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dmax maximum demand during tc allowed by Assumption 8 on page 43

λ demand rate (sometimes conditional to a certain case)

G(t) probability to reach the reorder point R2 within t time units

g(t) density function of G

T, t length of a time interval

t0 time when the order of the first supply mode is triggered

tA1 time when the order of the first supply mode arrives

tA2 time when the order of the second supply mode arrives

tc
cycle time, i.e. time between t0 and reaching R1 again after all

deliveries

tg inter-order time, i.e. time between triggering both orders

tw length of the time window to trigger a second order

t̄c expected cycle time, t̄c = E[tc]

R the set of real numbers

N the set of integer numbers

h some function depending on the context

H hypothesis used with subscripts for specification

(Ω,κ, P) probability space, see definition starting on page 55

Ω sample space

ω element in the sample space, ω ∈ Ω

κ σ-algebra on Ω

P, p probability measures used with subscript or argument, see page 52

continued on next page
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parameter description

pE probability that demand exceeds dmax, violation of Assumption 8

X, Y some random variables

Xs random variable in context of the stock level

M set of elements, usually related to sample space Ω

∅ the empty set

1M indicator function on some set M

E[X] expected value of a random variable X

µD average value of the distribution D

σD standard deviation of the distribution D

Φ the Gaussian distribution

φ density function of Φ

η(x, R) function used in context of the expected time when the stock depletes

i, j, k (integer) indices

N, n, m some integer values

SH shortage

CC capital costs, see TC

OCB order costs for unmet demand, see TC

OCN order costs for first supplier, see TC

OCR order costs for second supplier, see TC

TC total cost including CC, OCN, OCR, and OCB

r interest rate, used in context of CC

ρ ratio of β service levels between DET and STOCH, ρ = 1−STOCH β
1−DET β

T set of ratios τi, used with subscript for specification

τ ratio of costs between DET and STOCH, τ = DET value
STOCH value

continued on next page
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parameter description

τmin minimum ratio in a given set T
τmax maximum ratio in a given set T

τ̄ average value of all ratios τi ∈ T

notation conventions, see page 52

dµ used in context of multiple integrations

a
+

equivalent to max(0, a)

a
−

equivalent to min(0, a)

(2, A1,=) triple that refers to a certain case

p probability measure used with subscript or argument

Table 1: List and description of utilized parameters
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expression description

β β service level to customers

CC capital costs, see TC

CPFR collaborative planning, forecasting, and replenishment

DET scenario where demand is stochastic and all lead times are

deterministic, see STOCH

disc discrete, usually used as a superscript of a function, hdisc

and refers to the discrete version of the continuous function h

DS replenishment policy with direct shipments

ERP enterprise resource planning

fix fixed cost, see var

KPI key performance indicator

OCB order costs for unmet demand, see TC

OCN order costs for first supplier, see TC

OCR order costs for second supplier, see TC

relax relaxed replenishment restrictions, see trad

RQ research question

RS replenishment scenario

SCM supply chain management

SDMR model stochastic dual-mode replenishment model

SH shortage

SKU stock-keeping unit

STOCH scenario where demand and all lead times are stochastic, see DET

TC total cost including CC, OCN, OCR, and OCB

trad traditional replenishment restrictions, see relax

var variable cost, see fix

VMI vendor-managed inventory

WH warehouse

Table 2: List and description of used acronyms and abbreviations
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Chapter 1

Introduction

Companies with high-performing supply chains (SCs) enjoy essential competitive ad-

vantages. They are able to offer a more punctual and more complete service to the

customer at lower logistics costs than their competition in many cases, see [CRW09].

However, supply chain management (SCM) faces an environment of rising risk

that endangers these competitive advantages. In a study by McKinsey 33% of 273

supply chain executives state that their supply chain risk has increased significantly

over the past 5 years [PN08]. The reasons are a higher complexity of products and

services, rising energy prices, and the decision to outsource and offshore parts of their

business. The latter has a great impact on the risk of their inbound logistics and there

is a strong need to ”improve the effectiveness of the inbound supply chain, because

lead times and variability have increased significantly.” [Kla09, p. 5].

It is the impact of lead time variability on inventory management, a prominent

area of SCM, that will be the central aspect of this work. We investigate how a fast

and expensive second supplier can mitigate the effects of the stochastic lead time

of our slower and cheaper primary supplier. Moreover, we analyze the deviation

from a deterministic approximation in our scenario where the demand and both lead

times are stochastic. Thereby, we focus on the two most common key performance

3
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indicators (KPIs) used in SCM, namely the total costs and the customer service level

[Pay09]. This aligns well with the most important objectives of SCM in days of a criti-

cal economic situation, namely cost reduction and customer service improvement, see

[PN08], [Kla09], [PK09].

1.1 Research questions

Let us consider a company which has two suppliers with stochastic lead times and

which faces stochastic customer demand. For each supplier i ∈ {1, 2} an individ-

ual reorder point Ri and order quantity Qi should be determined in such a way that

minimal total costs occur. Such (R1, R2, Q1, Q2) replenishment policies are called dual

sourcing. In this context, the fundamental Research Question (RQ) that guides us

through all chapters is:

RQ 0: Is it beneficial to use dual sourcing in a practical situation where the demand

and both lead times are stochastic? Moreover, is it feasible to use a determin-

istic approximation in such a situation?

We will use the data of an existing warehouse with 2, 751 stock-keeping units (SKUs)

for the evaluation of our work.

Our present work extends the existing literature on SCM by a (R1, R2, Q1, Q2) replen-

ishment policy, where two suppliers – or more generally two supply modes – with

stochastic lead times are available. A major part of this work is to elaborate a mathe-

matical model for such a (R1, R2, Q1, Q2) policy that allows for arbitrary distributions

regarding the demand and the lead times of both suppliers. We will call it the SDMR

model which stands for Stochastic Dual-Mode Replenishment model. In particular,

we derive the following questions from RQ 0:
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RQ 1: How can we define and model a (R1, R2, Q1, Q2) replenishment policy with

stochastic demand and lead times? Currently, there does not exist any model in

the literature that describes a (R1, R2, Q1, Q2) policy when the demand and both

lead times are arbitrary stochastic variables. Therefore, we first want to set up

an appropriate framework in which we can express the probabilities of issuing

orders with one or two suppliers and the probability of a particular sequence of

the order arrivals. Second, we want to be able to calculate KPIs such as the av-

erage stock level, the customer service level, the expected number of orders for

each supplier, and their related costs. This is the core of the SDMR model. One

important feature of the SDMR model is its independence of the type of distri-

butions for the demand and both lead times so that it can be used in potentially

every industry or business.

RQ 2: How can the SDMR model be applied in practice? Here, we cover the ques-

tions regarding the discretization of the SDMR model and how to incorporate

practical rules like the time window in which it still makes sense to trigger a sec-

ond order even if the first order is likely to arrive soon. It is important to answer

this question in order to keep up with our objective to provide a model which

can be used operationally.

RQ 3: How much and in which situations does a scenario with deterministic lead

times deviate from the stochastic scenario of the (R1, R2, Q1, Q2) replenish-

ment policy? More simplistically, one could rephrase the question by: Why

should we use a complex stochastic model instead of an existing, simpler model

which assumes deterministic lead times? Here, we want to compare the calcu-

lated values for the given KPIs between the deterministic scenario (DET) and the

stochastic scenario (STOCH). Moreover, we want to investigate and understand

in more detail the different effects that lead to this deviation.
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Of course, one expects the deviation between DET and STOCH to depend on

several parameters of the SKUs like the fluctuation of both lead times or the

probability to use the second supplier. In fact, all four replenishment parameters

R1, R2, Q1, and Q2 turn out to have an influence. After the formulation of the

SDMR model it will become apparent that it is much more difficult to answer

Question 3 than one might initially have expected.

In order to iteratively gain a better understanding of the impact that different

parameters have on the deviation between DET and STOCH we take a two-

step approach. First, we conduct a sensitivity analysis on each input parameter

individually for an exemplary SKU. This allows us to study the gradual change

of a single input parameter and its effect on the deviation between DET and

STOCH. Second, we analyze the deviation in a real warehouse with 2, 751 SKUs

and compare these results with our findings from the sensitivity analysis.

This two-step approach will, on the one hand, provide us with greater insights

into the mechanisms and relations between the input parameters and the KPIs

and their impact on the deviation between DET and STOCH. On the other hand,

it will show the relevance of our findings for different SKUs and groups of SKUs

of a real warehouse.

RQ 4: How much total costs can be saved by moving from single sourcing with

traditional restrictions to dual sourcing with relaxed restrictions when lead

times are stochastic? There exist common restrictions regarding the replenish-

ment of SKUs in practice as well as in literature. The two most prominent are

non-negative reorder points and a fixed sequence of orders if there is the option

of several suppliers. We want to see by how much the total costs can be reduced

in our real warehouse if we relax these restrictions. Therefore, we have to opti-

mize the different scenarios regarding their total costs and compare their results.
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In addition, we want to understand the mechanisms that lead to these savings.

Here, we are only interested in comparing scenarios with stochastic lead times.

A large part of the evaluation is based on a warehouse with 2,751 SKUs, the only one

for which we possess real data, especially regarding both suppliers. This warehouse

contains automotive spare parts. Usually, spare parts have a low demand in com-

mon. This characteristic is rather unfortunate for dual sourcing as we will experience

throughout the evaluation chapter. Many times a second supplier does simply not pay

off. Nevertheless, we have decided to include all 2,751 SKUs in all our observations

for several reasons. First, they nicely reveal the limits of a dual sourcing. Second, the

low-demand spare parts do not influence the various effects of those SKUs where dual

sourcing is favorable. Third, despite the low demand of those SKUs their wide range

of prices yield interesting results especially related to the cost-optimization when we

compare the different stochastic scenarios in context of our question RQ 4.

Last but not least we have to be aware that each SKU and its particular parametriza-

tion throughout all our sensitivity analyses are only examples and equally important

from a phenomenological perspective. This is important to keep in mind as different

warehouses are likely to have a completely different assortment of SKUs. What is an

”exceptional” SKU in one warehouse might constitute the majority of SKUs in another

warehouse. Therefore, we are very much interested also in ”exceptional” SKUs and

will elaborate on them at many places throughout our evaluations.

1.2 Structure

Our work is organized in four parts with 8 chapters, see Figure 1.1. Part I contains a

review of the relevant literature in Chapter 2 which influences most of the subsequent

chapters as indicated by its graphical location. Each of the four research questions

will be addressed in a dedicated chapter of Part II or Part III. Finally, we conclude
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with a summary and outlook in Chapter 8 at the end of Part III. The appendix with

additional information is found in Part IV. Part II and Part III represent our major

work and will be described in more detail in the following paragraph.
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Figure 1.1: Structure of this work

Part II contains all chapters that address the SDMR model. Chapter 3 covers question

RQ 1. We derive a mathematical model for the (R1, R2, Q1, Q2) replenishment policy

with stochastic demand and stochastic lead times. The basis of the SDMR model con-

sists of a suitable probability space and its random variables. On this basis we give a

set of formulas for calculating the expected shortage, the expected physical stock, and

other expected values that are necessary to calculate the total costs of our warehouse.

Chapter 4 covers question RQ 2 which is related to the practical application of the

SDMR model. The two main topics are the discretization of the model that we have

established in Chapter 3 and the calculation of convolutions which play a major role

in the SDMR model.
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Part III is dedicated to evaluating the SDMR model in different scenarios. We give

an overview of the evaluation approach in Chapter 5. Chapter 6 is devoted to the com-

parison between our model with stochastic lead times (STOCH) and an approximation

(DET) with deterministic lead times for both suppliers. This corresponds to question

RQ 3. First, we conduct a sensitivity analysis on individual input parameters. Second,

we quantify the deviation between DET and STOCH in case of our real warehouse.

Chapter 7 exclusively looks at scenarios with stochastic lead times. It compares the

savings potential if our warehouse operation moves from a single-source replenish-

ment with traditional restrictions to a dual-source replenishment with relaxed restric-

tions. This covers question RQ 4. Chapter 8 completes our work. First, it summarizes

our findings and contributions in the area of inventory management. Second, we crit-

ically review our work. Finally, we give an outlook for future research and possible

extensions related to our work.





Chapter 2

Literature review

In this section we will position our work within the existing literature for SCM. Most

likely, the first contact with the SCM-related literature will be overwhelming as the

number and topics of publications is large. The structure of the paper ”Perspectives

in supply chain risk management” by Tang, see [Tan06], gives a good overview of

the different areas in SCM because risk is basically omnipresent in a supply chain.

He distinguishes four main SCM areas: supply management, demand management,

product management, and information management. Each of these areas contains

several activities and responsibilities which are often interlinked.

Supply management usually contains all aspects from design the SC network over

the supplier relation management to the daily replenishment of articles. Demand

management is widely used in SCM to align demand with existing supply especially

in times of excess inventory or stock-out situations. Product management usually

involves decisions about the push-pull boundary within the SC. In other words, the

question is where products are built on order and where they are built to be stocked in

a warehouse. Information management is often focused on a better customer service

by enabling faster reactions and on mitigating the effects of fluctuation like in the case

of the overstressed phenomenon called bullwhip effect. Here the integration across

11
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functional or organizational entities usually plays a major role. Well-known exam-

ples in this area are Vendor-Managed Inventories (VMI) and Collaborative Planning,

Forecasting, and Replenishment (CPFR).

Our work is located in the area of supply management. More precisely, it con-

tributes to the topic of replenishment policies for a single-item warehouse with dual

sourcing, meaning that two suppliers or, more generally, two supply modes are avail-

able. The literature on multiple suppliers is still very ample which accounts for the

various situations and their complexity in which companies seek to leverage the ben-

efits of several supply modes. Minner gives a very good review of that topic [Min03].

He partitions the literature of multiple sourcing into strategic aspects, single-echelon

models, multi-echelon models, and reverse logistics models. The majority of publi-

cations is in the area of single-echelon models which look at an isolated warehouse

and its suppliers. Our work describes such a single-echelon, single-item replenish-

ment policy but with substantially weaker assumptions than in the existing literature,

especially regarding the distribution of the demand and both supplier lead times.

In contrast, multi-echelon policies take several inventories and their hierarchical

structure into account. It is apparent that the increased complexity of multi-echelon

situations usually leads to very restrictive assumptions, like Poisson customer de-

mand or constant lead times, see [NLC01], [LP00]. We believe, that this is also the

main reason why publications on the topic of global sourcing focus mainly on strate-

gic aspects. Many times this leaves a large gap between global decisions and local

implementations as we have experienced at many companies. However, the align-

ment of global and local objectives is repeatedly reported to be a key success factor for

SCM in practice, see [CRW09], [Kla09].

The company of our interest uses dual sourcing and can completely backlog unsat-

isfied customer demand in a single-echelon, single-item environment. The demand
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and both lead times are arbitrary, known random variables. The company employs a

(R1, R2, Q1, Q2) replenishment policy which triggers an order of size Q1 and Q2 if the

stock level drops to or below the reorder point R1 and R2, respectively. Mainly due to

its complexity, dual sourcing has been studied in the context of random demand and

random lead times only in a few papers.

Our model somewhat follows the logic of the (R1, R2, Q1, Q2) replenishment pol-

icy with deterministic lead times of Moinzadeh and Nahmias [MN88]. If we relate

our work to the segmentation used by Minner, see [Min03], it is closer to the stream of

publications with deterministic lead times and emergency deliveries in cases of low

inventory than it is to models with stochastic lead times that leverage a shorter effec-

tive lead time – time until the first order arrives – by splitting orders among several

suppliers. Therefore, we first review policies with deterministic lead times in a single-

echelon, multi-supplier context. Second, we look at policies with stochastic lead times

but in less detail. Third, we mention a few policies in other areas that are interesting

for our work.

2.1 Replenishment with deterministic lead times

In the literature most models for dual sourcing that assume deterministic lead times

and stochastic demand are already fairly complex. Optimal policies have strong re-

strictions like immediate deliveries or lead times that differ by exactly one day. Many

times fixed order costs or the arrival of emergency orders in previous periods are as-

sumed to be negligible. This section will help positioning a model for dual sourcing

with stochastic demand and stochastic lead times.
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2.1.1 Continuously and daily review policies

The first studies on a replenishment policy with two suppliers date back to Barakin

[Bar61]. He determines a single-period policy with two critical stock levels s1 > s2

and negligible fixed ordering costs. If the initial stock x is below s1, an order of Q1(x)

units is placed which arrives after one single period to cover potential backlogged

demand. In addition, an emergency order of a predetermined amount Q2 is immedi-

ately delivered if x < s2. This policy has been extended to n > 1 periods by several

authors. Daniel allows for changing values of Q1 and Q2 within the n periods [Dan62].

Thereby, the maximal stock level x̄i = xi + Q1,i + Q2,i is not necessarily identical for

all i ∈ {1, ..., n} periods. Bulinskaya introduces a constant stock level ȳ that has to be

reached by an immediate emergency order if the current stock level falls below ȳ, see

[Bul64]. Still, the maximal stock level x̄i can vary from period to period. This stands

in contrast to the optimal replenishment policy of Scarf in the absence of emergency

orders [Sca60].

Scarf describes the fundamental results of the well-known (s, S) base-stock policy

which replenishes up to S when the stock level drops to s, see [Sca60]. He requires a

known demand distribution which can change over time. Further, he assumes linear

ordering, holding, and backlog costs and allows for fixed order costs. This standard

(s, S) policy has been extended to dual-source (normal and emergency) replenishment

scenarios. For example, Neuts gives an optimal dual-source (S1, S2) policy with the

two base-stock levels S1 > S2, see [Neu64]. If the stock x of the current period is below

S2, an emergency order brings the stock immediately back to S2. In addition, S1 − S2

units are ordered via the regular channel which arrive with a delay of one period. If

the stock x is between S2 and S1, a regular order of a size Q(x) with 0 < Q(x) ≤
S1 − S2 units is placed. Otherwise, no order is triggered.

Fukuda and Veinott show that Q(x) = S1 − x is optimal for the latter policy and

extend it to fixed costs which results in a very similar optimal (s, S1, S2) policy [Fuk64],
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[Vei66]. The difference is that orders are only triggered if the current stock x is below

the critical level s with S2 < s ≤ S1. Fukuda extends this approach to cases in which

arbitrary lead times k ≥ 0 and k + 1 are allowed for emergency and normal orders, re-

spectively [Fuk64]. Fukuda also gives an optimal base-stock policy (S1, S2, S3) with 3

suppliers where orders can only be placed every other period [Fuk64]. The lead times

are k ≥ 0, k + 1, and k + 2 periods, respectively, and there are only variable ordering

costs allowed. Wright confirms the optimality of the dual-source (S1, S2) policy and

extends it to 2 articles with a limited, joint capacity [Wri69]. Whittemore and Saunders

describe conditions sufficient for ordering nothing by the normal or by the emergency

channel, assuming arbitrary deterministic delivery times [WS77].

All these optimal polices issue a normal and possibly an emergency order simulta-

neously. Triggering several orders at the same time is called order splitting and is

usually related to stochastic lead times. Thus, the mentioned policies can be regarded

as conditional order splitting policies with deterministic lead times, where the number

of suppliers is not fixed but depends on the current stock level. They are not suitable

in our case because both lead times are only allowed to differ by one period. Conse-

quently, the delayed triggering of an emergency order – one of our major interests – is

useless as it never arrives before the normal order.

A more promising policy for our needs is described by Moinzadeh and Nahmias

[MN88]. They extend the (R, Q) policy, in which a fixed quantity Q is ordered when-

ever the current stock drops to the reorder point R, to an approximately optimal

(R1, R2, Q1, Q2) policy. This approach assumes arbitrary constant lead times, stochas-

tic demand, and R1 > R2 and allows for fixed ordering costs unlike most papers we

have mentioned so far. Whenever the on-hand inventory drops to R1, a normal order

of Q1 units is triggered. If the on-hand stock even decreases to R2 at a later point in

time, an emergency order of Q2 units is triggered as long as it arrives before the out-
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standing normal order. Their approach considers only the on-hand inventory without

regarding quantities of open orders. Therefore, they have to restrict the number of

open orders to one per supply mode. The evaluation by extensive simulation shows

that most savings are achieved when backlogging demand is expensive. High fixed

ordering costs lead to larger order quantities and diminish the benefit of this policy.

Johansen and Thorstenson extend this policy by replacing the order quantity Q2

with an order-up-to stock level S2 and by using a backorder cost rate instead of a

one-time cost [JT98]. The lead times are L and 1/L for normal orders and emergency

orders, respectively. The customer demand is restricted to Poisson distributions. They

conclude that an extension to arbitrary demand distributions and random lead times

are interesting topics for future research.

Axsäter studies a model with compound Poisson demand which is similar to the

latter [Axs07]. However, several outstanding orders are allowed and the emergency

lead time does not need to be negligible. A (R, Q) policy is used for the regular order

and its values are assumed to be given. The decision rule is based on two parameters

∆E and ∆N. He defines ∆N as the deviation between the long-run average costs C̄ and

the expected future costs given that the (R, Q) policy is continuously used without

emergency orders. Analogously, ∆E is the deviation between C̄ and the expected costs

CE if an emergency order is immediately placed. Thereby, the order quantity mini-

mizes CE in the current situation. The decision places an emergency order if ∆E < ∆N.

Axsäter finds that his policy yields comparable results as the approach from Johansen

and Thorstenson, see [JT98], but can be applied more widely and easily. The assump-

tion of given R and Q is disadvantageous particularly if the optimal values for the

plain (R, Q) policy differ significantly from the policy with emergency orders.

Veeraraghavan and Scheller-Wolf describe an interesting heuristic called ”dual-index

base-stock policy” for arbitrary constant lead times and arbitrary demand distribu-
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tions [VSW08]. For each period they derive the cost-minimal values for the two order-

up-to levels by considering all outstanding orders that arrive during the lead time of

the possibly new emergency order and normal order, respectively. Their solution ap-

proach is much faster than dynamic programming and extendable to other scenarios

like limited capacities. Its state-dependency makes it rather complicated to imple-

ment, though. In numerous examples where, among others, lead times and demand

variability are changed they find their results to be close to the optimal dynamic pro-

gramming solution. The maximum deviation is less than 5% for the service level and

less than 8% for the total costs. However, the examples are of rather small complexity

due to time restrictions imposed by the dynamic programming approach.

An interesting variant of a two-supplier replenishment policy is described by Lee

et al. and includes the presence of an electronic market as the emergency channel

[LLB06]. The company is able to sell excessive stock to the electronic market and to

purchase items with immediate delivery from the electronic market. They give an op-

timal (S0, S1, S2) policy with S0 < S1 < S2 in cases where the regular lead time is one

day. Each day the stock level is investigated. If it falls below S0 it is immediately re-

filled to S0 via the electronic market. Whenever the stock is above S1 it is reduced to S1

by selling to the electronic market. After resetting the stock to S0 and S1, respectively,

a regular order is triggered to increase the stock level to S2. For lead times longer than

one day they propose 3 heuristic policies and compare them.

All policies and their models that have been mentioned so far are either continuous

policies or they investigate the stock level at each time unit. This is exactly the sit-

uation we find at the company of our interest. In contrast, periodic replenishment

policies consider long review cycles like weeks or even months. Both types of policies

are closely related. We will give an overview for this rather large topic in the literature.
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2.1.2 Periodic review policies

In an early paper, Gross and Soriano give a simple decision rule on how many items

to order via the emergency channel and the regular channel, respectively, when the

stock is investigated periodically [GS72]. Their rule is based on a (s, S) policy but they

do not specify how to obtain the optimal parameters. Rosenshine and Obee describe

a (T1, R2, Q1, S2, S̄) model where a standing order of size Q1 arrives every T1 periods

and at most one immediate emergency delivery can be triggered in T1 to bring the

stock level back to S2, see [RO76]. The stock level to trigger an emergency order is

R2 and the maximal warehouse capacity is S̄. Both are assumed to be given. They

optimize Q1 and S2 given that excessive stock above S̄ is sold. Chiang examines the

same scenario but optimizes S2 and S̄, see [Chi07].

Chiang and Gutierrez introduce a periodic replenishment policy (T, R2, S) with an

order-up-to stock level S and a critical stock level R2, see [CG96]. They find that after

each review period T either a normal order or an emergency order is used to bring the

stock up to S if the current stock is above R2 or below R2, respectively. They state that

this policy is especially attractive when the unit shortage cost is large, the demand

variance is high, or the fixed costs for the emergency order is small. This policy is not

an optimal policy. Chiang extends this model by allowing the variable costs of both

supply modes to be different and by considering the simultaneous triggering of a nor-

mal order and an emergency order at the review times [Chi03]. The policy is similar

to the earlier work of Fukuda and Veinott, see [Fuk64] and [Vei66], but considers long

review cycles instead of daily cycles. Chiang finds that this base-stock policy for an

emergency order is only optimal when fixed costs are neglected.

In another paper, Chiang and Gutierrez extend their earlier work, see [CG96], to

review cycles of many periods where emergency orders can also be issued throughout

a cycle and the fixed costs of placing an emergency order is negligible [CG98]. This

policy is similar to the continuous (R1, R2, Q1, Q2) policy of Moinzadeh and Nahmias,
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see [MN88], except for the fact that Chiang and Gutierrez allow normal orders to be

placed only at the review times [CG98]. Later, Chiang describes a simple algorithm

to find the cost-minimal solution for the latter policy but only in the case where both

lead times differ by one period [Chi01].

Tagaras and Vlachos describe an approximate model for a base-stock policy (T, ST, S1)

where normal orders bring the inventory position back to its maximum value ST every

T periods [TV01a]. In addition, one emergency order can be placed within the T peri-

ods so that it arrives exactly at T − 1, the day before the periodic delivery and where

the stockout probability is the highest. The emergency order is only triggered if the

on-hand stock is below S1 and then brings it back to S1. They assume that the prob-

ability of unmet demand is negligible in periods before T − 2. Moreover, emergency

orders in the previous review cycle are said to be negligible, as well. Two heuristic al-

gorithms are given that yield near-optimal results. In 32 examples they find that using

emergency orders leads to 15.83% of cost savings in average and exceeds 30% in some

cases. The benefit of their model is high if demand variability, penalty for stockouts,

or the difference in both lead times are large.

In a follow-up paper, Vlachos and Tagaras compare the latter policy, called ”late-

ordering”, with an ”early-ordering” which places possible emergency orders so that

they arrive exactly at T − 2, see [VT01]. An additional assumption for this model is a

capacity restriction for the emergency order. They find that the capacity constraint has

a significant influence on the total costs for the early-ordering and the late-ordering

policy, especially if T is large. In contrast, the cost difference between both policies is

rather small about 3% at maximum in all 72 examples they consider. Thereby, early-

ordering outperforms late-ordering in 38 of 72 examples and the reverse holds for the

remaining 34 examples.

Teunter and Vlachos, see [TV01b], investigate a periodic (T, ST, S1, ..., Sk) policy in
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a similar context to Tagaras and Vlachos, [TV01a] and [VT01], where k emergency or-

ders with immediate delivery can be triggered in the review cycle of T periods. The

replenishment of the emergency orders follows a base-stock policy in the k days before

T. The objective is to find optimal values for ST, S1, ..., Sk for a given k. Their obser-

vation is that the additional cost savings by introducing new emergency orders are

highest for the first emergency order and decrease strongly after that. Moreover, they

find that total cost savings are higher for fast-moving articles than for slow-moving

articles. The average savings for one emergency order are 7.6% and 3.0% for fast- and

slow-moving articles, respectively. In some cases the cost reductions are more than

10%.

Kiesmüller et al. describe a periodic replenishment policy (T, S0, S2) with random de-

mand, a constant production time L0, and two constant transport times L1 > L2, see

[KdKF05]. Every T time units an order of Q(T) units is placed to bring the stock X(T)

back to S0. After the production time L0 the transport of all Q(T) units can be split.

There are 0 ≤ Q2 ≤ Q(T) units delivered via the fast mode up to the amount where

the current stock X(T + L0) reaches S2. The remaining Q(T)−Q2 units are delivered

after L1 time units. They describe restrictions on the search area for the optimal values

of S0 and S2. Their numerical study shows that the usage of the fast supply mode

depends strongly on the inventory holding costs, the value of the product, the lead

time difference L1− L2, and the ratio of transportation costs between the slow and the

fast supply mode. They find that using a slow and cheap supplier can yield high cost

savings.

Matta and Guerrero analyze an interesting replenishment policy with long review

periods that purely focuses on the availability of articles [MG90]. It is primarily used

for naval vessels, uses 3 reorder points, and all orders arrive at the end of the review

period, for example by a supply ship. By simulation they find that the best availability
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is achieved when the 3 reorder points are distributed equidistantly between 0 and the

maximum capacity onboard.

An important characteristic of all mentioned policies is their optimality. We have seen

optimal and non-optimal multi-supplier replenishment policies. Are there indications

whether we can expect to find an optimal policy for our setting with arbitrary stochas-

tic lead times?

2.1.3 Optimality of base-stock policies

The base-stock policy is widely applied also for dual-source scenarios. It is known to

be optimal in the single-supplier case, see [Sca60]. Moreover, we have seen optimal

base-stock policies with two suppliers in rather restrictive models where the two lead

times are 0 and 1 days, for example. Zhang states to have found an optimal base-stock

policy for three suppliers with lead times of k, k + 1, and k + 2 periods [Zha96]. How-

ever, Feng et al. proof that this is not true in general, show counter examples, and give

more insights into the problem [FSYZ06a], [FSYZ06b]. They find that the optimality

of the base-stock policy closely related to the structure of the cost function. More pre-

cisely, base-stock policies are optimal when the cost function is separable. This is the

case for one supplier or two suppliers whose lead times differ by one period. When-

ever the lead times differ by more than two periods there are more than two suppliers,

or the cost function is complex for other reasons then the cost function is usually not

separable and a base-stock policy is not optimal. In the context of our work lead times

are random and we have to expect a complex cost function especially due to the vari-

ous possibilities when and in which sequence orders arrive.

This concludes our review on replenishment policies with deterministic lead times

which are most similar to the situation we want to investigate. In this section we have
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seen common assumptions and the usual environment of these policies. Moreover,

the empirical cost savings have ranged between 3% and 30% for the various policies.

This is a good benchmark for our model. Most importantly, the findings of Feng et

al. indicate that we can not expect to find an optimal (base-stock) policy in our case

for which lead times are random.

2.2 Replenishment with stochastic lead times

In multi-supplier scenarios with stochastic lead times many assumptions must be re-

vised. Usually, this renders deterministic models obsolete. For example, the common

assumption that orders arrive in a given sequence does not hold anymore. This phe-

nomenon is called order crossovers and becomes more and more common in contem-

porary supply chains, see [Rie06]. Intuitively, order crossovers complicate calculations

considerably. This might be one of the reasons why a major part of the literature cov-

ers only special cases like order expediting or order splitting. These special cases will

be addressed in separate subsections. First however, we have a look at the few pub-

lications about more general multi-supplier replenishment policies where at least one

lead time is stochastic.

One of the first papers on multiple suppliers with random lead times has been pub-

lished by Verrijdt et al. in the area of reverse logistics where failed parts return to the

warehouse and can be repaired via a normal repair channel and an emergency repair

channel [VAdK98]. Both repair times L1 and L2 are exponentially distributed. The

demand in form of failed parts arrives according to a Poisson process. This is a key

assumption as it allows to use the Poisson Arrivals See Time Average (PASTA) prop-

erty, see [Wol82], and simple expressions can be given for the expected number of

items in stock and the expected waiting time of backlogged demand. Thus, Verrijdt
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et al. are able to formulate exact expressions for the costs and other measures. They

employ a Markov process to obtain the required probabilities of the different states

of their model. Here, the assumption of exponentially distributed lead times allows

for an exact formulation of all parameters. They give numerical results and find that

substantial cost savings of more than 50% can be achieved by using an emergency

supply. However, the difference of the expected service level, i.e. the fill rate, between

their stochastic model and a model with deterministic lead times are negligible. They

conclude that the assumption on the type of the lead time distribution is therefore not

restrictive. These findings are very interesting. We will execute similar analyses for

our model and compare our results to these findings.

This model is interesting for us, since it satisfies our primary requirement of

stochastic lead times and stochastic demand. Moreover, its formulation is astonish-

ingly simple. However, there are several drawbacks. The model does not include

fixed ordering costs and is limited to Poisson demand and exponential lead times.

Our intention is to find a model which allows for more complicated cost structures

and which is independent of the lead time distribution and the demand distribution.

Verrijdt et al. give two limiting cases, namely L1 = L2 and L2 = 0 for which their

model is independent of the lead time distribution. These are interesting cases. How-

ever, they still do not cover many scenarios which we frequently find at companies.

Mohebbi and Posner describe an exact formulation of the (R1, R2, Q1, Q2) policy

where orders of size Q1 and Q2 are placed at the reorder points R1 and R2, respec-

tively [MP99]. While their replenishment parameters are identical to Moinzadeh and

Nahmias, see [MN88], they assume exponential distributed lead times and a Poisson

process for the customer demand. Moreover, unmet customer demand is not back-

logged but lost. Similar to the paper by Verrijdt et al. the PASTA property, see [Wol82],

plays a key element when formulating the equations for the probability of a certain in-
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ventory level and deriving the total costs. Under the assumption of exponential lead

times the model becomes a renewal process with a stationary distribution of the in-

ventory level if time goes to infinity. They employ a so called system-point method of

level crossings to find this stationary distribution. Level crossing divides the whole

state space into subsets where no, one normal, one emergency, or two orders are out-

standing. By equating the rates in which the renewal process enters and leaves each of

these subsets one finds the desired stationary distribution of the inventory level after

long calculations. For details about system-point methods and level crossing we refer

the interested reader to the papers of Brill and Posner [BP77], [BP81].

The cost functions of their model include fixed and variable costs for ordering un-

like many other papers. Despite the fact that all their equations are exact, the joint

optimization of R1, R2, Q1, and Q2 can not be done analytically. In fact, Mohebbi

and Posner use a computationally intensive four-dimensional numerical search and

report the existence of local minima. This makes it extremely difficult to assure that

the global minimum has been found. In several sensitivity analyses they find that cost

savings are up to 20% if emergency orders are used. In some cases it is not beneficial

to use emergency orders. They state that the ratio between holding and shortage costs

has a strong influence on the total costs. Moreover, the average lead time and the vari-

able costs for emergency orders have more impact on the total costs than the change

of the average demand and the fixed costs of the emergency order, for example.

This model by Mohebbi and Posner gives very interesting insights for us. Espe-

cially, it shows the complexity of such a system. We should be prepared to employ

numerical approaches for the optimization which are able to overcome non-global

minima. The savings resulting from emergency orders are significant. Unfortunately,

no comparison is given to a model where lead times are simplistically assumed to be

deterministic. The disadvantages of this model are its strong dependence on a Pois-

son process for the demand and the exponentially distributed lead times. The authors
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state that their model could be extended to generalized hyperexponential lead time

distributions by utilizing results of Botta et al. [BHM87]. However, this still does not

solve the restriction on the demand distribution. Moreover, it remains to be proven

that generalized exponential distributions really cover the variety of lead time distri-

butions that occur in certain industries and whether it is practically feasible to do so.

Another major difference to our situation is the assumption of loosing unmet demand.

The scenario we are interested in must additionally keep track of the backlogged de-

mand. We expect this to further complicate their model.

Kouvelis and Li describe a (Q1, Q2, T, T1) policy with constant demand, a random

normal lead time L1 and a deterministic emergency lead time L2, see [KL08]. They

only consider one completely independent period of T time units. The order of Q1

units with a random lead time L1 is placed T1 time units before the interval T starts.

In addition, an emergency order with deterministic lead time L2 = 0 can be placed

upon knowledge of the exact arrival time of the Q1 units. They derive formulas for

the cost-minimal values for T1 and the ratio between Q1 and Q2. They extend this

model, among others, to settings where the second lead time L2 > 0 is increased and

to cases where the knowledge about the actual value of L1 is postponed into the inter-

val T. The formulation of this model is rather simple mainly due to the assumptions of

a completely independent interval T and only one stochastic variable L1. The model

describes a quite different scenario than the continuous and stochastic one we are in-

terested in. Therefore, it is only of limited use for us.

A practical approach for a (R1, R2, Q1, Q2) policy is given by Korevaar et al. which

is successfully employed at a German automotive manufacturer [KSB07]. They use a

simulation approach to find the β service level for a given pair (R, Q) for normal and

emergency order separately. This simulation is able to cover detailed operational con-
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straints like lot sizes and capacities. The value for Q is determined beforehand by the

standard economic order quantity, for example. They yield a (R, β) curve separately

for normal and emergency orders by iteratively increasing the appropriate reorder

point R. The joint service level is calculated by a simple approximation. The total

costs which incorporate a very detailed cost structure and penalties are derived from

the simulation results and the joint service level. They use a threshold accepting al-

gorithm for the optimization. The result has to satisfy various constraints including

a total budget and a system-wide average service level from which single articles can

deviate to a limited extent. They report that total cost savings of 30% are soon to be

reached for the entire warehouse.

This approach satisfies our request of flexibility regarding arbitrary distributions

and a detailed cost structure with variable and fixed costs. However, it lacks a solid

analytical foundation that allows to understand the dynamics of this model in greater

detail.

This closes our review on general multi-source policies with stochastic lead times. We

can state that these kinds of problems are highly complex and current models do not

cover arbitrary distributions. The cost savings have shown to be significant in all pa-

pers. A common approach is to utilize sensitivity analysis to gain more insights about

the behavior of the policy in different situations. We keep in mind that Verrijdt et

al. have found negligible differences in the β service level between their stochastic re-

pair model and an approximation with deterministic lead times. We will see whether

this statement also holds in our case.

Even if we are able to give exact formulas for the total costs a numerical opti-

mization algorithm will most likely be necessary. We also have to expect several local

minima when jointly optimizing R1, R2, Q1, and Q2.
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We conclude this section by briefly summarizing the literature on the special cases of

order expediting and order splitting with stochastic lead times.

2.2.1 Order expediting

Order expediting refers to a replenishment policy where the delivery of an outstand-

ing order can be accelerated by some additional fee. This option is usually chosen

in cases of low inventory. Even if both lead times are constant but the time of expe-

diting is random, the effective lead time until the arrival of the order becomes random.

Allen and D’Esopo describe a (R1, R2, Q) policy with random demand and two con-

stant lead times L1 > L2, see [AD68]. An order of Q units is placed at time t0 when the

stock decreases to R1. If the stock drops further to R2 within t0 and t0 + L1− L2, the Q

units are expedited and arrive L2 time units later. They give the formula for the total

expected costs and find approximately cost-minimal values of R1, R2, and Q with an

iterative procedure.

Chiang extends this policy by a time parameter T ≤ L1 − L2 until which it still

makes economical sense to expedite the order given the additional costs [Chi02]. This

window of T time units is an interesting aspect for our scenario where both lead times

are random. In his paper he also describes a heuristic policy when the lead time L1

consists of a constant production time L0 and a random transportation time L′1 where

L1 = L0 + L′1, see [Chi02]. After the production at L0 the buyer expedites the order

if the stock is R2 or below. Their examples show that the higher the service level,

the more beneficial these policies are. This policy is similar to the periodic (T, S0, S2)

policy of Kiesmüller et al., see Section 2.1.2, which assumes constant lead times and

allows to expedite part of the total order quantity [KdKF05].

Durán et al. describe a continuous (R1, R2, Q) policy when the production time L0

is constant and there exist two constant transportation times L1 > L2, see [DGZ04].
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This policy places an order if the stock s drops to R1 and expedites it if s ≤ R2 at time

L0. They give an algorithm to find the cost-minimal values for R1, R2, and Q. The

numerical examples with exponential demand are interesting. Their first observation

are the existence of opposing mechanisms as L1 increases. Initially, the difference

R1 − R2 decreases which makes expediting more probable and more attractive. Later,

R1 − R2 decreases again because R1 grows continuously which makes expediting less

necessary. A second observation is that never expediting or always expediting can be

optimal. We expect similar phenomena for our model.

Dohi et al. describe a (T, Q) policy with two constant lead times L1 > L2, see [DKO95].

A normal order is scheduled to be placed at time T which would arrive at T + L1.

However, if the stock preliminarily depletes at t0 < T, then the order is immediately

placed and arrives at t0 + L2. They derive sufficient conditions for the existence of

some T that minimizes the expected costs. In numerical studies they find that the

optimal Q is much more influenced by the expedited lead time L2 than by L1.

Dohi, Shibuya, and Osaki extend this analysis to a similar policy (T′, Q) in two pa-

pers [DSO97], [SDO98]. This policy only investigates the stock at time T′ and bases the

expediting decision on the current stock. The objective is to find cost-minimal values

for T′ and Q. For both models, (T, Q) and (T′, Q), they give a closed representation

for the expected costs under the assumption of a Poisson distribution for the demand

and a Gamma distribution for both lead times L1 and L2. In numerical examples they

find that the uncertainty especially of the regular lead time L1 influences the optimal

policy significantly. This is a very interesting observation for our work.

Dohi et al. introduce an optimal (R, Q, T) policy called order-limit policy, see

[DOO99]. They assume a fixed and known demand rate d and two lead times L1

and L2. A normal order of random lead time L1 and quantity Q is placed when the

stock drops to R at t0. The order is expedited if it does not arrive until T, some point
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of time after the depletion of the stock at t0 + Q/d. They derive conditions for the

existence of a cost-minimal value for T. However, the joint optimization of R, Q, and

T is very complex. In their examples, they use a numerical optimization approach and

assume a Weibull distribution for the lead time L1. They find that the additional use

of T is superior to the regular (R, Q) policy.

The reviewed literature on expediting orders with two random lead times has shown

several interesting points for our work. First, stochastic lead times seem to signifi-

cantly influence the cost-minimal policy. Second, the joint optimization of scenarios

with random lead time is very complex. Third, we can expect to gain insights on

various mechanisms that influence the optimal solution and on interesting cases like

always or never using the faster delivery option.

2.2.2 Order splitting

Order splitting defines a replenishment policy where the company uses one reorder

point and places several orders each with a fraction of the total order quantity Q at

one or more suppliers. The amount of ordered units can vary from order to order but

sum up to Q.

Sculli and Wu were among the first to show that splitting an order between two sup-

pliers with independently normal distributed lead times reduces the reorder level and

the buffer stock when compared with replenishment with only one supplier [SW81].

Since then, many extensions and specializations have followed. Ramasesh et al. give

a detailed comparison between sole sourcing and order splitting in the case of a reg-

ular (s, Q) replenishment policy with either uniformly or exponentially distributed

lead times [ROHP91]. They find that order splitting provides savings in holding and

backordering costs, which increase if the demand volatility increases or the lead time



30 CHAPTER 2. LITERATURE REVIEW

distributions are skewed and have a long tail.

Furthermore, they divide the order-splitting approaches into two groups [ROHP91].

First, macro studies analyze the effect of order splitting on the whole replenishment

process, including the relation to the supplier. For example, a competition among

the suppliers (producers) can lead to lower prices and better quality. Second, micro

studies focus on the inventory perspective and savings induced by lower ordering,

holding, and shortage costs.

Despite the attention given by the academic world to the concept of reducing lead

time risk by order splitting, it has received considerable criticism by Thomas and Ty-

worth [TT06]. Regarding the micro focus, they argue that savings in holding and

shortage costs are more than compensated for by increased ordering costs in reality.

They see the gap between literature and reality mainly in the neglected transportation

economies of scale and underestimated transporting costs. In a more macroscopic

view, they question whether the savings from a reduced average cycle stock in one

inventory are still valid or significant for the whole supply chain. Many approaches

neglect the in-transit inventory, which can lead to additional costs.

Thomas and Tyworth suggest that future research should focus on other models of

dual sourcing like the cost performance differences in modes of transportation [TT06].

With respect to our scenario, we can support many statements of Thomas and Ty-

worth, since the cost structure and practical replenishment constraints such as trans-

portation economies of scale do not allow for an order-splitting approach.

2.3 Related replenishment policies

Time window for second supply mode. Time windows for placing orders in a

multi-supplier environment are used for different purposes. Dohi et al. use a peri-

odic replenishment policy and identify a critical time t0 before the next regular review
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time where a depletion of the stock immediately triggers an expedited order [DKO95].

In another paper an outstanding order with random lead time is expedited only if it

has not arrived by a certain time T, see [DOO99]. Chiang describes a policy with con-

stant lead times L1 and L2 where an order is not necessarily expedited up to L1 − L2

time units before the arrival of the next order [Chi02]. In fact, expediting is only al-

lowed up to a time T < L1− L2 where its benefit by avoiding unmet demand exceeds

the additional costs for expediting.

Moinzadeh and Schmidt describe a (S− 1, S, Ŝ) policy with two deterministic sup-

ply modes [MS91]. Upon each unitary customer demand an order is placed to bring

the stock position back to S. They allow for several open orders and include the ar-

rival time T of the next order into the decision about using the faster supply mode.

Actually, the fast supply mode is only used if the stock on hand is below Ŝ and if the

emergency order arrives before T. Moinzadeh and Aggarwal extend this model to a

multi-echelon environment with one warehouse and M retailers [MA97].

The concept of a time window in which the usage of a faster delivery still makes sense

is very important for us. In our scenario both lead times are random and a company

might want to control the interval in which the placement of an emergency order still

seems to be reasonable.

Multi-echelon inventory policies with multiple suppliers. Multi-echelon supply

chains obtain a lot of attention in practice as well as in the literature. Some work

even exists on inventory management with multiple suppliers. The complexity of

multi-echelon supply chains is inherently high. We are interested in the common as-

sumptions and solution approaches that allow to merge the complexity of multiple

suppliers and multi-echelon inventory models.

One of the first papers on this topic is from Muckstadt and Thomas [MT80]. A cen-
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tral warehouse supplies several local retailers each of which faces a Poisson demand

process from its customers. The described situation is in the area of spare parts where

average demand is very low. Thus, it is plausible that each retailer uses a (S − 1, S)

base-stock policy. In case of stock-outs at the retailers emergency orders can be trig-

gered. They compare different heuristic multi-echelon policies and find that they yield

significant savings compared to single-echelon policies.

Moinzadeh and Aggarwal describe a multi-echelon model with one central ware-

house and several regional retailers [MA97] which is based on the (S − 1, S, Ŝ) pol-

icy of Moinzadeh and Schmidt mentioned before [MS91]. The retailers face demand

in form of a Poisson process and the two transportation modes between the ware-

house and the retailers have constant lead times. Moinzadeh and Aggarwal give an

expression for the expected total cost rate and explain an algorithm to find the optimal

parameters.

Ng et al. state that it is very difficult to find an optimal policy for a multi-echelon in-

ventory system [NLC01]. Therefore, they concentrate on giving a cost-effective heuris-

tic. In their policy they consider two central warehouses W1 and W2 each of which has

one regional retailer w1 and w2 attached to it. All lead times are constant and both

retailers are identical in terms of the same (R, Q) replenishment policy and identi-

cal Poisson customer demand. In this context they compare a policy in which each

retailer wi only orders from its assigned warehouse Wi with a policy which allows or-

dering from the non-assigned warehouse in case of a supply shortage, as well. The

latter policy yields significantly more savings in their sensitivity analysis on the order

quantities and the lead times.

From these publications we see that strong assumptions are applied for combined

multi-echelon and multi-supplier scenarios. Furthermore, the optimization can only

be achieved numerically. This is a good indication for the complexity of the problem.
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On the one hand, our single-echelon scenario is less complex than these multi-echelon

scenarios. On the other hand, we employ much less restrictive assumptions especially

about the distribution of the demand and the lead times. Thus, we expect the ne-

cessity to determine cost-minimal parameters by a heuristic and to perform extensive

sensitivity analysis to gain more insights about the dynamics of our model.

2.4 Summary

The literature on multi-source models and especially on dual-source models is vast.

The models range from continuous and periodic policies with deterministic lead times

to order expediting and order splitting with stochastic lead times. The modeling and

calculation techniques range from dynamic programming over Markov processes to

simulation. All of them share the conclusion that emergency orders can substantially

reduce the total costs in these various situations.

A central finding by Feng et al. is that (s, S) base stock policies are generally not op-

timal when the lead times differ by more than one period [FSYZ06a], [FSYZ06b]. It

is very hard if not impossible to find an optimal policy for mostly all practical sit-

uations even if lead times are deterministic. Nevertheless, one can find optimal or

cost-minimal parameter values for a given policy, of course.

The majority of multi-supplier replenishment policies with stochastic lead times

are special cases called order expediting and order splitting. While these models are

barely useful to us some of the results are still interesting. In papers about order expe-

diting the authors find that the variability of the lead times influences the cost-minimal

solution significantly. This supports the importance of our work. Moreover, the joint

optimization of the replenishment parameters seems to be rather complex. This is

what we should keep in mind if we start to develop an optimization approach for
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our model. Order splitting has received a considerable attention in literature. Here,

Thomas and Tyworth question the practical applicability of these approaches as the

splitting of one large order into small pieces neglects the common reality of large

transportation economies of scale and considerable fixed ordering costs [TT06].

In fact, only very few papers address the situation of our interest where orders of

quantity Q1 and Q2 are placed upon reaching the reorder points R1 and R2, respec-

tively. The first paper on this (R1, R2, Q1, Q2) policy is by Moinzadeh and Nahmias.

They do not specify the demand distribution but only allow for deterministic lead

times.

There exist two papers assuming exponentially distributed lead times and a Poisson

process for the demand which provide interesting insights, see [VAdK98] and [MP99].

Mohebbi and Posner are able to give an exact formulation of the total costs. However,

they have to use a computational-intensive numerical search algorithm for the joint

optimization of R1, R2, Q1, and Q2. They encounter several local minima during their

optimization. This fact is important to keep in mind as it complicates the optimization

considerably and excludes gradient descending algorithms, for example. Verrijdt et

al. state that there is only a negligible difference in the β service level if the scenario

with stochastic lead times is approximated by a model with deterministic lead times.

Basically, this means that the distribution of the lead time does not matter at all. We

doubt this statement and give counter examples in our sensitivity analysis.

The formulation in both papers is rather complex, especially compared to the rest

of the mentioned literature, even though they can simplify their formulas due to the

PASTA property, see [Wol82], which plays a key role in their models. Unfortunately,

this PASTA property is restricted to the demand Poisson process and cannot be used

in our scenario.
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The naturally more complicated approaches for multi-echelon replenishment policies

do not yield useful mechanisms for our situation either. To our knowledge the only

publication that models the daily demand and both lead times as arbitrary stochastic

variables is the practice-oriented paper by Korevaar et al. [KSB07]. While this pa-

per uses a heuristic approach based on simulation, the intention of our work is to

investigate the problem more formally, to identify and quantify possible cost reduc-

tions of dual sourcing. Thereby, we follow the approach of Moinzadeh and Nahmias

which seems most promising to us because they do not restrict the demand distribu-

tion [MN88]. In addition, we will use the concept of a time window for the second

supplier which has been used in some related replenishment policies.
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Chapter 3

A model for stochastic dual sourcing

(SDMR)

In the course of this chapter we define a formal model called ”Stochastic Dual-Mode

Replenishment” model (SDMR) which represents a stochastic replenishment policy

where two different suppliers, or more generally two supply channels, are available

and the warehouse manager has to decide when and how much to order from each

supply channel. This addresses our research question RQ 1 on page 5. The SDMR

model is inspired by the work of Moinzadeh and Nahmias [MN88]. Many aspects

and our practical experience relating to the definition of the following stochastic dual-

sourcing replenishment policy result from customer projects which have been pub-

lished to some extent, see [KSB07].

The structure of this chapter is as follows. First, we describe the SDMR model,

which consists of eight cases, and elaborate a proper probability space for it. Then

we develop the formulas for important parameters in inventory management in the

subsequent sections. Section 3.2, 3.3, and 3.4 give formulas for the probability, the

expected shortage, and the expected average stock on hand, respectively, for each of

the eight cases. These represent the main part and the core formulas of the SDMR

39
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model. In Section 3.5 we develop the basics for calculating the total inventory costs.

Finally, we conclude the chapter with a summary.

3.1 Model description

Consider the common situation at a warehouse where the stock is monitored continu-

ously and one reorder point R1 has been thoughtfully chosen to trigger replenishment

orders. In the beginning there are several items on stock. The stock level is diminished

due to stochastic customer demand until R1 is reached. Then, an order of predeter-

mined Q1 units is placed at the supplier which arrives after some stochastic period of

time. Upon arrival of every order the stock level is raised and the process starts anew.

Note, several orders can be on the way, also referred to as outstanding orders, but we

will neglect this aspect here. Now, we will extend this simple scenario by introducing

a second reorder point R2 and a second order quantity Q2. Moinzadeh and Nahmias

are the first of the few people who have investigated this kind of replenishment policy

so far [MN88]. We abolish two of their strong restrictions. First, we allow for stochas-

tic lead times for both orders, normal and emergency. Second, reorder points are not

limited to positive numbers but can be negative, as well. Figure 3.1 exemplifies our

model which we describe in detail below.

There exist two order modes with the order quantities Q1 and Q2 and the lead times

lt1 and lt2, respectively. These lead times follow some given stochastic distributions L1

and L2, respectively, with the according probability density functions l1(y) and l2(z).

Moreover, the demand x during any time interval of length t is distributed according

to the demand distribution D(t) with the cumulative distribution function F(x, t) and

the probability density function f (x, t). Given two arbitrary reorder points R1 and

R2 for the two order modes with R1, R2 ∈ R and R1 > R2 the inter-order time tg is
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Figure 3.1: Exemplified cycle of a (R1, R2, Q1, Q2) replenishment policy with stochastic

lead times and demand

a random variable with its associated distribution G(t) and the probability density

function g(t). The point of time where the two orders are triggered are denoted by t0

and tg, respectively. The notation t0 indicates that it is the starting point of the reorder

process and, thus, the first point in time of our interest.

Note, the demand distribution D(t) represents the probability that a demand x oc-

curs in a fixed period of time t and so F(x → ∞, t) = 1 holds for each time interval

t with R 3 t > 0. The demand distribution might be completely different for two

periods t1 6= t2 so D specifies a whole set of distributions and not just a single distri-

bution. Thus, arithmetic operations on the probability function with different periods

t1 6= t2 are not necessarily easy to interpret and have to be handled with care. For ex-

ample, the result of integrating the expression f (x, t) regarding t and for a fixed value
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x is not limited to the interval [0, 1] but might be any positive number. Moreover,

F(x, t→ ∞) = 1 does usually not hold.

The objective of the model is, first, to adequately calculate the expected number of

shortage and the average stock during a replenishment cycle. Second, we will derive

common measures in SCM like costs and service level. Finally, we will utilize this

model to optimize the four replenishment parameters R1, R2, Q1, and Q2.

3.1.1 Assumptions

Usually, it is assumed that regular orders, mode 1, are slower and less expensive than

emergency orders, mode 2. This is true in most cases. However, one should ques-

tion the restriction which in practice is commonly imposed on the ordering process

as a direct consequence of this assumption: the slower order has to be triggered first

and then one can possibly place an emergency order if the lower reorder point R2 is

reached. We do not make this restriction because we believe there might exist (theo-

retical) cases in which the interplay of costs, lead times and demand could lead to a

scenario where it is cheaper to not use the regular orders at all, for example.

Assumption 1. The association of the two available delivery modes with the two pos-

sible identifiers 1 and 2 is insignificant and exchangeable.

Assumption 2. The reorder points R1 and R2 can take positive or negative real values

and they always follow the relation R1 > R2.

Assumption 3. The order quantities Q1 and Q2 are positive real values.

Assumption 4. All distributions, for the demand and both lead times, are continuous

and have a finite expected value.
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Assumption 5. The demand per time unit is identically and independently distributed

(iid) and non-negative. The demand dt during a period t > 0 is non-negative and

dt = 0 for t = 0.

Assumption 6. Both lead times, lt1 and lt2, are positive.

Assumption 7. At any point in time there is only one order outstanding per supply

mode.

Assumption 8. The order quantities must be big enough to bring the stock level above

the first reorder point R1. Consequently, the maximum demand is limited to the order

quantity Q1 and Q1 + Q2 during a one-order cycle and two-order cycle, respectively.

According to Assumption 5 the demand per time unit – like one minute, hour,

or day – is identically and independently distributed. This can be justified as long

as there exist no strong trend or seasonality in the demand for the observed period

of time and single customers have no significant influence on the demand. For sim-

plicity, we refer to the demand distribution D(1) per time unit also as daily demand

distribution.

Example 3.1.1. A company has a large (potential) customer base with similar needs

for one specific product. Only a small fraction, e.g. < 1%, of these customers are

willing to buy some units of the product every day. Obviously, the satisfied demand

of the current day does not significantly influence the number of customers and their

demand on the next day.

Even if the customer base is not very homogeneous and single customers request

a multiple of the average number of units this is usually well covered by the daily

demand distribution in practice. This is especially true for a rolling replenishment,

e.g. a (daily) repetition of the calculations, where the daily demand distribution is

permanently adjusted according to the latest customer demands. In this way even a
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seasonality or trend in the demand can successfully be covered. In the spare parts

business of a world-wide operating automotive manufacturer or in the case of large

retailers Assumption 5 will usually hold. For the supplier of a single power plant,

however, this assumption is most likely not valid. We focus on applications with

a large customer base and only consider time frames that do not involve too large

changes in the demand distribution. Thus, we can defend this assumption for our

purposes.

Assumption 8 forces the stock to be equal to or above the first reorder point, R1,

after the last order in a replenishment cycle has arrived. It assures that the replenish-

ment policy can be applied repetitively without causing a constantly decreasing stock

level. This might be the case otherwise because we do not allow for several outstand-

ing orders per supply mode as it is stated in Assumption 7.

Obviously, Assumption 8 is violated with a positive probability if the demand dis-

tribution does not have a finite upper bound, for example. However, we do not want

to restrict the type of distributions used in our model. Thus, in order to make state-

ments about the applicability of our model it is desirable and essential to have a way

to measure whether Assumption 8 is violated and, if yes, how much.

Another practical restriction results from the fact that many companies do not want to

issue a second (emergency) order if the outstanding order is just about to arrive. This

restriction is, for example, applied in the heuristic approach described by Korevaar et

al. [KSB07] and we will use it in our stochastic model, as well. Note, this rule is easy

to apply in case of deterministic lead times [MN88]. There, the second (fast) order is

only triggered if it arrives before the first order. In a setting with stochastic lead times

a simple and obvious rule does not exist.

Assumption 9. The second order is only allowed to be triggered if the stock level drops

to or below the second reorder point, R2, within a given time window tw.
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Companies are free to choose and adapt the rule or policy that determines the

length of the time window tw in a way that it proofs most appropriate in respect of

their business needs. The only requirement for our model is that they are able to spec-

ify the value of tw. Further details on the time window are given in the following.

For the formulation of the formal model we make the following assumption which

will be relaxed in Chapter 4 about the practical application of this model.

Assumption 10. The time is considered to be continuous and the demand is a contin-

uous function over time.

In other words the stock will gradually deplete over time and we can give the exact

point in time when a certain stock level is reached. This is reflected in the integration

notation of our formulas. Of course, this assumption does usually not hold in practice.

Thus, in Chapter 4 we will show how this assumption can be relaxed while we can still

utilize the given formulation.

3.1.2 Time window for triggering second order

In a scenario with stochastic lead times the decision up to which point of time a second

order should be triggered is not straight-forward because the exact arrival of the first

order is unknown. One possibility is to determine a time window of length tw for

triggering a second order in such a way that the expected arrival of the second order

never exceeds the expected arrival of the first order. Equation (3.1.1) expresses this

condition where E[x] denotes the expected value of a stochastic variable x.

tw = E[lt1]− E[lt2] (3.1.1)

However, there is no restriction on how to determine tw. Another possibility is to

set the time window tw in such a way that the second order arrives at least in q percent
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of all cases before the first order. In this case the equation

1− q =
∫ tw

0
l1(y)dy +

∫ ∞

tw

∫ ∞

y−tw
l2(z)dz l1(y)dy

⇒ 1− q =
∫ tw

0
l1(y)dy +

∫ ∞

tw
[1− L2(y− tw)] l1(y)dy (3.1.2)

has to be solved for tw. Note, a solution of this equation is only possible if 1 − q

is greater or equal to the right-hand side of Equation (3.1.2) with tw = 0, see Ap-

pendix A.7. In other words the equation can only be solved if the condition holds that

the first order arrives after the second order in at least q percent of all cases when both

orders are triggered simultaneously, i.e. the inter-order time tg equals zero.

Even though we favor the second case the value of tw can be determined and

adapted in any arbitrary way to best represent the employed replenishment policy

at a specific company. Thus, this concept is very flexible to cover the needs in practical

inventory management. Once the value of tw is calculated it serves as a constant to

the rest of the replenishment model. Note that we implicitly assume that the lead time

distributions L1 and L2 remain unchanged. Whenever these distributions change the

value of tw has to be adjusted accordingly.

In the current time more and more sophisticated IT systems support the processes

throughout the whole supply chain. Consequently, it is getting much easier to im-

prove and adapt statements about the expected arrival time in the course of the whole

delivery process. Obviously, one can use this information to adjust tw accordingly.

Upon hitting the second reorder point one can dynamically decide how likely a new

emergency order will arrive before the next regular order and whether it is feasible to

place a fast order or not.

However, one still has to distinguish between planning and operational activities.

While the operational people can use the latest information to optimize their current

behavior the planning people often have to rely on historical data, rules and experi-
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ence to make statements and decisions that reach far into the future. On the one hand,

the planners might want to use one of the two approaches shown above, see equa-

tions (3.1.1) and (3.1.2), to determine a preliminary value for tw which enables them to

make further decisions on how to set the reorder points and order quantities, for ex-

ample. On the other hand the purchasing staff can possibly use the latest information

about an outstanding order from the supplier and decide that it is not feasible to place

another order regardless of the original value for tw given by the planners.

3.1.3 Categorization of replenishment cycles

After the time window tw for possibly triggering a second order has been determined

further calculations of different scenarios, e.g. a cycle consists of one or two orders,

and their probability of occurrence can be made. The number of order cycle scenarios

and their necessary conditions are not trivial to formulate. Thus, in the following we

give a systematic view on one- and two-order cycles and their interplay of demand

and lead times.

When we look at the time line of possible events in a replenishment cycle, see Fig-

ure 3.2, we can give a number of straight-forward observations.
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Figure 3.2: Time line with events during a two-order replenishment cycle

First, all our replenishment cycles start at t0, when the first order is triggered be-

cause the stock level has fallen to (or below) the first reorder point R1. This is the very
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basic event for our observations. For this reason we assume it happens at an arbitrary

point of time and do not further regard it.

Second, every replenishment cycle is terminated after tc time units when the stock

drops to (or below) R1 again once all orders have arrived that had been triggered since

t0. This event will always be the last one in a cycle and is completely determined by

the demand and the delivered quantities within this cycle. Of course, the end of one

replenishment cycle is the start of the succeeding replenishment cycle.

In between t0 and tc one can think of n = 4! = 24 permutations of events, see Ta-

ble 3.1. Without deeper knowledge one has to consider all 24 possible cases when

developing formulas, for example, for the average stock level during a replenishment

cycle. Luckily, some permutations violate against logical constraints and others do not

comply with our replenishment policy. The requirements for valid permutations are:

1. an order must arrive after it has been triggered (tA2 > tg) and

2. the second order can only be triggered within the valid time window tw and

before the arrival of the first order, so tg ≤ min(tA1 − ε; tw) where ε → 0 is an

arbitrarily small positive number.

Eliminating all invalid elements, indicated by a grey background in Table 3.1, from

the 24 cases one yields many identical, redundant rows. Now, the single sequence

of events, (tw, tA1) completely represents the valid part of the nine rows 1 − 6 and

19− 21. Similarly, the rows 13− 18 and 22− 24 can be reduced to the valid sequence

(tA1 , tw). Both sequences, (tw, tA1) and (tA1 , tw), only consist of the arrival of the first

order tA1 and the time window tw. In other words, they describe the two possible

alternatives for a one-order cycle.

The remainder of Table 3.1, rows 7− 12, consists of valid constellations for two-order
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event sequence

no. 1st 2nd 3rd 4th

1 tw tg tA1 tA2

2 tw tg tA2 tA1

3 tw tA1 tg tA2

4 tw tA1 tA2 tg

5 tw tA2 tg tA1

6 tw tA2 tA1 tg

7 tg tw tA1 tA2

8 tg tw tA2 tA1

9 tg tA1 tw tA2

10 tg tA1 tA2 tw

11 tg tA2 tw tA1

12 tg tA2 tA1 tw

event sequence

no. 1st 2nd 3rd 4th

13 tA1 tw tg tA2

14 tA1 tw tA2 tg

15 tA1 tg tw tA2

16 tA1 tg tA2 tw

17 tA1 tA2 tg tw

18 tA1 tA2 tw tg

19 tA2 tw tg tA1

20 tA2 tw tA1 tg

21 tA2 tg tw tA1

22 tA2 tg tA1 tw

23 tA2 tA1 tw tg

24 tA2 tA1 tg tw

legend: invalid event valid event

Table 3.1: Permutations of possible events in a replenishment cycle

cycles. At first glance, the six rows can not be further compacted. However, if we

look closer there are still two redundant lines. Fixing tg as the first event, which is a

necessary and sufficient condition for a two-order cycle, the arrival sequence of the

two orders influences the average stock and amount of shortage whenever the two

order quantities are not identical. So the relative position between tA1 and tA2 has to

be preserved. On the other hand, the maximal time tg to trigger a second order is

decreased below tw if tA1 < tw. So we have to preserve the relative positions between

tA1 and tw, as well. However, the relative positions of tw and tA2 are not important to

us as it does neither influence the stock level nor the amount of shortage. Considering
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this fact the event sequences (tg, tw, tA2 , tA1) and (tg, tA2 , tw, tA1) are equivalent just as

the sequences (tg, tA1 , tw, tA2) and (tg, tA1 , tA2 , tw) are.

This reduces Table 3.1 to six lines, which represent all possible different and valid

scenarios for a replenishment cycle. They correspond to the lines 1− 6 in Table 3.2,

which are prefixed with the associated row numbers from Table 3.1.

events
description

no. 1st 2nd 3rd 4th

1 tw tA1 one-order cycles
13 tA1 tw

7 tg tw tA1 tA2

two-order cycles
8 tg tw tA2 tA1

10 tg tA1 tA2 tw

12 tg tA2 tA1 tw

tg tw tA1 = tA2 two-order cycles –

special casestg tA1 = tA2 tw

Table 3.2: Valid permutations of possible events in a replenishment cycle

Up to now we neglected the fact, that events might occur simultaneously. In general

this is not a problem, as we can specify rules whether a second order will still be

triggered in special cases like tg = tA1 or tg = tw. As we will see, most of these rules

can easily be incorporated into the domain bounds of our formulas, e.g. for the stock

level, without changing the structure of the formula itself. Only the simultaneous

arrival of both orders, tA1 = tA2 , changes the structure of the formula significantly.

Thus, we include those scenarios separately in our investigations, see lines 7− 8 in

Table 3.2. Note, simultaneous arrivals are only of interest for a discrete time line and
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have a probability of zero if time is measured continuously.

The six scenarios of a replenishment cycle shown in Table 3.2 can be divided into

cycles with one and two orders. Obviously, a one-order cycle will occur if the demand

D(tw) during the time window tw satisfies D(tw) < R1 − R2. However, this condition

is not sufficient for a one-order cycle in accordance with Table 3.2. Special care has to

be taken here because a second order will not be triggered after an early arrival of the

first order, lt1 < tw, even before tw time units have elapsed. The complete conditions

for a one- and two-order cycle are given in Figure 3.3. Furthermore, two-order cycles

can be distinguished by the sequence of their two orders, namely tA1 < tA2 , tA1 > tA2 ,

and tA1 = tA2 .
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Figure 3.3: Different cases for cycles with one or two orders

In order to fully understand the process of dual sourcing and to derive commonly

valid statements and formulas, our first goal is to investigate the eight cases of Ta-

ble 3.2 separately. We will develop formulas for the expected shortage and the ex-

pected cycle for each of these cases and for positive and negative reorder points. Af-

terwards we will unify the individual formulas to generally valid formulas where it is

possible.
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3.1.4 Notation conventions

In order to have a more convenient notation of the different cases that are investigated

in the following sections, we introduce the triple notation (# of orders, lead time relation,

arrival sequence). The attributes of each of these elements are encoded as shown in

Table 3.3. Moreover, we use the expressions x
+

and max(0, x) interchangeably, as well

as x
−

and min(0, x).

# of orders: 1 : one-order cycle, so D (min(lt1, tw)) < R1 − R2

2 : two-order cycle D (min(lt1, tw)) ≥ R1 − R2

time window: A1 : order one arrives before tw, so lt1 ≤ tw

tw : order one arrives after tw, so lt1 > tw

arrivals: A1 : order one arrives before order two, so lt1 < lt2 + tg

A2 : order two arrives before order one, so lt2 + tg < lt1

=: both orders arrive at the same time, so lt1 = lt2 + tg

Table 3.3: Legend of the triple notation

Example 3.1.2. The triple (1, A1, .) specifies all one-order cycles where lt1 ≤ tw

whereas the notation (2, .,=) represents all two-order cycles with simultaneous ar-

rivals.

Now, we can refer to the eight cases by the notations shown in Table 3.4. Keep in

mind that a triple, e.g. (1, ., .) for one-order cycles, describes a certain subset of the set

containing all possible scenarios. However, it just represents a specific set and is not a

set itself.

Example 3.1.3. The identical expressions p(Case 2), p(1, tw, .), and p(1,tw,.) stand for the

probability of a one-order cycle where the order arrives after tw.



The SDMR model – Definition of an appropriate probability space 53

name triple # of orders time window arrival sequence

Case 1 (1, A1, .) 1 A1 ≤ tw none

Case 2 (1, tw, .) 1 A1 > tw none

Case 3 (2, A1, A1) 2 A1 ≤ tw A1 < A2

Case 4 (2, A1, A2) 2 A1 ≤ tw A1 > A2

Case 5 (2, A1,=) 2 A1 ≤ tw A1 = A2

Case 6 (2, tw, A1) 2 A1 > tw A1 < A2

Case 7 (2, tw, A2) 2 A1 > tw A1 > A2

Case 8 (2, tw,=) 2 A1 > tw A1 = A2

Table 3.4: Investigated cases in dual sourcing

Moreover, we introduce the following equivalent notations for multiple integration

∫ T

0

∫ X

a

∫ X′

b
f (x′ − x) g(x) h(t) dx′ dx dt ≡

T∫

t

0

X∫

x
a

X′∫

x′

b

f (x′ − x) g(x) h(t) dµ

which we think improves the readability of the next chapters significantly.

3.1.5 Definition of an appropriate probability space

One of our milestones is to calculate the expected shortage and the expected aver-

age stock on hand during a replenishment cycle. It would be convenient to simply

combine the individually calculated values for the different cases, Case 1 to Case 8.

However, the expected value of a random variable X, defined as

E[X] =
∫ ∞

−∞
x f (x) dx, (3.1.3)

always integrates over the whole sample space. In order to look just at a partial set

of the whole event space there exists the conditional expected value of X under the
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condition of some random variable Y is defined in the discrete case as

E[Y |X = x] =
1

f (x)
·

n

∑
i=1

yn h(x, yi) (3.1.4)

where f (x) is the probability of the event x and h is the joint distribution of Y and X.

In the continuous case things become more complicated especially when there are

more than two random variables. Thus, we have to expand our considerations to

some more exhaustive probability theory for a moment. After that we are able to sum

up the conditional values for disjoint cases.

Example 3.1.4. Given two sets A and B with special properties, which are subject to

further investigation, the expected stock E[stock] can be obtained by

E[stock] = E[stock 1A] + E[stock 1B] (3.1.5)

where stock is a random variable X and 1A is the indicator function of A that yields

1 for all elements in A and 0 otherwise. The special properties include that both sets

A, B ⊂ Ω are disjoint but cover the whole event space, so A ∩ B = ∅ and A ∪ B = Ω

and that they have to be measurable regarding a σ-algebra κ on Ω. Thus, both sets

A and B can be expressed by means of a second random variable Y. Additionally,

this example can be extended to n pairwise disjoint sets Ai where
⋃n

i=1 Ai = Ω for

i ∈ {1, ..., n} which can be specified using one single random variable Y.

E[stock] =
n

∑
i=1

E[stock 1Ai ] (3.1.6)

We start by giving some definitions concerning probability spaces, see e.g. [Fel71],

before we create an adequate probability space and some random variables. Finally,

we will proof the statements of Example 3.1.4.
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3.1.5.1 Definition of the probability space

Definition 3.1.1 (Probability space). A probability space is a triple (Ω,κ, P) of a sam-

ple space Ω, a σ-algebra κ of sets in it, and a probability measure P on κ.

Definition 3.1.2 (σ-algebra, Borel sets). A σ-algebra is a family κ of subsets of a given

set Ω with the following properties:

1. If a set A is in κ so is its complement A = Ω\A.

2. If {An} is any countable collection of sets in κ, then also their union
⋃

An and

intersection
⋂

An belong to κ.

Given any family z of sets in Ω, the smallest σ-algebra containing all sets in z is called

the σ-algebra generated by z.

In particular, the sets generated by the intervals of Rn are called Borel sets of Rn.

Definition 3.1.3 (Probability measure). A probability measure P on a σ-algebra κ of

sets in Ω is a function assigning a value P(A) ≥ 0 to each set A ∈ κ such that

P(Ω) = 1 and that P({∪An}) =
1

∑
n=i

P(Ak) holds for every countable collection of

non-overlapping sets An ∈ κ.

Let us now define an appropriate sample space Ω. From Figure 3.4 on page 67

one can see that the demand d, the two lead times lt1 and lt2, and the inter-order

time tg are the stochastic variables in our model. Furthermore, the demand is split

up into demand during the lead times dlt1 and dlt2 and demand dtw during the time

window tw for triggering a second order. Note that the sequence of arriving orders in

the two-order case does not influence the number of stochastic variables. The demand

during the total cycle length, tc, is Q1 and Q1 + Q2 in a one-order and a two-order

cycle, respectively. Moreover, the demand dtg during the inter-order time is R1 − R2

in a two-order cycle as we assume that demand does not appear bulky according to
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Assumption 10 on page 45. The variables tg, lt2, and dlt2 do not exist in a one-order

cycle and we set them to−1. It might also happen that an order cycle is finished before

tw and so the demand dtw cannot be specified. We may set dtw = −1 without any harm

whenever lt1 < tw because we only need tw for cases where the second order is not

allowed to be triggered although R2 is met. This situation can only occur if lt1 ≥ tw.

Considering all those random variables and given the endogenous and fixed pa-

rameters, R1, R2, tw, Q1, and Q2 we define the sample space as

ΩR1,R2,tw,Q1,Q2 := Ω = {(lt1, lt2, tg, tc, dlt1 , dlt2 , dtw)} (3.1.7)

with the 7-tuple consisting of the parameters as described in Table 3.5. Note, the sam-

ple space changes if only one of the endogenous parameters is changed. Furthermore,

definition range description

lt1 = lt1 R>0 lead time of order triggered at R1

lt2 =





lt2 if 2-order cycle

−1 else
R>0 ∪ {−1} lead time of order triggered at R2

tg =





tg if 2-order cycle

−1 else
R>0 ∪ {−1} inter-order time

tc = tc R>0 total cycle time

dlt1 = dlt1 R≥0 demand during the lead time lt1

dlt2 =





dlt2 if 2-order cycle

−1 else
R≥0 ∪ {−1} demand during the lead time lt2

dtw =





dtw if tw ≤ lt1

−1 else
R≥0 ∪ {−1} demand during time window tw

Table 3.5: Definition of stochastic variables in the probability space Ω



The SDMR model – Definition of an appropriate probability space 57

let κ be the σ-algebra generated by the Borel sets of Ω. Given an arbitrary probability

measure P we can define the probability space (Ω,κ, P).

3.1.5.2 Definition of the random variables

Usually we want to assign a probability to a set of events that fulfill certain criteria.

For this purpose random variables are usually used which assign a real value to all el-

ements in Ω which can be conveniently used as selection criteria. Formally, a random

variable is defined as follows, see [Fel71].

Definition 3.1.4 (Random variable, distribution function). A random variable X is a

real function which is measurable with respect to the underlying σ-algebra κ. The

function FX defined by FX(t) = P({X ≤ t}) is called the distribution function of X.

Thus, a random variable X is a mapping X : Ω → R1 in such a way that X(A) =

{X(a) ∈ R1 | a ∈ A} = B for an arbitrary set A ⊆ Ω. If a set A is determined by

A = {ω |ω ∈ Ω and a < X(ω) ≤ b} it is then mapped to a subinterval B with

X(A) = B ⊆ (a, b]. Moreover, the probability P(A) = FX(b)− FX(a) is assigned to A.

The term measurable in Definition 3.1.4 refers to the fact that each set of events

A = {ω |ω ∈ Ω and X(ω) ≤ t}, specified by a random variable X and an arbitrary

value t ∈ R, has to be part of the σ-algebra κ again.

Definition 3.1.5 (Measurability). Let κ be an arbitrary σ-algebra of sets in Ω. A real-

valued function g on Ω is called κ-measurable if for each t ∈ R the set of all points x

with g(x) ≤ t belongs to κ.

It can be shown that all κ-measurable functions form a closed class or family (un-

der pointwise limits) where the smallest of these closed classes is called Baire class.

The interested reader is referred to chapter 4 of Feller [Fel71]. Moreover, in Rn the

class of Baire functions is identical with the class of functions measurable with respect

to the σ-algebra κ of Borel sets.
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Definition 3.1.6 (Baire class, Baire functions). The smallest closed class of functions

containing all continuous functions is called the Baire class and its members are called

Baire functions.

One can also reverse the construction of a σ-algebra by using an existing random vari-

able X. Take an arbitrary Borel set B ∈ R1 one can specify the set A ⊆ Ω which

elements are mapped to a value within B by the random variable X. The set A is

called preimage of X(B) and denoted by

A = X−1(B) = {ω |ω ∈ Ω and X(ω) ∈ B}. (3.1.8)

Moreover, we also use the notations

A1 = X−1(t) = {ω |ω ∈ Ω and X(ω) = t} (3.1.9)

A2 = X−1(x < t) = {ω |ω ∈ Ω and X(ω) < t} (3.1.10)

to specify the sets A1, A2 ∈ Ω with a parameter t ∈ R1. It can be shown that the col-

lection of sets derived from all Borel sets form a σ-algebra κ1 which may be identical

to κ, but it is usually smaller. This κ1 is also called ”the σ-algebra generated by the

random variable X”, see [Fel71].

After this more elaborate definitions concerning probability spaces we can now define

the following random variables each with the mapping X : Ω→ R where ω ∈ Ω.

Xlt1 := ω 7→ lt1 (3.1.11)

Xlt2 := ω 7→ lt2 (3.1.12)

Xtg := ω 7→ tg (3.1.13)

Xdlt1
:= ω 7→ dlt1 (3.1.14)

Xdtw
:= ω 7→ dtw (3.1.15)

Xs,A1 := ω 7→ R1 − dlt1 (3.1.16)

Xs+Q1,A1 := ω 7→ R1 + Q1 − dlt1 (3.1.17)

Note, the first five random variables are projections of ω ∈ Ω to one of its coordinates.
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All random variables starting with Xs calculate a stock level with certain conditions

denoted in the subscript. Thereby, the random variable Xs+Q1,A1 is equivalent to the

expression Xs,A1 + Q1.

Example 3.1.5. The stock level in a one-order cycle just before the arrival of the order

can be expressed by R1 − dlt1 where dlt1 is the demand during the lead time lt1. This

corresponds to the definition of Xs,A1 .

Of course, several more random variables could be defined here but we will intro-

duce them when needed in later sections. It is important to consider that the random

variables are defined on the whole probability space which might not always be mean-

ingful. Thus, we will have to adapt the set on which the random variables operate in

certain cases.

Example 3.1.6. The random variable Xs,A1 does not consider a potential second order

that has already delivered Q2 units. Thus, one has to be careful using these random

variables and, for example, restrict their domain on a subset A ⊂ Ω.

3.1.5.3 Definition of event sets

By means of the specified random variables Xtg , Xlt1 , and Xs,A1 we can now define the

set of

one-order cycles Mtg,<0 = [Xtg ]
−1(x < 0), (3.1.18)

cycles where the 1st order arrives before tw Mlt1,≤tw = [Xlt1 ]
−1(x ≤ tw), and (3.1.19)

cycles with shortage before A1 (neglecting Q2) Ms,A1,<0 = [Xs,A1 ]
−1(x < 0) (3.1.20)

each of which is a set of a real-valued random variable, which is based onκ, and so the

sets itself are an element of κ, as well. Moreover, the set Mlt1,≤tw is identical to the set

described by the triple (., A1, .), see the notation convention in Section 3.1.4, because

there is only a constraint on the arrival of the first order, namely A1 = lt1 < tw.
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Similarly, Mtg,<0 can be referred to by (1, ., .). Using the probability measure P : κ →
R≥0 as defined in the probability space (Ω,κ, P) one can assign a probability value to

each of the elements in the sigma algebra κ.

Example 3.1.7. In the continuous case the probability of a shortage per cycle is given

by

P(Ms,A1,<0) =
∫

Xs,A1
(Ms,A1,<0)

fXs,A1
(x) dx =

0∫

x
−∞

fXs,A1
(x) dx = FXs,A1

(0) (3.1.21)

for Case 1 where fXs,A1
is the density function of the distribution FXs,A1

which is speci-

fied by the random variable Xs,A1 .

3.1.5.4 Expected values using indicator functions

Attention has to be paid to express the expected value which can only be given in

connection with at least one random variable X, denoted by E[X]. Obviously, for a

set M ∈ Ω the undefined expression E[M] also does not make sense as the real value

attached to each element of the sample space by the random variable X is missing.

In the simple case where the random variable X only maps to a countable number of

different values a1, a2, ..., an, so |range(X)| = n, the expected lead time lt1 is given by

E[Xlt1 ] =
n

∑
i=1

ai · P(Ai) (3.1.22)

with Ai = X−1(ai). Note, Ai ∈ κ always holds for i ∈ {1, 2, ..., n} because the random

variable X has to be measurable concerning the σ-algebra κ, see Appendix A.1 for an

example.

In the continuous case we have to use Borel sets for the sample space Ω. Fur-

thermore, the distribution function F, as defined in Definition 3.1.4, may be used.
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According to Feller one can now specify an arbitrary random variable X and specif-

ically choose two simple (discrete) random variables, X and X to give an upper and

lower bound for the expected value of X [Fel71]. Diminishing E
[

X
]
− E [ X ] to an

infinitesimal small value we yield the common formula for the expected value of X

E[X] =

∞∫

t
−∞

t · fX(t) dt. (3.1.23)

For more information see Appendix A.2. Note, these findings are not restricted to

one-dimensional sample spaces but also valid for random variables that are based on

a σ-algebra generated by the Borel sets in Rn.

We want to express the expected value of a random variable which is restricted to

a subset of Ω. One possibility is to use conditional expectations. Usually, E[Y |X] is

defined for two arbitrary random variables X and Y. Due to several theoretical prob-

lems, for example different domains of X and Y, the formal definition of conditional

expectation is quite complex.

Definition 3.1.7 (Conditional expectation by Doob). Let (Ω,κ, P) be a probability

space, and κ1 a σ-algebra of sets in κ (that is, κ1 ⊂ κ). Let Y be a random vari-

able with expectation. A random variable U is called conditional expectation of Y

with respect to κ1 if it is κ1-measurable and equation

E[Y 1A] = E[U 1A
]

(3.1.24)

holds for all sets A ∈ κ1 where 1A is the indicator function for each A. In this case we

write U = E(Y |κ1). In the particular case that κ1 is the σ-algebra generated by the

random variables X1, ..., Xn the variable U reduces to a Baire function of X1, ..., Xn and

will be denoted by E(Y |X1, ..., Xn).

For more details the interested reader is referred to Appendix A.6 or to the elabo-

rate explanations by Feller [Fel71]. Fortunately, we do not need the full capabilities of
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conditional expectations. Given two random variables X and Y which are measurable

on the σ-algebra κ, and the joint probability f (x, y) of X and Y it is more convenient

to introduce the notation

E[X 1A] =

∞∫

y
−∞

∞∫

x
−∞

1A(y) x f (x, y) dµ =
∫

y

Y(A)

∞∫

x
−∞

x f (x, y) dµ (3.1.25)

where A ∈ κ and 1A is the indicator function of A defined as

1A(y) :=





1 if Y−1(y) ∈ A

0 else.
(3.1.26)

Note, this can easily be extended to several random variables Y1, ..., Yn which are all

measurable on κ and their associated sets A1, ..., An ∈ κ.

E[X 1A1 ... 1An ] =

∞∫

y1
−∞

...
∞∫

yn
−∞

∞∫

x
−∞

1A1(y1) ... 1An(yn) x f (x, y1, ..., yn) dµ

=
∫

y1
Y1(A1)

...
∫

yn

Yn(An)

∞∫

x
−∞

x f (x, y1, ..., yn) dµ (3.1.27)

Moreover, this concept can also be applied to only one random variable X, its density

function f , and a set A ∈ κ in the way

E[X 1A] =

∞∫

x
−∞

1A(x) x f (x) dx

=
∫

x

X(A)

x f (x) dx. (3.1.28)

Indicator functions prove to be very flexible in this context. Recall the initial prob-

lem that random variables are defined on the whole probability space Ω but their

application might only make sense on a particular subset of Ω. In fact, we can utilize

indicator functions as an easy and convenient mechanism to apply random variables

just to such a subset A ⊂ Ω.
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Example 3.1.8. The expected stock of one-order cycles just before the arrival of its sole

order and where lt1 < tw is given by

E[Xs,A1 1Mlt1,≤tw
1Mtg ,<0 ] =

∞∫

x2
−∞

∞∫

x1
−∞

1Mlt1,≤tw
1Mtg ,<0 x1 f (x1, x2) dµ

=

tw∫

x2
−∞

0∫

x1
−∞

x1 f (x1, x2) dµ (3.1.29)

with f (x1, x2) = fXs,A1
(x) · fXlt1

(y) due to the assumption of statistical independence

between the demand and the lead time.

Let us now come back to the statement of Example 3.1.4 that

E[X] = E[X 1A] + E[X 1B] (3.1.30)

holds for a random variable X under certain properties for sets A, B ∈ Ω.

Proof. Let X1, X2 : Ω→ R1 be arbitrary random variables on the sample space Ω with

a σ-algebra κ, two individual density functions fX1 , fX2 , and a joint density function

f . Moreover, the sets A1 and A2 are specified by the random variable X2 according

to A1 = X2
−1(B1) and A2 = X2

−1(B2) where B1, B2 ⊂ R1. Whenever X2(A1) ∪



64 CHAPTER 3. A MODEL FOR STOCHASTIC DUAL SOURCING (SDMR)

X2(A2) = X2(Ω) = B1 ∪ B2 and A1 ∩ A2 = ∅ it then holds

E[X1 1A1 ] + E[X1 1A2 ]

=

∞∫

x2
−∞

∞∫

x1
−∞

1A1 x1 f (x1, x2) dµ +

∞∫

x2
−∞

∞∫

x1
−∞

1A2 x1 f (x1, x2) dµ

=

∞∫

x1
−∞




∫

X2(A1)

x1 f (x1, x2) dx2 +
∫

X2(A2)

x1 f (x1, x2) dx2


 dx1

=

∞∫

x1
−∞

∞∫

x2
−∞

x1 f (x1, x2) dµ

=

∞∫

x1
−∞

x1 fX1(x1) dx

= E[X1]. (3.1.31)

This shows that the expected value of a random variable can be computed by sum of

two expected values if the restricting sets A1 and A2 are thoughtfully chosen.

Note, f (x1, x2) = fX1(x1) · fX2(x2) in case of statistical independence of X1 and X2

like in our case of lead time and demand. Moreover, this proof can be extended to

several disjoint sets A1, ..., An, see the appendices A.3, A.4, and A.5.

Now we have the proper theory to describe not only the probability of the eight sce-

narios Case 1 to Case 8 but also the two major types of inventory costs, namely holding

and shortage costs. These formulas are developed in the following sections.

3.1.6 Measure of applicability

During all the calculations we have to keep in mind that the stock has to be refilled

at least up to the reorder point R1 the moment the last order in a cycle arrives, see

Assumption 8. In this way we assure a certain steady state situation of the stock
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level where there is at most one outstanding order per supply mode, i.e. normal or

emergency delivery. Therefore, the occurring demand in a cycle has to be limited to a

maximum of

dmax
(1,.,.) = Q1 (3.1.32)

in a one-order cycle and to

dmax
(2,.,.) = Q1 + Q2 (3.1.33)

in a two-order cycle.

These limits are independent of the amount of shortage and whether the reorder

points are positive or negative. Due to the fact that both order quantities are subject

to change, for example in an optimization process, we do not consider the maximum

demand while developing the formulas for the expected shortage and the average cy-

cle stock on hand. Of course, these limits will be incorporated by means of a simple

minimum operation, e.g. min(dmax, demand), later in the implementation of these

formulas.

However, for practical reasons it is important to have an indicator of how appli-

cable our model is. This can be achieved by calculating the probability pE of all cases

where the demand exceeds its maximum limits. In contrast to our eight cases we can

reduce the number of cases where the demand exceeds its limits to four.

First, in Case 1 the demand must be between 0 and R1 − R2 until the delivery time.

Otherwise, we will trigger a second order. Thus, it is only possible to exceed the

maximum demand if R1 − R2 > dmax
(1,.,.). The associated probability is given by

pE,(1,A1,.) =

tw∫

y

0

R1−R2∫

x

0

max(Q1,R1−R2)∫

x′

Q1

f (x′, y) f (x, y) l1(y) dµ (3.1.34)

which yields zero if R1 − R2 ≤ Q1.
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Second, in Case 2 we will not trigger a second order after tw even if R2 is met. Thus,

we have to consider possibly unlimited demand after tw.

pE,(1,tw,.) =

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′

Q1

f (x′, y) f (x, tw) l1(y) dµ (3.1.35)

Third, for all two-order cycles where the first order arrives before tw the demand

is also possibly unlimited because we will only trigger one order per supply mode in

a replenishment cycle. Moreover, now the maximum demand Q1 + Q2 must not be

exceeded until the second delivery time, see Assumption 8.

pE,(2,A1,.) =

tw∫

y

0

y∫

t

0

∞∫

z

0

∞∫

x

R1−R2

∞∫

x′

Q1+Q2

f (x′, max(y, z + t)) f (x, y) l2(z) g(t), l1(y) dµ (3.1.36)

Last, for all cases (2, tw, .) the probability of exceeding the maximum demand is

pE,(2,tw,.) =

∞∫

y

tw

tw∫

t

0

∞∫

z

0

∞∫

x

R1−R2

∞∫

x′

Q1+Q2

f (x′, max(y, z + t)) f (x, tw) l2(z) g(t), l1(y) dµ (3.1.37)

The total probability pE is given by the sum

pE = pE,(1,A1,.) + pE,(1,A1,.) + pE,(1,A1,.) + pE,(1,A1,.) (3.1.38)

due to the fact that the subcases are disjoint.

A high probability pE indicates that the given setting of replenishment parameters,

Q1, Q2, R1, and R2, will most likely lead to an unusual replenishment cycle, i.e. not

covered by our model. Assumption 8 assures that the stock level remains in a cer-

tain steady state with having at maximum one outstanding order per supply mode

simultaneously. In other words pE is not only an indication for the applicability of the

model regarding the given replenishment parameters but also an indication for how

likely additional orders will be necessary to remain a steady average stock level across

several replenishment cycles.
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Figure 3.4: Stochastic variables (red) in a one- and two-order replenishment cycle
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3.2 Probabilities of the reorder cycle scenarios

In this chapter we will give the probability of occurrence for each of the eight cases

mentioned in Table 3.4.

3.2.1 General probabilities of one-order and two-order cycles

In the following expressions for the probabilities p(one-order cycle) and p(two-order cycle)

to trigger one and two orders, respectively, are developed.

Only one order will be triggered in the two cases represented by Case 1 and Case 2

of Table 3.4. In Case 1, or (1, A1, .), the lead time lt1 is smaller than tw and the second

reorder point is not reached before lt1. In Case 2, or (1, tw, .), the lead time lt1 and the

second reorder point is not reached till tw.

p(Case 1) = p(1, A1, .) =
tw∫

y

0

R1−R2∫

x

0

f (x, y) l1(y) dµ (3.2.1)

p(Case 2) = p(1, tw, .) =
∞∫

y

tw

R1−R2∫

x

0

f (x, tw) l1(y) dµ (3.2.2)

Both equations (3.2.1) and (3.2.2) look very alike at the first glance. However, the big

difference is until when the second reorder point is not allowed to be met in order

to still remain a one-order scenario. In Case 2 the demand during the whole time

window tw is regarded. In Case 1 the time frame for the demand to reach R2 is lim-

ited to the arrival time of the first order, expressed by f (x, y). As a consequence the

probability p(1, ., .) for a one-order cycle to occur is given by

p(1, ., .) = p(1, A1, .) + p(1, tw, .) =
∞∫

y

0

R1−R2∫

x

0

f (x, min(y, tw)) l1(y) dµ. (3.2.3)

Similarly, we can give the probabilities p(2, A1, .) and p(2, tw, .) for two-order cycles

if we neglect the sequence of arrivals for a moment. However, now the second reorder
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point R2 always has to be met. Note, reaching a stock level of R2 or below in t time

units is equivalent to a demand of x ≥ R1 − R2 during t time units.

p(2, A1, .) =

tw∫

y

0

∞∫

x

R1−R2

f (x, y) l1(y) dµ (3.2.4)

p(2, tw, .) =

∞∫

y

tw

∞∫

x

R1−R2

f (x, tw) l1(y) dµ (3.2.5)

Adding both equations (3.2.4) and (3.2.5) leads to the probability p(2, ., .) of a two-

order cycle.

p(2, ., .) = p(2, A1, .) + p(2, tw, .) =
∞∫

y

0

∞∫

x

R1−R2

f (x, min(y, tw)) l1(y) dµ (3.2.6)

Of course, the total probability of one- and two-order cycles has to be equal to one.

This coincides with the sum of p(1, ., .) and p(2, ., .).

p(., ., .) = p(1, ., .) + p(2, ., .)

=

tw∫

y

0

∞∫

x

0

f (x, y) l1(y) dµ +

∞∫

y

tw

∞∫

x

0

f (x, tw) l1(y) dµ

=

tw∫

y

0

1 · l1(y) dy +

∞∫

y

tw

1 · l1(y) dy

= 1 (3.2.7)

Note, a demand distribution D(t) gives the probability that a demand x ≥ 0 will occur

within a given period t. Thus, D(t) is a complete distribution for each 0 < t ∈ R and
∞∫

x

0

f (x, t) dx = 1 (3.2.8)

always holds an arbitrary t > 0. Consequently, D specifies a whole set of distribu-

tions and not just a single distribution. Moreover, the demand distribution might be

different for two periods t1 6= t2.
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3.2.2 Detailed probabilities of two-order cycles

In the latter section we did not consider the arrival sequence in the two-order cycle.

Now we will further break down the two-order equations (3.2.4) and (3.2.5) according

to the different arrival patterns. In other words, we develop the probabilities for Case 3

till Case 8 shown in Table 3.4. Thereby, we utilize the inter-order-time distribution G

given by

G(T) =
T∫

t

0

∞∫

x

R1−R2

f (x, t) dµ (3.2.9)

and its density function g(t) and replace the formulation by means of the demand

density function f (x, t) used before in the equations (3.2.4) and (3.2.5).

p(Case 3) = p(2, A1, A1) =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

l2(z) g(t) l1(y) dµ (3.2.10)

p(Case 4) = p(2, A1, A2) =

tw∫

y

0

y∫

t

0

y−t∫

z

0

l2(z) g(t) l1(y) dµ (3.2.11)

pcont(Case 5) = pcont(2, A1,=) =

tw∫

y

0

y∫

t

0

y−t∫

z

y−t

l2(y− t) g(t) l1(y) dµ = 0 (3.2.12)

p(Case 6) = p(2, tw, A1) =

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

l2(z) g(t) l1(y) dµ (3.2.13)

p(Case 7) = p(2, tw, A2) =

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

l2(z) g(t) l1(y) dµ (3.2.14)

pcont(Case 8) = pcont(2, tw,=) =

∞∫

y

tw

tw∫

t

0

y−t∫

z

y−t

l2(y− t) g(t) l1(y) dµ = 0 (3.2.15)

In the latter equations the first integration sign over the lead time y = lt1 addresses

the constraint that the first order arrives before or after the end of the time window tw,

so tA1 < tw or tA1 > tw, respectively. The integration over the inter-order time t = tg
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assures that the second order is triggered in time, so tg < min(y, tw). Note that y is

always identical to tA1 because we start the replenishment cycle with triggering the

first order at t0 = 0. The third integration over the lead time z = lt2 takes care of the

arrival sequence of order one and two, where tA2 = lt1 + tg.

Further, note that the probability of a simultaneous arrival of both orders is zero in

the continuous case, so pcont(Case 5) = 0 and pcont(Case 8) = 0, and can be ne-

glected. However, in the discrete case (e.g. days) the probability pdisc(Case 5) and

pdisc(Case 8) is not necessarily zero and has to be considered in the calculations.

pdisc(Case 5) =
tw

∑
y=2

y

∑
t=1

l2(y− t) g(t) l1(y) ≥ 0 (3.2.16)

pdisc(Case 8) =
∞

∑
y=tw

tw

∑
t=1

l2(y− t) g(t) l1(y) ≥ 0 (3.2.17)

Adding all these probabilities must yield the total probability that a two-order cycle

occurs.

p(2, ., .) = p(Case 3) + p(Case 4) + p(Case 5) + p(Case 6) + p(Case 7) + p(Case 8)

(3.2.18)

These detailed probabilities for each of the eight cases answer the first part of our

research question RQ 1 on page 5. Next, we address the expected shortage in a reorder

cycle.

3.3 Expected shortage of the reorder cycle scenarios

The objective of investigating the amount of shortage is to determine the expected

costs that arise from not satisfying customer demand. This is a cut-off function

CB(y) =




−bv · y if y < 0

0 else
(3.3.1)



72 CHAPTER 3. A MODEL FOR STOCHASTIC DUAL SOURCING (SDMR)

with y, the amount of units on stock and bv, the variable costs per unit of shortage

(backorder). This cut-off mechanism can be conveniently described using random

variables and the indicator functions of appropriate subsets of Ω.

Example 3.3.1. The shortage costs in Case 1 is CB,(1,A1,.) = −bvE
[

Xs,A1 1(1,A1,.) 1Ms,A1,<0

]
.

In the following we will first give a general and systematic overview of the random

variables, sets, and indicator functions that are needed to calculate the shortage for all

scenarios, Cases 1 – 8. Then, we will go into details for the single cases.

case shortage shortage condition

Case 1 (1, A1, .)
dlt1 − R1 before unique arrival, A1, if R1 − dlt1 < 0

Case 2 (1, tw, .)

Case 3

Case 6

(2, A1, A1)

(2, tw, A1)

dlt1 − R1 before 1st arrival, A1, if R1 − dlt1 < 0

dlt2 − R2 −Q1
before 2nd arrival, A2, if R1 − dlt1 ≥ −Q1

and R2 + Q1 < dlt2

R1 − dlt1 − R2 + dlt2 before 2nd arrival, A2, if R1 − dlt1 < −Q1

Case 4

Case 7

(2, A1, A2)

(2, tw, A2)

dlt2 − R2 before 1st arrival, A2, if R2 − dlt2 < 0

dlt1 − R1 −Q2
before 2nd arrival, A1, if R2 − dlt2 ≥ −Q2

and R1 + Q2 < dlt1

R2 − dlt2 − R1 + dlt1 before 2nd arrival, A1, if R2 − dlt2 < −Q2

Case 5 (2, A1,=) dlt1 − R1 before simultaneous arrivals, A1 = A2, if

R1 − dlt1 < 0 (or equiv. R2 − dlt2 < 0)Case 8 (2, tw,=) (dlt2 − R2)

Table 3.6: Conditions of a shortage in Case 1 to 8

In all eight scenarios, Case 1 to 8, there exist different probabilities and formulas for

the expected shortage. Table 3.6 gives an overview over the different conditions for a

shortage and the middle column illustrates that there exist three types of sources for a

shortage, namely the demand, the order quantities, and the reorder points. Of course,
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there will be some shortage if the demand is unexpectedly high but a negative reorder

point or too small order quantities can lead to shortage, as well. This corresponds to

our intuition.

All four cases in the first and the last row of Table 3.6 have in common that all

orders, one or two, arrive at one single point in time and, thus, only a single condition

suffices to capture all stockout situations. Note, for Case 5 and 8 the two conditions are

equivalent just as their formulas for the shortage. The other four cases, displayed in

the two middle rows of Table 3.6, are cycles with two separate delivery times. Before

each of them shortage might occur as illustrated in Figure 3.5a.

Example 3.3.2. In Figure 3.5a the replenishment cycle starts at t0 with a positive stock

level of R1 units where a normal order is triggered. The stock declines and hits the

second reorder point, R2, within the allowed time window tw after tg time units and

an emergency order is triggered. Before the first order arrives, either the normal or

the emergency order, the stock depletes. At the time of the first arrival the stock out

has accumulated to SHA units which can be completely satisfied by the first delivery

containing QA units. Until the arrival of the second order the stock depletes again but

the stock out which amounts to SHB units can be completely covered by the delivered

QB units. Moreover, the second delivery brings the stock level above the first reorder

point R1 as required by Assumption 8. In total there are two separate periods where

stock out occurs which accumulates in total to SHA + SHB units.

Unfortunately, the amount of the second shortage is influenced by the first one as

shown in the two drawings of Figure 3.5. Depending on the size of the shortage be-

fore the first arrival there are two cases which require different treatments. Namely,

the shortage is small enough to be covered by the first delivery or not. This is caused

by our policy to serve backlogged demand as soon as possible, analogous to the ap-

proach of Moinzadeh and Nahmias [MN88] which, in our experience, is also a com-

mon practice in the spare parts industry, for example.
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Figure 3.5: Relationship between the shortages before and after the first delivery

The condition for a shortage before the first arrival in a two-order cycle is similar to

the condition for some shortage in a one-order cycle: a shortage occurs if the demand

during the lead time of the earliest delivery is higher than the associated reorder point.

This translates into the conditions R1 − dlt1 < 0 and R2 − dlt2 < 0, mentioned in

Table 3.6 for all cases (., ., A1) and all cases (., ., A2) where the first and the second

order, respectively, arrives first.

Whenever not all potentially backlogged demand can be satisfied by the first de-

livery, the shortage between the first and second arrival is identical to the demand

during this time, see Figure 3.5b. Let us denote the first arriving order by i and the

second one by j. Then, the demand d[tAj
−tAi

] between the two arrivals is

d[tAj
−tAi

] = Ri − dlti − Rj + dltj (3.3.2)

which coincides with the shortage stated in Table 3.6 for the condition Ri− dlti < −Qi.

Otherwise, if the stock level is refilled to or above zero, the demand between the

arrivals can initially be satisfied. The stock level after the first delivery i is equal to

Ri − dlti + Qi. Subtracting the positive stock from d[tAj
−tAi

] yields a shortage SH of

SH = d[tAj
−tAi

] − (Ri − dlti + Qi)

= dltj − Rj −Qi (3.3.3)
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which is again identical to the expressions given in Table 3.6 for the condition Ri −
dlti ≥ −Qi after appropriately substituting 1 and 2 for i and j.

From Table 3.6 one can now derive appropriate random variables and associated in-

dicator functions to determine the expected shortage in the different cases. In favor of

a better understanding this is done directly in the sections for the individual cases.

For each of the eight basic scenarios, Case 1 through 8, the calculation of the short-

age strongly depends on the setting of the reorder points R1 and R2. Because we allow

for positive and negative reorder points there are three possible settings which are dis-

played in Table 3.7. We indicate the different conditions for the reorder points in the

R1 > R2 ≥ 0 both reorder points are positive

R1 ≥ 0 > R2 only second reorder point is negative

0 > R1 > R2 both reorder points are negative

Table 3.7: Possible settings for choosing the reorder points R1 and R2

subscript of the function. Note, only one of the three possibilities is effective at a time

since the reorder points R1 and R2 are fixed and known in advance.

Example 3.3.3. If we look at Case 1 and impose the condition R1 ≥ 0 > R2 we write

pR1≥0>R2(1, A1, .) for its probability. Obviously, the probability of Case 1 does not

change with different settings for the reorder points, so pR1≥0>R2(1, A1, .) = p(1, A1, .).

Note, the probability of a shortage, for example in Case 1, depends on the choice

of R1 and R2 but it can never exceed the probability of its underlying case (Case 1).

Example 3.3.4. The expression ER1≥0>R2

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]
represents the ex-

pected shortage of Case 1 in a scenario where the first reorder point is positive and
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the second is negative. In contrast to Example 3.3.3 the shortage does strongly de-

pend on positive or negative reorder points.

Combining the random variables with the indicator functions for the defined subsets

representing the shortage and the eight cases, Case 1 to 8, we are in a position to ex-

press for each of the cases the formulas for the three scenarios concerning the reorder

point settings. Afterwards we will try to condense the formulas to the total shortage

and a combined expression covering all reorder point settings.

3.3.1 One-order cycles

The two possible cases of one-order cycles are graphically displayed in Figure 3.6. We

will consider Case 1 and 2 jointly in this section to show the parallelism in developing

the formulas for both cases. In accordance with Table 3.4 one can summarize the
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Figure 3.6: The two possible scenarios for a one-order cycle

conditions for both one-order scenarios as follows:

Case 1: The lead time lt1 does not exceed the time window tw and the demand

during lt1 is too small to trigger a second order, so lt1 ≤ tw and D(lt1) <

R1 − R2.
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Case 2: The lead time lt1 is longer than tw and the second reorder point is not

reached during tw, so lt1 > tw and D(tw) < R1 − R2.

Table 3.6 shows that there is one single condition for both cases which leads to a stock-

out situation, namely when R1 − dlt1 < 0 just before the arrival A1. If we consider the

set of elements in Ω which refer to (1, A1, .) and the set Ms,A1,<0, as specified in Equa-

tion (3.1.20), then the associated indicator functions are given by 1(1,A1,.) and 1Ms,A1,<0 ,

respectively. Together with the random variable Xs,A1 the expected shortage for Case 1

can now be expressed by E[−Xs,A1 1(1,A1,.) 1Ms,A1,<0 ]. Similarly, one can give the ex-

pected shortage for Case 2. Both results can be summed up to E[−Xs,A1 1(1,.,.) 1Ms,A1,<0 ],

the expected shortage for both one-order scenarios.

E[−Xs,A1 1(1,.,.) 1Ms,A1,<0 ] =

E[−Xs,A1 1(1,A1,.) 1Ms,A1,<0 ] + E[−Xs,A1 1(1,tw,.) 1Ms,A1,<0 ] (3.3.4)

The three possible settings of reorder points, see Table 3.7, can be illustrated by

moving the x-axis of Figure 3.6a and 3.6b vertically. Next, we will separately elaborate

the formulas for these three possible settings for the reorder points before stating a

unified equation.

3.3.1.1 Positive reorder points

We know that the two reorder points follow the inequality R1 > R2, see Assumption 2.

Further we temporarily assume that R2 ≥ 0. Now, it directly follows from D(lt1) <

R1− R2 in the description of Case 1 that the demand during the lead time satisfies the

inequality D(lt1) < R1. Having R1 units on stock in t0 and a demand D(lt1) < R1

during the lead time there will be no stockout until the first order arrives.

pR1>R2≥0

(
1(1,A1,.) and 1Ms,A1,<0

)
= 0 (3.3.5)

ER1>R2≥0

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]
= 0 (3.3.6)
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A stockout situation is therefore restricted to Case 2. The expected shortage is deter-

mined by all cases where the lead time follows the inequality y = lt1 > tw and the

two conditions x = D(tw) < R1− R2 and x′ = D(lt1) > R1 hold for the demand. This

leads to the formula for the amount of shortage where the inequalities are directly

transferred to the bounds of the integrations.

ER1>R2≥0

[
−Xs,A1 1(1,tw,.) 1Ms,A1,<0

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
R1−x

(x′ − R1 + x) f (x′, y− tw) f (x, tw) l1(y) dµ (3.3.7)

The associated probability is given by

pR1>R2≥0

(
1(1,tw,.) and 1Ms,A1,<0

)
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
R1−x

f (x′, y− tw) f (x, tw) l1(y) dµ (3.3.8)

which is always equal to the expression of the expected shortage without the scaling

factor, here (x′ − R1 + x), just after the most inner integration sign. Due to the close

and simple relation between the expression for the expected value and its probability

we refrain from explicitly writing the formula for the probability unless it serves a

better understanding.

3.3.1.2 One positive and one negative reorder point

Now, let us revoke the constraint that both reorder points have to be positive and

replace R1 > R2 ≥ 0 by R1 ≥ 0 > R2 in a first step. Again, the two possibilities

Case 1 and Case 2 that can cause an one-order cycle remain the same. In contrast to

non-negative reorder points the expected shortage ER1≥0>R2

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]

in Case 1 is positive whenever the demand during the lead time exceeds R1. In order
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to not become a two-order cycle the demand must remain below R1 − R2.

ER1≥0>R2

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]
=

tw∫

y

0

R1−R2∫

x

R1

(x− R1) f (x, y) l1(y) dµ (3.3.9)

In Case 2 additional shortage can occur before the second reorder point is reached.

ER1≥0>R2

[
−Xs,A1 1(1,tw,.) 1Ms,A1,<0

]
=

∞∫

y

tw




R1∫

x

0

∞∫

x′
R1−x

(x′ − R1 + x) f (x′, y− tw) f (x, tw) dµ+

R1−R2∫

x

R1

∞∫

x′
0

(x′ − R1 + x) f (x′, y− tw) f (x, tw) dµ


 l1(y) dy (3.3.10)

The two summands in Equation (3.3.10) above are very similar and can be unified

if the lower bound R1 − x of the most inner integration is truncated to non-negative

values. By replacing R1 − x with [R1 − x]
+

we can write the simplified expression

ER1≥0>R2

[
−Xs,A1 1(1,tw,.) 1Ms,A1,<0

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′

[R1−x]+

(x′ − R1 + x) f (x′, y− tw) f (x, tw) l1(y) dµ. (3.3.11)

Note, even though we changed the lower integration bound to [R1 − x]
+

in Equa-

tion (3.3.11) this is not reflected in the first factor inside the integration. The reason

lies in the fact that R1 − x < 0 coincides with the shortage (possibly between 0 and

−R2) till tw is reached and has to be added to the shortage x′ beyond tw till the end of

the lead time lt1. Equation (3.3.11) is identical to Equation (3.3.7) for the case of posi-

tive reorder points except for restricting the expression R1 − x to non-negative values

[R1 − x]
+

in the lower bound of the most inner integration.
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In total one would expect higher shortages in the case of a negative second reorder

point because the demand can now be higher without triggering a second order. This

is also reflected in the equations (3.3.9) and (3.3.11).

First, if one compares the formulas for shortage in Case 1 then Equation (3.3.9)

yields a positive value which is greater than zero, the result of its counterpart: Equa-

tion (3.3.6).

Second, a closer look at Equation (3.3.11) reveals that the interval [0, R1 − R2] is

larger for a negative R2 than for R2 ≥ 0. The same is the case in Equation (3.3.7).

Given R1 ≥ 0 the reduction of R2 increases the result of the integration ceteris paribus.

Moreover, a negative or reduced second reorder point R2 also increases the total

probability p(1, ., .) that only one order is issued during a cycle, see Equation (3.2.3).

3.3.1.3 Negative reorder points

If both reorder points are negative the amount of shortage has already accumulated

to R1 even before the first order is triggered at t0. Thus, we have to add this initial

shortage to Case 1 and 2. According to the calculation rules, see Appendix A.4, the

additional term to be added to the expected shortage in Case 1 is given by

SHt=t0
(1,A1,.) = −R1 · p(1, A1, .)

= −R1 ·
tw∫

y

0

R1−R2∫

x

0

f (x, y) l1(y) dµ. (3.3.12)
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In total the expected amount of shortage for Case 1 is determined by

E0>R1>R2

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]

= (−R1) ·
tw∫

y

0

R1−R2∫

x

0

f (x, y) l1(y) dµ +

tw∫

y

0

R1−R2∫

x

0

x f (x, y) l1(y) dµ

=

tw∫

y

0

R1−R2∫

x

0

(x− R1) f (x, y) l1(y) dµ. (3.3.13)

Similar to Equation (3.3.13) the expected shortage for Case 2 is given by

E0>R1>R2

[
−Xs,A1 1(1,tw,.) 1Ms,A1,<0

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(x′ − R1 + x) f (x′, y− tw) f (x, tw) l1(y) dµ. (3.3.14)

Note, the expression x′ − R1 + x in Equation (3.3.14) consists of three positive terms.

First, R1 < 0 reflects the fact that now there exists no positive reorder point and that

we already start with a shortage of −R1 in t0. Second and third, all demand x and

x′ after t0 and until the arrival of the order immediately increases the amount of total

shortage.

In sum the expected shortage is given by

E0>R1>R2

[
−Xs,A1 1(1,.,.) 1Ms,A1,<0

]

=

tw∫

y

0

R1−R2∫

x

0

(x− R1) f (x, y) l1(y) dµ

+

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(x′ − R1 + x) f (x′, y− tw) f (x, tw) l1(y) dµ (3.3.15)

There exists always some shortage in this scenario and, thus, the stockout probability

p(SH1
R1<0) is equal to the maximum possible value, namely the probability p(1, ., .)

that a one-order cycle occurs. We stated before that the expected value and the prob-

ability are closely related. Neglecting the first factors (x − R1) and (x′ − R1 + x) in
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both terms of Equation (3.3.15) leads to the probability that a shortage occurs either in

Case 1 or Case 2.

p0>R1>R2

(
1(1,.,.) and 1Ms,A1,<0

)

=

tw∫

y

0

R1−R2∫

x

0

f (x, y) l1(y) dx dy +

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

f (x′, y− tw) f (x, tw) l1(y) dx′ dx dy

=

tw∫

y

0

R1−R2∫

x

0

f (x, y) l1(y) dx dy +

∞∫

y

tw

R1−R2∫

x

0

1 · f (x, tw) l1(y) dx dy

=

∞∫

y

0

R1−R2∫

x

0

f (x, min(y, tw)) l1(y) dx dy

= p(1, ., .). (3.3.16)

This result corresponds to the probability of a one-order cycle given in Equation (3.2.3).

3.3.1.4 Combined formulas for all reorder point scenarios

Most of the formulas for the expected stock in the three scenarios R1 > R2 ≥ 0,

R1 ≥ 0 > R2, and 0 > R1 > R2 are very similar. In fact, it is possible to combine the

three formulas for the expected shortage and write a compact expression.

E
[
−Xs,A1 1(1,.,.)1Ms,A1,<0

]

=

tw∫

y

0

R1−R2∫

x

R1
+

[x− R1]
+

f (x, y) l1(y) dµ

+

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′

[R1−x]+

(x′ − R1 + x) f (x′, y− tw) f (x, tw) l1(y) dµ. (3.3.17)
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The associated probability that a stockout situation occurs in a one-order cycle is

p
(

1(1,.,.) and 1Ms,A1,<0

)
=

=

tw∫

y

0

R1−R2∫

x

R1
+

f (x, y) l1(y) dµ +

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′

[R1−x]+

f (x′, y− tw) f (x, tw) l1(y) dµ (3.3.18)

Note that the basic assumption R1 > R2 holds throughout these calculations. As a

consequence, the first term for the expected shortage in Equation (3.3.17) can only be

positive if the second reorder point R2 is negative. Otherwise, the first term is equal

to zero.

Moreover, the expressions [R1]
+

and [R1 − x]
+

for the lower bound of the most

inner integral take care of the fact that there might be some stock left at t0 to cover

some customer demand between t0 and the arrival of the order before running into a

stockout situation. However, when R1 is negative or the demand x reaches R1 every

additional demand immediately increases the amount of shortage.

It is important to mention that we do not specify which supply mode, normal or emer-

gency, is assigned to the identifiers 1 and 2, see Assumption 1 on page 42. Conse-

quently, the reorder point of the normal supply mode might be represented by R1 and

R2, respectively. The concrete assignment of the supply mode to the identifiers de-

pends on the given values for both reorder points as the constraint R1 > R2 always

has to hold. Due to this exchangeability of the identifiers the equations (3.3.17) and

(3.3.18) for the expected amount of shortage and the associated stockout probability,

respectively, are valid for all combinations of positive and negative reorder points.

The only case excluded here are identical reorder points R1 = R2 which represents an

order splitting approach. The interested reader is referred to the literature about order

splitting, see Chapter 2.2.2 on page 29.



84 CHAPTER 3. A MODEL FOR STOCHASTIC DUAL SOURCING (SDMR)

So far, we have presented the SDMR model as a probability space in Section 3.1 and

eight different cases have been identified, see Table 3.4 on page 53. In the first two

cases only one order is triggered. The present section has developed formulas for

the expected shortage in these two cases. In the following Section 3.3.2 analogous

formulas are developed for all six two-order cases.

3.3.2 Two-order cycles

Similar to the one-order case one can develop the formulas for the shortage in a two-

order cycle. The difference mainly lies in the incorporation of a second reorder point

and a second stochastic lead time. Table 3.6 on page 72 shows that the pair of cases

(3, 6), (4, 7), and (5, 8) can be jointly analyzed. Therefore, we explain only the first of

the two cases per pair and refer the interested reader to Appendix B for the remaining

cases. In order to avoid tedious repetitions we will not develop the formulas for all

reorder point settings explicitly either but only give the formulas for positive reorder

points and the unified formulas.

We can directly derive the necessary random variables and indicator functions for

their associated sets. In addition and analogous to the random variable Xs,A1 = R1 −
dlt1 which has been defined in Equation (3.1.16) on page 58 we define the random

variable

Xs,A2 = ω 7→ R2 − dlt2 (3.3.19)

which represents the stock level at the point of time tA2 when the emergency order

arrives. Using the random variables Xs,A2 and Xs,A1 we further define the following
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subsets of Ω

Ms,A2,<0 = [Xs,A2 ]
−1(x < 0) (3.3.20)

Ms,A1,<−Q1 = [Xs,A1 ]
−1(x < −Q1) (3.3.21)

Ms,A1,<−Q2 = [Xs,A1 ]
−1(x < −Q2) (3.3.22)

Ms,A2,<−Q1 = [Xs,A2 ]
−1(x < −Q1) (3.3.23)

Ms,A2,<−Q2 = [Xs,A2 ]
−1(x < −Q2) (3.3.24)

which contain all elements that suffice a certain condition on the stock level at the

points of time tA2 or tA1 , respectively, e.g. a negative stock level at tA2 in Equa-

tion (3.3.20).

All two-order cycles trigger the second order after a stochastic positive time, the

inter-order time tg, see Figure 3.1 on page 41. The inter-order time follows the distri-

bution G with its density function g and can be calculated by means of the two reorder

points, R1 and R2, and the demand density function f .

G(t) =
∞∫

R1−R2

f (x, t) dx (3.3.25)

Note, in the following we do not consider the maximum limits for the demand

dmax
(1,.,.) and dmax

(2,.,.) which enforce Assumption 8 on page 43 and which are given explicitly

in equations (3.1.32) and (3.1.33) on page 65. These limits depend strongly on the

choice of Q1 and Q2 as mentioned before and will be considered by the measure of

applicability, see Chapter 3.1.6.

3.3.2.1 First order arrives first

The two possible cases of two-order cycles where the first order arrives first are Case 3

and Case 6. Both cases are intimately related to each other as one can see from Fig-

ure 3.7. Given the fact that a second order is triggered and the first order arrives before
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the second it only matters whether the first order arrives before or after tw, the end of

the time window to trigger an emergency order. This is indicated by the blue arrow in

Figure 3.7. It is the only difference between Case 3 and Case 6 and due to this strong

similarity we can develop their formulas jointly.
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Figure 3.7: Scenarios for a two-order cycle where the first order arrives

Note, in the continuous case the event tA1 = tw is a null set and has a probability

of zero. In a discrete scenario, however, Case 6 includes the event tA1 = tw except for

a replenishment policy that does not allow to trigger an emergency order during the

time unit, e.g. day, where the normal order arrives.

According to Table 3.6 at the beginning of this chapter on page 72 there are three

different conditions how shortage can occur. Thereby, we distinguish between the

shortage that occurs before and after the first arrival, A1. However, this is only an

artificial separation in favor of a more systematic investigation. We denote the two

different cases in the superscript of the specific parameters. This is exemplarily sum-

marized for the expected shortage in Table 3.8.
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time

condition

reorder point settings

R1 > R2 ≥ 0 R1 ≥ 0 > R2 0 > R1 > R2

t < tA1 E<A1
R1>R2≥0 E<A1

R1≥0>R2
E<A1

0>R1>R2

t ≥ tA1 E≥A1
R1>R2≥0 E≥A1

R1≥0>R2
E≥A1

0>R1>R2

Table 3.8: Notation of the different cases of expected shortage in a two-order cycle

Referring to Table 3.6 on page 72 again, the three different parts which contribute

to the shortage in Case 3 and Case 6 can be expressed by random variables and sets

of our probability space. For the first scenario of Case 3 the translation of the shortage

and its condition is

dlt1 − R1 → −Xs,A1

R1 − dlt1 < 0 → Ms,A1,<0.

In addition, we only consider Case 3, (2, A1, A1), and the shortage before the first

arrival, A1. In total this results in the expression

E<A1
[
−Xs,A1 1(2,A1,A1)

1Ms,A1,<0

]
(3.3.26)

where the condition for the reorder point setting still has to be added in the subscript

of E<A1 . Similarly, the second shortage scenario of Case 3 is translated by

dlt2 − R2 −Q1 → −Xs,A2 −Q1

R1 − dlt1 ≥ −Q1 → Ms,A1,<−Q1

R2 + Q1 < dlt2 → Ms,A2,<−Q1

into

E>A1
[
−(Xs,A2 + Q1) 1(2,A1,A1)

1Ms,A1,<−Q1
1Ms,A2,<−Q1

]
. (3.3.27)
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The last scenario can be translated by

R1 − dlt1 − R2 + dlt2 → Xs,A1 − Xs,A2

R1 − dlt1 < −Q1 → Ms,A1,<−Q1

into

E>A1
[
(Xs,A1 − Xs,A2) 1(2,A1,A1)

1Ms,A1,<−Q1

]
. (3.3.28)

By exchanging the indicator function 1(2,A1,A1)
with 1(2,tw,A1)

the formulas are valid

for Case 6. In the following we will translate the given expressions for the shortage in

Case 3 and 6 into mathematical formulas and thereby consider the different possible

settings of the reorder points.

Positive reorder points. For Case 3, (2, A1, A1), we know that the first order arrives

before tw, so 0 ≤ lt1 ≤ tw. This implies that the second reorder point, R2, has to be

reached during the lead time lt1, so tg < lt1. Moreover the second order must arrive

after the first one which translates into tg + lt2 > lt1.

We are interested in the amount of shortage. First, we look at the shortage before

the first arrival as specified by the expression (3.3.26). Then, demand f (x, y) between

triggering and receiving the first order at time t = 0 and y = lt1, respectively, must be

greater than the reorder point R1. This condition is equivalent to a demand f (x, y−
t) > R2 between triggering the second order at time t = tg and the arrival of the first

order after y = lt1 time units. Due to simplifications we use the latter condition in the

formula for the shortage given by

E<A1
R1>R2≥0

[
−Xs,A1 1(2,A1,A1)

1Ms,A1,<0

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

R2

(x− R2) f (x, y− t) l2(z) g(t) l1(y) dµ. (3.3.29)

We can directly derive the formula for Case 6, where lt1 > tw, from Case 3. The only
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things changing are the new condition tw < lt1 < ∞ for the lead time lt1 and an inter-

order time tg that is now limited by the time window tw instead of lt1, so 0 ≤ tg ≤ tw.

E<A1
R1>R2≥0

[
−Xs,A1 1(2,tw,A1)

1Ms,A1,<0

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

R2

(x− R2) f (x, y− t) l2(z) g(t) l1(y) dµ. (3.3.30)

Now we come to the shortage between the two arrivals. If the first delivery

cannot cover all backlogged demand, as assumed in the expression (3.3.28), then

the additional shortage is identical to the demand x′ between the two deliveries, so

0 < x′ < ∞. Of course, we have to consider that the demand x before the first arrival

is too high to be covered by the delivered order quantity Q1. If we use the second

reorder point R2 as a reference the inequality R2 + Q1 < x < ∞ must hold.

E≥A1
R1>R2≥0

[
(Xs,A1 − Xs,A2) 1(2,A1,A1)

1Ms,A1,<−Q1

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

R2+Q1

∞∫

x′
0

x′ f (x′, z + t− y) f (x, y− t) l2(z) g(t) l1(y) dµ (3.3.31)

Again, we can easily write down the related formula for Case 6 by considering the

new conditions on the lead time tw < lt1 < ∞ and the inter-order time 0 ≤ tg ≤ tw.

E≥A1
R1>R2≥0

[
(Xs,A1 − Xs,A2) 1(2,tw,A1)

1Ms,A1,<−Q1

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

R2+Q1

∞∫

x′
0

x′ f (x′, z + t− y) f (x, y− t) l2(z) g(t) l1(y) dµ (3.3.32)

Last but not least we look at the scenario where the first delivery can satisfy all

demand that has been backlogged so far. This is represented by the expression (3.3.27).

In addition, there might be a positive stock to cover future demand after the first order

arrives. The condition for the demand x between triggering the second order and the

arrival of the first order is 0 ≤ x ≤ R2 + Q1. The demand x′ after the first arrival must
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now be at least as large as the potentially positive stock, so R2 + Q1 − x ≤ x′ < ∞.

E≥A1
R1>R2≥0

[
−(Xs,A2 + Q1) 1(2,A1,A1)

1Ms,A1,<−Q1
1Ms,A2,<−Q1

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

R2+Q1∫

x

0

∞∫

x′

R2+Q1−x

(x′ − R2 −Q1 + x) f (x′, z + t− y)·

f (x, y− t) l2(z) g(t) l1(y) dµ (3.3.33)

The equivalent formula for Case 6 is given by

E≥A1
R1>R2≥0

[
−(Xs,A2 + Q1) 1(2,tw,A1)

1Ms,A1,<−Q1
1Ms,A2,<−Q1

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

R2+Q1∫

x

0

∞∫

x′

R2+Q1−x

(x′ − R2 −Q1 + x) f (x′, z + t− y)·

f (x, y− t) l2(z) g(t) l1(y) dµ. (3.3.34)

Arbitrary reorder points. In this section we will relax all restrictions on how to set

the reorder points. We begin by only setting R2 < 0, leave R1 ≥ 0, and give formulas

that are also valid for the last section where both reorder points are non-negative.

Then, we will set both reorder points to a negative value. Interestingly, the formulas

are identical because we always take the second reorder point as a reference for the

demand and shortage before the first arrival. In this way we will obtain formulas that

are valid for all possible values for the reorder points.

Looking at Equation (3.3.29) for the shortage before the first arrival we now already

have a shortage of −R2 when the second order is triggered. In fact, the first term

within the integration, (x− R2), is not limited to a positive value of R2 and adds the

already cumulated shortage to the regular demand until the first order arrives. Thus,

there is no need for change at this point. The rest of the terms within the integration

are independent of R2. Only the lower bound of the most inner integration sign will

become negative. Restricting this lower bound to non-negative values, by writing
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[R2]
+

, we obtain the equation

E<A1
[
−Xs,A1 1(2,A1,A1)

1Ms,A1,<0

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

[R2]
+

(x− R2) f (x, y− t) l2(z) g(t) l1(y) dµ (3.3.35)

which is valid for both cases R1 > R2 ≥ 0 and R1 ≥ 0 > R2. Note, the negative R2

is always met here because we look at a two-order cycle. Thus, there will always be a

shortage of at least −R2. The identical restriction of the lower bound to non-negative

values gives an equivalent formula for Case 6 which can be found in the Appendix B.

In the case where the first order cannot cover all backlogged demand R2 occurs

only once in the formula for the shortage given in Equation (3.3.31). We can restrict

the lower bound R2 + Q1 to positive values for the integration of the demand x until

the first arrival because a negative demand does not make sense. This yields

E≥A1
[
(Xs,A1 − Xs,A2) 1(2,A1,A1)

1Ms,A1,<−Q1

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

[R2+Q1]
+

∞∫

x′
0

x′ f (x′, z + t− y) f (x, y− t) l2(z) g(t) l1(y) dµ (3.3.36)

which is again valid for non-negative reorder points, as well. Note, whenever R2 +

Q1 ≤ 0 the latter equation reduces to

E≥A1
R1>R2≤−Q1

[
(Xs,A1 − Xs,A2) 1(2,A1,A1)

1Ms,A1,<−Q1

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x′
0

x′ f (x′, z + t− y) l2(z) g(t) l1(y) dµ

which yields the expected demand between the two arrivals tA1 and tA2 . This result

is easy to verify. Whenever the normal order arrives first and R2 ≤ Q1 holds then

the first delivery, consisting of Q1 units, cannot bring the stock level above zero at

tA1 . Consequently, all demand between tA1 and tA2 remains unsatisfied and, thus, the
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expected shortage between tA1 and tA2 corresponds to the expected demand during

that time. The equivalent formula for Case 6 is derived analogously and can be found

in the Appendix B.

Equation (3.3.33) for the scenario where the stock level after the first delivery is

positive consists of three places where R2 is used. Starting with the bounds R2 + Q1

and R2 + Q1 − x of the integration of the demand until the first order arrives and

the demand between the two deliveries, respectively, it is clear that negative values

do not make sense and we restrict their bounds to non-negative values. The term

(x′ − R2 − Q2 + x) within the integration represents the shortage that occurs given

the four parameters. Here again, the term is not restricted to positive values of R2 but

increases the total sum if R2 < 0. This corresponds to the fact that the demand after

the first arrival now needs to be less high to cause a stockout situation and is actually

equivalent to an increased demand before the first arrival. Thus, we do not need to

change this term.

E≥A1
[
−(Xs,A2 + Q1) 1(2,A1,A1)

1Ms,A1,<−Q1
1Ms,A2,<−Q1

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

[R2+Q1]
+

∫

x

0

∞∫

x′

[R2+Q1−x]+

(x′ − R2 −Q1 + x) f (x′, z + t− y) ·

f (x, y− t) l2(z) g(t) l1(y) dµ (3.3.37)

Again, this equation also holds for the case R1 > R2 ≥ 0. Note, if R2 + Q1 ≤ 0 then the

whole expression is 0 because the integration of the demand x before the first arrival

reduces to
0∫

x

0

f (x, y− t) dx = 0.

In other words, the second reorder point is so negative that there is no possibility

for the first order to refill the stock level above zero. Of course, then the shortages

between the two arrivals are solely determined by the formula for the previous case
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where the first delivery cannot cover all backlogged demand. The equivalent formula

for Case 6 is listed in Appendix B.

The sum of the latter three formulas yield the total shortage one expects in Case 3.

See Appendix B for Case 6.

So far we have not considered cases where both reorder points are negative. Inter-

estingly, the formulas do not change because the reorder point R1 does not appear in

any of the equations given so far for two-order cycles. So these formulas hold for all

possible settings of the reorder points R1 and R2.

This can be explained by the fact that R2 always has to be reached in Case 3 and

Case 6. Then, there exists shortage prior to reaching R2 if and only if R2 < 0 which

is completely independent from how the demand has evolved before R2. Further, we

are interested in the amount of shortage but do not consider how long backlogged

demand remains unsatisfied. Consequently, it suffices for the calculation of the ex-

pected shortages to look at R2 and at the development of the demand after R2 has

been reached. This changes, of course, when we want to calculate the average cycle

stock which will be addressed in Chapter 3.4.

3.3.2.2 Second order arrives first

The two possible cases for a two-order cycle where the second order arrives first are

Case 4 and Case 7. These are displayed in Figure 3.8. Here again, both cases are closely

related and differ only in the condition whether the first order arrives before or after

the end of the time window tw to trigger an emergency order.

For Case 4, analogous to Case 3, we can give expressions for the three different

sources of shortage by means of random variables, subsets of Ω and their indicator

function. We skip explicitly elaborating them here because they are shown in the

coming equations and are straight forward to verify my means of Case 3.
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Figure 3.8: Scenarios for a two-order cycle where the second order arrives first

For Case 4 and 7 there exist again three different conditions for the shortage as

specified in Table 3.6, and three possible settings for the reorder points. In the follow-

ing we directly give the universal formulas that apply to all three possible setting of

the reorder points, R1 > R2 ≥ 0, R1 ≥ 0 > R2, and 0 > R1 > R2.

The Case 4 is specified by (2, A1, A2). First, this means that the lead time lt1 of

the first order is shorter than the time window tw, so 0 < y = lt1 < tw. Second,

this implies that the second order must be triggered before the first order arrives, so

0 < t = tg < lt1. Third, the second order arrives before the first one which translates

into 0 < z = lt2 < y − t. In addition the demand dlt2 during the lead time of the

second order must exceed R2 in order to cause shortage, so R2 < x = dlt2 < ∞.

Consequently, the formula for the shortage before the first order arrives, which is the
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order associated with R2 in this case, yields

E<A2
[
−Xs,A2 1(2,A1,A2) 1Ms,A2,<0

]
=

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

[R2]
+

(x− R2) f (x, z) l2(z) g(t) l1(y) dµ. (3.3.38)

Note, this formula is already independent of the value of the two reorder points. For

the case where the first delivery cannot satisfy all backlogged demand at the time

of its arrival the demand dlt2 during the lead time of the second order must exceed

R2 + Q2. Thus, R2 + Q2 < x < ∞ and any positive demand x′ between the two

arrivals immediately leads to some shortage. Obviously, only non-negative bounds of

the integration of the demand x make sense.

E≥A2
[
(Xs,A2 − Xs,A1) 1(2,A1,A2) 1Ms,A2,<−Q2

]
=

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

[R2+Q2]
+

∞∫

x′
0

x′ f (x′, y− z− t) f (x, z) l2(z) g(t) l1(y) dµ (3.3.39)

For the last scenario, where the order quantity Q2 is large enough to satisfy all back-

logged demand at the time of its arrival

E≥A2
[
−(Xs,A1 + Q2) 1(2,A1,A2) 1Ms,A2,<−Q2

1Ms,A1,<−Q2

]
=

tw∫

y

0

y∫

t

0

y−t∫

z

0

[R2+Q2]
+

∫

x

0

∞∫

x′

[R2+Q2−x]+

(x′ − R2 −Q2 + x) f (x′, y− z− t) ·

f (x, z) l2(z) g(t) l1(y) dµ (3.3.40)

determines the shortage between the first and the second arrival.

Without any problems the equivalent formulas for Case 7 can be given, see Ap-

pendix B.
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3.3.2.3 Both orders arrive simultaneously

In a setting where at least one of the two lead times, lt1 or lt2, are continuous variables

the event of a simultaneous arrival is a null set with a probability of zero. However,

due to the practical implementation of this model with discretized lead times we have

to consider these scenarios. They are related to the one-order cases regarding their

single arrival time, A1 = A2. Several aspects have to be considered when discretizing

our formulation. These are addressed in Chapter 4.1 on page 128. Note, the demand

can still be a continuous variable even though the lead times are not.

There are two cases, Case 5 and Case 8, with a simultaneous arrival of both orders

which are illustrated in Figure 3.9. Case 5 is specified by (2, A1,=) which implies
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Figure 3.9: Scenarios for a two-order cycle with simultaneous arrivals

several properties. These are reflected in the integration bounds of the formula for the
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expected shortage

E
[
−Xs,A1 1(2,A1,=) 1Ms,A1,<0

]
=

tw

∑
y=2

y−1

∑
t=1

y−t

∑
z=y−t

∞∫

x

[R2]
+

(x− R2) f disc(x, z) ldisc
2 (z) gdisc(t) ldisc

1 (y) dx. (3.3.41)

First, the lead time lt1 of the first order is shorter than the time window tw, so 0 <

y = lt1 < tw. Consequently, the second order must be triggered before the first order

arrives, so 0 < t = tg < lt1. Third, the first order arrives together with the second one

which translates into z = lt2 = y− t. In addition the demand dlt2 till the delivery of

the second order must exceed R2 in order to cause shortage, so R2 < x = dlt2 < ∞.

Note, the density functions f disc, ldisc
1 , ldisc

2 , and gdisc are the discrete counterparts

of f , l1, l2, and g, respectively. In the case of the demand distribution f disc(x, z) this

represents the probability that a continuous amount of demand x ∈ R occurs within

0 < z ∈ N time units.

Further note, a second order can only be triggered if y = lt1 > 1 holds for the

lead time lt1 of the first order. This can be deducted from the fact that we prohibit si-

multaneous ordering, called order splitting, and that only strictly positive lead times,

z = lt2 > 0, are allowed. Consequently, the second order can be triggered one time

unit after t0 the earliest, so tg ≥ 1, and it cannot arrive before t0 + 2 time units. This is

reflected in Equation (3.3.41) where the lower bound for the lead time is y = lt1 = 2

and the upper bound for the inter-order time t = tg is y− 1.

For Case 8 one yields the closely related formula

E
[
−Xs,A1 1(2,tw,=) 1Ms,A1,<0

]
=

∞

∑
y=tw+1

tw

∑
t=1

y−t

∑
z=y−t

∞∫

x

[R2]
+

(x− R2) f disc(x, z) ldisc
2 (z) gdisc(t) ldisc

1 (y) dx (3.3.42)
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where the lead time of the first order is greater than tw and the demand during tw must

be large enough to trigger the second order. Note, the second order is still triggered at

time tw.

This concludes our elaboration of formulas for the shortage in all different cases. This

is a key result for calculating the customer service level as requested in our research

question RQ 1 on page 5. An overview of all final equations is given in Table 3.9. In

favor of a compact presentation we only list the equation number and page where the

complete equation can be found.

The total amount of expected shortage during a replenishment cycle is denoted by

E[SH]. It is the sum of all shortage formulas for Case 1 to Case 8 listed in Table 3.9 and

can be expressed by

E[SH] =
8

∑
i=1

E[SH Case i]. (3.3.43)

In the next chapter we develop the formulas for the second large cost driver, the aver-

age stock on hand throughout the replenishment cycle.
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scenario function name reference

Case 1

E
[
−Xs,A1 1(1,.,.)1Ms,A1,<0

]
Eq. (3.3.17), p. 82+

Case 2

Case 3

E<A1

[
−Xs,A1 1(2,A1,A1) 1Ms,A1,<0

]
Eq. (3.3.35), p. 91

E≥A1

[
(Xs,A1 − Xs,A2) 1(2,A1,A1) 1Ms,A1,<−Q1

]
Eq. (3.3.36), p. 91

E≥A1

[
−(Xs,A2 + Q1) 1(2,A1,A1) 1Ms,A1,<−Q1

1Ms,A2,<−Q1

]
Eq. (3.3.37), p. 92

Case 4

E<A2

[
−Xs,A2 1(2,A1,A2) 1Ms,A2,<0

]
Eq. (3.3.38), p. 95

E≥A2

[
(Xs,A2 − Xs,A1) 1(2,A1,A2) 1Ms,A2,<−Q2

]
Eq. (3.3.39), p. 95

E≥A2

[
−(Xs,A1 + Q2) 1(2,A1,A2) 1Ms,A2,<−Q2

1Ms,A1,<−Q2

]
Eq. (3.3.40), p. 95

Case 5 E
[
−Xs,A1 1(2,A1,=) 1Ms,A1,<0

]
Eq. (3.3.41), p. 97

Case 6

E<A1

[
−Xs,A1 1(2,tw,A1) 1Ms,A1,<0

]
Eq. (B.0.1), p. 287

E≥A1

[
(Xs,A1 − Xs,A2) 1(2,tw,A1) 1Ms,A1,<−Q1

]
Eq. (B.0.2), p. 287

E≥A1

[
−(Xs,A2 + Q1) 1(2,tw,A1) 1Ms,A1,<−Q1

1Ms,A2,<−Q1

]
Eq. (B.0.3), p. 288

Case 7

E<A2

[
−Xs,A2 1(2,tw,A2) 1Ms,A2,<0

]
Eq. (B.0.4), p. 288

E≥A2

[
(Xs,A2 − Xs,A1) 1(2,tw,A2) 1Ms,A2,<−Q2

]
Eq. (B.0.5), p. 289

E≥A2

[
−(Xs,A1 + Q2) 1(2,tw,A2) 1Ms,A2,<−Q2

1Ms,A1,<−Q2

]
Eq. (B.0.6), p. 289

Case 8 E
[
−Xs,A1 1(2,tw,=) 1Ms,tw ,<0

]
Eq. (3.3.42), p. 97

Table 3.9: Summary of all functions to determine the expected shortage
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3.4 Expected average cycle stock

In the following we want to determine the average stock on hand during a replen-

ishment cycle. In contrast to the calculation of the shortage which causes time-

independent costs the holding costs are specified per time unit. Thus, we have to

consider the development of the stock on hand over time and calculate the area un-

der the demand curve, as indicated by the colored area in Figure 3.10. However, we
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Figure 3.10: Exemplified scenarios of the stock on hand during a replenishment cycle

cannot reproduce the exact development of the demand over time from our probabil-

ity space Ω. While an adaptation of Ω is possible it implies considerable effort. It is

much more promising to divide the replenishment cycle into several intervals and use

an interpolation between the start and the end point. This approach yields the exact

value for the expected stock for our assumptions, see Appendix A.8. Additionally, it

can be used as an approximation when our assumptions do not hold.

In many cases we need to know the expected point of time when the stock level

depletes. This is especially essential in combination with negative reorder points and

shortages. Here, the approach of interpolation can be applied, as well. Therefore, we
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introduce the function

η(x, R) =





1 if x = 0 or x ≤ R

R
x else

(3.4.1)

which will be used in a multiplication with a time t in the following sections. The ex-

pression η(x, R) · t indicates the fraction of t at which the stock is expected to deplete.

Note, in a two-order cycle the stock might deplete twice and we have to consider both

times separately.

Analogous to the calculations of the shortage we distinguish between different

cases, Case 1 to 8. Moreover, we split the whole replenishment cycle into several

periods for which we calculate the average stock on hand separately, see Table 3.10.

The notation for the subinterval is used in the superscript of the function or parameter.

Example 3.4.1. The expression E<A1 [stock] refers to the average stock on hand before

the arrival of the first order. One should be aware that E[Xs,A1 1Ms,A1,>0 ] is not identical

to E<A1 [stock]. The main difference lies in the fact that the first expression is just a

snapshot of the stock on hand before tA1 while the second expression represents the

average stock on hand over the whole time until the arrival of the first order. We are

interested in the average stock over time and, thus, can only indirectly utilize random

variables like Xs,A1 .

3.4.1 One-order cycles

In an one-order cycle there exist two possible cases, Case 1 and 2, as shown in Fig-

ure 3.11. Note, conditional demand rates λ(1,A1,.) and λ(1,tw,.) apply in the first period

of the reorder cycle as all case-dependent conditions, like not triggering a second or-

der, must hold. Throughout the rest of the time the unconditional average demand

rate µD applies.
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Figure 3.11: The two possible scenarios for a one-order cycle

Just as we considered different reorder point settings for determining the amount

of shortage in a reorder cycle we have to consider these settings for the average stock,

as well, namely, R1 > R2 ≥ 0, R1 ≥ 0 > R2, and 0 > R1 > R2.

3.4.1.1 The order arrives within the window to trigger a second order

Positive reorder points. Let us assume for a moment that the lead time lt1 and the

demand dlt1 during the lead time is fixed. Then, for Case 1 the average stock on hand

is

E<A1
R1>R2≥0

[
stock 1(1,A1,.)

]
= R1 lt1 −

dlt1 lt1

2

E≥A1
R1>R2≥0

[
stock 1(1,A1,.)

]
= (tc − tA1)

[
R1 + Q1 − dlt1 −

Q1 − dlt1

2

]
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before and after the arrival till the end of the cycle, respectively. Now we have to

consider that lead time y = lt1 and demand x = dlt1 are random variables.

E<A1
R1>R2≥0

[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

y(R1 −
x
2
) f (x, y) l1(y) dµ (3.4.2)

E≥A1
R1>R2≥0

[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

(tc − y)
[

R1 +
Q1 − x

2

]
f (x, y) l1(y) dµ (3.4.3)

Note, in this case the stock cannot be negative, because R2 is never reached during the

cycle time – otherwise, a second order would have been triggered – and R2 is non-

negative by definition here. Moreover, the total demand during the order cycle time

tc is exactly Q1, the time when R1 is hit again, also see Assumption 8.

The remaining cycle time tc− tA1 is a random variable which depends on the stock

level right after the arrival of the order and the demand rate. Here, we use the ex-

pected time E[tc− tA1 ] in which the stock level is reduced to R1 again. The exact value

is given by means of the demand distribution D(x, t) which yields

E
[
tc − tA1

]
= E

[
D | x = Q1 − dlt1

]
(3.4.4)

in our current case with positive reorder points. Whenever the latter expression is

hard to calculate, a simple approximation is to divide the amount of stock that exceeds

R1 by the average demand rate µD which leads to

E[tc − tA1 ] =
Q1 − dlt1

µD
. (3.4.5)

Negative second reorder point. If exclusively the second reorder point is negative

we have to consider the possibility that the stock on hand drops to zero before the

arrival of the order at time y = lt1. This expected time of depletion is a fraction of

lt1 which can be expressed by the function η(x, R1) as defined in the beginning of this
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chapter. Now, we can give the average stock on hand by

E<A1
R1≥0>R2

[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

η(x, R1) y
(

R1 −
min(R1, x)

2

)
f (x, y) l1(y) dµ. (3.4.6)

If the stock during the complete lead time lt1 is positive then we know that dlt1 < R1

holds for the demand and η(x, R1) y = y. For a demand R1 ≤ dlt1 ≤ R1 − R2 it holds

that η(x, R1) y = R1
x y is the expected time of depletion.

Note, the formula for the stock on hand after the arrival of the order remains the

same as in the case R1 > R2 ≥ 0 because the stock level has to reach R1 > 0 when Q1

units are delivered.

Negative reorder points. Whenever both reorder points are negative there is no

stock on hand until the arrival of the first order.

E<A1
0>R1>R2

[
stock 1(1,A1,.)

]
= 0 (3.4.7)

If the delivered quantity is large enough to bring the stock level above zero then we

have a positive average stock on hand after the arrival. The expected on-hand inven-

tory is given by

E≥A1
0>R1>R2

[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

(R1 + Q1 − x)
+

µD
· (R1 + Q1 − x)

+

2
f (x, y) l1(y) dµ. (3.4.8)
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Arbitrary reorder points. The formulas for universal reorder point settings are de-

rived from the equations above.

E<A1
[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1
+−R2

+

∫

x

0

y(R1 −
x
2
) f (x, y) l1(y) dµ +

tw∫

y

0

R1
+−R2

−
∫

x

R1
+

η(x, R1) y
R1

+

2
f (x, y) l1(y) dµ (3.4.9)

E≥A1
[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

(
R1
−
+ Q1 − x

)+

µD
·
[

R1 −
R1
−

2
+

Q1 − x
2

]+

f (x, y) l1(y) dµ (3.4.10)

Note that the second summand of Equation (3.4.9) vanishes whenever R1 is negative

or R2 is positive and that the whole equation is equal to zero if R1 and R2 are negative.

3.4.1.2 The order arrives after the window to trigger a second order

In contrast to Case 1 there are now the three different sections ( < tw,< A1, and≥ A1 ),

see Table 3.10.

Positive reorder points. For the beginning we assume both reorder points to be pos-

itive. Then, the expected stock on hand before tw is

E<tw
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

tw

(
R1 −

x
2

)
f (x, tw) l1(y) dµ. (3.4.11)

We have to consider possible negative stock between tw and the arrival of the order

because lacking a second order does not necessarily mean that the stock always has to

be above R2. It can also happen that a second order is not placed due to exceeding the
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time window tw.

E<A1
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

η(x′, R1 − x) (y− tw)·

(
R1 − x− min(x′, R1 − x)

2

)
f (x′, y− tw) f (x, tw) l1(y) dµ. (3.4.12)

Note that one assumption is that the stock is above R1 after the last order of a cycle

has arrived. Thus, strictly spoken we have to limit the upper bound of the integration

of x′ to Q1 − x. We will consider this fact in the implementation but do not regard it

here. We can split up the formula and yield

E<A1
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

R1−x∫

x′
0

(y− tw)

(
R1 − x− x′

2

)
f (x′, y− tw) f (x, tw) l1(y) dµ +

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
R1−x

η(x′, R1) (y− tw)
R1 − x

2
·

f (x′, y− tw) f (x, tw) l1(y) dµ. (3.4.13)

Considering that R1 > 0 and neglecting the upper bound Q1 − x for x′, the average

stock on hand between the arrival of the order and the end of the cycle is given by

E≥A1
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(Q1 − x− x′)
+

µD
·
[

R1 + Q1 − x− x′ − Q1 − x− x′

2

]
·

f (x′, y− tw) f (x, tw) l1(y) dµ. (3.4.14)

Here exists no logical limit like the lead time for the remaining cycle time and we

refrain from using a minimum operator.
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Arbitrary reorder points. The formulas for R1 ≥ 0 > R2 and 0 > R1 > R2 can be

found in the Appendix C.1. We directly give the formulas that hold for every setting

of R1 and R2. Note that we do not consider the maximum limit of demand here again.

E<tw
[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1
+−R2

+

∫

x

0

tw

(
R1 −

x
2

)
f (x, tw) l1(y) dµ +

∞∫

y

tw

R1
+−R2

−
∫

x

R1
+

η(x, R1
+
) tw

R1
+

2
f (x, tw) l1(y) dµ (3.4.15)

Note, Equation (3.4.15) is zero if both R1 and R2 are negative. Moreover, the second

summand is only positive, if R1 > 0 and R2 < 0.

E<A1
[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1
+−R2

+

∫

x

0

R1−x∫

x′
0

(y− tw) ·
(

R1 − x− x′

2

)
f (x′, y− tw) f (x, tw) l1(y) dµ +

∞∫

y

tw

R1
+−R2

+

∫

x

0

∞∫

x′
R1−x

η(x′, R1 − x) (y− tw)
R1 − x

2
·

f (x′, y− tw) f (x, tw) l1(y) dµ (3.4.16)

Note that Equation (3.4.16) is only zero if both reorder points, R1 and R2, are smaller

or equal to zero. Whenever only R2 is negative then the upper bound of x is R1. In

other words, the stock on hand after tw is only positive if the demand during tw can

be buffered by the initially existing stock R1.

E≥A1
[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(
R1
−
+ Q1 − x− x′

)+

µD
·
[

R1 −
R1
−

2
+

Q1 − x− x′

2

]
·

f (x′, y− tw) f (x, tw) l1(y) dµ (3.4.17)
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According to Assumption 8 the stock must exceed R1 after the last arrival. Thus, it

is not allowed to have x + x′ > Q1 and Equation (3.4.17) can only be zero if R1 ≤ 0.

More precisely, R1 has to be so negative that R1 ≤ x + x′ −Q1 which refers to the fact

that the stock is not refilled above zero when Q1 units are delivered.

3.4.2 Two-order cycles

3.4.2.1 First order arrives first

According to Table 3.10 there are 4 different periods during a reorder cycle in which

a positive stock might occur for Case 3 and Case 6. These can also been seen in Fig-

ure 3.12. Let us observe Case 3.
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Figure 3.12: The two cases for a two-order cycle where the first order arrives first
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Positive reorder points. If both reorder points are positive then the stock before trig-

gering the second order is given by

E<tg
R1>R2≥0[stock 1(2,A1,A1)

] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

t ·
(

R1 −
R1 − R2

2

)
l2(z) g(t) l1(y) dµ. (3.4.18)

The demand during the two periods denoted by < A1 and < A2 is theoretically un-

limited and only restricted by the Assumption 8 about the maximal demand which we

postpone to the implementation again. However, there are other logical restrictions to

consider.

First, there is no stock on hand if the demand exceeds the remaining stock which is

equal to R2 and R2 + Q1 − x for the period < A1 and < A2, respectively. Second, the

maximum time of a positive stock on hand is lt1 − tg and tg + lt2 − lt1 for the periods

< A1 and < A2, respectively. This leads to the two formulas

E<A1
R1>R2≥0[stock 1(2,A1,A1)

] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

η(x, R2) (y− t)
(

R2 −
min(R2, x)

2

)
·

f (x, y− t) l2(z) g(t) l1(y) dµ (3.4.19)

and

E<A2
R1>R2≥0[stock 1(2,A1,A1)

] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q1 − x)
+
)
(t + z− y) ·


(R2 + Q1 − x)

+ −
min

(
(R2 + Q1 − x)

+
, x′
)

2


 ·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ. (3.4.20)
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The average stock between the last arrival and the end of the cycle is given by

E≥A2
R1>R2≥0[stock 1(2,A1,A1)

] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

E [tc − t− z] · (R2 + Q1 + Q2 − x′ − x + R1)
+

2
·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (3.4.21)

where the expected remaining cycle time E [tc − t− z] can be expressed by the de-

mand distribution D with

E[tc − t− z] = E
[

D | x = (R2 + Q1 + Q2 − x− x′ − R1)
+
]

(3.4.22)

or simply by dividing the stock level exceeding R1 at time tA2 by the mean demand

rate µD. The latter leads to

E[tc − t− z] ≈ (R2 + Q1 + Q2 − x− x′ − R1)
+

µD
. (3.4.23)

Arbitrary reorder points. Merging these formulas for the average stock during the

four periods with the formulas for the cases R1 ≥ 0 > R2 and 0 > R1 > R2, which

can be found in the Appendix C.2, yields the following formulas which are valid for

all possible settings of R1 and R2.

E<tg [stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

t · R1
+

R1
+ − R2

− ·
(

R1
+
+ R2

+

2

)
l2(z) g(t) l1(y) dµ (3.4.24)

Note, the latter equation is equal to zero if R1, R2 ≤ 0. The average stock on hand

between tg and tA1 is given by

E<A1 [stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

η(x, R2
+
) (y− t)


R2

+ −
min

(
R2

+
, x
)

2


 ·

f (x, y− t) l2(z) g(t) l1(y) dµ (3.4.25)
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which is only positive if R2 > 0. The average stock on hand between both arrivals is

E<A2 [stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q1 − x)
+
)
(t + z− y) ·


(R2 + Q1 − x)

+ −
min

(
(R2 + Q1 − x)

+
, x′
)

2


 ·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (3.4.26)

which might be positive independent of the setting of R1 and R2. The average stock

on hand between the last arrival and the end of the cycle can also be positive for all

reorder point settings and is given by

E≥A2 [stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

(
R2 + Q1 + Q2 − x− x′ − R1

+
)+

µD
·

(
R2 + Q1 + Q2 − x− x′ + R1

+
)+

2
·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ. (3.4.27)

Note, Case 6 differs from Case 3 only regarding the fact that lt1 > tw instead of lt1 ≤
tw. Accordingly, the formulas for Case 6 are obtained by replacing the bounds 0 and

tw of the first integration by tw and ∞. Moreover, the inter-order time has to be within

the allowed window, so 0 ≤ tg ≤ tw is used as bound for the integration of tg. The

complete set of formulas can be found in the Appendix C.2.

3.4.2.2 Second order arrives first

The Cases 4 and 7 are intimately related to the Cases 3 and 6, respectively, as only the

order of arrivals is interchanged. According to Table 3.10 there are 4 different periods
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during a reorder cycle in which a positive stock might occur for Case 4 and Case 7.

These can also been seen in Figure 3.13. Let us look at Case 4.!"#$%&&%'()*"+,)-).)/)+'&0%"1,)2+%&3'"+%435
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Figure 3.13: The two cases for a two-order cycle where the second order arrives first

Arbitrary reorder points. We give the formulas that are valid for all possible settings

of both reorder points, R1 and R2. The detailed formulas for the different cases are

listed in the Appendix C.3. These formulas can be joined and yield

E<tg [stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

t · R1
+

R1
+ − R2

− ·
(

R1
+
+ R2

+

2

)
l2(z) g(t) l1(y) dµ (3.4.28)

for the stock before triggering the second order. This equation is equal to zero when-

ever the first reorder point is negative, i.e. 0 > R1 > R2. Whenever only R2 is negative

the stock on hand depletes before the second order is triggered according to the pro-

portion of positive stock R1 and the complete delta R1 − R2.
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The stock between triggering and receiving the second order is only positive if

R2 > 0. It can be expressed by

E<A2 [stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

η
(

x, R2
+
)

z


R2

+ −
min

(
R2

+
, x
)

2


 ·

f (x, z) l2(z) g(t) l1(y) dµ (3.4.29)

which is equal to zero whenever R2 ≤ 0. Depending on the stock level just after the

first arrival, given by Q2 + R2 − x, the stock on hand will always, partly, or never

remain above zero between both arrivals. This leads to

E<A1 [stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q2 − x)
+
)
(y− t− z) ·


(R2 + Q2 − x)

+ −
min

(
(R2 + Q2 − x)

+
, x′
)

2


 ·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ. (3.4.30)

For the last period in the reorder cycle the stock on hand might always be zero, i.e. if

the first reorder point is set to a very large negative value.

E≥A1 [stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

(R2 + Q2 + Q1 − x− x′ − R1
+
)
+

µD
·

(
R2 + Q2 + Q1 − x− x′ + R1

+
)+

2
·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ. (3.4.31)

Case 7 is closely related to Case 4. The only thing changing is that the lead time of the

first order exceeds tw. Thus, the equivalent formulas for Case 7 can be again derived
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from Case 4. First, the bounds of the first integration have to be changed from 0 and

tw to tw and ∞, respectively. Second, the inter-order time is not limited by the lead

time lt1 anymore but by the time window tw which has to be considered in the upper

bound of tg. The complete list of formulas for Case 7 are found in the Appendix C.3.

3.4.2.3 Both order arrive simultaneously

Both Cases 5 and 8 differ from other two-order cycles by the fact that both orders arrive

at the same time. While the probability of such a coincident is zero in a continuous

environment it has to be considered in a discrete environment like the implementation

on a computer. According to Table 3.10 there are 3 different periods within the reorder

cycle in which a positive stock might occur for Cases 5 and 8. These can also been seen

in Figure 3.14. Here, we look at Case 5.
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Figure 3.14: The two scenarios for a two-order cycle with simultaneous arrivals
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Arbitrary reorder points In the following, we give the formulas that are valid for all

possible settings of both reorder points, R1 and R2. The details for the different cases

are listed in the Appendix C.4.1. These formulas can be joined and yield

E<tg [stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

t · R1
+

R1
+ − R2

− ·
(

R1
+
+ R2

+

2

)
ldisc
2 (y− t) gdisc(t) ldisc

1 (y) (3.4.32)

for the average stock on hand until the second order is triggered. Whenever both

reorder points are negative, there is no stock on hand until the arrival and the latter

equation yields zero. This coincides with the equivalent formula for Case 3 and Case 4.

The average stock on hand can deplete between triggering the second order and the

simultaneous arrival if the demand during the lead time lt2 = y− t exceeds a positive

reorder point R2.

E<A1 [stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

∞∫

x

0

η
(

x, R2
+
)
(y− t)

(
R2

+ − min(R2
+

, x)
2

)
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx (3.4.33)

This equation reduces to zero if R2 ≤ 0. Depending on the setting of the reorder point

R1 and the order quantities the stock on hand might not be positive at all between tA1

and tc even though it exceeds R1. This is reflected by the formula for the average stock

on hand between tA1 and tc.

E≥A1 [stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

∞∫

x

0

(
R2 + Q2 + Q1 − x− R1

+
)+

µD
·

(
R2 + Q1 + Q2 − x + R1

+
)+

2
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx (3.4.34)



116 CHAPTER 3. A MODEL FOR STOCHASTIC DUAL SOURCING (SDMR)

Case 8 is closely related to Case 5. Again, the only thing changing is the lead time of

the first order which exceeds tw now. Thus, the equivalent formulas for Case 8 can

be easily derived from Case 5. First, the bounds of the first integration have to be

changed from 0 and tw to tw and ∞, respectively. Second, the inter-order time is not

limited by the lead time lt1 anymore but by the time window tw which has to be con-

sidered in the upper bound of tg. The complete list of formulas for Case 8 are found

in the Appendix C.4.2.

This concludes the development of the formulas for the expected stock on hand as

required by our question RQ 1 on page 5. A summary of all final formulas is given in

Table 3.11. The sum of all formulas shown in this table represents the total expected

stock during a replenishment cycle E[stock]. This is expressed by

E[stock] =
8

∑
i=1

E[stock Case i]. (3.4.35)

So far we have developed all the formulas necessary to calculate the major two cost

drivers in inventory management for a given (R1, R2, Q1, Q2) replenishment policy:

the expected shortage and the expected stock on hand. However, there are still impor-

tant parameters missing like the customer service level, the expected replenishment

cycle time or the expected number of orders during a given planning horizon. The

calculation of these parameters is topic of the next chapter.

3.5 Calculation of derived model parameters

In the latter sections we have developed rather complex formulas for the probabilities,

the shortage, and the average stock within the different cases. Of course, these are not

the only parameters of interest regarding a replenishment cycle. People in the area of

inventory management will demand for other parameters like the expected cycle time
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or the expected order quantity rather quickly. Moreover, these derived parameters are

also part of the question RQ 1 on page 5.

We found that all parameters of interest can be expressed within our specified

probability space. Moreover, most of them can be calculated rather easily. In the

following we will give the formulas for important parameters which, for example, are

required for determining the expected total costs for a given planning horizon.

3.5.1 Order quantities and cycle demand

One basic parameter in inventory management is the expected order quantity E[Q]

per cycle. Of course, the order quantity is Q1 in the one-order cases and Q1 + Q2 in

the two-order cases. We can use the probabilities p(1, ., .) and p(2., ., .), that have been

specified in Chapter 3.2, for one- and two-order cycles, respectively. The expected

order quantity per cycle is then given by

E[Q] = E[Q | one-order cycle] p(1, ., .) + E[Q | two-order cycle] p(2, ., .)

= Q1 p(1, ., .) + (Q1 + Q2) p(2, ., .)

= Q1 + Q2 p(2, ., .). (3.5.1)

Equation (3.5.1) specifies how many units are expected to be delivered via the two

supply channels during one replenishment cycle.

Now, we are turning our focus to the expected demand during one replenishment

cycle. Let us consider the scenario where all unsatisfied demand is back-logged and

there are only the two supply channels available that are related to Q1 and Q2, re-

spectively. In this case, the total expected demand per replenishment cycle E[D(t̄c)] is

given by

E[D(t̄c)] = E[Q]

= Q1 + Q2 p(2, ., .) (3.5.2)



118 CHAPTER 3. A MODEL FOR STOCHASTIC DUAL SOURCING (SDMR)

which is identical to the expected order quantity. Note that t̄c = E[tc] is the expected

cycle time. Consequently, D(t̄c) is the distribution of the joint demand which occurs

during the expected length of a replenishment cycle. The values of t̄c and D(t̄c) are

irrelevant at this point and we only use it for a correct notation of the parameters. In

a subsequent section we will specify the formula for E[tc] as it is of significant interest

in inventory management.

In contrast to backlogging unsatisfied demand, one could also think of a scenario

where unsatisfied customer demand is covered via a third supply channel, e.g. a direct

shipment. This additional supply channel increases the amount of supplied units and

the expected cycle time ¯tc
′. Consequently, the expected demand during t̄c

′ is increased

by exactly the amount of unsatisfied, directly shipped demand E[SH], see page 98.

E[D( ¯tc
′)] = E[D(t̄c)] + E[SH]

= Q1 + Q2 p(2, ., .) + E[SH] (3.5.3)

The latter scenario was rather easy to model. However, one might think of sce-

narios where unsatisfied customer demand is lost. In this case, the formulas for E[SH]

and E[S] from Chapter 3.3 and 3.4, respectively, have to be adopted, as well. However,

one can still utilize the logic and the majority of definitions which are provided by the

model framework in Section 3.1.

The calculation of the expected cycle demand and order quantity per cycle is the

basis for the calculation of various other parameters.

3.5.2 Service levels

There exist several different types of service levels. Here we focus on the two main

representatives, namely the α and the β service level.

The beta service level β, also known as the fill rate, is defined as the ”fraction of
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demand that can be satisfied immediately from stock on hand”, [Axs06, p. 94]. In our

model, the expected value E[β] can be calculated by

E[β] = 1− E[SH]

E[D(t̄c)]
(3.5.4)

which represents a service level of 100% minus the expected fraction of unsatisfied

demand.

The α service level is defined as the probability that all demand during one replen-

ishment cycle can be satisfied [Tem06]. This measure does not consider the amount

of occurring shortage but defines the shortage within one single replenishment cycle

as a binary ”yes-no” variable. Therefore, α can also be interpreted as the fraction of

replenishment cycles with no shortage. This is expressed by

E[α] = 1− p(SH) (3.5.5)

where p(SH) is the probability that a shortage occurs within one single replenishment

cycle. Note, the formulas of p(SH) and E[SH] are closely related to each other. Simply

spoken, the formula for E[SH] is identical to the demand-weighted formula of p(SH).

An example has been given in Section 3.3.1.1 on page 77.

Other definitions of service levels are common in many industries. Usually, they are

based on the probability or the amount of shortage- and ordering-related parameters

which can be expressed by means of our formal SDMR model.

3.5.3 Cycle time

So far we know how much demand, shortage, and stock we have to expect during a

replenishment cycle but we have no idea how long this replenishment cycle will be.

The expected duration of a replenishment cycle E[tc] is identical to the time when we

expect to trigger the next normal order. This again is equivalent to the time it takes
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until the delivered order quantities are depleted by customer demand. Knowing the

average demand rate µ per time unit yields

E[tc] =
E[Q]

µ

=
Q1 + Q2 p(2, ., .)

µ
(3.5.6)

for the expected cycle time E[tc].

3.5.4 Average stock per time unit

A direct result from knowing the expected cycle time is the possibility to calculate

the expected stock on hand per time unit E[stock per time unit]. So far, we have only

specified E[stock], the expected stock on hand during a complete replenishment cycle.

We can derive the equation

E[stock per time unit] =
E[stock]

E[tc]

=
µ E[stock]

E[Q]
(3.5.7)

for the average stock on hand per time unit in a straight-forward way.

3.5.5 Number of replenishment cycles and orders

Given a certain period of time or planning horizon T, it is of great interest how often

one will have to replenish a certain article when the replenishment parameters R1, R2,

Q1, and Q2 are applied. This is especially true for calculating and possibly minimizing

the total inventory costs during time T. Usually, T is one year, one quarter, or one

month.

The number of expected replenishment cycles can only be determined if we have

an estimation, e.g. a forecast, of the total demand occurring within T. Then, the ex-

pected number of replenishment cycles E[# cycles] within the time horizon T is given
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by

E[# cycles] =
FC

E[Q]
(3.5.8)

where FC is the demand forecast for T.

The expected number of replenishment cycles E[# cycles] during T is closely linked

to the number of triggered first and second orders:

E[# first orders] = E[# cycles] (3.5.9)

E[# second orders] = E[# cycles] p(2, ., .) (3.5.10)

Naturally, the expected number of first order coincides with the expected number of

replenishment cycles in T as we will always trigger at least the first order within one

replenishment cycle. The number of second orders coincides with the number of two-

order cycles.

There are several ways to treat the unmet customer demand. In the simplest case, one

calculates the opportunity costs by multiplying the unmet demand, (1− β) · FC, with

the observed opportunity cost factor.

In the backlog case, where a customer is willing to wait for the delivery, one can use

the same calculations and replace the opportunity cost factor with other cost factors,

e.g. covering price reductions or accelerated processes. Additionally, one can include

fixed costs in the calculations. We are using a backlog approach: Unmet customer

demand is processed via a privileged shipment once the new supply has arrived. The

expected number of these privileged shipments E[# privileged shipments] is given by

dividing the expected amount of shortage by the average size of a customer demand.

The average demand size is given by the total demand quantity divided by the num-

ber of customer requests and its value differs usually strongly from the average de-

mand per day µ.

In yet another business scenario the unsatisfied customer demand might directly
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be shipped to the customer from the supplier via a third supply channel without go-

ing through the warehouse. We have the flexibility to cover this scenario, as well.

While the calculations for E[# privileged shipments] apply here without any changes,

as well, one has to reduce the expected number of first and second orders so they do

not include the demand covered by the third, direct supply channel.

3.6 Summary

The research question RQ 1 on page 5 has been: How can we define and model a

(R1, R2, Q1, Q2) replenishment policy with stochastic demand and lead times? In fact,

we have elaborated such a model in this chapter, where orders can be sent to two sup-

pliers by utilizing two different reorder points R1 and R2 and two order quantities Q1

and Q2. This has been achieved by defining a proper probability space for the SDMR

model in Chapter 3.1 which is completely independent from the type of distributions.

Based on this probability space we have specified the formulas for various essential

variables in inventory management in the Chapters 3.2 to 3.5. A summary of these

variables is given in Table 3.12. Usually, these parameters are sufficient to quantify

the total costs and the customer service level for a given set of replenishment param-

eters R1, R2, Q1, and Q2.

Summing up, we are able to give the probabilities for one-order and two-order cycles,

the average stock level, the customer service level, the number of orders for each sup-

plier, and the related costs once we know the exact values of the cost structure and

of the replenishment parameters. Thus, this chapter has satisfactorily answered the

research question RQ 1 on page 5 in all its details.

In specific cases, one might need to extend the number of parameters or change their
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definition according to the concrete (business) scenario at hand. The effort for this

can vary significantly from case to case. However, we have experienced that adapta-

tions are rather simple whenever they do not affect the underlying logic of the formu-

lated probability space and its rather general and flexible definitions. For example,

the SDMR model can easily be adapted to a replenishment model where unsatisfied

demand is lost, see Appendix D.

So far, we have defined the SDMR model from a rather theoretical perspective. Of

course, the intention of the SDMR model is its practical application. Many times this

includes not only a description of a specific situation at the warehouse but also a pro-

cess to find values for the replenishment parameters that improve or optimize the total

costs. Due to the complexity of the SDMR model we do not see a way to analytically

find the optimal solution. Therefore, we need to use numerical approaches for imple-

menting the SDMR model and for finding an optimal solution. These practical issues

are addressed in the next chapter.
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case notation interval within the replenishment cycle

Case 1 (1, A1, .)
< A1 E[stock] before 1st arrival

≥ A1 E[stock] after 1st arrival

Case 2 (1, tw, .)

< tw E[stock] before tw

< A1 E[stock] between tw and 1st arrival

≥ A1 E[stock] after 1st arrival

Case 3

Case 6

(2, A1, A1)

(2, tw, A1)

< tg E[stock] before triggering 2nd order

< A1 E[stock] between triggering 2nd order and 1st arrival

< A2 E[stock] between the two arrivals

≥ A2 E[stock] after the 2nd arrival

Case 4

Case 7

(2, A1, A2)

(2, tw, A2)

< tg E[stock] before triggering 2nd order

< A2 E[stock] between triggering and receiving 2nd order

< A1 E[stock] between the two arrivals

≥ A1 E[stock] after the 2nd

Case 5

Case 8

(2, A1,=)

(2, tw,=)

< tg E[stock] before triggering 2nd order

< A1 E[stock] before the simultaneous arrival

≥ A1 E[stock] after the simultaneous arrival

E[stock]: average on-hand stock during a specific period, e.g. before 1st arrival

Table 3.10: Conditions of stock on hand in Case 1 to 8



The SDMR model – Summary 125

scenario function name reference

Case 1
E<A1

[
stock 1(1,A1,.)

]
Eq. (3.4.9), p. 105

E≥A1

[
stock 1(1,A1,.)

]
Eq. (3.4.10), p. 105

Case 2

E<tw
[
stock 1(1,tw,.)

]
Eq. (3.4.15), p. 107

E<A1

[
stock 1(1,tw,.)

]
Eq. (3.4.16), p. 107

E≥A1

[
stock 1(1,tw,.)

]
Eq. (3.4.17), p. 107

Case 3

E<tg [stock 1(2,A1,A1)
] Eq. (3.4.24), p. 110

E<A1 [stock 1(2,A1,A1)
] Eq. (3.4.25), p. 110

E<A2 [stock 1(2,A1,A1)
] Eq. (3.4.26), p. 111

E≥A2 [stock 1(2,A1,A1)
] Eq. (3.4.27), p. 111

Case 6

E<tg [stock 1(2,tw,A1)
] Eq. (C.2.7), p. 295

E<A1 [stock 1(2,tw,A1)
] Eq. (C.2.8), p. 295

E<A2 [stock 1(2,tw,A1)
] Eq. (C.2.9), p. 295

E≥A2 [stock 1(2,tw,A1)
] Eq. (C.2.10), p. 295

Case 4

E<tg [stock 1(2,A1,A2)] Eq. (3.4.28), p. 112

E<A2 [stock 1(2,A1,A2)] Eq. (3.4.29), p. 113

E<A1 [stock 1(2,A1,A2)] Eq. (3.4.30), p. 113

E≥A1 [stock 1(2,A1,A2)] Eq. (3.4.31), p. 113

Case 7

E<tg [stock 1(2,tw,A2)] Eq. (C.3.11), p. 299

E<A2 [stock 1(2,tw,A2)] Eq. (C.3.12), p. 299

E<A1 [stock 1(2,tw,A2)] Eq. (C.3.13), p. 299

E≥A1 [stock 1(2,tw,A2)] Eq. (C.3.14), p. 299

Case 5

E<tg [stock 1(2,A1,=)] Eq. (3.4.32), p. 115

E<A1 [stock 1(2,A1,=)] Eq. (3.4.33), p. 115

E≥A1 [stock 1(2,A1,=)] Eq. (3.4.34), p. 115

Case 8

E<tg [stock 1(2,tw,=)] Eq. (C.4.10), p. 302

E<A1 [stock 1(2,tw,=)] Eq. (C.4.11), p. 302

E≥A1 [stock 1(2,tw,=)] Eq. (C.4.12), p. 303

Table 3.11: Summary of all functions to determine the expected stock
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Table 3.12: Summary of major equations derived from the SDMR model



Chapter 4

Considerations for a practical

application of the SDMR model

In this chapter we address question RQ 2 on page 5, how to feasibly apply the SDMR

model in practice. Several challenges arise when we transfer the SDMR model from

theory to practice. These are mainly related to the usage of empirical data and to the

complexity of the calculations within the SDMR model. Consequently, this chapter is

divided into two parts. First, we will look at how the SDMR model can be discretized.

The discretization is usually a direct implication of using empirical data. Second, we

will show how the computational complexity of the SDMR model can be reduced.

Thereby, we focus on its major impact factor which is the efficient determination of

the joint demand distribution D(t) due to its time-consuming calculation by means of

convolutions of the daily demand distribution D(1).

Throughout this chapter we augment single aspects with examples from our prac-

tical experience that illustrate the wide range of restrictions and requirements which

are frequently found in inventory management.

We want to briefly mention another important aspect of implementing the SDMR

127
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model for a practical application. It is the integration into the existing IT landscape

at a company. Its success depends strongly on the individual situation of a com-

pany because contemporary inventory management involves a wide range of IT, from

databases to complex enterprise-resource-planning (ERP) systems [Zip00]. Without

going into further details we remark that the SDMR model has been integrated into

the inventory management tool ”IBM Dynamic Inventory Optimization Solution”1.

Thereby, the SDMR model can utilize existing interfaces which assure a successful

integration with various IT systems.

4.1 Discretization of the formal model

In this chapter we address the topic of discretizing the SDMR model which has been

formally introduced in Chapter 3. One will usually agree that a discretization has to

be primarily considered for all parts of a model that represent a discrete parameter.

The decision whether a parameter is continuous or discrete is rather intuitive in

most cases. For the demand quantity, it translates into the divisibility of the considered

product. For example, gas and liquids are in general infinitely divisible while cars

and computers are not. Screws and paper take an intermediate role as they are often

considered to be infinitely divisible in practice [Zip00]. Similarly, the time can be seen

as a continuous or a discrete parameter. Examples are a continuous-time production

process with a certain demand rate versus a periodic replenishment policy even if the

orders are placed every 24 hours [Tem06], [Zip00].

Knowing that a parameter is discrete still does not necessarily answer the question

whether it should also be modeled in a discrete way for a practical application. The

following examples will highlight some scenarios in the context of the SDMR model.

Example 4.1.1. Company A has collected the discrete daily demands over the last two

1 Solution of IBM Corporation
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years. In favor of a simple model, A only extracts the average µD and the standard

deviation σD of the daily demands from the historic data. The daily demand distribu-

tion is then approximated by the Gaussian distribution Φ(µD, σD). The lead time of

a supplier is approximated by a Gaussian distribution Φ(µL, σL), as well. The values

for µL and σL are not measured but manually set for each supplier once a year.

In this case we theoretically do not have to discretize the SDMR model. All pa-

rameters and convolutions can be derived analytically. However, in practice the re-

plenishment parameters are usually rounded to integer values at some point because

fractional order quantities or reorder points are rather hard to interpret in the con-

text of discrete demands and lead times. Consequently, one could also consider to

discretize the input parameters of the SDMR model.

Example 4.1.2. Company B collects the daily demands and the lead times of the sup-

pliers and uses histograms for calculating all parameters that are relevant to operate

the inventory.

This is the most common scenario we have encountered in practical inventory

management and, here, the SDMR model has to be able to use discrete input his-

tograms. Note, this procedure is superior to Example 4.1.1 because it incorporates

more information about the distribution of the demand and the lead time. However,

very rare events that are represented by the tails of distributions will insufficiently be

covered by a limited time series of historical data.

Example 4.1.3. Company C collects the daily demands and lead times. Instead of us-

ing them directly in their calculations they try to find the best fitting continuous dis-

tribution for each histogram. These continuous distributions are then used for further

calculations.

In this example, we theoretically do not have to discretize the SDMR model. How-

ever, the convolution of arbitrary continuous distributions cannot always be given
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analytically. Then, numerical techniques have to be utilized and a discretization of the

SDMR model is necessary. Moreover, even if an analytical solution can be given, the

individual result values might be rounded to integer values for a similar reason as we

gave in context of Example 4.1.1.

Finding the best fitting continuous distribution from histograms like described in

Example 4.1.3 is an elaborate and quite accurate way to capture the stochastic nature of

parameters like the daily demand. However, the required calculations are extremely

time-intensive and barely feasible on a per-SKU basis especially for large warehouses.

One feasible approach here is to utilize clustering techniques as described by Bödi and

Schimpel [BS05].

In summary, the examples 4.1.1 till 4.1.3 show that the discretization of the SDMR

model plays a crucial role for a practical application. The following sections address

important issues that arise when the SDMR model is discretized. The sections 4.1.1

and 4.1.2 look at the transformation from a continuous to a discrete model on a general

level. The remaining sections cover more SDMR-specific aspects.

4.1.1 Discretization of continuous distributions

Whenever continuous distributions are available but the business scenario requires a

discretized SDMR model, we have to find a way to discretize these input distributions.

The two possibilities to discretize a continuous distribution are intervals of fixed

size and variable size. The choice is easy for the SDMR model because we have to

calculate the distribution D(t) of the cumulated demand over t days by means of

numerical convolution techniques. These require intervals of identical size, see Sec-

tion 4.2.3.

A practical requirement is to preserve important characteristics of the continuous

distribution after the discretization. This is especially true for the lower moments of
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a distribution. Consequently, the average demand value of the original, possibly an-

alytical, distribution D should match the average value of its discretized counterpart

D′ with a sufficient precision. Our experience shows that this can be achieved very

well by creating the density function of D′ according to the rule

pD′(k) = FD((k + 0.5)cD)− FD((k− 0.5)cD), (4.1.1)

where FD is the cumulative distribution function of D and pD′ is the probability func-

tion of D′. The distribution D′ consists of n + 1 intervals with 1 ≤ k ≤ n + 1 and a

fixed interval size of cD. In our case we only allow for non-negative demand. Thus,

the probability of the initial interval 0 is given by

pD′(0) = FD(0.5cD). (4.1.2)

The magnitude of deviation between the expected value of D and D′ depends

strongly on the size and the number of the buckets. Given a desired accuracy of the

model one can choose an appropriate quantile interval of the distribution and divide

it into several hundreds of buckets. Of course, a trade-off between accuracy and cal-

culation time has to be found, which is strongly influenced by the business purpose

or the investigated scenario.

4.1.2 Bounds of integration and summation

In the continuous case no thought has to be spent on how to treat the bounds of an

integral. These bounds represent a so called null set and two arbitrary distributions

that only differ in a null set are equivalent [Fel71]. Thus, for an integrable function h

the equation

b∫

a

h(x) dx = lim
ε→0

b+ε∫

a

h(x) dx = lim
ε→0

b∫

a+ε

h(x) dx = lim
ε→0

b+ε∫

a+ε

h(x) dx (4.1.3)
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always holds. This simplifies the formulation of equations. Certainly, the equation

a∫

−∞

f (x) dx +

∞∫

a

f (x) dx = 1 (4.1.4)

always holds for every density function f (x) defined in R and an arbitrary a ∈ R.

However, the formulation of equations becomes less obvious in the discrete case

where these bounds play a crucial role. Using the integer-discretized version fd of

the density function f in Equation (4.1.4) and given an arbitrary integer value b, the

equation
b

∑
x→−∞

fd(x) +
∞

∑
x=b

fd(x) = 1 (4.1.5)

does not hold except for the lucky coincidence where fd(b) = 0. In every other case

the probability fd(b) is counted twice.

Thus, one has to take special care to not exclude arguments or include them twice.

Especially, if the bounds separate two cases which require different formulas, the deci-

sion about the exact bounds has to be based on a thoughtful and sometimes non-trivial

semantic interpretation of the formula.

4.1.3 Start of the replenishment cycle

In theory, we are free to choose when the time line starts even if we apply discrete time

intervals. Thus, we can decide to individually start the replenishment cycle for each

SKU exactly when the first order is triggered, denoted by t0. In practice, however, this

is not applicable as one is bound to certain times like a daily recurring departure of

the supply truck at 6:00h in the morning. Of course, the reorder point R1 is usually

not hit exactly at that time. This means we have to treat the fraction of a day until the

next truck departs separately regarding the lead time and the stock depletion. In the

following we show how we can relax Assumption 10 on page 45 in order to capture

time intervals and the bulkiness of the demand.
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Let us look at time intervals of one day. Given a specific stock level we can use

the daily demand distribution to calculate the probability that the stock level drops

to R1 during one of the subsequent days. As we might not have detailed information

about the demand distribution within one day we can simply determine t0 by inter-

polating between the starting and the ending stock per day. The result is a probability

distribution of the possible cycle start times t0 which can be directly translated into the

fraction of a day of additional lead time y′ and the demand x′ during this additional

lead time, y′.

Now, there exist several options. The first one is to base the calculations on the

original reorder point R1 and to shift the regular daily demand distribution D(x) for

the first and only the first day by x′. Moreover, the regular lead time distribution L1

is shifted by y′. So f 1(x + x′) = f (x) holds for the demand density function of the

first day and l1
1(y + y′) = l1(y) is used as the lead time of the first supplier. Having

done so, the formal model can be used as before for all 1-order-cycle cases. For the

2-order-cycle cases one has to repeat the same procedure with the reorder point R2.

Another option is to reduce the reorder point R1 by x′ and to continue calculating

based on our original model. In order to obtain the correct result, for example, for the

expected stock on hand per cycle we have to add the additional demand x′ during the

time y′, respectively. In a 2-order cycle the same approach has to be repeated for the

interval where the stock level drops below the second reorder point, R2.

These approximative approaches can be easily combined with our formal model. This

is a very important step for relaxing Assumption 10 which allows the successful ap-

plication of the SDMR model in many practical situations.
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4.1.4 Time and demand discretization

The time line of the replenishment cycle is divided into identical, arbitrarily long inter-

vals, starting at t0. Both lead times and the inter-order time can now be expressed by

an integer number of intervals. All occurring demand distributions D(t) are related to

a positive number t ∈ {1, 2, 3, ...} of time intervals, as well. The demand during a time

of zero intervals is zero just as the probability of an instantaneous lead time is usually

zero in practice, as well. The detailed occurrence of demand within a single interval

cannot be measured and is unknown. Besides the time component also the quantity of

the demand can be discretized. In many industries the demand is an integer number

of units like one kilogram or a single item. Note, one is completely free to choose the

size of the time interval and the demand unit.

Example 4.1.4. Company A does not trigger an order immediately when the stock

level reaches the reorder point but only twice per day, once in the morning and once

in the afternoon. In this case it is completely sufficient to set the time interval to half a

day.

Example 4.1.5. In company B orders are triggered instantaneously after reaching the

reorder point but the supplier delivers only once a day in the morning. Here, a time

interval of one day will be appropriate for the SDMR model.

Example 4.1.6. Company C runs a fully-automated replenishment system. Orders are

sent immediately to the supplier upon reaching the reorder point. The supplier is able

to guarantee a delivery time accuracy of one hour. One could use an interval of one

hour to model their operative business scenario here.

Example 4.1.7. Company D is in the same situation as company C. However, D aggre-

gates the demand and lead times on a daily basis for its data warehouse. Hence, one

cannot derive the lead time and demand distribution on an hourly basis from the his-

torical data. Then, one should use an interval length of one day for the SDMR model.
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Otherwise one might obtain wrong results induced by the lack of information when

exactly during the day the demand occurs and orders arrive.

Of course, the computation time can increase significantly when small intervals are

used to discretize the time and the demand. Thus, a tradeoff between accuracy of

the model and the time performance of the system usually has to be found. Note,

that the accuracy of the model is also limited by the quality and the aggregation of the

input data from the company. In many practical projects we have encountered that the

properties of the input data dominate the technical restrictions especially regarding

the accuracy of the results.

4.1.5 Time window for second order

The time interval to trigger a second order is restricted by two parameters. First, the

maximum time window tw for placing a second order. Second, the arrival time tA1 of

the first order because we do not trigger a second order after the arrival of the first

order. In most cases this is quite obvious. However, the decision whether a second

order can be triggered exactly in interval tA1 or tw is more difficult.

First, consider the case tA1 > tw, where the first order arrives after tw. One can ar-

gue that tw is the maximum time between triggering the first and second order which

includes the possibility to issue an order at tw. However, the precise value of tw might

be a non-integer result of some given formula and one has to decide whether to in-

clude the last day or not based on the specific business case.

Second, let the first order arrive no later than tw, so tA1 ≤ tw. Now, the question

arises whether one can still place a second order on the day where the first order

arrives. This depends heavily on what is known about the arrival of the orders. On

the one hand, if we know the arrival interval tA1 of the first order ex ante, then it does

not make sense to place a second order at tA1 because it cannot arrive before the first
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one. On the other hand, if the exact arrival interval is only known ex post we will

usually place a second order at tA1 . Sometimes we have additional knowledge about

the delivery time within an interval. We can leverage this knowledge in order to set

up a SDMR model that represents the business practice more appropriately.

In the following, different scenarios are exemplified that influence the decision up

to when a second order is allowed to be triggered in the SDMR model.

Example 4.1.8. Company A has a sophisticated IT system for managing its inventory

and the relations to its suppliers. The possible time frame of the delivery is constantly

updated by the supplier and the logistics company. Consequently, the time frame of

delivery is constantly narrowed down over time. The delivery period tA1 is fixed one

period in advance. In addition, the time window tw is constantly updated in the way

that the probability of the first order arriving before the second is less than 50%.

Company A has a minimal lead time of one period for the second order. Therefore,

A stops placing the second order one day before tA1 . In other words, a second order is

only triggered in the SDMR model if the inter-order time tg satisfies the inequality tg ≤
min(tw, tA1 − 2). Sometimes it happens that the replenishment orders have already

been placed at day tA1 − 2 before the day of delivery is fixed. Then, the accurate way

of modeling the inequality for tg is tg ≤ min(tw, tA1 − 1).

Example 4.1.9. Company B is supplied no more than once per day and does not exactly

know the day of delivery tA1 . However, the supply always arrives in the morning

before the replenishment orders are sent to the suppliers.

In this case, B will not trigger a second order on day tA1 and the SDMR model has

to use the restriction tg ≤ min(tw, tA1 − 1) for all two-order cycles.

Example 4.1.10. Company C places its order already in the early morning. However,

C neither knows the exact day of delivery nor has a fixed delivery time throughout

the day. Therefore, it is quite common for C to place a second order even if the first

order arrives at the same day.
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In this case, the constraint tg ≤ min(tw, tA1) is used in the SDMR model. The same

holds for all scenarios where, throughout the daily schedule, C places its replenish-

ment orders before the potential supply arrives.

The examples show different conditions up to when a second order can be triggered.

The challenge is to employ the restrictions within the SDMR model in such a way that

they meet the practical situation best. A summary of the conditions from the latter

examples is given in Table 4.1.

delivery interval

known ex post known ex ante

notification or

delivery time

before placing orders tg ≤ min(tw, tA1 − 1) tg ≤ min(tw, tA1 − 2)

after placing orders tg ≤ min(tw, tA1) tg ≤ min(tw, tA1 − 1)

Table 4.1: Exemplified conditions for two-order cycles in a business scenario

4.1.6 Compliance with model assumptions

Last but not least the discretization and implementation of the model has to comply

with the assumptions of the formal model described in Chapter 3.1.1, see pages 42 to

44. Most of them are easy to assure.

Initially, both supply modes and their specific parameter settings, e.g. lead time distri-

butions, order quantities, and price structures, are arbitrarily associated with different

identifiers, namely 1 and 2. This complies with Assumption 1.

In order to satisfy Assumption 2 we simply exchange their identifiers whenever

the relation R1 > R2 is violated between both reorder points. Additionally, whenever

R1 = R2 holds our model is not applicable and we either change R1 or R2, or we

have to exclude the SKU from further calculations. This exchange of identifiers and
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the enforcement of the restriction R1 6= R2 will be extensively used in an optimiza-

tion process where both reorder points and order quantities are continuously adapted

while searching for a cost-minimal solution, for example.

We have to enforce positive lead times lti > 0, order quantities qi > 0, and a non-

negative daily demand d ≥ 0 for i ∈ {1, 2}, see Assumptions 3, 5, and 6. Whenever

this is not possible for a specific SKU we exclude it from our investigations. Note,

by using empirical data one usually complies with these restrictions already. In other

cases we restrict the values of a parameter to its valid range. For example, in the

case of a Gaussian-distributed daily demand distribution D(x, 1) = Φ(µ, σ) this can

be achieved by using the truncated Gaussian distribution given by φ(x|0 ≤ x < ∞)

where φ is the probability density function of Φ(µ, σ).

Convolving D(x, 1), the daily demand distribution, n times leads to an aggregated

demand distribution D(x, n) over n ∈ {1, 2, 3, ...} days which is identically and inde-

pendently distributed as requested by Assumption 5.

Both Assumptions 7 and 9 relate to rules when orders are allowed to be triggered.

These rules are inherently assured by the implementation of the model and its formu-

las.

Last but no least, Assumption 8 limits the maximum demand that is allowed to oc-

cur during one replenishment cycle. The demand during a cycle is potentially infinite

for unbounded distributions like Gaussian distributions. Therefore, we only consider

SKUs where the probability pE, that the demand exceeds its maximum limit, is be-

low a certain threshold, e.g. pE < 10−10. The probability pE has been introduced as

a measure of applicability in Chapter 3.1.6 on page 64 and is influenced by the four

parameters R1, R2, Q1, and Q2. Whenever these parameters cannot be changed we ex-

clude all SKUs with a too high value for pE. However, whenever these parameters are

not fixed, like in an optimization process, we adjust the parameters in such a way that

the requirement for pE is met.
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In summary, we are able to discretize the SDMR model and still assure all the as-

sumptions that have been made for the continuous SDMR model in Chapter 3.1.1.

This concludes our section about how to discretize the SDMR model and answers the

first part of question RQ 2 on page 5.

4.2 Determining convolution of distributions

We mentioned in the beginning of Chapter 4 that the computational complexity of

the SDMR model is a key success factor for a practical application. In our case, the

complexity in time dominates the complexity in space of the SDMR model. This can

be explained by the fact that all SKUs in a warehouse are processed sequentially on

one or several computers. Thus, only the time of the calculations scales linearly with

the number of SKUs while the space of the calculations remains constant.

Example 4.2.1. Company C owns a warehouse with 10, 000 SKUs and introduces a

new replenishment policy for reducing the total costs of the warehouse. An appropri-

ate theoretic model is developed for this new policy. This enables C to investigate the

behavior of the policy.

Now, C wants to find the set of parameters that reduces – and preferably minimizes

– its total inventory costs. The replenishment model is too complex to be optimized

analytically. Therefore, a numeric optimization algorithm is used. On average, the

optimization algorithm needs 50 iterations to find a cost-minimal solution. In sum,

this involves 500, 000 recalculations of the theoretic model with different values of the

replenishment parameters.

One requirement of C is to adapt the cost-minimal replenishment parameters ev-

ery Sunday based on the data of the past week. This way, the replenishment of C

incorporates only information that is younger than one week. One full day consists of

86, 400 seconds. Without parallelization this restricts the average calculation time for
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each of the 500, 000 iterations to 0.1728 seconds.

A time restriction as mentioned in Example 4.2.1 can be found in many practical

inventory management projects. Consequently, we have to identify time-consuming

calculations that are frequently used in the SDMR model. The determination of con-

volutions of distributions is such a candidate especially if the calculation cannot be

expressed analytically. Therefore, the following sections will investigate when it is

possible to use fast analytical methods to retrieve convolutions and what can be done

to reduce the computational complexity of determining the convolutions when a nu-

merical calculation is necessary. This will be exemplified by using the convolutions

of the daily demand distribution D(1). Of course, it can be transferred to arbitrary

distributions, as well.

4.2.1 Analytical determination

In most cases companies observe the customer demand on a daily basis over a cer-

tain period of time and derive its distribution, called daily demand distribution D(1).

Throughout the SDMR model we need to know how the cumulated demand over

i ∈ {1, 2, 3, ...} days is distributed, represented by the notation D(i). Consequently, D

is a family of distributions.

The question is how to obtain D. We assume that the daily demand distribution

D(1) does not change throughout the replenishment cycle. Therefore, the daily de-

mand distributions are identically and independently distributed, see Assumption 5

on page 42. Then the joint demand distribution for i days can be simply calculated by

the i-fold convolution of the daily demand distribution, D(1), which is denoted by

D(i) = D(1) ∗ ... ∗ D(1)︸ ︷︷ ︸
i-times

. (4.2.1)

In the simplest case one observes (or assumes) that the daily demand follows a dis-

tribution for which the n-fold convolution can be given analytically by a closed form
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expression. In this case, one can directly calculate the joint demand distribution D(n)

for n days. In a second step, one discretizes D(n) adequately. This approach is very

fast and easy.

Example 4.2.2. Let the daily demand D(1) be exponentially distributed with a rate of

λ and an expected value of E[D(1)] = 1
λ . Then the joint demand distribution for n

days is given by the Gamma distribution D(n) = Γ(n, λ).

Example 4.2.3. Let the demand follow a Gaussian distribution Φ with mean µ and

a standard deviation of σ. Then the demand occurring within n days is distributed

according to D(n) = Φ(nµ, nσ2).

However, problems arise if the demand distribution deviates from such convenient

distributions. For example, the Gaussian distribution usually has to be truncated to

non-negative values as negative demands do not occur. This is especially significant

for small values of µ or large values of σ.

4.2.2 Limits of an analytical determination

Sometimes the practically observed (or assumed) demand distribution D(1) can be

simply obtained by truncating a distribution F0. Then, there might still exist a compact

expression for D(1).

Example 4.2.4. Let the daily demand D(1) be a truncated version of the Gaussian dis-

tribution F0 = Φ(µ, σ), where the probability of all negative values is added to the

probability of zero demand. The probability density function of F0 is denoted by f0.

This leads to a Gaussian distribution with an initial peak for the value zero:

D(x, 1) =





0 if x < 0

F0(x) else
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Note, distributions with a high peak for zero demand per day and a second peak for

a positive demand are very common in the spare parts business. The average µtrunc of

D(1) is given by

µtrunc = (1− F0(0))
[

µ + σ
f0(α)

1− F0(α)

]
,

where α is specified by

α =
0− µ

σ
= −µ

σ
.

While one can use this compact representation of the daily demand distribution it

is usually not possible to derive an explicit representation of its n-fold convolution

anymore. This is where numerical approaches come into play.

Besides the technical details that are necessary for a practical application of the

SDMR model, we have to consider some common business requirements and restric-

tions of applied inventory management. We briefly highlight the aspects that we con-

sider to be most relevant.

4.2.3 Numerical determination

Most data in practical inventory management origins from empirical observations.

Due to the wide range of industries we cannot rely on certain assumptions that are

often to be found in the theory of inventory management. For example, academic

publications frequently assume that parameters like the lead time or the demand are

constant, known, or governed by special distributions, like a Gaussian or an expo-

nential distribution. This is also reflected in the paper by Minner where he gives an

overview of research in multi-supplier policies [Min03]. In many industries, however,

such simplifying assumptions do not hold for various, sometimes rather simple rea-

sons.

Example 4.2.5. In the spare parts industry the average yearly demand is often as little

as one unit per month. In addition, the coefficient of variation can be quite high as
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there are months with two or three units of demand but in the majority of the months

there occurs no demand. Consequently, the error caused by modeling the demand

with a non-truncated Gaussian distribution would be high in this example.

Example 4.2.6. A company has private and business customers. The private customers

tend to buy small quantities while the business customers usually make bulk orders.

When both customers are equally served from the same warehouse the appropriate

approach would be to use a bimodal distribution. The usage of a more convenient or

simpler distribution can lead to severe miscalculations here.

The big advantage of a numerical approach for convolving distributions is that

most of them are able to convolute arbitrary discrete distributions. However, they

require a discretizion of the daily demand distribution prior to its convolution. Of

course, these approaches are far more complex and time-consuming than an analyti-

cal approach mentioned in Section 4.2.1. Still they have been successfully applied by

the SDMR model for a practical case.

The general definition of the convolution f ∗ g of two real functions f and g is given

by

f ∗ g : x 7→
∞∫

−∞

f (τ)g(x− τ)dτ. (4.2.2)

In the case of a discrete SDMR model, the functions f and g are defined for n and m dif-

ferent input intervals, respectively. The minimum number of operations to calculate

f ∗ g in the traditional way, by using all possible combinations of input parameters, is

(n− 1)m which leads to an almost quadratic computational complexity O(N2− N) in

the case where m = n. Obviously, this complexity class is not very convenient espe-

cially for large N. Fortunately, the result can be calculated much faster by means of the

Fourier transform and the family of so called Fast Fourier Transform (FFT) algorithms

which usually have a complexity of O(Nlog2N) [PTVF07].
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However, one has to be careful about the concrete usage of these FFT algorithms.

Despite of its general definition, the context of a convolution strongly affects its de-

tailed computation and usage, for example when convolving distributions. Recall that

we want to calculate the distribution of the cumulated demand over k days. Naturally,

this means that the demand distribution will shift towards higher demand values. For

example, the average demand during k days amounts to k times the average daily de-

mand. Consequently, by increasing k, the range of cumulated demand during these k

days with a positive probability will grow, as well.

In contrast, the handling of convolutions, for example in image processing, usu-

ally truncates the values after a certain point. This makes sense as the array a =

(a1, a2, ..., an) usually represents an image and the array b is a signal for filtering or

processing the image. All values that exceed the size of the image will simply be cut

off. In other words, the size n of the array a which represents the image will always

remain the same even though the value for each element in the array might change.

In other cases, for example electrical engineering, each of the two arrays a and b

represents a periodic wave function. Here the values exceeding the range of a affect

the beginning of the succeeding wave function which is identical to the beginning of

the current wave and, thus, is identical to the beginning of the array a itself. Certainly,

these exceeding values have to be added to the first elements of a. While the size of a

remains constant, just as in the case of image processing above, the exceeding values

are not cut off. Consequently, the results of both convolutions will differ.

4.2.4 Algorithm for a numerical determination

In the following an efficient algorithm for calculating the convolution of two distribu-

tion densities f and g will be explained in more detail, see Figure 4.1. It represents a

major requirement to make the SDMR model feasible for a practical application and it

describes how convolutions of probability distributions – in contrast to wave function
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or images – can be obtained. A good source for further information on the numerical

computation of convolutions is the book ”Numerical Recipes: The Art of Scientific

Computing” by Press et al., [PTVF07].!"#$"%&'("#)*%+",('-.
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Figure 4.1: Algorithm to compute the convolution of two distributions

Start. Let f be the n-array of real numbers representing the histogram of the one-day

demand probability density function, D(1). The objective is to calculate the histogram

of the distributions D(2), D(3), ..., D(m) representing the cumulative demand during

2, 3, ..., m days.

Step 1. Copy the one-day histogram f to the base array g.

Step 2. Convert the arrays f and g with real numbers to the two arrays fC and gC

containing the complex numbers representing f and g, respectively, by simply setting
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the imaginary value to zero. A common representation of such an array with complex

numbers is to alternate the real and imaginary value in the array. Consequently, an

array with n real values is replaced by its complex counterpart containing 2n entries.

Step 3 and 4. We have to pad both arrays gC and fC with additional entries of value

0. This is essential in order to avoid an overlap of results being calculated at the end

of the array with values at the beginning of the array.

Note, this origins from the assumption that the used histogram is just one instance

of a repetitive pattern, like a wave function in electrical engineering. In this case,

the calculations at the end of gC which exceed its original array size will impact the

beginning of the successive array which is identical to the beginning of the current

array gC.

In our case, however, the average demand increases the more daily demand dis-

tributions we convolve. This implies that our histogram will increase its size towards

higher demand values and the values at the tail of the distribution must not influence

the beginning of our density function.

Step 5. The array fC which consists of N complex numbers after padding is trans-

formed into its Fourier transform fF by the calculation rule

fF,k =
N−1

∑
j=0

fC,j e−i2π
kj
N (4.2.3)

where fC,j is the jth complex number in the array fC. The same procedure is applied

to the array gC, as well. Here the choice and usage of an efficient transformation

algorithm like the FFT is crucial [PTVF07].

Step 6. The Fourier-transformed complex values of gF and fF are pairwise multi-

plied with each other according to the multiplication rule for complex numbers

(aj + bji)(cj + dji) = (ajcj − bjdj) + (bjcj + ajdj)i (4.2.4)
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where aj and cj are the real part and bj and dj are the imaginary part of the jth complex

number in array f and g, respectively,. The result is stored in the array hF of complex

and Fourier-transformed values.

Step 7. The array hF of Fourier-transformed complex numbers is now transformed

back into the original domain by an inverse Fourier transform.

hC,k =
1
N

N−1

∑
j=0

hF,j ei2π
kj
N (4.2.5)

Step 8. Usually a cleaning process is necessary for array hC in order to correct small

numerical calculation errors. For example, insignificant small values are set to zero

because they can induce large errors once hC is used for further convolutions. More-

over, we can delete elements that were needed for the sole purpose of padding but do

not contain any values for the convoluted result.

Step 9. All imaginary parts of the complex numbers are zero in our case if the con-

volution process has been successful. So we can simply reduce the array hC to a real-

valued array h by deleting the imaginary part.

Step 10, 11, and 12. We store the result h of convoluting f and g. Whenever we do

not need to calculate the joint demand distribution of more days the algorithm stops

here. Otherwise we can simply convolve hC and fC by using them as input to step 3

of the algorithm.

For example, hC is the result of convolving two one-day demand distributions

D(1), represented by the arrays f and g. The result is the joint distribution D(2) for

two days which can be convolved with fC, the array of complex numbers representing

D(1). This yields D(3), the joint demand distribution for three days.
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This concludes the description of a FFT algorithm that is able to determine the convo-

lution of arbitrary distributions in a time-efficient way. In practice we encounter very

different types of distribution for the demand, for example. Many of these are hard to

express analytically by a closed-form expression, not to mention their convolutions.

Therefore, we suggest that an implementation of the SDMR model should employ an

FFT algorithm as described above.

4.3 Summary

The discretization of the SDMR model is a key requirement to make it applicable in

practice. In this chapter we showed two important aspects related to the discretization

of the SDMR model. First, we highlighted how to discretize different parameters of

the SDMR model according to specific business scenarios. These discretized versions

of the SDMR model still comply with the assumptions from Chapter 3.1.1. Second, we

investigated how to convolve distributions which is a time-intensive and heavily used

calculation within the SDMR model. In Chapter 4.2.4 we described a FFT algorithm

that is able to calculate the convolution of arbitrary distributions in a time-efficient

manner. The elaboration throughout this chapter describes how to apply the SDMR

model in a practical scenario which answers our research question RQ 2 on page 5.

The discrete SDMR model is able to represent different discrete business scenarios.

While it is designed to deal with arbitrary distributions, the time-intensive calculation

of convolutions is often practically infeasible. Fortunately, the usage of a fast and

flexible FFT algorithm enables us to represent all possible distributions of demand

that might occur in different industries, for example. These are essential properties for

a practical application of the SDMR model. In the next chapter we are able to leverage

these properties by evaluating the SDMR model with data from a real warehouse.
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Evaluation, results, and conclusions
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Chapter 5

Overview of the evaluation approach

So far we have introduced a formal model for a stochastic dual-source replenishment

policy, called the SDMR model, and we have addressed some of the issues that are es-

sential for an application in practice. Now, we want to evaluate whether the usage of

the rather complex SDMR model can be justified in practice and whether it is beneficial

to replenish via two suppliers. Throughout our comparisons we focus mainly on the

two key performance indicators (KPIs) total costs and service level. We have encoun-

tered these two KPIs to be predominant throughout most of our projects. This choice

is supported by one of the key findings in the Gartner Research report ”Top KPIs for

Supply Chain Management” by Payne: ”Although all supply chains have numerous

departmental or operational KPIs, most supply chains have only two enterprise-level

KPIs: total delivered cost and customer service, or variants of these.” [Pay09, p. 1].

We will focus on the two research questions RQ 3 and RQ 4 as stated in the In-

troduction. The remainder of this chapter is organized around these two questions.

First, Section 5.1 elaborates why we can answer both questions by exclusively using

the SDMR model, given that we use the appropriate input data and parameters. Sec-

ond, Section 5.2 describes the cost structure that applies for all our evaluations. Finally,

we summarize the key points in Section 5.3.
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5.1 Comparison of replenishment policies

Our questions RQ 3 and RQ 4 that have been posed in the Introduction on page 5 are:

RQ 3: How much and in which situations does a scenario with deterministic lead

times deviate from the stochastic scenario of the (R1, R2, Q1, Q2) replenishment

policy?

RQ 4: How much total costs can be saved by moving from single sourcing with tradi-

tional restrictions to dual sourcing with relaxed restrictions when lead times are

stochastic?

In the process of answering RQ 3 we want to iteratively gain a better understanding

about the impact that different parameters have on the deviation between a scenario

with deterministic lead times (DET) and the one with stochastic lead times (STOCH).

We take a two-step approach. First, we conduct a sensitivity analysis on each input

parameter individually of an exemplary SKU. This allows us to study the gradual

change of a single input parameter and its effect on the deviation between DET and

STOCH. Second, we analyze the deviation in a real warehouse with 2,751 SKUs and

compare these results with our findings from the sensitivity analysis. This two-step

approach will, on the one hand, provide us with greater insights into the mechanisms

and relations between the input parameters and the KPIs and their impact on the

deviation between DET and STOCH. On the other hand, it will show the relevance of

our findings in the example of a real warehouse.

If we want to exclude effects that result from a different modeling of the DET sce-

nario and the STOCH scenario we have to use the same model. Fortunately, the SDMR

model is able to represent STOCH as well as DET. The reason is that the SDMR model

runs on a computer program and utilizes histograms for all its distributions. There-

fore, every deterministic dual-source policy can be represented by a stochastic dual-
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source policy where all histograms consist only of one single positive value, namely

100%, see Figure 5.1.
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Figure 5.1: Obtaining a deterministic model by reducing the histogram to one entry

For the question RQ 4 we investigate common restrictions regarding the replenish-

ment of SKUs that exist in literature as well as in practice. We want to see by how

much the total costs can be reduced in our real warehouse if we relax these restrictions.

Therefore, we have to optimize the different scenarios regarding their total costs and

compare their results. In addition, we want to understand the mechanisms that lead

to these savings. Here, we are only interested in comparing scenarios with stochastic

lead times.

In order to answer question RQ 4 we have to model single-souring and dual-

souring replenishment policies with and without relaxed replenishment restrictions.

Luckily, it is easy to represent the different replenishment restrictions with the SDMR

model by limiting the values of the input parameters Q1, Q2, R1, and R2. Similarly,

single sourcing can be represented by the SDMR model by setting the second reorder

point R2 to a very negative value, such that it will never be reached, see Figure 5.2.

An intermediate conclusion is that we can perform our comparisons solely by means

of the SDMR model. Only the input to the SDMR model is different for each of the
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Figure 5.2: Representing single-sourcing by using a very small reorder point R2

scenarios used in the comparisons for our questions RQ 3 and RQ 4. This is illustrated

in the three-step approach (Input, Calculation, Comparison) of Figure 5.3.

We use the term comparison for the whole process of comparing two scenarios.

Each scenario consists of a specific set of input data and parameters called setting, a

replenishment policy, a calculation model, and a corresponding result. Consequently,

different combinations of settings and replenishment policies lead to different scenar-

ios. Moreover, a comparison always has to be seen in context of its specific settings

and models. This accounts for the common observation that the advantages and dis-

advantages of applying a replenishment policy cannot be determined up front but

depends very much on the specific situation (setting) at a warehouse.

In accordance with Figure 5.3 the input of each scenario is defined in a first step. This

input consists of external data like the demand distribution, the chosen replenishment

policy, and internal parameter settings like R1, R2, Q1, and Q2. Most comparisons that

we perform in context of the questions RQ 3 and RQ 4 involve the stochastic dual-

source scenario which will be used as a reference scenario. The opponent replenish-

ment scenario is called counterpart scenario. The input of the reference scenario may
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Figure 5.3: Comparison of two scenarios

be influenced by the input of the counterpart scenario which is indicated by the arrow

between the two data boxes in Figure 5.3. For example, the optimized parameters of

the counterpart scenario might be used for both scenarios.

In the second step, the complete input information including the replenishment

policy is fed into the SDMR model which calculates the appropriate results. The third

step compares the output of the reference scenario and the counterpart scenario re-

garding total costs, for example.

In summary, we can use the SDMR model for each of the comparisons that are re-

quired for answering our research questions RQ 3 and RQ 4. Moreover, most com-

parisons involve the stochastic dual-source replenishment policy which is used as a

so-called reference scenario. Now, we will briefly present the cost structure that will

be applied in our comparisons.
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5.2 Employed cost structure

Most evaluations in the subsequent chapters are based on the total inventory costs.

Figure 5.4 illustrates the detailed cost structure that we apply. Note, the formulas
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Figure 5.4: Employed cost structure

that are necessary to calculate all parts of this cost structure have been introduced

throughout Chapter 3 and are summarized in Table 3.12 on page 126. We use these

formulas to define the total costs TC as

TC = CC + OCN + OCR + OCB. (5.2.1)

Details about the components of TC are given in Table 5.1. The total costs TC contain

the inventory holding costs CC and the ordering costs OCN, OCR, and OCB. Thereby,

the ordering costs include all transport costs.

The inventory holding costs for one SKU only consist of the capital costs CC

which are induced by the interest rate r, the unit price, and the average positive stock

E[stock per time unit] according to

CC = E[stock per time unit] · price · r, (5.2.2)
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cost type cost factors
comment

name symbol variable fixed

total costs TC TC = CC + OCN + OCR + OCB

capital costs CC r e.g. interest rate

cost 1st orders OCN cN,var cN,fix

cost 2nd orders OCR cR,var cR,fix

cost back orders OCB cB,var cB,fix

Table 5.1: Summary of used cost parameters

see Table 3.12. Of course, one can also add volume-dependent storage costs to CC, for

example.

The order costs are the sum of fixed and variable costs for each of the three or-

der modes: regular, rush, and back order. The regular order costs and the rush order

costs refer to the two different supply modes which are associated to R1 and R2, re-

spectively. The back order costs represent the costs in case of a stock-out situation.

These might have completely different implications in certain business scenarios. In

our case, a stock out is backlogged and the customer will be served by a privileged

process, called back order, which causes additional fixed and variable costs. However,

these back orders can be interpreted as the well-known opportunity costs for not serv-

ing a customer or a compensation payment to the customer. There exist many ways

of calculating the order costs which heavily depend on the usage of these costs in an

operational or more strategic context. For the remaining chapters we define the order

costs as follows.

OCN = E[# first orders] · (Q1 · cN,var + cN,fix) (5.2.3)

OCR = E[# second orders] · (Q2 · cR,var + cR,fix) (5.2.4)

OCB =
E[SH]

QB
(QB · cB,var + cB,fix) (5.2.5)
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Again, all equations for the expected values can be found in Table 3.12 on page 126.

The parameter QB in Equation (5.2.5) represents the average demand quantity of one

single customer which can easily be determined by looking at the sales data, for ex-

ample. Consequently, the fraction of E[SH] and QB yields the expected number of

privileged shipments to customers whose demand had to be backlogged.

Please notice that the variable and the fixed costs are both calculated on basis of the ex-

pected, potentially fractional number of orders. Here we are interested in the multiple-

period average value for the costs. The costs per planning period, like month, quarter,

or year, might be different. Depending on the purpose of the calculation one will have

to use different formulas for calculating the costs. For example, when the focus lies on

how much ordering expenses will occur in a particular period then the formulas

OC′N =

⌈
E[# first orders]

⌉
(Q1 · cN,var + cN,fix)

OC′R =

⌈
E[# second orders]

⌉
(Q2 · cR,var + cR,fix)

OC′B =

⌈
E[SH]

QB

⌉
(QB · cB,var + cB,fix)

are used by many companies in an operational context because they have to pay for

the complete order immediately. Moreover, the orders are often bound to certain batch

sizes or lot sizes independent of whether only a fraction of the ordered units can be

used for a subsequent planning period or not.

Note, the fixed cost factors still play a substantial role when determining or opti-

mizing the replenishment parameters Q1, Q2, R1, and R2, because they significantly

influence the expected number of orders and the expected shortage. However, once

the replenishment parameters have been determined, the fixed costs can be inter-

preted as an increase in the variable costs cN,var according to

c′N,var = cN,var +
cN,fix

Q1
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in case of the normal orders, for example.

This concludes the description of the cost structure that is used throughout all evalu-

ations in the subsequent chapters.

5.3 Summary

In the course of this chapter, we have argued why the SDMR model can be used to

represent all scenarios of the comparisons that are necessary to answer our questions

RQ 3 and RQ 4. This eliminates the danger to observe differences between the scenar-

ios that originate from a different modeling. Most of the comparisons in the following

chapters involve the stochastic dual-source scenario, for which the SDMR model has

been developed in Part II. Therefore, this scenario is called the reference scenario.

The setup and process of a comparison is illustrated in more detail by Figure 5.3 on

page 155.

All comparisons consider the total inventory costs of the chosen replenishment

policies. The applied cost structure includes fixed and variable inventory holding

costs, ordering costs, and stock-out costs. The latter are also called back order costs in

our case. The cost structure is illustrated in Figure 5.4 on page 156.

The two questions RQ 3 and RQ 4 are addressed in the next chapters.





Chapter 6

Deterministic versus stochastic dual

sourcing

This chapter addresses our research question RQ 3 on page 5, why we should use a

complex stochastic model instead of a simpler model that assumes deterministic lead

times. Therefore, we compare the calculated values for selected KPIs between the

deterministic scenario (DET) and the stochastic scenario (STOCH).

We take a two-step approach to iteratively gain a better understanding about the

impact that different parameters have on the deviation between DET and STOCH.

First, for an exemplary SKU we conduct a sensitivity analysis on each input parameter

individually. This allows us to study the gradual change of a single input parameter

and its effect on the deviation between DET and STOCH. Second, we analyze the

deviation in a real warehouse with 2,751 SKUs and compare these results with our

findings from the sensitivity analysis. This two-step approach will, on the one hand,

provide us with greater insights into the mechanisms and relations between the input

parameters and the KPIs and their impact on the deviation between DET and STOCH.

On the other hand, it will show the relevance of our findings for different SKUs in

the example of a real warehouse. These analyses are also motivated by our common

161
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observation that strongly simplified models are used to represent a complex process

in practice. For the preparation of the sensitivity analysis and its execution we will

use the following example.

Example 6.0.1. Company A observes that the demand for some SKU is represented by

the truncated Normal distribution F = Φ(x; 1; 1|x ≥ 0) with a mean and a standard

deviation of one. Both lead times are distributed according to a truncated Gaussian

distribution, as well. More precisely, the first lead time distribution is specified by

L1 = Φ(y; 5; 0.5|y > 0) and the second one is given by L2 = Φ(z; 1; 0.5|z > 0).

The company A uses an order quantity of fifty units for both supply modes, so

Q1 = Q2 = 50 due to high fixed order costs. For now, the detailed cost structure does

not play a role. The reorder point R1 for the first supplier is set to R1 = 10 and a rush

order is triggered when the last item has been sold, so R2 = 0. To make calculations

easier they employ a deterministic approximation of their stochastic replenishment

process.

The results of such a simplifying deterministic approximation are quite often used

as a basis for concrete business decisions. However, most of the times the question re-

mains unanswered how accurate and feasible this simplified approach is. An answer

to this question would be of great interest for companies. Either they can continue to

use an approximation due to its proximity to the cost-minimal solution or they can

obtain significant benefits by moving to a more complex and more accurate approach

that considers stochastic lead times.

In Section 6.1 we define some measures that allow us to appropriately compare differ-

ent KPIs, like service level and total costs, between the deterministic and the stochastic

scenario. These measures are then applied in the sensitivity analysis of Section 6.2. Fi-

nally, we optimize the parameters for a real warehouse with stochastic demand and

sochastic lead times. These optimal parameters are used for DET and STOCH and we
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compare the value of their KPIs.

Note, all parameters related to the deterministic model are indicated by the sub-

script DET while the stochastic counterpart uses the subscript STOCH. Chapter 5.1 on

page 152 has shown that the SDMR model is able to represent both the DET scenario

and the STOCH scenario. Thus, we can exclude effects that result from a different

modeling.

6.1 Measures of divergence

The objective here is to define measures that allow a comparison between the KPIs

of the DET scenario and the STOCH scenario. We start by assigning two different

sets of costs to Example 6.0.1 as illustrated in Table 6.1. In practical words, we look

at the two SKUs A and B that share the same stochastic behavior and only differ in

their monetary aspects. Due to the huge variety and span of costs and prices it would

significantly simplify the comparison between the deterministic and the stochastic

approach if we found measures that are independent of all money-related parameters.

name
interest

rate

unit

price

supply mode 1 supply mode 2 back orders

var. fixed var. fixed var. fixed

SKU A 12.0% 75.00 0.30 4.50 0.50 8.00 0.10 5.00

SKU B 10.0% 2.00 0.80 1.50 1.10 1.80 12.00 150.00

legend: prices in currency units var. = variable

Table 6.1: Exemplified cost structure of two SKUs

We can use the formal model described in Part II to calculate the KPIs for the de-

terministic (DET) and the completely stochastic (STOCH) scenario. Intuitively, one
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expects that the cost-independent values, i.e. the service level, are identical for SKU

A and SKU B because the underlying stochastic relationship between the demand

and the lead times is identical. Following the same arguments one will expect the

cost-dependent values to be different between SKU A and SKU B at least in absolute

terms. However, one could suspect that some relative measure between the costs of

the deterministic scenario and the costs of the stochastic scenario remains constant

independent of SKU A and SKU B. We will elaborate on these aspects now. Note,

the deterministic scenario considers the stochastic demand but only takes the average

lead time for each supplier into account.

6.1.1 Preliminary observations

The result of both scenarios, DET and STOCH, is shown in Table 6.2. One can see that

the β service level in the DET scenario exceeds β of STOCH by 0.05 percentage points.

The reason lies in the fact that the DET scenario yields a higher probability for trigger-

ing a 2nd order. This leads to a higher average stock on hand and higher capital costs

CC for the DET scenario. Consequently, in the DET scenario more customer demand

can be satisfied. The 2-order probability is as little as 0.1367% and 0.1336% for DET

and STOCH, respectively. Still, they lead to a visible difference in the service level

which is considerable regarding the fact that they are close to 100%. The low prob-

ability of a second order and the high service level lead to little costs for the second

supply mode OCR and the stock outs OCB.

Referring to the service level and the 2-order probability one can see that they

are identical for SKU A and SKU B. This complies with our intuition that cost-

independent parameters remain constant between SKUs with the same stochastic

characteristics. In contrast, the total costs differ significantly between SKU A and B

and even the ratio of TC, is not identical. The deterministic calculations do not even

systematically over- or underestimate the total costs but they seem to depend on the
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Table 6.2: Results for the deterministic and the stochastic scenario
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specific cost structure of SKU A and SKU B instead. So we cannot give a general state-

ment or rule about the deviation of the costs between the scenario DET and STOCH

even if the underlying stochastic characteristics of two SKUs are identical. At least

this is true in the case of the aggregated parameter TC.

However, a look at the individual cost types of the total costs in Table 6.2 yields a

different picture. While the absolute values for the capital cost CC and the three types

of order costs OCN, OCR, and OCB are different between SKU A and B, their ratios

remain constant. This observation is easy to verify once we recall the formulas for

calculating the various costs in Chapter 5.2, see Equation (5.2.2) till (5.2.5) starting at

page 156. For example, the formula for the 1st order costs is

OCN = E[# first orders] · (Q1 · cN,var + cN,fix)

and we know that all replenishment parameters, including Q1, and all cost factors

like cN,var and cN,var are identical for DET and STOCH while their expected number

of orders usually differs. Then the ratio between DET and STOCH can be reduced to

OCN,DET

OCN,STOCH
=

EDET[# first orders] · (Q1 · cN,var + cN,fix)

ESTOCH[# first orders] · (Q1 · cN,var + cN,fix)

=
EDET[# first orders]

ESTOCH[# first orders]
. (6.1.1)

Equation (6.1.1) shows that all cost-relevant parameters can be eliminated. This

relation between OCN,DET and OCN,STOCH holds even for cases where the number of

expected orders has to be rounded up or down to the next integer value. Moreover,

equivalent equations can be formulated for CC, OCR, and OCB. This insight allows us

to easily compare DET and STOCH regarding the relative cost difference for an arbi-

trary SKU without bothering about specific cost factors – as long as the replenishment

parameters and cost factors are identical for DET and STOCH. Of course, a sensitivity

analysis becomes much more signifant now, as well, because it holds for all possible

values within our general cost structure introduced in Chapter 5.2 on page 156.
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Let us come back to the ratio of TC between DET and STOCH. Here a simplification

as in Equation (6.1.1) is not possible because the ratio is defined by

TCDET

TCSTOCH
=

CCDET + OCN,DET + OCR,DET + OCB,DET

CCSTOCH + OCN,STOCH + OCR,STOCH + OCB,STOCH
(6.1.2)

where different cost factors and order quantities apply for CC, OCN, OCR, and OCB.

Thus, the ratio of TC can strongly vary for different cost factors.

Example 6.1.1. We can state from the four rightmost ratios in Table 6.2 that TCDET can

be as low as 26.72% of TCSTOCH or as high as 102.28% of TCSTOCH if the back order

costs or the rush order costs, respectively, are the only cost types that play a role in

our business scenario. Consequently, in a situation where the stock out costs out-

weigh the other cost factors it would not be a good idea to use the DET scenario as

an approximation. However, the absolute value of TCDET is a quite good approxima-

tion of TCSTOCH for SKU A. A company that focuses on the service level has to decide

whether the difference between 99.98% and 99.93% is significant for their business or

not.

Now, we have good insights that help us to elaborate on some measures of divergence

between DET and STOCH.

6.1.2 Ratio of costs

Let us define τ as the cost ratio between DET and STOCH given by

τ =
costs determined by DET

costs determined by STOCH
. (6.1.3)

In the subscript we indicate which costs τ refers to so that τCC, τOCN , τOCR , and τOCB

represent the ratio between DET and STOCH regarding the costs CC, OCN, OCR, and

OCB, respectively. Further, we can now define an arbitrary set T of ratios τi with
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i ∈ {0, 1, 2, 3, ...}. To get a fast and simple picture of the extreme cases we can use the

minimum and the maximum cost ratio τmin and τmax, respectively.

τmin = min(T ) (6.1.4)

τmax = max(T ) (6.1.5)

We define the special set TSKU which contains the 4 cost types of TC for a certain SKU.

TSKU = {τCC, τOCN , τOCR , τOCB}. (6.1.6)

The set TSKU is used extensively in our sensitivity analysis and will be used as the

default set of ratios. Thus, whenever we do not explicitly mention a certain set T then

τmin, τmax, and τ̄ refer to TSKU.

In the situation shown in Table 6.2 we yield τmin = 0.2672 and τmax = 1.0228 and

the lower bound τmin is associated with the costs for stock out for SKUs A and B.

Despite the low value of τmin its effect on the deviation of the total costs is alleviated

by the very small probability of a stock out situation. Of course, one could multiply the

cost ratios with some weight of relevance like the probability of occurrence. However,

this is still no guarantee for a more precise picture of the situation as extremely high

or low absolute cost values can still overrule the weights of relevance. In favor of

simplicity we do not consider this kind of measures.

Second, we introduce the mean value τ̄ of all elements in the set T by

τ̄ =
1
|T | ∑

τ∈T
τ (6.1.7)

which indicates how much the costs between DET and the STOCH differ on average.

For the set of basic cost types TSKU we yield

τ̄ =
1
4
(τCC + τOCN + τOCR + τOCB)

which amounts to τ̄ = 0.8271 in our example of Table 6.2. Be aware that τ̄ is only

reasonable if the individual absolute costs are of a similar magnitude or all cost ratios
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are about the same value. If this does not hold one has to be careful with interpreting

τ̄. Referring to our example, the statement that the DET scenario underestimates the

total costs of STOCH on average by 1− 0.8271 = 17.29% can be problematic and it

does not hold for any of our two SKUs A and B. Yet τ̄ represents all basic cost types

and not solely the two extreme cases. This might become even more attractive when

additional basic cost types are considered. Consequently, we use τ̄ occasionally but it

has to be seen rather in context of τmin and τmax than as a stand-alone measure.

6.1.3 Ratio of service levels

The service level is an essential KPI in many industries like retail. Therefore, we will

include a measure ρ for the divergence of the service levels, as well. Note, we only

consider the beta service level β here. However, one can derive other service levels

from the formal model in Part II, as well. Companies that use β as a KPI are usually

interested in a high customer satisfaction and target a β close to 100%. A deviation

between two service levels of 98% and 99% is not considered to be just one percentage

point but, in fact, it is often seen as an improvement of 50% or as a decline of 100% in

practice. Clearly, these companies regard β = 100% as their reference point. Therefore,

we use a ratio based on 1− β for defining ρ.

ρ =
1− STOCH β

1−DET β
(6.1.8)

In case of SKU A this leads to ρ = 3.5 which indicates that the DET scenario calculates

a service level which is 3.5 times, or 350%, better or higher than STOCH β. Note, this

definition of ρ also supports a monetary perspective because the sensitivity of the total

costs usually increases steeply when β approaches 100%.

Example 6.1.2. It is easy to show why the total costs are usually very sensitive to small

changes in the beta service level β whenever β is close to 100%. First, a substantial
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part of the total inventory costs are storage costs CC. Mostly, the value of CC is di-

rectly proportional to the number of items on stock. Second, a so-called safety stock

is needed to buffer the variability of the demand and the lead times. Therefore, the

safety stock and β positively correlate with the quantile of the demand distribution for

given lead time distributions. Third, many times the measured demand distributions

show high marginal quantiles when β approaches 100%. This translates directly into

a very sensitive and high safety stock and correlates one-to-one to the amount and

sensitivity of the storage costs CC.

In our example of SKU A, see Table 6.2, this indicates that the necessary costs for

reaching a service level of 99.98% can be significantly higher than the 420.49e calculated

by the DET scenario whenever the lead times are not deterministic as DET assumes.

This finishes the definition of our measures of divergence. We want to point out that

the measures τmin, τmax, τ̄, and ρ are sufficient for our purposes. Nevertheless, one

might want to adapt or add some measures for a specific problem at hand.

The defined measures put us in a position where we can evaluate the difference in β

on the one hand and on the other hand give minimal and maximal bounds for the ratio

of the total costs between the DET and the STOCH scenario. All measures are valid for

every possible cost structure. Moreover, the absolute deviation of TC between DET

and STOCH for a given SKU can be calculated by simply inserting its specific cost

factors. The only things we need are the values for the replenishment parameters R1,

R2, Q1, and Q2 and some knowledge or approximation of the stochastic characteristics

of the demand and the lead times. Of course, these can be quite different for individual

SKUs in an inventory. However, products from the same supplier often have quite

similar lead time distributions, for example. Naturally, one of the next questions is

how the deviation between the DET and the STOCH scenario reacts on changes in

the demand, the lead times and the replenishment parameters. These questions are

addressed in the next chapter.
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6.2 Sensitivity analysis on replenishment-relevant pa-

rameters

In this chapter we perform a sensitivity analysis on the differences between the DET

scenario and the STOCH scenario for each of the input parameters: the demand dis-

tribution D, the lead time distributions L1 and L2, the order quantities Q1 and Q2, and

the reorder points R1 and R2. Thereby, we utilize the measures defined in Section 6.1.

The basic settings for all parameters is copied from Example 6.0.1, page 162, but

we change the first reorder point from R1 = 10 to R1 = 5. Note, we conduct a par-

tial sensitivity analysis where the values of all but the investigated parameter remain

constant. An overview of the used initial parameter setting is given in Table 6.3. The

Gaussian distribution is denoted by Φ.

parameter setting parameter setting

Q1 50 D Φ(x; 1.0; 1.0|x ≥ 0)

Q2 50 L1 Φ(y; 5.0; 2.5|y > 0)

R1 5 L2 Φ(z; 1.0; 0.5|z > 0)

R2 0

Table 6.3: Initial input parameter setting

Note, for some parameter settings the probability to violate Assumption 8, page 43,

is above the threshold of 10−10. The results of these settings are excluded from our

analysis and their entries in tables are set to N.A..

6.2.1 Daily demand

The initial daily demand distribution is given by Φ(x; 1.0; 1.0|x ≥ 0). Now, we in-

crease the demand fluctuation σD from 0.0 to 2.0 in steps of 0.2. The results for the cost
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ratios and ρ are shown in Table 6.4 and Figure 6.1.

ratio
standard deviation σD of the daily demand distribution D(1) = Φ(x; 1.0; σD|x ≥ 0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

CC 102.0 102.4 107.3 110.0 111.0 111.4 111.6 111.7 111.7 111.7 111.7

OCN 100.0 99.8 96.7 94.5 93.3 92.7 92.3 92.1 92.0 91.9 91.9

OCR 100.0 152.3 147.0 140.3 134.7 130.4 127.1 124.5 122.4 120.8 119.3

OCB 0.0 13.8 25.4 33.5 39.3 43.6 46.9 49.5 51.5 53.1 54.5

ρ NAN 7.23 3.93 2.98 2.54 2.29 2.13 2.02 1.94 1.88 1.83

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β NAN = not a number

Table 6.4: Ratios τ and ρ for a changing demand fluctuation σD

Let us investigate the results of Table 6.4 in more detail. The first column shows the

ratios for a scenario with deterministic demand as the variation is zero. The costs for

normal and rush orders are identical for the DET and the STOCH scenario. Actually,

there are no rush orders in both scenarios. This is easy to verify. Keep in mind that

the demand per day is exactly 1.0 units. Then it takes exactly 5 days till the demand

cumulates to the delta between the two reorder points, R1 = 5 and R2 = 0. Looking

up the detailed parameters for the scenario reveals that the time window to trigger a

second order tw is set to four days. Consequently, R2 is never reached in time and all

demand has to be covered by the first orders. This also explains why the cost ratio

OCN is 100%.

The DET scenario only uses average lead times. In our example, this implies that

the first order arrives exactly after 5 days, just when the stock level drops to zero. Con-

sequently, there are never any stock outs and their related costs and the service level

β is 100%. In the STOCH scenario the lead time distribution is L1 = Φ(y; 5; 2.5|y > 0)

and so there is a positive probability that the order will arrive after more than 5 days.

This translates directly into a service level of less than 100% and positive stock out
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costs. It also explains why OCB ratio = 0 and why ρ is not a number due to a division

by zero.

Starting with a division by zero, the values of ρ decrease with an increasing de-

mand fluctuation. Still, the DET scenario consequently overestimates the service level

β. In the case where σD = 0.2 the values DET β = 99.65% and STOCH β = 97.45%

differ significantly. Even for σD = 2.0 the values are 98.70% and 97.61% for DET and

STOCH, respectively. Companies for which a precise value of β is important should

be careful when using the DET scenario as an approximation for the STOCH scenario

for SKUs with the current parameter settings.
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Figure 6.1: Cost ratios τmin, τmax, and τ̄ for a changing demand fluctuation σD

A look at Figure 6.1 reveals that the cost ratios τmin and τmax deviate significantly

from the desired 100%. It is interesting to see that all values of τmin are associated

with OCB. This means that DET consequently underestimates the number of stock

outs which is, of course, directly linked to the overestimation of the service level.

Moreover, all but the first value of τmax are associated with OCR. DET systematically
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overestimates the usage of the second order channel which is partly responsible for

the overestimation of the service level and the underestimation of the stock out costs.

Even if the distance between τmax and τmin decreases with increasing demand fluc-

tuation the deviation is always more than 20%. Especially, companies with high costs

for stock outs or for the second order channel are affected by these deviations. If the

storing costs are the main cost type one has to expect deviations between 2% and 11%

which is acceptable in many cases.

Note, we will not include the average daily demand into our analysis here because

one can always normalize it to one unit per day. By adapting the reorder points and

the order quantities in subsequent chapters this will have the same effect as changing

the average daily demand.

6.2.2 Lead time of the first supply mode

In this section we will look at two things separately: the effect of a changing average

lead time and the effect of a changing lead time fluctuation.

When the average lead time µL1 of the normal supply mode increases, our intuition

is that the second order will successively gain more importance. For the DET scenario

this means that in addition to neglecting the variability of one variable, namely L1, the

effect of a second stochastic variable, L2, might lead to higher deviations between DET

and STOCH. The strength of these effects could reach a peak where both supply modes

are equally strong. Whenever µL1 is increased further on, some parameters should be

dominated by the second supply mode. Then the deviation between DET and STOCH

might be dominated only by the stochastic variable L2 and, thus, decreases.

Regarding the standard deviation σL1 of L1 things should be more straight forward.

One will most likely expect that the DET scenario will yield an increasingly worse

approximation of the STOCH scenario the more the standard deviation increases.
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6.2.2.1 Changes in the average lead time

Let us now look at the effect of different average lead times for the first supply mode.

We increase the value from 1 to 10 in steps of one. The result is shown in Table 6.5 and

Figure 6.2.

ratio
average µL1 of the lead time distribution L1 = Φ(y; µL1 ; 2.5|y > 0)

1 2 3 4 5 6 7 8 9 10

CC 104.9 103.7 103.9 108.1 111.4 112.3 111.8 110.5 108.6 106.6

OCN 100.0 100.0 99.4 96.3 92.7 91.3 91.9 93.6 95.5 97.1

OCR 0.0 152.4 151.6 143.0 130.4 120.3 113.4 108.6 105.3 103.2

OCB 0.00 1.87 13.0 29.0 43.6 55.0 63.0 68.4 70.4 70.2

ρ NAN 53.72 7.710 3.451 2.292 1.820 1.589 1.461 1.420 1.424

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β NAN = not a number

Table 6.5: Ratios τ and ρ for a changing average lead time µL1

For 1 ≤ µL1 ≤ 2 the probability p(2, ., .) that a second order is placed is very low.

Consequently, more than 99.99% of the demand is satisfied by the normal orders and

the cost ratios OCN are rounded to 100.0%. If the lead time of the first order is exactly 1

day, as assumed by DET, then there is no time for triggering a second order. However,

p(2, ., .) is small but positive in the STOCH scenario for µL1 = 1 because it considers

the fluctuation of both lead times. That is the reason why OCR = 0.0% for µL1 = 1. If

µ = 2 then DET calculates p(2, ., .) > 0, as well, which yields a ratio of OCR of 152.4%.

Another effect caused by the deterministic lead times of the DET scenario is an

overestimation of the service level. For µL1 = 1 and µL1 = 2 the DET scenario yields a

β of 100.00% and 99.98%, respectively, while the associated values for the STOCH sce-

nario are only 99.51% and 99.08%, respectively. This is already a significant deviation

for some companies with highly available SKUs.
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Figure 6.2: Cost ratios τmin, τmax, and τ̄ for a changing average lead time µL1

The measure ρ for the service level falls rapidly towards the desired value of 1.0

for 2 ≤ µL1 ≤ 9 but then starts to slightly rise again. This is a common observation

here. All but the OCR ratio in Table 6.5 develop in one direction up to a certain value

of µL1 before they start changing in the opposite direction again. The reasons for this

kind of behavior are manifold.

First, a major reason is the consequent over- or underestimation of the values for a

given parameter by the DET scenario. Due to the fact that the probability of a 2-order

cycle cannot exceed 100% the value of the STOCH scenario can catch up over time and

the delta decreases. This effect is nice to observe in the development of the OCR ratio.

Second, let us look at the increase of ρ for µL1 = 10. The explanation lies in the

gradually later arrival of the first order. Without the second order the service level

would decrease quickly. Fortunately, the 2-order probability p(2., ., .) increases as µL1

approaches 10 days. However, p(2, ., .) is saturating and reaches its maximum effect

to cover excessive demand. Consequently, ρ decreases and the ratio of OCB increases

again for µL1 = 10.
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Third, there are several effects in case of the holding costs. Initially, µL1 = 1 holds

and the DET scenario assumes that the first order arrives in the minimum possible

time. Consequently, DET neglects the cases where the stock decreases further on until

a late arrival of the first order in the STOCH scenario. This results in a high ratio for

CC. For 2 ≤ µL1 ≤ 3 things are more balanced as the first order in the STOCH scenario

can arrive also before µ days. All effects of a second order are restricted due to its little

probability p(2, ., .). Consequently, the ratio of CC decreases in comparison to µL1 = 1.

For µL1 ≥ 3 the second orders are gaining more influence. Due to the deterministic

lead times in the DET scenario the probability that both orders arrive at the same day

or consecutive days is increasing up to µL1 = 6 which is exactly one day after R2 is

expected to be reached. Keep in mind that R1 = 5, R2 = 0, and the average demand is

1.0 per day. This implies that the stock level is raised by both order quantities Q1 and

Q2 within a short time which leads to high storage costs under the premise that the

lead times are deterministic. When we take into account fluctuations, the increase of

the stock level is dampened. Therefore, the ratio of CC is increasing for 4 ≤ µL1 ≤ 6.

For µ > 6 the two peaks of stock level, induced by both order quantities, are drifting

further apart because the expected placement and arrival of the second order remains

constant but µ keeps increasing. Again, this effect is smoothed by the fluctuation of

the STOCH scenario and the ratio of CC is slowly decreasing for 7 ≤ µL1 ≤ 10.

Figure 6.2 shows that the bounds are not monotonically changing with increasing

lead time. Moreover, the associated ratios for the upper bound are changing. The

value of τmax is the ratio of CC for µL1 = 1 and µL1 ≥ 8. For 2 ≤ µL1 ≤ 7 the value of

τmax is the ratio of OCR. The lower bound is constantly related to the ratio of OCB.

In summary the deviation between DET and STOCH is over 10% for most cost ratios.

Only the ratios for the normal ordering are consistently below 10%. Again, the under-

estimation of stock outs is striking here. Therefore, it is quite difficult to predict how
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well the DET scenario approximates the STOCH scenario when the lead time of the

first order changes.

6.2.2.2 Changes in the lead time fluctuation

Let us now have a closer look at the impact of varying the fluctuation of the default

lead time distribution L1 = Φ(y; 5.0; 2.5|y > 1). The result is shown in Table 6.6 and

Figure 6.3. Note, the last column in Table 6.6 is not filled because the probability for

violating Assumption 8 on page 43 is 1.14 · 10−10 and exceeds our maximum tolerance

of 10−10.

ratio
standard deviation σL1 of the lead time distribution L1 = Φ(y; 5.0; σL1 |y > 0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

CC 100.4 102.0 105.3 108.0 110.0 111.4 112.6 113.6 114.5 115.4 N.A.

OCN 100.0 99.6 97.3 95.3 93.8 92.7 92.0 91.3 90.9 90.5 N.A.

OCR 100.0 101.1 108.9 117.3 124.5 130.4 135.2 139.1 142.4 145.1 N.A.

OCB 89.1 62.2 58.0 53.0 48.1 43.6 39.6 36.2 33.1 30.5 N.A.

ρ 1.12 1.61 1.72 1.89 2.08 2.29 2.52 2.77 3.02 3.28 N.A.

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β N.A. = not available

Table 6.6: Ratios τ and ρ for a changing lead time fluctuation σL1

In the deterministic case where σL1 = 0 the first order always arrives exactly after

5 days for DET and STOCH. Moreover, both scenarios consider the identical demand

distribution D. Consequently, the conditions for placing a second order are identical

which leads to identical cost ratios OCN and OCR. In the DET scenario, the absolute

values of all parameters, like costs and the service level, remain constant for the dif-

ferent settings of σL1 . This comes to no surprise as we are only changing a parameter

that is not considered by DET.
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Figure 6.3: Cost ratios τmin, τmax, and τ̄ for a changing lead time fluctuation σL1

The service level is systematically overestimated by DET also when σL1 = 0. The

explanation is that DET assumes a deterministic lead time for the second order of 1

day. This is the minimum possible lead time and in the stochastic case of STOCH the

second orders can only arrive later than DET assumes. Therefore, additional stock out

can occur in the case of STOCH which leads to a ratio of CC above 100% and ρ > 1.0.

Whenever the fluctuation of L1 increases this means that less second orders are

triggered because the time window tw remains constant but the probability that an

early arrival of the first order prohibits the placement of a second order increases.

Consequently, the number of second orders is consequently and increasingly overes-

timated when σL1 increases. An overestimation of the probability p(2, ., .), to place a

second order, by DET can be directly translated in its overestimation of the service

level and its underestimation of the stock out costs OCB. This is represented in an

increasing value for ρ and a decreasing ratio of OCB.

The holding costs are always overestimated by DET as well. Similar explanations
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as for the lead time average in the previous Section 6.2.2.1 are valid here too. It de-

pends very much on the time between the two peaks of stock that are induced by the

arrival of both orders. In the case where σL1 = 0 the first order arrives exactly after

5 days. Whenever the second order is triggered shortly after the first one, then DET

assumes that the order will arrive the very next day. This is the maximum distance

between the arrival of both orders for the case that the second order arrives first. Con-

sequently, DET should underestimate CC. However, the second order is most likely

triggered shortly before the first order arrives – after exactly 5 days. Then DET cal-

culates that both orders arrive shortly after each other while in the STOCH scenario

the second order arrives sometimes much later. The latter effect prevails here even for

σL1 = 0 and amplifies the more we increase σL1 .

Looking at Figure 6.3 our intuition is confirmed that with an increasing fluctuation

of the lead time distribution the approximation of the STOCH scenario by DET, which

uses only the average value, is getting increasingly worse.

In the last two sections we could see that it is not always easy to predict the direction

and the magnitude of the deviation between stochastic dual sourcing and its determin-

istic approximation. However, the more variability is involved the more unprecise the

approximation is. This coincides with our intuition. Moreover, the poor approxima-

tion of the service level and of the costs related to the stock outs is striking.

6.2.3 Lead time of the second supply mode

This chapter shows the effect of changes in the lead time distribution for the second

order, L2. We will first alter the average lead time and then its standard deviation.

Intuitively, one would expect that the number and the effect of the second supply

mode decreases the more its average lead time µL2 increases. This is simply the re-

sult of a decreasing time window tw for placing a second order based on the lower
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probability that the second order will arrive before the first one.

The effect of an increase in the standard deviation σL2 of L2 should not effect the

probability of a second order but decrease the service level until the regular arrival

of the first order compensates for the possibly very late arrival of the second order.

Moreover, we expect that DET yields constant results because it completely neglects

the fluctuation.

6.2.3.1 Changes in the average lead time

In our analysis, the average lead time µL2 of the second order is subsequently in-

creased from 1 day to 10 days. Table 6.7 only lists the results up to day 6, though,

because the time window tw for placing the second order decreases to zero time units

already for µL2 = 5. Consequently, no second orders are placed for µL2 ≥ 5 and the

results are identical. This corresponds with Table 6.7 and our expectations.

ratio
average µL2 of the lead time distribution L2 = Φ(z; µL2 ; 0.5|y > 0)

1 2 3 4 5 6

CC 111.4 105.4 102.5 102.2 102.2 102.2

OCN 92.7 97.7 99.8 100.0 100.0 100.0

OCR 130.4 122.0 112.8 105.8 100.0 100.0

OCB 43.6 52.9 53.6 53.4 53.4 53.4

ρ 2.29 1.89 1.86 1.87 1.87 1.87

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β

Table 6.7: Ratios τ and ρ for a changing average lead time µL2

Note, the cost ratio for OCN is 100% already for µL2 = 4 because the 2-order prob-

ability p(2, ., .) is so small that over 99.995% of the demand must be satisfied by the

first supply mode.
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Once again, the number of rush orders is overestimated by the DET scenario here

again because DET assumes that the first order arrives exactly after the average lead

time µL1 . Therefore, DET does not account for the decrease of the 2-order probability,

p(2, ., .), which is induced by early-arriving first orders. In these cases, second orders

can only be placed within the first min(l1, tw) days. Consequently, a second order is

not necessarily triggered if the stock level reaches R2 within min(µL1 , tw) days. An

overestimation of the number of second orders implies higher stocks and a higher

service level, as well. Note, this effect only exists as long as p(2, ., .) > 0 and ceases for

µL2 ≥ 5.

Then the question arises why CC and ρ are still overestimated for µL2 ≥ 5. This is

linked to the fact that DET again neglects early arrivals of the first order. One part of

an early supply can cover additional demand that would be left unsatisfied otherwise.

This also manifests in the low ratio of stock out costs, OCB. The other part of the

supply increases the stock earlier than assumed by DET and causes additional holding

costs.
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Figure 6.4: Cost ratios τmin, τmax, and τ̄ for a changing average lead time µL2
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In Figure 6.4 the upper bound τmax is initially dominated by the deviation in the

costs OCR for the second supply mode. This effect diminishes with a decreasing prob-

ability p(2, ., .) until no second orders are placed anymore and the rather small over-

estimation of the holding costs CC take over for µL2 ≥ 5. The lower bound τmin is

identical to the ratio of OCB.

According to our intuition the increase of the average lead time µL2 improves the

approximation of STOCH by DET. However, we can see that just by neglecting the

variability of L1 one obtains a very poor approximation of the back order costs and

the service level. In the case where µL2 ≥ 5 the service level is 98.01% and 96.27% for

DET and STOCH, respectively. This deviation is significant for most businesses.

6.2.3.2 Changes in the lead time fluctuation

In the following, the standard deviation σL2 of the lead time distribution L2 is gradu-

ally increased from 0.0 – a deterministic lead time – to 2.0. It might come to a surprise

ratio
standard deviation σL2 of the lead time distribution L2 = Φ(y; 1.0; σL2 |y > 0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

CC 111.7 111.4 111.4 111.5 111.5 111.5 111.5 111.6 111.6 111.6 111.7

OCN 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7

OCR 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4

OCB 48.6 43.8 43.7 43.5 43.2 42.8 42.5 42.2 41.9 41.7 41.5

ρ 2.06 2.29 2.29 2.30 2.32 2.34 2.35 2.37 2.38 2.40 2.41

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β

Table 6.8: Ratios τ and ρ for a changing lead time fluctuation σL2

that the value for most ratios in Table 6.8 and both bounds in Figure 6.5 are almost

constant over the different values for σL2 .
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Once we know that the time window tw is equal to the difference between both av-

erage lead times in our case, so tw = µL1 − µL2 , we can see why the ratios of OCN and

OCR remain constant. The probability p(2, ., .) that a second order is placed depends

only on the time window tw, the probability that a first order arrives before tw, and the

distribution of the demand. All three parameters remain constant here unlike in the

latter Section 6.2.3.1 where a changing average lead time µL2 affected the value of tw.

Consequently, the over- and underestimation of OCN and OCR, respectively, are con-

stant in Table 6.8. Note, just like in Section 6.2.2.2 the absolute values of all parameters

remain constant as the only changing parameter is not considered by DET.

The high values for ρ might be surprising, as well. Especially for the deterministic

case where σL2 = 0 one could expect that the service levels DET β = 99.15% and

of STOCH β = 98.24% are closer together. Once again, it turns out that neglecting

the fluctuation has a strong influence on the quality of the results even if only one

lead time is stochastic. Here, much less second orders than DET calculates are placed

due to early arrivals of first orders. This leads to a significant overestimation of the

service level and a correlated underestimation of the stock out costs which is reflected

in the values of ρ and the ratio of OCB, respectively. Of course, the approximation is

continuously getting worse if we increase the variability of the second lead time, see

Table 6.8.

In general, DET overestimates the holding costs CC due to more second orders.

Given the constant value for CC of DET, the convex curve of the ratios for CC is solely

determined by the change of CC in the STOCH scenario. When σL2 = 0 holds, the

second order arrives as early as possible with the given setting because there are no

lead times below 1 day. Consequently, the stock peak induced by the second order

is the furthest ahead of the stock peak caused by the first order which leads to less

holding costs for STOCH. With increasing fluctuation, 1 ≤ σL2 ≤ 2, the expected

delivery of the second order coincides more and more with the arrival of the first



Deterministic vs. stochastic – Sensitivity analysis on lead time L2 185
cost measures

0%

20%

40%

60%

80%

100%

120%

140%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

standard deviation

v
a

lu
e

t_min t_max avg_t

cost measures

0%

20%

40%

60%

80%

100%

120%

140%

160%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

standard deviation

v
a
lu

e

t_min t_max avg_t

cost measures

0%

20%

40%

60%

80%

100%

120%

140%

160%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

standard deviation

v
a
lu

e

t_min t_max avg_t

cost measures

0%

20%

40%

60%

80%

100%

120%

140%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

standard deviation

v
a
lu

e

t_min t_max avg_t

2

deviation DET
STOCH

demand fluctuation

average lead time

lead time fluctuation

order quantity

reorder point

deviation DET
STOCH in %

deviation 1−STOCH
1−DET

RS1,trad RS2,trad RS1,relax RS2,relax

CC OCB OCR OCN

τmin τmax τ̄

σD µL1 σL1 µL2 σL2 Q1 Q2 R1 R2

2

2

deviation DET
STOCH

demand fluctuation

average lead time

lead time fluctuation

order quantity

reorder point

deviation DET
STOCH in %

deviation 1−STOCH
1−DET

RS1,trad RS2,trad RS1,relax RS2,relax

CC OCB OCR OCN

τmin τmax τ̄

σD µL1 σL1 µL2 σL2 Q1 Q2 R1 R2

2

2

deviation DET
STOCH

demand fluctuation

average lead time

lead time fluctuation

order quantity

reorder point

deviation DET
STOCH in %

deviation 1−STOCH
1−DET

RS1,trad RS2,trad RS1,relax RS2,relax

CC OCB OCR OCN

τmin τmax τ̄

σD µL1 σL1 µL2 σL2 Q1 Q2 R1 R2

2

2

de
vi

at
io

n
D

ET
ST

O
C

H

de
m

an
d

flu
ct

ua
tio

n
σ

D

av
er

ag
e

le
ad

tim
e

µ
L 1

av
er

ag
e

le
ad

tim
e

µ
L 2

le
ad

tim
e

flu
ct

ua
tio

n
σ

L 1
le

ad
tim

e
flu

ct
ua

tio
n

σ
L 2

or
de

r
qu

an
tit

y
Q

1
or

de
r

qu
an

tit
y

Q
2

re
or

de
r

po
in

tR
1

re
or

de
r

po
in

tR
2

de
vi

at
io

n
D

ET
ST

O
C

H
in

%

de
vi

at
io

n
1−

ST
O

C
H

1−
D

ET

R
S 1

,tr
ad

R
S 2

,tr
ad

R
S 1

,re
la

x
R

S 2
,re

la
x

C
C

O
C

B
O

C
R

O
C

N

τ
m

in
τ

m
ax

τ̄

2

2

deviation DET
STOCH

demand fluctuation σD

average lead time µL1 average lead time µL2

lead time fluctuation σL1 lead time fluctuation σL2

order quantity Q1 order quantity Q2

reorder point R1 reorder point R2

deviation DET
STOCH in %

deviation 1−STOCH
1−DET

RS1,trad RS2,trad RS1,relax RS2,relax

CC OCB OCR OCN

τmin τmax τ̄

2

Figure 6.5: Cost ratios τmin, τmax, and τ̄ for a changing lead time fluctuation σL2

order. This increases CC and the ratio CC between DET and STOCH declines. After

that the expected delivery of the second order gradually moves further behind the

arrival of the first order. This leads to a smaller value of STOCH CC and to a higher

ratio.

6.2.4 Order quantities

In contrast to the sections before, the order quantity is a parameter that can usually

be varied by the owner of an inventory. Here again, we anticipate that DET overes-

timates the service level, the costs for second orders, and the holding costs while it

underestimates the stock out costs and costs for first orders. Surely, one expects that

the absolute value of the β service level increases with higher order quantities because

the majority of the demand has already been covered before a new order is placed and

we run into the increased danger of facing stock outs.
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6.2.4.1 Order quantity of the first supply mode

From Table 6.9 we can see that an order quantity Q1 = 30 is not sufficient to satisfy all

the demand until the next replenishment cycle. The probability for violating Assump-

tion 8, page 43, is 1.68 · 10−9 which exceeds our tolerance of 10−10. Consequently, we

do not consider this case.

ratio
order quantity Q1

30 40 50 60 70 80 90 100 250 500

CC N.A 113.3 111.4 110.0 108.8 107.8 107.0 106.3 102.5 101.3

OCN N.A 91.4 92.7 93.6 94.4 94.9 95.4 95.8 98.2 99.1

OCR N.A 128.6 130.4 131.7 132.8 133.6 134.2 134.8 138.1 139.4

OCB N.A 43.0 43.6 44.1 44.4 44.7 44.9 45.1 46.2 46.6

ρ N.A 2.32 2.29 2.27 2.25 2.24 2.23 2.22 2.16 2.15

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β N.A. = not available

Table 6.9: Ratios τ and ρ for a changing order quantity Q1

In general, we see the usual picture that the values for CC, OCR, and β are indeed

overestimated by DET which leads to an underestimation of the remaining parame-

ters in Table 6.9. This is reflected in the associated ratios. The absolute value of the

holding costs rises with an increasing order quantity Q1. While the absolute differ-

ence between DET CC and STOCH CC remains fairly constant, their ratio gradually

decreases towards 100% when Q1 approaches 500 units. One could try to use a similar

argumentation to explain the decreasing ratios of the service level and the stock out

costs OCB. Then, one refers the decrease ρ to a saturation of β in the DET case while

the value of β from the STOCH scenario is gradually catching up. This is certainly

true to some extend. However, the question remains for OCB why its ratio does not

converge to 100%.
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This brings us to the interesting observation that the ratio for OCN increases to-

wards 100% and the ratio of OCR gradually increases to values close to 140% at the

same time. Several interdependent causes lead to this result. First, the overall de-

mand per year is constant for different values of Q1. Second, the 2-order probability

p(2, ., .) remains 24.10% and 33.91% for STOCH and DET, respectively, independent

of Q1. This can be explained by the fact that neither the underlying distribution nor

the time window tw is changed. Third, even though p(2, ., .) remains constant more

demand is covered by the first orders because Q1 increases. This leads to higher abso-

lute costs OCN and to a lower absolute value for OCR. Consequently, the systematic

overestimation of the percentage of second orders, p(2, ., .), has gradually less impact

on the total costs of the first orders OCN for an increasing value of Q1. This implies

that the ratio of OCN converges to 100% for Q1 → ∞.

Analogous to the latter argumentation, the total costs for the second orders, OCR,

decrease when Q1 increases. Consequently, the constant overestimation of p(2, ., .)

gains more impact on the total costs of the second orders OCR.

Let us come back to the question why the ratio of OCB does not converge to 100%. We

stated that the overestimation of p(2, ., .) looses importance for the total cost and the

number of first orders. In the same way the importance of the second orders vanishes

in general and the whole scenario gradually changes towards a situation where only

one (stochastic) lead time exists. This also makes sense if we exchange the increase

of Q1 in relation to Q2 by a decrease of Q2. Once Q2 equals 0 only one supply mode

effectively remains.

In all cases this would imply that the values of ρ and of the ratio of OCB origin

from the poor approximation by DET even if only one lead time is stochastic. Most

interestingly, the values of ρ and the ratio of OCB for Q1 = 500 from Table 6.9 are very

similar to the values of Table 6.5 where σL2 = 0. This result fosters our argumentation.
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Figure 6.6: Cost ratios τmin, τmax, and τ̄ for a changing order quantity Q1

Of course, the scenario in Table 6.8 includes the effects of second orders but they can-

not have a big influence on the two ratios because the second orders are identically

modeled by DET and STOCH when σL2 = 0.

6.2.4.2 Order quantity of the second supply mode

In the latter section we argued that an increasing value of Q1 diminishes the influence

of the second order which should lead to a similar effect as reducing the order quantity

Q2 to zero. This is exactly what we are doing in the following. The order quantity Q2

is increased from 0 to 500 units. The results are shown in Table 6.10 and Figure 6.7.

From a direct comparison between the column for Q1 = 500 in Table 6.9 and the

result for Q2 = 0 of the Table 6.10 we see that the ratio for OCB is 46.6% versus 43.3%,

respectively, and ρ is 2.15 versus 2.31, respectively. These values are neither identi-

cal nor very alike. So our argumentation of Section 6.2.4.1 does not seem to hold.

However, we can say that the rough magnitude is similar, at least. The question is
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ratio
order quantity Q2

0 15 30 45 60 75 90 150 250 500

CC 103.1 106.2 108.9 110.9 112.4 113.3 113.9 114.0 112.2 108.5

OCN 100.0 97.3 95.1 93.2 91.6 90.3 89.0 85.4 81.8 77.7

OCR 100.0 136.9 133.8 131.2 128.9 127.0 125.3 120.2 115.1 109.3

OCB 43.3 45.8 44.8 43.9 43.1 42.5 41.9 40.2 38.5 36.6

ρ 2.31 2.18 2.23 2.28 2.32 2.35 2.39 2.49 2.60 2.74

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β

Table 6.10: Ratios τ and ρ for a changing order quantity Q2

whether we find a good explanation for the deviation which is able to rehabilitate our

argumentation.

If we look at the service levels β for Q1 = 500 in the latter section they are 99.99%

for DET and 99.76% for STOCH. The values for Q2 = 0 in this section are 98.59%

for DET and 96.75% for STOCH. We mentioned in the latter section that β is reaching

a certain level of saturation for Q1 = 500 while the value of β is catching up over

time in the STOCH case. This is not valid for Q2 = 0 in this section. The service

level is far from saturation and the usual strong overestimation of β by DET is still

effective. Consequently, the underestimation of the ratio of OCB is larger here, as well.

To complete the argumentation for Q1 = 500 in Section 6.2.4.1 it requires to include

the impact of entering a level saturation for β on the overestimation of ρ by DET.

Putting the special case aside where Q2 = 0 the remaining entries for ρ and the

ratio of OCB follow a monotonous line as the value of Q2 increases. We know that

DET tends to overestimate the number and the costs of the second orders. Here, one

can see that this effect is amplified with an increasing importance of the second orders

which is induced by higher values of Q2. This behavior coincides with our intuition.
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Figure 6.7: Cost ratios τmin, τmax, and τ̄ for a changing order quantity Q2

The argumentation of a shifting importance between the first orders and the second

orders from Section 6.2.4.1 can be applied for the ratios of OCN and OCR in Table 6.7,

as well. With an increasing value of Q2, the second orders cover more demand and the

ratio of OCR develops towards 100%. Simultaneously, the reducing importance of first

orders makes the general underestimation of the OCN ratio by DET more apparent

and its value falls to 77.7%. Only the ratios of OCN and OCR for Q2 = 0 do not fit into

the series of values. An explanation is easy to give as the total demand is exclusively

covered by the first supply mode when Q2 = 0. This equally holds for DET and

STOCH and yields exactly 100.0% for the ratios of OCN and OCR.

We expect rising holding costs if Q2 increases which is confirmed by the absolute

values of CC in our two scenarios DET and STOCH. The ratio of CC is increasing for

Q2 ≤ 150 due to the increasing influence of the second orders and their overestimation
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by DET. Yet, it is surprising to see that the value of the ratios decreases for Q2 > 150.

The reason are potentially unlimited holding costs – unlike the service level. While the

effect of overestimating the probability of second orders, p(2, ., .) remains constant, the

absolute difference of CC between DET and STOCH keeps increasing. Therefore, it is

only due to the higher absolute values of CC that its ratio decreases from 114.0% to

108.5%.

6.2.5 Reorder points

A company is usually completely free to choose the reorder points. This liberty does

not even exists for the order quantities in many cases as suppliers dictate lot sizes.

We will make full usage of this liberty to set Q1 and Q2. In particular, this means

that we will explore the possibility and effect of setting negative reorder points in

compliance with Assumption 2, page 42. This can be useful in cases where the supplier

of the secondary orders is expensive and dictates large quantities, for example. Then

one could wait until the backlog of demand is big enough and a second order pays

off. In addition, we will allow that the second orders are triggered before the first

ones, so R1 < R2. Obviously, this violates Assumption 2. However, we can simply

relabel the first and the second supply mode and apply the formal model without any

further changes and without any restrictions. Note, only the case R1 = R2 is explicitly

excluded here which would lead to a order-splitting policy.

6.2.5.1 Reorder point of the first supply mode

In the first two columns of Table 6.11 we set R1 to a negative value. This requires us

to relabel supply mode 1 and two by exchanging their names internally before we can

apply the formal model again. However, we will still use the original name of the

supply modes in the following text.

Setting R1 < 0 implies that the second order is triggered first. Therefore, we also
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ratio
reorder point R1

-2 -1 1 2 3 4 5 6 7 8 9

CC 102.3 102.3 110.5 111.9 112.6 112.5 111.4 108.8 105.6 103.4 102.4

OCN 100.0 100.0 94.7 92.1 90.5 90.7 92.7 95.5 97.9 99.2 99.8

OCR 100.0 100.0 106.0 110.3 115.8 122.6 130.4 138.4 144.9 148.9 151.0

OCB 65.7 65.7 68.6 68.4 63.6 54.6 43.6 32.5 22.3 13.9 7.7

ρ 1.52 1.52 1.46 1.46 1.57 1.83 2.29 3.08 4.49 7.21 12.98

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β

Table 6.11: Ratios τ and ρ for a changing reorder point R1

have to adapt the time window tw to 0 days because µL1 > µL2 holds for the average

lead times in our case and there is no chance that orders triggered at R1 will arrive

first. Consequently, all demand is covered by the second supply mode. There occur

no costs OCN and the absolute ordering costs OCN and OCR are identical for DET

and STOCH. The service level and the holding costs, CC, are overestimated by DET

because all lead times over µL2 = 1.0 days are neglected. The same argumentation

leads to an explanation of the underestimation of OCB by DET for R1 < 0.

Let us switch to the results for R1 > 0. The service-level-related values, ρ and the

ratio of OCB, in Table 6.11 show a completely monotonous behavior. However, behind

the scenes some interesting effects occur. The service level β starts at 98.91% and

98.41% for DET and STOCH when R1 = 1, respectively. Then β falls until R1 = 2 and

R1 = 5 for DET and STOCH, respectively. After that β starts rising again. Intuitively,

one might expect that β should monotonously increase due to a higher implicit safety

stock induced by a rising reorder point R1. This effect is valid without exception.

However, the increasing gap between R1 and R2 lowers the probability that a second

order is triggered. This has a reducing effect on β. Of course, both effects change their

strength of influence in direct relation to the importance of the first and the second
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Figure 6.8: Cost ratios τmin, τmax, and τ̄ for a changing reorder point R1

supply mode, respectively. It is the combination of these effects that leads to an initial

decrease and later increase of β. Analogously, the absolute costs CC and OCB initially

rise before they fall again. Only the absolute costs for both supply modes, OCN and

OCR, monotonously increase and decrease, respectively. This is easy to verify upon

the presence of a gradually decreasing probability that a second order is triggered.

One observes that the ratios of CC and OCN tend towards 100% with an increasing

R1. The main reason lies in the decreasing weight of the second orders which mani-

fests in a probability p(2, ., .) of 0.64% and of 0.42% for DET and STOCH, respectively.

Exactly these small values for p(2, ., .), the inherent little coverage of total demand,

and the general overestimation of second orders by DET lead to gradually decreasing

ratios for OCB. Directly linked to the decreasing values of the OCB ratios are the in-

creasing values of ρ. This effect is amplified by the circumstance that DET calculates

values for β which are close to 100%, namely 99.94% for R1 = 9. In contrast, β is only

99.22% for STOCH in this case.
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Finally, we should remark that in our example here the absolute holding costs CC

are significantly lower for Q1 < 0 than for Q1 > 0. Depending on the remaining

cost structure it could be beneficial to replenish an SKU with the given characteristics

mainly via the second order channel. While this idea is counter-intuitive at first sight

and there is no guarantee that it holds for the cost-optimal solution, it is still an option

worth considering for an optimization process.

6.2.5.2 Reorder point of the second supply mode

Here we will explore a wide range of values for R2, as well. This includes negative

values and values greater than R1. One might expect similar results and effects as in

the latter section but on a higher niveau of service level as R1 = 5 remains fixed here

in contrast to the constant condition R2 = 0 in the latter section.

Indeed, the service levels are in general higher here than in the latter section and

reach 100.0% already for R2 ≥ 4. However, Table 6.12 differs quite a lot from Table 6.11

at first sight. The same hold for the two Figures 6.8 and 6.9. At a second sight, we

ratio
reorder point R2

-10 -8 -6 -4 -2 0 2 4 6 8 10

CC 102.2 102.2 102.2 102.6 105.8 111.4 112.2 110.1 101.9 101.8 101.7

OCN 100.0 100.0 100.0 99.8 97.9 92.7 90.5 94.7 100.0 100.0 100.0

OCR 100.0 153.2 152.3 151.0 144.9 130.4 115.8 106.0 100.0 100.0 100.0

OCB 53.4 53.4 53.4 53.4 52.4 43.7 18.1 1.2 0.0 0.0 100.0

ρ 1.87 1.87 1.87 1.87 1.91 2.29 5.52 79.8 NAN 1.00 1.00

legend: ratio = DET
STOCH · 100 ρ = 1−STOCH β

1−DET β NAN = not a number

Table 6.12: Ratios τ and ρ for a changing reorder point R2

find identical values for the ratios of OCN and OCR in both tables but in a reverse
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order. For example, the ratios of OCR are 144.9% and 151.0% for R1 = 7 and R1 = 9,

respectively, in Table 6.11 where R2 = 0 applies. Identical values appear in Table 6.12

for R2 = −2 and R2 = −4, respectively, where R1 = 5 remains constant. This makes

perfect sense, once we consider the fact that in both examples the delta between R1

and R2 is identical, namely 7 and 9 units. Consequently, here the underestimation and

overestimation by DET regarding the ratio of OCN and OCR, respectively, is solely

related to the probability p(2, ., .) of placing a second order. The reason for this is

apparent as OCN, OCR, and their ratios only depend on the number of triggered orders

and the individual order quantity. All these parameters do not change with different

reorder points as long as their delta remains the same. There is no need to further

explain the ratios of OCN and OCR as they are identical to the ones in Section 6.2.5.1.
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Figure 6.9: Cost ratios τmin, τmax, and τ̄ for a changing reorder point R2

We do not find identical values for the other ratios because they all depend on

the stock level and on when orders arrive. These values change for different reorder

points and whenever we swap the fast and the slow supply mode.
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The development of the ratios for CC is not identical but still similar in Table 6.11

and Table 6.12. The deviation is small if one of the two supply modes dominates,

so for R2 ≤ −4 and R2 ≥ 6. In that case, the deviation originates from neglecting the

variability of one supply mode. Whenever both supply modes are used the ratio of CC

rises which indicates that the fluctuation of both lead times do not compensate each

other but amplify themselves. Keep in mind that for R2 > 5 all orders are exclusively

placed via the second channel as tw = 0 and R1 < R2.

As long as only the first supply mode is used, the values for ρ are 1.87, due to the

average lead times used by DET. In the subsequent columns, ρ rises up to 79.8% as

more second supply modes are placed. For DET the service level β rises faster here as

the fluctuation of the second lead time is neglected. Finally, for R2 = 6 DET calculates

β = 100% while this value is reached by STOCH only for R2 ≥ 8. Consequently, ρ is

not a number due to a division by zero for R2 = 6 and is 1.00 for larger values of R2.

A similar argumentation as for ρ also holds for the ratio of OCR. Initially, ratio

indicates the overestimation of the service level by DET induced by not considering

the lead time fluctuation. This value rises as the two stochastic variables interact more

heavily. For R2 = 6 DET already calculates β = 100% unlike STOCH and the ratio of

OCB is zero. For R2 = 10 both service levels are 100% and the ratio is 100.0%. One

would expect the same for R2 = 8. However, the service level β of STOCH is close

enough to 100.0% to get ρ = 1.00 in that case. However, β is still not exactly 100.0%

and there exist still small costs for stock out. This leads to a ratio of OCB of 0.0%.

6.2.6 Summary

In the sensitivity analysis one out of 9 input parameter was altered at a time. The

resulting changes of the deviation between the DET scenario and the STOCH scenario

were investigated in the context of various cost types and the β service level. This

represents our first approach to answer research question RQ 3.
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Our observation was that the deviation between DET and STOCH varies greatly. Es-

pecially, for the service level and the stock out costs the deviations were large and

easily exceeded ±40%. In extreme cases they even reached 100%. The deviation de-

creased for a reduced or even eliminated variability of some parameters. However, in

reality one will usually face significant lead time fluctuation. The same is true for the

demand, especially in cases where the inventory faces consumer demand.

Another observation is that the deviation between DET and STOCH decreased if

one of the two supply modes predominated. Consequently, we cannot derive from

our observations that the variability of several parameters cancel out each other and a

deterministic model is fortunate for approximating the stochastic scenario.

In our examples, DET never underestimated the number of rush orders because

normal orders were expected to arrive late and there was a good chance to place a

second order. However, this does not need to be true for all parameter settings. Such

a case can simply be constructed by a negatively skewed distribution for the first lead

time. Then the average lead time for the first order is lower than its mode. Conse-

quently, regular orders are assumed to arrive early which reduces the probability to

place a second order.

Due to the manifold interrelations between the individual stochastic variables it is

hard to generally predict the implications of a deterministic approximation for the

stochastic scenario. However, from the frequent and large deviations between DET

and STOCH in the sensitivity analysis we conclude that STOCH should be clearly

favored to calculate the KPIs when demand and both lead times are stochastic. This is

especially true if a high accuracy of the values for the KPIs is required.
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6.3 Case study – a spare parts warehouse

The results of the sensitivity analysis in the previous chapter give a good impression

about how large the span of divergence between the results of the deterministic DET

scenario and the stochastic STOCH scenario can get. However, these results are rather

theoretical and one can well imagine that the ratios in reality are different because

the random variables are not Gaussian distributed. Moreover, it does not answer the

question of how much the results of DET and STOCH differ when several parameters

are changed simultaneously.

The joint change of the 9 parameters yields 29 = 512 combinations if there exist

only 2 different values for each parameter. Most likely one is interested in 5 to 10

different values per parameter which easily exceeds 1,000,000 possible combinations.

This extensive approach is definitely not feasible. Even if we restrict the scope of

parameters we still face the problem of limited knowledge whether the combination

of different values are relevant or not. For example, how close are they to the cost-

minimal values for these parameters? Actually, one will have to repeat the sensitivity

analysis for each warehouse by considering its specific situation. This way one could

give a valid statement about the differences between DET and STOCH for a specific

warehouse.

Fortunately, we have the data of a warehouse with 2,751 SKUs at hand. In the fol-

lowing, we will evaluate our findings from the sensitivity analysis in the context of this

empiric situation. Now, how should we compare the results of the sensitivity analysis

with the real data? An individual comparison for each of the SKUs is just as unfea-

sible as another simple sensitivity analysis on a few selected representative SKUs. A

more promising approach is to consider the 2,751 SKUs to represent the members of a

sensitivity analysis where all input parameters have been changed simultaneously.

The rational behind this approach lies in the differences among the 2,751 SKUs.

The demand distribution, the lead time distributions, and the costs influence the cost-
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minimal values of the replenishment parameters R1, R2, Q1, and Q2. This leads to

many different settings for which we can compare the DET scenario and the STOCH

scenario. We apply the ratio τ between DET and STOCH to each of the costs CC,

OCN, OCR, and OCB. For each of these costs we can also derive the minimal, maxi-

mal, and average ratio over all SKUs. These can be compared to the values that we

have obtained in the sensitivity analysis of Chapter 6.2. The comparison requires the

following four steps.

Step 1. The replenishment parameters (R1, R2, Q1, and Q2) are optimized for the de-

terministic DET scenario in order to minimize the total costs for each individual

SKU.

Step 2. We calculate the value of all individual costs types twice, once for the deter-

ministic DET case and once for the stochastic STOCH case, always using the

optimal replenishment parameters from step 1. Recall, that the cost types are

normal, rush, and back order costs (OCN, OCR, OCB) as well as the capital costs

(CC).

Step 3. The empiric ratios τmin, τmax, and τ̄ from the warehouse case study are calcu-

lated for each cost type.

Step 4. The ratios of Step 3 are compared to the ratios that have been observed in the

sensitivity analysis, see Section 6.2.

Note that we obtain the optimal replenishment parameters in Step 1 by means of a

Threshold-Accepting Algorithm (TAA) described by Dueck and Scheuer in [DS90].

This optimization algorithm was developed by the IBM Science Center in Heidelberg

in the late 1980s. It is very similar to the well-known simulated annealing algorithm

as described by Kirkpatrick et al. [KGV83] and Eglese [Egl90], but its acceptance rules
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are different, and the TAA leads to more stable results in a number of experiments as

reported by Dueck et al. [DSW91].

We have adapted this general-purpose optimization algorithm to our needs and

it has proven to be very stable and to return close-to-optimal results in all our cases.

However, our investigations are by no means limited to the usage of this particular

optimization algorithm. Other non-linear optimization techniques could have been

used to determine the cost-minimal replenishment parameters, as well. That’s why

we do not go into details about the concrete implementation and parametrization of

the applied threshold-accepting algorithm.

Recall, the DET scenario assumes deterministic lead times lt1 and lt2 while STOCH

considers stochastic lead times distributions L1 and L2. This is the sole difference

between DET and STOCH.

6.3.1 Setup for comparing the case study and the sensitivity analysis

Case study. In our case study we calculate the ratios τCC, τOCN , τOCR , and τOCB

for the costs CC, OCN, OCR, and OCB, respectively, just as in the sensitivity anal-

ysis, see Chapter 6.1.2. For each of these costs we can also derive the minimal,

maximal, and average ratio over all SKUs, namely τmin
A , τmax

A , and τ̄A, where A ∈
{CC, OCN, OCR, OCB}. However, we point out here that these values are not directly

comparable to τmin, τmax, and τ̄ of the sensitivity analysis. The sensitivity analysis

determines these values for a particular input parameter like R1 or Q2. In contrast, the

case study changes all of these input parameters simultaneously and, thus, τmin, τmax,

and τ̄ have to be defined per cost parameter like CC or OCN. Luckily it only takes

limited effort to make them comparable and this change to a cost perspective will

give us additional and different insights than we have from the sensitivity analysis in

Chapter 6.2.
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Recall from Chapter 6.1.2 that τmin, τmax, and τ̄ are defined regarding a set T =

{τ1, ..., τn} of n arbitrary ratios. In the sensitivity analysis we used the set

TSKU = {τCC, τOCN , τOCR , τOCB}

in each individual section about the input parameters D, L1, L2, R1, R2, Q1, and Q2.

The subscript SKU in expressions like τmin
SKU was omitted for simplicity and better read-

ability. Now, we define the appropriate sets for our case study and its warehouse of

2,751 SKUs by

TWH,A = {τA,1, τA,2, ..., τA,2751} (6.3.1)

where A ∈ {CC, OCN, OCR, OCB} represents the currently investigated type of costs.

For example, the average ratio τ̄ of capital costs between DET and STOCH in our

warehouse can be expressed by

τ̄WH,CC =
1

2751

2751

∑
i=1

τCC,i. (6.3.2)

Sensitivity analysis. Now, we define similar sets for the sensitivity analysis that al-

low us to compare its measures like τ̄ to the respective measures of the case study.

Recall that only one input parameter Bi ∈ B = {σD, µL1 , σL1 , µL2 , σL2 , Q1, Q2, R1, R2}
has been changed in the sensitivity analysis at a time. Then, for this input parame-

ter Bi there exist ki ratios τA,Bi,j for each cost type A ∈ {CC, OCN, OCR, OCB} with

j ∈ {1, 2, ..., ki}.

Example 6.3.1. In Table 6.13 the standard deviation σD of the Gaussian demand dis-

tribution D is set to 11 different values. Thus, ki = 11 for the capital costs CC and

τCC,σD,2 = 102.4. Note that only entries with a number are considered and all other

entries like ”not defined” are ignored.

We can define the set of all ratios that belong to a certain cost type A within the sensi-

tivity analysis (SA) for a specific input parameter Bi by

TSA,A,Bi = {τA,Bi,1, τA,Bi,2, ..., τA,Bi,ki} (6.3.3)
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ratio
standard deviation σD of the daily demand distribution D(1) = Φ(x; 1.0; σD|x ≥ 0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

CC 102.0 102.4 107.3 110.0 111.0 111.4 111.6 111.7 111.7 111.7 111.7

legend: ratio = DET
STOCH · 100

Table 6.13: Excerpt of Table 6.4 on page 172

and for all input parameters Bi ∈ B by

TSA,A =
⋃

Bi∈B
TSA,A,Bi =

⋃

Bi∈B
{τA,Bi,1, τA,Bi,2, ..., τA,Bi,ki}. (6.3.4)

The average ratios τ̄SA,CC,σD and τ̄SA,CC between DET and STOCH are given by

τ̄SA,CC,σD =
1

|TSA,CC,σD |
∑

τi∈TSA,CC,σD

τi (6.3.5)

τ̄SA,CC =
1

|TSA,CC| ∑
τi∈TSA,CC

τi (6.3.6)

for the cost type CC within our sensitivity analysis. This is all we need to compare the

ratios of the sensitivity analysis with the ones of our case study.

Comparison. A link between the sensitivity analysis and the case study can now be

established via these definitions. For example, the set TSA,A of Equation (6.3.4) is the

pendent to TWH,A in Equation (6.3.1) and the expression τ̄SA,CC of Equation (6.3.6) is

the counterpart to τ̄WH,CC in Equation (6.3.2).

Our comparisons will be focused on charts for a specific cost type like Figure 6.10

for CC. Each of the first 9 columns illustrate the range of the ratios in the set TSA,CC,Bi

for one input parameter Bi that we have observed in the sensitivity analysis in Chap-

ter 6.2. The last column shows the range of the ratios in the set TWH,CC of our case

study.
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Example 6.3.2. The minimal, maximal, and average value in the first column σD of Fig-

ure 6.10 are identical to the capital cost ratios τmin
SA,CC,µD

= 102.0%, τmax
SA,CC,µD

= 111.7%,

and τ̄SA,CC,µD = 109.3% derived from Table 6.13. This table is an excerpt from Table 6.4

on page 172 of our sensitivity analysis. The values for the eight middle columns in

Figure 6.10 correspond to the first row of the corresponding tables of the sensitivity

analysis in Chapter 6.2, namely Table 6.5, Table 6.6, ..., and Table 6.12, respectively.

Note, the definition of the various sets and the various ratios for the β service level

can be derived analogously to the ones for the cost types in this section.

The following sections compare the range of ratios between the sensitivity analysis

and the warehouse for each cost type and the β service level. All sections share a com-

mon structure. First, we visually compare the ranges of ratios for the current cost type

between the sensitivity analysis and the warehouse and discuss our findings. Second,

we go into detail for the most interesting observations. Third, we derive analytical

expressions for the deviation between DET and STOCH for several KPIs. Finally, we

summarize or key observations.

6.3.2 Capital costs

This section compares the capital costs CC between the sensitivity analysis and the

warehouse. Figure 6.10 reveals in its first 9 columns that the sensitivity analysis gives

a too pessimistic picture for the situation at our warehouse, see last column. The

ratios of CC between DET and STOCH in the warehouse are smaller than those of

the sensitivity analysis for each of the 9 input parameters. More precisely, we obtain

τmin
WH,CC = 99.33%, τmax

WH,CC = 106.30%, and τ̄ = 100.40% for the warehouse while the

lowest values in the sensitivity analysis are τmin
SA,CC = 101.70% and τmax

SA,CC = 114.00%,

respectively.

The most interesting observation can be made regarding the average ratio τ̄. The

value τ̄SA,CC = 104.3% indicates an average overestimation of CC by at least 4.3%
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Capital costs
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Figure 6.10: Range of capital cost ratios τCC for the sensitivity analysis and the ware-

house

in the sensitivity analysis where the DET scenario is used in a setting which corre-

sponds to the STOCH scenario. The empiric average deviation, however, is only 0.4%

as τ̄WH,CC = 100.4% shows. In fact, τ̄WH,CC is as low as the minimal value in our sensi-

tivity analysis, see column σL1. The small deviation of τ̄WH,CC from 100% leads to the

conclusion that the simple DET scenario can be used as a quite good approximation

for calculating the capital costs of most SKUs in our warehouse even though the lead

times are stochastic. This is quite surprising.

Let us have a closer look at the ratios τWH,CC,i for the 2,751 SKUs. Table 6.14 shows

that DET calculates CC for 2,376 SKUs (86.37%) with a maximal deviation of 1% from

the value given by STOCH. Moreover, CC of both scenarios match exactly in all 173

cases where no capital cost occur. The DET model deviates from the STOCH value

for CC only in 202 cases (7.34% of all SKUs) by more than 1%. While all these facts

speak for using the DET model when it comes to calculating CC for our warehouse

one can observe the unfortunate trend that τWH,CC increases with increasing values
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range of τCC # of

SKUs

% of

SKUs

CC for DET CC for STOCH

min max avg min max avg

1− 10−2 1− 10−3 1 0.04 20.008 20.142

1− 10−3 1 + 10−4 0 0.00 — —

1 + 10−4 1 + 10−3 138 5.02 0.127 8.918 · 10−3 0.524 0.127

1 + 10−3 1 + 10−2 2,237 81.32 4.949 2.114 · 10−2 36.311 4.925

1 + 10−2 1 + 10−1 202 7.34 66.279 5.867 1,567.8 64.510

N.D. 173 6.29 0 0

sum: 2,751 100.00

legend: CC = capital costs τCC = CC of DET
CC of STOCH

N.D. = not defined avg = average

Table 6.14: Deviation of the capital costs between the DET and the STOCH scenario

for CC. This is true for the minimal, the maximal and the average value for the three

groups of SKUs where 1 + 10−4 < τCC ≤ 1 + 10−1.

Let us have a brief look at a representative of each of the SKU groups listed in Ta-

ble 6.14 in order to gain a better understanding.

There exists only one SKU where DET slightly underestimates the capital costs of

STOCH. This SKU is rather expensive (632.00e ) which tells us that the small differ-

ence of capital costs – 20.008e for DET vs. 20.142e for STOCH – results from a very

small deviation in calculating the average stock level between DET and STOCH. Tak-

ing a closer look, the difference can be exclusively explained by the fact that DET uses

the average lead time µL1 instead of the complete lead time distribution L1 because the

optimal solution for DET abandons the second supply mode and DET and STOCH are

identical in all other aspects. The reason for not using the second supply mode simply
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lies in the fact that it is equally fast as the first one but more expensive.

All 138 SKUs where DET overestimates CC of STOCH by values between 0.01%

and 0.1% have very low absolute capital costs in common. These articles are very

cheap with prices between 0.03e and 2.94e and an average price of 0.48e . The aver-

age stock level for these articles lies between 1.49 and 31.05 units and an average of

3.47 units. Obviously, these 138 SKUs with a sum of 17.53e of capital costs play only

a minor role in this warehouse regarding the total capital costs of above 20, 000.00e .

The marginal deviation from the STOCH results as well as the minimal absolute in-

fluence of these 138 SKUs on the total capital costs are strong arguments for using the

DET scenario instead of the calculation-intensive STOCH scenario here.

For the majority of SKUs, 81.32% or 2,237 SKUs, the capital costs are overestimated

by DET between 0.1% and 1.0%. The price span increases with a minimum of 0.06e , a

maximum of 684.58e , and an average price of 36.64e over all 2,237 SKUs. The average

stock level is between 0.02 units and 36.31 units with an average of 4.92 units.

The largest deviation of DET from STOCH occurs for 202 SKUs with a price span

between 2.13e and 3, 432.00e and an average of 211.54e . The average stock level per

SKU lies between 0.05 and 285.67 units with an average of 8.44 units over all 202 SKUs.

Last but not least, τWH,CC,i is not defined for 173 SKUs. The reason lies in the fact

these SKUs are very expensive with only very little demand, see Table 6.15. Whenever

CC in

e

# of

SKUs

% of

SKUs

price in e yearly demand in units

min max avg min max avg

0.00 173 6.29 93.81 6,261.00 514.37 1 24 1.51

> 0.00 2,578 93.71 0.03 3,432.00 48.64 1 2,860 16.22

sum: 2,751 100.00

legend: CC = capital costs avg = average

Table 6.15: Statistics for the capital costs of the DET and the STOCH scenario
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the demand is very low for an expensive SKU one will try to reduce its average stock

level as much as possible. If the costs associated with a stock out situation are low

compared to the inventory holding costs it is beneficial to order this expensive SKU

after the customer has requested it. In other words, the reorder point is below 0 for

this SKU in the SDMR model. Of course, this leads to a service level of 0% and the

calculated capital costs are identical for DET and STOCH. In these cases, one will

prefer DET to STOCH.

Interestingly, a negative reorder point is the optimal solution for 173 SKUs in our

warehouse. For many companies there exist other reasons like customer satisfaction

or corporate image which make them impose a minimum service level, usually far

above 50%, that has to be met. In our case we do not consider such a restriction.

Another good possibility to reduce the expected capital costs for such expensive and

slow-moving SKUs has been introduced by Schultz, see [Sch89], which delays the

placement of the order for a certain time after the inventory level has dropped to zero.

Key observations. The large deviation of capital costs between DET and STOCH

from the sensitivity analysis do not occur in our warehouse of 2,751 SKUs. The aver-

age the ratio τ̄WH,CC between DET and STOCH is very close to 100% in our warehouse.

Here, DET can be used as a good approximation of CCSTOCH. The most expensive

SKUs are not stocked in our warehouse because the capital costs outweigh the costs

for shortage and there exist no other restrictions to store these SKUs. For all these

cases DET and STOCH yield CC = 0 and DET can be used to calculate CC. Never-

theless, there exists a trend that the deviation of between DET and STOCH increase

with increasing capital costs. Eventually, one will have to check whether DET is still

a good approximation for STOCH when the price of a certain SKU is very high and

there exist restrictions that enforce this SKU to be stored.



208 CHAPTER 6. DETERMINISTIC VERSUS STOCHASTIC DUAL SOURCING

6.3.3 Normal order costs

In this section we compare the normal order costs OCN between the DET scenario

and the STOCH scenario. In Figure 6.11 we see that the ratios are very close to 100%

for all SKUs in our warehouse, see the column ”WH”. More precisely, the values

for range between τmin
WH,OCN

= 99.61% and τmax
WH,OCN

= 100.00% with an average of

τ̄WH,OCN = 99.99%. This is a totally different picture from what we have observed in

our sensitivity analysis, see columns 1-9, where the minimal value is τmin
SA,OCN

= 77.70%

and the lowest average value is τ̄SA,OCN ,Q2 = 90.14%.
Normal Order Costs
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Figure 6.11: Range of order cost ratios τOCN for the sensitivity analysis and the ware-

house

The explanation for 1,954 SKUs, or 71.03%, in the warehouse is simple. In these

cases the optimization returns a solution that does not use the second supply channel

so the probability, p(2, ., .), to trigger a second order is 0. Consequently, the total de-

mand has to be covered exclusively via the normal orders independent of stochastic

lead times and possible stock out situations. Remember, all backlogged demand still

has to be delivered to the warehouse via the normal orders but additional costs occur
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due to a privileged process between the warehouse and the waiting customer. Conse-

quently, OCN has to be identical between DET and STOCH for these 1,954 SKUs and

τWH,OCN ,i = 100.00%.

One might ask why so many articles are not using the second supply mode. Here,

we have to consider that the warehouse is from the spare parts and service industry

which usually faces low demands. The implications for the inventory management

caused by spare parts might reach quite far and can be nicely shown in the following

example.

Example 6.3.3. The minimum number of normal orders per year is as low as 0.14 in

our warehouse. In other words, there exists a SKU that is only ordered every seven

years in average. Why is a SKU ordered only every seven years in the optimal case in

reality?

If we exclude the option of a mistake, then the reason must be that the sum of

(fixed) ordering costs is much higher than the yearly holding costs. In our case the

fixed ordering costs are 4.40e per order. Following our argumentation, the yearly

holding cost must be much smaller than 4.40e . Indeed, the demand is stochastic with

a mean of 1 unit per year and the price is 0.49e . Consequently, the annual holding

costs, 12% of the inventory value, are below 4.40e if we apply the optimal order quan-

tity of Q1 = 7 units. The result including the expected replenishment cycle of seven

years makes sense from a computational point of view.

However, for economic reasons companies usually employ additional constraints

for such extreme cases. For example, some companies restrict the maximal order

quantity to the total demand of one year. The reason is that people are usually re-

luctant to make predictions that reach too far into the future.

Now, let us have a look at the remaining 797 SKUs where p(2, ., .) > 0 is observed.
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Here, we can make the observation that

τOCN =
OCN,DET

OCN,STOCH
=

Q1 + Q2 · pSTOCH(2, ., .)
Q1 + Q2 · pDET(2, ., .)

(6.3.7)

holds for all 797 SKUs. Obviously, the ratio in Equation (6.3.7) is completely indepen-

dent from all costs factors. Moreover, the nominator and the denominator coincide

with the expression for the expected number of ordered units per cycle E[Q] which

has been introduced in Chapter 3 and which is part of the summarizing Table 3.12 on

page 126.

Let us explain how Equation (6.3.7) can be derived and why its parameters make

sense. From the sensitivity analysis we know that the ratio between ordering costs is

independent from the actual cost. According to the Equation (6.1.1) mentioned during

our initial observations on page 166 it holds that

OCN,DET

OCN,STOCH
=

EDET[# first orders]
ESTOCH[# first orders]

= τOCN . (6.3.8)

We recall how the expected number of normal orders, E[# first orders], is calculated in

Chapter 3.5 starting on page 116 and we yield

E[Q] = Q1 + Q2p(2, ., .)

E[# cycles] =
FC

E[Q]

E[# first orders] = E[# cycles] =
FC

Q1 + Q2 · p(2, ., .)

τOCN =

FC
Q1+Q2·pDET(2,.,.)

FC
Q1+Q2·pSTOCH(2,.,.)

=
Q1 + Q2 · pSTOCH(2, ., .)

Q1 + Q2 · pDET(2, ., .)
. (6.3.9)

In Equation (6.3.9) the forecast FC is identical for DET and STOCH and cancels out

while the probability of a second order is pDET(2, ., .) and pSTOCH(2, ., .), respectively.

Thus, we yield for τOCN exactly the Equation (6.3.7). This proofs that the ratio of costs

for normal orders, τOCN , between DET and STOCH is equal to the reciprocal ratio

of their expected order quantity EDET[Q] and ESTOCH[Q], respectively, given that the
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costs are calculated as in our warehouse. Consequently, the little deviation of τOCN

from 100% in our warehouse can be explained by large values for Q1, small values for

Q2, minor difference of p(2, ., .) between DET and STOCH, or a combination of these

effects.

Key observations. All values of τOCN are very close to 100% and DET is a very good

approximation of OCN,STOCH in our warehouse. This observation stands in great con-

trast to the findings of our sensitivity analysis.

The costs of normal orders, OCN, for the 71.03%-majority of the SKUs in our ware-

house are identical between DET and STOCH because the second supply channel is

not used. This is rather common for a spare parts warehouse like ours. Therefore,

all units have to be ordered via the only used supply channel and the order costs are

identical for DET and STOCH. For these SKUs, DET is absolutely sufficient to calculate

OCN. The cost structure of our warehouse allows to rewrite τOCN as

τOCN =
Q1 + Q2 · pSTOCH(2, ., .)

Q1 + Q2 · pDET(2, ., .)

which shows that the reason for τOCN ≈ 100% can be a high value for Q1, a small value

for Q2, a small deviation between pSTOCH(2, ., .) and pDET(2, ., .), or a combination of

these effects.

6.3.4 Rush order costs

In this section we investigate the rush order costs OCR and their ratios between DET

and STOCH in the sensitivity analysis and our warehouse. In the warehouse, OCR = 0

for 1,954 SKUs (71.03%) of all 2,751 SKUs because the optimization algorithm returns

a solution where only the normal supply mode is used, as mentioned before. For

these 1,954 SKUs both scenarios, DET and STOCH, yield identical values, namely

OCR,DET = OCR,STOCH = 0. The division by zero is not defined, so we cannot calculate
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τOCR . However, we have chosen τ as a measure to indicate the relative difference be-

tween the results of DET and STOCH. These costs are identical in this case. Therefore,

we define τOCR to be 100% whenever both scenarios, DET and STOCH, calculate rush

ordering costs of 0.00e . With this definition of τOCR and with a majority of 71.03%
Rush Order Costs
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Figure 6.12: Range of order cost ratios τOCR for the sensitivity analysis and the ware-

house

of all SKUs not using the second supply mode, it does not come as a surprise that

τ̄WH,OCR = 100.46% is so close to 100%.

After excluding all 1,954 SKUs which do not use the second order channel we

obtain the ratios τ̄′WH,OCR
= 101.84%, τ′min

WH,OCR
= 0.00%, and τ′max

WH,OCR
= 107.78%.

While τ̄′WH,OCR
testifies a small deviation between DET and STOCH even for the 797

two-order cases in our warehouse the value of τmin
WH,OCR

= 0.00% is very interesting.

For 2 SKUs the DET scenario calculates a two-order probability of pDET(2, ., .) =

0 by assuming deterministic lead time values, µL1 and µL2 , while STOCH yields

pSTOCH(2, ., .) > 0 when considering the lead time distributions L1 and L2. Conse-
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quently, OCR = 0 for DET while OCR for STOCH are 1.0 · 10−6e and 4.0 · 10−6e ,

respectively. Coincidentally, these values are very low and favor the usage of DET

instead of STOCH. However, the low values for STOCH are simply a matter of the

lead time distributions and the given costs – they can be arbitrarily high if the price

for the SKU or the costs for rush order increases significantly, for example. It is nice to

see from Figure 6.12 that the minimal ratio τmin
WH,OCR

= 0 matches with the results and

explanation of our sensitivity analysis regarding the average lead time µL1 in Chap-

ter 6.2.2.1 starting on page 175.

For all remaining 795 SKUs we see that DET overestimates OCR compared to

STOCH. Further, we know that

τOCR =
OCR,DET

OCR,STOCH
=

EDET[# second orders]
ESTOCH[# second orders]

(6.3.10)

must hold in analogy to the observations for the normal order costs in Chapter 6.3.3

and Equation (6.1.1) on page 166. If we replace the expressions in Equation (6.3.10)

with the appropriate formulas summarized in Table 3.12 on page 126 we yield

τOCR =
EDET[# second orders]

ESTOCH[# second orders]

=
EDET[# first orders] · pDET(2, ., .)

ESTOCH[# first orders] · pSTOCH(2, ., .)

=
(Q1 + Q2 · pSTOCH(2, ., .)) · pDET(2, ., .)
(Q1 + Q2 · pDET(2, ., .)) · pSTOCH(2, ., .)

=
ESTOCH[Q] · pDET(2, ., .)
EDET[Q] · pSTOCH(2, ., .)

(6.3.11)

which is equivalent to the ratio of the expected order quantities between STOCH and

DET weighted with the reciprocal ratio of their probability for a 2-order cycle. Again,

the cost factors do not play a role for the ratio τOCR but it is mainly influenced by

the deviation of p(2, ., .) between DET and STOCH. Equation (6.3.11) mathematically

confirms our previous observations when pSTOCH(2, ., .) > 0 and pDET(2, ., .) = 0.
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Table 6.16 lists the highest values for τWH,OCR,i. We see from the first row that the

relative measure τOCR can be large in cases where the absolute costs for STOCH and

DET are negligible for most companies. In our spare parts warehouse this can be

rank τOCR in % OCR,DET

in e

OCR,STOCH

in e

pDET(2, ., .)

in %

pSTOCH(2, ., .)

in %

Q1 Q2

1 107.78 1.80 · 10−4 1.67 · 10−4 3.70 · 10−3 3.40 · 10−3 2 2

2 104.85 4.68 4.46 5.26 5.02 31 4

3 104.65 5.45 5.20 3.73 3.56 16 13

10 103.94 0.25 0.24 0.88 0.85 1 1

100 102.57 12.11 11.80 14.02 13.65 9 4

Table 6.16: Selection of SKUs with highest deviation for OCR between DET and

STOCH

explained with a low probability to trigger a second order, p(2, ., .). Moreover, DET

and STOCH calculate similar probabilities for p(2, ., .) due to the rather short lead

times of mostly 9 days in average and a standard deviation of 2 days. Therefore, we

have to constitute that the DET scenario is probably sufficient for approximating the

rush order costs for the 2,751 SKUs for most companies.

Key observations. In general, DET overestimates OCR for many SKUs in our ware-

house when the second supply channel is used. However, the overestimation is not

as strong as we have observed in the sensitivity analysis and the average value of

τWH,OCR is close to 100%. DET could still be used as an acceptable approximation of

OCR in most cases but not as unconfined as for CC and OCN.

For 71.03% of all SKUs rush orders do not pay off because demand of these spare

parts is too small. Here DET and STOCH calculate identical order costs OCR. Neither

DET nor STOCH is needed to calculate this trivial result for OCR. We can give an exact
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expression for τOCR due to the cost structure of our warehouse again

τOCR =
(Q1 + Q2 · pSTOCH(2, ., .)) · pDET(2, ., .)
(Q1 + Q2 · pDET(2, ., .)) · pSTOCH(2, ., .)

which shows that a deviation in p(2, ., .) between DET and STOCH influences τOCR

much more than this has been the case for τOCN , for example.

There exist two SKUs where τOCR = 0 because DET yields pDET(2, ., .) = 0 while

STOCH calculates a small positive value for pSTOCH(2, ., .) under consideration of the

stochastic lead times. This result coincides with the observation we have made dur-

ing the sensitivity analysis. All remaining SKUs are overestimated by DET in terms

of OCR up to 7.78%. However, the absolute difference between the rush order costs

are rather small in our warehouse. Of course, this depends on the individual cost

structure of the SKU and might lead to problems at other warehouses.

6.3.5 Back order costs

In this section we compare the ratio τOCB of back order costs OCB between the sensi-

tivity analysis and our warehouse. In case of the back order costs the ratio τ is much

less affected by the situation whether a SKU is partially replenished via the rush or-

ders or not. Even if only normal orders are used to satisfy the customer demand, τOCB

can still be high because DET neglects the variability of the lead times which might

substantially influence the amount of occurring shortage. If we apply Equation (5.2.5)

from page 157 the value of τOCB can be determined by

τOCB =
EDET[SH] ·QB

QB · ESTOCH[SH]
=

EDET[SH]

ESTOCH[SH]
. (6.3.12)

We can rewrite Equation (6.3.12) by means of the β service level for DET and STOCH

and the forecast FC.

EDET[SH]

ESTOCH[SH]
=

(1− βDET) · FC
(1− βSTOCH) · FC

=
1− βDET

1− βSTOCH
(6.3.13)
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Both equations (6.3.12) and (6.3.13) are equivalent and cannot easily be reduced be-

cause they both rely on the expected shortage, E[SH], where the expression

E[SH] =
8

∑
i=1

E[SH Case i] (6.3.14)

is the weighted sum of non-trivial terms for the shortages in each of our 8 cases,

E[SH Case i], see Chapter 3 in Table 3.9 on page 99.

Figure 6.13 shows that the deviations between DET and STOCH regarding OCB are

quite widespread. The values range between τmin
WH,OCB

= 9.30% and τmax
WH,OCB

=
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Figure 6.13: Range of order cost ratios τOCB for the sensitivity analysis and the ware-

house

100.00% with an average of τ̄WH,OCB = 91.56%. This is an average underestimation

for OCB of 8.44% by DET. This average deviation is much higher than in the previous

cases for CC, OCN, and OCR. Still, it is much less than the average values τ̄SA,OCB,Bi

from our sensitivity analysis. According to Equation (6.3.12) the value of τOCB can be

solely explained by the difference in calculating the expected shortages, E[SH], be-
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tween DET and STOCH, which is caused by neglecting and considering, respectively,

the stochastic lead times and their rather complex interplay with the stochastic de-

mand and the replenishment parameters R1, R2, Q1, and Q2.

Now, we take a closer look at the values of τOCB for the 2,751 SKUs. Table 6.17 reveals

that DET never overestimates the costs related to the back orders because τWH,OCB,i ≤
1.0 for all 2,640 SKUs where τOCB is defined. According to the definition of τOCB it is

range of τOCB SKUs OCB,DET OCB,STOCH price demand

min max # % avg min max avg avg avg

1.00 1.00 173 6.29 10.39 5.51 77.10 10.39 514.37 1.51

0.99 < 1.00 151 5.49 14.91 2.95 301.68 14.97 204.76 3.84

0.90 < 0.99 1,586 57.65 2.30 7.57 · 10−3 500.60 2.42 44.64 5.07

0.00 < 0.90 730 26.54 2.52 6.90 · 10−4 109.79 3.44 29.53 43.78

0.00 0.00 0 0.00 —

N.D. 111 4.03 0.00 0.00 19.17 11.12

0.82∗ 8.84∗

sum: 2,751 100.00

legend: OCB: back order costs N.D.: not defined avg: average

τOCB = OCB of DET
OCB of STOCH

∗: excl. 1 high-demand & expensive SKU

Table 6.17: Statistics on the ratio of back order costs between DET and the STOCH

not defined whenever the expected shortage is zero in the STOCH scenario. This is

true for 111 SKUs in our warehouse out of which 110 SKUs are so cheap – the average

price is 0.82e – that the capital costs for storing are much lower than possible back

order costs. Moreover, the average demand is only 8.84 units per year. Therefore, the

optimization algorithm sets the replenishment parameters in a way that the inventory

level is high enough to eliminate all shortages and back order costs.



218 CHAPTER 6. DETERMINISTIC VERSUS STOCHASTIC DUAL SOURCING

Only one out of the 111 SKUs does not follow this pattern. It is expensive with

2, 037.00e and has a rather high average demand of 262 units per year. Here, the

optimal replenishment exclusively uses the rush orders with the lead time distribution

L2 where µL2 = 3 days and σL2 = 1 day instead of the normal lead time distribution

L1 with µL1 = 9 and σL1 = 3. Due to the short lead time one can reduce the expected

shortage to zero. The additional fixed costs of 2.1% for using the rush orders instead of

the normal orders are much lower than the additional back order costs or capital costs

that are expected due to the cumulated stochastic demand during the much longer

lead time of the normal orders.

For all these 111 SKUs the reorder points and safety stock, respectively, are high

enough that both scenarios, DET and STOCH, calculate E[SH] = 0. Trivially, DET and

STOCH yield the same back order costs OCB = 0 and τOCB is actually not defined.

However, due to the fact that τOCB has been introduced as a measure of divergence

and OCB,DET = OCB,STOCH we set τOCB = 1 for these 111 SKUs. Here, it does not

make sense to use DET or STOCH to calculate the back order costs. One should be

careful, though, because E[SH] is not an input parameter and its value has to be cal-

culated first. We can not assume that EDET[SH] = 0 always implies ESTOCH[SH] = 0

because the latter considers the stochastic lead times. In the worst case EDET[SH] = 0

and ESTOCH[SH] > 0 which leads to τOCB = 0, a case that has not occurred in our

warehouse.

Another interesting set of SKUs from Table 6.17 is characterized by positive and

identical back order costs for DET and STOCH, so OCB > 0 and τOCB = 1. One might

think that the reason for these 173 SKUs is a certain constellation of lead time distribu-

tions. A look at the capital costs gives a different and simple explanation. All 173 SKUs

appear in Table 6.14 on page 205 in the row where τCC is not defined. Consequently,

these 173 SKUs are too expensive to be held on stock, as explained in Chapter 6.3.2,

which is obvious if we look at their average price of 514.37e per unit. Their reorder
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points are negative, their β service level is 0%, and all customer demand has to be

satisfied via back orders. Thus, DET and STOCH yield the same amount of back order

costs and τOCB = 1, independent of the lead time distributions. Of course, one will

prefer the fast DET scenario to the complex STOCH scenario for calculating the back

order costs in this situation. The high average value for OCB results from exclusively

using back orders.

It is very important to mention that the non-existing deviation of back order costs

between DET and STOCH, so τOCB = 100%, is a result of the optimized replenishment

parameters and not related to the stochastic nature of the lead times. We see that

very expensive and slow-moving items are not stocked at all while very cheap items

are replenished in a way to cause no shortage because the costs associated with a

shortage outweigh the stock holding or capital costs. In both cases either all demand

or no demand has to be covered by the back orders independent of the lead times.

Thus, trivially both scenarios DET and STOCH yield the same back order costs.

While our current analysis on ratio τOCB does not change for different costs pa-

rameters and different prices – given identical replenishment parameters – the result

of the optimization algorithm for the replenishment parameters heavily depends on

the cost structure. For example, more and more shortage will be accepted even for

cheap SKUs when the stock holding cost increase. Similarly, expensive SKUs will be

stocked to a greater extent when the back order cost factor increases. Consequently,

with a changed cost structure the optimal solution for the replenishment parameter

changes which changes the expected number of shortages and back orders in return.

For those changed replenishment parameters DET and STOCH might calculate dif-

ferent back order costs which brings us to the investigation of the majority of SKUs

where τOCB 6= 100%.



220 CHAPTER 6. DETERMINISTIC VERSUS STOCHASTIC DUAL SOURCING

For 151 SKUs, or 5.49% of all SKUs, in Table 6.17 the maximal deviation is only 1%.

Here again, the rather high unit price of 204.76e in average causes the optimization

algorithm to reduce the average stock by setting the replenishment parameters accord-

ingly. This manifests in the low β service level of 40.7% for STOCH. Exactly this high

probability of unsatisfied customer demand and its associated back order costs OCB

lead to a little relative deviation of back order costs between DET and STOCH and to

a value of τOCB that is close to 100% and should be negligible for most companies and

industries. Here, it should be sufficient to use DET for calculating OCB again.

The back order costs of 1,586 SKUs (57.65%) in our warehouse are calculated by DET

with a deviation between 1.0% and 10.0% regarding OCB,STOCH. Compared to the

latter group with a maximal deviation of 1%, the average price of the SKUs has now

dropped to 44.64e and their average demand has increased to 5.07 units per year. The

SKUs are not that expensive anymore and the optimized replenishment parameters

induce a stock level that covers 96.0% of the customer demand in average for STOCH

compared to β = 40.7% before. A deviation in back order costs of up to 10% can be

important for companies. It would be very helpful to have an approximation for τOCB

based on the given input parameters.

Therefore, we conduct a simple regression analysis on τWH,OCB,i, see Table 6.18. It is

based on the input parameters but can not even explain two thirds of the variation as

R2 = 57.24% and R2 adjusted = 56.83%. The parameters for this regression analysis

are: the price, the demand distribution with µD, σD, µD
σD

, the lead time distributions

with µL1 , σL1 ,
µL1
σL1

, µL2 , σL2 ,
µL2
σL2

, the order quantities Q1, Q2, QB, and the reorder-point-

related expressions R1 and R1−R2. Note that we use the coefficient of variation for the

distributions of the demand D and the two lead times L1 and L2 which is defined as

the ratio between the average and the standard deviation, µ
σ . The regression coefficient

of most parameters is statistically not significant from zero. The parameters that are
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statistically most significant are listed in Table 6.18.

parameter value regressor coefficient P value

R2 0.5724 intercept a0 = 9.701 · 10−1 0

R2 adjusted 0.5683 price a1 = 1.613 · 10−5 9.994 · 10−15

observations 1,586 Q1 a11 = −9.173 · 10−4 8.305 · 10−18

Q2 a12 = −2.100 · 10−2 5.546 · 10−81

QB a13 = −3.972 · 10−3 1.388 · 10−18

R1 a14 = −5.128 · 10−3 3.873 · 10−38

R1 − R2 a15 = 2.258 · 10−2 3.404 · 10−83

Table 6.18: Partial results of the regression analysis on all input parameters for τOCB

We know that τOCB is identical to the ratio of expected shortage, E[SH], between

DET and STOCH. From the formulas in Chapter 3 about the SDMR model we know

that E[SH] is strongly influenced by the distributions D, L1, and L2 and the reorder

points. Interestingly, all parameters that reflect the variability of the demand or the

lead times do not have a coefficient that is significantly different from zero in our re-

gression analysis. Apparently, the effect of the stochastic variables on τOCB cannot

be adequately captured by a simple linear combination of the average, the standard

deviation, and the coefficient of variation in our warehouse. The intercept is by far

the most significant parameter in Table 6.18 which sets the baseline for all τOCB in the

warehouse to 97.01%. This is slightly above the average value of τOCB for these 1,586

SKUs with 94.82%.

The last group to be discussed in Table 6.17 consists of the 730 SKUs where DET

underestimates OCB by more than 10%. A regression analysis with the same input

parameters as described before yields R2 = 53.58% and R2 adjusted = 52.61% and can

only explain half of the variation of τOCB . However, completely different parameters
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now have a coefficient that is significantly different from zero, namely all parameters

that are related to the distributions D, L1, and L2.

An overview of the SKUs with the lowest value for τWH,OCB,i is given in Table 6.19.

In favor of a better comparability we give the average and the standard deviation for

each distribution independent of their type. Interestingly, all but two rows illustrate

τOCB

in %

OCR in e demand distribution lead time distributions pS(2, ., .)

in %DET STOCH type µD σD µL1 σL1 µL2 σL2

9.3 1.03 11.03 Beta 2.62 3.76 21 7 21 7 0.00

18.4 10.05 54.55 Tri 5.12 7.36 9 2 3 1 0.00

22.9 0.79 3.47 Exp 1.57 2.26 9 2 3 1 0.00

27.1 1.70 6.28 Exp 1.47 2.11 9 2 3 1 0.00

28.7 1.30 4.55 Beta 1.63 2.33 9 2 3 1 0.00

30.0 1.45 4.84 Exp 1.16 1.34 9 2 3 1 0.00

31.6 15.59 49.29 Tri 4.34 6.24 3 1 9 2 0.00

32.8 0.09 0.29 Beta 2.15 3.09 9 2 3 1 0.00

36.4 6.92 19.01 Exp 3.22 4.62 9 2 3 1 0.07

37.4 9.33 24.92 Beta 1.73 2.48 9 2 3 1 5.02

legend: Exp: (shifted) Exponential Tri: Triangular pS(2, ., .): pSTOCH(2, ., .)

all lead time distributions are truncated Gaussian distributions

Table 6.19: SKUs with the 10 highest deviations for OCB between DET and STOCH

SKUs where pSTOCH(2, ., .) = 0 and so they do not use a second supply channel but

the standard single-source replenishment is applied instead. Nevertheless, the impor-

tance to include the stochastic lead time in the calculations even for single sourcing

is apparent. In addition, the last two rows in Table 6.19 show large deviations in the

back order costs between DET and STOCH for SKUs with dual sourcing.
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From these results we can conclude that the incorporation of the stochastic lead

times are essential for determining the costs for back orders or shortages. Thereby, we

do not claim that the accuracy of the complex SDMR model and the related, rather

slow time performance is necessary for all SKUs. However, it is hard to predict how

strong the deviation between DET and STOCH is except for the extreme cases where

all or no demand is satisfied via the back orders. A simple linear model of input pa-

rameters as represented by a regression analysis will not be enough, as we have seen.

More advanced approximations seem to be necessary. From the formulas for E[SH]

we strongly suspect that they have to depend on the type and the parameters of the

distributions, on the reorder points, and on the order quantities. The question remains

how good those other approximations can predict τOCB while they are still faster than

the SDMR model.

We expect that similar observations and statements can be given for the analysis of

the β service level in the next section as β is closely linked to the expected amount of

shortages.

Key observations. Large deviations occur for the back order costs OCB between DET

and STOCH which coincides with the results from the sensitivity analysis. The aver-

age value of τOCB is 91.56% and DET never overestimates OCB,STOCH. Given the cost

structure of our warehouse τOCB is identical to

τOCB =
EDET[SH]

ESTOCH[SH]
.

Expensive and low-demand SKUs are not stocked at all by the optimization algo-

rithm. Trivially, all demand leads to a shortage and both scenarios, DET and STOCH,

yield the same value for OCB. The variability of the lead times does not have any ef-

fect on OCB and one can even calculate its value manually. The value of τWH,OCB,i is

close to 100% for all SKUs where the majority of the demand is covered via back or-
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ders. Here, DET is a good approximation for OCB,STOCH. Very cheap SKUs are stored

to a great amount by the optimization algorithm because the back order costs per unit

outweigh the capital costs per unit by far. This leads to no shortages and a β service

level of 100%. In such cases OCB = 0 holds and neither DET nor STOCH is needed.

For all non-trivial cases we observe a trend that increasing demand leads to larger

deviations of OCB between DET and STOCH. Our attempt to find a simple indication

for τWH,OCB,i by means of a regression analysis based on the input parameters could

only explain 56.83% of the variation. This holds also for the rather simple case where

only one supplier is used. One could elaborate more complicated approximation al-

gorithms. From our knowledge about the formulas for E[SH] we suspect that a good

approximation has to consider the reorder points, the order quantities and the three

distributions D, L1, and L2 at least to a great extent. Such a solution would be very

similar to STOCH.

The large deviations of back order costs between DET and STOCH in our ware-

house reveal the advantage and justification for the SDMR model in combination with

the complex STOCH.

6.3.6 Service level

The intention of this section is to analyze which impact the usage of DET instead of

STOCH has in an environment of stochastic demand and lead times on companies

that are focused on a high service level instead of ordering costs. Especially the retail

industry is much more focused on service level than on ordering costs as customers

tend to do their entire shopping at a different shop if they do not find a particular SKU.

Moreover, the retailers are delivered frequently by large logistics companies anyhow.

Thus, the fixed transportation costs are spread among many different SKUs and do

not play a primary role for a single SKU. The utilization of the existing transportation,

accurate forecasts – both of which we are not covering in this work – and a high service
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level are very important performance indicators for the supply chain in their business.

We expect that the results of the last chapter on back order costs are similar to the

results we obtain on the β service level as E[SH] and β are intimately related. In fact,

it holds that

ρ =
1− βSTOCH

1− βDET

=
1−

(
1− ESTOCH[SH]

FC

)

1−
(

1− EDET[SH]
FC

)

=
ESTOCH[SH]

EDET[SH]
=

1
τOCB

(6.3.15)

for a given demand forecast FC. Equation (6.3.15) is identical to the reciprocal value

of τOCB , defined in Equation (6.3.12) on page 215, but only for the cost structure that

has been defined for our warehouse. Consequently, Figure 6.14 is the reciprocal il-

lustration of Figure 6.13 and highlights where the shortages of STOCH, ESTOCH[SH],

are a high multiple value of EDET[SH]. We see from Figure 6.14 that the shortages in

the stochastic case of our warehouse are up to 10 times higher than predicted by DET.

This value for ρ lies in the middle of the experienced values of the sensitivity analysis.

We have covered τOCB in the last chapter. Therefore, we will not exhaustively dis-

cuss the deviation of β between DET and STOCH and only illustrate the values of ρ in

Table 6.20 because ρ gives us insight on the service level without multiplying it with

the back order cost factors. Table 6.20 shows in the first and the last row that DET and

STOCH calculate the same β for all 284 SKUs of the two extreme cases where no or all

demand is covered immediately. The reasons for this have been explained in detail in

the previous Chapter 6.3.5. It can be nicely observed that ρ is small for small βSTOCH

service levels. The deviation from a small targeted βSTOCH is uncritical in most cases

because these low values are usually only applied to SKUs where the customer can

wait. Therefore, it should be sufficient to use DET as an approximation of β for SKUs

with a low target service level.
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Service level Ratio
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Figure 6.14: Range of β service level ratios ρ for the sensitivity analysis and the ware-

house

The value of ρ increases with higher β service levels. Of course, the delta between

βDET and 100% decreases which favors high values of ρ even if the absolute difference

in β between STOCH and DET remains constant. However, many retail companies

have target β service levels of 99% and above especially for their fast-moving SKUs.

Interestingly, those fast-moving SKUs also exist in our spare parts warehouse and

Table 6.20 reflects that the SKUs with the highest value for ρ are the ones with the

highest demand.

For those fast-moving SKUs even a 0.5% of difference for β has a great impact on

their business. This is the reason why we have introduced the definition of ρ as the

ratio of gap to 100% between STOCH and DET.

A β service level of 100% can be achieved with a little amount of stocked units for

slow-moving items like in the spare parts industry. In the retail business, however, it

is almost impossible to reach a service level of 100% for most of the fast-moving SKUs

without running into serious space problems. Therefore, the number of SKUs where
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range of ρ SKUs βDET βSTOCH price demand

min max # % avg min max avg avg avg

1.00 1.00 173 6.29 0.00 0.00 514.37 1.51

> 1.00 1.01 151 5.49 40.64 6.34 70.74 40.46 204.76 3.83

> 1.01 1.10 1,542 56.05 96.18 24.11 99.94 95.98 44.98 4.71

> 1.10 2.00 751 27.30 99.05 84.47 99.99 98.87 29.91 29.05

> 2.00 10.0 22 0.80 99.81 98.42 99.99 99.48 23.78 468.95

> 10.0 ∞ 1 0.04 99.95 99.46 4.50 607.00

N.D. 111 4.03 100.00 100.00 19.17 11.12

0.82∗ 8.84∗

sum: 2,751 100.00

legend: β: β service level in % N.D.: not defined avg: average

ρ = 1−βSTOCH
1−βDET

∗: excl. 1 high-demand & expensive SKU

Table 6.20: Statistics on the ratio of (1− β) between STOCH and DET

β = 100% for DET and STOCH will be rather limited for fast-moving SKUs in the

retail environment.

Key observations. The deviation of the β service level between DET and STOCH is

large but not as large as we have observed in the sensitivity analysis. There exists an

intimate relation between the ρ and τOCB for the given cost structure in our warehouse.

ρ =
ESTOCH[SH]

EDET[SH]
=

1
τOCB

The value of β coincides between DET and STOCH for all SKUs where β = 0% and

β = 100% in our warehouse. Here, DET can be used without large concerns instead

of STOCH.

For all other SKUs we observe the trend that a small targeted β service level is
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better approximated by DET than a β close to 100%. This is especially problematic

as the retail industry usually targets at very high β service levels for important fast-

moving SKUs where even small deviations from β have a great impact on the business.

In this case DET cannot be used as an appropriate approximation of βSTOCH.

6.3.7 Summary

The objective of this case study was to see whether our conclusion from the sensitivity

analysis, to prefer the STOCH scenario to the DET scenario whenever the lead times

are stochastic, also holds in reality. This represents our second approach to answer

question RQ 3 on page 5.

We investigated whether the large deviation of the KPIs between DET and STOCH

from the sensitivity analysis can also be observed at our spare parts warehouse that

contains 2,751 SKUs. Therefore, the replenishment parameters R1, R2, Q1, and Q2

had been optimized beforehand for all SKUs regarding the minimal total costs TC =

CC + OCN + OCR + OCB. Based on the optimal replenishment parameters the case

study compared the values of the ratios τSA and ρSA from the sensitivity analysis with

the values of τWH and ρWH from the warehouse with 2,751 SKUs. In general we found

that the deviations of KPIs between DET and STOCH are much smaller than in the

sensitivity analysis. In order to avoid tedious repetitions we move the more detailed

summary to the next section.

6.4 Summary

The purpose of this chapter was to find an answer to the research question RQ 3 about

the differences between a stochastic scenario STOCH and a simpler approximative

scenario DET that assumes deterministic lead times. More precisely, we gained an

understanding where one can use the DET scenario instead of the STOCH scenario to
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calculate various KPIs like costs and service level, and where DET is not sufficient.

Our comparisons between DET and STOCH concentrated on the five KPIs: the cap-

ital costs CC for holding inventory, the order costs OCN, OCR, and OCB for normal,

rush, and back orders, respectively, and the β service level. In order to obtain mean-

ingful comparisons we introduced the two relative measures τ and ρ for the deviation

of the KPIs between DET and STOCH. Fortunately, τ and ρ are independent of the

cost factors for ordering and holding stock. Thus, we were able to derive statements

which apply for arbitrary values of the cost factors by only considering the interplay

between the single replenishment input parameters and the stochastic variables.

DET assumes stochastic demand but deterministic lead times for both suppliers

while STOCH considers all demand and lead times to be stochastic. Fortunately, the

SDMR model was able to represent the DET scenario as well as the STOCH scenario

so that we can eliminate effects within our comparisons that origin from a different

modeling approach. Our investigations were two-fold.

Sensitivity analysis. We conducted a sensitivity analysis on how partial changes of

the input parameters affect the deviation of our KPIs between DET and STOCH. The

deviation was measured by means of the ratios τ and ρ. The sensitivity analysis was

of a more theoretic nature and used certain assumptions like Gaussian-distributed

demand and lead times. The input parameters are σD for the demand, µL1 , σL1 , µL2 ,

and σL2 related to the lead times, and our four replenishment parameters Q1, Q2, R1,

and R2.

Within the sensitivity analysis we found that the range of deviation between DET

and STOCH is very high. DET underestimated some of our KPIs up to 100% while

it overestimated other KPIs usually by 40% and above for at least one value of each

input parameter. Sometimes these large deviations related to extreme values for single

input parameters. In any case, we found that the reasons for a deviation between
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DET and STOCH are very diverse and one has to be aware of the rather complex

interplay between the various input parameters, especially if the deviations should be

sufficiently explained. The conclusion from the sensitivity analysis is to clearly favor

the complex STOCH scenario for calculating our KPIs in a setting with stochastic lead

times because the magnitude of deviation of DET is hardly predictable.

Case study. In the case study we compared the findings of our sensitivity analysis

with the results of a spare parts warehouse containing 2,751 SKUs. In general, we

found that the deviations of KPIs between DET and STOCH are much smaller than in

the sensitivity analysis. For some KPIs like the normal order costs OCN there existed

almost no deviation while DET underestimates especially KPIs that are related to the

β service level up to a factor of 10. The latter proves that the conclusion of Verrijdt

et al. in their context of an emergency repair SC does not hold in general [VAdK98].

They found that the expected β service level of a model which considers exponentially

distributed lead times deviates only negligibly from an approximation with determin-

istic lead times. From this result they concluded that the assumption on the variability

and the type of the lead time distribution is not restrictive in their case. Clearly, our

results show this result cannot be transferred to the context of a (R1, R2, Q1, Q2) policy

when the demand and the lead time distribution can be arbitrary.

The case study has further shown that τ and ρ are not only influenced by the dis-

tribution of the demand and the lead times but also by the result of the optimization

of the replenishment parameters Q1, Q2, R1, and R2. This leads to many special cases

and even trivial results like single costs of 0.00e . For several KPIs we were able to an-

alytically express the deviation between DET and STOCH. All expressions contain at

least one term that is complex and calculation-intensive to determine like the service

level or the probability of a two-order cycle in the STOCH scenario. Thus, there is no

general and easy way to predict the deviation between DET and STOCH.
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After all, the case study relativizes our conclusion from the sensitivity analysis to

clearly prefer the STOCH scenario to the DET scenario. However, if reliable values are

essential we still advise to use the STOCH scenario to calculate the KPIs.

This brings us to the conclusion that the approximation with deterministic lead times

is sufficient for calculating a part of the KPIs for many SKUs even when both lead

times are stochastic. However, great discrepancies can occur especially regarding the

shortage costs and the β service level. These discrepancies might even grow for longer

lead times and greater variability. Due to the fact that there are many special cases and

it is hard to quantify the deviation between DET and STOCH a priori we suggest to

use the STOCH scenario at least once for all SKUs. Then, one can identify the SKUs

and KPIs for which the deviation is unacceptable from a business perspective of the

company. One should continue to use the SDMR model with the STOCH scenario for

those critical SKUs and KPIs in the future, as well, while the SDMR model and the

DET scenario can be applied to the other SKUs and KPIs.

Summa summarum, our observations in this chapter show that the answer to question

RQ 3 is very complex and strongly depends on the specific situation.





Chapter 7

Comparison of stochastic

replenishment policies

In this chapter we are interested in the savings of total costs that can be achieved by

moving from a single-sourcing replenishment policy with traditional restrictions to a

dual-sourcing policy with relaxed restrictions. Moreover, we also want to understand

the mechanisms that lead to these savings. This corresponds to our research question

RQ 4 on page 6. In particular, we compare four stochastic replenishment policies in

the context of our warehouse with 2,751 SKUs. The approximative DET scenario with

deterministic lead times is not considered here.

First, Chapter 7.1 gives an overview of the different combinations of replenishment

policies and restrictions. Chapter 7.2 quantifies the savings of total costs in our ware-

house for these combinations. Then, we analyze the savings exclusively related to the

relaxed restrictions in Chapter 7.3. In Chapter 7.4 we investigate the savings related to

dual sourcing in our warehouse with short and long lead times for the first supplier.

Finally, Chapter 7.5 summarizes our findings. Note, in this chapter we use the same

optimization approach, a Threshold Accepting Algorithm, as we have mentioned in

our case study in Chapter 6.3.

233
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7.1 Overview of stochastic replenishment scenarios

Only a small fraction of companies use two suppliers simultaneously in our experi-

ence. However, most of them apply certain restrictions for their replenishment more

or less deliberately. The most prominent restrictions are non-negative reorder points

and a fixed sequence of triggering the normal order before the rush order. We question

these restrictions and investigate whether more relaxed restrictions inhibit a saving

potential for the total costs. Therefore, we first define the traditional restrictions and

the relaxed restrictions.

Definition 7.1.1 (Traditional restrictions). The normal order is always associated with

the reorder point R1 and the rush order is assigned to the reorder point R2, if used

at all. The reorder points R1 and possibly R2 are non-negative and a normal order

has to be triggered before a rush order. Consequently, it must hold that R1 ≥ 0 and

R1 > R2 ≥ 0 for single sourcing and dual sourcing, respectively.

Definition 7.1.2 (Relaxed restrictions). The assignment of normal orders and rush or-

ders to the reorder point R1 and R2, respectively, does not matter. The reorder points

can be negative and R1 > R2 holds.

We have on the one hand the option between the commonly applied, traditional

restrictions versus the relaxed restrictions. On the other hand we have the choice be-

tween single-source and dual-source replenishment. The combination of the number

of suppliers and the restrictions leads to the four options represented in Table 7.1.

Next, we look at the savings of the total costs when we move from RS1,trad to one

of the other replenishment scenarios. All of them can be represented by the SDMR

model.
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replenishment

scenarios

# of

suppliers
restrictions description

RS1,trad 1 traditional traditional single-source replenishment

RS1,relax 1 relaxed supplier selection with the option of a negative

reorder point

RS2,trad 2 traditional dual-source replenishment with traditional set-

ting of the replenishment parameters

RS2,relax 2 relaxed dual-source replenishment with the option of

negative reorder points

Table 7.1: Overview of replenishment scenarios

7.2 Total savings of different replenishment scenarios

This chapter quantifies the possible reduction of total costs TC in our warehouse by

applying the different replenishment scenarios of Table 7.1. This addresses the first

part of question RQ 4.

We assume that our warehouse currently uses only one supplier with traditional

replenishment restrictions for each SKU. The manager wants to evaluate the cost re-

ductions of the other scenarios. Thus, the status quo is RS1,trad and we compare

RS1,relax, RS2,trad, and RS2,relax against it. In Figure 7.1 we see that the total ware-

housing costs of the initial scenario RS1,trad is normalized to 100%. We refer to these

total costs as TCRS1,trad . The total costs of our warehouse can be reduced from 100% to

94.3% if the replenishment is changed from RS1,trad to a two-supplier replenishment

with relaxed restrictions, RS2,relax. These 5.7% of savings in total costs is a significant

amount of money given the fact that the total costs of large warehouses easily reach

several million euros per year.

The largest saving amount of our warehouse origins from the relaxed replenish-
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Figure 7.1: Total warehousing costs for the 4 replenishment scenarios.

ment restrictions. The difference between the single sourcing and dual sourcing plays

only a minor role. This result corresponds to our findings in Chapter 6.3 where we

have explained that only a very small percentage of the 2,751 SKUs actually uses the

second supply channel due to the sparse demand which is common in the spare parts

business. Table 7.2 shows that 69.47% of all SKUs have a cost-minimal replenishment

solution with only one supplier even though a second supplier is allowed in scenario

RS2,relax. Only 12 SKUs or 0.44% use the second supply channel with a probability of

p(2, ., .) ≤ 0.00 0.01 0.05 0.10 0.15 0.20 0.25 0.30

# of SKUs 1,911 2,605 2,720 2,739 2,746 2,748 2,749 2,751

% of SKUs 69.47 94.69 98.87 99.56 99.82 99.89 99.93 100.00

Table 7.2: List of SKUs and the probability p(2, ., .) of triggering a second order in

RS2,relax

more than 10%. Despite the low usage of the second supply channel in RS2,trad, the

additional spending for a second supply mode of roughly 0.3% of TCRS1,trad reduces
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the total costs by 0.8% of TCRS1,trad . For the relaxed scenarios we yield net reduced

costs of about 0.5% by spending 0.3% of the total costs on the second supply channel.

The fraction of costs for the normal orders, those orders assigned to the reorder

point R1, remains almost unchanged close to 60% while the reduction of the capital

costs CC contributes the biggest part to the total cost savings for RS2,trad and RS2,relax.

It is interesting to see that the reduced capital costs CC lead to increased costs OCB for

unsatisfied customer demand.

Summing up, we can give first answers to our research question RQ 4. First, we have

found that the total costs of our warehouse can be reduced by 5.7% if a dual-source

replenishment policy with relaxed restrictions is used instead of single sourcing with

traditional restrictions. Second, dual sourcing is not used for most SKUs in our ware-

house. Consequently, their contribution to the overall savings of total costs TC is low.

Third, the main part of the savings in TC originates from the relaxed restrictions. This

savings effect can be observed in Figure 7.1 for single sourcing and dual sourcing alike

and will be the topic of the next chapter.

7.3 Savings induced by relaxed replenishment restric-

tions

This chapter investigates in more detail the savings of total costs that are caused by

the relaxed replenishment restrictions. We are interested in the mechanisms that lead

to these savings. This is related to the second part of question RQ 4. We know from

Figure 7.1 that the saving amount is almost identical for RS1,relax and RS2,relax. For

the sake of simplicity we only consider the single-supplier scenario RS1,relax here and

compare it to the initial scenario RS1,trad. Both scenarios can be represented by the

SDMR model.
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According to the Definition 7.1.1 and Definition 7.1.2 the difference between the

traditional and the relaxed replenishment restrictions can only be a negative reorder

point, so R1 < 0, or the replacement of normal order with the emergency order in the

single-supplier scenario. We look at both cases in the following which happen to be

disjoint sets of SKUs in our warehouse.

7.3.1 Negative reorder point

In total there are 327 SKUs in our warehouse which use a negative reorder point,

R1 < 0, in the scenario RS1,relax. We divide the 2,751 SKUs into the two sets

MR1<0 : set of SKUs where R1 < 0

MR1≥0 : set of SKUs where R1 ≥ 0.

Table 7.3 shows that MR1<0 accounts for 95.84% of all savings in total costs that are

gained by using the relaxed replenishment restrictions compared to the traditional

scenario RS1,trad. These savings are achieved by a strong reduction of the capital costs

restric-

tion

SKUs % of total savings price (e ) demand (units)

# % sum CC OCN OCB avg stddev avg stddev

MR1<0 327 11.9 95.84 152.39 23.62 -80.17 387.9 634.0 2.9 4.0

MR1≥0 2,424 88.1 4.16 0.18 -0.24 4.23 0.36 80.0 17.0 80.6

total 2,751 100.0 100.00 152.57 23.38 -75.95 77.9 257.7 15.3 75.8

legend: CC: stock holding costs OCN : normal order costs

OCB: back order costs stddev: standard deviation avg: average

Table 7.3: Contribution of the relaxed restriction R1 < 0 to the total savings

CC. The first row of Table 7.3 shows that the reduction of CC by less stock is even

larger (152.39%) than the total savings in the end. The reduction of CC is mitigated,
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though, by the increased costs for non-satisfied customer demand (-80.17%). Sum-

ming up the savings and additional costs for CC, OCN, and OCB we yield the 95.84%

of total savings for MR1<0.

The average price and the average yearly demand differ largely between MR1<0

and MR1≥0. We want to quantify these observations statistically and state the follow-

ing hypotheses:

Hp
0 : The price distribution of MR1<0 does not dominate the one of MR1≥0

Hp
1 : The price distribution of MR1<0 dominates the one of MR1≥0

Hd
0 : The demand distribution of MR1<0 dominates the one of MR1≥0

Hd
1 : The demand distribution of MR1<0 does not dominate the one of MR1≥0.

The null hypotheses Hp
0 and Hd

0 are tested against the α = 0.01 level of significance.

We use the single-sided Wilcoxon rank-sum test as described by Hartung et al. and

Hollander et al. [HEK05], [HW99]. The number of elements exceeds 20 for MR1<0 and

MR1≥0 and the Standard Gaussian Distribution can be used as an approximation. The

critical value of rejection is given by the (1 − α) quantile, Φ(0.99; 1; 0) = 2.33. The

results are shown in Table 7.4.

We find that the empirical value T = 27.09 for the price is greater than the 99%

quantile of the Standard Gaussian distribution Φ(0.99; 0; 1) = 2.33. For the demand

T = −10.84 is smaller than Φ(0.99; 0; 1). The rule of rejection, see Table 7.4, is satisfied

for both cases and we have to reject both null hypotheses Hp
0 and Hd

0 at the significance

level of α = 0.01.
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Wilcoxon rank-sum test for price (e ) demand (units)

Wn1,n2 : rank sum of MR1<0 815,244.00 303,793.00

T: standardized value, Gaussian distributed 27.09 -10.84

Φ(0.99; 0; 1) standard Gaussian distribution 2.33 2.33

rule of rejection T > Φ(.) T < Φ(.)

H0 : null hypotheses Hp
0 rejected Hd

0 rejected

legend: MR1<0: set of SKUs where R1 < 0 n1 = |MR1<0| n2 = |MR1≥0|
T =

Wn1,n2−0.5n1(n1+n2+1)√
1
12 n1n2(n1+n2+1)

Wn1,n2 : rank sum of MR1<0

Table 7.4: Wilcoxon Rank Sum Test on price and demand of SKUs where R1 < 0

'
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Info-Box 7.1: SKU A

General information

description: engine

demand: (units / year) 1.00

price: (e ) 5019.00

Comparison RS1,trad RS1,relax

R1 ; Q1: 0 ; 1 -1 ; 1

β in %: 97.15 0.00

TC in e : 304.63 24.70

CC in e : 292.41 0.00

OCN in e : 11.85 11.85

OCB in e : 0.37 12.85

Consequently, we can state that the

SKUs that are cost-optimally replenished

with a negative reorder point R1 have a

higher price and a lower demand than

the remaining SKUs with R1 ≥ 0. More

precisely, the price distribution of the

SKUs in MR1<0 dominates the price dis-

tribution of the SKUs in MR1≥0 accord-

ing to the first order stochastic domi-

nance. The demand distribution derived

from MR1≥0 dominates the demand dis-

tribution derived from MR1<0.

We will show that this result is plausible in an economic view, as well. First, the

major cost for these expensive, low-demand SKUs are the capital costs. A primary

objective is to lower the average stock and, thus, decrease the capital costs. Second,

even with a reorder point R1 = 0 the stock will be above 0 most of the time because
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the probability of demand during the lead time is close to zero for those low-demand

SKUs. This also causes the β service level to be close to 100%. Consequently, R1 has to

be below 0 to effectively reduce the average stock level and the holding costs. Third,

the total amount of unmet customer demand and all related costs are rather small

even if R1 < 0 due to the low total demand of these SKUs. Consequently, the total

costs can be reduced for expensive and low-demand SKUs by setting R1 < 0. This

makes the result of Table 7.4 plausible from an economic view. An example within our

warehouse is SKU A in Info-Box 7.1 where the total costs can be reduced by 91.89%

from 304.63e to 24.70e . Alternatively to setting R1 < 0 one could set R1 = 0 but delay

the reordering for some time as described by Schulz [Sch89].

7.3.2 Using emergency orders as normal orders

We look now at the SKUs for which the optimal result is achieved by switching the

supply modes. We divide all SKUs into the two sets

MR1
R2 : set of SKUs where the two supply modes have been exchanged

MR1 6
R2 : set of SKUs where the supply modes are not exchanged.

Table 7.5 shows that MR1
R2 accounts for the remaining 4.16% of all savings that can

be gained by using the relaxed replenishment restrictions RS1,relax. The first row of Ta-

ble 7.5 shows that the exchange of supply modes applies only to 6 SKUs. The largest

fraction of savings for MR1
R2 is achieved by reducing the costs OCB for unmet cus-

tomer demand. However, this saving effect is mitigated by additional costs OCN for

normal orders which occur due to the shorter lead time.

The average price and the average yearly demand differ largely between MR1
R2

and MR1 6
R2 . Similar to the previous chapter we want to quantify these observations
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restric-

tion

SKUs % of total savings price (e ) demand (units)

# % sum CC OCN OCB avg stddev avg stddev

MR1
R2 6 0.2 4.16 0.18 -0.24 4.23 266.1 226.3 172.3 130.3

MR1 6
R2 2,745 99.8 95.84 152.39 23.62 -80.17 77.5 257.6 15.0 75.3

total 2,751 100.0 100.00 152.57 23.38 -75.95 77.9 257.6 15.3 75.8

legend: CC: stock holding costs OCN : normal order costs

OCB: back order costs stddev: standard deviation avg: average

Table 7.5: Contribution of the relaxed restriction R1 < 0 to the total savings

statistically and state the following hypotheses:

Hp
0 : The price distribution of MR1
R2 does not dominate the one of MR1 6
R2

Hp
1 : The price distribution of MR1
R2 dominates the one of MR1 6
R2

Hd
0 : The demand distribution of MR1
R2 does not dominate the one of MR1 6
R2

Hd
1 : The demand distribution of MR1
R2 dominates the one of MR1 6
R2 .

We want to test the null hypotheses Hp
0 and Hd

0 against the α = 0.01 level by

means of the single-sided Wilcoxon rank-sum test, see [HW99] and [HEK05]. How-

ever, we find that the cumulated price distributions of MR1
R2 and MR1 6
R2 cross.

Thus, the Wilcoxon rank-sum test is not applicable. For the demand, the number of

elements of MR1 6
R2 exceeds 20 and the Standard Gaussian Distribution can be used

as an approximation. The critical value of rejection is given by the 1 − α quantile,

Φ(0.99; 1; 0) = 2.33. Table 7.6 shows that T > 2.33 for the demand which satisfies the

rule of rejection.

Consequently, we have to reject the null hypothesis Hd
0 at the 0.01-level of signifi-

cance but we cannot make a statement about the null hypothesis Hp
0 . This means that

the SKUs that are cost-optimally replenished with interchanged supply modes have a

higher demand than the remaining SKUs. Technically spoken, the demand distribu-
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Wilcoxon rank-sum test for price (e ) demand (units)

Wn1,n2 : rank sum of MR1
R2 N.A. 15,817.50

T: standardized value, Gaussian distributed N.A. 3.89

Φ(0.99; 0; 1) standard Gaussian distribution 2.33 2.33

rule of rejection N.A. T > Φ(.)

H0 : null hypotheses N.A. Hd
0 rejected

legend: MR1
R2 : set of SKUs with exchanged supply modes

n1 = |MR1
R2 | n2 = |MR1 6
R2 | T =
Wn1,n2−0.5n1(n1+n2+1)√

1
12 n1n2(n1+n2+1)

Wn1,n2 : rank sum of MR1
R2 N.A.: not applicable

Table 7.6: Wilcoxon Rank Sum Test on price and demand of SKUs with exchanged

supply modes

tion of the SKUs in MR1
R2 dominate the corresponding distribution of the SKUs in

MR1
R2 according to the first order stochastic dominance.
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Info-Box 7.2: SKU B

General information

description: turbo charger

demand: (units / year) 125.00

price: (e ) 534.00

cN,fix ; cN,var: (e ) 4.40 ; 0.63

cR,fix ; cR,var: (e ) 4.40 ; 0.63

Comparison RS1,trad RS1,relax

µL1/2 ; σL1/2 : 9 ; 2 3 ; 1

R1 ; Q1: 0 ; 11 1 ; 7

β in %: 66.17 90.19

TC in e : 552.84 441.87

CC in e : 169.11 210.62

OCN in e : 128.75 157.32

OCB in e : 254.98 73.93

This result can be explained by the

fact that shorter lead times allow for a

faster reaction after an unexpectedly high

demand. This is crucial to avoid stock

outs especially when the average demand

is high. Thus, the stock out costs can

be considerably reduced for SKUs with a

high demand. Of course, the additional

costs for the faster supply must not ex-

ceed the saved stock out costs. An ex-

ample is given by SKU B in Info-Box 7.2

where the average demand is 125 per

year and the fast supplier delivers at the

same ordering costs cR,fix and cR,var than

the slow supplier. The total costs can be

reduced by 20.07% while the β service level increases. This is a highly beneficial com-

bination in practice.

7.3.3 Summary

In this section we have focused on cost savings in our warehouse that are induced by

applying single sourcing with relaxed restrictions instead of traditional restrictions.

Moreover, the underlying mechanisms have been investigated. This addresses the

second part of our research question RQ 4.

The two components of the relaxed restrictions are the possibility of negative re-

order points and the exchange between the first and the second supply mode, see

Definition 7.1.2 on page 234. Consequently, all SKUs were divided into the set MR1<0

with a negative reorder point R1 < 0 and the set MR1≥0 of the remaining SKUs. Sim-
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ilarly, we divided all SKUs in a set MR1
R2 where both supply modes are exchanged

and the set MR1 6
R2 . The sets MR1<0 and MR1
R2 are disjoint which allows us to sum-

restric-

tion

SKUs % of total savings price (e ) demand (units)

# % sum CC OCN OCB avg stddev avg stddev

MR1<0 327 11.9 95.84 152.39 23.62 -80.17 387.9 634.0 2.9 4.0

MR1
R2 6 0.2 4.16 0.18 -0.24 4.23 266.1 226.3 172.3 130.3

Mrest 2,418 87.9 0.00 0.00 0.00 0.00 35.55 78.5 16.58 80.1

total 2,751 100.0 100.00 152.57 23.38 -75.95 77.9 257.7 15.3 75.8

legend: CC: stock holding costs OCN : normal order costs

OCB: back order costs stddev: standard deviation

Mrest: Ω \ {MR1<0 ∪MR1
R2} avg: average

Table 7.7: Contribution of the relaxed restrictions to the total savings

marize our findings in one single Table 7.7.

We showed for our warehouse that the SKUs in MR1<0, which were cost-optimally

replenished with a negative reorder point, had a price distribution that stochastically

dominates the distribution of MR1≥0. The demand distribution of MR1<0 was stochas-

tically dominated by the distribution of MR1≥0. In one example of a very expensive

SKU the total costs were reduced by over 90% by using a negative reorder point. In

total, the SKUs with a negative reorder point contributed 95.84% of all savings. This

means that in our warehouse most of the savings originated from reducing the capi-

tal costs by lower inventories. The explanation for this are high prices, large holding

costs, or little demand. These characteristics are common for spare parts and, thus,

the large fraction of total savings induced by a negative reorder point does not come

as a surprise.

The remaining 4.16% of savings came from exchanging the first and the second
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supply mode. Here, we were able to show that the SKUs in MR1
R2 had a price dis-

tribution that stochastically dominated the equivalent distribution of MR1 6
R2 . The

savings originated mainly from reduced costs for unmet demand. This is plausible

because substituting the faster supply mode for the slow supply mode allows for a

faster reaction. Especially, in times of unexpectedly high demand this leads to a faster

restocking and less stock out. In one example the total costs were reduced by over

20% while the β service level increased by over 20 percentage points from 66.17% to

90.19%. This combined effect is highly beneficial for companies.

We recall that the relaxed restrictions are one of two options that contribute to the

overall savings. In order to fully answer our research question RQ 4 we investigate

the second option, the usage of a second supplier, in the next section.

7.4 Savings induced by dual sourcing

In this section we have a closer look at the cost savings that can be realized by using

a second supply channel. From Chapter 7.2 we know that these savings are marginal

from a global perspective. The reason is the high percentage of spare parts in our

warehouse for which dual sourcing does not pay off. Therefore, we now go into more

detail on examples where dual sourcing is applied in the cost-minimal situation. This

will help giving a more profound anwer to the second part of question RQ 4.

We will find that the lead times for the first and second supplier are relatively small

in our warehouse. Our suspicion is that the savings will increase with longer lead

times. Therefore, we will investigate the current situation at our warehouse in Sec-

tion 7.4.1. An example of how longer lead times can affect the total savings achieved

by dual sourcing is given in Section 7.4.2. We summarize our findings in Section 7.4.3.
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7.4.1 Small difference between the lead times

In the following we explain how the cost savings can be achieved if we move from

a single-supplier to a two-supplier replenishment policy with relaxed restrictions

RS1,relax and RS2,relax.'

&

$

%

Info-Box 7.3: SKU C

General information

description: fog lamp right

demand: (units / year) 1,007.00

price: (e ) 27.14

Lead time information

µl1 : 9 σl1 : 2

µl2 : 3 σl2 : 1

Let us have a look at the two exam-

ples ”fog lamp right” (SKU C) from Info-

Box 7.3 and the ”mirror glass heated”

(SKU D) from Info-Box 7.4. The demand

is in average greater than one item per

day for both SKUs which distinguishes

them from the low-demand spare part

we have discussed in earlier chapters.

The average lead times are µl1 = 9 days

and µl2 = 3 days, respectively. '

&

$

%

Info-Box 7.4: SKU D

General information

description: mirror glass heated

demand: (units / year) 307.00

price: (e ) 139.75

Lead time information

µl1 : 9 σl1 : 2

µl2 : 3 σl2 : 1

Especially the value for µl1 is small

compared to the lead times of overseas

suppliers which can easily exceed 30 days.

Still, we will see that the second supplier

is able to reduce the total costs for these

short lead times.

Table 7.8 gives a comparison between

the two supply scenarios RS1,relax and

RS2,relax for each of the two SKUs. In the

first row we find that the savings in total costs TC is 8.24% for SKU C and 7.42% for

SKU D. Usually, cost reductions of this magnitude are already quite attractive for

companies especially if they are coupled with an increase of the β service level. We

can find this combination of cost reduction and service level increase for SKU C. In
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fact, all costs (CC, OCN, and OCB) are reduced for SKU C with the introduction of the

second supplier. For SKU D the second supplier reduces the capital costs CC to such

an extent that the increases of OCN, OCR, and OCB are more than compensated.

SKU C: fog lamp right SKU D: mirror glass heated

RS1,relax RS2,relax ∆ in % RS1,relax RS2,relax ∆ in %

TC 544.59 499.69 -8.24 456.01 422.16 -7.42

β in % 98.12 100.00 1.92 98.48 96.77 -1.73

R1 54 52 14 11

R2 22 2

Q1 61 50 26 21

Q2 14 10

p(2, ., .) in % 24.01 14.46

CC 143.99 128.12 -11.02 301.10 226.18 -24.88

OCN 341.89 334.77 -2.08 132.96 135.54 1.94

OCR 36.80 N.D. 13.93 N.D.

OCB 58.71 0.00 -100.0 21.96 46.52 111.86

legend: ∆: RS2,relax
RS1,relax

− 1 p(2, ., .): 2-order probability

β: β service level N.D. not defined

Table 7.8: Total cost savings by the second supply channel with relaxed restrictions

From Table 7.8 we further see that the reorder point R1 and the order quantity Q1

are reduced for both SKUs by moving to a replenishment with two suppliers. This

reduction of R1 and Q1 decreases the average stock and leads to less stock holding

costs CC. A large cost reduction for SKU C is achieved by increasing the β service

level to 100% which saves 58.71e of back order costs OCB.

In this section we have seen that the introduction of a second supplier can lead
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to reduced total costs even when the difference between the lead times of the two

suppliers are rather small. Moreover, the introduction of a second supplier can have

the positive side effect to increase the β service level. In our warehouse, the TC savings

are 8.24% and 7.42% for 2 SKUs with lead times of µl1 = 9 days and µl2 = 3 days. We

expect the usage and the savings effect of the second supplier to increase even further

for a long lead time µl1 .

7.4.2 Increasing difference between the lead times

Many companies have suppliers in other continents and need to consider long lead

times for their supply chain calculations. The lead times of overseas shipments can

easily exceed several weeks or months. Naturally, we expect that the total costs will

increase with increasing lead times. In addition, we expect that the saving in total

costs increases ceteris paribus for long lead times, as well.'

&

$

%

Info-Box 7.5: SKU E

General information

description: brake repair kit

demand: (units / year) 851.00

price: (e ) 84.00

Lead time information

µl1 : 9 σl1 : 2

µl2 : 3 σl2 : 1

Comparison RS1,trad RS2,trad

TC: 768.31 752.55

β in %: 95.34 96.40

In our spare parts warehouse the max-

imal lead time is µl1 = 10 days for ar-

ticles where dual sourcing is possible.

This is very short. Thus, we take the ex-

ample of a ”break repair kit” (SKU E) as

described in the Info-Box 7.5 with its ini-

tial lead times and increase µl1 = 9 itera-

tively by 2 days until it reaches 27 days.

The initial savings by RS2,trad compared

to RS1,trad are 15.76e or 2.05% and we

expect these values to increase for longer

lead times.

For each value of µl1 we optimize the replenishment parameters regarding total

costs for both scenarios RS1,trad and RS2,trad. Then we determine the difference of to-
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tal costs between the two scenarios and observe how this difference develops with

increasing values for µl1 . We deliberately use the traditional replenishment restric-

tions here to avoid a switch of the first and the second supplier as we are interested

in the saving effect of a second supplier when such a switch is not possible, see Defi-

nition 7.1.1 on page 234. Many times such a switch is not possible in reality at least in

short term due to capacity restrictions or supply contracts, for example.

The results of RS1,trad and RS2,trad and their differences are given in Table 7.9 for

increasing values of µl1 . The standard deviation σl1 of the lead time increases together

with µl1 in such a way that the coefficient of variation remains constant at 2
9 . First, we

clearly see that the absolute value of TC increases monotonously for both scenarios.

This is not surprising as we do not allow for overlapping reorder cycles and longer

lead times require a higher average stock to limit the amount of stock outs. Second,

the relative savings ∆TC between RS1,trad and RS2,trad monotonously increase from

about 2% for µl1 = 9 days up to more than 20% for µl1 = 27 days. These observations

coincide with our expectations but let us take a closer look at the mechanisms behind

the increasing benefits of using a second supplier for large values of µl1 .

On the one hand, we find in Table 7.9 that the probability to use the second sup-

plier increases almost monotonously from 8.96% to 99.97% with a large jump between

µl1 = 9 and µl1 = 11. On the other hand, the quantity ordered via the first supplier,

Q1, is always lower in the dual-source scenario RS2,trad. Both developments have the

effect to raise the influence of the second supplier in terms of amount of customer

demand being satisfied by the individual supplier. Due to this rising influence of the

second supplier and its constant lead time of µl2 = 3 the warehouse is able to remain

reactive to excessive demand even for high values of µl1 – unlike in the RS1,trad sce-

nario. This allows the warehouse manager to keep the average stock level and its costs

at a low level without decreasing the β service level. The development of the ware-

housing costs CC for RS1,trad and RS2,trad can be observed in Table 7.10 in more detail.
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µl1 σl1

∆TC
∆β

RS1,trad RS2,trad

in % TC β Q1 TC β p(2, ., .) Q1 Q2

9 2.00 2.05 1.06 768.3 95.34 52 752.5 96.40 8.69 51 14

11 2.44 6.14 2.43 803.9 92.65 53 754.6 95.08 98.24 19 45

13 2.89 11.59 4.44 857.7 89.96 65 758.3 94.40 99.31 19 45

15 3.33 12.07 0.11 876.2 95.97 67 770.5 96.07 99.80 19 57

17 3.78 14.96 0.73 906.4 93.38 78 770.8 94.11 99.91 33 45

19 4.22 18.16 3.72 952.9 91.95 91 779.9 95.67 99.93 33 57

21 4.67 19.09 0.07 980.1 94.41 91 793.0 94.48 99.94 33 57

23 5.11 20.85 8.02 1,025.6 87.83 104 811.8 95.84 99.97 33 69

25 5.56 20.95 1.24 1,044.6 93.41 105 825.8 94.65 99.98 33 69

27 6.00 21.67 3.03 1,073.3 91.26 114 840.7 94.29 99.97 47 69

legend: µl1 : average lead time 1 σl1 : standard deviation lead time 1

TC: total costs ∆TC:
TCRS1,trad

−TCRS2,trad
TCRS1,trad

β: β service level ∆β: βRS2,trad − βRS1,trad

p(2, ., .): 2-order probability Qi: order quantity supplier i

Table 7.9: Comparison of single and dual sourcing for an increasing lead time µl1

Consequently, one main reason for the increasing gap in total costs between RS1,trad

and RS2,trad is the moderate increase of the capital costs due to a more extensive usage

of the second supplier with its constant lead time µl2 = 3.

Another potential source of cost savings is related to the service level. Interestingly,

we find a non-monotonous change of the β service level for each of the scenarios in

Table 7.9. One might have expected a declining value of β due to increased lead times.

In fact, this non-monotonic behavior can be explained by the pure cost-optimization
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µl1 σl1

∆TC RS1,trad RS2,trad

in % TC CC OCN OCB TC CC OCN OCR OCB

9 2.00 2.05 768.3 369.7 299.2 99.5 752.5 370.7 293.5 11.5 76.9

11 2.44 6.14 803.9 349.1 297.9 157.0 754.6 305.3 126.2 218.1 105.1

13 2.89 11.59 857.7 357.8 285.3 214.7 758.3 294.5 125.2 218.8 119.8

15 3.33 12.07 876.2 506.4 283.6 86.2 770.5 360.7 105.1 220.8 83.9

17 3.78 14.96 906.4 488.9 276.0 141.5 770.8 321.5 143.5 179.8 126.0

19 4.22 18.16 952.9 511.5 269.4 172.0 779.9 376.4 124.4 186.5 92.6

21 4.67 19.09 980.1 591.3 269.4 119.4 793.0 364.2 124.4 186.5 118.0

23 5.11 20.85 1,025.6 501.0 264.5 260.2 811.8 421.6 109.7 191.6 88.8

25 5.56 20.95 1,044.6 639.6 264.1 140.9 825.8 410.0 109.7 191.6 114.4

27 6.00 21.67 1,073.3 625.1 261.4 186.8 840.7 426.0 124.2 168.5 122.0

legend: µl1 : average lead time 1 σl1 : standard deviation lead time 1

TC: total costs ∆TC:
TCRS1,trad

−TCRS2,trad
TCRS1,trad

CC: capital costs OCN : normal order costs

OCR: rush order costs OCB: back order costs

Table 7.10: Cost development for RS1,trad and RS2,trad for an increasing lead time µl1

of the replenishment parameters of both suppliers where the actual value of β is just

a side effect of balancing the different cost components. Coincidentally, in a pairwise

comparison the scenario RS2,trad achieves better β service levels than RS1,trad for every

value of µl1 . This positive effect of the second supplier on the β service level should

not be underestimated. Many companies have to put a lot of effort and intelligence

into keeping client service levels at an acceptable level. This is especially true for long

lead times. However, the dual-source replenishment RS2,trad cannot always guarantee

a better service level than RS1,trad for the mentioned reason that β is just a side effect

of the cost-optimization.
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We have seen a case where the introduction of a second supplier decreased the

total costs but also led to a worse β service level. This refers to SKU D, see Table 7.8 on

page 248. Despite the existence of cases where β decreases by shifting to dual sourcing,

RS2,trad makes it possible to leverage the much shorter lead time of a second supplier.

This allows a faster reaction in the replenishment and, thus, can mitigate the negative

effect of an exceptional high demand on the β service level. In our warehouse RS2,trad

saves a lot of back order costs OCB especially where µl1 = 23, see Table 7.10. The same

holds for all other values of µl1 even if the amount of savings are not that high.

Last but not least Table 7.10 reveals that the ordering costs OCN + OCR of RS2,trad

are higher than the ordering costs OCN of the single-source replenishment RS1,trad.

This observation coincides with the common experience that the usage of a second,

more expensive supplier leads to additional costs. Of course, these additional replen-

ishment costs make only sense if they lead to other savings of at least the same amount.

In summary, we can state that there do not only exist SKUs in our warehouse where

the availability of a second supplier in the RS2,trad scenario reduces the total costs, but

more importantly, that there are SKUs for which the savings in total costs increase with

a longer lead time µl1 of the first supplier. In our case of SKU E the savings increased

from 2% for µl1 = 9 days to 21% for µl1 = 27 days.

7.4.3 Summary

In the last two sections we have investigated the cost saving effect by using dual sourc-

ing instead of single sourcing. First, we saw that the introduction of a second supplier

can lead to reduced total costs and even an increased β service level.

Second, we saw exemplarily that the reduction of total costs by introducing a sec-

ond supplier increases for longer lead times of the first supplier. These findings show

that dual sourcing can be highly beneficial when the demand and both lead times are

stochastic. The detailed summary is moved to the next section.
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7.5 Summary

In this chapter we have compared four combinations of stochastic replenishment poli-

cies and their execution with different restrictions for our warehouse of 2,751 SKUs. In

particular, we were interested in how much total costs can be saved in a stochastic en-

vironment if we move from a single-source replenishment with traditional restrictions

to a dual-source replenishment with relaxed restrictions. Moreover, we investigated

the mechanisms that lead to these savings. This relates to question RQ 4. It was pos-

sible to represent and calculate all four scenarios with the SDMR model. This enabled

us to eliminate effects on the results by different modeling approaches and proved the

flexibility of the SDMR model once more.

After a proper definition of the four scenarios in Chapter 7.1 we quantified the

savings of total costs in our warehouse in Chapter 7.2. Our findings were three-fold.

First, total costs can be reduced by 5.7% if a dual-source replenishment policy with

relaxed restrictions is used instead of a single-source replenishment policy with tradi-

tional restrictions. Second, dual sourcing is not used for most SKUs in our warehouse

due to the low demand of most spare parts. Consequently, their contribution to the

overall savings of total costs is low. Third, the main part of the savings in total costs

originates from the relaxed restrictions.

Regarding the first part of question RQ 4 we conclude at this point that moderate

savings of 5.7% are induced by moving from traditional single sourcing to dual sourc-

ing with relaxed restrictions in the example of our warehouse. Most of the savings are

contributed by the relaxed replenishment restrictions and not by dual sourcing.

Relaxed restrictions. The savings and the mechanisms related to the relaxed restric-

tions were analyzed in Chapter 7.3 in more detail. The two components of the relaxed

restrictions were first, the possibility of negative reorder points and second, the ex-
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change between the first and the second supply mode. On the one hand, the effect of

negative reorder points contributed 95.84% of all savings. The reason are lower capital

costs CC due to the reduced amount of inventory. Interestingly, we were able to show

that all SKUs which were cost-optimally replenished with a negative reorder point

had a higher price and a lower demand than the rest of all SKUs in our warehouse.

In one example of a very expensive SKU the total costs were reduced by over 90%

by this effect. On the other hand, the remaining 4.16% of total savings resulted from

exchanging the first and the second supply mode. The savings were mainly caused

by lower costs for unmet customer demand. This is the result of a shorter lead time

which enables to replenish faster in case of unexpectedly high demand. Here, we were

able to show that the SKUs in the set MR1
R2 , which are cost-optimally replenished

by only using the faster second supplier, had a demand distribution that dominated

the corresponding distribution of the remaining SKUs in MR1 6
R2 according to the first

order stochastic dominance. In the case of one SKU with high demand the total costs

were reduced by over 20% while the β service level increased from about 66% to over

90%. This effect is highly beneficial in practice.

In respect to question RQ 4 and the relaxed replenishment restrictions we can iden-

tify two major mechanisms that lead to cost savings in our warehouse. First, the neg-

ative reorder points cause a reduction of inventory and its related capital costs CC.

Second, the substitution of the faster supplier for the slower and possibly cheaper

supplier allows for a faster replenishment which leads to lower stock out costs espe-

cially in times of exceptionally high demand.

Dual sourcing. In Chapter 7.4 we investigated the savings and the mechanisms re-

lated to dual sourcing in our warehouse when the lead time µl1 of the first supplier is

short or long. Our findings were three-fold. First, the introduction of a second sup-

plier lead to reduced total costs by over 7% for two examples in our warehouse even
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when the supply lead times were as short as µl1 = 9 days and µl2 = 3 days. Second,

the introduction of a second supplier increased the β service level for two of our three

examples in addition to the reduced total costs even for small lead times. Third, we

saw exemplarily for one SKU that the reduction of total costs by introducing a second

supplier increased from about 2% to over 20% when the lead time of the first supplier

rose from 9 days to 27 days.

Our conclusion for question RQ 4 is a large benefit of dual sourcing for several

SKUs in our warehouse. The savings can exceed 20% especially when the lead time of

the first supplier is long. The main reason for the savings are reduced stock out costs

due to the possibility of a faster replenishment.

Wrapping up, this chapter allows to give the following answers and insights regarding

our research question RQ 4. First, it shows that there is only a relatively small total

saving potential for dual sourcing with relaxed restrictions in a warehouse with little

demand (spare parts) and small lead times of 10 days.

Second, for single SKUs the usage of relaxed restrictions and dual sourcing can re-

duce the total costs significantly. We saw examples where the total costs were reduced

by more than 20% and even more than 90% for one SKU. In several cases the usage of

the second supplier did not only decrease the total costs but also increase the customer

service level. This combined effect is very interesting and advantageous in practice.

We also saw that the savings increased with longer lead times for the first supplier.



Chapter 8

Summary and outlook

The central research question throughout this work has been whether it is beneficial

to use dual sourcing in a stochastic environment, and if yes, whether it is feasible to

use a deterministic approximation, see RQ 0 on page 4.

In order to answer this question we need to bring together the answers of our

questions RQ 1 to RQ 4. These four questions have been addressed throughout the

previous chapters and will be recapped in the following together with our contribu-

tions. We will also critically review our approach and its limitations and give a short

outlook to possible future work in this area.

8.1 Contributions to the research area

The contribution to the literature on dual sourcing is mainly related to our ques-

tion RQ 11. We have elaborated the SDMR model in Chapter 3 which represents a

(R1, R2, Q1, Q2) replenishment policy, where the demand and both lead times have

arbitrary distributions. To our knowledge it is the first publication on a dual-sourcing

1 RQ 1: How can we define and model a (R1, R2, Q1, Q2) replenishment policy with stochastic demand

and lead times?

257
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(R1, R2, Q1, Q2) replenishment policy that allows for arbitrary distributions for the

daily demand and the stochastic lead times. Only a few other publications consider

stochastic demand and stochastic lead times. All of them make strong assumptions

on the type of the distribution like Poisson demand and exponential lead times, see

[VAdK98], [MP99].

We have given exact formulas for the expected shortage, approximated expressions

for expected stock, and a series of formulas for various essential variables in inventory

management like different service levels, number of orders for each supply mode, and

total costs. The advantage of the SDMR model is its flexibility. For example, it takes

moderate effort to change the SDMR model from the scenario where unmet customer

demand is backlogged, see Chapter 3, to a scenario where backlogged demand is lost,

see Appendix D.

Our contribution to the practical application of the SDMR model relates to RQ 22 and

can mainly be found in Chapter 4. A key requirement for a practical application is the

discretization of the SDMR model. We have highlighted two important aspects. First,

we have shown how to discretize different parameters of the SDMR model according

to specific business scenarios. Second, we have investigated how to determine the

convolution of distributions, usually a time-intensive and heavily used calculation,

more time-efficiently by means of a FFT algorithm.

The investigations regarding question RQ 33 contribute to the insights on the devia-

tions between a scenario where the demand and both lead times are stochastic and an

approximation where the lead times are assumed to be deterministic. Our investiga-

2 RQ 2: How can the SDMR model be applied in practice?
3 RQ 3: How much and in which situations does a scenario with deterministic lead times deviate from

the stochastic scenario of the (R1, R2, Q1, Q2) replenishment policy?
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tions have been two-fold. First, in a sensitivity analysis we have found that the range

of deviation between DET and STOCH is very high. DET underestimates some of our

KPIs up to 100% while it overestimates other KPIs usually by 40% and above for at

least one value of each input parameter. The reasons for a deviation between DET

and STOCH are very diverse and one has to be aware of the rather complex interplay

between the various input parameters. The conclusion from the sensitivity analysis is

to clearly favor the complex STOCH scenario for calculating our KPIs in a setting with

stochastic lead times because the magnitude of deviation of DET is hardly predictable.

Second, we have compared the results of the sensitivity analysis with a case study

in form of a spare parts warehouse. In general, we have found that the deviations

between DET and STOCH are much smaller than in the sensitivity analysis. For some

KPIs there exists almost no deviation. Larger deviations occur mostly regarding the

β service level. We have observed that the deviations are not only influenced by the

stochastic variables but also by the optimization of the replenishment parameters like

R1 or Q2. For several KPIs we could analytically express and explain the deviation

between DET and STOCH. However, all expressions contain at least one term that is

complex and calculation-intensive to determine like the service level or the probability

of a two-order cycle in the STOCH scenario. Thus, there is no general and easy way

to predict the deviation between DET and STOCH.

This brings us to the conclusion that the approximation with deterministic lead

times might be sufficient for calculating several KPIs for many SKUs even when both

lead times are stochastic. However, great discrepancies can occur regarding the short-

age costs and the β service level. Unfortunately, it is hard to predict the magnitude

of the deviation due to complex interplays between the various parameters. Summa

summarum, an answer to research question RQ 3 is anything but trivial and strongly

depends on the specific situation.
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Our analysis in context of question RQ 44 yield several contributions regarding the

cost savings and the responsible mechanisms in the context of stochastic dual sourc-

ing. First, we show that relaxed replenishment restrictions can be very beneficial. On

the one hand, the substitution of the fast supplier for the slow and usually cheaper

supplier has proven to reduce the total costs by more than 20% while increasing the β

service level at the same time. This effect is very beneficial and applies especially for

SKUs with a high demand. On the other hand, negative reorder points can save a sig-

nificant amount of inventory holding costs especially for expensive and low-demand

SKUs. In one example the savings exceeded 90% of the total costs. Instead of a neg-

ative reorder point R1 < 0 one can set R1 = 0 and delay the replenishment by some

time as described by Schulz [Sch89].

SKU attributes replenishment option to consider section

low demand, high price negative reorder point 7.3.1 p. 238

high demand substituting fast supplier for slow supplier 7.3.1 p. 238

long lead time for slow supplier dual sourcing 7.4 p. 246

Table 8.1: Findings regarding different stochastic replenishment policies

Second, dual sourcing can have large benefits over single sourcing in a scenario

with stochastic demand and stochastic lead times. Thereby, the savings depend

strongly on the characteristics of a SKU and the applied replenishment restrictions.

While dual sourcing is not applied for many spare parts due to their low demand, the

relaxed replenishment restriction of a negative reorder point is very beneficial even

for single sourcing. There exist SKUs where dual sourcing can reduce the total costs

by more than 20% especially for long lead times of the first supplier. In addition, dual

sourcing increased the β service level in several cases. This combination of reduced

4 RQ 4: How much total costs can be saved by moving from single sourcing with traditional restrictions

to dual sourcing with relaxed restrictions when lead times are stochastic?
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costs and an increased service level is very attractive for most companies. We summa-

rize the findings in Table 8.1.

Finally, we bring all these results together in order to answer our research question

RQ 0. We have seen from the answers to RQ 1 and RQ 2 that we are able to formulate

and practically implement a model for stochastic (R1, R2, Q1, Q2) dual sourcing. In the

context of RQ 4, dual sourcing has been able to save more than 20% of total costs and

even increase the β service level in some cases compared to single sourcing. Moreover,

the substitution of the fast supplier for the slow supplier also yielded savings of over

20% while increasing β. However, for SKUs with a low demand the option of a second

supply mode is usually not exercised. These results are also summarized in Table 8.2.

area contributions

model for (R1, R2, Q1, Q2)

replenishment policy with

stochastic demand and lead

times (RQ 1)

independent of distribution type

exact formulas for expected shortage

approximated formulas for expected stock

formulas for important KPIs (e.g. service levels, costs)

practical application (RQ 2)
adaptation of the model to various business scenarios

feasible calculation of convolutions

comparison of KPIs between

stochastic model and

approximation with

deterministic lead times (RQ 3)

sensitivity analysis (cost-independent)

shows strong deviation

case study (spare parts warehouse)

shows small deviation

different saving potentials negative reorder point

in a stochastic setting substituting fast supplier for slow supplier

(case study, RQ 4) dual sourcing for longer lead times

Table 8.2: Contributions to the area of dual sourcing
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Consequently, the answer to the first part of RQ 0 is: Yes, dual sourcing is benefi-

cial in several cases where the demand and all lead times are stochastic. The savings

usually increase with an increasing lead time of the primary supplier.

The answer to RQ 3 has shown that the results of the stochastic scenario can sub-

stantially deviate from an approximation where both lead times are deterministic. The

answer to the second part of RQ 0 is: An approximation with deterministic lead

times is usually not feasible especially for the β service level and the shortage costs.

While it might be feasible for certain SKUs and their KPIs it is hard to predict the

magnitude of deviation beforehand.

8.2 Critical review

Despite our ambition to make the assumptions for our SDMR model as little restrictive

as possible, there still exist a few assumptions in Section 3.1.1 on page 42 that can be

restrictive in practice.

Ad Assumption 5. The assumption states that the daily demand is identically and

independently distributed over time. This might not be true, of course. Currently, we

are using the demand distribution D(t) which is the convolution of t identical daily

demand distributions D(1). However, it is mostly a technical effort to replace D(t)

by a convolution D′(a, a + t− 1), where the t single-day demand distributions for the

days a, a+ 1, ..., a+ t− 1 are different. Of course, one has to take care about the specific

t-day time interval at hand as D′(a, a + t− 1) 6= D′(a + 1, a + t) in general. Besides

this, all equations of the SDMR model can be used as before. Theoretically spoken, one

could analogously incorporate correlated demand over time into the SDMR model, as

well. However, the quickly growing problem space will most likely hinder a practical

application.
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Ad Assumption 7. The most restrictive assumption is that at most one order can be

outstanding per supply mode at any point in time. Especially when lead times are

long, there usually exist several outstanding orders in practice. An appropriate exten-

sion of the SDMR model to one or more outstanding orders causes substantial effort.

All equations for the shortage and the stock level have to be extended to the differ-

ent possible arrival times of these outstanding orders. This requires at least one more

integration within most of the formulas. Nevertheless, this extension is very inter-

esting and crucial for an application in industries with long lead times like overseas

shipments of several months.

Ad Assumption 8. We do not allow for a cumulated demand that exceeds the supply

within a replenishment cycle. This assumption should be met in practice at least in the

long run. Otherwise one is bound to run out of stock sooner or later. In combination

with several outstanding orders, which we excluded in this work, this assumption

will generally not hold as many orders arrive before the one arrives that has just been

placed.

Ad Assumption 10. For the formulation of the SDMR model we considered time to

be continuous and demand to be non-bulky so that a supply order is immediately

processed at the point in time when the stock level reaches R1 or R2. Usually this

is not true in practice. Especially, when the supply process is restricted by certain

departure times of supplying vehicles one has to wait a certain fraction of the time

interval after reaching R1 until the next departure is scheduled. Chapter 4 shows how

this assumption can be relaxed by approximative approaches where the demand dis-

tribution, the lead time distribution, or the reorder points are adjusted accordingly.

These approximative approaches allow for a practical application of the SDMR model

in many practical approaches.
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Besides the criticism of the assumptions we want to mention a few points one should

keep in mind about the SDMR model. First, other replenishment policies than the

(R1, R2, Q1, Q2) policy with backlogged demand might be required in certain situa-

tions. In the case of lost sales we have shown that the flexibility of the SDMR model

allows for certain extensions and adaptation without too much effort, see Appendix D

on page 305. We expect a similar effort to adapt the SDMR model to a (R1, R2, S1, S2)

base-stock policy, for example. For other dual-source replenishment policies one has

to decide case by case whether and how they can be incorporated in the SDMR model.

Second, once we move from pure planning to daily operations, we have to be

aware of a repetitive application of the SDMR model. Currently, we are not consid-

ering the possibility that the situation and information tomorrow might deviate from

our predictions today. This is especially critical when an order from the past is still

outstanding. This situation relates somewhat to our comments on Assumption 7 be-

fore. Moreover, the demand and the lead time distributions might change the next

day and, thus, also the optimal values for the replenishment parameters R1, R2, Q1,

and Q2 will change. In practice this situation can happen frequently and the question

is how to apply the SDMR model repetitively day after day. Of course, we could sim-

ply ignore prior days as a first approximation and apply the SDMR model each day

anew. If there is an outstanding normal order we will still calculate R1, Q1, R2, and

Q2 but only the latter two parameters will be applied for the second supply mode. In

addition, one could substitute the remaining lead time distribution of the outstand-

ing normal order for the normal lead time distribution L1. While this approach for a

repetitive usage of the SDMR model could be feasible in practice, it is anything but

satisfying from a theoretical point of view.

Third, the optimization of the SDMR model for our warehouse with 2, 751 SKUs

takes about 12 hours. Large warehouses easily contain more than 100, 000 SKUs. Thus,

the current implementation of the SDMR model is not feasible in such cases.
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8.3 Outlook

One can imagine many extensions and adaptations of the current SDMR model. We

only want to mention a few. Probably the most apparent extensions are more policies

like the base-stock policy, more practical constraints like warehouse capacities, and

the introduction of a third supplier. However, in our opinion the most interesting ex-

tension of the SDMR model is the consideration of several outstanding orders. This

allows for applying the SDMR model in scenarios with long lead times. Further, it

enables us to use the SDMR model not only for planning but also for daily operations

where an order has been placed just the day before, for example. Closely related to the

daily operational usage of the SDMR model is the consideration of current purchase

prices on the market and the decision whether it is beneficial to purchase today even

though the inventory is still sufficiently high. This is an exciting but non-trivial exten-

sion.

In practice, inventory management faces a multitude of further restrictions and con-

siderations every day. These can significantly influence the timing and magnitude of

a replenishment order. Common examples are minimum order quantities, lot sizes,

and certain time limits of the supplier. More complex topics include rules for ordering

a bundle of different SKUs from the same supplier, price discounts, or adjustments to

better utilize the capacity of the supplying trucks. These topics are already quite hard

to optimize individually, not to mention a combination with dual sourcing.

Future improvements for the current implementation of the SDMR model should

target at a better time performance especially regarding the employed optimization

algorithm. Only this way an application in large warehouses is practically feasible.
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Appendix A

Explanations regarding the used

probability space

A.1 Example of a discrete random variable and its σ-

algebra

In the simple case where the random variable X only maps to a countable number of

different values a1, a2, ..., an, so |range(X)| = n, the expected lead time lt1 is given by

E[Xlt1 ] =
n

∑
i=1

ai · P(Ai) (A.1.1)

with Ai = X−1(ai). In this case Ai ∈ κ always holds for i ∈ {1, 2, ..., n} because the

random variable X has to be measurable concerning the σ-algebra κ. This means that

the set of elements in Ω specified by Aj = X−1(x ≤ t) has to be an element of κ for

all possible t ∈ R. Moreover, also its complement Aj = Ω\Aj has to be a member

of κ due to the definition of a σ-algebra, see Definition 3.1.2. Then, by intersection of

appropriate sets in κ one can extract exactly the set Ai = X−1(ai) which, by the very

definition of a σ-algebra, has to be an element of κ, as well.
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Example A.1.1. Ω = {(0, 1], (1, 2], (2, 3], (3, 4]} defines a sample space of intervals in

R1. One possible σ-algebra can be specified by

κ =
{

Ω, ∅, {(0, 1], (1, 2]}, {(2, 3], (3, 4]},

{(0, 1], (1, 2], (2, 3]}, {(3, 4]}, {(0, 1], (1, 2], (3, 4]}, {(2, 3]}
}

.

Moreover, a real function X on Ω is given.

X : Ω→ R =





(0, 1] 7→ −10

(1, 2] 7→ −10

(2, 3] 7→ 20

(3, 4] 7→ 40

For every arbitrary t ∈ R the set A = X−1(x ≤ t) has to be an element of the σ-algebra

κ, due to the definition of measurability, see Definition 3.1.5. In our case the results

are

t < −10 : A−10 = ∅

t < 20 : A20 = {(0, 1], (1, 2]}

t < 40 : A40 = {(0, 1], (1, 2], (2, 3]}

t ≥ 40 : A≥40 = {(3, 4]}.

All sets – A−10, A20, A40, and A≥40 – are members of κ and it follows that X is mea-

surable on κ. Moreover, X is a real function X : Ω→ R. Thus, X is a random variable

according to Definition 3.1.4.
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A.2 Expected value for a continuous random variable

In the simple case where the random variable X only maps to a countable number of

different values a1, a2, ..., an, so |range(X)| = n, the expected lead time lt1 is given by

E[Xlt1 ] =
n

∑
i=1

ai · P(Ai) (A.2.1)

with Ai = X−1(ai). Note, that Ai ∈ κ always holds for i ∈ {1, 2, ..., n} because the ran-

dom variable X has to be measurable concerning the σ-algebra κ, see Appendix A.1

for an example.

In the continuous case we have to use Borel sets for the sample space Ω. Further-

more, the distribution function F, as defined in Definition 3.1.4, may be used. Accord-

ing to Feller one can now specify an arbitrary random variable X, an arbitrary ε > 0,

and two simple random variables X and X with | range(X) | = | range(X) | = n,

X = X + ε, and X ≤ X ≤ X. Whenever E[X] and E[X] exist then

E[X] ≤ E[X] ≤ E[X] (A.2.2)

must hold for any reasonable definition of E[X], see [Fel71]. With this in mind one can

define the expected value E[X] of an arbitrary random variable X. Thereby, the two

notations

E[X] = lim
ε→0

∞

∑
−∞

k · ε · P ((k− 1) ε < X ≤ k ε) (A.2.3)

and

E[X] =

∞∫

t
−∞

t · FX{dt} (A.2.4)

are equivalent. Note, that the expression FX{dt} actually refers to an interval function

FX{I} that assigns a probability value to the interval I = (t− ε, t] where I = ε = dt.

Consequently, if ε → 0 the expression FX{dt} represents the density function fX(t)

associated with the distribution function FX{(−∞, t]} = FX(t). So we can rewrite the
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formula for the expected value of X as

E[X] =

∞∫

t
−∞

t · fX(t) dt. (A.2.5)

Note, these findings are not restricted to one-dimensional sample spaces but also valid

for random variables that are based on a σ-algebra generated by the Borel sets in Rn.

A.3 Sum of expected values using indicator functions

In this section we give proofs for several conditions in which the expected value of

one random variable used in combination with several indicator functions and their

underlying sets is simply the expected value of the random variable in combination

with one indicator function based on the union of all individual sets.

Proof. Let X1, X2 : Ω→ R1 be arbitrary random variables on the sample space Ω with

a σ-algebra κ, two individual density functions fX1 , fX2 , and a joint density function

f . Moreover, the sets A1 and A2 are specified by the random variable X2 according

to A1 = X2
−1(B1) and A2 = X2

−1(B2) where B1, B2 ⊂ R1. Whenever X2(A1) ∪
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X2(A2) = X2(Ω) = B1 ∪ B2 and A1 ∩ A2 = ∅ it then holds

E[X1 1A1 ] + E[X1 1A2 ]

=

∞∫

x2
−∞

∞∫

x1
−∞

1A1 x1 f (x1, x2) dµ +

∞∫

x2
−∞

∞∫

x1
−∞

1A2 x1 f (x1, x2) dµ

=

∞∫

x1
−∞




∫

X2(A1)

x1 f (x1, x2) dx2 +
∫

X2(A2)

x1 f (x1, x2) dx2


 dx1

=

∞∫

x1
−∞

∞∫

x2
−∞

x1 f (x1, x2) dµ

=

∞∫

x1
−∞

x1 fX1(x1) dx

= E[X1]. (A.3.1)

This shows that the expected value of a random variable can be simply computed by

sum of two expected values if the restricting sets A1 and A2 are thoughtfully chosen.

Note, that f (x1, x2) = fX1(x1) · fX2(x2) in case of statistical independence of X1

and X2 like in our case of lead time and demand. Moreover, this proof can easily be

extended to several disjoint sets A1, ..., An.

Proof. Using the same assumptions as in the proof before the equations

E[X1 1A1 ] + ... + E[X1 1An ]

=

∞∫

x1
−∞




∫

X2(A1)

x1 f (x1, x2) dx2 + ... +
∫

X2(An)

x1 f (x1, x2) dx2


 dx1

= E[X1] (A.3.2)

hold whenever
⋃

i∈{1,...,n}
Ai = Ω and Ai ∩ Aj = ∅ for all i, j ∈ {1, ..., n} and i 6= j.
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This concept can be simply applied to arbitrary disjoint sets that not necessarily

have to sum up to Ω.

Proof. For two κ-measurable sets A1 and A2 with A1 ∩ A2 = ∅ and two random vari-

ables X1 and X2 with X2(A1) ⊆ R1 and X2(A2) ⊆ R1 it holds

E[X 1A1∪A2 ] =

∞∫

x1
−∞

∫

X2(A1∪A2)

x1 f (x1, x2) dx2 dx1

=

∞∫

x1
−∞




∫

X2(A1)

x1 f (x1, x2) dx2 +
∫

X2(A2)

x1 f (x1, x2) dx2


 dx1

= E[X 1A1 ] + E[X 1A2 ] (A.3.3)

Thus, even for two arbitrary disjoint sets A1 and A2 one can simply sum up the two

expected values of a random variable X1 by applying indicator functions and yield

the joint expected value restricted by the indicator function of A1 ∪ A2.

The simplicity of using indicator functions is not limited to multiple sets but can

also be extended to multiple random variables X2, ..., Xm.

E[X1 1A1,2 ... 1A1,m ] + ... + E[X1 1An,2 ... 1An,m ]

=

∞∫

x1
−∞




∫

X2(A1,2)

...
∫

Xm(A1,m)

x1 f (x1, x2, ..., xm) dµ + ...+

∫

X2(An,2)

...
∫

Xm(An,m)

x1 f (x1, ..., xm) dµ


 dx1

=

∞∫

x1
−∞

∞∫

x2
−∞

...
∞∫

xm
−∞

x1 f (x1, x2, ..., xm) dµ dx1

= E[X1] (A.3.4)

holds whenever
⋃

i∈{1,...,n}
Ai,j = Ω for each j ∈ {2, ..., m}, all Ai,j are pairwise disjoint,

and f (x1, ..., xm) is the joint distribution of the random variables X1, ..., Xm.
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A.4 Expected value using an indicator function and adding

a scalar

If we want to calculate the sum of a random variable X and a scalar c in a certain range

using the indicator function of a set A one has to consider the probability of set A. The

following proof can easily be adjusted for the case of substraction E[X− c], as well.

Proof. Given the arbitrary random variables X : Ω → R1 and Y : Ω → R1 and an

interval B ⊂ R1 then there always exists a set A ⊂ Ω with A = Y−1(B). Further, the

indicator function 1A yields 1 whenever for an arbitrary y ∈ R1 it holds Y−1(y) ∈ A.

Otherwise 1A = 0. Let c be an arbitrary real value and let f be the probability density

function associated with X. Then it holds that

E[(X + c) 1A] =

∞∫

−∞

1A (x + c) f (x) dx

=
∫

Y(A)

(x + c) f (x) dx

=
∫

B

c f (x) dx +
∫

B

x f (x) dx

= P(A) c + E[x 1A] (A.4.1)

If A = Ω then P(A) = 1, the indicator function 1A = 1 for all y ∈ Y(Ω), and we yield

the commonly known expression E[X + c] = c + E[X].

A.5 Expected value using an indicator function and mul-

tiplying a scalar

If we want to calculate the expected value of a random variable X which is multiplied

with a real number we can use the well-known equation E[X · c] = c · E[X] even in the
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case of applying an indicator function. The following proof also holds for the division

E[X
c ] as one can easily verify.

Proof. Given the arbitrary random variables X : Ω → R1 and Y : Ω → R1 and an

interval B ⊂ R1 then there always exists a set A ⊂ Ω with A = Y−1(B). Further, the

indicator function 1A yields 1 whenever for an arbitrary y ∈ R1 it holds Y−1(y) ∈ A.

Otherwise 1A = 0. Let c be an arbitrary real value and let f be the probability density

function associated with X. Then it holds that

E[(X · c) 1A] =

∞∫

−∞

1A (x · c) f (x) dx

=
∫

Y(A)

x · c · f (x) dx

= c ·
∫

B

x f (x) dx

= c · E[x 1A]. (A.5.1)

If A = Ω then the indicator function 1A = 1 for all y ∈ Y(Ω), and we yield the

commonly known expression E[X · c] = c · E[X].

A.6 Conditional expectations for multiple random vari-

ables

One can create a very flexible mechanism that allows to use an arbitrary countable

number of different random variables, for example for calculating the conditional ex-

pectations. This approach is based on the book of Feller to which we refer the inter-

ested reader for details [Fel71].

The joint probability P(X, Y) of any two intervals A, B ∈ R1 is given, where R1 is
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the range of the random variables X and Y.

P(X, Y) = P(X ∈ A, Y ∈ B). (A.6.1)

Similarly to the density distribution fX : R → [0, 1] which is defined on single points

x ∈ R the marginal distribution or density distribution gX : [a, b] → [0, 1] is defined

on arbitrary intervals I = [a, b] with a, b ∈ R and a ≤ b. Using Equation (A.6.1) the

function gX can now be expressed by

gX(A) = P(X ∈ A, X ∈ R1) = P(X ∈ A). (A.6.2)

Given that gX(A) > 0 one can now write the conditional probability

P(Y ∈ B |X ∈ A) =
P(X ∈ A, Y ∈ B)

gX(A)
=

P(X ∈ A, Y ∈ B)
P(X ∈ A)

(A.6.3)

which is very similar to the well known formula for conditional probability on two

sets. But here we do have the explicit notation of two different random variables.

Note, for gX(A) = 0 the expression P(Y ∈ B |X ∈ A) is undefined. If we reduce

the length of the interval A towards zero, indicated by Aε = (x, x + ε), we obtain the

marginal conditional probability

q(x, B) = lim
ε→0

P(X ∈ Aε, Y ∈ B)
gX(Aε)

. (A.6.4)

Example A.6.1. Assuming that a joint density function h(x, y) exists for the two ran-

dom variables X and Y, the conditional probability of the event {Y ∈ B} and X = x

is

q(x, B) =
1

fX(x)

∫

B

h(x, y) dy. (A.6.5)

This leads to the definitions for the joint probability of X and Y and for the conditional

probability distribution.
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Definition A.6.1 (Joint probability). Let X and Y be two random variables and let the

set B be fixed. By P(Y ∈ B |X) (in words, ”a conditional probability of the event

{Y ∈ B} for given X”) is meant a function q(X, B) such that for every set A ∈ R1

P(X ∈ A, Y ∈ B) =
∫

A

q(x, B) gX(dx) (A.6.6)

where g is the marginal distribution of X (on interval dx).

Definition A.6.2. A conditional probability distribution of Y for given X refers to a

function q of two variables, a point x and a set B, such that

1. for a fixed set B

q(X, B) = P(Y ∈ B |X) (A.6.7)

is a conditional probability of the event {X ∈ B} for given X.

2. q is for each x a probability distribution.

Now, one can define the conditional expected value. First we assume that the

probability of the random variable X is always positive.

Definition A.6.3. A conditional expectation E[Y |X] is a function of X assuming at x

the value

E(Y | x) =
∞∫

y
−∞

y q(x, dy) (A.6.8)

provided the integral converges (except possibly on a x-set of probability zero).

Note, in this case it holds that

E(Y) =
∞∫

x
−∞

E(Y | x) g(dx) = E(E(Y |X)). (A.6.9)

However, if the probability of X is not exclusively positive on R1, e.g. not defined, we

use the Borel set A ∈ R1 and define the random variable 1A(X) which is one for all
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values X ∈ A and zero otherwise. Now, we can integrate over Equation (A.6.8).

E(Y1A(X)) =
∫

A

E(Y | x) g(dx) =
∞∫

x
−∞

1A(x) E(Y | x) g(dx) (A.6.10)

The random variable 1A(X) is also referred to as indicator function of A. Moreover,

1A(X) influences B in a way that B is the set of all points in Ω which X maps to a

value in A. In other words, B is a σ-algebra of sets in Ω which is called ”the algebra

generated by X” [Fel71], p 163, and which we denote by 1B. Thus, the expression

U = E(Y |X) is a function for which

E(Y 1B) = E(U 1B) (A.6.11)

holds for every set B in the σ-algebra generated by X.

Based on Feller we give a comprehensive example for the two-dimensional space

R2 [Fel71].

Example A.6.2. We take the plain (RR>0 × R) with random variables X : R>0 →
R and Y : R → R as sample space and there exists a strictly positive continuous

probability density f (x, y). The random variable X maps a constant value to all lines

parallel to the y-axis and intersecting with the positive x-axis. If A is an arbitrary set

on the positive x-axis then the set B contains all those lines that run through the points

of A. So the left side of Equation (A.6.11) is equal to the ordinary integral of y f (x, y)

and the expected value can be calculated by

E(Y 1B) =
∫

A

dx
∞∫

y
−∞

y f (x, y) dy. (A.6.12)

The right side of Equation (A.6.11) is the ordinary integral of a function U(x) f1(x),

where f1(x) is the marginal density of X. Thus, in this case one can write

U(x) =
1

f1(x)

∞∫

y
−∞

y f (x, y)dy (A.6.13)
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which is identical to Definition A.6.3.

Note that f1(x) represents the marginal density of X based on its underlying σ-

algebra κ1 which is identical to the Borel sets of R>0 in this case. So f1(x) > 0 is not

restricted to values from A and for an arbitrary A ⊂ R>0 it must hold that

∫

A

f1(x) dx <
∫

R>0

f1(x) dx = 1 (A.6.14)

due to the strict positivity of f1 regarding the fact that the denominator cannot be zero.

This approach can easily be extended to several conditional random variables

which leads to the definition of Doob.

Definition A.6.4 (Conditional expectation by Doob). Let (Ω,κ, P) be a probability

space, and κ1 a σ-algebra of sets in κ (that is, κ1 ⊂ κ). Let Y be a random variable

with expectation. A random variable U is called conditional expectation of Y with

respect to κ1 if it is κ1-measurable and Equation (A.6.11) holds for all sets B ∈ κ1. In

this case we write U = E(Y |κ1).

In the particular case that κ1 is the σ-algebra generated by the random variables

X1, ..., Xn the variable U reduces to a Baire function of X1, ..., Xn and will be denoted

by E(Y |X1, ..., Xn).

Note, that Definition 3.1.7 is not limited to random variables but to any set of event

sets κ1 as long as κ1 is a σ-algebra and κ1 ⊆ κ. Of course, one can define a random

variable X generated by the σ-algebra κ1, as well. Thus, there are two ways of con-

structing a conditional expected random variable U.

Now we are able to express the probability and the expected values for our random

variables X1, X2, and X3, the three sets M1, M2, M3 ∈ κ, and arbitrary intersections

and unions of these sets. For example, the conditional expected amount of shortage in
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a cycle with shortage is given by

E[X1 1M1 ] =

∞∫

x
−∞

1M1(x) · E[X1 | x] · g(dx)

=

∞∫

x
−∞

1M1(x) ·

 1

g(R1 ∩ dx)
·

∞∫

y
−∞

y P(dy ∩ dx)


 · g(dx)

=

∞∫

x
−∞

1M1(x) ·
[

g(dx)
g(dx)

· x
]
· g(dx)

=

∞∫

x
−∞

1M1(x) · x · g(dx)

=

0∫

x
−∞

x · g(dx) (A.6.15)

where g(dx) is the marginal probability of X1. The result becomes clear when one

considers the fact that x ∈ M1 denotes the shortage in a cycle and that X1 extracts

the (possibly negative) stock from every triple element (s, lt1, d′) of an arbitrary set

A ∈ κ defined by our probability space (Ω,κ, P). Thus, for a given negative stock x

the probability P(dy ∩ dx) > 0 only holds if dx = dy and so the expected value of the

stock E[X1 | x] must be equal to x.

Note that E[X1 1M1 ] is neither identical to the expected stock E[X1] nor identical to the

conditional expected stock E[X1 |X1 < 0] but the relations

E[X1] =

∞∫

x
−∞

x · g(dx)

= E[X1 1M1 ] +
∫

Ω\M1

x · g(dx)

= E[X1 1M1 ] + E[X1 1M1
] (A.6.16)
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and

E[X1 |X1 < 0] =
1

FX1(0)

∫

M1

x · g(dx)

=
1

FX1(0)
· E[X1 1M1 ] (A.6.17)

hold between them where g(dx) is the marginal probability of X1, namely

g(dx) = g(Ah ∈ R1) = P({ω |ω ∈ Ω, x ≤ X1(ω) < x + h, and h→ 0}), (A.6.18)

and FX1(t) is the distribution function of X1 given by

FX1(t) = P({ω |ω ∈ Ω and X1(ω) ≤ t}). (A.6.19)

Given a random variable Y and an arbitrary Borel set A on R1 with the associated

set B = {Y ∈ A} of elements in the event space the conditional expected shortage

E[X1 1M1,B] is determined by the intersection of M1 and B. Its value is given by

E[X1 1M1∩B] =

∞∫

x
−∞

1M1∩B(x) · E[X1 |M1, B] · g(dx)

=

∞∫

x
−∞

1M1∩B(x) · x · g(dx)

=
∫

x

range(M1∩B)

x · P({ω |ω ∈ Ω, x ≤ X1(ω) < x + h, and h→ 0}). (A.6.20)

Moreover, Case 1 can now be expressed by M2 ∩M3 and Case 2 can be expressed

by M2 ∩ M3. Coming back to the formula (3.3.4) which we like to proof and which

calculates the expected shortage in a one-order cycle we can now write the equivalent
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expressions

E[X1 1M1∩M3 ] = E[X1 1SH∩(1,.,.)]

=

∞∫

x
−∞

1M1∩M3(x) · E[X1 | x] · g(dx)

=

∞∫

x
−∞

1M1∩(M2∪M2)∩M3
(x) · x · P({ω |ω ∈ Ω, x ≤ X1(ω) < x + h, and h→ 0})

=

∞∫

x
−∞

1M1∩M2∩M3(x) · x · P({ω |ω ∈ Ω, x ≤ X1(ω) < x + h, and h→ 0}) +

∞∫

x
−∞

1M1∩M2∩M3
(x) · x · P({ω |ω ∈ Ω, x ≤ X1(ω) < x + h, and h→ 0})

= E[X1 1M1∩ Case 1] + E[X1 1M1∩ Case 2]

= E[X1 1M1∩M2∩M3] + E[X1 1M1∩M2∩M3
]. (A.6.21)

A.7 Time window for triggering a second order

We want to show that the expression

f (tw) =
∫ tw

0
l1(y)dy +

∫ ∞

tw

∫ ∞

y−tw
l2(z)dz l1(y)dy (A.7.1)

is monotonously increasing regarding tw with tw ≥ 0.

First, the integration over a probability density is non-negative and cannot exceed

the unity. Given any arbitrary value for y we can replace the value of the inner integral

of the second summand by a and it holds that 0 ≤ a ≤ 1. Then it holds for any

arbitrary y that

l1(y) ≥ a l1(y). (A.7.2)

This result can be transferred to the sum of more than one value, y1, y2, ..., yn, and the
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inequality
∫ x

tw
l1(y)dy ≥

∫ x

tw

∫ ∞

y−tw
l2(z)dz l1(y)dy (A.7.3)

must be true, as well. Knowing this, it is easy to verify that with an increasing tw the

first summand of Equality (A.7.1) increases at least as much as its second summand

decreases. Consequently, f (tw) is monotonously increasing and its minimum value is

reached for tw = 0, the minimum value for tw by definition.

A.8 Conditional expected time until stock depletion

Often we are facing the situation where we know the stock level Xs(t) at two times

t0 < t1. For example, Xs(t0) = R1 and Xs(tg) = R2. Whenever R1 > 0 > R2 is given

it is an interesting question what the expected depletion time is without regarding

incoming orders. In fact, we can show that

E[time when stock of R1 depletes] =
R1

R1 − R2
· (tg − t0) (A.8.1)

holds in this scenario under some mild assumptions. While this equation seems in-

tuitively right, the proof needs some further considerations1. In our setting we know

the demand distribution over time rather than the stock distribution. Therefore, we

reformulate the problem in terms of: what is the expected time E[tD] at which the de-

mand accumulates to R1 given a total demand of R1 − R2 is observed at time tg.

Let the demand distribution D(x, t) be a continuous variable in amount x and time t.

We refer to D(x = R, t) as D(R) for an arbitrary demand R ≥ 0. Then, in our example

we formally want to calculate the value for

E
[
D(R1) | D(R1 − R2) = tg

]
. (A.8.2)

1 Many thanks to Eric Cope and Peter Haas for pointing out this elegant proof.
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Further, we happen to observe a demand of R after time T ∈ R. We assume the

demand to be independently and identically distributed for each point in time. More-

over, the time distributions for incremental demand are identical, as well. Then we

can consider the evolvement of the demand over time to be a time-homogeneous

Markovian process. Now we split R into two equal amounts R1 + R2 = R. Due to

our assumption about the Markovian process we can state that D(R1) ∼ D(R2) are

two random time variables that are identically and independently distributed. Then

it holds that D(R1) + D(R2) = D(R) and

E[D(R1) | D(R1) + D(R2)] =
D(R)

2
. (A.8.3)

Now, we bisect the interval (R1, R) which leads to a third amount R3 = R1+R
2 = 3

4 · R.

Note that D(α · R) is identically distributed independent over time for any α ≥ 0. This

leads to

D(R) = D(R1) +
D(R1)

2
+

D(R1)

2
= D(R3) +

D(R1)

2
(A.8.4)

E[D(R3)] = E[D(R1)] + E[D(R3)− D(R1)] (A.8.5)

E[D(R3) | D(R)] = E [E[D(R3) | D(R1), D(R)] | D(R)] . (A.8.6)

We can derive from the latter two equations

E[D(R3) | D(R)] = E
[

E
[

D(R)− D(R1)

2
| D(R1), D(R)

]
| D(R)

]

= E
[

D(R)− D(R1)

2
| D(R)

]

= E
[

D(R)− D(R)
4
| D(R)

]

=
3
4
· D(R). (A.8.7)

Putting all pieces together, we have chosen the three amounts R, R1, and R3 with R1 =

1
2 ·R and R3 = 3

4 ·R. In the beginning we set D(R) = T and from Equations (A.8.3) and

(A.8.7) we know that E[D(R1) | D(R) = T] = 1
2 · T and E[D(R3) | D(R) = T] = 3

4 · T,
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respectively.

We can recursively apply this mechanism of bisection k times. This allows us to

calculate the conditional expected time E[D(x) | D(R)] for all x = i · R
k+1 with i ∈

{0, 1, ..., k + 1} which yields

E
[

D
(

i
k + 1

· R
)
| D(R)

]
=

i
k + 1

· D(R). (A.8.8)

Passing to the limit k→ ∞ we are able to verify Equation (A.8.8) for all demands α · R
where 0 ≤ α ∈ R which leads to the desired equation

E [D (α · R) | D(R)] = α · D(R) (A.8.9)

under the given mild assumptions.

In our example, α = R1
R1−R2

and D(R) = R1 − R2, so we yield for the expected deple-

tion time

E
[

D
(

R1

R1 − R2
· (R1 − R2) | D(R1 − R2) = tg

)]
=

R1

R1 − R2
· tg.
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Shortage formulas

Case 6. This case is specified by (2, tw, A1). First, this means that time window tw

does not exceed the lead time lt1 of the first order, so tw ≤ y = lt1 < ∞. Second, this

implies that the second order must not be triggered after tw, so 0 < t = tg ≤ tw. Third,

the first order arrives before the second one which translates into 0 < y− t < z = lt2.

In addition, the demand x between triggering the second order and the arrival of the

first order must exceed R2 in order to cause a shortage, so R2 < x < ∞. Consequently,

the formula for the shortage before the first order arrives yields

E<A1
[
−Xs,A1 1(2,tw,A1)

1Ms,A1,<0

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

[R2]
+

(x− R2) f (x, y− t) l2(z) g(t) l1(y) dµ (B.0.1)

which is valid for both cases R2 ≥ 0 and R2 < 0. For the condition that the first

delivery cannot satisfy all backlogged demand the formula is given by

E≥A1
[
(Xs,A1 − Xs,A2) 1(2,tw,A1)

1Ms,A1,<−Q1

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

[R2+Q1]
+

∞∫

x′
0

x′ f (x′, z + t− y) f (x, y− t) l2(z) g(t) l1(y) dµ. (B.0.2)
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Whenever the first delivery can cover all backlogged demand the formula for Case 6

is

E≥A1
[
−(Xs,A2 + Q1) 1(2,tw,A1)

1Ms,A1,<−Q1
1Ms,A2,<−Q1

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

[R2+Q1]
+

∫

x

0

∞∫

x′

[R2+Q1−x]+

(x′ − R2 −Q1 + x) f (x′, z + t− y) ·

f (x, y− t) l2(z) g(t) l1(y) dµ. (B.0.3)

.

Case 7. This case is specified by (2, tw, A2) which is similar to Case 6. First, this

means that time window tw does not exceed the lead time lt1 of the first order, so

tw ≤ y = lt1 < ∞. Second, this implies that the second order must not be triggered

after tw, so 0 < t = tg ≤ tw. Third, the second order arrives before the first one which

translates into 0 < z = lt2 < y− t. In addition, the demand dlt2 during the lead time

of the second order must exceed R2 in order to cause shortage, so R2 < x = dlt2 < ∞.

Consequently, the formula for the shortage before the second order arrives, which is

the order associated with R2 in this case, yields

E<A2
[
−Xs,A2 1(2,tw,A2) 1Ms,A2,<0

]
=

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

[R2]
+

(x− R2) f (x, z) l2(z) g(t) l1(y) dµ. (B.0.4)

Note, this formula is already independent of the value of the two reorder points. For

the case where the first delivery cannot satisfy all backlogged demand at the time

of its arrival the demand dlt2 during the lead time of the second order must exceed

R2 + Q2. Thus, R2 + Q2 < x < ∞ and any positive demand x′ between the two

arrivals immediately leads to some shortage. Note, that only non-negative bounds of



Appendix B – Case 7 289

the integration of the demand x make sense.

E≥A2
[
(Xs,A2 − Xs,A1) 1(2,tw,A2) 1Ms,A2,<−Q2

]
=

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

[R2+Q2]
+

∞∫

x′
0

x′ f (x′, y− z− t) f (x, z) l2(z) g(t) l1(y) dµ (B.0.5)

For the last scenario, where the order quantity Q2 is large enough to satisfy all back-

logged demand at the time of its arrival

E≥A2
[
−(Xs,A1 + Q2) 1(2,tw,A2) 1Ms,A2,<−Q2

1Ms,A1,<−Q2

]
=

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

[R2+Q2]
+

∫

x

0

∞∫

x′

[R2+Q2−x]

(x′ − R2 −Q2 + x) f (x′, y− z− t) ·

f (x, z) l2(z) g(t) l1(y) dµ (B.0.6)

determines the shortage between the first and the second arrival.
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Stock formulas

C.1 One-order cycles

Case 2. Consider the case where R1 ≥ 0 > R2 holds. It is then possible that the stock

depletes within tw without triggering a second order. The average stock on hand

before tw is

E<tw
R1≥0>R2

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1∫

x

0

tw

(
R1 −

x
2

)
f (x, tw) l1(y) dµ +

∞∫

y

tw

R1−R2∫

x

R1

η(x, R1) · tw ·
R1

2
f (x, tw) l1(y) dµ. (C.1.1)
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For the time after tw and until the arrival of the order we (partially) have stock only if

the demand x during tw has been less than R1.

E<A1
R1≥0>R2

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1∫

x

0

∞∫

x′
0

η(x′, R1 − x) (y− tw)

(
R1 − x− min(x′, R1 − x)

2

)
·

f (x′, y− tw) f (x, tw) l1(y) dµ. (C.1.2)

Note, that for x > R1 the stock level is zero and can be neglected. We can split up the

formula and yield

E<A1
R1≥0>R2

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1∫

x

0

R1−x∫

x′
0

(y− tw) ·
(

R1 − x− x′

2

)
f (x′, y− tw) f (x, tw) l1(y) dµ+

∞∫

y

tw

R1∫

x

0

∞∫

x′
R1−x

η(x′, R1 − x) (y− tw)
R1 − x

2
f (x′, y− tw) f (x, tw) l1(y) dµ. (C.1.3)

Considering that R1 > 0 and the average stock on hand between the arrival of the

order and the end of the cycle can be approximated by

E≥A1
R1≥0>R2

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(Q1 − x− x′)
+

µD
·
[

R1 + Q1 − x− x′ − Q1 − x− x′

2

]
·

f (x′, y− tw) f (x, tw) l1(y) dµ. (C.1.4)

Negative reorder points. The last option is 0 > R1 > R2. Here the stock on hand is

zero at least until the arrival of the order.

E<tw
0>R1>R2

[
stock 1(1,tw,.)

]
= 0 (C.1.5)

E<A1
0>R1>R2

[
stock 1(1,tw,.)

]
= 0 (C.1.6)
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Only if the order quantity is large enough to bring the stock level not only above R1

but even above 0 the average stock on hand is positive. Assuming an average demand

rate of µD throughout the rest of the cycle time tc − tA1 yields an expected stock of

E≥A1
0>R1>R2

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(
(R1 + Q1 − x− x′)

+
)2

2µD
f (x′, y− tw) f (x, tw) l1(y) dµ. (C.1.7)

C.2 Two-order cycles where the first order arrives first

Case 3. We assume that R1 ≥ 0 > R2 holds for the reorder points. The stock on hand

must now deplete before triggering the second order at time t = tg. The expected

depletion time is given by

R1

R1 − R2
· tg

under some mild conditions, see proof in Appendix A.8. The expected stock on hand

before tg is then given by

E<tg
R1≥0>R2

[stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

R1

R1 − R2
· t · R1

2
l2(z) g(t) l1(y) dµ. (C.2.1)

Whenever R2 < 0 holds then the stock on hand obviously remains zero between trig-

gering the second order and the arrival of the first order.

E<A1
R1≥0>R2

[stock 1(2,A1,A1)
] = 0 (C.2.2)
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Between the arrival of both orders the stock might be above zero for a while but not

longer than tg + lt2 − lt1 time units.

E<A2
R1≥0>R2

[stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q1 − x)
+
)
(tg + z− y) ·


(R2 + Q1 − x)

+ −
min

(
(R2 + Q1 − x)

+
, x′
)

2


 ·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (C.2.3)

The average stock between the last arrival and the end of the cycle is identical to the

case R1 > R2 ≥ 0 given in Section 3.4.2.1.

Negative reorder points. Here, we assume that 0 > R1 > R2 holds. Obviously, the

stock on hand before the first arrival must be zero.

E<tg
0>R1>R2

[stock 1(2,A1,A1)
] = 0 (C.2.4)

E<A1
0>R1>R2

[stock 1(2,A1,A1)
] = 0 (C.2.5)

Between the arrival of both orders the stock might be above zero for a while but not

exceeding tg + lt2 − lt1 just as for the condition R1 ≥ 0 > R2. Thus, the formula is

identical to Equation (C.2.3).

The stock on hand after the last arrival is not necessarily positive at any time even

if it exceeds R1 at time tA2 . Thus, the average stock on hand is given by

E≥A2
0>R1>R2

[stock 1(2,A1,A1)
] =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

(
(R2 + Q1 + Q2 − x− x′)

+
)2

2 µD
·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ. (C.2.6)
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Case 6. Case 6 differs from Case 3 only by the lead time lt1 > tw instead of lt1 ≤ tw.

Thus, we obtain the formulas for Case 6 by simply adjusting the bounds 0 and tw of the

integration of lt1 to tw and ∞. Moreover, the inter-order time is restricted by tg ≤ tw.

E<tg [stock 1(2,tw,A1)
] =

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

R1
+

R1
+ − R2

− · t ·
(

R1
+ − R2

+

2

)
l2(z) g(t) l1(y) dµ (C.2.7)

E<A1 [stock 1(2,tw,A1)
] =

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

η
(

x, R2
+
)
(y− t)


R2

+ −
min

(
R2

+
, x
)

2


 ·

f (x, y− t) l2(z) g(t) l1(y) dµ (C.2.8)

E<A2 [stock 1(2,tw,A1)
] =

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q1 − x)
+
)
(t + z− y) ·


(R2 + Q1 − x)

+ −
min

(
(R2 + Q1 − x)

+
, x′
)

2


 ·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (C.2.9)

E≥A2 [stock 1(2,tw,A1)
] =

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

(
R2 + Q1 + Q2 − x− x′ − R1

+
)+

µD
·

(
R2 + Q1 + Q2 − x− x′ + R1

+
)+

2
·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (C.2.10)

These formulas hold for all possible settings of R1 and R2.
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C.3 Two-order cycles where the second order arrives first

Case 4. Let us assume positive reorder points R1 > R2 ≥ 0 for a moment. The stock

on hand cannot deplete before the second order is triggered at time t = tg.

E<tg
R1>R2≥0[stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

t ·
(

R1 −
R1 − R2

2

)
l2(z) g(t) l1(y) dµ (C.3.1)

The demand between triggering and receiving the second order is theoretically un-

limited but must occur within the lead time z = lt2.

E<A2
R1>R2≥0[stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

η(x, R2) · z ·
(

R2 −
min(R2, x)

2

)
f (x, z) l2(z) g(t) l1(y) dµ. (C.3.2)

The demand between both arrivals is unlimited as well but timely restricted to a du-

ration of lt1 − tg − lt2. Depending on the previous demand x the stock level might be

above zero the entire time, just for a while, or never. This leads the formula

E<A1
R1>R2≥0[stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q2 − x)
+
)
(y− t− z) ·


(R2 + Q2 − x)

+ −
min

(
(R2 + Q2 − x)

+
, x′
)

2


 ·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ (C.3.3)

The stock after the second arrival must be above R1 according to our assumptions.

Here R1 > 0 holds and the average stock between the last arrival and the end of the
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cycle is given by

E≥A1
R1>R2≥0[stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

E[tc − tA1 ] ·
R2 + Q2 + Q1 − x− x′ + R1

2
·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ. (C.3.4)

where the remaining cycle time after the second arrival is expected to be

E[tc − tA1 ] =
(R2 + Q1 + Q2 − x− x′ − R1)

+

µD
. (C.3.5)

Negative second reorder point. We assume that R1 ≥ 0 > R2 holds. The stock on

hand must deplete now before triggering the second order.

E<tg
R1≥0>R2

[stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

R1

R1 − R2
t · l2(z) g(t) l1(y) dµ (C.3.6)

Whenever R2 < 0 holds then the stock on hand obviously remains zero between trig-

gering and receiving the second order.

E<A2
R1≥0>R2

[stock 1(2,A1,A2)] = 0 (C.3.7)

Between the arrival of both orders the stock might be above zero for a while but never

longer than lt1− tg− lt2. In fact, the formula does not differ from E<A1
R1≥0>R2

[stock 1(2,A1,A2)]

given in Equation (C.3.3). The average stock between the last arrival and the end of

the cycle is identical to the case R1 > R2 ≥ 0, as well, see Equation (C.3.4).

Negative reorder points. We assume that 0 > R1 > R2 holds. Obviously, the stock

on hand before the first arrival must be zero.

E<tg
0>R1>R2

[stock 1(2,A1,A2)] = 0 (C.3.8)

E<A2
0>R1>R2

[stock 1(2,A1,A2)] = 0 (C.3.9)
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Between the arrival of both orders the stock might be above zero for a while just as

for the conditions R1 > R2 ≥ 0 and R1 ≥ 0 > R2. Thus, the formula is identical

to Equation (C.3.3). The stock on hand between the last arrival and tc might not be

positive at any time even if it exceeds R1 at time tA1 . Thus, the average stock on hand

is given by

E≥A1
0>R1>R2

[stock 1(2,A1,A2)] =

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

(
(R2 + Q2 + Q1 − x− x′)

+
)2

2µD
·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ. (C.3.10)

All the formulas of this section can be joined to universal formulas that apply for every

setting of the reorder points R1 and R2.

Case 7. Case 7 is closely related to Case 4. The only thing changing is that the lead

time of the first order exceeds tw. Thus, the equivalent formulas for Case 7 can be

again easily derived from Case 4. First, the bounds of the first integration have to

be changed from 0 and tw to tw and ∞, respectively. Second, the inter-order time is

not limited by the lead time lt1 anymore but by the time window tw which has to be
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considered in the upper bound of tg.

E<tg [stock 1(2,tw,A2)] =

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

R1
+

R1
+ − R2

− · t ·
(

R1
+
+ R2

+

2

)
l2(z) g(t) l1(y) dµ (C.3.11)

E<A2 [stock 1(2,tw,A2)] =

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

0

η(x, R2
+
) · z ·


R2

+ −
min

(
R2

+
, x
)

2


 ·

f (x, z) l2(z) g(t) l1(y) dµ (C.3.12)

E<A1 [stock 1(2,tw,A2)] =

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

η
(

x′, (R2 + Q2 − x)
+
)
(y− t− z) ·


(R2 + Q2 − x)

+ −
min

(
(R2 + Q2 − x)

+
, x′
)

2


 ·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ (C.3.13)

E≥A1 [stock 1(2,tw,A2)] =

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′
0

(
R2 + Q2 + Q1 − x− x′ − R1

+
)+

µD
·

(
R2 + Q2 + Q1 − x− x′ + R1

+
)+

2
·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ. (C.3.14)

These formulas hold for all three possible scenarios of the reorder points, R1 > R2 ≥ 0,

R1 ≥ 0 > R2, and 0 > R1 > R2.
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C.4 Two-order cycles where both orders arrive simulta-

neously

C.4.1 Case 5

Note that the relation lt1 = tg + lt2 must hold between the two lead times for a si-

multaneous arrival of both orders. This case occurs with a probability of zero in the

continuous case but with a positive probability in the discrete case. Thus, we only

consider discrete time units, demands, and the probability functions are the discrete

pendants to their original definition in the following.

Positive reorder points. Both reorder points are positive so that R1 > R2 ≥ 0 holds.

The stock on hand cannot deplete before the second order is triggered.

E<tg
R1>R2≥0[stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

t ·
(

R1 −
R1 − R2

2

)
ldisc
2 (y− t) gdisc(t) ldisc

1 (y) (C.4.1)

Note, that the lead time of the first order has to be two time units or longer. Otherwise,

the probability of a two-order cycle is zero because we assume a minimum lead time

of 1 time unit and do not allow for simultaneous ordering, e.g. order splitting. Thus,

we would yield an one-order cycle for lt1 < 2.

E<A1
R1>R2≥0[stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

∞∫

x

0

η(x, R2) (y− t)
(

R2 −
min(R2, x)

2

)
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx (C.4.2)

The stock after the simultaneous arrival must be above R1 according to our assump-

tions. Here R1 > 0 holds and the average stock between the arrival and the end of the
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cycle is given by

E≥A1
R1>R2≥0[stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

∞∫

x

0

E[tc − y] · R2 + Q2 + Q1 − x + R1

2
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx (C.4.3)

where E[tc − y], the remaining cycle time after the arrivals is

E[tc − y] =
(R2 + Q2 + Q1 − x− R1)

+

µD
. (C.4.4)

Negative second reorder point. We assume that R1 ≥ 0 > R2 holds for the reorder

points. Now the stock on hand must deplete before triggering the second order at

time t = tg.The expected average stock level before triggering the second order is

then given by

E<tg
R1≥0>R2

[stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

R1

R1 − R2
· t ·
(

R1

2

)
ldisc
2 (y− t) gdisc(t) ldisc

1 (y). (C.4.5)

Whenever R2 < 0 the stock on hand obviously remains zero between triggering the

second order and receiving both orders.

E<A1
R1≥0>R2

[stock 1(2,A1,=)] = 0 (C.4.6)

The average stock between the simultaneous arrival and the end of the cycle is identi-

cal to the case R1 > R2 ≥ 0 given in Equation (C.4.3).

Negative reorder points. We assume that 0 > R1 > R2 holds for the reorder points.

Obviously, the stock on hand before the simultaneous arrival must be zero.

E<tg
0>R1>R2

[stock 1(2,A1,=)] = 0 (C.4.7)

E<A1
0>R1>R2

[stock 1(2,A1,=)] = 0 (C.4.8)
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The stock on hand between tA1 and tc might not be positive at any time even if it

exceeds R1 at time tA1 . Thus, the average stock on hand is given by

E≥A1
0>R1>R2

[stock 1(2,A1,=)] =

tw

∑
y=2

y

∑
t=1

∞∫

x

0

(
(R2 + Q1 + Q2 − x)

+
)2

2 µD
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx. (C.4.9)

All the formulas of this section can be joined to universal formulas that apply for every

setting of the reorder points R1 and R2.

C.4.2 Case 8

Case 8 is closely related to Case 5. The only thing changing is that the lead time of

the first order exceeds tw. Thus, the equivalent formulas for Case 8 can be again easily

derived from Case 5. First, the bounds of the first integration have to be changed from

0 and tw to tw and ∞, respectively. Second, the inter-order time is not limited by the

lead time lt1 anymore but by the time window tw which has to be considered in the

upper bound of tg.

E<tg [stock 1(2,tg,=)] =

∞

∑
y=tw+1

tw

∑
t=1

R1
+

R1
+ − R2

− · t ·
(

R1
+
+ R2

+

2

)
ldisc
2 (y− t) gdisc(t) ldisc

1 (y) (C.4.10)

E<A1 [stock 1(2,tg,=)] =

∞

∑
y=tw+1

tw

∑
t=1

∞∫

x

0

η
(

x, R2
+
)
(y− t)

(
R2

+ − min(R2
+

, x)
2

)
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx (C.4.11)
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E≥A1 [stock 1(2,tg,=)] =

∞

∑
y=tw+1

tw

∑
t=1

∞∫

x

0

(
R2 + Q2 + Q1 − x− R1

+
)+

µD
·

(
R2 + Q1 + Q2 − x + R1

+
)+

2
·

f disc(x, y− t) ldisc
2 (y− t) gdisc(t) ldisc

1 (y) dx (C.4.12)

These formulas hold for all three possible scenarios of the reorder points, R1 > R2 ≥ 0,

R1 ≥ 0 > R2, and 0 > R1 > R2.





Appendix D

Formulas for dual sourcing with lost

sales

In this chapter we develop the formulas for the expected shortage and the average

stock on hand for scenarios where unsatisfied demand cannot be backlogged but is

lost. To quantify the lost sales we can use most of the random variables and indicator

function from Chapter 3 without any changes. However, some of the random vari-

ables and the formulas for expected stock and shortages have to be slightly adapted.

Interestingly, one can also interpret the opportunity costs for lost sales as shipping

costs from another warehouse, for example, in a two- or multiple-echelon inventory

system. In this case all unsatisfied demand is not lost but satisfied by a direct ship-

ment from another warehouse, the central warehouse or another warehouse on the

same level within the multi-echelon supply network, for example. Throughout this

chapter we refer to this new policy as direct shipment policy (DS) in contrast to the

backlog policy described in Chapter 3 where unsatisfied demand is backlogged until

the arrival of new supply.

In the following we will first investigate the effect of different reorder point set-

tings. Second, we will look at the implications of satisfying unmet demand by other

305
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warehouses and introduce the necessary changes to the random variables. In the last

three section we will develop the formulas to determine the probabilities of the differ-

ent cases, the expected amount of direct shipments, and the average stock on hand. To

distinguish between the formulas of the two different replenishment policies we add

the initials DS to the superscript of the formulas of the direct shipment policy.

D.1 Adjusted probability space for the reorder point sce-

narios

One implication of the direct shipment policy is a changing role of negative reorder

points. Obviously, unsatisfied demand will occur before a negative reorder point is

reached. This demand is covered by another warehouse and there will be no pending

unsatisfied demand. Thus, the stock cannot fall below zero and the negative reorder

point is never reached. Consequently, a negative reorder point implies that this supply

channel is not taken into consideration. This is exactly our interpretation when using

the direct shipment policy.

A negative second reorder point, R2, prohibits the use of the second supply chan-

nel and reduces our model to a traditional replenishment policy without the option

of a second supply channel. Furthermore, a negative reorder point R1 implies that

all demand is covered by another warehouse on the same or a different level in the

supply network. These scenarios are illustrated in Table D.1 and complies with the

Assumption 2 on page 42 which states that one is free in assigning supply channels to

R1 and R2 but the relation R1 > R2 must always hold.

Of course, setting R1 < 0 for all articles makes a warehouse obsolete because ev-

erything is directly shipped to the customer. However, this option is commonly used

in the spare parts business for single articles that are very expensive to store.
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scenario
direct shipment

1-order case 2-order case
(shortage)

R1 > R2 ≥ 0 possible possible possible

R1 ≥ 0 > R2 possible possible not possible

0 > R1 > R2 possible not possible not possible

Table D.1: Possibility of different events to happen for the three reorder point scenarios

Example D.1.1. Consider a situation where a very expensive article has very little de-

mand on a regional level – a car engine, for example. Storing one engine at each

warehouse facing the customer will result in significant costs in terms of space and

fixed capital. Then it is most likely beneficial to store this article only on a central level

in the supply network and deliver it upon request directly to the customer, a garage

or factory, for example.

One might expect that the different implications of negative reorder points have a

strong affect on the probability space

ΩR1,R2,tw,Q1,Q2 := Ω = {(lt1, lt2, tg, tc, dlt1 , dlt2 , dtw)}

as it is defined for the backlog policy in Equation (3.1.7) on page 56. However, this is

not the case. We can still use this definition and make some additional statements.

We define the probability space for the direct shipment policy according to the

backlog policy by

ΩDS
R1,R2,tw,Q1,Q2

:= ΩDS = {(lt1, lt2, tg, tc, dlt1 , dlt2 , dtw)} (D.1.1)

For all scenarios where R1 > R2 ≥ 0 there are no differences between both event

spaces and we can state Ω ≡ ΩDS although we will have to change some of the ran-
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dom variables in order to model the average stock on hand and the expected number

of direct shipments correctly.

For a scenario where R1 ≥ 0 > R2 the definition of Ω and ΩDS is still identical.

However, there will be no two-order cycles in the direct shipment policy. Conse-

quently, the event sets are differently, Ω 6= ΩDS, and we have to adapt the random

variables.

In the last scenario where 0 > R1 > R2 there will be no replenishment. Conse-

quently, the probability space ΩDS is empty but we can still use the same definition as

for Ω, of course. In addition we can make the statement that ΩDS = ∅ 6= Ω. For a di-

rect shipment policy there exist no cycle times, lead times, and all the order-dependent

variables in this reorder point scenario. The average stock on hand is zero and the ex-

pected number of direct shipments per time unit is identical to the average demand

rate per time unit.

We have defined the proper probability space, ΩDS, for the direct shipment policy in

this section. In the following we will adapt the random variables which are necessary

to correctly calculate the average stock on hand and the expected number of direct

shipments.

D.2 Definition of additional random variables and event

sets

In the direct shipment replenishment policy all shortage is covered by other ware-

houses. However, instead of abandoning the formulas for shortages from the backlog

policy they can still be used after some slight adjustments to quantify the number of

direct shipments in the direct shipment policy.
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Whenever the direct shipment policy is applied all arriving supplies can be fully used

to cover new demand. Potential old shortages have already been compensated by

other warehouses. Consequently, we have to introduce some new random variables

to correctly reflect the stock on hand after each delivery. Here, we proceed analogously

to the definition of the random variables for the backlog policy, see Section 3.1.5.2 on

page 57. Again, each random variables represents a mapping from a probability space

ΩDS to the set of real numbers R, formally expressed by X : ΩDS → R with ω ∈ ΩDS.

Random variables which are meaningful only in the context of the direct shipment

policy are denoted by the superscript DS.

Both random variables (D.2.1) and (D.2.2) represent the stock on hand just before

the first and second order arrives, respectively, without considering any other poten-

tially incoming supply.

XDS
s,A1

:= ω 7→
[
R1 − dlt1

]+
(D.2.1)

XDS
s,A2

:= ω 7→
[
R2 − dlt2

]+
(D.2.2)

Moreover, we can still use the random variables Xs,A1 := ω 7→ R1 − dlt1 and

Xs,A2 := ω 7→ R2 − dlt2 of the backlog policy. They represent the possibly negative

stock just before the arrival of both orders without considering any intermediate de-

livery, see Section 3.1.5.2 on page 57. Consequently, whenever they have a negative

value they quantify the amount of direct shipments from other warehouses for the

direct shipment policy.

The two random variables (D.2.3) and (D.2.4) represent the stock on hand after

the arrival of the first and second order, respectively. Both are intimately related to

the random variables Xs+Q1,A1 and Xs+Q2,A2 , respectively, of the backlog policy in

Section 3.1.5.2 on page 57. However, using the direct shipment policy the stock after
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the arrival of each order cannot fall below Q1 and Q2, respectively.

XDS
s+Q1,A1

:= ω 7→
[
R1 − dlt1

]+
+ Q1 (D.2.3)

XDS
s+Q2,A2

:= ω 7→
[
R2 − dlt2

]+
+ Q2 (D.2.4)

The stock level, not to be confused with the stock on hand, just before the second

order arrives in a two-order cycle is given by the random variables (D.2.5) and (D.2.6).

Note, both equations consist of the stock on hand just before the first arrival plus

the delivered order quantity minus the demand that occurs between both arrivals.

A positive value represents the stock on hand just before the second arrival while a

negative value represents the number of direct shipments that occur between the first

and the second delivery, i.e. the demand that cannot be satisfied by the warehouse.

XDS
s+Q1,A2

:= ω 7→
[
R1 − dlt1

]+
+ Q1 −

[
dlt2 + (R1 − R2)− dlt1

]

= ω 7→ XDS
s+Q1,A1

− Xs,A1 + Xs,A2 (D.2.5)

XDS
s+Q2,A1

:= ω 7→
[
R2 − dlt2

]+
+ Q2 −

[
dlt1 − (R1 − R2)− dlt2

]

= ω 7→ XDS
s+Q2,A2

− Xs,A2 + Xs,A1 (D.2.6)

Once these random variables are defined we can use them to define additional event

sets that are required, for example, to calculate the expected stock on hand in the direct

shipment policy.

cycles with shortage before A2 (including Q1) MSD
s+Q1,A2,<0 = [XDS

s+Q1,A2
]−1(x < 0) (D.2.7)

cycles with shortage before A1 (including Q2) MSD
s+Q2,A1,<0 = [XDS

s+Q2,A1
]−1(x < 0) (D.2.8)

With all these formal preparations we are almost ready to set up the formulas for

the probabilities, expected number of direct shipments and the average stock on hand.

The only thing missing is to investigate the effect of different reorder point settings on

the calculations.

Now, we are ready to set up the different formulas for the direct shipment policy.
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D.3 Probabilities of the reorder cycle scenarios

For each of the eight cases, Case 1 to Case 8, the probability of occurrence does not

differ much between the backlog policy and the direct shipment policy. In fact, they

are identical for the scenario where R1 > R2 ≥ 0 holds. However, a supply channel

with a negative reorder point is not used for replenishment within the direct shipment

policy. Consequently, the formulas get much simpler. The relation between different

reorder point scenarios and the probabilities for the occurrence of direct shipments

and one-and two-order cases are illustrated in Table D.2. Recall that the notation 1

is used for the indicator function. For example, the expression 1(1,.,.) represents the

indicator function for one-order cycles.

scenario direct shipment (shortage) 1-order case 2-order case

R1 > R2 ≥ 0
pR1>R2≥0(direct shipment) p DS

R1>R2≥0

(
1(1,.,.)

)
p DS

R1>R2≥0

(
1(2,.,.)

)

≥ 0 ≥ 0 ≥ 0

R1 ≥ 0 > R2
pR1≥0>R2(direct shipment) = p DS

R1≥0>R2

(
1(1,.,.)

)
p DS

R1≥0>R2

(
1(2,.,.)

)

p DS
R1≥0>R2

(
1(1,.,.) and 1Ms,A1,<0

)
= 1 = 0

0 > R1 > R2
p0>R1>R2(direct shipment) p DS

0>R1>R2

(
1(1,.,.)

)
p DS

0>R1>R2

(
1(2,.,.)

)

= 1 = 0 = 0

Table D.2: Probabilities of direct shipments and one- and two-order cycles

In summary, the Table D.2 shows that one- and two-order cycles and direct shipments

are possible as long as both reorder points are not negative. The probability of direct

shipments for R1 > R2 ≥ 0 encompasses many subcases so it shall be enough here to

state that the probability of direct shipments can be positive.

Whenever only the second reorder point is negative the probability of a two-order

cycle is zero. Then there will only be one-order cycles to cover the demand. The prob-

ability of direct shipments can be simply given as the probability of some shortage
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before the arrival of the first and only order.

In the case where both reorder points are negative there will be no replenishment.

This results in probabilities of zero for one- and two-order cycles. Furthermore, all

demand has to be covered by direct shipments.

For the development of the corresponding formulas it appears fortunate to divide all

possibilities according to their condition on the reorder points. Thereby one should

keep in mind that there exist two major differences between the direct shipment policy

and the backlog policy:

1) different implications of negative reorder points

2) compensation of shortage by future supply vs. other warehouses.

Let us first look at the probability of the different cases where both reorder points are

positive.

D.3.1 All reorder points are non-negative

For this scenario the condition R1 > R2 ≥ 0 holds and so the implication of negative

reorder points has no effect. More precisely, a second order will be triggered if and

only if R2 is met within the time window tw. Here R2 is positive and all shortages

must occur after the second order possibly has been triggered.

In summary, the decision whether to trigger a second order is neither influenced

by the different treatment of shortages nor by the implications of negative reorder

points. Consequently, the formulas for a direct shipment policy are identical to their

counterparts of the backlog policy, see Section 3.2 on page 68. This conclusion is also
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reflected in the formulas (D.3.1) to (D.3.8).

pDS
R1>R2≥0(1, A1, .) = p(1, A1, .) =

tw∫

y

0

R1−R2∫

x

0

f (x, y) l1(y) dµ (D.3.1)

pDS
R1>R2≥0(1, tw, .) = p(1, tw, .) =

∞∫

y

tw

R1−R2∫

x

0

f (x, tw) l1(y) dµ (D.3.2)

pDS
R1>R2≥0(2, A1, A1) = p(2, A1, A1) =

tw∫

y

0

y∫

t

0

∞∫

z

y−t

l2(z) g(t) l1(y) dµ (D.3.3)

pDS
R1>R2≥0(2, A1, A2) = p(2, A1, A2) =

tw∫

y

0

y∫

t

0

y−t∫

z

0

l2(z) g(t) l1(y) dµ (D.3.4)

pDS, disc
R1>R2≥0(2, A1,=) = p(2, A1,=) =

t2

∑
y=2

y

∑
t=1

ldisc
2 (y− t) gdisc(t) ldisc

1 (y) (D.3.5)

pDS
R1>R2≥0(2, tw, A1) = p(2, tw, A1) =

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

l2(z) g(t) l1(y) dµ (D.3.6)

pDS
R1>R2≥0(2, tw, A2) = p(2, tw, A2) =

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

l2(z) g(t) l1(y) dµ (D.3.7)

pDS, disc
R1>R2≥0(2, tw,=) = p(2, tw,=) =

∞

∑
y=tw

tw

∑
t=1

ldisc
2 (y− t) gdisc(t) ldisc

1 (y) (D.3.8)

These formulas will change for scenarios where one or more reorder points are nega-

tive.

D.3.2 At least one reorder point is negative

Whenever the second reorder point is negative, R2 < 0, the second supply channel

will not be considered. In other words, there will only be one-order cases independent

from the amount of occurring demand. This can be simply expressed by the following
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formulas.

pDS
R1≥0>R2

(1, A1, .) =
tw∫

y

0

∞∫

x

0

f (x, y) l1(y) dµ =

tw∫

0

l1(y) dy (D.3.9)

pDS
R1≥0>R2

(1, tw, .) =
∞∫

y

tw

∞∫

x

0

f (x, y) l1(y) dµ =

∞∫

tw

l1(y) dy (D.3.10)

pDS
R1≥0>R2

(2, ., .) = 0 (D.3.11)

The probability of both one-order cases sum up to the unity. This can be easily verified.

In the case where both reorder points are negative, 0 > R1 > R2, the warehouse will

not replenish this article. All demand will be satisfied by other warehouses. Conse-

quently, the probability for one- and two-order cycles is zero and the probability of

direct shipments, p(DS), is equal to one.

pDS
0>R1>R2

(1, ., .) = 0 (D.3.12)

pDS
0>R1>R2

(2, ., .) = 0 (D.3.13)

p(DS) = 1 (D.3.14)

In the next section we will address the expected number of direct shipments.

D.4 Expected number of direct shipments

In this chapter the formulas for the expected number of direct shipments is developed.

Here again, we will first give a general and systematic overview over the different

conditions for a shortage. All expressions that differ from the backlog policy, compare

Table 3.6 on page 72, are indicated by a blue font color.

A look at the Table D.3 reveals that major adaptations have to be made only for

one formula for each Case 3, 4, 6, and 7. All remaining formulas need slight changes
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case direct shipments direct shipment condition

Case 1 (1, A1, .)
dlt1 − R1

before unique arrival, A1, if R1 > 0 and

R1 − dlt1 < 0Case 2 (1, tw, .)

Case 3

Case 6

(2, A1, A1)

(2, tw, A1)

dlt1 − R1
before 1st arrival, A1, if R1 > 0 and

R1 − dlt1 < 0

dlt2 + (R1 − R2)−
dlt1 −Q1 −

[R1 − dlt1 ]
+

before 2nd arrival, A2, if R1 > R2 ≥ 0 and

dlt2 + (R1 − R2)− dlt1 > Q1 + [R1 − dlt1 ]
+

Case 4

Case 7

(2, A1, A2)

(2, tw, A2)

dlt2 − R2
before 1st arrival, A2, if R1 > 0 and

R2 − dlt2 < 0

dlt1 − (R1 − R2)−
dlt2 −Q2 −

[R2 − dlt2 ]
+

before 2nd arrival, A1, if R1 > R2 ≥ 0 and

dlt1 − (R1 − R2)− dlt2 > Q2 + [R2 − dlt2 ]
+

Case 5

Case 8

(2, A1,=)

(2, tw,=)

dlt1 − R1

(dlt2 − R2)

before simultaneous arrivals, A1 = A2, if

R1 > R2 ≥ 0 and R1 − dlt1 < 0

(or equiv. R2 − dlt2 < 0)

Table D.3: Conditions for direct shipments – expressions in blue differ from the back-

log policy

regarding their condition and can be directly derived from the backlog policy. Note,

all major adaptations occur only in two-order cycles for which both reorder points

have to be non-negative.

In the following we will give the formulas for the direct shipment policy separately

for each of the reorder point scenarios.

D.4.1 All reorder points are non-negative

For Case 1 and 2 the expected number of direct shipments is identical to the shortage

of a warehouse in the backlog policy, i.e. the customer demand that cannot be imme-
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diately satisfied by the warehouse itself, see equations (3.3.6) and (3.3.7) on page 77.

EDS
R1>R2≥0

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]
= 0 (D.4.1)

EDS
R1>R2≥0

[
−Xs,A1 1(1,tw,.) 1Ms,A1,<0

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
R1−x

(x′ − R1 + x) f (x′, y− tw) f (x, tw) l1(y) dµ (D.4.2)

Note, the random variable Xs,A1 originates from the backlog policy. The number of

direct shipments before the first arrival is identical to the amount of shortage in the

backlog policy. This applies to all two-order cases. For a comparison with the formulas

of Cases 3 to 8 used in the backlog policy see Table 3.9 on page 99.

E<A1,DS
R1>R2≥0

[
−Xs,A1 1(2,A1,A1)

1Ms,A1,<0

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

R2

(x− R2) f (x, y− t) l2(z) g(t) l1(y) dµ (D.4.3)

E<A2,DS
R1>R2≥0

[
−Xs,A2 1(2,A1,A2) 1Ms,A2,<0

]
=

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

R2

(x− R2) f (x, z) l2(z) g(t) l1(y) dµ (D.4.4)

E<A2,DS
R1>R2≥0

[
−Xs,A1 1(2,A1,=) 1Ms,A1,<0

]
=

tw

∑
y=2

y−1

∑
t=1

y−t

∑
z=y−t

∞∫

x

R2

(x− R2) f disc(x, z) ldisc
2 (z) gdisc(t) ldisc

1 (y) dx (D.4.5)

E<A1,DS
R1>R2≥0

[
−Xs,A1 1(2,tw,A1)

1Ms,A1,<0

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

R2

(x− R2) f (x, y− t) l2(z) g(t) l1(y) dµ (D.4.6)
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E<A2,DS
R1>R2≥0

[
−Xs,A2 1(2,tw,A2) 1Ms,A2,<0

]
=

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

R2

(x− R2) f (x, z) l2(z) g(t) l1(y) dµ (D.4.7)

E<A2,DS
R1>R2≥0

[
−Xs,A1 1(2,tw,=) 1Ms,A1,<0

]
=

∞

∑
y=tw+1

tw

∑
t=1

y−t

∑
z=y−t

∞∫

x

R2

(x− R2) f disc(x, z) ldisc
2 (z) gdisc(t) ldisc

1 (y) dx (D.4.8)

Last but not least we look at the number of direct shipments between the arrival of

both orders for the cases 3, 4, 6, and 7. We will explain the formula using the example

of Case 3. The argumentation can be applied analogously to the remaining cases. In

Case 3 we first want to know the demand d[A1,A2] that occurs between both arrivals,

A1 and A2.

d[A1,A2] = dlt2 + (R1 − R2)− dlt1 (D.4.9)

The demand d[A1,A2] is calculated by subtracting the demand dlt1 during the lead time

lt1 from the total demand dlt2 + (R1 − R2) that occurs between triggering the first

order and the arrival of the second order, A2. In Equation (D.4.10) the demand d[A1,A2]

is represented by the variable x.

Second, we know that there are at least Q1 units on stock after the first order arrives

at A1 due to the fact that potential unmet demand is covered by other warehouses. So

Q1 units have to subtracted from the demand between A1 and A2.

Third, any stock on hand just before the first order arrives at A1 will additionally

decrease the number of direct shipments. This is expressed by [R1 − x]
+

in Equa-

tion (D.4.10).

In total the formula for the number of expected direct shipments between A1 and
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A2 in Case 3 is given by

E≥A1,DS
R1>R2≥0

[
−XDS

s+Q1,A2
1(2,A1,A1)

1MSD
s+Q1,A2,<0

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′

[R2−x]
+
+Q1

(x′ − [R1 − x]
+ −Q1) f (x′, z + t− y) ·

f (x, y− t) l2(z) g(t) l1(y) dµ (D.4.10)

The same approach can be applied to the formula of Case 6

E≥A1,DS
R1>R2≥0

[
−XDS

s+Q1,A2
1(2,tw,A1)

1MSD
s+Q1,A2,<0

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′

[R2−x]
+
+Q1

(x′ − [R1 − x]
+ −Q1) f (x′, z + t− y) ·

f (x, y− t) l2(z) g(t) l1(y) dµ (D.4.11)

and to the scenarios where the second order arrives first, namely, the formulas for

Case 4 and Case 7. These are given by the equations (D.4.12) and (D.4.13), respectively.

E≥A1,DS
R1>R2≥0

[
−XDS

s+Q2,A1
1(2,A1,A2) 1MSD

s+Q2,A1,<0

]
=

tw∫

y

0

y∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′

[R2−x]
+
+Q2

(x′ − [R2 − x]
+ −Q2) f (x′, y− z− t) ·

f (x, z) l2(z) g(t) l1(y) dµ (D.4.12)

E≥A1,DS
R1>R2≥0

[
−XDS

s+Q2,A1
1(2,tw,A2) 1MSD

s+Q2,A1,<0

]
=

∞∫

y

tw

tw∫

t

0

y−t∫

z

0

∞∫

x

0

∞∫

x′

[R2−x]
+
+Q2

(x′ − [R2 − x]
+ −Q2) f (x′, y− z− t) ·

f (x, z) l2(z) g(t) l1(y) dµ (D.4.13)
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All these formulas hold if both reorder points are positive. Now, we investigate the

cases where this is not true.

D.4.2 At least one reorder point is negative

Whenever only the second reorder point is negative, so R1 ≥ 0 > R2 holds, there will

exclusively occur one-order cycles.

EDS
R1≥0>R2

[
−Xs,A1 1(1,A1,.) 1Ms,A1,<0

]
=

tw∫

y

0

∞∫

x

R1

(x− R1) f (x, y) l1(y) dµ (D.4.14)

EDS
R1≥0>R2

[
−Xs,A1 1(1,tw,.) 1Ms,A1,<0

]
=

∞∫

y

tw

∞∫

x

R1

(x− R1) f (x, tw) l1(y) dµ (D.4.15)

The remaining cases 3 to 8 have a probability of zero and there are no direct shipments.

Thus, both expressions can be unified and yield the expression for the number of

expected shipments.

EDS
R1≥0>R2

[
−Xs,A1 1Ms,A1,<0

]
=

∞∫

y

0

∞∫

x

R1

(x− R1) f (x, min(y, tw)) l1(y) dµ (D.4.16)

In the last reorder point scenario, 0 > R1 > R2, there will be no replenishment. Con-

sequently, we cannot specify replenishment parameters like the average cycle time

either. In practice, however, this means that all customer demand has to be satisfied

via direct shipments. Then the expected number of direct shipments per day equals

the average customer demand per day.

D.5 Expected average cycle stock

Compared to the backlog policy the stock after each delivery of an order can never

be negative due to the fact that unsatisfied demand is covered by direct shipments
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in the direct shipment policy. Consequently, there will be no differences in the stock

formulas for the time before the first delivery.

D.5.1 Both reorder points are non-negative

In Case 1 the stock cannot be negative because the second reorder point, R2, is positive

and never reached.

E<A1,DS
R1>R2≥0

[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

y
(

R1 −
x
2

)
f (x, y) l1(y) dµ (D.5.1)

E≥A1,DS
R1>R2≥0

[
stock 1(1,A1,.)

]
=

tw∫

y

0

R1−R2∫

x

0

Q1 − x
µ

(
R1 +

Q1 − x
2

)
f (x, y) l1(y) dµ (D.5.2)

For Case 2 the average stock on hand is composed of three parts, the stock before tw,

between tw and tA1 , and the stock after tA1 until the end of the cycle.

E<tw,DS
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

tw

(
R1 −

x
2

)
f (x, tw) l1(y) dµ (D.5.3)

E<A1,DS
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(y− tw)min
(

1,
R1 − x

x′

)
·

(
R1 − x− min(x′, R1 − x)

2

)
f (x′, y− tw) f (x, tw) l1(y) dµ (D.5.4)

E≥A1,DS
R1>R2≥0

[
stock 1(1,tw,.)

]
=

∞∫

y

tw

R1−R2∫

x

0

∞∫

x′
0

(Q1 − x− x′)
+

µ
·

[
(R1 − x + Q1 − x′)

+ − (Q1 − x− x′)
+

2

]
f (x′, y− tw) f (x, tw) l1(y) dµ (D.5.5)
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The formulas for all two-order scenarios are given in the following. For Case 3 the

expected stock on hand is given by the following four formulas.

E<tg,DS
R1>R2≥0

[
stock 1(2,A1,A1)

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

t
(

R1 −
R1 − R2

2

)
l2(z) g(t) l1(y) dµ (D.5.6)

E<A1,DS
R1>R2≥0

[
stock 1(2,A1,A1)

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

(y− t)min
(

1,
R2

x

)
·

(
R2 −

min(R2, x)
2

)
f (x, y− t) l2(z) g(t) l1(y) dµ (D.5.7)

E<A2,DS
R1>R2≥0

[
stock 1(2,A1,A1)

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

(t + z− y)·

min

(
1,
(R2 − x)

+
+ Q1

x′

)
(R2 − x)

+
+ Q1 −

min
(

x′, (R2 − x)
+
+ Q1

)

2


 ·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (D.5.8)

E≥A2,DS
R1>R2≥0

[
stock 1(2,A1,A1)

]
=

tw∫

y

0

y∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

[[
(R2 − x)

+
+ Q1 − x′

]+
+ Q2 − R1

]+

µ
·




[
(R2 − x)

+
+ Q1 − x′

]+
+ Q2 −

[[
(R2 − x)

+
+ Q1 − x′

]+
+ Q2 − R1

]+

2



·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y)dµ (D.5.9)
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Closely linked to the formulas of Case 3 are the formulas for Case 6.

E<tg,DS
R1>R2≥0

[
stock 1(2,tw,A1)

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

t
(

R1 −
R1 − R2

2

)
l2(z) g(t) l1(y) dµ (D.5.10)

E<A1,DS
R1>R2≥0

[
stock 1(2,tw,A1)

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

(y− t)min
(

1,
R2

x

)
·

(
R2 −

min(R2, x)
2

)
f (x, y− t) l2(z) g(t) l1(y) dµ (D.5.11)

E<A2,DS
R1>R2≥0

[
stock 1(2,tw,A1)

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

(t + z− y)·

min

(
1,
(R2 − x)

+
+ Q1

x′

)
(R2 − x)

+
+ Q1 −

min
(

x′, (R2 − x)
+
+ Q1

)

2


 ·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y) dµ (D.5.12)

E≥A2,DS
R1>R2≥0

[
stock 1(2,tw,A1)

]
=

∞∫

y

tw

tw∫

t

0

∞∫

z

y−t

∞∫

x

0

∞∫

x′
0

[[
(R2 − x)

+
+ Q1 − x′

]+
+ Q2 − R1

]+

µ
·




[
(R2 − x)

+
+ Q1 − x′

]+
+ Q2 −

[[
(R2 − x)

+
+ Q1 − x′

]+
+ Q2 − R1

]+

2



·

f (x′, t + z− y) f (x, y− t) l2(z) g(t) l1(y)dµ (D.5.13)
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For Case 4 the stock on hand is composed by four subcases, as well.

E<tg,DS
R1>R2≥0

[
stock 1(2,A1,A2)

]
=

tw∫

y

0

y∫

t

0

y−t∫

z

0

t
(

R1 −
R1 − R2

2

)
l2(z) g(t) l1(y) dµ (D.5.14)
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]
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)
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(
R2 −

min(R2, x)
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2

)
f (x, z) l2(z) g(t) l1(y) dµ (D.5.15)
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+
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 ·

f (x′, y− t− z) f (x, z) l2(z) g(t) l1(y) dµ (D.5.16)
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Once again the formulas of Case 7 are closely related to the formulas of Case 4.

E<tg,DS
R1>R2≥0

[
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]
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Finally, we develop the formulas for the two scenarios where both orders arrive si-

multaneously. First, for Case 5 these are given by the following three equations.

E<tg,DS
R1>R2≥0

[
stock 1(2,A1,=)

]
=
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∑
y=2

y

∑
t=1

t
(

R1 −
R1 − R2

2

)
ldisc
2 (y− t) gdisc(t) ldisc

1 (y) (D.5.22)
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For Case 8 the formulas are very similar to Case 5.
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E≥A1,DS
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This completes the set of formulas to calculate the average stock on hand when both

reorder points are non-negative. The remaining scenarios are investigated in the next

section.

D.5.2 At least one reorder point is negative

First, we will assume that only the second reorder point is negative. Thus, the second

order channel will never be used and we will only observe one-order cycles no matter

how much customer demand occurs.

E<A1,DS
R1≥0>R2

[
stock 1(1,A1,.)

]
=

tw∫
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0

∞∫

x

0
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x

) (
R1 −

min(x, R1)

2

)
f (x, y) l1(y) dµ (D.5.28)
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(
R1 +

(Q1 − x)
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)
f (x, y) l1(y) dµ (D.5.29)

In Equation (D.5.28) above it is easy to see that the stock on hand will always be pos-

itive as long as R1 > 0 holds. For Case 2 one additional equation is needed to deter-
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mine the expected stock on hand.
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This completes the set of formulas for the stock on hand in the case where R1 ≥ 0 >

R2. Moreover, this concludes our elaboration of the formulas needed to calculate the

average stock on hand due to the fact that for the last reorder point scenario, 0 > R1 >

R2, there will be no replenishment process at all and, thus, no stock on hand.





Bibliography

[AD68] S. G. Allen and D. A. D’Esopo. An ordering policy for stock items when

delivery can be expedited. Operations Research, 16(4):880–883, 1968.
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timization: Meeting system-wide service levels in practice. IBM Journal of

Research and Development, 51(3/4):447–463, 2007.

[LLB06] L. H. Lee, C. Lee, and J. Bao. Inventory control in presence of an electronic

marketplace. European Journal of Operational Research, 174(2):797–815, 2006.

[LP00] David G. Lawson and Evan L. Porteus. Multistage inventory management

with expediting. Operations Research, 48(6):878–893, 2000.

[MA97] Kamran Moinzadeh and Prabuhu K. Aggarwal. An information based

multiechelon inventory system with emvergency orders. Operations Re-

search, 45(5):694–701, 1997.

[MG90] Khalil F. Matta and Hector H. Guerrero. Analyzing an inventory system

with multiple reorder points and periodic replenishment. Computers and

Industrial Engineering, 18(4):445–456, 1990.

[Min03] Stefan Minner. Multiple-supplier inventory models in supply chain man-

agement: A review. International Journal of Production Economics, 81-82:265–

279, 2003.



334 BIBLIOGRAPHY

[MN88] Kamran Moinzadeh and Steven Nahmias. A continuous review model

for an inventory system with two supply modes. Management Science,

34(6):761–773, 1988.

[MP99] Esmail Mohebbi and Morton J.M. Posner. A lost-sales continuous-review

inventory system with emergency ordering. International Journal of Produc-

tion Economics, 58:93–112, 1999.

[MS91] Kamran Moinzadeh and Charles P. Schmidt. An (S− 1, S) inventory sys-

tem with emergency orders. Operations Research, 39(3):308–321, 1991.

[MT80] John A. Muckstadt and L. Joseph Thomas. Are multi-echelon inventory

methods worth implementing in systems with low-demand-rate items?

Management Science, 26(5):483–494, 1980.

[Neu64] Marcel F. Neuts. An inventory model with an optional time lag. Journal of

the Society for Industrial and Applied Mathematics, 12(1):179–185, 1964.

[NLC01] C. T. Ng, Leon Y. O. Li, and K. Chakhlevitch. Coordinated replenishments

with alternative supply sources in two-level supply chains. International

Journal of Production Economics, 73:227–240, 2001.

[Pay09] Tim Payne. Top KPIs for supply chain management. Gartner Research ID

Number: G00166511, Gartner, Inc., Stamford, CT, U.S.A., April 2009.

[PK09] Tim Payne and C. Dwight Klappich. Key issues for SCM, 2009. Gartner Re-

search ID Number: G00166001, Gartner, Inc., Stamford, CT, U.S.A., March

2009.

[PN08] Denise Paulonis and Sabina Norton. Managing global supply chains:

McKinsey Global Survey Results. The McKinsey Quarterly, McK-



BIBLIOGRAPHY 335

insey&Company, see http://www.mckinseyquarterly.com/Operations/,

July 2008.

[PTVF07] William H. Press, Saul A. Teukolosky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes - The Art of Scientific Computing. Cambridge

University Press, New York, 3 edition, 2007.

[Rie06] Jan Riezebos. Inventory order crossovers. International Journal of Production

Economics, 104:666–675, 2006.

[RO76] Matthew Rosenshine and Duncan Obee. Analysis of a standing order in-

ventory system with emergency orders. Operations Research, 24(6):1143–

1155, 1976.

[ROHP91] Ranga V. Ramasesh, J. Keith Ord, Jack C. Hayya, and Andrew Pan. Sole

versus dual sourcing in stochastic lead-time (s, Q) inventory models. Man-

agement Science, 37(4):428–443, 1991.

[Sca60] Herbert E. Scarf. The optimality of (S, s) policies in the dynamic inven-

tory problem. In Kenneth J. Arrow, Samuel Karlin, and Partrick Suppes,

editors, Mathematical methods in the social sciences - Proceedings of the First

Stanford Symposium, Stanford, California, 1960. Stanford University Press.

[Sch89] Carl R. Schultz. Replenishment delays for expensive slow-moving items.

Management Science, 35(12):1454–1462, 1989.

[SDO98] Takeshi Shibuya, Tadashi Dohi, and Shunji Osaki. Optimal continuous

review policies for spare part provisioning with random lead times. Inter-

national Journal of Production Economics, 55:257–271, 1998.

[SW81] D. Sculli and S. Y. Wu. Stock control with two suppliers and normal lead

times. Journal of the Operational Research Society, 32(11):1003–1009, 1981.



336 BIBLIOGRAPHY

[Tan06] Christopher S. Tang. Perspectives in supply chain risk management. In-

ternational Journal of Production Economics, 103:451–488, 2006.

[Tem06] Horst Tempelmeier. Inventory Management in Supply Networks - Problems,

Models, Solutions. Books on Demand GmbH, Norderstedt, 2006.

[TT06] Douglas J. Thomas and John E. Tyworth. Pooling lead-time risk by order

splitting: A critical review. Transportation Research, Part E 42:245–257, 2006.

[TV01a] George Tagaras and Dimitrios Vlachos. A periodic review inventory sys-

tem with emergency orders. Management Science, 47(3):415–429, 2001.

[TV01b] Ruud Teunter and Dimitrios Vlachos. An inventory system with periodic

regular review and flexible emergency review. IIE Transactions, 33:625–635,

2001.

[VAdK98] Jos Verrijdt, Ivo Adan, and Ton de Kok. A trade off between emergency

repair and inventory investment. IIE Transactions, 30:119–132, 1998.

[Vei66] Arthur F. Veinott. The status of mathematical inventory theory. Manage-

ment Science, 12(11):745–777, 1966.

[VSW08] Senthil Veeraraghaven and Alan Scheller-Wolf. Now or later: A simple

policy for effective dual sourcing in capacited systems. Operations Research,

56(4):850–864, 2008.

[VT01] Dimitrios Vlachos and George Tagaras. An inventory system with two

supply modes and capacity constraints. International Journal of Production

Economics, 72:41–58, 2001.

[Wol82] Ronald W. Wolff. Poisson arrivals see time averages. Operations Research,

30(2):223–231, 1982.



BIBLIOGRAPHY 337

[Wri69] Gordon P. Wright. Optimal ordering policies for inventory systems with

emergency ordering. Operations Research, 20(1):111–123, 1969.

[WS77] A. S. Whittemore and S. C. Saunders. A continuous review model for

an inventory system with two supply modes. SIAM Journal on Applied

Mathematics, 32(2):293–305, 1977.

[Zha96] Victoria L. Zhang. Ordering policies for an inventory system with three

supply modes. Naval Research Logistics, 43:691–708, 1996.

[Zip00] Paul Herbert Zipkin. Foundations of Inventory Management. McGraw-Hill

Companies, Inc., Boston, 1 edition, 2000.






