f

dx (4.3.20)

(such that g = − 1

j ln 2

(
1

2

)jx
and f ′ = ln 2

(
1

2

)x
i

(
1−

(
1

2

)x)i−1

)

=

[
− 1

j ln 2

(
1

2

)jx
·
(

1−
(

1

2

)x)i]∞
0

(= 0 for i 6= 0, which holds here)

−
∫ ∞

0

− 1

j ln 2

(
1

2

)jx
· ln 2

(
1

2

)x
i

(
1−

(
1

2

)x)i−1

dx (4.3.21)

= 0 +
i

j

∫ ∞
0

(
1

2

)(j+1)x(
1−

(
1

2

)x)i−1

dx (4.3.22)

...

=
i · . . . · 1

j · . . . · j + i− 1
·
∫ ∞

0

(
1

2

)(i+j)x

dx (4.3.23)

=
i!(j − 1)!

(j + i− 1)!
· 1

ln 2
· 1

i+ j
(4.3.24)
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The integrand in line (4.3.20) is split into functions g′ and f . Since f and g are continuously
differentiable functions integration by parts yields line (4.3.21). Note that as long as i 6= 0 in
line (4.3.20), the first (integrated) summand always equals zero. Line (4.3.22) just summarizes
terms in order to resemble our starting point in line (4.3.20). We can now repeat these steps
i times, such that in each step i decreases by one (reaching 0), j increases by one (reaching
j + i) and new factors are accumulated. We thus reach line (4.3.23) where in the integrand
we now have f = 1, such that we can solve the remaining integral.

Theorem 4.3.2 Let n ∈ N and X
(i)
j , i = 1, . . . , n, j = 1, 2, . . . be i.i.d. random variables that

are Bernoulli-distributed with parameter 1
2 . We define

N := min{k ∈ N0 : ∀i ∈ {2, . . . , n} ∃j ∈ {1, . . . , k} : X
(i)
j 6= X

(1)
j } .

Then it follows for the expectance of N:
expect Θ(lnn)
backtracks from
isolate

E{N} ∈ Θ(lnn)

Proof. W.l.o.g. n ≥ 2.

E{N} =

∞∑
k=0

P (N = k) · k =

∞∑
k=0

P (N > k)

=

∞∑
k=0

P (∃i ∈ {2, . . . , n} ∀j ∈ {1, . . . , k} : X
(i)
j = X

(1)
j )

(set event Ai : ∀j ∈ {1, . . . , k} : X
(i)
j = X

(1)
j , then it holds P (Ai) =

(
1

2

)k
)

=

∞∑
k=0

1−
(

1−
(

1

2

)k)n−1

(Lemma 4.3.1)

=

∞∑
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(reorder)
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)x)i
dx

)
(rect. approx.)

∈ Θ

(
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1

ln 2
· 1

i+ 1

)
(Lemma 4.3.2)

∈ Θ

(
1

ln 2

n−2∑
i=0

1

i+ 1

)
∈ Θ

(
1

ln 2

(
n∑
i=1

1

i
− 1

n

))
∈ Θ(lnn) (n-th harmonic no.)

We can interpret the random variables X
(i)
j ∈ {0, 1} of experiments Xj such that for the j-th
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ô StaticNewman2:785 : Maximum Match avg 0.0646

ò StaticNewman2:785 : Fred & Jain avg 0.0912558

ì StaticNewman2:785 : Fowlkes-Mallows avg 0.0804927

à StaticNewman2:785 : Jaccard avg 0.131191

æ StaticNewman2:785 : Rand avg 0.0523922

Figure 4.3.1. Raw data for several distance measures
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StaticNewman2:785 : Maximum Match avg 0.0646

StaticNewman2:785 : Fred & Jain avg 0.0912558

StaticNewman2:785 : Fowlkes-Mallows avg 0.0804927

StaticNewman2:785 : Jaccard avg 0.131191

StaticNewman2:785 : Rand avg 0.0523922

Figure 4.3.2. Smoothed version of Fig. 4.3.1

division (by a backtrack step), X
(i)
j = 0 if the i-th node is in the left half, and X

(i)
j = 1 if

the i-th node is in the right half. If we assign to node v index 1, then X
(i)
j = X

(1)
j means,

that node i is in the same half as v. Event Ai then means that for all experiments 1, . . . , k
node i always ended up on the same half as v. We thus look for the first experiment such
that each node other than v has ended up in another half than v at least once (note that
multiply separating a node i from v doe not alter the statement). Now its easy to see thatThe. 4.3.2 proves

The. 4.3.1
Theorem 4.3.2 proves Theorem 4.3.1.

4.3.4 Experimental Evaluation of Dynamic Algorithms13

For the sake of readability, we use a moving average in plots for distance and quality to
smoothen the raw data. An example of this effect is given in Figures 4.3.1 and 4.3.2. These
are representative plots for an arbitrary random dynamic graph and an arbitrary dynamic
clustering algorithm, others behave similarly in terms of readability. The second observation
this example shows is the fact mentioned in Subsection 4.3.1.1 above: different measures for
smoothness do not differ qualitatively; again, we observed the same for all other graphs and
algorithms. We consider the criteria quality (modularity), smoothness (Rg) and runtime
(ms), and additionally |C|. Generally speaking, the x-axis always indicates the current time
step, and the y-axis gives the measurement as described in the corresponding legend.

4.3.4.1 Instances

We use two kinds of dynamic instances, generated graphs and a real-world instance with
practical relevance. We briefly describe both here, but for more details we refer the reader to
Sections 4.2 and to 5.1.1, respectively.

Email Graphs. The network of email contacts at the department of computer sci-
ence at KIT is an ever-changing graph with an inherent clustering: Workgroups and
projects cause increased communication. We weigh edges by the number of exchanged
emails during the past seven days, thus edges can completely time out; degree-0 nodes
are removed from the network. This network, Ge, has between 100 and 1500 nodes
depending on the time of year, and about 700K events spanning about 2.5 years.

13Supplementary information, in the form of many Mathematica notebooks containing further experimental
results, is stored at i11www.iti.uni-karlsruhe.de/projects/spp1307/dyneval

i11www.iti.uni-karlsruhe.de/projects/spp1307/dyneval
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0 1000 2000 3000 4000 5000 6000 7000

500

1000

1500

m

nFigure 4.3.3. Nodes (blue) and edges (purple) of Ge

It features a strong power-law degree dis-
tribution. Figure 4.3.3 shows the tempo-
ral development of the email graph in terms
of n (lower) and m (upper) per 100 events.
The first peak stems from a spam attack in
late ’06, the two large drops from Christmas
breaks and the smaller drops from spring and
autumn breaks (details on this data set can
be found in Section 5.1.1). Unless otherwise
mentioned we use b = 100 for Ge, yielding
7000 timesteps of 100 events each.

Random Graphs. Our Erdős-Rényi-type
generator builds upon the work of [47] and
adds to this dynamicity in all graph elements
and in the clustering, i.e., nodes and edges
are inserted and removed and ground-truth clusters merged and split, always complying with
sound probabilities. The visible clustering of the generator is stored as a reference to compare
our algorithms to (please refer to Section 4.2 for details). We conducted experiments for a
large number of settings, varying size, density, node/edge-volatility, stability of clusters, etc.,
and in the following only give representative plots, and point out specific peculiarities. The
majority of plots uses a representative graph coined G1, one of our simpler test instances. It
is is used in many examples, as behavior on it is largely archetypical; Figure 4.3.4 depicts
its rough statistics. As another example, Figure 4.3.5 shows the statistics of a graph which
gradually grows in the number of nodes. With an average node degree of 10 and a batch size
of 10 an average node insertion or deletion constitutes approximately one batch update.

0 500 1000 1500 2000

1000

2000

3000

4000

5000

m

n

(a) Numbers of nodes end edges, this instance does not al-
low node events but only edge events for well controlled
experiments.

0 500 1000 1500 2000

0.5

1.0

1.5

2.0

Split
Merge

(b) Numbers and types of changes in the clustering, plateaus
indicate that a ground-truth change has not yet been
reacted to by the reference, i.e., arguably is not yet well
visible in the graph.

Figure 4.3.4. Our primary example, G1, non-default parameters of its generation: (see Table 4.2.1) are tmax = 2000,
n0 = 1000, k = 20, η = 10, pω = 0.001, pin = 0.1, pout = 0.005.
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4.3.4.2 Fundamental Results on the Algorithms

Parameters of Local. It has been stated in [38] that the order in which Local considers nodes
is irrelevant. In terms of average runtime and quality we can confirm this for sLocal, though
with a few exceptions a random order tends to be marginally less smooth; for dLocal the same
observation holds. Figure 4.3.6 shows representative plots on the smoothness for Ge and G1

for sLocal and dLocal (different choices for the other parameters yield similar results).

However, since node order does influence specific values, a random order can compensate
the effects this might have in pathological cases. We will later see more advantages. Remember
that Local clusters in several hierarchical contraction levels (see Algorithm 21), such that onwhich P for Local

the base level a prep strategy frees nodes and on higher levels, a policy P decides whether only
affected nodes or their neighbors as well are freed. We found that considering only affected
nodes or also their neighbors in higher levels, does not affect any criterion on average (we
omit plots on this). Thus we prefer the affected policy, being the simpler variant.

Discarding dEOO. In a first feasibility test, dEOO immediately falls behind all other al-
gorithms in terms of quality (Fig. 4.3.7). This observation is substantiated by the fact thatdEOO alone: bad

postprocessing such as dEOO work better if related to the underlying algorithm, as found
recently in [181]. Moreover, runtimes for dEOO as the sole technique are infeasible for large
graphs. We can conclude that dEOO should not be used as a standalone technique.

pILP Variants. Allowing the ILP to merge existing clusters takes longer, and clusters
coarser—as which is quite intuitive—but also yields a slightly worse modularity. We con-
jecture that the reason for this is that merging invites hazardous local optima. We madenoMerge bet-

ter than merge
this observation on almost all tested instances, and we therefore reject merge for pILP. Nicely
visible in Figure 4.3.8b is how in terms of the number of clusters merge and noMerge bound
dLocal and dGlobal from below and above, respectively.

Heuristics vs. pILP. A striking observation we made about the quality of pILP is the
fact that it yields worse quality than dLocal and sLocal with identical prep strategies, as in
Fig. 4.3.8a. Intuitively speaking, pILP solves similar problems in each timestep as the other
real heuristics do, but whithin the same restrictions, pILP solves them optimally. We thus
clearly expect pILP to yield better quality—but this does not happen. Being locally optimal
seems to overfit, a phenomenon that does not weaken over time and persists throughoutpILP overfits

other instances! Together with its high runtime and only small advantages in smoothness
pILP seems ill-suited for updates on large graphs.

0 2000 4000 6000 8000 10 000

2000

4000

6000

8000

m

n

(a) The numbers of nodes end edges both grow.

0 2000 4000 6000 8000 10 000

0.5

1.0

1.5

2.0

Split
Merge

(b) 10000 time steps allow more changes in the clustering.

Figure 4.3.5. Here, non-default generation parameters (see Table 4.2.1) are tmax = 10000, n0 = 1000, k = 20, η = 10,
pω = 0.001, pin = 0.1, pout = 0.002, χ = 0.9, pν = 0.55.
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StaticBlondelHRandom,FirstPeakL:142 : Rand HgL avg 0.0396427

StaticBlondelHInvArray,FirstPeakL:552 : Rand HgL avg 0.027855

StaticBlondelHArray,FirstPeakL:190 : Rand HgL avg 0.0282659

(a) sLocal on Ge
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BlondelHNeighborhoodHMSBFS,1L,Random,FirstPeak,AffectedL:999 : Rand HgL avg 0.0118082

BlondelHNeighborhoodHMSBFS,1L,InvArray,FirstPeak,AffectedL:37 : Rand HgL avg 0.011696

BlondelHNeighborhoodHMSBFS,1L,Array,FirstPeak,AffectedL:460 : Rand HgL avg 0.01171

(b) dLocal on Ge
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StaticBlondelHRandom,FirstPeakL:888 : Rand HgL avg 0.207303

StaticBlondelHInvArray,FirstPeakL:96 : Rand HgL avg 0.15601

Reference : Rand HgL avg 0.0000192771

StaticBlondelHArray,FirstPeakL:511 : Rand HgL avg 0.152812

(c) sLocal on G1
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0.001
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0.003
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BlondelHBoundedNeighborhoodHMSBFS,8L,Random,FirstPeak,NeighborsL:233 : Rand HgL avg 0.000863338

BlondelHBoundedNeighborhoodHMSBFS,8L,InvArray,FirstPeak,NeighborsL:109 : Rand HgL avg 0.00135641

BlondelHBoundedNeighborhoodHMSBFS,8L,Array,FirstPeak,NeighborsL:205 : Rand HgL avg 0.00124391

(d) dLocal on G1

Figure 4.3.6. These plots show effect of different node orders, Random and two fixed orders (Array and InvArray), for Algorithms
based on Local, on smoothness, in terms of Rg-distance.
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200 400 600 800 1000

0.58

0.60

0.62

0.64

0.66

Reference : Modularity avg 0.620461
EOOHOptimizer,Modularity,Merge,Shift,Split,16L:995 : Modularity avg 0.594639
PartialILPHCplex,Modularity,Merge,NeighborhoodHMSBFS,1LL:277 : Modularity avg 0.628585
Newman2HNeighborhoodHMSBFS,1LL:66 : Modularity avg 0.618707
BlondelHNeighborhoodHMSBFS,1L,Random,FirstPeak,AffectedL:722 : Modularity avg 0.621762
StaticBlondelHRandom,FirstPeakL:239 : Modularity avg 0.628871
StaticNewman2:929 : Modularity avg 0.611194

Figure 4.3.7. In terms of modularity, dEOO (purple) lags behind the other algorithms.

(a) Modularity: surprisingly, both pIILP-variants perform consis-
tently worse than dLocal and dGlobal.

(b) Number of clusters: merge and noMerge bound the other algo-
rithms from below and above, respectively.

Figure 4.3.8. dLocal (blue), dGlobal (purple), pILP(noMerge) (yellow) and pILP(merge) (green) on the first quarter of Ge,
batch size 1 for comparability, strategy BN8; results are representative for most instances.

Static Algorithms. Briefly comparing sGlobal and sLocal we can state that sLocal consis-
tently yields better quality and a finer (see Figure 4.3.13 at the end) yet less smooth clustering.
This observation has been made for other (huge) instances in [38] and we can confirm it on all
our generated instances; additionally, these results are paralleled by the dynamic counterparts.sLocal vs. sGlobal

An exception is instance Ge, as discussed later.

4.3.4.3 Prep Strategies

We now determine the best choice of prep strategies and their parameters for dGlobal and
dLocal. In particular, we evaluate Nd for d ∈ {0, 1, 2, 3} and BNs for s ∈ {2, 4, 8, 16, 32},
alongside BU and BT. Throughout our experiments d = 0 (or s = 2) proved insufficient,
and is therefore ignored in the following. For dLocal, increasing d has only a marginal effect
on quality and smoothness, while runtime grows sublinearly, which suggests d = 1. Please
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review Figure 4.3.9 for these observations. Similar facts hold for other instances and batch
sizes. Note that large batch sizes b let a prep strategy accumulate many free nodes yielding a
larger search space; however, we observed that a small b does not benefit from larger search
spaces. For dGlobal, Nd risks high runtimes for depths d > 1, especially for dense graphs. In large d does not

help Nd
terms of quality N1 is the best choice, higher depths seem to deteriorate quality—a strong
indication that large search spaces contain local optima. Smoothness approaches the bad
values of sGlobal for d > 2. We omit plots for dGlobal on this.

For BN, increasing s is essentially equivalent to increasing d, only on a finer scale. Con-
sequently, we can report similar observations. For dLocal, BN4 proved slightly superior. moderate s helps

BNs
dGlobal’s quality benefits from increasing s in this range, but again at the cost of speed and
smoothness, so that BN16 is a reasonable choice. Figure 4.3.10 illustrates these observations
for dGlobal on G1, we omit plots for dLocal. Again we could confirm these findings on other
instances.

The strategy which simply breaks up all clusters affected by changes, BU, clearly falls
behind in terms of all criteria compared to the other strategies, and often mimics the static
algorithms. As expected we can discard this strategy and rather consider it as a “control”. BU is bad

Note that this is a very basic confirmation of the assumption that local updates are a good
idea.

dGlobal using BT is by far the fastest algorithm, confirming our theoretical predictions from
Sec. 4.3.3.2, but still produces competitive quality. However, it often yields a smoothness
in the range of sGlobal. Summarizing, our best dynamic candidates are dGlobal@BT and BT is fast but

non-smooth
dGlobal@BN16 (achieving a speedup over sGlobal of up to 1k and 20 at 1k nodes, respectively)
and dLocal@BN4(with a speedup of 5 over sLocal).

4.3.4.4 Comparison of the Best and their Static Counterparts

We now take a focused look at those dynamic clustering algorithms and prep strategies, which
we observed to be the most promising and compare them with their static counterpart. As
a general observation, as depicted in Figure 4.3.11a, each dynamic candidate beats its static
counterpart in terms of modularity. On the generated graphs, dLocal is superior to dGlobal, dynamic beats

static
and faster, this is not the case for the email network—here both Global algorithms beat each
Local algorithm. In terms of smoothness (Figure 4.3.11b), dynamics (except for dGlobal@BT)

1000 2000 3000 4000 5000 6000

0.60

0.65

0.70

0.75

0.80

BlondelHNeighborhoodHMSBFS,4L,Array,FirstPeak,AffectedL:858 : Modularity avg 0.768244

BlondelHNeighborhoodHMSBFS,3L,Array,FirstPeak,AffectedL:222 : Modularity avg 0.768223

BlondelHNeighborhoodHMSBFS,2L,Array,FirstPeak,AffectedL:109 : Modularity avg 0.768214

BlondelHNeighborhoodHMSBFS,1L,Array,FirstPeak,AffectedL:743 : Modularity avg 0.76828

BlondelHNeighborhoodHMSBFS,0L,Array,FirstPeak,AffectedL:922 : Modularity avg 0.763666

(a) Modularity does not improve with growing d.
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BlondelHNeighborhoodHMSBFS,4L,Array,FirstPeak,AffectedL:858 : Rand HgL avg 0.0120896

BlondelHNeighborhoodHMSBFS,3L,Array,FirstPeak,AffectedL:222 : Rand HgL avg 0.0121041

BlondelHNeighborhoodHMSBFS,2L,Array,FirstPeak,AffectedL:109 : Rand HgL avg 0.0120944

BlondelHNeighborhoodHMSBFS,1L,Array,FirstPeak,AffectedL:743 : Rand HgL avg 0.0117164

BlondelHNeighborhoodHMSBFS,0L,Array,FirstPeak,AffectedL:922 : Rand HgL avg 0.0119569

(b) Smoothness worsens with growing d.

Figure 4.3.9. These plots show the effect of d for strategy Nd on the behavior of dLocal for Ge.
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Reference : Modularity avg 0.452056
Newman2HBoundedNeighborhoodHMSBFS,32LL:228 : Modularity avg 0.431329
Newman2HBoundedNeighborhoodHMSBFS,16LL:57 : Modularity avg 0.42631
Newman2HBoundedNeighborhoodHMSBFS,8LL:895 : Modularity avg 0.422496
Newman2HBoundedNeighborhoodHMSBFS,4LL:622 : Modularity avg 0.416692
Newman2HBoundedNeighborhoodHMSBFS,2LL:42 : Modularity avg 0.407212

(a) Modularity slightly improves with growing s.
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Reference : Rand HgL avg 0.0000192771
Newman2HBoundedNeighborhoodHMSBFS,32LL:228 : Rand HgL avg 0.00660812
Newman2HBoundedNeighborhoodHMSBFS,16LL:57 : Rand HgL avg 0.00355906
Newman2HBoundedNeighborhoodHMSBFS,8LL:895 : Rand HgL avg 0.00214345
Newman2HBoundedNeighborhoodHMSBFS,4LL:622 : Rand HgL avg 0.00142067
Newman2HBoundedNeighborhoodHMSBFS,2LL:42 : Rand HgL avg 0.00112671

(b) Smoothness worsens with growing s.

Figure 4.3.10. The effect of s for strategy BNs on the behavior of dGlobal for G1;we can clearly observe a gradual convergence on
both plots; note further how modularity for the reference jumps due to a finished cluster event (see Section 4.2).
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(a) Modularity: a rather clear ranking is possible for quality: Locals
surpass Globals and dynamics surpass statics.
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(b) Rg : only dGlobal@BT is within the order of magnitude of the
static algorithms, the other dynamics excel in smoothness.

Figure 4.3.11. With respect to quality and to smoothness dGlobal@BT (dark blue) and dGlobal@BN16 (light blue) beat
sGlobal (purple), and dLocal@BN4 (green) beats sLocal (yellow) on G1.

are superior to statics by a factor of ca. 100, and even dGlobal@BT beats them.

4.3.4.5 Dynamic Algorithms React Quickly to Changing Clusterings

Throughout our experiments we observed that the dynamic algorithms exhibit the ability to
react quickly and aptly to changes in the ground-truth clustering. Figure 4.3.12 shows an ex-
ample where our best dynamic algorithms quickly cope with rapid changes to the clustering—
in contrast to the reference clustering, with its rather clumsy, stepwise adaption. The changes
in the ground-truth clustering are visible by the drops in the reference quality. At each suchquick reactivity

change, after brief depressions, the modularity values of all algorithms rise to their old levels.
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Newman2HBacktrackL:52 : Modularity avg 0.645054

BlondelHNeighborhoodHMSBFS,1L,Random,FirstPeak,AffectedL:643 : Modularity avg 0.684073

Reference : Modularity avg 0.669392

Newman2HBoundedNeighborhoodHMSBFS,16LL:479 : Modularity avg 0.634049

BlondelHBoundedNeighborhoodHMSBFS,4L,Random,FirstPeak,AffectedL:813 : Modularity avg 0.680884

Figure 4.3.12. Dynamic algorithms adapt quickly to changes in the ground-truth clustering, such
changes are visible by drops in the reference quality (in turn, jumps occur when
the reference clustering reacts).

The quick reactivity of a dynamic algorithm is of particular importance as, clearly, static
counterpart algorithms are not subject to such issues, since they “forget ” their previous work.
Only dGlobal@BN16 seems to need some more time to adapt to the last clustering event. This
instance is a growing network with 10K changes of batch size 10, its few changes in the
clustering are rapidly realized by a decent frequency of node insertions in ways consistent
with the coming clustering. It is thus a more “difficult” instance for an algorithm to prove its
reactivity; on other instances we observed even better results.

4.3.4.6 Implementation Notes.

We conducted our experiments on up to eight cores, 1 per experiment, of a dual Intel Xeon
5430 running SUSE Linux 11.1. The machine is clocked at 2.6GHz, has 32GB of RAM and
2×1MB of L2 cache. Our algorithms and measures are implemented in Java 1.6.0 13, partially
using the yFiles graph library14, and run on a 64-Bit Server VM. Evaluations, plots and the
setups of experiments were conducted via a frontend programmed in Mathematica (version
7.0.1.0). As priority queue we use a java.util.PriorityQueue. As a data structure which
supports backtrack, instead of using a rather involved fully dynamic union-find structure,
we maintain a similar structure, a binary forest with actual nodes as leaves and the merge
operations as internal tree-nodes.

14Licensed from yWorks, for more information, see www.yworks.com.

www.yworks.com
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4.3.5 Summary of Insights

Since the above results discuss a confusing array of degrees of freedom, we here summarize
our findings. The outcomes of our evaluation are very favorable for the dynamic approach in

executive
summary

terms of all three criteria. They are quicker, smoother and yield higher quality clusterings,
and in addition, they are by no means sluggish, but adapt their results to ground-truth
changes quickly without major dents in quality.

We observed that dLocal is less susceptible to an increase of the search space than dGlobal.
However, our results argue strongly for the locality assumption in both cases—an increase in
the search space beyond a very limited range is not justified when trading off runtime against
quality. On the contrary, quality and smoothness may even suffer for dLocal. Consequently, N
and BN strategies with a limited range are capable of producing high-quality clusterings while
excelling at smoothness. The BT strategy for dGlobal yields competitive quality at unrivaled
speed, but at the expense of smoothness.

For dLocal a gradual improvement of quality and smoothness over time is observable, which
can be interpreted as an effect reminiscent of simulated annealing, a technique that has been
shown to work well for modularity maximization [125]. In fact, our findings on the quality
that pILP yields—and algorithm that largely impedes the escape from a local maximum—
corroborate this: the combination of a prep strategy and a maximization heuristic surpassed
pILP. In some instances we even observed a behavior that resembles an asymptotic convergence
towards a “consolidated” result, e.g., in Figure 4.3.10a for quality in G1.

Despite the fact that the overwhelming majority of our findings can be claimed to be
very general with respect to the different instances we tested, our data indicates that the
best choice for an algorithm in terms of quality may still depend on the nature of the target
graph. In particular we point out that while dLocal surpasses dGlobal on almost all generated
graphs, dGlobal is superior on our real-world instance Ge—independent of the batch size. We
speculate that this is due to Ge featuring a power law degree distribution in contrast to the
Erdős-Rényi-type generated instances. Note that this behavior has not been observed for the
static counterparts ([38]).

(a) Cluster count: sLocal (red) yields a finer clustering than sGlobal
(blue), a similar observation holds for the dynamic counterparts.

(b) Quality: sLocal (red) surpasses sGlobal (blue) on this generated
graph.

Figure 4.3.13. Serving as a baseline, sLocal (dark blue) yields a finer clustering, with a number of clusters closer to that of
the reference, and a higher modularity than sGlobal (purple).



Section 4.4

Dynamic Min-Cut Tree Clustering

Dam it!

(Beaver, Alberta, Canada)

Quality guarantees or optimal results in general are something, algorithms or
objective functions for graph clustering rarely admit. In terms of those techniques which

appear to be used the most in practice, this is even more true, as discussed earlier. However,
the literature is very rich on rigorous properties of cuts in graphs, which are intextricably re-
lated to clustering, as exemplified by the measure inter-cluster conductance (see Section 1.2.2).
Another such direct involvement of cuts motivates this section. Inspired by the work of Kan-
nan et al. [145], Flake et al. [87] recently presented a clustering algorithm which relies on
cuts. Their elegant approach employs minimum-cut trees, first constructed by Gomory and
Hu [113], and is capable of finding a hierarchy of clusterings by virtue of an input parameter.
The striking feature of graph clusterings computed by this method is that they are guaranteed
to yield a certain bottleneck/cut measure—related to conductance—within and between clus-
ters, tunable by the input parameter α. The authors have shown how to use the algorithm in
practice, in particular in the context of citation graphs and web graphs, and that it identifies
clusterings of practical relevance. An obvious “disadvantage” of their algorithm is the fact
that it can neither be implemented nor understood as quickly by non-experts as, e.g., some
greedy agglomerative maximization. However, this does not belittle the capabilities of the
algorithm and the sheer beauty of the approach from a theorist’s point of view. Moreover, in
contrast to the preceeding section on quick modularity-driven updates of graph clusterings,
we here enjoy stalwart guarantees. The question whether it is possible to dynamically update
a graph clustering that obeys these guarantees, motivates this section.

In this section we give an affirmative answer to this question. We develop the first correct
algorithm that efficiently and dynamically maintains a clustering for a changing graph as found
by the method of Flake et al. [87], allowing arbitrary atomic changes in the graph, and keeping
consecutive clusterings similar, i.e., enforcing (temporal) smoothness (a secondary criterion).
Our algorithms build upon partially updating an intermediate minimum-cut tree of a graph
in the spirit of Gusfield’s [127] simplification of the Gomory-Hu algorithm [113]. It turns out
that, with only slight modifications, our techniques can update entire min-cut trees. Lining
the path to these results are many elegant insights into the structure of minimum-s-t-cuts
in changing graphs. A small experimental evaluation of the performance of our procedures
compared to the static algorithm on a real-world dynamic graph corroborates our theoretical
results with a promising practical speedup factor of 10. Although theoretical runtimes do
not admit an overall asymptotic speedup, due to particularly degenerate cases, our results
strongly indicate that in most practical cases the complexity of our algorithms scale with |C|
and not with n. A second question we briefly address in the back of this section asks how and
whether clustering with min-cut trees can be sped up by means of an approximate min-cut
tree. In fact we show how a relative approximation factor for a min-cut tree carries over to
the quality of a clustering computed by the above method.
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When I decided to turn to dynamic clustering, initially I was displeased with the idea to
heuristically dynamize the work of a static heuristic. Although I later realized that there is
much potential in that, as discussed in Section 4.3, I tried to find a way to cling to concrete
guarantees, as a tangible criterion to adhere to during an update. Thus, the work in [87]
posed a feasible starting point. However, I found that there has already been an attempt to
dynamize this algorithm, by Saha and Mitra [193, 192]. It quickly became obvious to me that
there was a fatal flaw in that work. With no immediate remedy suggesting itself and a simple
counterexample found by Pascal Maillard, a smart student of mine at that time, I did not find
the time to tend to this problem statement for months. Until, together with another smart
student, Tanja Hartmann, we profoundly investigated the issues of that previous attempt
and finally managed to devise a correct algorithm for a dynamic update. Major parts of this
section have recently been published in [118, 117], based on joint work with Tanja Hartmann
and Dorothea Wagner.

Main Results

1. We develop the first correct algorithm that efficiently maintains a dynamic clustering of
a dynamic graph, which guarantees specific properties on the size of bottlenecks inside
the clustering. The lemmata that constitute our results yield several new insights into
the structure of the set of min-cuts of a graph. (Section 4.4.2 and 4.4.3)

2. Our algorithms allow to combine the goals of effort saving and enforcing smoothness
between time steps, such that guarantees on smoothness can actually be stated. Al-
though no overall improvement in the asymptotic worst-case running time can generally
be stated, most cases do allow for an asymptotic speed-up. (Section 4.4.4.1)

3. The approach for this task as given by Saha and Mitra [193, 192] is wrong and simple
counterexamples can be given. (Section 4.4.8)

4. Our algorithms for dynamically maintaining the clustering can be extended into algo-
rithms which dynamically maintain full min-cut trees. (Section 4.4.3.3)

5. Suppose we have an approximate min-cut tree, then the approximation factor of the
tree carries over reasonably to the quality guarantees. (Section 4.4.9)

Future Work. Four directions for further work on dynamics are at hand: First, properties
of minimum-cuts can further be explored and exploited to lower asymptotic runtimes. In
order to tighten the analysis or to get it closer to what happens in practice, an average case
analysis will certainly yield better bounds, but such analyses in the context of dynamic graphs
tend to be rather tenacious. Furthermore, a method to dynamically adapt the parameter α
will be necessary if the nature of the graph gradually changes, e.g., its density. Finally,
the more fundamental problem of dynamically updating whole min-cut trees probably holds
more secrets than outlined in this section—we merely use it as a tool, and usually do not fully
compute those trees. Going back to the static problem, an interesting question asked for in
Section 4.4.9 is whether there is a good and quick method to find approximate min-cut trees;
this would widen the range of networks this algorithm can be applied to.

Related Work on Cuts. Finding a minimum cut in a graph G is arguably one of theminimum cut

most fundamental problems in graph theory, and countless applications build upon it. Such
a cut of minimum cardinality (or minimum weight) can efficiently be found for unweighted or
non-negatively weighted graphs by means of, e.g., the algorithm of Stoer and Wagner [205] in
time O(nm+n2 log n). Finding a minimum cut in graphs with real weights is NP-hard [106].
A closely related notion, an s-t-cut is a cut with minimum cardinality (or weight) amongs-t-cut

all cuts that separate the nodes s and t with s, t ∈ G. The famous theorem of Ford and
Fulkerson [88] proved that this problem is equivalent to finding a maximum s-t-flow throughs-t-flow
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G, a bewildering array of algorithms have been proposed to solve this problem, one example
is the Push-Relabel algorithm [112] which can be implemented as to run in time O(n2

√
m).

It is folklore that no more than n − 1 such cuts are required to have at hand a minimum
cut for all

(
n
2

)
pairs of nodes in a graph. Less well known is a smart representation of these

cuts in a minimum-cut tree. Gomory and Hu pioneered this concept [113] and showed how to
compute such a representation by means of n−1 max-flow computations. Gusfield [127] later
simplified their algorithm such that although asymptotic running times were not decreased,
the new algorithm is much simpler to implement and faster in practice. The cactus[79] of a cactus

graph is strongly related to this idea, as it is a compact representation of all global minimum
cuts.

4.4.1 Preliminaries and Notation

In this section we strictly reserve the term node (or super-node) for compound vertices/nodes super-node

of abstracted graphs, which may contain several basic vertices; however, we identify singleton
nodes with the contained vertex without further notice. Furthermore, in this section, dynamic
changes of G will solely concern edges; the reason for this is, that vertex insertions and δc or δd

deletions are trivial as long as the changed vertex is disconnected. Thus, a changes ∆ of G ∆ involves {b, d}
always involves edge {b, d}, with c(b, d) = %, yielding G⊕ if {b, d} is newly inserted into G,
and G	 if it is deleted from G. For simplicity we will not handle changes to the weight of c(b, d) = %

an edge, since this can be done almost exactly as deletions and additions. Bridge edges in G G⊕ and G	
require special treatment when deleted or inserted. However, since they are both simple to
detect and to deal with, we ignore them by assuming the dynamic graph to stay connected G connected

at all times.
The minimum-cut tree T (G) = (V,ET , cT ) of G is a tree on V , such that the cheapest min-cut tree T

edge on the unique path between u and v in T (G) induces a minimum-u-v-cut θu,v in G. The
weight of this cheapest edge is equal to the weight of θu,v. Remember that neither this edge,
nor T (G), need to be unique. In the following we stick to the convention that for the pair of
nodes b, d ∈ V we always call this path γ (as a set of edges). Edge eT = {u, v} of T induces path γ

the cut θu,v in G, sometimes denoted θv if the context identifies u. We sometimes identify eT
with the cut it induces in G. For details on min-cut trees, see the pioneering work by Gomory
and Hu [113] or the simplifications by Gusfield [127].

Recall that a contraction of G by N ⊆ V means replacing set N by a single super-node η, contraction of G

and leaving η adjacent to all former adjacencies u of vertices of N , with edge weight equal to
the sum of all former edges between N and u. Analogously we can contract by a set M ⊆ E.
We start by giving some fundamental insights, which we will rely on in the following, leaving
their rather basic proofs to the reader.

Lemma 4.4.1 Let e = {u, v} ∈ ET be an edge in T (G).
Consider G⊕: If e /∈ γ then e is still a min-u-v-cut with weight c(θe). If e ∈ γ then its

cut-weight is c(θe) + %, it stays a min-u-v-cut iff ∀u-v-cuts θ′ in G that do not separate b, d:
c(θ′) ≥ c(θe) + %. when do cuts re-

main?
Consider G	: If e ∈ γ then e remains a min-u-v-cut, with weight c(θe) − %. If e /∈ γ

then it retains weight c(θe), it stays a min-u-v-cut iff ∀u-v-cuts θ′ in G that separate b, d:
c(θ′) ≥ c(θe) + %.

4.4.2 Theory

4.4.2.1 The Static Algorithm

Finding communities in the world wide web or in citation networks are but example applica-
tions of graph clustering techniques. In [87] Flake et al. propose and evaluate an algorithm
which clusters such instances in a way that yields a certain guarantee on the quality of the
clusters. The authors base their quality measure on the expansion of a cut (S, S̄) due to expansion of a cut
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Kannan et al. [145]:

Ψ =

∑
u∈S,v∈S̄ w(u, v)

min{|S|, |S̄|} (expansion of cut (S, S̄)) (4.4.1)

The expansion of a graph is the minimum expansion over all cuts in the graph. For a clus-
tering C, expansion measures both the quality of a single cluster C, quantifying the clearest
bottleneck within C, and the goodness of bottlenecks defined by cuts (C, V \ C). Inspired
by a bicriterial approach for good clusterings by Kannan et al. [145], which bases on the
related measure conductance15, Flake et al. [87] design a graph clustering algorithm that,
given parameter α, asserts the following:16quality guarantee

c(C, V \ C)

|V \ C|︸ ︷︷ ︸
inter-cluster cuts

≤ α ≤ c(P,Q)

min{|P |, |Q|}︸ ︷︷ ︸
intra-cluster cuts

∀C ∈ C ∀P,Q 6= ∅ P ·∪Q = C (4.4.2)

Algorithm 25: Cut-Clustering

Input: Graph G = (V,E, c), α
Vα := V ∪ {t} // add t1

Eα := E ∪ {{t, v} | v ∈ V } // star-connect t2

cα|E := c, cα|Eα\E := α // new edges weigh α3

Gα := (Vα, Eα, cα)4

T (Gα) := min-cut tree of Gα5

T (Gα)← T (Gα)− t6

C(G)← components of T (Gα)7

These quality guarantees—simply called
quality in the following—are due to special
properties of min-cut trees, which are used
by the clustering algorithm, as given in Al-
gorithm 25 (comp. [87]). It performs the fol-
lowing steps: Add an artificial node t to G,
and connect t to all other vertices by weight
α. Then, compute a min-cut tree T (Gα) of
this augmented graph. Finally, remove t and
let the resulting connected components of T
define the clustering. In the following, we

will call the fact that a clustering can be computed by this procedure the invariant. For theinvariant

proof that Cut-Clustering yields a clustering that obeys Equation (4.4.2), we refer the reader
to [87]. Flake at al. further show how nesting properties of min cuts [105] can be used to avoidthe static

algorithm
computing the whole min-cut tree T and try to only identify those edges of T incident to t.
Their recommendation for finding these edges quickly, is to start with separating high degree
nodes from t. Furthermore they show that this property yields a whole clustering hierarchy,
if α is scaled. In the following we will use the definition of Gα = (Vα, Eα, cα), denoting by
G	α and G⊕α the corresponding augmented and modified graphs. For now, however, general
G⊕(	) are considered.

A Failed Dynamic Attempt. Saha and Mitra [193] published an algorithm that aims
at the same goal as our work. Unfortunately, we discovered a methodical error in this work.
Roughly speaking, it seems as if the authors implicitly assume an equivalence between quality
and the invariant. A full description of issues is beyond the scope of this work, but weSaha, Mitra [193]

briefly point out errors in the authors’ procedures and give counter-examples in the final
Subsection 4.4.8.

4.4.2.2 Minimum-Cut Trees and the Gomory-Hu Algorithm

We briefly describe the construction of a min-cut tree as proposed by Gomory and Hu [113]Gomory, Hu [113]

and simplified by Gusfield [127]. Although we will adopt ideas of the latter work, we first giveGusfield [127]
Gomory and Hu’s algorithm (Algorithm 26) as the foundation.

The algorithm builds the min-cut tree of a graph by iteratively finding min-u-v-cuts for
vertices that have not yet been separated by a previous min-cut. The intermediate min-cut
tree T∗(G) = (V∗, E∗, c∗) (or simply T∗ if the context is clear) is initialized as an isolated,T∗(G)

15conductance is similar to expansion but normalizes cuts by total incident edge weight instead of the
number of vertices in a cut set.

16The disjoint union A ∪B with A ∩B = ∅ is denoted by A ·∪B.
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Algorithm 26: Gomory-Hu (Minimum-Cut Tree)

Input: Graph G = (V,E, c)
Output: Min-cut tree of G
Initialize V∗ := {V }, E∗ := ∅ and c∗ empty and tree T∗(G) := (V∗, E∗, c∗)1

while ∃S ∈ V∗ with |S| > 1 do // unfold all super-nodes2

{u, v} ← arbitrary pair from
(
S
2

)
3

forall Sj ∼ S in T∗(G) do Nj ← subtree of S with Sj ∈ Nj4

GS = (VS , ES , cS) := in G contract each subtree Nj to node ηj // subtree contraction5

(U, VS \ U)← min-u-v-cut in GS , weight δ, u ∈ U6

Su ← S ∩ U , and Sv ← S ∩ (VS \ U) // split S = Su ·∪Sv7

V∗ ← (V∗ \ {S}) ∪ {Su, Sv}, E∗ ← E∗ ∪ {{Su, Sv}}, c∗(Su, Sv)← δ // do the split in T∗(G)8

forall former edges ej = {S, Sj} ∈ E∗ do9

if ηj ∈ U then ej ← {Su, Sj} ; // either reconnect Sj to Su10

else ej ← {Sv, Sj} ; // or reconnect Sj to Sv11

return T∗(G)12

edgeless super-node containing all original nodes (line 1). Then, until no node S of T∗ contains
more than one vertex, a node S is split. To this end, nodes Si 6= S are dealt with by contracting
in G whole subtrees Nj of S in T∗, connected to S via edges {S, Sj}, to single nodes ηj (line 5) Nj and ηj

before cutting, which yields GS—a notation we will continue using in the following. The GS
split of S into (Su, Sv) is then defined by a min-u-v-cut in GS (line 6). Afterwards, Nj is (Su, Sv)
reconnected, again by Sj , to either Su or Sv depending on which side of the cut ηj , containing
Sj , ended up. It is crucial to note, that this cut in GS can be proven to induce a min-u-v-cut
in G.

An execution GH = (G,F,K) of Gomory-Hu is characterized by graph G, sequence F of GH

n−1 step pairs (compare to line 3) of nodes and sequence K of split cuts (compare to line 6).
Pair {u, v} ⊆ V is a cut pair of edge e of cut-tree T if θe is a min-u-v-cut in G.

Theorem 4.4.1 Consider a set M ⊆ ET and let T◦(G) = (V◦,M, c◦) be T (G) with ET \M For any T◦ there
is some GH

contracted. Let f and f ′ be sequences of the elements of M and ET \M , respectively, and
k and k′ the corresponding sequences of edge-induced cuts of G. The Gomory-Hu execution
GH = (G, f ′ ◦ f, k′ ◦ k)17 has T◦(G) as intermediate min-cut tree (namely after f).

In the following we will denote by T◦ an intermediate min-cut tree which serves as a starting
point, and by T∗ a working version. We prove Theorem 4.4.1 by induction on the edges in
f ′ ◦ f , however, for the sake of brevity we move the full proof to Subsection 4.4.6. This
theorem states that if for some reason we can only be sure about a subset of the edges of a
min-cut tree, we can contract all other edges to super-nodes and consider the resulting tree
T◦ as the correct intermediate result of some GH, which can then be continued. One such
reason could be a dynamic change in G, such as the insertion or the deletion of an edge,
which by Lemma 4.4.1 maintains a subset of the old min-cuts. Thus we could already design
an effort-saving algorithm for dynamically updating min-cut trees: contract all those edges a first algorithm

of T (G) which might not be valid any more, yielding T◦(G⊕(	)), as depicted in Figure 4.4.1,
and start a run of Gomory-Hu with this intermediate min-cut tree.

4.4.2.3 Using Arbitrary Minimum Cuts in G

Gusfield [127] presented an algorithm for finding min-cut trees which avoids complicated
contraction operations. In essence he provided rules for adjusting iteratively found min-u-
v-cuts in G (instead of in GS) that potentially cross, such that they are consistent with

17The term b ◦ a denotes the concatenation of sequences b and a, i.e., a happens first.
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. . .b dp2 p3 pz−1

(a) T◦ by contracting all edges of γ in T (G)

. . .

b dp2 p3 pz−1

(b) T◦ by contracting all edges of ET \ γ

Figure 4.4.1. Sketches of intermediate min-cut trees T◦; for G⊕ (a) we contract γ to a node, and
for G	 (b) we contract each connected component induced by ET \ γ, yielding a
path of nodes.

the Gomory-Hu procedure and thus non-crossing, but still minimal. We need to review and
generalize some of these ideas as to fit our setting. The following lemma essentially tells us,
that at any time in Gomory-Hu, for any edge e of T◦ there exists a cut pair of e in the two
nodes incident to e.

Lemma 4.4.2 (Gus. [127], Lemma 418) Let S be cut into Sx and Sy, with {x, y} being a
cut pair (not necessarily the step pair). Let now {u, v} ⊆ Sx split Sx into Sxu and Sxv, wlog.

cut pairs stay
cut pairs

with Sy ∼ Sxu in T∗. Then, {x, y} remains a cut pair of edge {Sy, Sxu} (we say edge {Sx, Sy}
gets reconnected). If x ∈ Sxv, i.e., the min-u-v-cut separates x and y, then {u, y} is also anew cut pairs

cut pair of {Sxu, Sy}.

In the latter case of Lemma 4.4.2, we say that pair {x, y} gets hidden, and, in the viewhidden

of vertex y, its former counterpart x gets shadowed by u (or by Su). It is not hard to seeshadowed

that during Gomory-Hu, step pairs remain cut pairs, but cut pairs need not stem from step
pairs. However, each edge in T has at least one cut pair in the incident nodes. We define
the nearest cut pair of an edge in T∗ as follows: As long as a step pair {x, y} is in adjacentnearest cut pair

nodes Sx, Sy, it is the nearest cut pair of edge {Sx, Sy}; if a nearest cut pair gets hidden in T∗
by a step of Gomory-Hu, as described in Lemma 4.4.2 if x ∈ Sxv, the nearest cut pair of the
reconnected edge {Sy, Sxu} becomes {u, y} (which are in the adjacent nodes Sy, Sxu). The
following theorem basically states how to iteratively find min-cuts as Gomory-Hu, without the
necessity to operate on a contracted graph.

Theorem 4.4.2 (Gus. [127], Theorem 25) Let {u, v} denote the current step pair in node
S during some GH. If (U, V \U), (u ∈ U) is a min-u-v-cut in G, then there exists a min-u-v-we can avoid

contraction
cut (US , VS\US) of equal weight in GS such that S∩U = S∩US and S∩(V \U) = S∩(VS\US),
(u ∈ US).

Being an ingredient to the original proof of Theorem 4.4.2, the following Lemma 4.4.3 gives
a constructive assertion, that tells us how to arrive at a cut described in the theorem by
inductively adjusting a given min-u-v-cut in G. Thus, it is the key to avoiding contraction
and using cuts in G by rendering min-u-v-cuts non-crossing with other given cuts.

Lemma 4.4.3 (Gus. [127], Lemma 15) Let (Y, V \Y ) be a min-x-y-cut in G (y ∈ Y ). Let
(H,V \H) be a min-u-v-cut, with u, v ∈ V \Y and y ∈ H. Then the cut (Y ∪H, (V \Y )∩(V \H))how to avoid

contraction
is also a min-u-v-cut.
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Given a cut as by Theorem 4.4.2, Gomory and Hu state a simple mechanism which reconnects
a former neighboring subtree Nj of a node S to either of its two split parts (lines 9-11 in
Algorithm 26), by the cut side on which the contraction ηj of Nj ends up. In contrast, to
establish reconnection when avoiding contraction, this criterion is not available, as Nj is not
handled en-block. For this purpose, Gusfield iteratively defines representatives r(Si) ∈ V representative

of nodes Si of T∗. Starting with an arbitrary vertex as r({V }), step pairs in Si must then
always include r(Si), with the second vertex becoming the representative of the newly split
off node Sj . For a suchlike run of Gomory-Hu, Gusfield shows (using Lemma 4.4.2 iteratively)
that for two adjacent nodes Su, Sv in any T◦, r(Su), r(Sv) is a cut pair of edge {Su, Sv},
and, most importantly his Theorem 3: For u, v ∈ S let any min-u-v-cut (U, V \ U), u ∈ U ,
in G split node S into Su 3 u and Sv 3 v and let (US , V \ US) be this cut adjusted via
Lemma 4.4.3 and Theorem 4.4.2; then a neighboring subtree Nj of S, formerly connected by
edge {S, Sj}, lies in US iff r(Sj) ∈ U . Since we intend to work with arbitrary intermediate
min-cut trees as in Theorem 4.4.1, we do not have representatives and thus need to adapt
Gusfield’s Theorem 3, namely using nearest cut pairs as representatives, in order to finally
enable a simplified construction of min-cut trees. The proof of the following theorem can be
found in Subsection 4.4.6.

Theorem 4.4.3 (comp. Gus. [127], Theorem 35) In any T∗ of a GH, suppose {u, v} ⊆
S is the next step pair, with subtrees Nj of S connected by {S, Sj} and nearest cut pairs
{xj , yj}, yj ∈ Sj. Let (U, V \U) be a min-u-v-cut in G, and (US , V \US) its adjustion. Then how to reconnect

subtrees
ηj ∈ US iff yj ∈ U .

4.4.2.4 Finding and Shaping Minimum Cuts in the Dynamic Scenario

In this section we let graph G change, i.e., we consider the addition of an edge {b, d} or its
deletion, yielding G⊕ or G	. First of all we define valid representatives of the nodes on T◦.
By Lemma 4.4.1 and Theorem 4.4.1, given an edge addition, T◦ consists of a single super-
node and many singletons, and given edge deletion, T◦ consists of a path of super-nodes; for
examples see Figure 4.4.1.

Definition 4.2 (Representatives in T◦)
(i) Edge addition: Set singletons to be representatives of themselves; for the only super-node how to define rep-

resentatives
S choose an arbitrary r(S) ∈ S.
(ii) Edge deletion: For each node Si, set r(Si) to be the unique vertex in Si which lies on γ
in T (G).
(iii) New nodes during algorithm, and the choice of step pairs: On a split of node S during
the algorithm, require the step pair to be {r(S), v} with an arbitrary v ∈ S, v 6= r(S). Let the
split be S = Sr(S) ·∪Sv, v ∈ Sv, then define r(Sr(S)) := r(S) and r(Sv) := v.

Consider edge additions; singletons in T◦ trivially are their own representatives. Since no
singleton gets split, the single super-node S gets split first, and thus only needs representatives
for its parts thereafter, which are defined by the step pair, see below. With edge deletions,
according to Lemma 4.4.1 each node of T◦ contains a vertex that lies on γ in the old T (G),
with the edges connecting these vertices being correct min-cuts in G	(see Figure 4.4.1b), they
thus are nearest cut pairs. By Lemma 4.4.2 the representatives of new nodes as defined above
always define nearest cut pairs. Thus, in the case of edge additions, choosing an arbitrary
step pair in S at the start is feasible.

Following Theorem 4.4.1, we define the set M of “good” edges of the old tree T (G), i.e.,
edges that stay valid due to Lemma 4.4.1, as M := ET \ γ for the insertion of {b, d} and to
M := γ for the deletion. Let the intermediate cut-tree T◦(G⊕(	)) be T (G) contracted by M .
As above, let f be any sequence of the edges in M and k the corresponding cuts in G.

Lemma 4.4.4 Given an edge addition (deletion) in G. The Gomory-Hu execution GH⊕(	) = GH⊕(	)

(G⊕(	), f⊕(	) ◦ f, k⊕(	) ◦ k) is feasible for G⊕(	) yielding T◦(G) as the intermediate min-cut
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Figure 4.4.2. Special parts of G	: γ (fat) connects b and d, with r on it; wood ]e and treetop ⇑e
(dotted) of edge e, both cut by θ′ (dashed), adjusted to θ (solid) by Lemma 4.4.9.
Both ]e and ⇑e are part of some node S, with representative r, outside subtrees of
r are Nb and Nd (dash-dotted). Compare to Figure 4.4.1b.

tree after sequence f , if f⊕(	) and k⊕(	) are feasible sequences of step pairs and cuts on
T◦(G⊕(	)).

As Lemma 4.4.4 describes a specific variant of the setting in Theorem 4.4.1, it also relies
on induction on the split cuts in k, see Subsection 4.4.6 for its proof. It is the basis of
our updating algorithms, founded on T◦’s as in Figure 4.4.1, using arbitrary cuts in G⊕(	)

instead of actual contractions. Still, the non-crossing nature of min-u-v-cuts allows for more
effort-saving and temporal smoothness.

Definition 4.3 (Treetop and Wood) Consider edge e = {u, v} off γ, and cut θ = (U, V \Treetop and Wood

U) in G induced by e in T (G) with γ contained in U . In the contracted graph G	(S),
S ∩ (V \ U) is called the treetop ⇑e, and S ∩ U the wood #e of e. The subtrees of S are Nb⇑e and #e

and Nd, containing b and d, respectively (see Figure 4.4.2 for an example).

Cuts That Can Stay. There are several circumstances which imply that a previous cut is
still valid after a graph modification, making its recomputation unnecessary. The following
three lemmas all give such assertions. Their proofs mostly rely on properties of Gomory-Hu-
executions and on Lemma 4.4.1, they can be found in Subsection 4.4.6.

Lemma 4.4.5 Suppose emin is the cheapest edge on γ. In G⊕, emin still induces a min-b-d-emin on γ still
minimal in G⊕

cut.

Lemma 4.4.6 In G	, let (U, V \U) be a min-u-v-cut not separating {b, d}, with γ in V \U .
Then, a cut induced by an edge {g, h} of the old T (G), with g, h ∈ U , remains a min separating

entire tree-
tops can be
reconfirmed cut for all its previous cut pairs within U in G	, and a min-g-h-cut in particular.

Lemma 4.4.7 Assume g ∈ V on γ and {yb, g}, {yd, g} ∈ γ, and let wlog. c({yb, g}) ≤
c({yd, g}). Let further {u, v} be an edge within ⇑{g,h} (or {g, h} itself) in T (G). If

cheap treetop-
edges re-

main in G	 cT ({u, v}) ≤ cT ({yb, g})− % in the old tree, then, in G	, {u, v} also induces a min-u-v-cut.

As a corollary from Lemma 4.4.6 we get that in T (G	) the entire treetops of reconfirmed
edges of T (G) are also reconfirmed. Cuts that can be retained save effort and encourage
smoothness; however new cuts can also be urged to behave well, as follows.

The Shape of New Cuts. In contrast to the above lemmas, during a Gomory-Hu execution
for G	, we might find an edge {u, v} of the old T (G) that is not reconfirmed by a computation
in G	, but a new, cheaper min-u-v-cut θ′ = (U, V (S)\U) is found. For such a new cut we can
still make some guarantees on its shape to resemble its “predecessor”: Lemmas 4.4.8 and 4.4.9how to largely

preserve old cuts
tell us, that for any such min-u-v-cut θ′, there is a min-u-v-cut θ = (U\ ⇑e, (V (S)\U)∪ ⇑e) in
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(a) θ′i separates vj , r, and θ′j
separates vi, r

vi vj
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Rj V \RjRiV \Ri
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(b) θ′i does not separate vj , r,
but θ′j separates vi, r

vi
vj

r
Rj V \RjRiV \Ri

Pi
Pj

(c) neither does θ′i separate vj , r,
nor θ′j vi, r

Figure 4.4.3. Three different cases concerning the positions of θ′i and θ′j (black, dashed), and
their adjustments.

G	 that (a) does not split ⇑e, (b) but splits V \ ⇑e exactly as θ′ does. Figure 4.4.2 illustrates
such cuts θ (solid) and θ′ (dashed).

Lemma 4.4.8 Given e = {u, v} within S (off γ) in G	(S). Let (⇑A,⇑B) be a cut of ⇑e with
v ∈⇑A. Then c	(Nb∪ ⇑e, Nd ∪#e) ≤ c	(Nb∪ ⇑A, Nd ∪#e∪ ⇑B). Exchanging Nb and Nd is don’t cut treetops!

analogous.

Lemma 4.4.9 Lemma 4.4.8 can be generalized in that both considered cuts also cut the wood wood not affected

#e in some arbitrary but fixed way.

The proof of the above lemmas is rather technical, but conceptually it relies on the fact that
if a cut which splits the treetop were cheaper, then this treetop cannot have been valid in the
previous tree. While theses lemmas can be applied in order to retain treetops, even if new
cuts are found, in the following, we take a look at how new, cheap cuts can affect the treetops
of other edges. In fact a similar treetop-conserving result can be stated.

Let G′ denote an undirected, weighted graph and {r, v1, . . . , vz} a set of designated vertices
in G′. Let Π := {P1, . . . , Pz} be a partition of V \ r such that vj ∈ Pj . We now assume the
following partition-property to hold: For each vj it holds that for any vj-r-cut θ′j := (Rj , V \Rj) partition-property

(with r ∈ Rj), the cut θj := (Rj \Pj , (V \Rj)∪Pj) is of at most the same weight. The crucial
observation is, that Lemma 4.4.9 implies this partition-property for r(S) and its neighbors in
T (G) that lie inside S of T◦ in G	. Treetops thus are the sets Pj . However, we keep things
general for now.

Consider a min-vi-r-cut θ′i := (Ri, V \ Ri), with r ∈ Ri, that does not split Pi and an
analog min-vj-r-cut θ′j (by the partition-property they exist). We distinguish three cases, reshaping

min-cuts
given in Figure 4.4.3, which yield the following possibilities of reshaping min-cuts:

Case (a): As cut θ′i separates vj and r, and as vj satisfies the partition-property, the cut
θi := (Ri \Pj , (V \Ri)∪Pj) (red dashed) has weight c(θi) ≤ c(θ′i) and is thus a min-vi-r-cut,
which does not split Pi ∪ Pj . For θ′j an analogy holds.

Case (b): For θ′j Case (a) applies. Furthermore, by Lemma 4.4.3 the cut θnew(j) :=
(Ri ∩Rj , (V \Ri) ∪ (V \Rj)) (green dotted) is a min-vj-r-cut, which does not split Pi ∪ Pj .
By Lemma 4.4.2 the previous split cut θ′i turns out to be also a min-vi-vj-cut, as θnew(j)

separates vi and r.
Case (c): As in case (b), by Lemma 4.4.3 the cut θnew(i) := ((V \Rj)∪Ri, (V \Ri)∩Rj)

(green dotted) is a min-vi-r-cut, and the cut θnew(j) := ((V \Ri) ∪Rj , (V \Rj) ∩Ri) (green
dotted) is a min-vj-r-cut. These cuts do not cross. So as vi and vj both satisfy the partition-
property, cut θi := (((V \ Rj) ∪ Ri) \ Pi, ((V \ Ri) ∩ Rj) ∪ Pi) and θj := (((V \ Ri) ∪ Rj) \
Pj , ((V \Rj)∩Ri)∪Pj) (both red dashed) are non-crossing min separating cuts, which neither
split Pi nor Pj .

To summarize the cases discussed above, we make the following observation.

Observation 4.4.1 During a GH starting from T◦ for G	, whenever we discover a new,
cheaper min-vi-r(S)-cut θ′ (vi ∼ r(S) in node S) we can iteratively reshape θ′ into a min- reshape: summary
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Figure 4.4.4. T◦(G
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neighbors off γ need inspection. The
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Figure 4.4.5. T◦(G
	
α ) for an intra-cluster deletion,

edge {vb,d, t} defines a treetop (t’s side).
The dashed cut could be added to Θ by
Algorithm 29 (line 9).

vi-r(S)-cut θ which neither cuts ⇑i nor any other treetop ⇑j (vi ∼ r(S) in S), by means of
Cases (a,b,c).

4.4.3 Update Algorithms for Dynamic Clusterings

In this section we put the results of the previous sections to good use and give algorithms
for updating a min-cut tree clustering, such that the invariant is maintained and thus also
the quality. It is important to see that it is not necessary to maintain a full min-cut tree to
determine the induced clustering. By concept, we merely need to know all vertices of T (G)
adjacent to t; we call this set W = {v1, . . . , vz} ∪ {vb, vd}, with {vb, vd} being the particularwe only need

to isolate t
vertex/vertices on the path from t to b and d, respectively. We call the corresponding set of
non-crossing min-vi-t-cuts that isolate t, Θ. We will thus focus on dynamically maintaining
only this information, and sketch out how to unfold the rest of the min-cut tree. From
Lemma 4.4.4, for a given edge insertion or deletion, we know T◦, and we know in which node
of T◦ to find t, this is the node we need to examine. We now give algorithms for the deletion
and the insertion of an edge running inside or between clusters.

Algorithm 27: Inter-Cluster Edge Deletion

Input: W (G), Θ(G) G	α = (Vα, Eα \ {{b, d}}, c	α ), edge {b, d} with weight %
Output: W (G	), Θ(G	)
L(t)← ∅, l(t)← ∅1

for i = 1, . . . , z do2

Add vi to L(t) // old cut-vertices3

D(vi)← ∅ // shadows4

Θ(G	)← {θb, θd} , W (G	)← {vb, vd}5

return Check Cut-Vertices (W (G),Θ(G),W (G	),Θ(G	), G	α , {b, d}, D, L(t) )6

4.4.3.1 Edge Deletion

Inter-Cluster Edge-Deletion. Our first algorithm handles inter-cluster deletion (Algo-
rithm 27). Just like its three counterparts, it takes as an input the old graph G and its setsinter-cluster del.

W (G) and Θ(G) (not the entire min-cut tree T (Gα)), furthermore it takes the changed graph,
augmented by t, G	α , the deleted edge {b, d} and its weight %. Recall that an inter-cluster
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Algorithm 28: Check Cut-Vertices

Input: W (G),Θ(G),W (G	),Θ(G	), G	α , {b, d}, D, L(t)
Output: W (G	),Θ(G	)
while L(t) has next element vi do1

θi ← first min-vi-t-cut given by FlowAlgo(vi, t) // small side for vi2

if c	α (θi) = cα(θold
i ) then // retain old cuts of the same weight3

Add θold
i to l(t) // pointed at by vi4

else // new cheaper cuts5

Add θi to l(t) // pointed at by vi6

while L(t) has next element vj 6= vi do // test vs. other new cuts7

if θi separates vj and t then // vj shadowed by Lemma 4.4.38

Move vj from L(t) to D(vi)9

if l(t) 3 θj, pointed at by vj then Delete θj from l(t)10

while L(t) has next element vi do // make new cuts cluster-preserving11

set (R, Vα \R) := θi with t ∈ R for θi ∈ l(t) pointed at by vi // just nomenclature12

θi ← (R \ Ci, (Vα \R) ∪ Ci) // by partition-property (Lemma 4.4.9)13

forall vj ∈ D(vi) do // handle shadowed cuts ...14

θi ← (R \ Cj , (Vα \R) ∪ Cj) // ...with Cases (a) and (b)15

forall vj 6= vi in L(t) do // handle other cuts ...16

θi ← (R ∪ Cj , (Vα \R) \ Cj) // ...with Case (c)17

Add all vertices in L(t) to W (G	), and their cuts from l(t) to Θ(G	)18

return W (G	),Θ(G	)19

deletion yields t on γ, and thus, T◦(Gα) contains edges {vb, t} and {vd, t} cutting off the
subtrees Nb and Nd of t by cuts θb, θd, as shown in Figure 4.4.4. All clusters contained in
node S 3 t need to be changed or reconfirmed. To this end Algorithm 27 lists all cut vertices
in S, v1, . . . , vz, into L(t), and initializes their shadows D(vi) = ∅. The known cuts θb, θd
are already added to the final list, as are vb, vd (line 5). Then the core algorithm, Check
Cut-Vertices is called, which—roughly speaking—performs those GH-steps that are necessary

the workhorse:
Check Cut-
Verticesto isolate t, of course, using (most of) the lemmas derived above.

First of all, note that if |C| = 2 (C = {Nb, Nd} and S = {t}) then L(t) = ∅ and Algo-
rithm 27 lets Check Cut-Vertices (Algorithm 28) simply return the input cuts and terminates.
Otherwise, it iterates the set of former cut-vertices L(t) once, thereby possibly shortening
it. We start by computing a new min-vi-t-cut for vi. We do this with a max-vi-t-flow com-
putation, which is known to yield all min-vi-t-cuts [186], taking the first cut found by a the first cut

breadth-first search from vi (lines 2). This way we find a cut which minimally interferes with
other treetops, thus encouraging temporal smoothness. If the new cut is non-cheaper, we use
the old one instead, and add it to the tentative list of cuts l(t) (lines 3-4). Otherwise we store
the new, cheaper cut θi, and examine it for later adjustment. For any candidate vj still in
L(t) that is separated from t by θi, Case (a) or (b) applies (line 8). Thus, vj will be in the
shadow of vi, and not a cut-vertex (line 9). In case vj has already been processed, its cut is collecting shadows

removed from l(t).

Once all cut-vertex candidates are processed, each one either induces the same cut as
before, is new and shadows other former cut-vertices or is itself shadowed by another cut-
vertex. Now that we have collected these relations, we actually apply Cases (a,b,c) and apply Cases by

shadows
Lemma 4.4.9 in lines 11-17. Note that for retained, old cuts, no adjustment is actually
performed here. Finally, all non-shadowed cut-vertices alongside their adjusted cuts are added
to the final lists, and those returned.
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Algorithm 29: Intra-Cluster Edge Deletion

Input: W (G),Θ(G), G	α = (Vα, Eα \ {{b, d}}, c	α ), edge {b, d} with weight %
Output: W (G	), Θ(G	) regarding G	
θb,d ← first min-t-vb,d-cut given by FlowAlgo(t, vb,d) // small side for t1

if c	α (θb,d) = cα(θold
b,d ) then // no cheaper cut found2

return W (G),Θ(G) // retain clustering3

else // a new cut should retain treetops4

set (R, Vα \R) := θb,d with t ∈ R // just nomenclature5

forall Ci 6= Cb,d do // by Lemma 4.4.96

θb,d := (R ∪ Ci, (Vα \R) \ Ci)7

L(t)← ∅, l(t)← ∅8

Θ(G	)← {θb,d},W (G	)← {vb,d}9

for i = 1, . . . , z do // not including vb,d10

Add vi to L(t)11

D(vi)← ∅12

W (G	),Θ(G	)← Check Cut-Vertices (W (G),Θ(G),W (G	),Θ(G	), G	α , {b, d}, D, L(t) )13

W (G	)←W (G	) ∪ vb,d, Θ← Θ ∪ {θb,d}14

Resolve all crossings in Θ(G	) by Lemma 4.4.315

Isolate the sink t from all remaining unclustered vertices16

return W (G	),Θ(G	)17

Intra-Cluster Edge-Deletion. Next we look at intra-cluster edge deletion. Looking at ourintra-cluster del.

starting point T◦, the safe path γ lies within some cluster Cb,d, which does not help much. In
this case, t lies off γ, and thus there is an edge {vb,d, t}, with vb,d ∈ Cb,d, which defines a treetop
containing all other former clusters and t, see Figure 4.4.5. Algorithm 29 has the same in- and
output as Algorithm 27, and starts by finding a new first min-t-vb,d-cut. If this yields that no
new, cheaper t-vb,d-cut exists, then, by Lemma 4.4.6, we are done (line 2). Otherwise, we can
at least adjust θb,d such that it does not interfere with any former cluster Ci by Lemma 4.4.9,
as Ci is part of a treetop (lines 5-7); note that Cb,d can not necessarily be preserved. Then
we prepare the sets L(t), l(t),Θ(G	),W (G	) in lines 8-12. Check Cut-Vertices now performs
the same tasks as for Inter-Cluster Edge Deletion: it separates all cut-vertex candidates from
t in a non-intrusive manner; note that this excludes vb,d (line 10), as Cb,d is no treetop, and
thus defies the adjustments. After line 13 we have one min-vb,d-t-cut that leaves its treetop
untouched, but might cut Cb,d, and a new set Θ(G	) of non-crossing min-vi-t-cuts (with
some former vj ∈ W (G) possibly having become shadowed), which might, however, also cut
through Cb,d. Putting all these cuts and cut-certices into Θ(G	) and W (G	), we can now
apply Lemma 4.4.3 (using t as “x”), to make all cuts non-crossing. Note that this can also
result in shadowing vb,d as in Case (b) (dotted cut). Finally, some vertices from the former
cluster Cb,d might then still remain unclustered, i.e., not separated from t by any θ ∈ Θ(G	).
For clustering these vertices v we cannot do better than proceeding as usual: compute their
set of min-v-t-cuts and render them non-crossing by Lemma 4.4.3, possibly shadowing one
another or some previous cut θ. We refrain from detailing the latter steps.

4.4.3.2 Edge Addition

The good news for handling G⊕ is, that an algorithm Intra-Cluster Edge Addition need not dointra-cluster add.

anything, but return the old clustering: By Lemma 4.4.1 and Theorem 4.4.1, in T◦, only path
γ is contracted. But since γ lies within a cluster, the cuts in Gα, defining the old clustering,
all remain valid in G⊕α , as depicted in Figure 4.4.7 with dotted clusters and affected node S.
By contrast, adding an edge between clusters is more demanding. Again, γ is contracted,inter-cluster add.

see region S in Figure 4.4.6; however, t lies on γ in this case. A sketch of what needs to
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relevant min-v-t-cuts persist.

be done resembles the above algorithms: We compute new min-vb-t- and min-vd-t-cuts (or
possibly only one, if it immediately shadows the other in line 12, in Algorithm 30), and keep
the old vi-t-cuts. Then—proceeding as usual—we note which cuts shadow which others and
reconnect nodes by Theorem 4.4.3. Similar to Algorithm 29, the two new cuts may leave
a “wild” set of vertices from the previous subtrees Nb, Nd, where crossings still have to be
removed (via Lemma 4.4.3) in the end, and leftover vertices must be separated from t from
scratch. We leave the pseudo-code to Subsection 4.4.7.

4.4.3.3 Updating Entire Min-Cut Trees

An interesting topic on its own right and more fundamental than clustering, is the dynamic
maintenance of min-cut trees. In fact the above clustering algorithms are surprisingly close
to methods that update min-cut trees. Since all the results from Section 4.4.2 still apply, we

outlook: towards
whole min-cut
treesonly need to unfold whatever treetops or subtrees of t—which we gladly accept as super-nodes

for the purpose of clustering—and take care to correctly reconnect subtrees. This includes,
that merely examining the neighbors of t does not suffice, we must iterate through all nodes
Si of T◦. For the sake of brevity we must omit further details on such algorithms and refer
the interested reader to [129].

4.4.4 Performance of the Algorithm

4.4.4.1 Temporal Smoothness

Our secondary criterion—which we left unformalized—to preserve as much of the previous
clustering as possible, in parts synergizes with effort-saving, an observation foremost reflected
in the usage of T◦. Lemmas 4.4.6 and 4.4.9, using first cuts and Observation 4.4.1 nicely
enforce temporal smoothness. However, in some cases we must cut back on this issue, e.g., no optimal shad-

owing?
when we examine which other cut-vertex candidates are shadowed by another one, as in
line 8 of Algorithm 28. Here it entails many more cut-computations and a combinatorially
non-trivial problem to find an ordering of L(t) to optimally preserve old clusters. Still we can
state the following lemma:

Lemma 4.4.10 Let C(G) fulfill the invariant for G	, i.e., let the old clustering be valid for
G	. In the case of an inter-cluster deletion, Alg 27 returns C(G). For an intra-cluster

valid clusterings
are often main-
taineddeletion Algorithm 29 returns a clustering C(G	) ⊇ C(G) \Cb,d, i.e., only Cb,d might become

fragmented.

The proof for both cases relies on the fact that any output clustering differing in cluster Ci
requires at least one min-vi-t-cut (vi ∈ Ci) to separate b, d, invalidating C(G). Both proofs
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can be found in Subsection 4.4.6. Considering the remaining cases, intra-cluster addition
obviously retains a valid previous clustering; however, for inter-cluster addition no strong
assertion can be made.

4.4.4.2 Running Times

We universally express running times of our algorithms in terms of the number of necessary
max-flow computations, leaving open how these are done. A summary of tight bounds is given
in Tab. 4.4.1. The columns lower bound/upper bound denote bounds for the—possibly rather
common—case that the old clustering is still valid after some graph update. As discussed in
the last subsection, the last column (guaran. smooth) states whether our algorithms always
return the previous clustering, in case its valid; the numbers in brackets denote a tight lower
bound on the running time, in case our algorithms do find that previous clustering.

worst case
old clustering still valid

lower bound upper bound guaran. smooth

Inter-Del |C(G)| − 2 |C(G)| − 2 |C(G)| − 2 Yes

Intra-Del |C(G)|+ |Cb,d| − 1 1 |C(G)|+ |Cb,d| − 1 No (1)

Inter-Add |Cb|+ |Cd| 1 |Cb|+ |Cd| No (2)

Intra-Add 0 0 0 Yes

Table 4.4.1. Bounds on the number of max-flow calculations

For Inter-Del (Algorithm 27) we require at most |C(G)| − 2 cuts, separating t from all
(no shadowing) neighbors, except vb and vd (comp. Figure 4.4.4). Since this is exactly what
happens in case the old clustering remains valid, the other bounds are equal and we know we
will find the old clustering. Algorithm 29 (Intra-Del) needs to examine all clusters within t’s
treetop (being treetops themselves), and potentially all vertices in Cb,d—even if the previous
clustering is retained, e.g., with every vertex shadowing the one cut off right before, and pair
vb,d, t getting hidden. Obviously, we attain the lower bound if we cut away vb,d from t, directly
preserving Cb,d and the entire treetop of t. For Inter-Add (Algorithm 30), we potentially end
up separating every single vertex in Cb∪Cd from t, one by one, even if the previous clustering
is valid, as, e.g., vb might become shadowed by some other v ∈ Cb ∪ Cd, which ultimately
yields the upper bound. In case the previous clustering is valid, however, we might get away
with simply cutting off vb and vd at once, alongside their former clusters. This means, there
is no guarantee that we return the previous clustering; still, with two cuts (vb-t and vd-t), we
are quite likely to do so. Row Intra-Add is obvious. Note that a computation from scratch
(static algorithm) entails a tight upper bound of |V | max-flow computations for all four cases,
in the worst case.

4.4.4.3 Further Speed-Up

For the sake of brevity we omit a few ideas for effort-saving in the pseudo-code. Apart from
the minor Lemmas 4.4.5 and 4.4.7, one heuristic is to decreasingly order vertices in the list
L(t), e.g., in line 11 of Algorithm 29 or in line 3 of Algorithm 27; for their static algorithm
Flake et al. [87] found that this effectively reduces the number of cuts necessary to compute
before t is isolated.

Since individual min-u-v-cuts are constantly required, another dimension of effort-saving
lies in dynamically maintaining max-u-v-flows. In fact there are techniques for doing this,
two of which we briefly mention here, but leave to read up in [129] and references therein, for
readers interested in a detailed description, since that is beyond the scope of this work. Given

speed-up via
dynamic min-

u-v-flows an initial max-u-v-flow and a graph modification, Kohli and Torr [150] present a method for
dynamically maintaining max-u-v-flows that first adjusts the residual graph in a special way,
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such that the flow is still valid, and then use any augmenting-path flow algorithm on this resid-
ual graph. Another approach is to build up a topologically ordered DAG on vertex subsets
of G, directed from u to v. The nodes of this DAG consist of the strongly connected compo-
nents in the residual graph of a max-u-v-flow, as described by Picard and Queyranne [186].
This DAG can be used to manage all min-u-v-cuts, and can efficiently be updated. Actual
effort-saving by these methods depends on the dynamics, in particular hidden step pairs and
shadowing prevents strong assertions.

4.4.5 Experiments

Figure 4.4.8. Initial real world e-mail graph, the clus-
tering is indicated by colors.

In this brief section, we very roughly describe some ex-
periments we made with an implementation of the up-
date algorithms described above, just for a first proof
of concept. The instance we use is a network of e-mail
communications within the Fakultät für Informatik
at KIT. Vertices represent members and edges corre-
spond to e-mail contacts, weighted by the number of
e-mails sent between two individuals during the last
72 hours. We process a queue of 12 560 elementary
modifications, 9 000 of which are actual edge modifi-
cations, on the initial graph G shown in Figure 4.4.8
(|V | = 310, |E| = 450). This queue represents about
one week, starting on Saturday (21.10.06); a spam-
attack lets the graph slightly grow/densify over the
course. We delete zero-weight edges and isolated
nodes. Following the recommendations of Flake et
al. [87] we choose α = 0.15 for the initial graph, yield-
ing 45 clusters, see Figure 4.4.8 for an illustration. We
compare their static algorithm (see Section 4.4.2.1)
and our dynamic algorithm in terms of the number
of max-flow computations necessary to maintain the
clustering. For the 9 000 proper steps, static compu-
tation needed 2 080 897 max-flows, and our dynamic
update needed 198 790, saving more than 90% max-flows, such that in 96% of all modifi-
cations, the dynamic algorithm was quicker. Surprisingly, inter-cluster additions have the
greatest impact on effort-saving, followed by the trivial intra-cluster additions. By contrast,
both deletion operations only mildly outperform the static algorithm. Out of the 9 000 total
operations, 49 of the inter-cluster, and 222 of the intra-cluster deletions are the only ones,
where the static algorithm happens to be quicker.

Note that updating the clustering after increasing the weight of an edge is done by one
of the new algorithms regarding edge additions. The addition of an edge is considered a
special case of increasing the weight of an edge. Weight decreases are handled analogously.
Thus, in the following we simply talk about intra-cluster and inter-cluster edge additions and
edge deletions as the four elementary modifications. Figure 4.4.9a shows the proportions of
the elementary modifications regarding the total number of 9 000 modifying steps. The case
occurring most often is, with 54.46%, the addition of an edge between two different clusters.
The inter-cluster edge deletion, by contrast, only occurs 480 times which corresponds to 5.33%.
During the whole experiment the cut-clustering heuristic of Flake et al. [87] calculates 2 080 897
maximum flows. Our updating algorithms, however, only need 198 790 max-flow calculations.
This yields a saving of 1 882 107 max-flow calculations which constitutes 90.45% of effort factor 10 speed-up

saving. Figure 4.4.9b shows the proportions of the elementary modifications regarding the
total number of 1 882 107 savings. We see that the ratio of the percentaged savings provided
by edge additions to the proportion of the edge additions regarding the number of total
steps is greater than one, while the proportion of edge deletions in Figure4.4.9a provides a
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Figure 4.4.9. Total number of steps and savings of max-flow calculations

smaller proportion of the total savings in Figure 4.4.9b. More precisely, the inter-cluster edge
additions are the most efficient modifications, as 54.46% of the total number of steps provide
67.14% of the saved max-flow computations. So each unit of the inter-cluster edge addition
proportion on average causes 1.23% of all savings. The least efficient modifications are the
inter-cluster edge deletions with 5.33% of all steps gaining only 0.07% of all savings. This
corresponds to 0.01% of all savings on average per unit of the inter-cluster deletion proportion.

4.4.6 Omitted Proofs

Proof. [of Theorem 4.4.1] The proof uses induction on the n − 1 edges in f ′ ◦ f . The edgesTheorem 4.4.1

are regarded as step pairs in a Gomory-Hu execution GH. The set M ⊆ ET denotes the step
pairs already applied in the execution, and T∗(G) = (V∗, E∗, c∗) denotes the current working
version of the intermediate min-cut tree.

Induction base case: Gomory-Hu starts with a single node S containing V , such that
V∗ = {V } and E∗ = ∅. The contracted graph GS thus equals G as nothing is contracted yet
with M = ∅. Therefore, T∗ corresponds to a T◦ that is formed by contracting ET \M = ET
in T (G).

Now take the first pair {u, v}1 of f ′ ◦ f as a step pair for the algorithm. Since the currentthe first step-pair

split node is S = {V }, {u, v}1 is a valid step pair in S. At the same time {u, v}1 represents
an edge in T (G) and therefore induces a min-u-v-cut (U, V \ U) in G = GS as a valid split
cut, with u ∈ U . By splitting and replacing S = V by Su = U and Sv = V \ U connected
with a new edge, we get an intermediate min-cut tree T∗ with V∗ = {Su, Sv} = {U, (V \ U)}
and E∗ = {{Su, Sv}}. The only edge in T∗ created by the step pair {u, v}1, has weight
cT ({u, v}1) = c(U, V \ U). So after one iteration the intermediate min-cut tree T∗ exactly
corresponds to T◦ formed by contracting all edges of ET \M in T (G), with M = {{u, v}1},
fulfilling our claim. Note, that the step pair {u, v}1 is not hidden until now.

Induction hypothesis: We now assume the following: The first w pairs {u, v}1, . . . , {u, v}w
in f ′ ◦f are valid step pairs regarding the various split nodes S, and the related edge-induced
cuts in G are valid split cuts regarding the various contracted graphs GS . The current
intermediate min-cut tree T∗(G) after these w iterations exactly corresponds to T◦(G) formed
by contracting all edges of ET \M ′, with M ′ = {u, v}1, . . . , {u, v}w being the set of the first
w step pairs in f ′ ◦ f . Furthermore we assume that none of the step pairs in M ′ is hidden
yet.
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Figure 4.4.10. Intermediate min-cut tree T?(G) with subtrees N1, . . . , N6 and nearest cut pairs
{x2, y1}, . . . , {x6, y6}.

Induction step: Let nodes u, v constitute the next step pair {u, v}w+1 in f ′ ◦ f with split
node S. The related cut (U, V \ U) in G induced by the edge {u, v}w+1 in T∗, with u ∈ U ,
serves as the current split cut. We first need to show, that this cut is also a min-u-v-cut in
the current contracted graph GS . Let N(j) denote the set of vertices in a subtree Nj of the
current split node S. Then the current contracted graph GS results from G by contracting next min-u-v-cut

in GS
the set N(j) in G for all subtrees of S. The cut (U, V \ U) induced by the edge {u, v}w+1

is a min-u-v-cut in G. Moreover, it does not separate any two vertices g and h lying in the
same set Nj, as otherwise the edge {u, v}w+1 would lie on the unique path γg,h from g to h
in T (G), contradicting the assumption that g and h belong to the same subtree of S.Thus
the cut (U, V \U) is also a min-u-v-cut in the contracted graph GS and hence is a valid split
cut for the (w + 1)-th iteration.

Now we can prove that after splitting and replacing the current split node S and after
reconnecting the subtrees of S the resulting intermediate min-cut tree T∗(G), i.e., the inter-
mediate min-cut tree after w+1 iterations, again corresponds to T◦(G) formed by contracting
T (G) by the edges ET \M ′, with M ′ = {{u, v}1, . . . , {u, v}w+1} being the set of the first w+1
step pairs in f ′ ◦ f . To this end we show that none of the step pairs {{u, v}1, . . . , {u, v}w},
which created the edges of the previous intermediate min-cut tree, gets hidden by the splitting
of S. However, since these step pairs directly correspond to edges in T (G) it immediately
follows that they never get separated. As the new edge {Su, Sv} in T∗(G) is created by
the step pair {u, v}w+1, which represents an edge in T (G), and as all other step pairs in
M ′ = {{u, v}1, . . . , {u, v}w} also represent edges in T (G) as well as in T∗(G) (by the induc-
tion hypothesis), none of the step pairs {{u, v}1, . . . , {u, v}w} gets separated by the split cut
related to {u, v}w+1. Therefore, after w + 1 iterations, the new intermediate min-cut tree

no step-pair ever
gets hidden

T∗(G) exactly corresponds to T◦(G) formed by contracting all edges of ET \M ′ in T (G), with
M ′ = {{u, v}1, . . . , {u, v}w+1} being the set of the first w + 1 step pairs in f ′ ◦ f .

Proof. [of Theorem 4.4.3] This proof uses induction on the subtrees of a split node S in an Theorem 4.4.3

intermediate min-cut tree T∗(G) and shows constructively that there always exists a split cut
(US , VS \ US) in GS as described in Theorem 4.4.2, which is by the way also a min-u-v-cut
in G and does not split any subtree of S. Furthermore, the proof shows that the two sides of
this split cut pick the subtrees as described. For each subtree Nj of S the connecting edge
ej = {S, Sj} induces the min-yj-xj-cut θj := (N(j), V \ Nj) in G, with yj ∈ N(j). As it
holds that S ⊂ V \ N(j), for each subtree Nj the step pair {u, v} lies on the V \ N(j)-side
of the minimum yj-xj-cut θj induced by the connection edge ej (see Figure 4.4.10). Now let
(U, V \ U) denote an arbitrary minimum u-v-cut in G, with u ∈ U.

Induction base case: We apply Lemma 4.4.3 to θ1 and (U, V \ U) and get a minimum
u-v-cut (U1, V \ U1), with u ∈ U1, that does not separate any vertices in N(1) and splits
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V \N(1) the same way as (U, V \U) does. So, as it holds that S ⊆ V \N(1), also S gets split
the same way, and we get

S ∩ U1 = S ∩ U
and S ∩ V \ U1 = S ∩ V \ U.

With y1 ∈ N(1), by Lemma 4.4.3, we further getthe first recon-
nection works

N(1) ∪ U = U1 if y1 ∈ U and

N(1) ∪ (V \ U) = V \ U1 otherwise, i.e., if y1 ∈ V \ U,

and therefore, it holds that N(1) ⊆ U1 if and only if y1 ∈ U. Thus this induces that the
related sides of (U1, V \U1) and (U, V \U) only differ in N(1), i.e., U1 \N(1) = U \N(1) and
(V \ U1) \N(1) = (V \ U) \N(1).

Induction hypothesis: We now assume the cut (Uz, V \Uz) to be a minimum u-v-cut in G,
with u ∈ Uz, that does not separate any vertices in any subtree Nj , j = 1, . . . , z, and splits V
the same way as (U, V \ U) does. More precisely, we assume that it holds that

S ∩ Uz = S ∩ U
and S ∩ V \ Uz = S ∩ V \ U.

and that N(j) ⊆ Uz if and only if yj ∈ U for j = 1, . . . , z, while the related sides of (Uz, V \Uz)
and (U, V \ U) only differ in the sets N(j), j = 1, . . . , z. More formally, this is,

Uz \ {N(j)|j = 1, . . . , z} = U \ {N(j)|j = 1, . . . , z} and

(V \ U1) \ {N(j)|j = 1, . . . , z} = (V \ U) \ {N(j)|j = 1, . . . , z}.

Induction step: We apply Lemma 4.4.3 to cut θz+1 = (N(z + 1), V \ N(z + 1)), which
is induces by the connection edge ez+1 = {S, Sz+1} of subtree Nz+1, and cut (Uz, V \ Uz).
So we get a minimum u-v-cut (Uz+1, V \ Uz+1), with u ∈ Uz+1, that does not separate any
vertices in N(z+ 1) and splits V \N(z+ 1) the same way as (Uz, V \Uz) does. So, as it holds
that S ⊆ V \N(z + 1), also S gets split the same way, and we get

S ∩ Uz+1 = S ∩ Uz =
induction hypothesis

S ∩ U
and S ∩ V \ Uz+1 = S ∩ V \ Uz =

induction hypothesis
S ∩ V \ U. (4.4.3)

With yz+1 ∈ N(z + 1), by Lemma 4.4.3, we further get

N(z + 1) ∪ Uz = Uz+1 if yz+1 ∈ Uz and

N(z + 1) ∪ (V \ Uz) = V \ Uz+1 otherwise, i.e., if yz+1 ∈ V \ Uz,

and therefore, it holds that N(z + 1) ⊆ Uz+1 if and only if yz+1 ∈ Uz. As, by induction
hypothesis, the related sides of (Uz, V \Uz) and (U, V \U) do not differ in N(z+ 1), if follows
that yz+1 ∈ Uz if and only if yz+1 ∈ U, and therefore, it holds that

N(z + 1) ⊆ Uz+1 if and only if yz+1 ∈ U. (4.4.4)

Furthermore, as a consequence of Lemma 4.4.3 it holds that the related sides of (Uz+1, V \
Uz+1) and (Uz, V \ Uz) only differ in N(z + 1), i.e., Uz+1 \ N(z + 1) = U \ N(z + 1) and
(V \Uz+1) \N(z + 1) = (V \Uz) \N(z + 1). So for all sets N(j), j = 1, . . . , z, it follows that
N(j) ⊆ Uz+1 if and only if N(j) ⊆ Uz. By induction hypothesis and (4.4.4) we finally get forall reconnec-

tions work
j = 1, . . . , z + 1

N(j) ⊆ Uz+1 if and only if yj ∈ U. (4.4.5)
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So with Assertion (4.4.3) and Assertion (4.4.5) we finally proved the existence of a minimum
u-v-cut in G that splits S the same way as (U, V \ U) does, and that does not separate any
vertices of any subtree of S. It is easy o see that such a minimum u-v-cut is also a minimum u-
v-cut in graph G(S), which results from G by contracting all subtrees of S. So Theorem 4.4.2
and Theorem 4.4.3 are both proven true.

Proof. [of Lemma 4.4.4] The Gomory-Hu execution GH⊕(	), by definition, uses the same Lemma 4.4.4

sequence k of split cuts as execution GH does, which considers the graph G and reaches T◦(G)
as intermediate min-cut tree after the application of k. Therefore, execution GH⊕(	) also has
T◦(G) as intermediate min-cut tree on condition that k represents a feasible sequence of split
cuts concerning the modified graph G⊕(	). This then implies f to be a feasible sequence of
step pairs. Similar to the proof of Theorem 4.4.1, this proof uses induction on the split cuts
in k.

Induction base case: The execution GH⊕(	) starts with the first split cut induced by the
induction on
split cuts yields:
GH⊕(	) works

first edge {u, v}1 in f. As the first split cut is applied to the contracted graph G
⊕(	)
S =

G⊕(	), and {u, v}1 ∈ M induces a minimum u-v-cut in G⊕(	) (by the choice of M and
Corollary 4.4.1), the first split cut is feasible.

Induction hypothesis: We now assume the split cuts induced by the edges

{u, v}2, . . . , {u, v}z in f to be feasible regarding the various contracted graphs G
⊕(	)
S in

z − 1 further iterations.
Induction step: Consider the next split cut induced by the edge {u, v}z+1 in f, which

constitutes the step pair in the current split node S. For the following argumentation we
need to distinguish the cases of edge addition and edge deletion.

Edge addition (M = ET \ γ): If it holds for the modified vertices b and d that {b, d} 6⊆
S, it follows that G

⊕(	)
S = GS in this iteration, as the modified edge {b, d} then is

contracted (Note that b and d never lie in different subtrees of S, as the edges on γ,
which correspond to the cuts that separate b and d, are not included in M, and f

respectively). With G
⊕(	)
S = GS the current split cut is feasible.

If it holds that {b, d} ⊆ S, the contracted graph G
⊕(	)
S results from GS by the addition

of the edge e⊕ = {b, d} and, as the edge {u, v}z+1 cannot lie on the path γ, the current
split cut does not separate b and d. So, as the current split cut is a minimum u-v-cut
in GS , by Lemma 4.4.1 the current split cut also represents a minimum u-v-cut in G⊕S
and hence is feasible.

Edge deletion (M = γ): As all split cuts considered so far separate the modified vertices
b and d, the current intermediate min-cut tree is a path of nodes with b included in
the first and d included in the last node. So if the current split node S includes b (the
case when it includes d is symmetric), then S has only one subtree, which includes d.
If S includes neither b nor d, then S has exactly two subtrees, with b and d in different
subtrees. In both cases the graph G	S results from GS by the deletion of the edge
e	 = {b, d}. Furthermore, the current split cut must separate b and d, as the edge
{u, v}z+1 lies on path γ. So, as the current split cut is a minimum u-v-cut in GS , by
Lemma 4.4.1 the current split cut also represents a minimum u-v-cut in G	S and hence
is feasible.

As the remaining step pairs and split cuts in f⊕(	) and k⊕(	) are defined as arbitrary valid

sequences, and as such sequences always exist, the assertion of the lemma is proven.

Proof. [of Lemma 4.4.5] Let θ be the cut induced by emin; then in G⊕ it has weight c⊕(θ) = Lemma 4.4.5

c(θ) + %. Suppose now θ′ is b-d-cut with c⊕(θ′) < c⊕(θ). Since θ′ must cut edge {b, d} in
G⊕, its weight in G is c(θ′) ≤ c⊕(θ′) − %. This yields c(θ′) < c(θ), a contradiction to emin’s
minimality for G.
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Proof. [of Lemma 4.4.6] Consider the min-u-v-cut (U, V \ U) in G	 to be the first split cutLemma 4.4.6

of GH, with step pair {u, v}. As the cut does not separate {b, d}, wlog. let b, d ∈ V \ U .
Let {U} be the next split node of GH, such that b and d are contracted into ηV \U in G	U .
Since for any step pair within U , {b, d} are not separated, by the correctness of Gomory-Hu
and Lemma 4.4.1, any previous min-g-h-cut is still valid in G	. Furthermore, Lemma 4.4.2
asserts that previous cut pairs within U also stay valid.

Proof. [of Lemma 4.4.7] By Lemma 4.4.1 {yb, g}, {yd, g} stay valid min-cuts in G	. A GHLemma 4.4.7

starting with step pairs {yb, g}, {yd, g} yields a path of nodes Nb, Sg, Nd as an intermediate
cut tree, with u, v ∈ Sg. Suppose there is a cheaper u-v-cut θ′ than that of {u, v}, then by
Lemma 4.4.1 θ′ must separate b and d and thus cut {yb, g} or {yd, g}. But then θ′ is cheaper
than c({yb, g})− % (and than c({yd, g})− %) and either violates that (Nb, V \Nb) remains a
min-yb-g-cut or that (Nd, V \Nd) remains a min-yd-g-cut; a contradiction.

Proof. [of Lemma 4.4.8] We prove this lemma regarding the subtree Nb by contradiction. TheLemma 4.4.8

proof regarding the subtree Nd is symmetric. We show that the cut θ := (⇑A, N(b) ∪N(d) ∪
] ∪ ⇑B), which differs from θ′b in the set N(b), would be cheaper in G than the edge-induced
minimum u-v-cut θmin := (⇑, N(b) ∪N(d) ∪ ]) in G, which differs from θb in the set N(b), if
θ′b was cheaper than θb.

So we assume that c	(θb) > c	(θ′b). As the cuts θ and θmin both do not separate the
modified vertices b and d, each of them is of the same weight in G	(S), G	 and G, by
Lemma 4.4.1. Here we consider the weights in G	 and get

c	(θmin) = c	(θb)− c	(N(b), N(d) ∪ ]) + c	(N(b),⇑) and

c	(θ) = c	(θ′b)− c	(N(b), N(d) ∪ ] ∪ ⇑B) + c	(N(b),⇑A)

With (N(d) ∪ ]) ⊆ (N(d) ∪ ] ∪ ⇑B) and ⇑A⊆⇑ it holds that

c	(N(b), N(d) ∪ ]) ≤ c	(N(b), N(d) ∪ ] ∪ ⇑B) and

c	(N(b),⇑) ≥ c	(N(b),⇑A)

So with the assumption that c	(θb) > c	(θ′b) we finally get

c	(θmin)− c	(θ) = [c	(θb)− c	(θ′b)]

− [c	(N(b), N(d) ∪ ])− c	(N(b), N(d) ∪ ] ∪ ⇑B)]

+ [c	(N(b),⇑)− c	(N(b),⇑A)] > 0

This contradicts the fact that the edge-induced u-v-cut θmin is a min-u-v-cut in G.

Proof. [of Lemma 4.4.9] Again, we prove this lemma regarding the subtree Nb. The proofLemma 4.4.9

regarding the subtree Nd is symmetric. The assertion of this lemma follows by Lemma 4.4.8.
We express the cuts θbb and θ′bb with the aid of the cuts θb and θ′b considered in Lemma 4.4.8,
which just differ in the set ]A. So we get

c	(θbb) = c	(θb)− c	(]A, N(b)∪ ⇑) + c	(]A, N(d) ∪ ]B) and

c	(θ′bb) = c	(θ′b)− c	(]A, N(b)∪ ⇑A) + c	(]A, N(d) ∪ ]B ∪ ⇑B)

So with c	(θb) ≤ c	(θ′b), by Lemma 4.4.8, we finally get

c	(θ′bb)− c	(θbb) = [c	(θ′b)− c	(θb)]

− [c	(]A, N(b)∪ ⇑A)− c	(]A, N(b)∪ ⇑)]

+ [c	(]A, N(d) ∪ ]B ∪ ⇑B)− c	(]A, N(d) ∪ ]B)] ≥ 0
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Proof. [of Lemma 4.4.10] Consider inter-cluster deletion (Algorithm 27) first. To return a new Lemma 4.4.10

clustering C(G	) different from C(G) the algorithm needs to find a new cheaper min-vi-t-cut
for at least one cut-vertex vi ∈ {v1, . . . , vz}. As the previous clustering is supposed to be also
valid for G	, there must exist another vertex u ∈ Ci that serves as a witness that the cut θi
(defining Ci) still constitutes a min-u-t-cut in the modified graph G	α . Then there must exists
a min-cut tree T (G	α ) such that the edge-induced minimum vi-t-cut represented in this new
min-cut tree gets shadowed and must not separate the modified vertices b, d. This contradicts
Lemma 4.4.1, which says that each new minimum vi-t-cut in G	α which is cheaper than the
previous one in graph Gα needs to separate the modified vertices b, d.

Considering intra-cluster deletion (Algorithm 29), all the above arguments apply to the
clusters C(G)\{Cb,d}. Thus these clusters are again found; however Cb,d might be fragmented

in an almost arbitrary manner.

4.4.7 Omitted Algorithms

Algorithm 30 gives the pseudo-code for the handling edge additions between clusters. Since
its description is almost analogous to the above algorithms, the only detail we point out is
the following. In line 5 the so called best min-vb-t-cut (or min-vd-t-cut) is used. Consider
the situation sketched out in Figure 4.4.6, and let us choose among all possible min-vb-t-
cuts U, V \ U , vb ∈ U (given by some max-flow). To maximize both the progress in terms
of clustering and temporal smoothness, we chooses a cut that puts as many vertices of the
former cluster Cb as possible into U while cutting away from t as few other cut-vertices as
possible.

4.4.8 Problems in the work of Saha and Mitra

This section gives a brief overview of the errors we found in the work of B. Saha and P. Mi-
tra [193]. A preliminary version of this work is [192]. The authors describe four procedures
for updating a clustering and a data structure for the deletion and the addition of intra-
cluster and inter-cluster edges. We briefly point out the errors in the authors’ procedure that
deals with the addition of intra-cluster edges. For a thorough discussion we refer the reader
to Hartmann [129]. Algorithm 31 sketches the approach given in [193] for handling edge
additions between clusters. Summarizing we found that Case 1 does maintain quality but
not the invariant. Case 2 maintains both quality and the invariant if and only if the input
fulfills the invariant, however it can be shown that this case is of purely theoretical interest
and extremely improbable. Finally, Case 3 neither maintains quality nor the invariant. The
following subsections illustrate these shortcomings with examples.

4.4.8.1 A Counter-Example for Case 1 and Case 2

We now give an example instance which the algorithm given in [193] fails to cluster correctly.
The two upper figures (Figure 4.4.11a,4.4.11b) show the input instance, as computed by
algorithm Cut-Clustering. In Figure 4.4.11c, a first edge addition then triggers Case 1, and
thus the clustering is kept unchanged. Note that here, quality is still maintained. Then in
Figure 4.4.11d a second edge is added and handled by Case 2, since inter-cluster quality is
violated (c(C1, C2) = 4α > 3 = α ·min{|C1|, |C2|}), and the condition for Case 2 in Line 3 of
the algorithm is fulfilled (2 · 4α/6 > α). Thus the two clusters are merged. In this result the
dashed cut in Fig 4.4.11d shows an intra-cluster cut with value c(dashed) = 2.75 · α < 3 · α,
which violates intra-cluster quality, as claimed in Equation (4.4.2).
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Algorithm 30: Inter-Cluster Edge Addition

Input: W (G),Θ(G), G⊕α = (V,E ∪ {{b, d}}), c⊕α , edge {b, d} with weight %
Output: W (G	),Θ(G	)
L(t)← {vb, vd}, l(t)← ∅1

D(vb)← ∅, D(vd)← ∅2

W (G⊕)← {v1, . . . , vz}, Θ(G⊕)← {θ1, . . . , θz}3

while L(t) has next element ui do4

θ ← “best cut” given by FlowAlgo(ui, t) // see text5

if c⊕α (θi) = cα(θold
i ) + % then6

Move ui from L(t) to W (G⊕)7

Add θold
i to Θ(G⊕)8

else9

Add θi to l(t) // pointed at by ui10

while L(t) has next element uj 6= ui do11

if θi separates uj and t then12

Delete uj from L(t)13

if l(t) already contains a cut θj pointed at by uj then14

Delete θj from l(t)15

while W (G⊕) has next element vi do16

if θi separates vi and t then17

Delete cut which vi points to from Θ(G⊕)18

Move vi from W (G⊕) to D(ui)19

while L(t) has next element ui do20

(R, Vα \R) := θi, t ∈ R, (cut in l(t) which ui points at)21

forall vertices vj in D(ui) do22

θi ← (R \ Cj , (Vα \R) ∪ Cj) // by Theorem 4.4.323

forall vertices vj in W (G⊕) do24

θ ← (R ∪ Cj , (Vα \R) \ Cj) // by Theorem 4.4.325

Resolve all crossings in l(t) // by Lemma 4.4.326

Add all vertices in L(t) to W (G⊕)27

Add all (non-crossing) cuts in l(t) to Θ(G⊕)28

Isolate t29

return W (G⊕),Θ(G⊕)30

Algorithm 31: Old Inter-Edge Addition

Input: G = (V,E,w), α, C, new edge e⊕ = {b, d}, b ∈ Cb, d ∈ Cd
if inter-cluster quality of Cd and Cb is maintained then Case 1:1

return C (do nothing)2

else if 2c(Cb,Cd)
|V | ≥ α then Case 2:3

return (C \ {Cb, Cd}) ∪ {{Cb ∪ Cd}} (merge Cb and Cd)4

Case 3 (default): dissolve Cb and Cd and contract all other nodes5

perform adapted Cut-Clustering on this instance6

return (C \ {Cb, Cd}) ∪ {newly formed clusters of nodes from Cb and Cd}7
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(a) Graph G0 with clustering C(G0) by the Cut-Clustering method
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(b) min-cut tree T (G0
α) inducing the clustering C(G0) shown in

Figure (a)
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(c) Adding edge {1, 6}, 11/4α yields G1 with clustering C(G1) re-
sulting from Case 1 of the inter-edge-add algorithm
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(d) Adding edge {3, 4}, α yields G2 with the trivial clustering C(G2)
by Case 2, which violates Equation (4.4.2) (dashed cut)

Figure 4.4.11. A dynamic instance violating the clustering quality. Weights are parameterized by α. After two modifications
to G0 the algorithm returns one cluster which can be cut (dashed) with a cut value that violates quality.

4.4.8.2 A Counter-Example for Case 3

Finally we give an example instance which the algorithm given in [193] fails to cluster correctly
due to shortcomings in Case 3.

4.4.9 Approximate Guarantees

This slightly secluded section returns to the static min-cut tree and asks first questions about
a speed-up of that algorithm at the expense of accuracy. Recall that the static clustering algo-
rithm based on min-cut tree, Algorithm 25, is proven to yield the following quality guarantee
for the resulting clustering:

c(C, V \ C)

|V \ C|︸ ︷︷ ︸
inter-cluster cuts

≤ α ≤ c(P,Q)

min{|P |, |Q|}︸ ︷︷ ︸
intra-cluster cuts

∀C ∈ C ∀P,Q 6= ∅ P ·∪Q = C

Using a b-Min-Cut Tree. Suppose now we cannot provide a rigorous min-cut tree, but
only an approximate one. In the following we shall see how this affects what we can still
guarantee about the quality as stated in Equation 4.4.9.

Definition 4.4 A b-min-cut tree T b(G) is a tree on V . The weight of the lightest edge e on b-min-cut tree

the unique path in T b(G) between u and v is equal to the weight of the cut induced by e in
T b(G). Furthermore, the weight of e is larger than the actual min-u-v-cut by a factor of at
most b ≥ 1.

Note that a 1-min-cut tree is a min-cut tree. Along the lines of the original proof of Equa-
tion 4.4.9 in [87] we can now derive lemmata which are analogous to those originally proven.
The crucial point in the following is the impact of b.
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Lemma 4.4.11 Let T b(G)be a b-min-cut tree of G, and (u,w) an edge in T b(G), whichhelping lemma

induces the cut (U,W ) in G, with w ∈W . For any non-trivial 2-partition {U1, U2} of U with
u ∈ U1 we get:

c(U2,W ) ≤ b · c(U1, U2) + (b− 1) · c(U1,W ) (4.4.6)

compared to the following if b = 1:

c(W,U2) ≤ c(U1, U2) (if b = 1) . (4.4.7)

Proof. Consider the cut (U1,W ∪ U2), which also separates u and w. It cannot be much
lighter than cut (U,W ) induced by (u,w) in the b-min-cut tree, more precisely:

c(U,W ) ≤ b · c(U1,W ∪ U2)

c(U1 ∪ U2,W ) ≤ b · c(U1,W ∪ U2)

c(U1,W ) + c(U2,W ) ≤ b · (c(U1,W ) + c(U1 ∪ U2))

c(U2,W ) ≤ b · c(U1 ∪ U2) + (b− 1) · c(U1,W )
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(a) Graph G with clustering C(G) resulting from the cut-
clustering method
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(c) Graph G′α, resulting from G⊕ by adding the sink t and
contracting the vertices in {5, 6} ∪ {7, 8, 9}
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(d) Min-cut tree T (G′α) of graph G′α

Figure 4.4.12. Counter-example for the correctness of Case 3. Figures (a) and (b) describe the graph and the min-
cut tree before edge {2, 12} is inserted. The the edge is added and Figure (c) describes the resulting
construction given in [193], on which Cut-Clustering is then applied, yielding Figure (d). The result
does neither conform to Equation (4.4.2) nor to what is attempted to be proven in [193].
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Lemma 4.4.12 Let Gα be graph G augmented by sink t as in Alg. 25, S the resulting cluster intra-quality

of node s ∈ G with s ∼ t in T b(Gα), and {P,Q} a non-trivial 2-partition of S with s ∈ P ,
then the following holds:

α ≤ b · c(P,Q) + (b− 1) · c(P, V \ S ∪ {t})
min{|P |, |Q|} ≤ b · c(P, V \ P ∪ {t})

min{|P |, |Q|} (4.4.8)

compared to the following if b = 1:

α ≤ c(P,Q)

min{|P |, |Q|} . (4.4.9)

Proof. Since s ∈ P and s ∼ t in the b-min-cut tree T b(Gα) of Gα, Lemma 4.4.11 applies and
yields:

c(V \ S ∪ {t}, Q) ≤ b · c(P,Q) + (b− 1) · c(P, V \ S ∪ {t})
c(V \ S,Q) + c({t}, Q) ≤ b · c(P,Q) + (b− 1) · c(P, V \ S ∪ {t})

c({t}, Q) ≤ b · c(P,Q) + (b− 1) · c(P, V \ S ∪ {t})
α · |Q| ≤ b · c(P,Q) + (b− 1) · c(P, V \ S ∪ {t})

α ·min{|P |, |Q|} ≤ b · c(P,Q) + (b− 1) · c(P, V \ S ∪ {t})

Lemma 4.4.13 Let Gα be graph G augmented by sink t as in Alg. 25, and let S be the inter-quality

resulting cluster of node s ∈ G. Then the following holds:

c(S, V \ S)

b · |V | − |S| ≤ α (4.4.10)

compared to the following if b = 1:

c(S, V \ S)

|V \ S| ≤ α (4.4.11)

Proof. Let T b(Gα) again be a b-min-cut tree of Gα. Furthermore, suppose edge (s′, t) is an
edge in T b(Gα) whose removal yields S and V \ S ∪ {t}. By definition of T b(Gα), the weight
of edge (s′, t) in T b(Gα) is at most b times as large as a min-s′-t-cut in Gα, and its weight
is equal to the cut (S, V \ S ∪ {t}) in Gα. Consider now the cut (V, {t}) in Gα, which also
separates s′ and t. Since the latter cut has at least the weight of a min-s′-t-cut, we get:

c(S, V \ S ∪ {t}) ≤ b · c(V, {t})
c(S, V \ S) + c(S, {t}) ≤ b · (c(V \ S, {t}) + c(S, {t}))

c(S, V \ S) ≤ b · c(V \ S, {t}) + (b− 1) · c(S, {t})
c(S, V \ S) ≤ b · α|V − S|+ (b− 1) · α|S|
c(S, V \ S) ≤ b · α|V | − α|S|

For those familiar with [87], note that the slightly more general existence argument pulled
through the according lemmata is not necessary for our purpose. Summing up Lemmata 4.4.12
and 4.4.13 we can now state a Theorem about the guarantees we can make when using a b-
min-cut tree for clustering.
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Theorem 4.4.4 Given a graph G and a real b ≥ 1. Let Cb be a clustering of G identified by
Algorithm 25 but using a b-min-cut tree T b(Gα) instead of a min-cut tree in line 5. Let P ,

approximate
quality

Q, S, and t be defined as above. Then for any cluster C ∈ Cb the following bounds hold:

c(S, V \ S)

b · |V | − |S| ≤ α ≤ b · c(P,Q) + (b− 1) ·max{c(P, V \ S ∪ {t}), c(Q,V \ S ∪ {t})}
min{|P |, |Q|}

(4.4.12)

Note that Theorem 4.4.4 also applies to non-simple and/or weighted graphs. While the given
bounds are rather clumsy, compared to the case b = 1, they do show that a factor b for
the quality of a min-cut tree does carry over and still yields guarantees on the goodness of
a clustering. We leave the question about how to find a b-min-cut tree open. A potential
starting point might be the sampling technique of Benzúr and Karger [36] which lets us
compute (1± ε)-approximate min-s-t-cuts in a reduced graph with only n log n/ε2 edges.



Section 4.5

Time-Dependent Graph Clustering

Oh my Strogg, they’re after the databrain!

(Strogg Nexus, Outskirts, Quake Wars)

In the past sections of this chapter on clustering dynamic graphs we had our focus on an
online setting. There, the task consisted of—roughly speaking—updating a clustering after

the graph has changed. Recall that our primary goal was to quickly obtain a good clustering
of a current time step. As our secondary goal, we tried to enforce a smooth transition between good vs. smooth

two steps. In this final section we shall investigate a specific offline dynamic setting, i.e., all offline

time steps of the dynamic graph are known: Generally speaking, a time-dependent clustering time-dependent
is a clustering of a dynamic graph where the result respects the temporal evolution of the
graph and reveals the evolution of the clustering, as in Figure 4.5.1. We retain our goals
from the online setting, being the quality of each time step and the smoothness of transitions
between time steps (and, of course, speed), however we require one additional point: We
postulate a correspondence between the clusters of consecutive time steps, i.e., one should be
able to track how a cluster evolves over time and see if it grows, joins others or dissolves. The
crucial point is, that some advantages of a smooth dynamic clustering are lost, if there is no
good way to actually follow clusters over time. Obvious applications for such a clustering of track clusters

graph sequences are the identification of microscopic and macroscopic trends in the community
structure. For this purpose the batch size of updates will be rather large, compared to close- trends in commu-

nity structure
to-realtime online settings. Both for cause studies and for the prediction of the future behavior
of an unsupervised network, such analyses are invaluable.

Our approach is particularly opposed to the intuitive and immediate (and arguably rea-
sonable) idea to proceed as follows in practice: For each time step Gi of G, find a good

G0 G1 G2

new
cluster

Figure 4.5.1. These three time steps of a dynamic graph, do not only feature a smooth dynamic clustering, but
also a way to track clusters over time (gray arrows); thus it is a time-dependent clustering. Note
that in G2 a new cluster has emerged from parts of the green and the red clusters in G1.
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static clustering Ci, and then find a matching between the clusters of Ci−1 and Ci. In this
formulation one attempts to track the elements of independent clusterings, and even ignores
smoothness when identifying the clusterings, something we will discuss the disadvantages of
below in Section 4.5.2. Towards our goal of a true time-dependent clustering, we propose a
powerful ILP-based toolkit which solves a vanilla offline setting for quality and smoothness,
and then requires an additional matching stage in order to yield a correspondence of clusters.
We will even take one step back and start with an online scenario which allows for a rigorous
balance between quality and smoothness. We then build upon this and extend the proposed
formulation to an offline setup which is capable of solving many problem statements for of-
fline clustering. Then we will turn to time-expanded graph clustering, which we advocate to
be a better approach for practical time-dependent clustering, since it adds to the latter an
immediate correspondence of clusters over time.

Time-expanded clustering is one of the most exciting approaches I tackled during my
work. Compared to the few related methods in the literature, it is very elegant and it works
well. Without the excellent support from my student Dieter Glaser on this topic, Section 4.5.3
would probably not be part of this thesis. Furthermore it is nice to be backed by sound and
rigorous problem statements and a theoretically optimal ILP formulation. At this point I
would like to thank Florian Hübner, Martin Nöllenburg and especially Marco Gaertler for the
fruitful discussions on ILPs. None of the content herein has yet been published.

Main Results

• We establish a set of constraints for integer linear programming which can be arranged
as to solve most reasonable online and offline problem statements of dynamic clustering,
involving strict requirements for quality and smoothness. (Section 4.5.1)

• A bicriterial online ILP formulation is shown to be feasible and to behave in exact
accordance to intuition, scaling the trade-off between quality and smoothness with one
sole parameter. (Section 4.5.1.1)

• There is an ILP formulation for many problem statements of offline graph cluster-
ing which employ quality and smoothness as constraints or optimization goals. (Sec-
tion 4.5.1.2)

• We propose and advocate the new concept of time-expanded clustering for time-
dependent clusterings of dynamic graphs. (Section 4.5.2)

• In a case study on the email graph, viewed via 11 time steps of aggregated months, we
show how the degrees of freedom of time-expanded clustering can reasonably be filled
and exhibit the potential of this technique. (Section 4.5.3)

Future Work. Time-expanded clustering appears to be able to answer questions that arise
in many fields in a simple and sound manner. Since it requires a careful modeling of the
instance, this technique calls for a good deal of testing beyond what is covered here. Then,
however, I see much potential in this method to work off the shelf for many applications.

4.5.1 ILP-Based Solutions

In Section 4.3 we put our insights about ILPs for clustering algorithms from Section 2.4 to
good use and defined a partial ILP which operated on a preclustering C̃ that depended on the
chosen strategy for how much impact a small change in a graph should be allowed to have.
Instead of optimizing modularity within this small search space and enforcing smoothness
by the small size of this space, we can take a more brutish approach and put both criteria,
modularity and smoothness, into the objective function of an ILP and let it search the setsmoothness

as ILP goal
Ψ (G) of all clusterings completely.

We will briefly review such an ILP formulation for smooth clusterings of dynamic graphs
in the online setting, and then we shall build upon it when designing a full offline formulation
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in the the next but one subsection. For this part we consider the set V of nodes to be fixed; a
generalization is easy, but requires the generalization of distance measures for clusterings to
that situation. While we canonically do that by simply ignoring inserted/removed nodes for
the affected time step in Section 4.3, we refrain from touching the subject here, as obvious
solutions are at hand but disrupt notation.

4.5.1.1 An ILP for Bicriterial Online Dynamic Updates

Smoothness as Part of the Objective Function. We have seen in Section 2.4 how
performance can be shaped into a linear objective function for ILPs. Consider now the
common formula for performance and that of the distance measure Rand R for sets, which
we discussed in Section 2.6.2:

perf(C) :=
m(C) +mc(C)

1
2n(n− 1)

R(C, C′) := 1− 2(n11 + n00)

n(n− 1)
= 1− n11 + n00

1
2n(n− 1)

(4.5.1)

Recalling that n11 and n00 are the numbers of node pairs which are clustered together in both
clusterings and separately in both clusterings, respectively, we can take a step back and see
that performance and the Rand measure are essentially the same; remember that Rand is a
distance measure, hence the negative sign. R as a linear ob-

jective function
Thus, along the lines of the same deduction for performance in Section 2.4.1, we can

see that with the help of decision variables X er we can write a linear objective function for
R(C, C′). Let X er describe C′(G′) and let δuv

19 describe C(G).

R(C, C′) = 1− 2

n · (n− 1)
·
∑
u<v

(
Xer
uv · δuv + (1−Xer

uv) · (1− δuv)
)

= 1− 2

n · (n− 1)
·
∑
u<v

(
2 ·Xer

uv · δuv −Xer
uv − δuv + 1

)
(4.5.2)

= const1 − const2 ·
∑
u<v

(
(2 · δuv − 1) ·Xer

uv

)
Together with modularity ’s contribution to the objective function we can now formulate a
bicriterial objective function, with a scalable trade-off between quality and smoothness. Note bicriterial objec-

tive function
that we can do away with constants in the individual objective functions, but we should
remember them, when we scale this trade-off. In the following the parameter b is used to
balance this trade-off.

bicrit(G,C,G′) = modILP(C ′)− b · RILP(C,C ′) (4.5.3)

=
∑
u<v

(
A(u, v)− deg(u) · deg(v)

2 ·m

)
·Xer

uv + b ·
∑
u<v

(2 · δ′uv − 1) ·Xer
uv

=
∑
u<v

(
A(u, v)− deg(u) · deg(v)

2 ·m + 2b · δ′uv − b
)
·Xer

uv

Similar formulations are possible for other distance measures for clusterings, the crucial point
is, that they must allow a linear objective function. For measures based on counting pairs
(Section 2.6.2) such as the Jaccard index, or the Fowlkes-Mallows measure (see [218] for more
on these indices), it is easy to see that this is possible. Measures based on overlaps or on
entropy cannot be integrated with this setup, they require more variables such as the sizes of
each node’s previous cluster.

19We again use a shorthand for Kronecker’s symbol δuv = 1 iff C(u) = C(v).
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Figure 4.5.2. A snapshot of the email graph for September 2007 con-
taining 3 professors’ chairs; 24h lifetime.

Experiments on Bicriterial Updates.
As mentioned earlier, our ILPs for modu-
larity-optimization cannot handle more than
about 200 nodes, and thus we did not in-
clude this approach in Section 4.3, as we
saw that the modified objective function did
not speed up things. In this separate exper-
imental setting we use an excerpt of the dy-
namic graph of email communication, please
refer to Section 5.1.1 for more information on
this instance. In a setup similar to that de-
scribed in Section 4.3.4.1, we use three com-
plete chairs, which yields about 50 nodes.
We observe emails for the duration of one
week (in September ’07) and use batch up-
dates of size bbatch = 10. Emails are assigned
a lifetime of 24 hours, such that after this
period a weight decrease event δ− for the
edge between the two communicating nodes

is triggered.
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Figure 4.5.3. This plot shows the modularity and Rand distance measure for the clustering of a
fraction of the email graph with a connection lifetime of 24 hours. Different balance
factors have been applied, the batch size is 10.

Figure 4.5.3 shows modularity and Rand distance (with regard to the previously clustered
time step) with b = 0.0, 2.5, 5.0. The index curve for b = 0.0 (red) shows the optimal modu-modularity vs.

R, balanced via b
larity values, thus the corresponding Rand distance (green) is not used by the optimization.
By concept, the best index values as well as the highest distance measure values are attained.
The modularity values for b set to 2.5 and 5.0 shrink significantly, as do their corresponding
distance measures. Observe how a higher influence of the Rand distance leads to less dis-
tance measured to previous clusterings, but also lowers the modularity value. Trivially, this is
explained by the fact that necessary optimizations in order to construct optimal modularity
clusterings cannot be executed, as minimizing the temporal cost is more important and hence
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nodes are anchored to their old clusters. This underlines the assumption, that the two crite-
ria are opposing and shows that b has the anticipated effect, allowing for an explicit decision
about what criterion is more important. High computational demands render this approach
useful for only very specific applications, and not for broad practice.

4.5.1.2 An ILP for Bicriterial Offline Dynamic Clustering

Translating the postulations that drive the above approach into a classic offline setting, yields
numerous possible formalization, of which we just name a few in order to get an impression. bicriterial

formulations
Suppose a sequence G = (G0, . . . , Gtmax

) of graphs is given:

1. Among all sequences ζ = (C0, . . . , Ctmax) of clusterings of G with Ci(Gi) optimal regarding
quality, find the sequence ζsmooth that minimizes

∑tmax

i=1 distance(Ci−1, Ci).

2. Among all sequences ζ = (C0, . . . , Ctmax
) of clusterings of G with

∑tmax

i=1 distance(Ci−1, Ci) ≤
D, find the sequence ζgood that maximizes

∑tmax

i=0 quality(Ci).

3. Is there a sequence ζ = (C0, . . . , Ctmax
) of clusterings of G such that ∀i : quality(Ci) ≥

α(Coptimal
i ) and ∀i ≥ 1 : distance(Ci−1, Ci) ≤ β ?

4. Among all sequences ζ = (C0, . . . , Ctmax) of clusterings of G find the sequence ζbest which
optimizes α

∑tmax

i=0 quality(Ci) + β
∑tmax

i=1 distance(Ci−1, Ci).

The diversity of possible bicriterial formulations should become obvious, and thus the choice
must ultimately depend on the application; furthermore optimality will in practice have to
give way to “the best one’s algorithms can do”. Although this does not diminish their interest-
ingness, in particular not in a theoretical view, we shall not dwell long on these formulations.
In this subsection we will describe a flexible framework of constraints for bicriterial inte-
ger linear program formulations of offline clustering problems which focus on quality and
smoothness.

A Simple Concatenation of Online ILPs. Suppose we have an offline dynamic graph
G = (G0, . . . , Gtmax

), and desire a smooth dynamic clustering ζ = (C0, . . . Ctmax
) of G. All

we need to do is to use the concept of the preceding subsection and concatenate tmax ILPs, concatenate tmax

ILPs
one for each time step, by the additional distance terms in the objective function and add
up all the objective functions. The crucial point where this approach fails is the fact that
in Section 4.5.1.1 above, we exploit that δuv is a constant. In an offline problem no single
clustering is fixed and ready to build upon, which renders δuv a variable such that the objective
function is no longer linear.

Xor-Variables. The solution to this problem is the introduction of a simple set of additional Xor-variables

variables. All these new variables W need to do is evaluate an Xor expression “between” two
time steps t and t + 1: n11 and n00 in R is contributed to by all pairs {u, v} of nodes for
which Wuv(t) := Xer

uv(t) Xor Xer
uv(t + 1) equals True. Thus let W be the set of Xor-variables

that mediate between the tmax + 1 time steps for each of which we set up an ordinary, static
ILP ILPi for clustering exactly as in Section 2.4.1, using the respective Gi and distinguishing ILPi
X er by the timestamp in brackets as in “Xer

uv(t)”:

W(G) := {Wuv(t) : {u, v} ∈
(
V

2

)
}, 0 ≤ t < tmax (4.5.4)

with Wuv(t) =

{
0 if Xer

uv(t) = Xer
uv(t+ 1)

1 otherwise
(4.5.5)

Having W encode this required Xor-expression can be enforced by the following constraints: W (t) := Xer(t)
Xor Xer(t+ 1)
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∀{u, v} ∈
(
V

2

)
, 0 ≤ t < tmax :


Wuv(t) ≤ 2−Xer

uv(t)−Xer
uv(t+ 1)

Wuv(t) ≤ Xer
uv(t) +Xer

uv(t+ 1)

Wuv(t) ≥ Xer
uv(t)−Xer

uv(t+ 1)

Wuv(t) ≥ −Xer
uv(t) +Xer

uv(t+ 1)︸ ︷︷ ︸
Xor constraints for W

, (4.5.6)

∀{u, v} ∈
(
V

2

)
, 0 ≤ t < tmax : Wuv(t) ∈ {0, 1}︸ ︷︷ ︸

integrality constraints for W

(4.5.7)

For a dynamic graph G we thus require a total of |W| = tmax ·
(
n
2

)
Xor variables and 4tmax ·

(
n
2

)
size of ILP

constraints, in addition to the tmax + 1 static ILPs which each contribute
(
n
2

)
variables and

3
(
n
3

)
constraints (not counting integrality constraints). For a triple x, y and c, with a binary

equation c = x Xor y aimed at by Equations 4.5.6, total enumeration of all binary valuestotal enumeration

shows that this equation is correct:

x y c c ≤ 2− x− y c ≤ x+ y x− y ≤ c y − x ≤ c

correct

0 0 0 0 ≤ 2 0 ≤ 0 0 ≤ 0 0 ≤ 0

1 1 0 0 ≤ 0 0 ≤ 2 0 ≤ 0 0 ≤ 0

1 0 1 1 ≤ 1 1 ≤ 1 1 ≤ 1 −1 ≤ 1

0 1 1 1 ≤ 1 1 ≤ 1 −1 ≤ 1 1 ≤ 1

wrong

1 0 0 0 ≤ 1 0 ≤ 1 1 6≤ 0 −1 ≤ 0

0 1 0 0 ≤ 1 0 ≤ 1 −1 ≤ 0 1 6≤ 0

0 0 1 1 ≤ 2 1 6≤ 0 0 ≤ 1 0 ≤ 1

1 1 1 1 6≤ 0 1 ≤ 2 0 ≤ 1 0 ≤ 1

An Overall Objective Function. Suppose we now set up each ILPi for 0 ≤ i ≤ tmax and
their respective objective functions for quality qi (as, e.g., in Equation 2.4.3). An objectiveqi of ILPi
function that (solely) minimizes the Rand distance of the two consecutive clusterings C(i)
and C(i+ 1) is (compare to Equations 4.5.1 and 4.5.2):hi

hi := 1−
∑
u<v(1−Wuv(t))

1
2n(n− 1)

(4.5.8)

Putting things together we can now set up an overall objective function incorporating qi for
each ILPi and the available hi. We refrain from discussing a balance factor β between these
two parts and just state the conceptual objective function:final objec-

tive function

objective :=

tmax∑
i=0

qi︸ ︷︷ ︸
snapshot quality

− β ·
tmax−1∑
i=0

hi︸ ︷︷ ︸
temporal cost

(4.5.9)

The prohibitive size to which this ILP for offline dynamic graph clustering quickly grows
gives this subsection a theoretical character. However, it is important to see that—given
some decision about β—optimality can at least be modeled.

Variant Optimization Goals. We have arrived at a solution for the problem statement
given in item 4. Although we shall not elaborate on this, observe how the setup described in
this subsection can easily be altered as to accommodate, e.g., the problem statement given in
item 2 and—given one first computes static optima—item 1 or item 3; we can simple use hi
and qi in appropriate constraints.
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4.5.2 Time-Expanded Clustering

We coin as time-expanded clustering an approach towards time-dependent clustering which time-expanded
clustering

in a single clustering step on a time-expanded dynamic graph identifies structural groups
and their evolution over time. As a simple example consider the temporal evolution of a
recommendation system for books as used for example by Amazon.com. In particular, consider
the book “The Lord of the Rings” by J.R.R. Tolkien. Before the major success of the movie
adaptation, the book belonged to the niche community of fantasy literature. Afterwards it
belonged to a much broader community including other popular bestsellers. One might even
infer from sale statistics that the book does no longer belong to the fantasy community, due
to a higher purchase correlation with books like “The Da Vinci Code”20 or even “The Shell
Seekers”21.

Why Not Static-Comparatively? Suppose now we took recommendations advertised
by Amazon.com and built a network of recommendations with books as nodes and an edge
(or some edge weight) for each recommendation within, say, a timeframe of one month.22

Building a graph for each month yields a dynamic graph, and clustering each such graph
tracking over in-
dependent cluster-
ings . . .independently yields a reasonable sequence of clusterings. However, inferring temporal trends

from a sequence of independent clusterings requires us to somehow “follow” changing clusters
over time—a highly nontrivial task, especially as smooth dynamics are not at all enforced.

In fact, [132] follows this approach in an attempt to track communities in the network
of publications (nodes) and citations (edges), compiled from the CiteSeer [5] database. We
mentioned this work in Section 4.1 but point out the efforts the authors make to render their
time-spanning clustering smooth and meaningful. The first step is to find a static clustering
per time step which is “stable”. The authors do this by computing several static clusterings
for each time step, each one based only on a 95% fraction of the nodes, and then taking
clusters from the first clustering as a “natural community” if their best match (measured . . . via node over-

lap . . .
by a match coefficient as in Equation 1.2.14) is greater than some threshold. Given such
natural communities for each time step, the authors then again find the best match for a
subset of interesting clusters in neighboring time steps. A very similar approach is followed
in [182]. Here, the authors exploit the neat fact that CPM, the method used for computing
the static clusterings23 of time steps, behaves as a coarsenig technique of two clusterings, if

. . . or via common
coarsenings

applied to the “union graph” of the two time steps. They thus use the same algorithm for each
static clustering step and—in a special way—for following clusters over time. This particular
property of their method at the same time exhibits a behavior that can oppose intuition:
Clusters can never dissolve and be divided up into other growing clusters.

While both of these approaches are reasonable (given one agrees with their static clustering
techniques) and find their individual solutions to the problem that a dynamic clustering
requires some stability, in essence they patch together multiple unrelated static clusterings.
We already stated arguments against this approach in the introduction of Section 4.1. This
is exactly the point we wish to address (see Figure 4.5.1): we aim at a technique which can
informally be specified as follows:

5. Find a sequence ζ of clusterings of G which24
informal aims of
time-expanded
clustering

(a) (quality) yields a good static clustering Ci per time step,

(b) (smoothness) enforces a smooth transition between the clusterings of subsequent
time steps, allowing users to retain their mental map and their derivations made
of previous time steps,

20Dan Brown, 2003, Transworld Publishers, UK Bantam Books (UK) and Doubleday Group (US)
21Rosamunde Pilcher, 1987, Thomas Dunne Books / St. Martin’s Press
22Such networks have been used and visualized, e.g., in [100].
23The Clique Percolation Method [76], see Section 2.1.
24Our specification of goals strongly resembles that made in [53] (see Section 4.1.1) and has in parts been

motivated by that work, in spite of differing techniques and applications.
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(c) (noise removal) is robust against noise and outliers in single time steps, and

(d) (cluster correspondence) tells us without further degrees of freedom (i.e., uncer-
tainty) which clusters in neighboring time steps belong to each other and thus
reveals trends and breakpoints.

Any patching technique will, on the one hand, suffer from outliers which in some time step
differ in terms of their neighbors, and on the other hand, introduce much freedom in the
patching stage where matchings between time steps are sought. While this freedom can bepatching has

downsides
useful, it potentially is an additional bias and can introduce systematic distortion. Needless
to say, a non-expert user can hardly do well when confronted with any parameteric choices
for two stages.

The Time-Expanded Graph and Clustering. Time-expanded graphs have been used in
different fields and for different purposes, however, what these approaches had in common was
to model a dynamic problem instance in a way that adequately incorporates the relationship
between time steps. They have their roots in flow computations in dynamic graphs. In 1962,time-expanded

graphs
Ford and Fulkerson [88] first published this approach in a textbook. The rough problem
setting they address is to find a schedule of commodity transfers between the nodes of a
network such that in a given timeframe the maximum commodity is transported between
the designated source and sink, while changing traversal times and maximum capacities of
edges are respected. To give one example application, in route planning, and in particular for
timetable information problems of public transport systems, time-expanded graphs are used
to model instances in a way which allows for the application of established tools for shortest
path queries. Roughly speaking this directed graph contains as nodes copies of stations
for each point in time where a train arrives or leaves. Then these nodes are connected by
reachability, i.e., edges between copies of the same station represent switching trains and
edges between different stations represent taking a train. We recommend the works [73, 188]
for recent advances and a good overview on this topic. In order to describe the adaptation
we propose for graph clustering, we start with a formal definition of the terms time-expanded
graph and time-expanded clustering in Definition 4.5.

Definition 4.5 Given a finite graph sequence G = (G0, . . . , Gtmax
), with Gi = (Vi, Ei, ωi)

and an integer T we define the time-expanded graph GTE = (V, E , ω̃) byGTE

V := {(v, i) | 0 ≤ i ≤ tmax, v ∈ Vi}
E := Egraph ∪ Etime with intra- and inter-time edges:

Egraph := {{(u, i), (v, i)} | v, w ∈ Vi, {u, v} ∈ Ei, 0 ≤ i ≤ tmax}
Etime := {{(v, i), (v, j)} | v ∈ Vi, v ∈ Vj , |i− j| ≤ T}

ω̃((u, i), (v, j)) :=

{
ωi on Egraph (with i = j and u 6= v)

ωinter on Etime (with i 6= j, u = v, ωinter is still to be defined)
.

Given a finite graph sequence G, a time-expanded clustering CTE of G is a clustering of GTE.CTE

The clusterings Ci(Gi) which CTE canonically induces are called slices.slice

Figure 4.5.4 is a simple example of a time-expanded graph. A good clustering CTE of a
dynamic graph GTE will fulfill formulation 5 above. Note that this definition turns a blind eye
on three subtleties one has to keep in mind when turning towards an actual implementation:
(i) we assume in the definition of Etime that nodes which exist in different time steps of G have
the same identifier in all time steps; (ii) inter-time edges may be allowed to span between
time steps with a distance greater than one, thus the span T has to be specified; (iii) thespan T

weight function ωinter for inter-time edges is a delicate degree of freedom for a time-expandedωinter

graph and requires a particularly thoughtful definition. In some sense the definition of ωinter

inherits the burden of the patching stage discussed above. However, ωinter is defined before
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clustering and thus snapshots are not clustered agnostically of each other; moreover ωinter can
be defined with more basic and reliable assumptions than a patching stage. We will revisit
these items later but for now settle with the above definition for simplicity.

G0 G1 G2

 
∆1  

∆2

u

v

w

r

v v

u u

r

w w

time
(a) Three time steps of a dynamic graph G

GTE

(u, 0)

time-expanded

(v, 0) (v, 1) (v, 2)

(w, 2)

(u, 1) (u, 2)

(r, 1) (r, 2)

(w, 0) (w, 1)

(b) Graph GTE of G, inter-time edges are dashed.

Figure 4.5.4. An example of a dynamic graph and its time-expanded graph

Algorithm 32: Time-Expanded Clustering

Input: Dynamic graph G, ωinter, static clustering
algorithm A

Construct GTE from G using ωinter // see Def. 4.51

CTE ← A(GTE) // actually cluster2

Ci ← CTE(GTE)|Gi // obtain slices3

We can now state a framework algo-
rithm for time-expanded clustering in Algo-
rithm 32. In the experiments that follow we
successfully used variants of greedy modu-
larity agglomeration (see Section 2.2.5) as
algorithm A. Anticipating later results on
ωinter, we found that the cosine similarity of
the adjacency vectors of (v, t) and (v, t + 1)
is an excellent starting point, and setting T = 1 is a good choice. Two add-ons are at hand:
Suppose GTE becomes prohibitively large for A, we can simply use a sliding window in line 2. sliding window

Points in time where the clustering seems to undergo a transition can easily be identified by transition of the
clusteringmeasuring distances between consecutive clusterings, see Section 2.6 for such measures.

A typical real-world setting, which is illustrated in Figure 4.5.5 below, are the collabora-
tion dynamics in science. Researchers usually start out working in a narrow field, then, by
interdisciplinary commitment, they enter other communities, possibly migrating to another a migration in

science
field entirely. In the 80’s Thomas Lengauer concerned himself with algorithmic graph theory,

Figure 4.5.5. An excerpt from the collaboration graph of T. Lengauer is shown for the years 1988, 1992, 1993, 1996,
and 1998. Round shapes correspond to publications in the field of biology, and rectangular shapes to
those in computer science. The time-expanded graph is clustered by the large boxes and inter-time
edges are dashed.

focusing on planarity. However, in the early 90’s he began collaborations in the field of bioin-
formatics and biology and at the present he is an established scientist of the bioinformatics
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community. The clustering of the time-expanded collaboration graph reveals this develop-
ment, identifying the community transition in the 90’s. Next we shall apply the concept of
time-expended graph clustering to a larger data set.

4.5.3 Time-Expanded Clustering of the Email Graph

In the following we will discuss a case study, where time-expanded clustering is used. In
particular, this is the changing network of email contacts at KIT’s Fakultät für Informatik,
viewed at 11 monthly time steps. For technical details about this instance, please refer tomonthly

time steps
Section 5.1.1. What this section cannot accomplish is a systematic comparison between time-
expanded clustering techniques and other approaches for offline clustering tasks of dynamic
graphs. The fact that a clear and consolidated formalization of an aim, which is valid and
usable beyond a few specific applications, has not yet emerged in the literature, leaves too
many dimensions to explore in a systematic study. However, it very well serves as a proof of
concept and shows the potential of this approach.

Aim. On a high level, the aim of this study is simple: In the changing network of emailaim: item 5

contacts we want to identify clusters and track them over time. Recalling our guidelines in
item 5, we will need to focus on properties (a)-(c), cluster correspondence (d) is implicitly
solved by concept. Since for our instance, we know about an underlying ground truth as aknown

ground truth
reference clustering—the structure of chairs of the department—we can compare our findings
with this information.

4.5.3.1 Specification of the Method

Remember that the static clustering technique employed in time-expanded clustering has
so far been wildcarded entirely. We performed experiments with the methods MCL, ICC
and the greedy maximization of modularity (greedy in the following); all three algorithmsonly greedy

yielded reasonable results, in accordance with their respective peculiarities, but for brevity
we will confine our study to the latter algorithm. For the same reason we restrict ourselves
to measurements by modularity .mostly modularity

The one major degree of freedom of a time-expanded graph is the definition of ωinter (see
Definition 4.5), the edge weight functions for inter-time edges. We restrict our insights to
choices of ωinter which yielded reasonable results. Needless to say, there is a dependency
between the design of ωinter and the chosen clustering algorithm; this is not desirable but
inevitable. Two more parameters of the model were addressed: we varied the span T of inter-
time edges and an edge-pruning threshold p; we also normalized ωi on Egraph. We restricted

parameters:
ωinter,span T , p

ourselves to the setup where inter-time edges only exist between copies of identical nodes. In
order to get a first impression of the data set, Figure 4.5.6 depicts the canonic clusterings by
reference and by time steps of GTE.

4.5.3.2 Parametric choices

Baseline Setups. Starting with the simplest of setups, we compute GTE and CTE as follows:ωinter = const.

using as time steps the unmodified one-month snapshots and ωinter = α = constant. More
precisely we use ωinter = 1, . . . , 10, T = 1, . . . , 9, and evaluate the effect of a pruning threshold
p = 1, . . . , ωinter − 1 for noise removal. Simply put, all edges with weight less than p are
removed from the graph. In these baseline setups we observed the expected dependency ofedge pruning

the shape of the clustering on α and T : Large inter-time weights and large spans T lead to a
tall time-expanded clustering with hardly ever changing slices. A small but non-zero value for
p does not only increase the modularity values of the slices but increase their similarity to the
reference—corroborating that the reference relies on stronger intra-chair communication. Forparameter testing

brevity we skip our intermediate experiments and rather report on the setup we recommend,
as it worked best for us and follows a reasonable intuition.
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(a) Gray boxes represent the time-expanded (pseudo-)
clustering by reference, i.e. chairs.
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(b) Gray boxes represent time steps.

Figure 4.5.6. Two canonic clusterings for GTE, by reference and by time step. Relative node positions are preserved
throughout the time steps. These can be viewed as the two extreme cases of CTE, where either inter-time
or intra-time weights dominate.

The Final Setup. The range of original edge weights reveals a few outliers, probably due
to some carbon-copying habit or automatism. In order to reduce this effect we introduce
the following normalization of the intra-time edge weights of each individual time step to the
interval [0, 1]: normalize ωi

ωno
i (e) =

log(ωi(e))

log(ωmax
i )

on Egraph, with individual ωmax
i for each time step i (4.5.10)

Fixed weights for inter-time edges ignore the role nodes have in time steps. If such a
role changes between two time steps, the corresponding edge should have a low weight. The
role a node is in fact a concept from network analysis, however, for our purpose a rather
superficial measure suffices. We adapt the cosine similarity (see Section 1.2.3) to our setting
and—intuitively speaking—define inter-time weights for Etime as the cosine similarity of the
corresponding (labeled) adjacency vectors. More formally this evaluates to the following,
somewhat clumsy formula: ωinter ∼ cosine

ωcos
inter((v, i), (v, j)) :=

∑
u∈Vi∩Vj (ωi((v, i), (u, i)) · (v, j), (u, j))√∑

u∈Vi(ωi((v, i), (u, i)))
2 ·
√∑

u∈Vj (ωj((v, j), (u, j)))
2

(4.5.11)

It strictly follows the intuition of the cosine similarity, such that it yields 1 if the neighborhood
of v is the same in both time steps i and j, and 0 if in the two time steps, the copies of v do
not share a single intra-time adjacency to some pair of nodes (u, i), (u, j), respectively.

4.5.3.3 Results and Measurements

Quality Measurements and Pruning. First, we list quality indices of the clusterings of
the 11 time steps, still with a varying pruning threshold 0 ≤ p ≤ 0.45 for noise reduction.
Interestingly, for p = 0 the average weight of inter- and intra-time edges is 0.69 and 0.22,
respectively, while for p = 0.45 these values are 0.84 and 0.54. This indicates that a node’s impact of p on

GTE
behavior hardly varies and corroborates the relevance of the reference clustering, but also
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exemplifies noise reduction. Tables 4.5.1 and 4.5.2 list the average (wrt. p and time) values of
the reference clustering defined by the chairs, and the slices of the time-expanded clustering,
respectively.25 Observe how the slices surpass the already excellent quality of the reference.

index covω modω iccav
ω

1. quartile 0.9125 0.8373 0.7218

3. quartile 0.9659 0.8832 0.8514

minimum 0.8171 0.7472 0.5836

maximum 0.9839 0.8986 0.8717

average 0.9308 0.8548 0.7835

Table 4.5.1. Quality of the reference clustering
(chairs of the department) per time
step

index covω modω iccav
ω NVD∗

1. quartile 0.9246 0.8582 0.7738 0.4123

3. quartile 0.9693 0.9104 0.9640 0.3319

minimum 0.8569 0.7668 0.7180 0.2557

maximum 0.9927 0.9276 0.9953 0.5799

average 0.9422 0.8770 0.8799 0.3753

Table 4.5.2. Quality of CTE’s slices and the distance to the
reference clusterings, NVD∗, an asymmetric
version of Equation 2.6.2.

slices vs. reference
Distances are low, but far from 0, as sometimes two or three reference clusters are summarized
into one cluster of a slice. We briefly elaborate on p, as a pruning threshold as high as possible
can significantly contribute to rendering an instance computable. Figure 4.5.7 shows how
properties of GTE and CTE change with p and T . As a side note, we removed disconnected
nodes from graphs, since these had no communication for a whole month. The rough insights
are as follows. Only T = 1 lets intra-time adjacencies play a significant role, otherwise we gethigh T

⇒ close to ref.
very close to the reference. High values of p densify the time steps and reduce the distance
to the reference. Omitting much of our further studies and discussions we conclude thathigh p

⇒ close to ref.
T = 1 is a good choice for our instance and that only a small threshold p ≤ 0.15 is feasible;
we will continue using T = 1 and p = 0 without further notice, in order to be “closer” to a
parameter-free procedure.use T = 0, p = 0
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Figure 4.5.7. Influence of the pruning threshold p and the span T on various properties

Figure 4.5.8 shows an excerpt of the time-expanded clustering CTE of GTE which nicely
shows a point of transition in the structure of the network: The beige cluster dissolves intoexample excerpt

the gray one, and the red one instantaneously joins a green cluster. Figure 4.5.10 shows this
transition in the full context of CTE.

25We here use a set overlap measure (instead of a graph-based measure) since in this case the partition of
the set of nodes is more important than the edge structure, an asymmetric version is chosen since the reference
is a known ground truth, which others have to match to, not vice versa. See Section 2.6.2 for other aspects.
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Figure 4.5.8. An excerpt of GTE with color-coded CTE, T = 1 and p = 0; vertical slabs are time
steps, horizontal slabs are chairs of the reference. Observe, e.g., the transition
of nodes from the beige cluster to the gray cluster, for T = 3 this phenomenon
vanishes.

Comparison to Static Clustering. We can now review the slices of CTE in the light of slice vs. static

individual static clusterings of each time step. Figures 4.5.9a and 4.5.9b precisely show the
expected trade-offs: In terms of modularity , maximizing modularity individually works best,
only closely followed by the slices and finally the reference. On the other hand, the slices slices are smooth

and good
are much closer to the reference, i.e., smoother. Summarizing, we obtain exactly the desired
behavior.

Discussion of CTE. In terms of measurable quantities such as quality, distance to the discussion of ap-
propriateness

reference and to static baseline clusterings, and smoothness our approach without any peculiar
parametric settings appears to work excellently: span T = 1, pruning threshold p = 0, ωinter

based on cosine similarity of adjacencies and ωi logarithmically scaled and normed to [0, 1].
But can our approach answer our initial question from Section 4.5.3? Are the identified and
tracked slices of CTE and their transitions meaningful? Within the allowable bounds of data
privacy protection we shall now discuss a few insights about the background of changes and
transitions in the clustering.26

We enumerate the chairs (horizontal slabs) in Figure 4.5.10 from top (0, dark blue) to
bottom (25, cyan singleton) and the time steps (vertical slabs) from left (0) to right (10); please
note that Figure 4.5.10 is displayed sideways. Chairs 5 and 8 (light gray) are part of the same
institute, thus the rigorous togetherness. Chair 3 joins this cluster (light gray) as it is closely
affiliated to that institute. An organizational change split the common institute of chairs 6
and 11 approximately at time step 2. Instead of parting into different clusters, 6 and 11
together with the small chair 9 join the cluster (light green) of chair 1. “Chairs” 12 and 4
are no real chairs but central institutions with many uniform, non-collaborational contacts,
thus they are happy to join any attracting cluster. Chair 4 is part of the aforementioned red
cluster but after the transition of that to the light green cluster, chair 4 becomes an individual

26See Section 5.1.1 for more on this issue.
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Figure 4.5.9. A comparison of individual static clusterings and slices shows the expected behav-
ior: In terms of modularity the slices closely follow individual clusterings while
being much closer to the reference.

cluster—due to little density inside the new, larger cluster. Similarly, chair 12 in parts belongs
to the red cluster but after the transition at time steps 5 and 6, it focuses more on the yellow
cluster, which instead loses chair 14 due that chair’s co-founding the moss green cluster with
chair 0 at time step 8—we suspect a common project of which the kick-off would coincide
with the start of a new semester.

4.5.3.4 A Final Word on Time-Expanded Graph Clustering

We started our experimental case study of the time-expanded graph with the simplest of
setups. We learned that having to adjust many parameters—especially if the employed clus-
tering method adds to these—can work and finally yield good results, but requires laborious
tuning. We found that using parameter-free cosine similarity for ωinter nicely conforms to
intuition, and that some reasonable scaling of intra-time edge weights to the interval [0, 1]
should be done. Then, however, the most user-friendly setup worked very well: no pruningmaking a case

for CTE
(p = 0), only the most basic GTE (span T = 0) and parameter-free greedy as the employed
clustering algorithm. The obtained clustering CTE and its slices did not only describe the
peculiarities and the dynamics of this real-world network very well, they even compete with
individual static clusterings in terms of quality. Instances of this size pose no problem for
today’s hardware, but are unsolvable by an ILP as described in Section 4.5.1.2. Concluding,
time-expanded clustering solves the task stated in item 5 and shows much potential to work
off-the-shelf for reasonably modeled dynamic graphs.
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Chapter 5

Epilogue

Clustering dm’s range of products by customer preference yields—among
others—the sales-dominating cluster which accommodates the infamous
shopping bag (“Plastiktragetasche”). Budget cosmetics seem to be in-
evitable for a dm-shopper, they are tightly connected to everyday prod-
ucts such as toilet tissue and photo services; not to premium toilet tissue,
though. Some sets of real-world data are true jewels and sources of fasci-
nation.
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Section 5.1

Data Sets and Applications

Having the computer scientist understand
the problem setting of the application

works better than the other way round.

(Richard Manning Karp,
Touring Award winner,
comment after plenary talk at WADS’09)

What is more important for an experimental evaluation: millions of systemati-
cally generated random graphs or one or two real-world instances?1 Certainly, both

need to contribute to most studies. Numerous real-world data sets have their part in this
thesis, either visibly in several examples or in background feasibility studies. In this informal
section, some details about them, so far left open, shall be explained. However this section
is by no means intended to be comprehensive, and should just serve as an overview. Despite
of the fact that the network of Autonomous Systems in the Internet (AS) is used in manyAS omitted

examples and case studies of this thesis, details on this graph are omitted, as it is discussed
in-depth in many studies, we recommend [100] for a first reference with many further pointers.

Negotiating and gathering such data, understanding it, filtering, converting and modeling
it into a meaningful graph was a fascinating yet time-consuming part of my work—and often
not less challenging and relevant than actually clustering the graph. I owe my thanks to quite
a few people who helped me obtain these useful data sets and I shall seize the opportunity to
express my gratitude in the corresponding subsections below.

5.1.1 Email Contacts at KIT’s Fakultät für Informatik

It was in the late summer of 2006 when my former colleague Martin Holzer and I sat to-
gether and pondered possible source of real-world clustered graphs, naturally accompanied
by Cassandra warnings. This data set of email traffic is the first fruit of our efforts to get into
contact with such sources. Klaus Scheibenberger, head of the department which manages the
technical infrastructure of KIT’s Fakultät für Informatik (ATIS), very quickly agreed to the
general idea. Quickly after, Olaf Hopp, head of IT-services, arranged an automated script
which filters, anonymizes and summarizes the logs of the central email server2, and makesemail server logs

them available to us on a daily basis.3 Table 5.1.1 shows an excerpt of such a log, the email
id serves to identify emails with multiple recipients.

The obvious interpretation of such data as a graph is to let nodes represent persons,collaboration
graph

i.e., email accounts, and edges represent emails exchanged between the two incident nodes;

1By concept, the answer to this question is exclusively known by your reviewer.
2This central email server routes emails for about two thirds of the department, some institutes and chairs

are independent.
3My sincere thanks to Olaf Hopp and Klaus Scheibenberger, who did not only take on the work to

technically set up the automatic tool which deviates the logs to us, but also took the time to discuss our
results with us and maintained the tool throughout all technical reorganization at ATIS.
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timestamp sender sender chair recipient recipient chair email id

2006-09-13 59 20 60 16 1GNPYp-L9

2006-09-13 61 6 16 6 1GNPaI-Ec

2006-09-13 61 6 62 6 1GNPaI-Ec

Table 5.1.1. Excerpt of a summarized email log

the weight of an edge then encodes the number of exchanged emails, in order to avoid un-
necessary parallel edges. In order to actually obtain a graph, we collect the logs of a cer-
tain timeframe and interpret them as an implicit edge list. If time steps represent a du- implicit edge list

ration of one month or more, in dynamic graphs we usually restrict time steps to nodes
which partake in at least one email. Keeping disconnected nodes, that communicated in
earlier time steps, would let the set of nodes grow steadily. An example of a static graph

Figure 5.1.1. The color of a node represents
its degree (from blue to red) and its size is
prop. to its betweenness.

which consists of the members of one chair and represents
the accumulated communication of four months is shown in
Figure 5.1.1. To model a fully dynamic graph that does not only
accumulate edge weight, we assign a lifetime to the contribution lifetime

of an email: A sent email contributes to the tie between two
nodes for, say, 72 hours, then the email expires and the two
nodes need to communicate again, in order to maintain their
level of connectedness. In this setting we again let disconnected
nodes drop out, in order to also have full node dynamics.

Three facts make this data set particularly precious, (i) it is
very reliable, (ii) it is fully dynamic and (iii) there is a ground-
truth clustering which underlies it: it is reasonable to assume
that the subdivision of this department into chairs yields a
clustering, since collaboration and communication between the
members of the same chair can be expected to be more reg-
ular than for different chairs. We multiply confirmed this in
previous sections, e.g., in Section 4.5.3.3, and Figure 4.5.9 in
particular. However, this assumption must be handled with
care, as there is no ground-truth distribution which supports
this, just common sense—and quite a few quality measures.

Since September 2006 we have now collected more than three years of communication three years

amounting to about 400K emails yielding 500K pairs of sender and recipient, of which about
400 arrive per day. On weekdays, a daily snapshot involves between 300-500 different nodes 0.5M emails

depending on the time of year, and on weekends or general holidays this number can reach
below 50. On a microscopic scale, dynamics are, among other things, due to colleagues
discussing, announcing talks or instructing student workers, or to student workers who join
the network for only a brief duration etc. Although the ground-truth clustering defined
by the chairs is rather stable, there are various points that add macroscopic dynamics to
the microscopic noise: New projects kick off that require increased collaboration between
participating chairs, in turn, others conclude. An even larger and more far-reaching impact micro- and

macrodynamics
has the head of a chair, if she decides to leave. Such an event can change the focus of a whole
chair and even motivate organizational changes. In fact we have seen such a transitions, as
the generation of founding fathers of the department gradually retired.

Applications. The email graph permeates this whole thesis and was invaluable to it. We
used it in the evaluation of modularity (Figure 2.3.18), as an example instance for clustering
distances (Section 2.6.4.3), we showcased LunarVis with this network (Section 3.2.3) and then
used it in the three fine-grained dynamic studies on modularity-driven- (Section 4.3.4.1),
min-cut tree- (Section 4.4.5) and bicriterial ILP clustering (Section 4.5.1.1) and finally we
investigated the dynamics of this network with time-expanded clustering (Section 4.5.3).
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5.1.2 Sales and Products of dm

Figure 5.1.2. A graph of the customers of one
store, edges represent a similar
shopping behavior. The lower
cluster, containing mostly bluish
(young) nodes is dominated by
baby food.

Getting into contact with the German drugstore chain dm was
the boldest and least promising of our plans for real-world data
sets. However, with some persistence, my former colleague
Martin Holzer finally managed to arrange for a meeting with
Erich Harsch, the executive of filiadata, which is the IT sub-
sidiary company of dm. To our surprise he was immediately
convinced by our plans and we quickly agreed on a loose col-
laboration which allowed us to use a subset of their collected
sales data for our evaluations. The formidable policy of dm
and the kind staff of filiadata, and Andreas Gessner in particu-
lar, made it possible for us to learn much about our algorithms
and about the issues which are relevant for filiadata and dm.
My special thanks go to Michael Martin of filiadata, who was
the person in charge of our collaboration and who was always
available for discussions and friendly help.

Among the many interesting issues we addressed, our collab-
oration with dm and filiadata recently motivated a diploma the-
sis about how graph clustering techniques can be used to model
customer profiles from an evolving set of sales data. Luckily, a
very creative and diligent student, Selma Mukhtar [169], chose
to conduct this diploma thesis. Her results ultimately helpeddynamic cus-

tomer profiles
to convince filiadata to engage her straight after she finished
her thesis.

5.1.3 Literature Databases

Figure 5.1.3. D. Wagner (purple), her neigh-
bors (yellow) and her 2-hop
neighbors (green).

A data source which is well represented in scientific literaturecollaboration and
citation graphs

is scientific literature itself. Digitized catalogs and databases
are readily available through resources such as Citeseer [5],
DBLP [4] or arXiv [7], which strongly facilitate research. Net-
works based on either the collaboration of authors or on the
citations between publications have been studied in many in-
vestigations and have also been used as benchmark sets for
graph algorithms. Such graphs usually feature a rather skew
degree distribution, tending towards a power-law.

We often dealt with the data sets of Citeseer and DBLP, and
I would like to thank my trusty student worker Hai Wei for the
excellent tools he designed and programmed for extracting all
kinds of networks from these sets; in fact we also used these
tools for the dm data and the patent data. In a graph based
on scientific collaboration the nodes represent researchers and
edges model the strength of their collaboration by somehow us-
ing the number of co-authored publications. The graph shown
in Figure 5.1.3 shows the 2-hop neighborhood of my advisor,
Prof. Dorothea Wagner, in the collaboration graph according
to a snaphot of the DBLP database from 2007.

5.1.4 Patent Registrations

We recently started a collaboration with the Institute for Economic Policy Research (IWW)
at KIT. Among other things, the IWW concerns itself with measurements and predictions oftechnological

trends
technological trends in research and economy. Does spacial closeness foster a visible synergy
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between related technological fields which are, e.g., worked on by neighboring companies?
Is there a critical threshold for the accumulation of technological knowhow, beyond which
a company attracts related research? One way to address such questions is on the basis of
patent registrations, see [124] for an overview. Patent registrations are categorized by the
International Patent Classification (IPC) of the World Intellectual Property Organization
(WIPO). This classification scheme assigns to an “inventive thing” a rough section, e.g., “sec- WIPO, IPC

tion A – human necessities”, and subclassifies the invention by a fine hierarchy of a total of
roughly 70.000 IPC keys into class, subclass, group and subgroup. A full key could finally be
“G01N 33/483” which stands for “Physical analysis of biological material” The IPC is a tool
for quickly finding out whether some idea has already been registered or not, since for such a
(very typical) query, the exact name of a potential patent registration cannot be known, but
if it exists, it must be registered under a specific IPC key.

An interesting point is, that an invention must be registered under all keys it is considered similarity of IPC
keys

to be relevant for, patent law does not protect the idea with respect to any other keys. Thus,
a patent registration which uses several keys implicitly indicates a tie between those keys.
We use this fact to build a network of IPC keys, roughly on the subclass level, where edge
weights represent the ratio of patents two keys share. A cluster in this graph of IPC keys
thus corresponds to a set of keys of which patent registrations often use several at once—
yielding technological clusters. Using, e.g., one-year snapshots of patents this graph is actually
dynamic. We used this data set as a second test environment for time-expanded clustering. A time-expanded

clustering
strong smoothness is necessary to keep the slices, which suggest a classification, from changing
every year. Figure 5.1.4 is an excerpt of such a time-expanded graph.

Figure 5.1.4. A 5-year excerpt of the time-expanded graph of IPC keys (inter-time edges are hidden), based on
Finnish inventions registered at the European Patent Office. Node colors represent a time-expanded
clustering, identified as in Section 4.5.3. Nodes scale by the number of patents registered under their
key. Guess what areas the dominating blue nodes (prefixes H04L and H04Q) cover!

5.1.5 Online Shopping
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Figure 5.1.5. Distribution of clustering coeffi-
cients in the graph

Due to data privacy protection I do not know much background
about the two data sets Stefanie Nagel dealt with in her diploma
thesis [170] in a cooperation with epoq knowledgeware and its
co-executive Michael Bernhard. This smart and diligent student
addressed us with a proposal to do her diploma thesis on the topic
of graph clustering algorithms for the products of an online shop,
based on shopping cart data. We agreed on a topic which also
included some theory, of which perhaps the most interesting part
is a study on how network analysis can help to find the “right”
clustering algorithm for a data set. Several graph models were
considered until we decided on edge weights encoding the prob-
ability that two products are bought together, given at least one
of them is bought (rel. to the Jaccard coeff., see Equation 1.2.12).



256 Epilogue

5.1.6 Lipidomics

Biotechnology in general is a rapidly growing field of which lipidomics is a sub-discipline that
deals with lipids. Lipids are naturally-occurring molecules and include all fats, fat-solublelipids

vitamins, diglycerides, and many others, whose main biological functions are structurally
composing cell membranes, storing energy, and signaling. Lipids have been found to be good
indicators of an organism’s reaction to changes and diseases. The lipidome of an organismlipidome

or of some part of it is the signature of lipids of that entity and is itself one member of
the metabolome, together with sugars, nucleotides and amino-acids. Roughly speaking, themetabolome

metabolome, consisting of these four major groups of molecules, is the signature of functional
molecules of an organism. According to [224], lipidomics can be defined as the large-scale
study of pathways and networks of cellular lipids in biological systems.

Recent advances in high precision measurements of the metabolome, and of lipids in par-
ticular, by the method of mass spectrometry employing Fourier transform ion cyclotrone res-mass spectrometry

onance (FT-ICR MS) opened up new ways to address questions about the lipidome, see [225]
for an overview of this matter. One particular topic a group of researchers from Tallahasse,
Florida is concerned with, is measuring and understanding how an organism (i.e., its lipids)
infected by cancer reacts to curative treatments. Anke Meyer-Bäse from Florida State Univer-
sity and Mark R. Emmett and Huan He from the National High Magnetic Field Laboratory
contacted us with a proposal to collaborate on the evaluation of their measurements. More
precisely, the aim is to model the lipids as a graph based on similar behavior concerning
treatments, and to use graph clustering in order to find clusters of lipids that exhibit a con-
sistent behavior. Our current focus is on glioblastoma (a highly invasive brain tumor) cellsglioblastoma

and their treatment with cytotoxic (toxic to cells) chemotherapy “SN-38”, a wild-type tumor
suppressor protein “p53” (gene therapy), combinations of these and control setups. FT-ICRtherapy

MS basically measures how many infected cells undergo apoptosis (die) under the treatment.
Figure 5.1.6 depicts the main ingredients of this collaboration, biochemical experiments and
their measurements (a) and computational methods for the interpretation of the gathered
data (b). Many thanks to Anke Meyer-Bäse for the energy she put into getting this collabo-
rative project started, and for translating between the two worlds of mathematics and biology.

(a) Measurement profiles for the group of Phosphatidylinos-
itol, polar (negatively charged) lipids, with (blue) and
without (red) p53-treatment. The chemical formula de-
scribes a Phosphatidylinositol.

(b) Two clusterings, by colors and boxes, of the Ganglio-
sides, according to their behavior when treated with or
without p53, respectively. Edges and sizes encode dif-
ferences between the two measurements.

Figure 5.1.6. A glimpse of our collaboration with lipidomics research, mass spectrometry measurements (a) and a
graph visualization which helps to understand reactions to treatments and lipid correlations (b).



Section 5.2

Side Notes

A narrow strip of flattened soil,
a beginning and an end,
and in between, an ocean of adventure.

(Homage to singletrails,
BIKE Magazin, January 2008)

Distractions abound for any PhD student. But while distractions are usually pleasant
or even welcome, other duties are not. Among other things, I collected these oddities in

this clearly dispensable and informal section, if only for my personal records. I also take the
opportunity to mention and appreciate the students I advised in the past years.
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Figure 5.2.1. Snapshot of a dynamic visualization of Karl-
sruhe’s CS professors and their collaboration, runner-up, so-
cial network graphs competition, GD 2007

Graph Drawing Competitions. Infamous for
their time-consuming but addictive nature, the com-
petitions of the annual International Symposium on
Graph Drawing (GD), had me fascinated thrice during
my time as a PhD student with its not-so-serious prob-
lem statements. Contests range from specific tasks on
given data sets to freestyle drawing with special ap-
peal. At GD’05 Michael Baur, Marco Gaertler and
I presented a tool for exploring how actors migrate
between movie genres over time [32] (Figure 5.2.2a).

At GD’07 Thomas Schank made awesome dynamic
visualizations of the graph of professors at Karlsruhe’s
Fakultät für Informatik. Annual snapshots of these
scientists and their surrounding coauthors were taken
and used to model ties between them. A smooth dy-
namic visualization then showed the evolution of this
collaboration network. My modest part in this project
was extracting and preparing the annual snapshots
from the DBLP [4] database (see Section 5.1.3). Fig-
ure 5.2.1 shows one such snapshot.

Algorithmus der Woche. In fact not exclusively for the GD contest ’06 and its logo (see
Figure 5.2.2b), together with Steffen Mecke, I developed Flow Commander [119], a tool for
visualizing graph algorithms in 3D, as shown in Figure 5.2.2c. The initial incentive was to
find a good means to explain the Push-Relabel algorithm [112] to students. This then lead
to us participating in the GD contest, but also to a nice tool which we designed for pupils
within the project “Algorithmus der Woche” (algorithm of the week). This project took place
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(a) Exploring movie genres over time
and tracking the migration of actors
through them, contribution to the
evolving-graph drawing competition
using the Internet Movie Database,
honorable mention, GD 2005.

(b) This graph drawing depicts the ab-
stracted surroundings of Karlsruhe
Castle, it became the ubiquitous
logo of the conference and is en-
graved on a plaque in the pedestrian
zone of Karlsruhe, GD 2006.

(c) Algorithm visualization in 3D with
Flow Commander, never again strug-
gle explaining the Push-Relabel al-
gorithm, freestyle contest, honorable
mention, GD 2006; contribution to
“Algorithmus der Woche”.

Figure 5.2.2. Graphs in 3D, the contributions to the International Symposia on Graph Drawing and to the project
“Algorithmus der Woche” are still at use for teaching the Push-Relabel algorithm.

in the context of the “Jahr der Informatik” (year of informatics, 2006) and explained in an
understandable way many basic algorithms to pupils, both on an online website, where our
tool can be played with, and in a book [214]. The final result was a framework for graph
algorithms, and it is still used at least once per year—during the lecture on maximum-flow
algorithms. In fact, Berthold Vöcking’s idea to cast the collected contents of the project
“Algorithmus der Woche” into a book was a great success, work on an English version was
initiated shortly after the German book had been published. It was an interesting task for
Steffen and me to compose our chapters on the Push-Relabel algorithm for maximum-flows
in a way which non-computer scientists could understand, and it was encouraging to see the
success of the book.
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Figure 5.2.3. Half-finished city Voronoi diagram (red) of 12
point sites (disks) in the L1 plane, augmented by an arrange-
ment of fast line segments (bold). Cover of the proceedings
of VD’05 and logo of the Algorithms Group at TU/e, Eind-
hoven. Blue shapes depict a wavefront, and green arrows
indicate its combinatorial shape.

Selected Trivia. During my untroubled first year,
a drawing from my diploma thesis [114], which at the
same time became my first publication [121, 122, 123],
was elected to adorn the cover of the proceedings
of the 2nd International Symposium on Voronoi Di-
agrams in Science and Engineering (VD’05), where,
by a strange coincidence, I also received a best pre-
sentation award. Later, the drawing (in fact, part of
it) became the logo of the TU/e Algorithms Group at
Technische Universiteit Eindhoven, where my former
advisor Alexander Wolff moved to. Figure 5.2.3 shows
the drawing which exemplifies a wavefront expansion.

During my time as a PhD student, my teaching
duties comprised four exercise courses, two seminars,
two practical courses, six diploma theses and five stu-
dent research projects. I was in charge of editing and
preparing six books for publication, wrote parts of
seven milestone, activity or roadmap reports and one
final report for the European Commission within the

project “DELIS”4. Not counting workgroup-internal business, I traveled 12 different countries,
gave 18 talks and attended 23 conferences and project meetings.

4FET open project within FP-6-IST of the EU: ’Dynamically Evolving, Large-scale Information Systems”
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Students of Mine

During my years as a PhD student, I met and advised many smart students. Putting aside the
time invested to help, teach and advise them, I owe my thanks to many of them for promoting
research topics by their ideas and creativity and for relieving me of numerous burdens.

Diploma Theses:

Lin Huang “A Node’s Perspective of Changing Properties in Dynamic Networks” [134] models how
individual nodes move through the core hierarchy of the evolving AS graph and a graph
of co-sold dm products and thereby change their properties.

Dieter Glaser Time-expanded graph clustering is pioneered in “Zeitexpandiertes Graphenclustern – Mod-
ellierung und Experimente” [110], which evaluates models, measures and algorithms both
theoretically and practically.

Florian Hübner “The Dynamic Graph Clustering Problem – ILP-Based Approaches Balancing Optimality
and the Mental Map” [136] develops many fundamental concepts about smooth dynamic
clusterings based on ILPs, and evaluates them experimentally.

Stefanie Nagel “Optimisation of Clustering Algorithms for the Identification of Customer Profiles from
Shopping Cart Data” [170] is a comprehensive case study about how to find the most
appropriate graph clustering algorithm for a real-world task.

Tanja Hartmann Minimum-cut tree clusterings are dynamized in “Clustering Dynamic Graphs with Guar-
anteed Quality” [129], a strongly theoretical work with many results about dynamic cuts,
which also proves its practical applicability.

Selma Mukhtar “Dynamische Clusteranalyse für DM-Verkaufsdaten” [170] shows how much care is neces-
sary to model bulky real-world data, but also reveals how graph clustering can find and
follow customer profiles.

Student Research Projects:

Abian Blome “Empirical Analysis of k-Betweenness” [37] investigates what consequences a delayed re-
computation of betweenness has on betweenness-based clustering algorithms.

Lin Huang The name says it all for “Survey on Generators for Internet Topologies at the AS
Level” [135], which measures many properties from network analysis.

Myriam Freidinger “Minimale Schnitte und Schnittbäume” [95] investigates if and how min-cuts can be used
to build min-cut trees and develops and evaluates heuristics.

Christian Schulz “Design and Experimental Evaluation of a Local Graph Clustering Algorithm” [198] pursues
high-speed graph clustering without index maximization.

Christian Staudt As the name suggests, “Algorithms and Experiments for Modularity-Driven Clusterings of
Dynamic Graphs” [203] aims at modularity-driven online dynamic clustering.

Student Workers:

Hai Wei His parsers, database tools, and visionary graph specification method are still in use.

Moritz Kroll Without him, many errors might still lurk in the lecture notes for “Algorithmentechnik”.

Pascal Maillard Some of the results of this smart “theory-worker” still await application.

Jens Müller Rewriting my ancient (and terrible) Java code was a valiant deed.

Florian Böhl This “3D-worker” had our tool for algorithm visualization make a quantum leap.

Christian Schulz Migrating from Java to C++ really sped clustering up a lot.

Christian Staudt From the dynamic generator via dynamic clusterings to a powerful Matlab framework.

“The Markers” Many thanks to Houssem Belloum, Tirdad Rahmani, Xuan Khanh Le, Thomas Pajor and
Julian Dibbelt for their work on marking all that students’ homework.



Section 5.3

Conclusion

...all good things must come to an end...

(Q to Jean-Luc Picard,
Star Trek: The Next Generation,
Episode 7x25/26, “All Good Things. . . ”)

The work conducted in this thesis advances the three areas that have been addressed: static
graph clustering, network analysis and dynamic graph clustering. At the same time, many
questions turned up, calling for more work. A common denominator of many such questions
stems from the split view onto theoretical reasoning and practical behavior. However, before
daring an outlook, the principal achievements of this thesis shall be summarized.

Modularity-driven clustering as it is done in practice has received corroboration by the NP-
hardness of modularity optimization and by the good behavior of the greedy agglomerative
heuristic in a systematic evaluation and a comparison to established clustering algorithms.
Even the gap to a modularity-optimal clustering, computed with an integer linear program,
was consistently small, in practice. The quality measure modularity itself has been shown
to comply with human intuition of clustering goodness in large parts. Doubts concerning
the usage of coverage as the base measure for modularity have been settled by the fact that
replacing coverage by the more reliable measure performance, in the concept of modularity ,
yields an equivalent measure. At the same time, words of warning have been said about
the measure modularity and the greedy algorithm. In non-simple graphs, this measure still
works, but requires careful notation, and the probability space that supports it is not sound
without loops and parallel edges. This result puts some previous works into question. For
the quality of a clustering found by the the widespread greedy algorithm, no approximation
factor can be given, in the worst case. The design and analysis of Orca, a fast clustering
algorithm for huge graphs, revealed that without relying on any single index, simple structural
operations can lead to clusterings with higher quality—even modularity—than modularity-
driven algorithms. Together with its sole competitor, Orca is the only graph clustering
algorithm that can tackle graphs approaching billions of elements. The first feasible measures
for the comparison of graph clusterings have been proposed. Moreover it has been shown that
traditional measures, which ignore the edge set of a graph, conflict with human intuition.

The need for visualizations of large clustered graphs fueled the development of LunarVis.
This tool reveals abstract properties of a graph partition at a glance, however, more impor-
tantly, it allows for the simultaneous perception of structure inside clusters, element-level
properties of nodes and edges, and connectivity between elements of the partition. An appli-
cation in the field of network analysis showed that these analytic visualizations, or network
fingerprints, are indeed suitable for guiding an analysis by revealing unknown traits. Discrep-
ancies between the load distribution in a peer-to-peer network and a randomized simulation
thereof could be exposed and further investigated. With instances growing in size, the impor-
tance of such fingerprints will increase, as they offer an easy overview of many properties of a
network. In a veritable foray into network analysis, the relevance of the core decomposition to
the above analysis then led to a random generator for graphs with a predefined core structure,
which can additionally accommodate the concept of preferential attachment.



5.3 Conclusion 261

The upcoming field of dynamic graph clustering still lacks established problem state-
ments and methods. The design of a random generator for dynamic graphs which feature
an implanted ground-truth clustering that changes over time was a first and important step
towards reliable and unbiased measurements of dynamic clustering algorithms. Returning to
modularity-driven algorithms, dynamic versions of the most widespread greedy heuristic for
modularity maximization and the currently fastest local variant have been proposed. These al-
gorithms are designed for the basic and reasonable task of quickly updating a graph clustering
with high modularity , after the graph changes. The outcomes of an experimental evaluation
on both generated and real-world instances strongly support the dynamic approach: In com-
parison to re-clustering a changed graph from scratch, the dynamic algorithms are not only
much faster, they also achieve smoother clustering dynamics, i.e., consecutive clusterings do
not differ much, and consistently yield a higher quality than their static counterparts. Using
the same search space as the dynamic heuristics, even a locally optimal integer linear program
could not compete with the heuristics in terms of any of the above three criteria. Clustering
algorithms which allow for a provable clustering guarantee are rare, even more so in dynamic
scenarios. A fully dynamic version of a clustering algorithm based on minimum-cut trees
has been presented, which dynamically maintains the bottleneck quality the static clustering
algorithm guarantees. Apart from an asymptotic speed-up in most combinatorial cases and
very smooth updates of clusterings in general, the work on this dynamic clustering algorithm
yields many new insights into the structure of minimum cuts in changing graphs. For a whole
family of problem statements in an offline setting, a framework for optimal graph clusterings
of dynamic graphs has been given. For a typical offline scenario, time-expanded graph clus-
tering has been proposed and evaluated in a case study. This method does not only yield
good clusterings of each single snapshot of a dynamic graph, with smooth transitions between
consecutive clusterings, but also provides correspondences between the clusters of different
snapshots. In contrast to the few existing approaches for such a task, on the one hand, time-
expanded graph clustering uses true offline knowledge about the instance when computing
the clusterings, and on the other hand, this technique avoids the additional, error-prone step
of matching clusters between time steps, in order to actually track clusters over time.

Summary. The common practice of using modularity for static graph clustering kicked off
this thesis. Modularity can now be claimed to be largely understood. Graphs which previously
were prohibitively large can be clustered very well, even without modularity , using Orca.
Traditional graph drawing conventions become secondary criteria in the fingerprints of large,
partitioned networks, made by LunarVis. Quick and smooth dynamic clustering algorithms
are indispensable when analyzing or monitoring large and evolving networks. Using the first
sound notions of clustering smoothness, methods are now at hand which reliably cluster
changing graphs faster, smoother and better than static methods. One proposed method
even allows quality guarantees, in case sparse bottlenecks between, and good connectivity
within clusters must be ensured over time. Finally, trend analysis and evolutionary graph
clustering can be conducted with the time-expanded approach, which solves offline clustering
problems in dynamic graphs and allows to track clusters over time.

Outlook. All things considered, the practitioner has little knowhow on graph clustering,
but needs a reliable tool, which is simple to use. In such a tool, graph theory and estab-
lished methods from network analysis will make the choices a practitioner cannot make in a
meaningful way. It can quickly analyse the network and decide which clustering technique
to apply and how to set parameters. The result will then be presented to the user in an
adequate format, revealing many other traits of a network besides the clustering itself. This
thesis contains advances towards such a vision, however, graph theory, algorithm engineering
and experimental analysis will have to continue hand in hand quite another little bit. The
work in this thesis suggests that much of what has been learned in static graph clustering can
be used to reliably cluster changing graphs. I conjecture that offline graph clustering harbors
a potential for predictions about future clustering structure in evolving graphs.
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[45] Ulrik Brandes, Daniel Delling, Martin Höfer, Marco Gaertler, Robert Görke, Zoran Nikoloski,
and Dorothea Wagner. On Finding Graph Clusterings with Maximum Modularity. In Andreas
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