

 Karlsruhe Reports in Informatics 2010,11
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Dynamic Frames in Java Dynamic
Logic
Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, Benjamin Weiß

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197554606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Dynamic Frames in Java Dynamic Logic

Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
{pschmitt,mulbrich,bweiss}@ira.uka.de

Abstract. This report is a companion to the paper Dynamic Frames
in Java Dynamic Logic [2]. It contains complementary formal definitions
and proofs.

1 Formalisation

1.1 Syntax

Definition 1 (Signatures). A signature Σ is a tuple

Σ = (T ,v,V,PV,F ,P, α,Prg)

where T is a finite set of types; where v is a partial order on T called the
subtype relation; where V is a set of (logical) variables; where PV is a set of
program variables; where F is a set of function symbols; where P is a set of
predicate symbols; where α is a static typing function such that α(v) ∈ T for
all v ∈ V ∪ PV, α(f) ∈ T ∗ × T for all f ∈ F , and α(p) ∈ T ∗ for all p ∈ P; and
where Prg is some Java program, i.e., a set of Java classes and interfaces.

We use the notation v :A for α(v) = A, the notation f :A1, . . . , An →
A for α(f) = ((A1, . . . , An), A), and the notation p :A1, . . . , An for α(p) =
(A1, . . . , An).

We require that the following types, program variables, function and predicate
symbols are present in every signature:

– Any ,Boolean, Int ,Null ,LocSet ,Field ,Heap ∈ T
– all reference types of Prg also appear as types in T ; in particular, Object ∈ T
– all local variables a of Prg with Java type T also appear as program variables

a :A ∈ PV, where A = T if T is a reference type, A = Boolean if T =
boolean, and A = Int if T = int (in this paper we do not consider other
primitive types, and we ignore integer overflows)

– heap : Heap ∈ PV
– castA : Any → A ∈ F (for every type A ∈ T)
– TRUE ,FALSE : Boolean ∈ F
– selectA : Heap,Object ,Field → A ∈ F (for every type A ∈ T)

– store : Heap,Object ,Field ,Any → Heap ∈ F
– anon : Heap,LocSet ,Heap → Heap ∈ F
– null : Null ∈ F
– all Java fields f of Prg also appear as constant symbols f : Field ∈ F
– arr : Int → Field ∈ F , created : Field ∈ F
– allLocs : LocSet ∈ F , allFields : Object → LocSet ∈ F , freshLocs : Heap →

LocSet ∈ F
– ∅̇ : LocSet ∈ F , singleton : Object ,Field → LocSet ∈ F
– ∪̇, ∩̇, \̇ : LocSet ,LocSet → LocSet ∈ F
– exactInstanceA : Any ∈ P (for every type A ∈ T)
– wellFormed : Heap ∈ P
–

.
= : Any ,Any ∈ P

– ∈̇ : Object ,Field ,LocSet ∈ P, ⊆̇, disjoint : LocSet ,LocSet ∈ P

We also require that Boolean, Int ,Object ,LocSet v Any; that for all C ∈ T with
C v Object we have Null v C; that for all types A,A′ of Prg we have A′ v A
if and only if A′ is a subtype of A in Prg; that the types explicitly mentioned
in this definition are otherwise unrelated to each other wrt. v; and that the
types Boolean, Int, Null , LocSet, Field and Heap do not have subtypes except
themselves. Finally, we demand that V, PV, F and P each contain an infinite
number of symbols of every typing.

For illustration, the type hierarchy is visualised in Fig. 1. In the following, we
assume a fixed signature Σ = (T ,v,V,PV,F ,P, α,Prg).

Any Field Heap . . .

Boolean Int Object LocSet

.

Null

Fig. 1. Type hierarchy

Definition 2 (Syntax). The sets TrmA
Σ of terms of type A, FmaΣ of formulas

and UpdΣ of updates are defined by the following grammar:

TrmA
Σ ::= x | a | f(Trm

B′
1

Σ , . . . ,Trm
B′
n

Σ) | if (FmaΣ)then(TrmA
Σ)else(TrmA

Σ) |
{UpdΣ}TrmA

Σ

FmaΣ ::= true | false | p(Trm
B′

1

Σ , . . . ,Trm
B′
n

Σ) | ¬FmaΣ | FmaΣ ∧ FmaΣ |
FmaΣ ∨ FmaΣ | FmaΣ → FmaΣ | FmaΣ ↔ FmaΣ |

2

∀Ax; FmaΣ | ∃Ax; FmaΣ | [p]FmaΣ | 〈p〉FmaΣ | {UpdΣ}FmaΣ

UpdΣ ::= a := TrmA′

Σ | UpdΣ ‖UpdΣ | {UpdΣ}UpdΣ

for any variable x :A ∈ V, any program variable a :A ∈ PV, any function symbol
f :B1, . . . , Bn → A ∈ F and any predicate symbol p :B1, . . . , Bn where B′1 v B1,
. . . , B′n v Bn, any executable Java fragment p, and any type A′ ∈ T with
A′ v A.

A sequent is a syntactical construct Γ ⇒ ∆, where Γ,∆ ∈ 2FmaΣ are finite
sets of formulas.

We use infix notation for the binary symbols ∪̇, ∩̇, \̇, .
=, and ⊆̇. Furthermore,

we use the notation (A)t for castA(t), the notation o.f for selectA(heap, o, f)
where f : Field ∈ F is a Java field, the notation a[i] for selectA(heap, a, arr(i)),
the notation o.* for allFields(o), the notation {(o, f)} for singleton(o, f), the
notation t1 6

.
= t2 for ¬(t1

.
= t2), the notation (o, f) ∈̇ s for ∈̇(o, f, s), and the

notation (o, f) /̇∈ s for ¬(o, f) ∈̇(s).

1.2 Semantics

Definition 3 (Kripke structures). A Kripke structure K for a signature Σ
is a tuple

K = (D, δ, I,S, ρ)

where D is a set of semantical values called the domain; where δ is a dy-
namic typing function δ : D → T ; where (using the definition DA = {d ∈
D | δ(d) v A}) I is an interpretation function that maps every function symbol
f :A1, . . . , An → A ∈ F to a function I(f) : DA1 , . . . ,DAn → DA and every
predicate symbol p : A1, . . . , An ∈ P to a relation I(p) ⊆ DA1 ×· · ·×DAn ; where
S is the set of all states, which are functions s ∈ S mapping every program
variable a : A ∈ PV to a value s(a) ∈ DA; and where ρ is a function associating
with every executable Java fragment p in the context of Prg a transition relation
ρ(p) ⊆ S2 such that (s1, s2) ∈ ρ(p) iff p, when started in s1, terminates normally
in s2 (according to the Java semantics [1]). We consider Java programs to be
deterministic, so for all program fragments p and all s1 ∈ S, there is at most
one s2 such that (s1, s2) ∈ ρ(p).

We require that every Kripke structure satisfies the following:

– DBoolean = {tt ,ff }, DInt = Z, DNull = {I(null)}, DLocSet = 2D
Object×DField

,
DHeap = DObject ×DField → DAny

– δ(d) 6= T for all d ∈ D, if T ∈ T represents an interface or an abstract class
– {d ∈ D | δ(d) = T} is infinite for all T v Object, T 6= Null not representing

an interface or an abstract class
– I(castA)(d) = d for all d ∈ DA
– I(TRUE) = tt, I(FALSE) = ff
– I(selectA)(h, o, f) = I(castA)(h(o, f)) for all h ∈ DHeap, o ∈ DObject , f ∈
DField

3

– I(store)(h, o, f, d)(o′, f ′) =

{
d if o = o′ and f = f ′

h(o′, f ′) otherwise

for all h ∈ DHeap, o, o′ ∈ DObject , f, f ′ ∈ DField , d ∈ DAny

– I(anon)(h, s, h′)(o, f) =

h′(o, f) if

(
(o, f) ∈ s and f 6= I(created)

)
or (o, f) ∈ I(freshLocs)(h)

h(o, f) otherwise

for all h, h′ ∈ DHeap, s ∈ DLocSet , o ∈ DObject , f ∈ DField

– let UniqueFunctions ⊆ F be the set consisting of the constant symbols rep-
resenting Java fields, of arr and of created; then we require that for all
f, g ∈ UniqueFunctions the function I(f) is injective, and that the ranges of
the functions I(f) and I(g) are disjoint.

– I(allLocs) = DObject ×DField , I(allFields)(o) = {(o, f) | f ∈ DField},
I(freshLocs)(h) = {(o, f) ∈ I(allLocs) | o 6= I(null), h(o, I(created)) = ff }

– I(∅̇) = ∅, I(singleton)(o, f) = {(o, f)}, I(∪̇) = ∪, I(∩̇) = ∩, I(\̇) = \
– I(exactInstanceA) = {d ∈ D | δ(d) = A}
– I(wellFormed) = {h ∈ DHeap | for all o ∈ DObject , f ∈ DField :

if h(o, f) ∈ DObject , then h(o, f) = I(null)
or h(h(o, f), I(created)) = tt}

– I(
.
=) = {(d, d) ∈ D2}

– I(∈̇) = {(o, f, s) ∈ DObject×DField×DLocSet | (o, f) ∈ s}, I(⊆̇) = {(s1, s2) ∈
(DLocSet)2 | s1 ⊆ s2}, I(disjoint) = {(s1, s2) ∈ (DLocSet)2 | s1 ∩ s2 = ∅}

Definition 4 (Semantics). Given a Kripke structure K = (D, δ, I,S, ρ), a
state s ∈ S and a variable assignment β : V → D (where for every x :A ∈ V we
have β(x) ∈ DA), we evaluate terms t ∈ TrmA

Σ to a value valK,s,β(t) ∈ DA, for-
mulas ϕ ∈ FmaΣ to a truth value valK,s,β(ϕ) ∈ {tt ,ff }, and updates u ∈ UpdΣ
to a state transformer valK,s,β(u) : S → S as defined below.

valK,s,β(x) = β(x)

valK,s,β(a) = s(a)

valK,s,β(f(t1, . . . , tn)) = I(f)(valK,s,β(t1), . . . , valK,s,β(tn))

valK,s,β(if (ϕ)then(t1)else(t2)) =

{
valK,s,β(t1) if valK,s,β(ϕ) = tt

valK,s,β(t2) otherwise

valK,s,β({u}t) = valK,s′,β(t), where s′ = valK,s,β(u)(s)

valK,s,β(true) = tt

valK,s,β(false) = ff

valK,s,β(p(t1, . . . , tn)) = tt iff (valK,s,β(t1), . . . , valK,s,β(tn)) ∈ I(p)

valK,s,β(¬ϕ) = tt iff valK,s,β(ϕ) = ff

valK,s,β(ϕ1 ∧ ϕ2) = tt iff ff 6∈ {valK,s,β(ϕ1), valK,s,β(ϕ2)}
valK,s,β(ϕ1 ∨ ϕ2) = tt iff tt ∈ {valK,s,β(ϕ1), valK,s,β(ϕ2)}

valK,s,β(ϕ1 → ϕ2) = valK,s,β(¬ϕ1 ∨ ϕ2)

valK,s,β(ϕ1 ↔ ϕ2) = valK,s,β(ϕ1 → ϕ2 ∧ ϕ2 → ϕ1)

4

valK,s,β(∀Ax;ϕ) = tt iff ff 6∈ {valK,s,βdx(ϕ) | d ∈ DA}
valK,s,β(∃Ax;ϕ) = tt iff tt ∈ {valK,s,βdx(ϕ) | d ∈ DA}

valK,s,β([p]ϕ) = tt iff ff 6∈ {valK,s′,β(ϕ) | (s, s′) ∈ ρ(p)}
valK,s,β(〈p〉ϕ) = tt iff tt ∈ {valK,s′,β(ϕ) | (s, s′) ∈ ρ(p)}

valK,s,β({u}ϕ) = valK,s′,β(ϕ), where s′ = valK,s,β(u)(s)

valK,s,β(a := t)(s′)(b) =

{
valK,s,β(t) if b = a

s′(b) otherwise

for all s′ ∈ S, b ∈ PV
valK,s,β(u1 ‖u2)(s′) = valK,s,β(u2)(valK,s,β(u1)(s′)) for all s′ ∈ S

valK,s,β({u1}u2) = valK,s′,β(u2), where s′ = valK,s,β(u1)(s)

We sometimes write (K, s, β) |= ϕ instead of valK,s,β(ϕ) = tt. A formula ϕ ∈
FmaΣ is called logically valid, in symbols |= ϕ, iff (K, s, β) |= ϕ for all Kripke
structures K, all states s ∈ S, and all variable assignments β.

The semantics of a sequent Γ ⇒ ∆ is the same as that of a formula
∧
Γ →∨

∆, where
∨
{ϕ1, . . . , ϕn} = ϕ1 ∨ · · · ∨ϕn, and

∧
{ϕ1, . . . , ϕn} = ϕ1 ∧ · · · ∧ϕn.

1.3 Observations

The propositions below are used as assumptions in the proofs in Sect. 2. We do
not prove them, but consider them obvious.

Proposition 1 (Non-occurring program variables). For all Kripke struc-
tures K, all states s, s′ ∈ S, all variable assignments β, and all t ∈ TrmΣ ∪
FmaΣ ∪ UpdΣ: if for all program variables a ∈ PV that syntactically occur in t
we have s(a) = s′(a), then we also have valK,s,β(t) = valK,s′,β(t).

Note that a program variable b not occurring in t can play a role in evaluating
t, namely if t contains a program which calls a method that in turn manipulates
b. Still, in a Java program a called method can never read the value of a local
variable b before assigning to b; thus, the initial value of b as defined by s or
s′ does not matter. We consider heap ∈ PV to implicitly occur in field access
expressions o.f, in array access expressions a[i], and in method calls o.m(. . .).

Proposition 2 (Non-occurring function and predicate symbols). For all
Kripke structures K = (D, δ, I,S, ρ) and K′ = (D, δ, I ′,S, ρ) differing only in the
interpretation functions I vs. I ′, all states s ∈ S, all variable assignments β,
and all t ∈ TrmΣ ∪ FmaΣ ∪ UpdΣ: if for all function and predicate symbols
f ∈ F ∪ P that syntactically occur in t we have I(f) = I ′(f), then we also have
valK,s,β(t) = valK′,s,β(t).

Proposition 3 (Overwritten program variables). For all Kripke structures
K, all states s, s′ ∈ S, all variable assignments β, all updates (a := t′) ∈ UpdΣ

5

where a does not occur in t′, all t ∈ TrmΣ ∪FmaΣ ∪UpdΣ, all ϕ ∈ FmaΣ, and
all program fragments p: if for all program variables b ∈ PV \ {a} which occur
in t or ϕ we have s(b) = s′(b), then we also have:

valK,s,β({a := t′}t) = valK,s′,β({a := t′}t)
valK,s,β([a = t′; p]ϕ) = valK,s′,β([a = t′; p]ϕ)

valK,s,β(〈a = t′; p〉ϕ) = valK,s′,β(〈a = t′; p〉ϕ)

Prop. 3 holds because the initial value of the program variable a is overwritten
by the preceding update or assignment, and thus cannot influence the evaluation
of t or ϕ, respectively.

Proposition 4 (Method calls). Let p be a method call statement (res =
this.m(p1, . . . , pn);), let hPre : Heap ∈ PV, let reachableState ∈ FmaΣ be as in
Def. 3 of [2], let reachableState ′ ∈ FmaΣ be as in Def. 4, and let noDeallocs ∈
FmaΣ be as in Def. 7. Then the following holds:

|= reachableState → {hPre := heap}[p](reachableState ′ ∧ noDeallocs)

Prop. 4 is guaranteed by the semantics of Java.

2 Proofs

2.1 Preparation

Lemma 1 (Relation between frame and anon). Let mod ∈ TrmLocSet
Σ ,

hPre : Heap ∈ PV, frame ∈ FmaΣ be as in Def. 3 of [2], noDeallocs ∈ FmaΣ be
as in Def. 7, and let frame ′ ∈ FmaΣ be the formula

heap
.
= anon(hPre, {heap := hPre}mod , heap).

Then the following holds:

|= (frame ∧ noDeallocs)↔ frame ′

Proof. Let K be a Kripke structure, s ∈ S be a state, β be a variable as-
signment, h = s(heap), h′ = valK,s,β(anon(hPre, {heap := hPre}mod , heap),
spre = valK,s,β(heap := hPre)(s), hpre = spre(heap), mpre = valK,spre ,β(mod),
fl = I(freshLocs)(h), and flpre = I(freshLocs)(hpre). Note that hpre = s(hPre).
By definition of I(anon), we know that the following holds for all o ∈ DObject ,
f ∈ DField :

h′(o, f) =

h(o, f) if

(
(o, f) ∈ mpre and f 6= I(created)

)
or (o, f) ∈ flpre

hpre(o, f) otherwise

(1)

We first show that (K, s, β) |= frame ∧ noDeallocs implies that (K, s, β) |=
frame ′, and then the other way round.

6

1. Let o ∈ DObject , f ∈ DField . Using the definitions of frame, noDeallocs and
frame ′, we assume

(o, f) ∈ mpre ∪ flpre or h(o, f) = hpre(o, f) (2)

if (o, f) ∈ fl , then (o, f) ∈ flpre (3)

h(I(null), I(created)) = hpre(I(null), I(created)) (4)

and aim to show
h′(o, f) = h(o, f). (5)

From (2) we get that one of the following three cases must apply:
– (o, f) ∈ mpre . If f 6= I(created) or (o, f) ∈ flpre , then (5) immediately

follows from (1). We thus assume

f = I(created) (6)

(o, f) 6∈ flpre . (7)

Now, (1) yields
h′(o, f) = hpre(o, f). (8)

If o = I(null), then we get from (4) that h(o, f) = hpre(o, f), which
together with (8) immediately yields (5). Thus we assume

o 6= I(null). (9)

From (3) and (7) we get that

(o, f) 6∈ fl .

This, (9), and the definition of I(freshLocs) imply h(o, I(created)) = tt .
Analogously, (7) and (9) imply hpre(o, I(created)) = tt . Together, we
have h(o, I(created)) = hpre(o, I(created)), which because of (6) can be
written as h(o, f) = hpre(o, f). We combine this with (8) to get (5).

– (o, f) ∈ flpre . Then (1) immediately yields (5).
– h(o, f) = hpre(o, f). If (o, f) ∈ mpre or (o, f) ∈ flpre , then the proof

proceeds as for the respective case above. Otherwise, (1) guarantees that
h′(o, f) = hpre(o, f), and thus we have (5).

2. Let o ∈ DObject , f ∈ DField . We assume (5), and show first (2), then (3),
and finally (4).
(a) If (o, f) ∈ mpre or (o, f) ∈ flpre , then (2) holds trivially. Otherwise, (5)

and (1) imply h(o, f) = hpre(o, f), which also implies (2).
(b) We prove (3) by contradiction: we assume that (o, f) ∈ fl\flpre . By defini-

tion of I(freshLocs), this means that o 6= I(null), that h(o, I(created)) =
ff , and that hpre(o, I(created)) = tt . From (5) and (1) we get that
h(o, I(created)) = hpre(o, I(created)). Together, we have ff = tt .

(c) The definition of I(freshLocs) tells us that (I(null), I(created)) 6∈ flpre .
Thus, (5) and (1) immediately guarantee (4). ut

7

2.2 Method Contracts

Theorem 1 (Soundness of useMethodContract). Let Γ,∆ ∈ 2FmaΣ , u ∈
UpdΣ, J·K ∈ {[·], 〈·〉}, r ∈ PV, o ∈ TrmΣ, the method m, p′1, . . . , p

′
n ∈ TrmΣ,

ϕ ∈ FmaΣ, A ∈ T , mct = (m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ),
reachableState, reachableState ′ ∈ FmaΣ, v, w ∈ UpdΣ, and h, r′ ∈ F all be as in
Def. 4 of [2]. If

|= Γ ⇒ {u}{w}(pre ∧ reachableState), ∆ (10)

|= Γ ⇒ {u}{w}{hPre := heap}{v}(post ∧ reachableState ′ → J. . .Kϕ), ∆ (11)

and if for all types B v A we have

|= CorrectMethodContract(mct , B), (12)

then the following holds:

|= Γ ⇒ {u}Jr = o.m(p′1, . . . , p
′
n); . . .Kϕ,∆.

Proof. Let (10), (11) and (12) hold. Let furthermore K = (D, δ, I,S, ρ) be a
Kripke structure, s ∈ S, and β be a variable assignment. Our goal is to show

(K, s, β) |= Γ ⇒ {u}Jr = o.m(p′1, . . . , p
′
n); . . .Kϕ,∆.

If there is γ ∈ Γ with valK,s,β(γ) = ff or if there is δ ∈ ∆ with valK,s,β(δ) = tt ,
then this is trivially true. We therefore assume that

(K, s, β) |=
∧

(Γ ∪ ¬∆), (13)

and aim to show that (K, s, β) |= {u}Jr = o.m(p′1, . . . , p
′
n); . . .Kϕ.

Let s1 = valK,s,β(u)(s). Then our goal is to show

(K, s1, β) |= Jr = o.m(p′1, . . . , p
′
n); . . .Kϕ.

Let s2 = valK,s1,β(w)(s1). Because of the definition of w, it holds for all a ∈
PV \ {this, p1, . . . , pn} that s1(a) = s2(a). Since by Def. 4 neither this nor
p1, . . . , pn occur in the above formula, Prop. 1 tells us that the interpretation of
this formula is the same in s1 and s2. It is therefore sufficient if we show

(K, s2, β) |= Jr = o.m(p′1, . . . , p
′
n); . . .Kϕ.

The definition of w and Prop. 1 ensure that s2(this) = valK,s2,β(o), and that
s2(p1) = valK,s2,β(p′1), . . . , s2(pn) = valK,s2,β(p′n). Thus, we can aim to prove
the formula below instead of the formula above:

(K, s2, β) |= Jr = this.m(p1, . . . , pn); . . .Kϕ.

Since by Def. 4 the program variable res does not occur in the above formula,
the Java semantics allows us to instead show

(K, s2, β) |= Jres = this.m(p1, . . . , pn); r = res; . . .Kϕ.

8

Let s3 = valK,s2,β(hPre := heap)(s2). Since by Def. 4 the program variable hPre
does not occur in the above formula, by Prop. 1 it is sufficient if we prove

(K, s3, β) |= Jres = this.m(p1, . . . , pn); r = res; . . .Kϕ. (thm1-goal)

We combine (13) with (10) to get

(K, s, β) |= {u}{w}(pre ∧ reachableState),

which by definition of s2 is the same as

(K, s2, β) |= pre ∧ reachableState. (14)

Let C = δ(s2(this)). This means that

(K, s2, β) |= exactInstanceC(this). (15)

Since α(this) = A, we have C v A because of well-typedness. Instantiating
(12) with C and s2 yields

(K, s2, β) |= pre ∧ reachableState ∧ exactInstanceC(this)

→ {hPre := heap}Jres = this.m(p1, . . . , pn);K
′(post ∧ frame)

where J·K′ is 〈·〉 if J·K is 〈·〉, and where J·K′ is either 〈·〉 or [·] otherwise. Together
with (14) and (15), this implies

(K, s2, β) |= {hPre := heap}Jres = this.m(p1, . . . , pn);K
′(post ∧ frame).

With the definition of s3, this becomes

(K, s3, β) |= Jres = this.m(p1, . . . , pn);K
′(post ∧ frame). (16)

If there is no s4 ∈ S such that (s3, s4) ∈ ρ(res = this.m(p1, . . . , pn);) (i.e.,
if the method call does not terminate when started in s3), then (16) implies that
J·K′ must be [·], and thus J·K also must be [·]. Then, (thm1-goal) holds trivially,
because there is no final state which would have to satisfy ϕ.

We can thus find s4 ∈ S such that (s3, s4) ∈ ρ(res = this.m(p1, . . . , pn);).
As our programs are deterministic, s4 is the only such state. Our proof goal
(thm1-goal) now becomes

(K, s4, β) |= Jr = res; . . .Kϕ. (thm1-goal’)

From (16) and the definition of s4 we get

(K, s4, β) |= post ∧ frame. (17)

Let noDeallocs ∈ FmaΣ be as in Def. 7. Prop. 4 tells us that

(K, s2, β) |= reachableState

→ {hPre := heap}[res = this.m(p1, . . . , pn;)]

(reachableState ′ ∧ noDeallocs).

9

Together with (14) and the definition of s4, this turns into

(K, s4, β) |= reachableState ′ ∧ noDeallocs. (18)

Let K′ = (D, δ, I ′,S, ρ) be a Kripke structure identical to K, except that
I ′(h) = s4(heap), and except that I ′(r′) = s4(res). Since by Def. 4 the symbols
h and r′ do not occur in Γ nor in∆, we get from (13) that (K′, s, β) |=

∧
(Γ∪¬∆).

This and (11) imply

(K′, s, β) |= {u}{w}{hPre := heap}{v}(post ∧ reachableState ′ → J. . .Kϕ).

As h and r′ do not occur in u, in w or in hPre := heap, the above and Prop. 2
imply that

(K′, s3, β) |= {v}(post ∧ reachableState ′ → J. . .Kϕ).

Let s′4 = valK′,s3,β(v)(s3). Then the above implies

(K′, s′4, β) |= post ∧ reachableState ′ → J. . .Kϕ.

Since h and r′ do not occur in the above formula, by Prop. 2 we get that

(K, s′4, β) |= post ∧ reachableState ′ → J. . .Kϕ. (19)

Given the definition of s4, the semantics of Java tells us that for all a ∈
PV \ {heap, res} we have s3(a) = s4(a). Similarly, the definition of s′4 implies
that for all a ∈ PV \ {heap, r, res} we have s3(a) = s′4(a). Together, we have

for all a ∈ PV \ {heap, r, res} : s′4(a) = s4(a). (20)

The definition of s′4 also guarantees that

s′4(heap) = valK′,s3,β(anon(heap,mod , h)) (21)

s′4(r) = I ′(r′) = s4(res) (22)

s′4(res) = I ′(r′) = s4(res) (23)

Using (17) and (18), Lemma 1 tells us that

(K, s4, β) |= heap
.
= anon(hPre, {heap := hPre}mod , heap),

which we can also express as

s4(heap) = valK,s4,β(anon(hPre, {heap := hPre}mod , heap)).

Since by Def. 4 the function symbols h and r′ do not occur in the above formula,
and since K′ is otherwise identical to K, Prop. 2 yields

s4(heap) = valK′,s4,β(anon(hPre, {heap := hPre}mod , heap)).

10

As we defined K′ such that I ′(h) = s4(heap), this implies

s4(heap) = valK′,s4,β(anon(hPre, {heap := hPre}mod , h)).

Since s3 and s4 are identical except for heap and res, and since res does
not occur in {heap := hPre}mod , Prop. 3 tells us that valK,s4,β({heap :=
hPre}mod) = valK,s3,β({heap := hPre}mod). As heap and res do not occur
in the other arguments of anon, we can transform the statement above into

s4(heap) = valK′,s3,β(anon(hPre, {heap := hPre}mod , h)).

The definition of s3 implies s3(heap) = s3(hPre). Thus, the update heap := hPre

has no effect in s3. This allows simplifying the above into

s4(heap) = valK′,s3,β(anon(hPre,mod , h)),

and replacing hPre with heap to get

s4(heap) = valK′,s3,β(anon(heap,mod , h)).

This, together with (21), implies that s4(heap) = s′4(heap). Combining this
result with (20) and (23) yields that s4 and s′4 differ at most in r. Since by
Def. 4 the program variable r does not occur in post , (17) and Prop. 1 imply

(K, s′4, β) |= post . (24)

As r also does not occur in reachableState ′, we get from (18) that

(K, s′4, β) |= reachableState ′.

This, (24) and (19) together imply

(K, s′4, β) |= J. . .Kϕ.

By (22) and (23), we know that s′4(res) = s′4(r). Thus, the Java semantics allows
us to rewrite the above statement into

(K, s′4, β) |= Jr = res; . . .Kϕ.

Finally, as s4 and s′4 differ at most in r, Prop. 3 tells us that

(K, s4, β) |= Jr = res; . . .Kϕ,

and this is property (thm1-goal’) which we aimed to show. ut

2.3 Dependency Contracts

Theorem 2 (Soundness of useDependencyContract). Let Γ,∆ ∈ 2FmaΣ ,
obs ∈ F∪P, hnew = (f1(f2(. . . (fm(hbase , . . .)))), o, p′1, . . . , p

′
n) ∈ TrmΣ, A ∈ T ,

depct = (obs, this, (p1, . . . , pn), pre, dep), hPre ∈ PV, mod = allLocs \̇ dep,

11

reachableState, frame,noDeallocs ∈ FmaΣ, w ∈ UpdΣ, guard , equal ∈ FmaΣ all
be as in Def. 7 of [2]. If

|= Γ, guard → equal ⇒ ∆ (25)

and if for all types B v A we have

|= CorrectDependencyContract(depct , B), (26)

then the following holds:

|= Γ ⇒ ∆.

Proof. Let (25) and (26) hold, and let K = (D, δ, I,S, ρ) be a Kripke structure.
Our goal is to show (K, s, β) |= Γ ⇒ ∆. We will do a proof by contradiction and
assume that this does not hold, or in other words, that (K, s, β) |=

∧
(Γ ∪ ¬∆)

holds. This and (25) imply (K, s, β) |= ¬(guard → equal), which means that
(K, s, β) |= guard ∧ ¬equal . If we insert the definitions of guard and equal , and
distribute the update w over the conjuncts of guard , then this reads as

(K, s, β) |= {w}{heap := hbase}(pre ∧ reachableState)

(K, s, β) |= {w}{hPre := hbase ‖ heap := hnew}(frame ∧ noDeallocs)

(K, s, β) |= ¬
(
obs(hnew , o, p′1, . . . , p

′
n) ≡ obs(hbase , o, p′1, . . . , p

′
n)
)

(27)

Let s1 = valK,s,β(w)(s). Then the first two statements above become

(K, s1, β) |= {heap := hbase}(pre ∧ reachableState)

(K, s1, β) |= {hPre := hbase ‖ heap := hnew}(frame ∧ noDeallocs)

Let sbase1 = valK,s,β(heap := hbase)(s1), snew1 = valK,s,β(hPre := hbase ‖ heap :=
hnew)(s1). Then the statements above turn into

(K, sbase1 , β) |= pre ∧ reachableState (28)

(K, snew1 , β) |= frame ∧ noDeallocs (29)

As this, p1, . . . , pn do not occur in (27), and as s and s1 are otherwise iden-
tical, we get by Prop. 1 that

(K, s1, β) |= ¬
(
obs(hnew , o, p′1, . . . , p

′
n) ≡ obs(hbase , o, p′1, . . . , p

′
n)
)
,

which because of the definition of s1 implies that

(K, s1, β) |= ¬
(
obs(hnew , this, p1, . . . , pn) ≡ obs(hbase , this, p1, . . . , pn)

)
. (30)

Lemma 1 and (29) tell us that

(K, snew1 , β) |= heap
.
= anon(hPre, {heap := hPre}mod , heap),

12

which because of the definition of snew1 is the same as

(K, s1, β) |= hnew
.
= anon(hbase , {heap := hbase}mod , hnew). (31)

Let C = δ(sbase1 (this)). This means that

(K, sbase1 , β) |= exactInstanceC(this). (32)

Let K′ = (D, δ, I ′,S, ρ) be a Kripke structure identical to K, except that
I ′(h) = valK,s1,β(hnew). Since α(this) = A, we have C v A. Instantiating (26)
with C, K′ and sbase1 yields

(K′, sbase1 , β) |= pre ∧ reachableState ∧ exactInstanceC(this)

→ obs(heap, this, p1, . . . , pn)

≡ {heap := anon(heap,mod , h)}
obs(heap, this, p1, . . . , pn).

As h does not occur in (28) or (32), we have (K′, sbase1 , β) |= pre∧reachableState∧
exactInstanceC(this) by Prop. 2, which we can combine with the statement
above to get

(K′, sbase1 , β) |= obs(heap, this, p1, . . . , pn)

≡ {heap := anon(heap,mod , h)}obs(heap, this, p1, . . . , pn).

Applying the update yields

(K′, sbase1 , β) |= obs(heap, this, p1, . . . , pn)

≡ obs(anon(heap,mod , h), this, p1, . . . , pn).

Because of the definition of sbase1 , this is the same as

(K′, s1, β) |= obs(hbase , this, p1, . . . , pn)

≡ obs(anon(hbase , {heap := hbase}mod , h), this, p1, . . . , pn).

By definition of K′, we have I ′(h) = valK,s1,β(hnew). As h does not occur
in hnew , and as K and K′ are otherwise identical, Prop. 2 guarantees that
valK,s1,β(hnew) = valK′,s1,β(hnew). Thus, we have I ′(h) = valK′,s1,β(hnew), and
can thus write the statement above as

(K′, s1, β) |= obs(hbase , this, p1, . . . , pn)

≡ obs(anon(hbase , {heap := hbase}mod , hnew), this, p1, . . . , pn).

As the function symbol h does not occur in the above formula, ans as K and K′
are otherwise identical, Prop. 2 tells us that

(K, s1, β) |= obs(hbase , this, p1, . . . , pn)

≡ obs(anon(hbase , {heap := hbase}mod , hnew), this, p1, . . . , pn).

We can combine this with (31) to get

(K, s1, β) |= obs(hbase , this, p1, . . . , pn) ≡ obs(hnew , this, p1, . . . , pn),

which contradicts (30). ut

13

References

1. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Second Edition. Addison-Wesley, 2000.

2. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in Java dynamic logic. In
B. Beckert and C. Marché, editors, Proceedings, International Conference on Formal
Verification of Object-Oriented Software (FoVeOOS 2010), LNCS. Springer, 2010.
To appear.

14

	2010,11_Titelbl.pdf
	techrep_pdfa.pdf

