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Abstract

A multi-phase-field model for a general class of binary multi-phase alloy systems is proposed
to describe the formation of growth structures that are experimentally observed within these
systems. The multi-phase-field model is derived in a general form so that it has the flexibility
to model and numerically simulate a variety of solidification phenomena in peritectic, eutectic
and monolectic alloys by suitably alternating the system parameters. The relation between
the free energies in the multi-phase-field model and the specific phase diagram of the alloy
| system is established by using common tangent constructions. For each type of alloy
system, the result of a numerical computation is presented which demonstrates that the new
| multi-phase-field model exhibits a wide range of realistic complex microstructure evolution.
| With regards to a peritectic system, the solidification of peritectic solid phase along the
I properitectic solid phase by solute diffusion in the liquid and the subsequent engulfment of
the parent solid phase are investigated in the numerical treatment. The calculation of a
eutectic alloy system visualizes the lamellar growth of a eutectic grain into an undercooled
melt including the formation of morphological instabilities at the phase boundaries and the
nucleation of new lamellae. The final numerical example considers the phase transitions in a
monotectic alloy and illustrates typical solidification microstructures in monotectic systems
such as coarsening of liquid droplets, particle pushing and the interaction of liquid droplets
with a lamellar monotectic front.
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Introduction

In recent years, the phase-field methodology has been extended to describe polycrystalline grain
structures and phase transitions in multi-phase systems. The multi-phase-field model discussed
in this paper is based on an ad hoc formulation originally proposed in [1]. This model was
further developed to include anisotropy and its sharp interface asymptotic limit was studied
in [2] and [3]. Encouraged by these analytical results, numerical simulations of moving grain
boundaries and triplejunctions in isotropic as well as in anisotropic polycrystalline systems have
been performed in [4] and [5]. In continuation of this work, a crystalline formulation of surface
energy anisotropy was suggested in [6] and applied to simulate grain growth in thin metallic
films. In this context, the symmetry characteristics of adjacent grain boundary triplejunctions
were investigated. Based on the same roots, the multi-phase-field concept was extended to
model the solidification in peritectic and eutectic systems, [7] and in monotectic systems in-
cluding convection within the liquid phases, [8].

The focus of this paper is to construct a thermodynamically consistent formulation of a multi-
phase-field model which can be used to model and numerically simulate phase transitions and
complex growth structures in peritectic, eutectic and monotectic alloy systems. The model has
the generality to describe the solidification processes in all three types of alloys by suitably
alternating the system parameters. For each type of alloy, the result of a numerical calculation
showing characteristic features of the microstructure evolution is presented.

The Multi-Phase-Field Model

Peritectic, eutectic and monotectic alloy systems consist of three phases. In peritectic and
eutectic systems, there is only one liquid phase L, but two solid phases S; and S;. The
peritectic reaction L + S; — S, occurs when the system is cooled down below the peritectic
temperature, whereas the eutectic solidification follows the phase transformation L — S, + S,
once the temperature of the material sample is below the eutectic point. In a monotectic
system, there exist two liquid phases L, and L, and one solid phase S. Beneath the monotectic
temperature, the Ly phase transforms into L, and S according to the reaction L, — Ly + S.

In order to describe these multiphase systems by a multi-phase-field model, a three-component
vector of phase-field variables @(7,t) = (¢1(Z, 1), ¢2(Z. t), ¢3(7, 1)) is introduced. Each phase
of the alloy system is associated with one of the components of the vector @(7,t). Due to
the assumption that the alloy system adopts a specific phase state at each point in space, the
constraint ¢y (¥, 1)+ @a(Z, t) + ¢3(F,t) = 0 is imposed. The components of the phase-field vector
are associated with the phases of the different alloy systems as indicated in Table 1.

Peritectic and eutectic systems Monotectic systems
Phase | Phase-field Phase | Phase-field

Sy - Solid | ¢1(F,1) Ly - Liquid | ¢(%,1)

Sy - Solid | (%, 1) Ly - Liquid | ¢,(&, 1)

Liquid L | ¢3(Z,1) Solid S #a(,t)

Table 1: The association of the phase-field variables in the multi-phase-field model with the
solid and liquid phases of peritectic and eutectic alloys (left) and of monotectic alloys (right).



The multi-phase-field formalism is derived in such a general way that it allows to model all
possible phase transitions in peritectic, eutectic and monotectic systems. In addition to the
phase-field vector, a concentration variable ¢(#, t) is included into the model formulation. This
variable specifies the concentration of a component A of a binary A— B alloy. Furthermore, the
system is assumed to be isothermal and the temperature 7' is treated as a control parameter.
The multi-phase-field model is based on a Ginzburg-Landau free energy functional F(¢, ¢; T)
which is given by
F(¢.e;T) = /V L($, Vo, e;T)dV .

The Lagrangian energy density L(¢, Ve, ¢; T) of the system depends on the phase-field vec-
tor, on its gradient and on the concentration field. L(¢,V,c;T) contains different. energy
contributions and can be written as

a

LOVGT)= 3 ihlbVo— bVl + [(#aT),

ik=1i<k

where the constants 7, are gradient eneigy coefficients which are related to the interface thick-
ness and the surface energy of the interface between the phases labelled i and k. The set of
governing evolution equations can be derived from the gradient flow of the energy functional

i 1 0F(¢,c;T)
“ = TBeve b 4
¢ = V- {M(qu [c{l -V (E(‘ﬁc_“"))]} . (2)

where 3(¢, V) characterizes an anisotropic kinetic coefficient and where M () is defined by

‘ v 3
M(@®) = grD(@),  with D@ =Y. Digi.

The constants D;,i = 1,...,3 are diffusion coefficients of the individual phases. For metallic
alloys, the diffusion constants of the solid phases are approximately four orders of magnitude
smaller than typical values of the liquid phases. The form of the differential equations ensures
that the total free energy decreases monotonically in time and that the total amount of solute
concentration in the system is conserved. Next, different expressions for the free energy density
[(@,¢; T) are formulated which allow to characterize the phase transitions in the various types
of alloy systems.

For peritectic and eutectic alloy systems, the energy contribution f(e, e; T') is specified to be
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where R is the gas constant and v,, ist the molar volume. [ (c) represents the entropy of mixing
of an ideal solution and is given by

I(c) =cln(c) + (1 —¢)In(1 - ¢).
The coefficients Wi(c) are of the form Wix(c) = ¢W/ + (1 - c)Wi, where the quantities

i W‘{: and W are barrier heights between the phases labelled i and k for the case of pure
\A and pure B, respectively. In a similar way, the functions m;(e; T) can be expressed as
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mi(e; T) = emP(T) + (1 — ¢) m}(T). The functions m(T) and m2(T) are bulk free energies
of the pure A and pure B states and can be defined to be
j s T-"*)

m{(T) = L* ( T

A B gf{f=1 B
+mz(T) and m}(T)=L B tmy (1),
i

with ¢ = 1,2 and m$(T) = mg(T) = 0. The parameters L4, L? and T, T2 i = 1,2 are the
latent heat of fusion per unit volume and the melting temperature of the solid phases of the
pure component A and B, respectively.

To reflect monotectic solidification processes by the above multi-phase-field model, a different
choice for the free energy density f(¢,c;T) is used which enables to recover a monotectic phase
diagram by a common tangent construction in the sharp interface limit. The expression of
fl@, ¢; T) for monotectic alloys is

3 3
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with the same definition for the coefficients Wi;(c) as in the peritectic and eutectic case. In
contrast, the bulk free energies m;(¢; T') of the monotectic phases Ly, L, and S are assumed to
be

meT) = %1 c—c(AT))?,
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m(T) = 2ie-ganp,
ma(e;T) = %{c — (AT + AT,

with AT = T — Tinon, and ¢;(AT) = ¢ + o;AT. Here, the constants oy, 3; and ¢? determine
the form of the phase diagram. An extension of the multi-phase-field model to account for
convection in both liquid phases can be found in [8]. In this article, a complete set of dynamie
field equations including the fluid flow is derived.

Phase diagrams

The equilibrium solute compositions on either side of a planar stationary interface are related
by the common tangent construction to the underlying free energies f(g,c; T) of the differ-
ent bulk phases. Therefore, the phase diagram of a specific alloy can be determined from the
parameters in the free energy f(¢,¢;T) by applying the procedure of the common tangent
construction. The same energy function f(¢,c;T) of equation (3) is used to model eutectic
and peritectic solidification. To distinguish the two different types of alloys, the parameters
T, T4, TP, T have to be chosen in a suitable way, see [7] for details. The multi-phase-field
model recovers the phase diagram of a eutectic alloy if the parameters in f (¢, c; T), expression
(3) fulfill the relation min(7!,7°) > max(T3*, ) or min(T!, T) > max(T{, TF). A peri-
tectic phase diagram is obtained if the parameters in equation (3) satisfy T < T < T2 < TP
or T# > T > TF > TP. In the case of a monotectic system, the free energy f(¢,¢;T) in
equation (4) is used to construct a monotectic phase diagram in the sharp interface limit. An
example for the set of parameters and for the computation of the common tangent construction
for each type of phase diagramm is given in [7] and in [8]. To illustrate these results, Figure 1
shows the Gibbs energies for a peritectic system at three different temperatures and, in the last




image, the computed peritectic phase diagram. A common tangent to all three Gibbs parabolas
can be drawn, if the system is at the peritectic temperature, see top right plot of Figure 1.
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Figure 1: Gibbs energies of the three phases o, 7 (solid lines) and L (dashed curve) in a peritectic
system and at three different temperatures: above the peritectic temperature T' = 1.2 (top left),
at the peritectic temperature 7' = 1 (top right) and below the peritectic temperature T = (.98
(bottom left). The last plot shows the result of a computed peritectic phase diagram including
metastable extensions of liguidus and solidus lines by applying a common tangent construction.

Simulations of peritectic, eutectic and monotectic alloys

The objective of this section is to demonstrate the general utility of the multi-phase-field model
as a computational vehicle to simulate a wide variety of realistic growth structures and solidi-
fication morphologies in peritectic, eutectic and monotectic alloy systems. Pursning this aim,
a selection of numerical solutions of the governing equations (1) and (2) for the phase-field
vector @(Z,t) and for the concentration ¢(Z,t) is presented. A finite difference discretisation
on a uniform rectangular mesh allied to an explicit time marching scheme is used for the three
phase-fields and for the solute concentration. For convenience, the phase boundaries are as-
sumed to have isotropic surface energies and effects of fluid flow is ignored. Further details
concerning the numerical setup and the system parameters are given in [7] and [8].

First, numerical simulations corresponding to peritectic solidification are reported. The results
in Figure 2 a) and b) display the computed dynamical evolution of the three phases in a peritec-
tie system for two different initial configurations. The simulations were carried out at 7' = 0.98
below the peritectic temperature and with zero diffusivities in the two solid phases. The phase
diagram shown in Figure 1 (bottom right) was employed. According to the phase diagramm,
the equilibrium concentrations of the two solid phases at T = (.98 were set to ¢ = 0.6670 and
¢ = 0.5258 for the S; and S, phase, respectively. For the initial concentration in the liquid
phase, a mean value of ¢ = 0.32 between the S; liquidus line and the metastable extension of
the S; liquidus line was chosen. In both simulations, it can be observed that the peritectic Sy
phase preferentially grows on top of the parent properitectic S, phase until the S; phase even-
tually engulfs the S; phase. The triplejunctions of all three phases lead the growth direction,
because the S| phase provides the supply of solute needed for the growth of the S; phase and
diffusion in the two solid phases is suppressed. The third snapshot in both sequences of Figure
2 a) and b) visualizes the concentration field in the liquid phase during the growth process.



Figure 2: Simulations of peritectic solidification for two different initial phase configurations
The first two snapshots show the distribution of the phases in the computational domain at tw
different time steps, whereas the last image illustrates the concentration field in the L phase.

The next computation is designed to investigate eutectic phase changes and to demonstrate the
extend to which the multi-phase-field model qualitatively reproduces realistic phenomenol
of eutectic growth structures. The simulation in Figure 3 refers to the Al — Si alloy system '
was performed at T = 0.9. The corresponding equilibrium concentrations are ¢ = 0.073653630
for the S; phase, ¢ = 0.84098063 for the S, phase and ¢ = 0.38 for the liquid phase L. Th
snapshots show the concentration field in the liquid during lamellar growth of a eutectic gi
into an undercooled melt at different time steps. The simulated structure is compared wit
an experimental photograph in the last picture of Figure 3. The solid phases S; and Sy
represented as black and white regions. Blue zones of depleted solute ahead of the S, lamel
and yellow concentration enriched regions ahead of the S; lamellae can be observed. Due to
increase of the lamellar spacing during growth, deep concave hollows are formed at the so
liquid interfaces and the phase boundaries of the eutectic microstructure evolve in a disord
manner. The subsequent nucleation of solid particles of the opposite phase within the conea
portion of the interfaces stabilizes the growth behaviour and re-establishes lamellar growth.

Typical solidification microstructures in monotectic systems are considered in the final ca
lation, Figure 4. The solid phase S is represented as black and the liquid phase Ly as whil
regions. The compositions of the S and L, phase were set to its equilibrium values ¢ = 0.(
and ¢ = 0.7. The L, composition was set to an average mean value of ¢ = 0.375 between th
two liquidus lines of S and L,. The time sequence in Figure 4 illustrates the coarsening of Ly
droplets in L, and their interaction with the L,/S lamellar front. In a short initial pEl’lDd'-f
droplets rapidly coarsen with some dissolving completely, others coalescing with larger pa
and the remainder growing. In the subsequent longer period, lamellar growth with nucleati
of new lamellae, with diffusion controlled pushing of L, droplets and with lamellar selection
established.



Figure 3: Phase-field simulation of a eutectic Al — Si grain in comparison with an experimental
photograph. The snapshots of the calculation display the concentration of silicon and the
evolution of the phase boundaries at times ¢ = 0.00008, 0.00032, 0.00044, 0.00056 and 0.00068.

Figure 4: Simulated microstructure formation of a monotectic system with fine dispersed L,
droplets ahead of a growing lamellar front at times ¢ = 5.0 x 1072, 3.0 x 10~* (first row) and
t=1.0x10"%2.0%1073,1.3 x 1072 (second row). The colours visualize the concentration field,
where S is represented by black and Ly by white regions. The first two snapshots correspond to
the top right concentration range and show the ripening of L, particles of different sizes. The
simulation is compared with an experimental monotectic growth pattern b) observed in [9].



Conclusion

A multi-phase-field model for a general class of binary multi-phase alloy systems has been
constructed that is capable to deseribe complex and realistic solidification microstructures in
peritectic, eutectic and monotectic systems. The formulation of the multi-phase-field mo
combines the derivation given in [7] and [8] to represent all three types of alloys by one
model. Numerical simulations of peritectic, eutectic and monotectic systems are reported which
allow to visualize a wide variety of characteristic features that are experimentally observed n
these types of alloy systems. Based on these promising 2-dimensional results, simulations in
three dimensions using an improved numerical algorithm combined with acceptable compu
tion times are planned in our future progress. These developments will allow to reflect
describe effects due to three spatial dimensions.
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