
Agile Market Engineering
Bridging the gap between business concepts and running markets

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für
Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Wi.-Ing Carsten A. Block

Tag der mündlichen Prüfung: 20. Juli 2010
Referent: Prof. Dr. Christof Weinhardt
Korreferent: Prof. Dr. Wolf Fichtner

2010 Karlsruhe

Acknowledgements

This work would have not been possible without the continuous support and encour-
agement of many different persons. First, I would like to thank my thesis advisor
Prof. Dr. Christof Weinhardt for his untiring support, his visionary ideas, and for
the freedom to develop and explore new ideas in the context of electronic markets.
All this proved to be a very fruitful foundation for shaping my own research agenda.

Also, I would like to thank Prof. Dr. Wolf Fichtner for co-advising me and for provid-
ing valuable feedback on energy markets. Many thanks to my committee members
Prof. Dr. Gerhard Satzger and Prof. Dr. Kay Mitusch for their support.

Much of the content of this work was inspired by countless discussions with my
colleagues of the Institute of Information Systems at Karlsruhe Institute of Tech-
nology. Particular thanks deserve Prof. Dr. Dirk Neumann and Dr. Clemens van
Dinther for the many fruitful discussions. Also, I would like to thank Dr. Henning
Ahlert, Alexander Schuller, and Anders Dalen for sharing their knowledge about
energy markets.

Parts of this book originate from work accomplished in MEREGIO, a smart grid
project funded by the German Federal Ministry of Economics and Technology. The
KIT consortium in this project is headed by Prof. Dr. Hartmut Schmeck and co-
ordinated by Dr. Andreas Kamper. I would like to thank both as well as all other
colleagues in this project for their continued support and for the constructive dis-
cussions throughout my time as project member.

I would like to express my gratitude to Dr. Wolf Ketter and Dr. John Collins for
providing me with their expertise in the field electronic agents and for the joint
development of the trading agent competition for energy markets. Two research
stays in Montreal as guest member of Prof. Dr. Gregory Kersten’s team helped
me better understand electronic negotiations and electronic decision support. This
knowledge proved to be very valuable while developing some of the software artifacts
supporting the agile market engineering process model. Thank you so much!

I am deeply indebted to my family and my friends for their enduring patience and
support throughout this long journey and I would like to dedicate this work to my
wife Eva and my daughter Linnea-Marie. You are wonderful!

Karlsruhe, July 2010 Carsten A. Block

Abstract

Since the advent of the Internet, electronic commerce has become an integral part
of everyday life in most parts of the world. In 2009 private consumers in Germany
purchased goods and services worth 15.5bn EUR via e-commerce market places on
the Internet, an increase of 14.4% over the year before. In this light, design and im-
plementation of electronic market platforms becomes very important. Consequently,
much scientific research has been devoted to the question of “How to design electronic
markets right?” Mechanism Design, a specialized discipline in theoretical economics,
focuses on exactly this question and tries to find optimal market rules for a given
market environment. From this research stream many intriguing insights and results
on optimal market design have evolved. Still most of these results are restricted
by rather strong assumptions “as economists tend to provide models with attrac-
tive equilibrium properties and recognizable strategic behaviors, often maintaining
limiting assumptions to take the edge off of the computational difficulties. Computa-
tionally minded researchers, on the other hand, assume very simple player strategies
to assure nice equilibrium behavior, allowing them to focus on the complex bidding
and decision making environments” (Anandalingam et al., 2005). Overall, explana-
tory power of these results for real markets is limited. By today’s research standards
market reality is simply too complex to be comprehensively covered and described
by means of theoretic market models of one form or the other.

The agile market engineering process model developed as part of this thesis builds
on this insight and assumes that electronic markets for the real world cannot be
completely designed upfront due to complexity constraints and furthermore acknowl-
edges that even small design changes can have a significant impact on user behavior
and market outcome. Instead, the proposed process model tries to bridge the gap
between theoretic market design and practical (electronic) market platform devel-
opment.

Different to previous market engineering process models, it does not rely on exten-
sive and detailed upfront design and modeling of a new electronic market platform.
Instead it fosters and supports short, lightweight, incremental development cycles,
each delivering a fully functional and incrementally improved market system that can
be tested and evaluated “hands-on” as a running system. The rationale behind this
is to pragmatically address the inherent “wickedness” and complexity of market de-
sign by relying on frequent feedback from market participants and thus by following

6

a flexible, iterative design-and-build strategy. Like this, a continuous improvement
and change process is established that favors learning, pragmatic development, and
refactoring over extensive upfront design and theoretical modeling.

Several software artifacts have been developed that are designed to support and fa-
cilitate agile market engineering projects in practice. The Market Design Knowledge
Base is a software platform for storage and retrieval of market (mechanism) knowl-
edge. Its parametric approach to describing market engineering knowledge is flexible
enough to preserve insights on how (or how not) to design and realize electronic
market platforms, optionally also covering information on the respective market
environment, the traded products, or the types of market participants a specific
market design recommendation is valid for. The Market Repository was built to
support market developers in quickly instantiating new market instances from a
set of previously developed and archived market platforms. Instead of developing
new markets from scratch every time, and instead of using a generic but complex
and hard to extend market runtime environment, small, simple, and specific Mar-
ket Templates have been developed as technical foundations to built new electronic
market platforms upon. Three basic market templates, one for a continuous double
auction market, one for a call market, and one specific prediction market template
were developed and published in the market repository as initial market templates.
An Experiment Center was developed to provide a convenient to use, agent-based
simulation environment as realistic test bed for newly developed market platforms.
It allows for an extensive and realistic testing of market platforms in cases where
market development teams are unsure about the fundamental market design. It con-
sists of computer-grid enabled Experiment Runners for parallelization of simulation
runs, a central simulation Experiment Control Center, and a Time Series Data Store
for the unified provisioning of historic market data, which can be used to bootstrap
electronic agents in preparation for simulations.

The agile market engineering process model and its accompanying software artifacts
have been successfully applied in five different real-life market engineering projects.
Results and insights from these case studies are reported and evaluated.

Contents

1 Introduction . 13

2 Foundations & Related Work . 17
2.1 General Purpose Software Engineering Process Models 19

2.1.1 Classical Software Engineering Process Models 19
2.1.2 Agile Software Engineering Process Models 22

2.2 Specific Market Engineering Process Models . 31
2.2.1 Process / Stakeholder Benefit Framework 31
2.2.2 The Market Engineering Process Model 34

2.3 Computer Aided Market Engineering Tools . 36
2.3.1 AuctionBot . 37
2.3.2 GEM . 38
2.3.3 meet2trade . 39

2.4 Summary . 43

3 Requirement Analysis . 45
3.1 Assessment of existing market development process models 45
3.2 Assessment of existing market engineering software artifacts 46
3.3 Use Case Analysis . 49

3.3.1 Stakeholders . 49
3.3.2 Use Cases . 50

3.4 Requirements for an Agile Market Development 54
3.4.1 Business Requirements . 55
3.4.2 Technical Requirements . 57

3.5 Summary . 57

4 Agile Market Engineering . 59
4.1 A Lightweight and Agile Market Engineering Process Model 62

4.1.1 Pre-Development Phase . 62
4.1.2 Development Phase . 66
4.1.3 Operation Phase . 74
4.1.4 Summary. 78

4.2 (Software) Artifacts to Support Agile Market Engineering 79
4.2.1 Market Design Knowledge Base . 79
4.2.2 Market Repository . 85

8 Contents

4.2.3 Market Simulation Framework . 92
4.3 Summary . 96

5 Evaluation . 99
5.1 Assessment of Default Market Templates . 99
5.2 Use Case EM-Stoxx Market . 101
5.3 Use Case Australian Knowledge Exchange (AKX) 104
5.4 Use Case EIX Market . 106
5.5 Use Case Microgrid Market . 109
5.6 Use Case TAC Energy . 112
5.7 Summary . 138

6 Summary & Future Work . 141
6.1 Summary & Main Contributions . 141
6.2 Critical Assessment . 143
6.3 Future Work . 143

A Notation . 147

B AuctionBot & meet2trade Configuration . 149

C Definition of Done . 153

D Order Processing in Call and CDA Market Templates 155

E Complexity Reports for Market Templates . 159

References . 161

List of Figures

2.1 The Waterfall Software Engineering Model (Source: Royce, 1970) 19
2.2 V-Model Process Visualization (Source: Osborne et al., 2005, p. 20) . . 20
2.3 Xtreme Programming as opposed to Waterfall Model (Source: Beck,

1999, p.70) . 24
2.4 The Scrum Process (Source: ScrumAlliance, 2010) 25
2.5 Sketch of a Burndown Chart . 26
2.6 Crystal Family Software Development Methods Overview (Source:

Cockburn, 2005) . 28
2.7 Adoption of Agile Practices (Source: West and Grant, 2010)) 30
2.8 Process / Stakeholder Benefit Framework (Kambil and van Heck,

2002, p. 65) . 32
2.9 Micro Economic System Framework (Source: Neumann, 2007, p. 9) . . 34
2.10 Market Engineering Design Process (Source: Neumann, 2007, p. 155) 35
2.11 Schema of AuctionBot’s System Architecture (Source: Wurman

et al., 1999) . 37
2.12 Detailed view on GEM’s “trading floor” component (Source:

Rachlevsky-Reich et al., 1999) . 38
2.13 GEM’s configuration interface (Source: Rachlevsky-Reich et al., 1999) 40
2.14 The meet2trade market engineering tool suite (Source: Block and

Neumann, 2008) . 40
2.15 Technical architecture of meet2trade (Source: Weinhardt et al., 2006,

p. 29) . 42

3.1 Use Cases in the Pre-Development Phase . 51
3.2 Use Cases in the Market Development Phase . 52
3.3 Use Cases Market Operation Phase . 53

4.1 The Agile Market Engineering Process Model . 60
4.2 A sample TAC Energy User Story broken down into several tasks . . . 61
4.3 Taskboard Mockup (Source: Cohn, 2009) . 62
4.4 Taskboard used in TAC Energy Project . 62
4.5 Invite order submission form (Source: Block and Chen, 2007) 72
4.6 Web Interface for dynamic adjustment of log levels in TAC Energy . . 77
4.7 TAC Energy online user feedback elicitation tool 78

10 List of Figures

4.8 Website Heat Map for Usability Analysis (Source: Choros and
Muskala, 2009) . 79

4.9 Screenshot of the Edit Recommendation Screen of MDKB 80
4.10 Entity Relationship Model of the Knowledge Base 83
4.11 Input Parameter List and Recommendation Prerequisite List 84
4.12 List available market templates in the Market Repository 86
4.13 Install a market template locally . 86
4.14 Run a newly installed market template locally . 87
4.15 Welcome Screen of a newly installed CDA Market instance 87
4.16 Sample market engineering workflow using the market repository 88
4.17 Entity Relationship Diagram for CDA and Call Market Templates . . . 91
4.18 Market Simulation Framework components and their interaction 94
4.19 Report Management in the Experiment Center . 94
4.20 Graphical report creation and sample report results 95
4.21 Profile with several time series . 96

5.1 Order Entry Screen of the EM-Stoxx Market . 102
5.2 Order Entry Wizard of AKX. 105
5.3 Order Entry Mask in EIX Market . 108
5.4 Two different Order Entry Assistants for the EIX Market 108
5.5 Order Entry Mask of the Microgridmarket . 110
5.6 Simulation timeline . 120
5.7 Contracting process. Tariff offerings proceed in parallel with

individual contract negotiation. 121
5.8 Sample wind turbine generation timeline as provided by the market

intelligence service. 123
5.9 Execution phase . 124
5.10 Broker’s expected and actual energy supply and demand at two

points in time. 128
5.11 Demand shifting of a household washing machine. 130
5.12 Timeline of interaction between agent and simulation. 134
5.13 One agent’s view during an execution phase. 136

D.1 Order Process in CDA Market Template . 156
D.2 Order Processing in Call Market Template . 157

List of Tables

3.1 Software quality metrics for the meet2trade core classes 48

4.1 Stylized Fibonacci Series (Source: Gloger, 2009, p. 141) 69

5.1 Software metrics for the business logic of CDA & Call market template100
5.2 Orders submitted to and later matched on the regional energy market. 131

1

Introduction

“The hope that rational design by an omniscient planner

could supersede practical knowledge derived from a process

of adaptation and discovery swept across many fields in

the course of the twentieth century. This approach was

generally described as modernism.”

John Kay, 2010

Since the advent of the Internet, electronic commerce has become an integral part of
everyday life in most parts of the world. In 2009 private consumers in Germany pur-
chased goods and services worth 15.5bn EUR via e-commerce market places on the
internet, an increase of 14.4% over the year before (Kaldik and Eisenblaetter, 2010).
In the same year about 14% of all sales in Germany were conducted via e-commerce
platforms (Bauer and Czajka, 2009). In this light, design and implementation of
electronic market platforms becomes very important. Consequently, much scientific
research hast been devoted to the question of “How to design electronic markets
right?” Mechanism Design, a specialized discipline in theoretical economics, focuses
on exactly this question and tries to find optimal market rules for a given market
environment. From this research stream many intriguing insights and results on op-
timal market design have evolved. Still most of these results are restricted by rather
strong assumptions as “economists tend to provide models with attractive equilibrium
properties and recognizable strategic behaviors, often maintaining limiting assump-
tions to take the edge off of the computational difficulties. Computationally minded
researchers, on the other hand, assume very simple player strategies to assure nice
equilibrium behavior, allowing them to focus on the complex bidding and decision
making environments.” (Anandalingam et al., 2005). Overall, explanatory power of
the results for real markets is limited. By todays research standards market reality
is simply too complex to be comprehensively covered and described by theoretic
market models of one form or the other.

Rittel and Webber (1973) note that “the search for scientific bases for confronting
problems of social policy [e.g. allocation rules of markets] is bound to fail, because of
the nature of these problems. They are ‘wicked’ problems, whereas science has devel-
oped to deal with ‘tame’ problems. Policy problems cannot be definitively described.
Moreover, in a pluralistic society there is nothing like the undisputable public good;

14 1 Introduction

there is no objective definition of equity; policies that respond to social problems can-
not be meaningfully correct or false; and it makes no sense to talk about ‘optimal
solutions’ to social problems [e.g. welfare maximizing distribution of goods] unless
severe qualifications are imposed first. Even worse, there are no ‘solutions’ in the
sense of definitive and objective answers.”

Kay (2010, p.97) argues that “wicked problems” are “best tackled, not by moral al-
gebra, but obliquely: they involve high-level objectives achieved through adaptation
and iteration, with constant rebalancing of incompatible and incommensurable com-
ponents that are imperfectly known but acquired as the process goes on. Honda un-
derstood the power of obliquity, McNamara’s Ford did not. We see the results today”.

Based on these insights, a new market engineering process model was developed as
part of this thesis. It builds on the assumption that electronic markets for the real
world cannot be completely designed upfront as a complete market design would be
too complex and even small design changes can have a significant impact on user
behavior and market outcome (Klemperer, 2002b).

The proposed process model pragmatically tries to bridge the gap between theoretic
market design and practical (electronic) market platform development by unifying
concepts from theoretical market modeling and business concept development with
those from agile software engineering. Initially, high level economic market objectives
such as allocative efficiency (see e.g. Gode and Sunder, 1993; Wurman, 1999) or
information efficiency (see e.g. Verrecchia, 1979) are defined as desiderata for a
newly developed market (Neumann, 2007). With these goals in mind the market
development then takes place in small, incremental cycles each incorporating end
user feedback that is based on “hands-on” experiences and elicited from the running
market. This approach is called agile market engineering.

Technically, several blueprint market platforms have been developed, all of them
built on top of a modern software infrastructure. Each of these platforms is a small
and concise but still fully functional implementation of one specific market mecha-
nism (e.g. a continuous double auction), which can be easily redesigned, adapted, or
changed. As such, these blueprint platforms provide a convenient base infrastructure
to build new market engineering projects upon.

Objectives of this work

Each new market engineering project is unique and requires different solutions for
different market environments, products, and market participants. Thus, the fol-
lowing research objectives guided the development of the agile market engineering
process model throughout the course of this thesis project.

1. The developed agile market engineering process model and all its supporting
(software) artifacts should be designed as “building blocks” that can be used in
conjunction with each other and in the process sequence proposed in this work.
But there should be no necessity to do so and all of the artifacts should also be
usable stand alone.

1 Introduction 15

2. The whole agile market engineering process should be flexible and adjustable to
the specific requirements of a project.

3. The market engineering process model should address the wickedness and com-
plexity of electronic market design and implementation based on a continuous
improvement process that is aimed at frequently delivering fully functional and
incrementally improved electronic market platforms and that values user feed-
back from running markets more than extensive upfront market design.

4. A set of appropriate software artifacts should be developed that simplifies and
technically supports the process of designing, implementing, testing and operat-
ing electronic market platforms.

Thesis Structure

This thesis is structured as follows. In Chapter 2 existing general purpose software
engineering models, specific market engineering process models, and different mar-
ket engineering software tool suites are reviewed. Based on this review, conceptual
gaps in the existing models are identified and a set of requirements for an agile mar-
ket engineering process model is developed in Chapter 3. Chapter 4 then describes
the proposed agile market engineering process model as well several specific agile
market engineering software artifacts that were developed to support agile market
engineering projects in practice. In Chapter 5 several concrete market projects that
were developed using the agile market engineering process model are described and
evaluated. The thesis is concluded with a summary and outlook in Chapter 6.

Parts of this work have already been published before. van Dinther et al. (2006)
describes a scenario for the development of future energy markets. It is refined and
concretized into a roadmap in Block et al. (2008), which expects energy brokers to
be established by approximately 2015, and estimates that power trading on an end
consumer level will be possible by approximately 2018. Based in this roadmap Block
(2007), Block et al. (2008), and Deindl et al. (2008) describe the idea of agent based
energy market trading. A proof-of-concept market platform, described in Section 5.5,
demonstrates the concept of market based scheduling for microgrids.

In Hirsch et al. (2010) the concept of online and offline energy market simulations
based on historic data from a specific region is described. This ideas inspired the
development of the TAC Energy competition described in Section 5.6. This section
in turn is based work published in Block et al. (2010), Block et al. (2010a), and Block
et al. (2010b). The principle idea of TAC Energy was first published in Block et al.
(2009), which is currently in the second round of review for publication in the In-
ternational Journal of Computer Aided Engineering. In Ahlert and Block (2010) an
approach for generating artificial load and price forecasts is described, which is used
within the TAC Energy project (see Section 5.6).

Insights from Neumann et al. (2007) and Block and Neumann (2008) served as
the foundation for Section 4.2.1, which describes a knowledge base for storage and
retrieval of market engineering knowledge. The description of the market engineering

16 1 Introduction

tool suite meet2trade described in Section 2.3.3 is mostly based on a publication
by Kolitz et al. (2007).

In Schönfeld and Block (2010) the idea for a market template repository is described.
This publication served as the basis for Section 4.2.2.

Part of the market simulation framework described in Section 4.2.3 is a data store for
historic time series. As historic time series are sometimes difficult to acquire, several
artificial time series generators were developed. One of them is an artificial driving
profile generator for (electric) vehicles, which was jointly developed and described
in Dietz et al. (2010).

The idea to apply browser automation technologies as technical basis for the execu-
tion of market interaction is described in Block and Chen (2007) and contributes to
section Section 4.1.2.

2

Foundations & Related Work

With the rise of the Internet electronic commerce is quickly emerging. As of 2008 e-
commerce sales constitute 39% of all sales in Germany (StatBA, 2009). For the same
year Kaldik and Eisenblaetter (2010) calculated from a representative panel survey
that private consumers purchased goods and services worth 13.3bn via e-commerce
market places and 15.5bn EUR (14.4% increase) in 2009. In this light electronic
marketplaces (EM) play an increasingly important role as key enablers of electronic
commerce. Their main value propositions are (i) improved market efficiency through
reduced transaction cost and (ii) increased market transparency (Lee and Clark,
1996; Garicano and Kaplan, 2001). An important question in this context is how to
design electronic markets “right” so that they become successful and can actually
“deliver” the transparency and market efficiency they promise.

Research dedicated to answering this question gained a lot of momentum over the
last 15 years. Still, Wang et al. (2008) come to the conclusion that “EM [Electronic
Market] research field calls for more scientific researches. However, this effort could
be dampened by the difficulty of collecting data [...] and a lack of specific EM di-
rectories or yellow pages.” Anandalingam et al. (2005) find that scholarly research
in this field so far mainly focuses on the economic fundamentals of electronic mar-
kets, i.e. the design of market mechanisms and auctions, and the understanding of
buyer/seller behavior. They conclude that “economists tend to provide models with
attractive equilibrium properties and recognizable strategic behaviors, often main-
taining limiting assumptions to take the edge off of the computational difficulties.
Computationally minded researchers, on the other hand, assume very simple player
strategies to assure nice equilibrium behavior, allowing them to focus on the complex
bidding and decision making environments.” In other words market reality is seem-
ingly too complex to be comprehensively covered and described by theoretic market
models of one form or the other.

One of the reasons for the difficulty in modeling and describing electronic markets
(and a general lesson learned from mechanism design research) is that details matter!
Details pertain to the general market environment, to the properties of products
and services traded in a market, to behavior, attitude and cultural background of
market participants, and to the rules that govern markets. Only the combination of
all of these factors constitutes a real market. Leaving out some of these aspects in

18 2 Foundations & Related Work

simplified scientific market models significantly reduces the descriptive power of the
results.

This is why some of the most powerful results from economic theory on market
design are in the form of impossibility theorems such as the one of Myerson and Sat-
terthwaite (1983) who prove that in a Myerson-Satterthwaite environment a market
can not arrange efficient trade.1. Another result is the finding of Nisan and Ronen
(2001) who show that certain classes of economic mechanisms (so called Vickrey-
Clarke-Groves auction mechanisms) cannot be implemented in a computationally
tractable form without sacrificing at least one of the other desired mechanism prop-
erties such as incentive compatibility or budget balance.

Insights from experimental economics on user behavior (e.g. Katok and Roth, 2004;
Strecker and Seifert, 2003; Seifert and Ehrhart, 2005; Adam et al., 2008) and obser-
vations on trading behavior and market outcomes in real life markets (Klemperer,
2002a,b; Cramton, 2003; Campbell et al., 2005) add valuable insights to the un-
derstanding of market dynamics though some of the results are puzzling from a
traditional economic point of view (Gimpel, 2006; Block et al., 2006).

A single best market mechanism or even a comprehensive framework that explains
and prescribes particular market mechanisms for specific market environments does
not exist. Moreover, Kolitz and Neumann (2007) and Kolitz (2008) find that not only
economic mechanism design but also (software) system design can have significant
influence on the performance and outcomes of electronic markets.2 This finding adds
another factor of uncertainty to the overall market engineering problem, which needs
to be addressed during design and implementation of electronic markets.

To systematically support the complex process of creating new (electronic) markets
from the initial vision, over a theoretical market concept, to the implementation and
operation of an electronic market platform different (engineering) process models
have been developed.

In their inner core electronic markets are – from a technical perspective – soft-
ware systems. Consequently, the next sections review general purpose software de-
velopment process models developed to provide systematic support and guidance

1 In a Myerson-Satterthwaite environment buyer and seller of a good are assumed to know
their own valuations for the good but not the one of the other counterpart. Furthermore,
it is assumed that both valuations are independent from each other and that buyer and
seller each know from which distribution the valuation of the other arises. Last but not
least it is assumed that the support of the distributions overlap in order to rule out the
trivial cases where the buyer always values the good higher than the seller so that trade
could always happen – say – at a price equals to the valuation of the buyer, as well as
the case where the valuation of the buyer is always lower than the one of the seller so
that no trade will happen at all. In such an environment all equilibria of all possible
mechanisms in which agents would voluntarily choose to participate are inefficient as
compared to a setting with full information disclosure. For more details see e.g. McAfee
et al. (1998)

2 In lab experiments Kolitz et al. evaluated the performance of two different market mech-
anisms (a multi-attribute English auction and a multi-bilateral multi-attribute negotia-
tion) implemented on two different technical market platforms (a web application vs. a
client-server architecture) and found that not only the mechanism design but also the
technical system design can significantly affect market outcome.

2.1 General Purpose Software Engineering Process Models 19

for developing software systems in general. Subsequently two specific process mod-
els dedicated to the development of electronic markets are investigated. Last not
least special software artifacts that aim at supporting, shortening, and simplifying
the development process for electronic markets are evaluated.

2.1 General Purpose Software Engineering Process Models

The IEEE computer society defines software engineering as “(1) the application of
a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software. (2) The
study of approaches as in (1)” (IEEE, 1990). Building on this definition a software
engineering process (model) is said to “encompass the technical and managerial ac-
tivities within the software life cycle processes that are performed during software
acquisition, development, maintenance, and retirement” (SWEBOK, 2004). In other
words, such process models aim at providing guidelines on how to develop and op-
erate information systems, with electronic market platforms being a specific subset
of these. The following subsections provide an overview of several different process
models and try to describe their specific advantages and disadvantages.

2.1.1 Classical Software Engineering Process Models

Many different software engineering process models have been proposed that all aim
at streamlining the process of developing software. Among these models the Wa-
terfall Model is one of the earliest. Its name stems from the corresponding process
visualization that resembles a waterfall (see Figure 2.1) and was first described in
literature by Royce (1970). In this model all required process steps follow one after

Fig. 2.1. The Waterfall Software Engineering Model (Source: Royce, 1970)

20 2 Foundations & Related Work

another beginning with a system requirements analysis and ending with a software’s
operations phase. The main idea is that one process step is accomplished at a time.
Once, for example, the program design phase is finished it’s results will have to be
formally approved and then constitute the (fixed) input for the next phase. The
rationale behind this idea is that a cautious and detailed software design at the
beginning will save a lot of extra work in later process steps. McConnell (1996, p.
72) estimates that “a requirements defect that is left undetected until construction
or maintenance will cost 50 to 200 times as much to fix as it would have cost to fix
at requirements time.”

Following this argument the Big Design Upfront model (commonly referred to as
BDUF (Beck and Andres, 2004)) extends the idea of the Waterfall model in that it
requires a complete and exhaustive design specification to be created and approved
before any software implementation work is started.

TheV-Model can be seen as a concrete extension of the two aforementioned models.
Originally developed by German Federal Ministry of Defense it was revised twice (V-
Model 97 (Dröschel and Wiemers, 2000) and V-Model XT (Broy and Rausch, 2005))
and is now the prescribed default software engineering model for all governmental
software projects in Germany. Compared to the previously described models its main
difference is that the V-Model differentiates process steps based on activities and
results rather than on a timely basis. Also, a formal approval of process steps is not
required. Figure 2.2 visualizes the process steps of the V-Model in the characteristic
V-shape indicating increasing levels of detail the further down a process step is drawn
on the “Vee”.

Fig. 2.2. V-Model Process Visualization (Source: Osborne et al., 2005, p. 20)

Projects conducted according to the V-Model thus specify the project requirements
in increasingly detailed form during the first process steps. After a detailed design
concept is available implementation begins. Subsequently testing starts on a fine
grained code level and subsequently becomes more holistic with integration, system
verification and user acceptance tests. Each of the testing granularity levels thereby

2.1 General Purpose Software Engineering Process Models 21

corresponds to a project specification detail level as indicated by the Vee shape.
After testing is completed the system is rolled out and the operations and mainte-
nance phase begins. Insights from this phase might then serve as input for follow-up
projects.

Besides the aforementioned main advantage of avoiding errors early in the process,
several points of critique are commonly raised when referring to these “traditional”
types of software engineering process models:

• Life-Cycle process models (e.g. Waterfall model) lack flexibility to cope with
requirement changes (McCracken and Jackson, 1982).

• Users are unable to specify their requirements upfront and learn what they want
only during the process of creating the software. In other words: The system
implementation changes the environment out which the need for the system arose,
thus requirements will change too over time (DeGrace and Stahl, 1990).

• Life-Cycle process models assume that software engineers are able to foresee
and solve potential implementation problems and challenges already during the
design phases without any hands-on experiences from implementation. But even
cautious initial design decisions that are subsequently implemented, tested but
later prove to be wrong or erroneous are difficult and costly to correct in such a
process model (Gladden, 1982).

• There exists a trade-off between extensive upfront design overhead and refactor-
ing / error correction overhead afterwards. Initial design steps become useless
if efforts expended on upfront modeling exceed those for refactoring the sys-
tem afterwards. This problem is sometimes also referred to as analysis paraly-
sis (Wiegers, 2000).

• Recent advancements in the area of software engineering tools and new, power-
ful, and concise programming languages in combination with sophisticated inte-
grated development environments (IDEs) increase developer productivity sig-
nificantly (Selby, 2007, pp. 170–171) and thus lower the cost for refactoring
effectively tipping the trade-off balance between extensive upfront design and
refactoring in favor of the latter one.

• Empirical research results “indicate that smaller time frames, with delivery of
software components early and often, will increase the success rate. Shorter time
frames result in an iterative process of design, prototype, develop, test, and de-
ploy small elements. This process is known as “growing” software, as opposed to
the old concept of “developing” software.” (Standish Group, 1995) These results
contradict extensive upfront planning in favor of short incremental release cycles.

Related to the last point of critique Larman and Basili (2003) note that “by the late
1980s, the DoD [U.S. Department of Defense] was experiencing significant failure in
acquiring software based on the strict, document-driven, single-pass waterfall model
that DoD-Std-2167 required. A 1999 review of failure rates in a sample of earlier
DoD projects drew grave conclusions: Of a total $37 billion for the sample set, 75%
of the projects failed or were never used, and only 2% were used without extensive
modification”.

22 2 Foundations & Related Work

Around the same time an agile software engineering movement evolved3 which in-
tended to overcome traditional software engineering principles with all its shortcom-
ings and to achieve a paradigm shift in this industry analogous to the paradigm shift
that the Toyota Production System approach brought to traditional automative en-
gineering, which – at that time – was still heavily inspired by traditional engineering
ideals that rooted back to Henry Ford (Takeuchi and Nonaka, 1986).

2.1.2 Agile Software Engineering Process Models

Around the end of the 1990s an increasing number of software developers perceived
traditional software engineering process models as too heavyweight, over-regulated,
and prone to micromanagement behavioral patterns within project organizations (see
Larman and Basili, 2003). Gloger (2009) claims that this type of “industrialization”
of software engineering along the lines of mass production in (automotive) industry
largely failed for the same reasons that traditional engineering in the automotive
industry failed and eventually was superseded by ideas that root back to the Toyota
Production System:

1. The (over-) application of division-of-labor principles to software engineering
lead to the creation of jobs within the software engineering industry that were
extremely narrow in scope (e.g. software test automation developer) and thus
became boring or even devoid of meaning due to the extreme specialization.

2. Extensive division and distribution of tasks lead to the problem that nobody
in the value creation chain felt responsible for the quality of the end product
anymore. For traditional mass production Womack et al. (1991) estimates cost
for “rework” at the end of the conveyor belts to be as high as 25% of the overall
production cost.

Similar problems evolved in software engineering (see also Section 2.1.1) where bug
fixing (the “rework” equivalent) took more and more time as job specialization in
software engineering increased further. This finally lead to a situation in the late
1980s and early 19990s in which the majority of all software projects in the U.S.
were cancelled or finished only after major rework Larman and Basili (2003).

In this situation a new agile software engineering movement gained a lot of mo-
mentum (Abrahamsson et al., 2009). Proponents of this new approach to software
engineering advocate the use of short iterative software development cycles (each
lasting only a few weeks), generally emphasize and promote the use of “light” and
people-centric methods, and use frequent feedback loops as primary control mecha-
nisms instead of extensive upfront planning. Poppendieck and Poppendieck (2006)
propagate seven fundamental principles for agile software engineering:

Eliminate Waste: Waste in software engineering pertains to partially done work and
unnecessary extra features. Specifying requirements long before coding likely
produces overhead (churn) from frequent requirement changes. Likewise doing
software testing long after the coding itself took place results in significant test-
and-fix overhead. Both together are likely to lead to significant extra work from

3 See http://agilemanifesto.org

2.1 General Purpose Software Engineering Process Models 23

extensive upfront specifications and late (sometimes called big-bang) integration.
Consequently only the most value-adding features should be realized with least
amount of code possible in short concept-implement-test-release cycles.

Build Quality In: Shingo (1989) distinguishes two forms of quality inspection, (i)
inspection after the occurrence of defects and (ii) inspections to prevent defects.
Achieving great quality requires to set up an environment that actively prevents
defects ex-ante rather than one that reactively fixes them ex-post. For software
engineering, test driven development (Beck, 2002) proves to be extremely valu-
able as an institutionalized way to prevent defects upfront.

Create Knowledge: Poppendieck and Poppendieck (2006) claim that software engi-
neering is a knowledge-creating process and that “the puzzling aspect of ‘wa-
terfall’ development is the idea that knowledge, in the form of ‘requirements’,
exists prior to and separate from coding.” Furthermore they note that an early
design can neither anticipate the complexities discovered during the develop-
ment phase nor can it take insights and new knowledge learned from and during
implementation and usage of the software into account.

Defer Commitment: Irreversible decisions should be deferred as long as this is rea-
sonably possible without causing damage. The rationale for this principle is
that the later a decision is made the more knowledge is available supporting a
qualified decision making. In this light, also the amount of irreversible decisions
should be reduced as much as possible e.g. by using software development tools
that ease the burden of continuous refactoring. Also, when faced with significant
uncertainty about the likely future impact of a decision, several different options
should be tried and tested.

Deliver Fast: Development should be accomplished in short iterations (a few months
at most) with tasks to accomplish being small enough to not clogging the de-
velopment process for a long time. Also the scheduling of future work should be
limited to one or two iterations ahead of time as longer planning horizons are
more prone to change and thus longer-term working plans represent avoidable
and unnecessary extra efforts.

Respect People: A passionate team that is proud on is own craftsmanship and the
results it delivers is invaluable. Trust and respect are fundamental pre-conditions
for teams to become passionate. Another supporting factor is to move respon-
sibilities and decision-making to the lowest possible level in the organization’s
hierarchy, i.e. to the developers themselves. In good parts respect can be ex-
pressed as trust in a team’s skill to self-organize its work so that it reaches its
goals.

Optimize the Whole: “Optimization” in the context of software development has
two meanings. The first is devoted to the optimization of the resulting software
itself. Here the only thing that really matters is return on invest: The software
engineering process should be shaped such that features (requirements) with
the highest value add (from an end customer perspective) are delivered first.
The second meaning of “optimization” is dedicated to the development process
itself. Frequent self-reflection – at best at the end of each single process iteration
– helps to continuously optimize the development process.

24 2 Foundations & Related Work

In the following sections, three agile software engineering process models are de-
scribed in more detail that build on the aforementioned principles. Extreme Pro-
gramming is often referred to as an agile software engineering model. Scrum is often
referred to as an agile software management model, and the Crystal Clear Family
is often referred to as a set of lightweight building blocks for agile software devel-
opment processes that allow for individual combination and thus a customization of
the development procces.

Extreme Programming

Extreme Programming (XP) was originally invented by Kent Beck during a long-
term industry project, which aimed at completely rewriting the payroll application
of a large automotive company (Copeland, 2001). XP is considered a lightweight pro-
cess model in that it discourages many of the heavy-weight principles of traditional
software engineering such as extensive upfront requirements engineering or lengthy
project documentation and instead promotes ideas such as keeping development
teams small, synchronous and face-to-face communication processes, simple code,
and – most importantly – short release cycles (Beck, 1999). Figure 2.3 visualizes the
different timing of Waterfall and XP style software development.

Fig. 2.3. Xtreme Programming as opposed to Waterfall Model (Source: Beck, 1999, p.70)

In XP a project starts with future end users (i.e. on-site customers) of the sys-
tem writing short user stories. These are short, natural language texts that replace
traditional (large) functional requirements documents and formulate expectations
towards the future system from a customer point of view. Once an initial set of sto-
ries is collected the efforts for implementing each of the stories are estimated by the
programmers (planning game) and then only this set of user stories is implement in
the next development cycle. Then, instead of start writing the production software
code itself, unit and functional test code is written first that basically formulates ex-
pectations on how the final production code should behave. With this testing harness
in place the production code is then written in pair programming style, i.e. by two
software developers sharing one keyboard, one mouse, and one monitor. The code
is supposed to be written in the simplest possible form and without any repetitions
such that all tests (written before) can be successfully executed without any errors.
Code is always checked into code versioning systems so that all development team

2.1 General Purpose Software Engineering Process Models 25

members have always access to the latest versions of all code fragments. Furthermore
a continuous software integration tool continuously observes the versioning system,
and automatically executes all necessary test and build operations after a change
in the repository is detected providing developers with an immediate feedback on
the quality of code checked in. If one or more tests in such an automated build fail,
previously checked in changes are discarded. Like this, there is always a running
system available built on the latest stable codebase of the project. Every few days or
weeks a small release is made based on the latest stable code available. The customer
then evaluates this release “hands-on” and – with this experience in mind – starts
writing new user stories as input for the next process cycle. In the next iteration of
the process the codebase is refactored such that it fulfills the new (possibly changed)
customer requirements. These cycles continue to take place until the customer con-
siders the software fully functional and no new or existing requirements are added
or changed.

Scrum

While XP is strongly focused on the technicalities of software development, Scrum
puts agile software management principles into its core focus. Ken Schwaber calls it
a “process skeleton on which hang all of its practices.” (Schwaber, 2009). As shown
in Figure 2.4 work in Scrum is structured into short, fixed (timeboxed) cycles that
are called Sprints and that last between two and four weeks.

Fig. 2.4. The Scrum Process (Source: ScrumAlliance, 2010)

Similar to XP, in each sprint the development team takes a set of prioritized user
stories from the product backlog and subsequently implements these stories during
the following sprint such that at its end a feature-improved potentially shippable
version of the software is delivered.

Scrum relies on three main technical artifacts, Product Backlog, Sprint Backlog and
Burndown Chart.

• The Product Backlog contains all user stories written and prioritized by business
value from the product owner.

26 2 Foundations & Related Work

• The Sprint Backlog contains a subset of the product backlog, namely those of
the top most important user stories that the team thinks can be implemented
within the fixed timeframe of the next sprint.

• During a sprint the Burndown Chart shows the cumulative remaining work mea-
sured in story points (see Section 4.1.2) over time, which still has to be accom-
plished before all stories scheduled for the respective sprint are completely imple-
mented, tested and potentially shippable. Figure 2.5 shows a sample Burndown
chart.

Fig. 2.5. Sketch of a Burndown Chart

Organizationally Scrum defines three main roles, Scrum Master, Product Owner,
and Team:

The Scrum Master role is that of a facilitator who continually ensures that core
scrum principles (such as strict time boxing of meetings and sprints) are obeyed.
Also he tries to improve the efficiency of the team by identifying and addressing
all types of personal, organizational and technical obstacles he gets to notice
and by shielding the team from distractions during sprints. In that sense the
Scrum Master ensures that the team can remain focused on its original task of
developing software that realizes and fulfills the respective user stories.

The Product Owner represents the customer’s interests (either as the customer him-
self or as a proxy person such as a key account manager). He is responsible for
(i) maintaing a list of user requirements (user stories) in the product backlog
and (ii) prioritizing them according to value-add (business value). As such the
product owner role is there to ensure that the team works into the right direction
from a business point of view and thus always implements the most important
features first.

The team is a completely self-organizing entity and responsible for developing the
product. Within each sprint the team designs, develops, and tests the currently

2.1 General Purpose Software Engineering Process Models 27

selected user stories applying many of the aforementioned XP development prin-
ciples such as continuous integrations and test-driven development as “good”
software engineering practices. A team usually consists of 3 – 7 persons and
should be composed such that it encompasses all skills required to realizing the
user stories.

Three main recurring meetings are core to Scrum to organize the software develop-
ment process: Sprint Planning Meetings, Daily Scrum Meetings and Sprint Reviews.

During the Sprint Planning Meeting product owner and team review the product
backlog and discuss about the user stories so that the team can gain a detailed
understanding of the requirements on each of the user stories. With this knowledge
the team then estimates the required efforts for implementing each of the user stories.
Then it pulls exactly that number of the upmost user stories from the product
backlog (that was prioritized by the product owner before) into the sprint backlog
that it (not the product owner) think can be realized within the next sprint. After
the planning is finished the sprint begins.

At the end of each day a fifteen minute daily scrum meeting is held that is moder-
ated by the Scrum Master. During this meeting each team member reports on (i)
what he accomplished today, (ii) what he wants to accomplish tomorrow, and (iii)
what obstacles refrained him from accomplishing his work. This meeting is meant
to (i) retrieve a quick status report, facilitate team commitment, and (iii) provide
a systematic opportunity to quickly react to occurring problems and to adapt work
schedules accordingly.

At the end of a sprint the Sprint Review meeting takes place at which the team –
guided by the Scrum Master – reflects on how the development process itself could
be improved so that not only the software but also the software engineering process
itself are subject to continuous improvement efforts.

More detailed descriptions on Scrum are provided, for example, by Schwaber and
Beedle (2001); Gloger (2008); Wirdemann (2009).

Crystal Light

Crystal Light is a set of software engineering process models developed by Cockburn
(2005). Crystal Light is different from XP and Scrum in that it does not prescribe
a single process model for all projects but merely provides as set of core building
blocks that can be combined and adjusted according to particular project needs.
Additionally several concrete Crystal Light process models exist that can be seen
as specially selected subsets of the Crystal Light building blocks. These models are
named by colors and designed to be ready-to-use for projects of different criticality
and different size. Larger projects that require more coordination and communication
match to darker colors as shown in Figure 2.6. Crystal Clear (Cockburn, 2004) is
the most lightweight member of the family and designed to fit the needs of small
teams in (at most) modestly critical application environments.4

4 “Critical” application contexts in the understanding of Cockburn include aircraft control
software, software for nuclear power plant operations systems and the like.

28 2 Foundations & Related Work

Fig. 2.6. Crystal Family Software Development Methods Overview (Source: Cockburn,
2005)

According to Cockburn (2004) seven base principles or core building blocks of agile
software management exist that all aim at shifting a project as far as possible into
what he calls s “safety zone” where project success becomes more likely. Combining
these principles in one way or another leads to the differently colored Crystal models.

1. Frequent Delivery means that tested and running code is delivered to customers
in short release cycles. Cockburn defines short as “less than four months”. Fre-
quent delivery ensures that customer feedback from a running system can be
included early and often and helps users as well as developers to continuously
learn and improve the software during development.

2. Reflective Improvement is not focusing on the software itself but on the under-
lying software development process. It means that teams should come together
from time to time to reflect on how they can improve the development process
by means of adjusting and tuning the way they work themselves such that they
become more efficient and effective and their work is better harmonized with the
one of others. Cockburn recommends to hold such meetings “frequently”.

3. Close Communication (also called osmotic communication) is ensured by locat-
ing the development team in close vicinity to each other, at best in the same
room. Like this, team members can get their questions answered within 30 sec-
onds or less without leaving the room or using other means of communication.
According to Cockburn in such an environment questions and answers simply
“flow” with almost no disturbance on the team. Also information distributes

2.1 General Purpose Software Engineering Process Models 29

among team members functions more or less automatically with no or little
written documentation required.

4. Personal Safety is the basic for trust among team members. Personal safety
means that people can articulate their thoughts without fearing repressions.
With personal safety in place problems and difficulties are likely to be articu-
lated early and frankly so that they can be solved quickly. Also, team members
might be more willing to ask for help, and to reveal their problems in solving an
assigned task to others. Costa (2003) shows empirically that this type of trust is
“positively related with perceived task performance and with team satisfaction”.

5. Focus means that the members in the development team (i) know what to work
on, and (ii) have time and peace of mind to actually accomplish the work. The
“what” is determined by business value, i.e. the – from a customer’s point view –
most important features of the software that should be developed first. These are
best estimated by customers themselves or at least by domain experts and not
by the developers of the software themselves. Once priorities are clear developers
should be assigned one or at most two tasks at a time and be allowed for sufficient
time to accomplish the work. With more than two tasks to accomplish in parallel
and with insufficient time for the completion of the work, productivity as well
as product quality both decrease drastically.

6. Easy Access to Expert Users (customers or domain experts) provides the devel-
opment team with rapid feedback on design and quality of their software and
also allows them to keep requirements up-to-date, or to adjust them where nec-
essary. Keil and Carmel (1995) report that “in 11 of the 14 paired cases, the
more successful project involved a greater number of links [between customers
and developers] than the less successful project. [. . .] This difference was found
to be statistically significant in a paired t-test (p ¡ 0.01).” According to Cock-
burn (2004) expert access is usually implemented by (i) weekly or bi-weekly
customer-developer meetings, (ii) experienced users (customers) being directly
part of the development team, and / or (iii) developers becoming trainee users
for some time.

7. Automated Testing & Integration eases and automates some of the most tedious
but nevertheless very important tasks of software development. It should be
complemented by automated test coverage reporting tools, and automated con-
figuration and dependency management solutions. Automated testing tools run
unit- and integration tests upon each change in the code base providing instant
feedback to developers on how their changes affect the overall system. Test cov-
erage reports show how much of the production code is actually covered by unit-
or integration tests pointing to classes and methods that are not yet verified
by tests. Last but not least, tools for automated configuration and dependency
management in combination with software that automatically integrates and
builds releases from source code, help to bring down the cost for repeatedly cre-
ating binary snapshots of the software close to zero. As a result the development
team will be able to provide frequent (e.g. nightly) builds of running and tested
software – the technical foundation to the aforementioned principle of frequent
delivery.

30 2 Foundations & Related Work

In summary agile software engineering process models such as the three described
above claim to be more flexible in coping with requirement changes during project
runtime, and thus to reduce documentation and reporting overhead significantly so
that overall productivity increases. Empirical studies also report that the application
of agile software engineering practices lead to a higher satisfaction for customers,
developers and management, better code quality and shorter overall development
times (Dyba and Dingsoyr, 2008).

However, critics claim claim that (i) agile software engineering process models are
suitable only for small teams (Cohen et al., 2004), (ii) agile models work best for ex-
perienced teams where other models would have performed well too (Dyba and Ding-
soyr, 2008), (iii) a lack of attention is put to design and architectural issues (McBreen,
2002), (iv) permanent pair programming and customer on-site rules of extreme pro-
gramming are simply unrealistic and sometimes not even desirable (Stephens and
Rosenberg, 2003), and (v) no long term experiences exist particularly with respect to
maintenance and revisioning of software systems in a longer term perspective where
minimal code documentation might lead to negative results.

Still, according to Forrester / Dr. Dobbs Global Developer Technographics Survey,
Q3 2009 among 1298 IT professionals, “35% of the respondents stated that ‘Agile’
most closely describes their development process” (West and Grant, 2010, p. 2). Fig-
ure 2.7 shows that 30.6% of the respondents report that no formal process methodol-
ogy is used at all in their company, 21% reportedly use some form of iterative model
and only 13% build their software development processes upon different flavors of
the Waterfall model. As of today, well established communities exist that continue

Fig. 2.7. Adoption of Agile Practices (Source: West and Grant, 2010))

2.2 Specific Market Engineering Process Models 31

to develop and refine agile software engineering process models, and that provide
trainings and professional services for newcomers to easily adopt these methods.

While “Agile” ideas and methodologies have become a core part of modern software
engineering the world looks different when it comes to specific market engineering
process models. The following subsections review the current state of two of these
specialized models.

2.2 Specific Market Engineering Process Models

In this section two specific market engineering process models are described in more
detail. The first one was developed by Kambil and van Heck around the year 2002, the
second one was mainly developed by Neumann and Weinhardt in the time between
2000 and 2006.

2.2.1 Process / Stakeholder Benefit Framework

Based on more than 100 industry use case studies Kambil and van Heck (2002) de-
veloped a set of recommendations on how to design electronic markets for different
application scenarios in different industries. Based on this empirical evidence they
also developed a market development process model called “Process / stakeholder
benefit framework” that managers “can use to systematically evaluate market-making
initiatives” (Kambil and van Heck, 2002, p. 64). This process model is mainly in-
tended to (i) support managers in identifying optimization potential in existing
markets, (ii) help them develop innovative solutions for identified shortcomings, and
(iii) guide them on how to strategically introduce their innovation into the market
by specifically identifying and targeting key customers and other beneficiaries. The
main application context for the model is the introduction of electronic markets, in
particular electronic auction markets, in various different business domains as well
as the adaptation of established market processes “from place to space” (Kambil and
van Heck, 2002, p. 21), i.e. the transformation of physically operating marketplaces
into electronic counterparts.

Figure 2.8 shows the so called “stakeholder benefit matrix”, the core artifact of the
model. Kambil and van Heck developed it to help managers identify technology op-
portunities by focusing on the vertical dimension of the matrix, which makes it easy
to compare different market processes and their interdependencies amongst each
other. Additionally, they point out that managers are also supported in identify-
ing net benefits for the different market stakeholders by focusing on the horizontal
dimension of the matrix.

For the practical application of the framework the authors developed the following
five-step process model:

1. State-of-the-Art Market Analysis: In this step the various market related pro-
cesses listed in Figure 2.8 need to be mapped and described for buyers and

32 2 Foundations & Related Work

Fig. 2.8. Process / Stakeholder Benefit Framework (Kambil and van Heck, 2002, p. 65)

sellers of the particular market domain. This description of the status quo is
then used as a baseline for further analysis. 5

2. Identification of business opportunity induced by new technology: This step is fo-
cused on finding out if new technology can be used to reorganize and improve
important established market processes like e.g. a logistics process. For each of
the market processes listed in Figure 2.8 the authors provide several “blueprint
questions” that are intended to give managers who apply the process model a
feeling on the type of questions they need to ask. For the logistics process these
blueprint questions include “How can transition from place to space reduce logis-
tics, distribution, and handling costs? Can the digital representation of products
and the decoupling of logistics and pricing processes for trading create substantial
new value? Who benefits from the gains and who incurs new cost?” (Kambil and
van Heck, 2002, p. 66). The authors also underline that this critical assessment

5 Particular guidance on how this step could be accomplished best is not provided.

2.2 Specific Market Engineering Process Models 33

should not only comprise core market processes like allocation, pricing and set-
tlement but also context processes like product representation, regulation, risk
management, or dispute resolution.

3. Estimation of stakeholder reactions: Buyers, Sellers, and market makers may re-
act differently to change happening in their market. In this process step the
potential impact of the the particular change needs to be estimated. The main
question is if the desired process change(s) create benefits beyond the ones in the
existing model. Furthermore the distribution of these benefits is important. If
e.g. buyers are expected to systematically gain value while sellers would system-
atically loose it is unlikely that the introduction of the new process will be suc-
cessful. Kambil and van Heck also underline that changes in required workforce
skills or in transaction cost for using the market have to be closely examined on
their overall impact. The same applies to interdependencies of the newly intro-
duced market process with other existing processes. In one example the authors
point to a situation where the switching to digital product representation in an
auction lead to significant cost savings but also made a revision of the closely
coupled buyer authentication process necessary. Only if the estimated overall
net benefits across all interdependent processes can be expected to be positive,
the process innovation (e.g. a new electronic payment and settlement system)
should be introduced into the market.

4. Strategy definition for winning important stakeholders: In this step a strategy
has to be developed on how to get the key stakeholders, important buyers or
sellers for example, to adopt the new process. According to the authors, possible
options to achieve this goal include offering co-ownership to key stakeholders
or to systematically subsidize early adopters of the new process as well as dis-
advantaged stakeholders. The benefit analysis from step three is supposed to
provide helpful insight as it aims at identifying those stakeholders who benefit
the least from the new process and who will consequently be reluctant to adopt
the proposed new processes.

5. Development and implementation of an action plan: With the previous four
steps accomplished, an action plan for the introduction of the new market pro-
cess has to be developed. In this step questions on when to transform which
market (sub) process have to be addressed and a concrete roadmap for the im-
plementation of the required (software) artifacts needs to be established. Further
details on how to develop and implement such an action plan are not provided,
though a case study is quoted where a live auction was transformed into an on-
line auction by Tele Flora Holland. In that particular action plan the managers
of the firm decided to retain the well known auction format (i.e. the market
rules) while changing the auction environment (from a live hall into a televised
version of it). According to Kambil and van Heck the decision not to change
the auction format ensured support from stakeholders and smoothed the trans-
formation process as market participants were already familiar with the market
rules.

Overall the Process / Stakeholder Benefit Framework is strongly focused on finding
business opportunities in existing markets and on helping managers to develop new
market ideas as well as strategic concepts for market entry. Detailed instructions

34 2 Foundations & Related Work

on how to execute the different steps of the process model are not provided. Still
a remarkable value-add comes from the many case study descriptions that Kambil
and van Heck collected in order to provide managers with a wide range of practical
insights and lessons learned on how markets or market processes are developed and
adapted in practice.

2.2.2 The Market Engineering Process Model

Weinhardt et al. (2003); Neumann (2007) propose a structured and theoretically
founded “market engineering” approach for analyzing, designing, implementing and
quality assuring electronic market platforms. In other words their market engineer-
ing process model tries to bridge the gap between analytical (game theoretic) and
experimental market design as frequently used in economics research (Smith, 1982)
and classical software engineering based on traditional process models such as the
Waterfall model described above.

In its core market engineering divides between an exogenously given and unchange-
able economic environment (jurisdiction, knowledge, preferences, etc.) and a set of
cautiously chosen institutions. Institutions are basically market rules that can be
explicitly designed and adjusted by a market engineer. Together with the economic
environment, institutions influence (incentivize) the behavior of the market partici-
pants without completely prescribing or dictating it. The behavior, i.e. the actions
of different market participants, leads to certain market outcomes, which can be as-
sessed using different types of efficiency measures in order to determine the overall
system performance. Figure 2.9 visualizes these dependencies.

Fig. 2.9. Micro Economic System Framework (Source: Neumann, 2007, p. 9)

2.2 Specific Market Engineering Process Models 35

The objective of market engineering is to consciously design and adjust the institu-
tions such that they influence the behavior of market participants in a way that leads
to the desired outcome in terms of the performance metrics defined for the market
under observation. The problem is that the definition and implementation of mar-
ket institutions is complex and difficult. Consequently a market engineering process
was proposed (Neumann, 2007), that aims at systematically supporting the persons
or teams in charge with designing and implementing the market institutions. The
process developed by Neumann consists of four main stages depicted in Figure 2.10,
which are closely modeled after the traditional engineering design process of Pahl
and Beitz (1984) and also resemble the Waterfall model in software engineering.

Fig. 2.10. Market Engineering Design Process (Source: Neumann, 2007, p. 155)

1. Environmental Analysis: The environmental analysis is the first step of the mar-
ket engineering process. In this phase the objectives and strategies of the future
market owner need to be identified and defined first. These serve as guideline
and framing for the market to be developed. Furthermore, strong emphasis is
put to the analysis of the socio-economic market environment. Here the poten-
tial number and type of market participants, their preference structures, risk
attitudes as well as the characteristics of the desired tradable goods and services
are analyzed. With these information at hand functionalities and properties of
the market (i.e. functional and non-functional requirements) can be determined.

2. Design and Implementation: Once the design problem is sufficiently described,
the second phase of the market engineering process begins. Here, in three sub-
sequent stages (i) a conceptual design, (ii) an embodiment design, and finally

36 2 Foundations & Related Work

(iii) a detail design are created. Based on these design documents the implemen-
tation of the market then takes place. For Neumann (2007) the concept design
abstracts from details and mainly focuses on the design of the economic market
rules and in particular on allocation and pricing rules as well as on the per-
mitted bidding language and information disclosure rules in the market. During
the embodiment design the abstract economic rules are then transformed into
(semi-) formal process descriptions. The detail design then focuses on specifiying
technical requirements (e.g. by detailing the required data formats and technical
communication protocols). With these information at hand the system imple-
mentation is supposed to take place. For the structuring of the implementation
phase itself Neumann (2007) refers to existing software engineering processes, in
particular to V-model (Dröschel and Wiemers, 1999) described in more detail in
Section 2.1.1.

3. Testing: Before the market platform is deployed and opened to the public the
testing stage of the market engineering process has to be accomplished. In this
stage Neumann (2007) describes different types of tests that need to be accom-
plished and that are mainly targeted at evaluating the economic performance of
the market. Concrete testing methods recommended for this process step include
(i) an axiomatic (analytical) evaluation of the market rules, (ii) and experimental
evaluation of the participant’ market bidding strategies and the resulting equi-
libria in laboratory or field experiments, and (iii) (agent-based) computational
testing of the market.

4. Introduction: After testing is completed the market platform can be introduced
to the general public. Necessary tasks in this stage are market monitoring, per-
formance evaluation, and – where necessary – refactoring of market rules or
system features in order to ensure market performance even under changing
environmental conditions

A more detailed description of the market engineering process can be found in (Neu-
mann, 2007, pp. 123-246).

In summary the Market Engineering process model provides detailed instructions
and guidelines for the economic modeling and evaluation of markets on an economic
level. It prescribes a process model that maps closely to the ideas of the Waterfall
and BDUF models from software engineering. Also, while being very precise and
detailed on the economic part of market modeling it falls short of providing detailed
guidance on how to actually convert the detailed economic models into actually
running market instances. Computer aided market engineering tools as described
in the following subsections were designed to make up for these shortcomings by
providing technical support to market engineers in designing, implementing and
rolling out electronic markets.

2.3 Computer Aided Market Engineering Tools

While the Market Engineering process model provides value-add as a general guide-
line for creating electronic markets, complementing software tools were developed

2.3 Computer Aided Market Engineering Tools 37

that were designed to support market engineers in designing, realizing, testing, and
introducing electronic market places. Several such specific market engineering soft-
ware platforms are known in literature. They all promise to provide a generic techni-
cal market infrastructure that is easily customizable by means of simple configuration
rather than by programming, so that these platforms can be used to quickly real-
ize wide ranges of different types of electronic markets. Out of the many different
frameworks that were proposed (e.g. Chavez and Maes, 1996; Tsvetovatyy et al.,
1997; Bichler et al., 1998; Dumas et al., 2004; Bartolini et al., 2005; Kersten and
Lai, 2006) three are described in more detail in the following sections: AuctionBot,
GEM, and meet2trade.

2.3.1 AuctionBot

AuctionBot was the first academic approach to build a generic market architecture.
It was open for general public via Internet (Wurman et al., 1998) since January 1997.
The main aim of this project was to develop a flexible, scalable, and robust auction
platform. Figure 2.11 shows an overview of the AuctionBot architecture.

Fig. 2.11. Schema of AuctionBot’s System Architecture (Source: Wurman et al., 1999)

AuctionBot supported several different types auction mechanisms and was designed
to reduce the effort required for building and evaluating electronic market mecha-
nisms before deploying them for commercial use. The support for different auction
types was realized through a set of independent (orthogonal) design parameters that
were identified as being common to most of the well-known auction types (Wurman
et al., 1998). These parameters include time or event based start and stop rules,
different types of limit price restrictions, visibility constraints for the orderbook, dif-
ferent pricing rules, different allocation rules etc. A sample AuctionBot configuration
specifying a particular subset of parameters can be found in Appendix B. The the-
oretical concept of orthogonal market design parameters in AuctionBot was techni-
cally realized through a domain specific configuration language based on XML (Tay-

38 2 Foundations & Related Work

lor and Wurman, 2000). AuctionBot has been inactive for several years. As of today
neither its service nor its source code is available to the public anymore.

2.3.2 GEM

The “Global Electronic Market System” GEM is a follow-up approach to AuctionBot
in building a generic market framework. “GEM provides a flexible architecture that
delineates the abstract components of a generic market and specifies control and data
flow constraints between them, but allows variations in the concrete implementation
of components with minimal or no impact on the implementation of other compo-
nents.” (Rachlevsky-Reich et al., 1999). Furthermore the developers of GEM aimed
at providing an infrastructure that allowed for pluggable market policy components
which could be adapted and replaced during runtime, i.e. they designed the system
such that market rules could be changed instantaneously during market operation
in order to cope with changes in trading or system behavior.

On top of a Java based low level systems and communication infrastructure, GEM
was build around three core components, a “‘Gate Keeper”, a “Trading Floor”,
and an “Information Board”. The gate keeper is the single point for order entry.
It performs basic authentication and validation on the incoming orders and either
rejects the orders or forwards them to the trading floor component as shown in
Figure 2.12.

Fig. 2.12. Detailed view on GEM’s “trading floor” component (Source: Rachlevsky-Reich
et al., 1999)

2.3 Computer Aided Market Engineering Tools 39

The trading floor component is the heart of GEM’s business logic and implements the
market rules. Within this component the verifier first enforces specific market rules
on incoming (validated) orders, e.g. like ensuring minimum bid increments between
subsequent orders. Depending on the verification result orders are then rejected or
passed on to the scheduler, which – depending on its configuration – forwards orders
continuously or according to pre-specified timing rules to the market maker. The
market maker is responsible for matching, pricing, and settling orders as well as for
pushing (partially) unmatched orders back into the order queue for later execution.
Activities of the market maker are monitored by the information board, which –
depending on its configuration – may or may not disclose these information (i.e.
quotes and trades) publicly in order to inform the market participants of current
market (matching) events.

From a software engineering point of view the GEM developers achieved the de-
sired modularity by applying the so called “bridge” pattern (Gamma et al., 1995)
to the market specific business logic, which allows for a decoupling of the compo-
nent’s abstractions (technically represented through interfaces) from their concrete
implementations. Like this, the implementation of a component could be changed
or replaced without affecting implementation and internal states of the other com-
ponents as long as the interfaces can be left untouched.

Rachlevsky-Reich et al. (1999) explicitly mention that they attempted to decompose
the overall system into “orthogonal components, whereby each component encapsu-
lates a distinct aspect of the market policy that can be customized independently of
other components, and is governed by a separate set of rules”. Figure 2.13 shows
the configuration manager of GEM, which is used to tie together the different dis-
tinct components into a running overall system. In the configuration manager the
system administrator can choose the concrete instance of a particular component
to be used during market execution, e.g. a PeriodScheduler instance as scheduler.
Each of the chosen components can then be further parameterized. In the depicted
case the scheduling interval for successive market matchings can be adjusted, e.g. to
10,000 milliseconds or 10 seconds between to matching operations.

The GEM project was completed nearly ten years ago and did not experience any
further development since then. Its design, architecture, and findings are available in
literature but neither the source code nor the project website are available anymore
and also an interview request remained unanswered.

2.3.3 meet2trade

meet2trade was designed and developed as a part of the electronic financial brokerage
project that was carried out at the Institute of Information Systems and Management
at the University of Karlsruhe in the time between 2000 and 2004, together with
several industry partners such as the Stuttgart Stock Exchange, Reuters AG, and
trading fair AG. One of the main objectives of the project was to develop a new and
progressive tools for electronic trading (Weinhardt et al., 2006).

meet2trade is a software suite that consists of several applications as shown in Fig-
ure 2.14. The core functionality is provided by the dynamically configurable auction

40 2 Foundations & Related Work

Fig. 2.13. GEM’s configuration interface (Source: Rachlevsky-Reich et al., 1999)

runtime environment (ARTE) that supports a large number of auction types to con-
duct trading. In the following listing the functionality of the different components is
summarized.

Fig. 2.14. The meet2trade market engineering tool suite (Source: Block and Neumann,
2008)

ARTE – Auction run-time environment: The design of market mechanisms in
meet2trade is based on a parameterization approach - i.e. a large variety of
exchange mechanism (mostly auctions) can be described by a set of parameters
representing their specific rules. ARTE is responsible for creating market mech-
anisms defined by XML instances that contain the required sets of parameters.

2.3 Computer Aided Market Engineering Tools 41

Hence ARTE is at the core of the computer-aided market engineering work-
bench. A configuration editor facilitates the generation of XML instances and
also provides a convenient mechanism to upload them into ARTE (Mäkiö and
Weber, 2004).

AC – Adaptive Client: The main user interface of the CAME tool suite is the adap-
tive client (AC). Its graphical user interface is remotely configured by the ARTE
core in order to present a suitable user interface for a specific mechanism as
defined in the respective XML instance. The adaptability of the client is a key
enabler that allows the dynamic rendering of different GUIs according to the
needs of specific mechanisms.

AMASE – Agent-based market simulation environment: AMASE is an agent- based
simulation environment, which allows the automated testing of market mecha-
nisms. Simple test scenarios can be produced on-the-fly, while more complex
scenarios require some coding of the agent behavior (Czernohous, 2005; van
Dinther, 2006). AMASE renders predictions on how market mechanisms will
perform using simulation techniques that allow valid predictions even about so-
phisticated market mechanisms.

MES – Market experiment shell: In order to examine specific procurement mecha-
nisms, an experimental system has been added to the meet2trade software suite.
The main objective is to conduct experiments on the original system instead of
replicating and running the mechanism in experimental software. This approach
facilitates experimental studies since the market has to be modeled only once
within meet2trade and avoids potential biases from the usage of different user
interfaces. For experiments the standard AC client is running in experimental
mode, which enables more detailed logging of user actions and allows tight con-
trol over permitted actions in different stages of the experiments (Kolitz et al.,
2007).

KMS – Knowledge-based Mechanism Design Support The KMS knowledge based
was contributed to the meet2trade tool suite only after the main project was
already finished. It was developed as a proof-of-concept prototype by the author
of this thesis as one of the deliverables of the ANEGOM project and is described
in more detail in Section 4.2.1.6 The initial motivation for the development of
KMS was the insight that an increasing degree of freedom and options in the
configuration of auctions through MML makes it difficult to choose an appropri-
ate set of parameters for a given environmental situation. KMS is a knowledge
base that uses case base reasoning to compare a (parameterized) description of
the respective market environment with locally stored expert recommendations,
where each of the stored recommendations is predicated itself with a set of pa-
rameters. A user of KMS can request recommendations on which mechanism
to choose best by submitting a parametric search query. Stored recommenda-
tions with the best matching parameter overlap are returned sorted by matching
quality (i.e. relevance) thus providing the user with concrete reference on which
market configuration with which parameter values should be applied (Neumann
et al., 2007).

6 http://www.im.uni-karlsruhe.de/anegom

42 2 Foundations & Related Work

Technically meet2trade is designed as a three-tier architecture, which is depicted
in Figure 2.15. A client layer with different Java Swing trading clients resides on
top of the software stack. Below, in layer two, the business layer with the ARTE
core is positioned, which in turn builds on top of a database layer that provides an
abstraction to the underlying persistence technology and also provides common base
functionality like logging services.

The ARTE core is implemented based on Enterprise Java Beans (Monson-Haefel
and Weissinger, 2003) and communicates with the trading clients via asynchronous
Java Message Service (JMS) messages based on XML. The parametrization of the
markets is modeled through a domain specific modeling language called Market Mod-
eling Language (MML), which is based on XML and contains about 110 parameters
allowing for a detailed market design and configuration (Mäkiö and Weber, 2005).
A sample MML configuration can be found in Appendix B.

Fig. 2.15. Technical architecture of meet2trade (Source: Weinhardt et al., 2006, p. 29)

A distinct feature of the meet2trade tool suite is its comprehensive functionality and
flexibility. meet2trade supports a (comparably) much wider range of basic auction
types then GEM or AuctionBot. In parts, this flexibility stems from the implemented
concept of “meta-markets”, i.e. hybrid market instances that are constructed out of a
set of simple market instances. This abstraction allows, for example, the modeling of
a typical procurement auction process that consists of an initial sealed bid first price
auction (RFQ) and a subsequent english auction in which only a winning subset of
bidders from the initial RFQ is allowed to participate in.

The meet2trade tool suite is no longer under active development. Instead, around
2006, the team at IISM started investigations for a successor platform that takes the
lessons learned from building meet2trade into account in order to eventually take
over as the standard platform for market engineering research and development at

2.4 Summary 43

the institute. In the next chapter, the insights from building and using meet2trade
in combination with the market engineering process models described before and
some of the difficulties the team experienced with the generic platform approach
experienced are summarized. Based on these lessons learned and based on a use case
analysis conducted in Section 3.3.2 a set of requirements for such a “next generation
market engineering platform” are formulated.

2.4 Summary

In summary, significant research work has been devoted to developing methodologies
and supporting software artifacts aimed at supporting the development of electronic
markets from generating new market ideas to assessing existing market environ-
ments, to creating an evaluating economic market models, to realizing and running
markets in practice.

Still, none of the analyzed market engineering platforms is actively supported and
developed anymore. Also the existing market engineering process models seem to be
closely modeled after traditional Waterfall-style software engineering models. These
in turn proved to be problematic in software engineering practice and are now largely
displaced by newer, agile software engineering process models.

Taken together, all these observations call for a systematic review of market engineer-
ing process models in the light of agile methodologies and for the (re-)development
of new supporting market engineering software artifacts that go along well with agile
development practices and principles. Consequently, the next chapter is devoted to
formulating requirements that an agile market engineering process model and sup-
porting software artifacts need to fulfill to finally bridge the gap between abstract
and theoretic market mechanism models on the one hand and publicly running elec-
tronic markets on the other.

3

Requirement Analysis

In this chapter, requirements for an agile market engineering process model and for
supporting artifacts are determined. First, problems and shortcomings of existing
models and tools – as described in the previous chapter – are summarized. Subse-
quently a use case analysis is conducted that aims at detecting key stakeholders and
key requirements for the process model to be developed as well as for its support-
ing artifacts. Conclusions from both sections together are then used to formulate a
set of requirements that the agile market engineering process needs to address on a
technical as well as on a managerial (i.e. business) level.

3.1 Assessment of existing market development process
models

With the Process / Stakeholder Benefit Framework, Kambil and van Heck (2002)
developed a methodology to systematically assess a market environment, to develop
new market ideas, to asses risks and potentials of the idea, and to then develop a
strategic plan for entering the market. Additionally, the authors provide many real
life examples on how markets have been implemented or changed in the past in
different industries and under different environmental conditions. All this provides
valuable support for the initial stages in the development of new markets (ideas).
However, apart from case study descriptions, the authors do not describe the next
logical steps, i.e. a process on how to proceed after a new market idea was developed
and its market potential was estimated and assessed.

Here, the Market Engineering model of Neumann (2007) provides useful guidance. It
particularly describes a process for developing an economic mechanism design (i.e.
the market rules) of a new market taking into account market environment, tradable
product(s), and expected types of market participants and their behavior. Still, this
process model falls short of appropriately describing the logical next process step on
the way to creating a running electronic market: Concrete and detailed guidance on
how the previously developed economic market model should be translated into an
actually running market instance would be required. Neumann (2007) only points
to “state-of-the art approaches like the V-model [...] supplemented by methods such

46 3 Requirement Analysis

as the FUSION [...] and tools such as UML[...] such that the software engineering
process will not further be elaborated.” This referral is insufficient and additionally
points to a software engineering process model that is outdated in its core ideas and
is superseded by more performant and agile process models (see Section 2.1).

In short, the two models of Kambil / van Heck and Neumann / Weinhardt provide
support for developing and strategically positioning new market ideas, and for mod-
eling them on an economic level. Almost no guidance is provided on how running
markets should be developed based on these inputs. This conceptual gap is addressed
in this thesis.

3.2 Assessment of existing market engineering software
artifacts

Neither for AuctionBot nor for GEM source or even binary code was available for
analysis and consequently the code work of these projects was not assessed. Still,
code from the meet2trade project was available as source and binary code and is
analyzed in more detail in the following paragraphs.

One of the lessons learned from meet2trade is that the extensive genericity of the
market framework (especially in the ARTE core and in the adaptive clients) is a
useful abstraction. But this holds only as long as it could be used “as is” and proved
to be a significant burden as soon as functional extensions beyond the configura-
tion space are required. For the two main real world projects (NorA, see Chen et al.
(2006) and Stoccer, see Luckner et al. (2005)), where meet2trade was used as market
platform, the configuration space was considered “sufficient” during a first require-
ments appraisal but still proved to be too small later on, when detailed requirements
of the markets were defined.

STOCCER is a prediction market system for soccer events where soccer fans can
trade virtual stocks of national and international teams and in this manner predict
the outcome of a tournament as precisely as possible. Fore the implementation, a
continuous double auction model was chosen as the underlying economic market
mechanism. Setting up a corresponding market instance was easy to accomplish in
meet2trade by simply creating an appropriate MML configuration document and by
then deploying it to the ARTE runtime environment. But, additionally to this basic
market model, a scoring function for market participants based on a combination of
weighted portfolio values and cash positions was required as winner determination
mechanism for the prediction market. Furthermore, the user interface had to be web-
based in order to provide easy access to users on the Internet. Both requirements
were “beyond” the MML configuration space and, thus, had to be added manually.
The corresponding extensions and refactorings required extra efforts of about 1.5
years FTE.1

In the case of the NorA project, a lab-experiment based study on the influence of
mechanism and system design on market outcome, a multi-attribute english reverse

1 FTE is the abbreviation for Full Time Equivalent. A task which requires an effort of 1
month FTE means that 1 person works for one month full time to accomplish the task.

3.2 Assessment of existing market engineering software artifacts 47

auction was required as market mechanism. While a regular English reverse auction
was covered by MML design space, the multi-attribute version of it was not. As in
Stoccer before, the required refactorings in this project proved to be difficult and
time consuming with an estimated effort of about 8 FTE months.2

In both projects, the required adaptations and extensions turned out to be difficult
to manage. This is mainly because the adaptation of the ARTE runtime environment
with its high inherent complexity of the core architectural elements was difficult to
extend and required a very detailed knowledge of the underlying software architec-
ture.

To quantify the complexity of the source code of meet2trade, and in particular of the
ARTE runtime environment, the classes from the org.efits.Trade package that
implement most of the market logic were analyzed.3 Based on the source code of these
eight classes, common software metrics such as cyclomatic complexity (CC) of the
functions of each class, number of non-commentary lines of code (LOC) and number
of methods and attributes per class were derived. Several empirical studies indicate
that these metrics provide a good prediction for the effort of software maintenance.
McCabe (1976) claims, that based on his empirical findings, CC of modules and
functions should not exceed an index value of 10 (though he admits that this value
was chosen somewhat arbitrarily). Based on further studies Kafura and Reddy (1987)
and Grady (1994) come to the conclusion that CC should not exceed 14 in order
to keep software well maintainable. Prechelt et al. (1999) show that the number of
methods in a class have a high correlation with the maintenance effort. Shepperd
(1988) claim a similar correlation between maintenance effort and LOC.

Table 3.1 lists the above metrics for each of the eight core classes of meet2trade,
sorted by decreasing cyclomatic complexity (column 2). The analysis was performed
using Cyvis4.

This overview gives a sense of the inherent complexity that the core ele-
ments of meet2trade possess. The cyclomatic complexity of the classes
org.efits.Trade.Order.Order and org.efits.Trade.Markt.AbstractMarkt

is within the recommendations. Still these classes exhibit a very
large number of methods and attributes. The most complex class,
org.efits.Trade.Markt.Allocator_CDA_III, has a cyclomatic complexity
that is 13 times higher than the recommendation of Kafura and Reddy (1987)
and Grady (1994). This can be seen as a root cause for the difficulties that the
team members of the Stoccer and NorA project experienced while trying to extend
meet2trade. The code complexity of meet2trade can be seen as the price for its
genericity.

2 If a web-based interface would have been required for the meet2trade instance in NorA
as it was the case in Stoccer efforts would have been significantly higher.

3 In fact the complexity analysis was conducted for the complete ARTE core of meet2trade,
which consists of an overall of 13,811 methods, written in 847 classes, and divided into
92 packages. The raw report consists of 349 pages so that only the results for the core
market logic is presented within this work. Full results of the analysis can be obtained
from the author on demand.

4 http://cyvis.sourceforge.net

48 3 Requirement Analysis

Table 3.1. Software quality metrics for the meet2trade core classes

Class max. CC LOC #Methods

org.efits.Trade.Markt.Allocator_CDA_III 185 842 4

org.efits.Trade.Orderbuch.Orderbuch 103 2998 156

org.efits.Trade.MetaMarkt.MetaMarkt 61 3368 282

org.efits.Trade.Markt.Allocator_CallMarket 54 276 2

org.efits.Trade.Order.OrderManager 33 789 42

org.efits.Trade.Markt.Market 30 876 20

org.efits.Trade.Order.Order 8 913 123

org.efits.Trade.Markt.AbstractMarkt 7 837 192

Also, meet2trade seems to have been affected by another problem. Selby (2007, p.
168) states that “words are cheap. During the specification phase, it is all to easy to
add gold-plating functions to the product specification, without a good understanding
of their effect on the product’s conceptual integrity or the project’s required effort.”
With generality as one of the key value propositions, the requirements specifica-
tion had to cover a great variety of market models in a broad range of potential
application scenarios (at least initially) without any concrete use cases or any con-
crete projects to develop against. Like this, more and more gold-plating features
were added over time for “potential future use” that lead to more and more code
complexity on the one hand and decreased maintainability and extensibility on the
other. Still, for all of the concrete application scenarios, where meet2trade was used
(see also Section 2.3.3), the design space of the market modeling language proved
to be not “large” enough in one or more particular aspects and the resulting code
adaptations and extensions were found to be time-consuming and complex.

This is why Selby (2007) advocates the development of “simpler software”. In an
experimental study comprising seven projects he compared software engineering
projects that used an extensive upfront specification process with projects that used
rapid prototyping and software delivery in small incremental versions with frequent
user feedback.

He reports that all projects delivered software artifacts that were roughly equivalent
in performance though agile projects reportedly required about 40% fewer LOC and
approximately 40% less development time. His conclusion is that prototype driven
projects initially provide only the very core functionality and are only extended
where “necessary” after inspecting the running systems. On the contrary, in specifi-
cation driven projects, some of the features added to the requirements specification
are not absolutely necessary.

Two key insights can be extracted from the previous analysis:

• The two existing market engineering process models provide good guidance for
developing markets up to an economic (mechanism design) model but lack sup-
port for actually getting markets running

3.3 Use Case Analysis 49

• Generic market platforms tend to be complex by design and are thus difficult to
maintain and to extend. Simpler approaches on the other hand might be able to
deliver the same functionality at lower cost and complexity.

With the insights at hand the following sections focus on developing use cases and
identifying important stake holders for a simple and efficient market engineering
process model that bridges the gap between theoretic models and running market.

3.3 Use Case Analysis

This section is focused on identifying involved persons (stake holders) and typical
tasks (use cases) that occur during the development of a new market.

3.3.1 Stakeholders

Design and implementation of (electronic) markets require the involvement of mul-
tiple parties in several different roles and with several different professional back-
grounds. In this context a “role” is considered as a set of responsibilities and priv-
ileges that one or more persons in this role take over. The following analysis differ-
entiates five core roles. Each of them is described separately but it should be noted
that a single person can embody several roles. E.g. a person can be business owner
and market expert. Vice versa, a single role can be assigned to several persons as
well. E.g. the role of the market developer is likely to be assigned to a team of several
persons. The following listing provides a short description for each of the roles.

1. The Business Owner (BO) is the role of the person(s) who develop the initial
business idea. The BO is the driver for the realization of the market on the
management side. In reality, the business owner can be the customer who pays for
the development of the market itself. Alternatively, a proxy (e.g. a key account
manager of the market development firm) can take over the role so that the
customer does not have to be personally present all the time.

2. The Market Expert (ME) role is that of a specialist. Mechanism Design is a spe-
cific research area within economics that “takes a systematic look at the design
of institutions [i.e. market rules] and how these affect the outcomes of inter-
actions [between market participants].” Jackson (2000). The ME is trained in
economics and particularly in mechanism design. The ME supports the business
owner and the market developer(s) in defining market rules, i.e. allocation rules,
pricing rules, market language, and information dissemination policies according
to sound economic principles, scientifically founded research findings and / or
results from (game) theoretic analysis.

3. The Market Developer (MD) is concerned with the technical realization of the
market system, i.e. with implementing the business logic and the market rules
into an executable electronic market platform.

4. The Market Operator (MO) technically operates the market by deploying the
market platform on a suitable server, connecting it to other required services

50 3 Requirement Analysis

like e.g. a database or an email server. Also the MO continuously observes and
maintains the market on a system level e.g. by monitoring log files, processor
and memory consumption, and by escalating runtime errors to MDs.

5. The Market Participants (MP) are end customers who conduct transactions on
the electronic market platform buying or selling products or services, and who
consume the information it provides.

Additionally, the Change Manager (CM) is a very important role though the CM
is not assuming any functional tasks directly related to the market development.
Instead this role represents a change agent (Hutton, 1994) and is well comparable to
the Scrum Master Role (Schwaber and Beedle, 2001) in the Scrum software engineer-
ing process model (see Section 2.1.2). The CM is specifically focused on detecting
and resolving impediments within the project organization, within the development
process, in the interaction between team members, and in the interaction with the
project’s environment (e.g. with customers or other departments within the organi-
zation). The CM does not occur in the use cases described in the following section.

3.3.2 Use Cases

Based on the previous analysis and based on practical insights from several mar-
ket engineering projects the following set of use cases is developed. The use cases
are divided into three different phases Pre-Development Phase, Market Development
Phase, and Market Operation Phase. The pre-development phase roughly comprises
market assessment and theoretic market modeling activities as covered by the frame-
works of Kambil and van Heck (2002) and Neumann (2007). The development phase
comprises all tasks related to the technical creation of the market platform, while
all tasks pertaining to running the market in reality are described in the operation
phase.

Pre-Development Phase

During the pre-development phase the idea for a new (electronic) market is developed
and high-level requirements are deduced. The results from this phase serve as input
for the market development phase.

Use Case 1 (Develop Market Vision and Assess Market Environment)
The process starts with a detailed analysis of the particular market environment, its
stake holders and interest groups, potential areas for process improvements, or other
forms of value creation. With these analysis at hand, the business owner is able to
describe the vision of the market and its business model.

Use Case 2 (Develop Abstract Mechanism Design)
With the vision and the business model in mind the BO – supported by the ME –
can start developing a theoretical market model taking into account insights from
economics and in particular from mechanism design, e.g. to determine likely market
equilibria or expected dominant behavioral patterns (strategies) of market partic-
ipants and from mechanism design. The result will be a set of (abstract) market

3.3 Use Case Analysis 51

Business Owner (BO)

Develop Market Vision and

Assess Market Environment

Review Existing Market Design Recommendations

Develop Abstract Mechanism Design

Pre-Development Phase

<<include>>

Market Expert (ME)

Fig. 3.1. Use Cases in the Pre-Development Phase

institutions, i.e. allocation rules, pricing rules, bidding language, and information
dissemination policies.

Use Case 3 (Review Existing Market Design Recommendations)
Part of the previous use case is the review of the chosen mechanism design. Here,
BO and ME need to relate their (preliminary) market design to other already ex-
isting designs and findings from research in order to gain insights on how market
participants will act once the market is publicly accessible.

Development Phase

Based on a clear understanding of the market vision and the business model, and
with an abstract economic mechanism design concept including expertise from re-
lated markets and corresponding research findings at hand, the market development
phase starts. In this phase, the technical market system will be developed in short
incremental cycles. These cycles allow for a flexible realignment of requirements
in reaction to insights on market performance based on hands-on experiences and
empirically observed market dynamics from the running market system.

Use Case 4 (Describe / Update / Detail Requirements)
At the begining of the market development phase BO, MO, and ME need to develop
a joint understanding of the market vision (i.e. the overall goal to achieve). With
this common understanding an initial set of requirements needs to be developed.

Use Case 5 (Search and instantiate existing market as template)
In the first iteration of the the market development phase, the MD reviews already
existing market instances. His aim is to detect previously developed markets that

52 3 Requirement Analysis

Market Expert (ME

Describe / Update / Detail

Requirements

Review Implementation

Business Owner (BO)

Release Market

Implement & Test

Business Requirements

Search and

instantiate existing

market as template

Market Developer (MD)

Market Development Phase

Fig. 3.2. Use Cases in the Market Development Phase

are deemed “sufficiently” similar in their market model5 so that they can serve as
the technical basis for the development of the new market.

Use Case 6 (Implement and Test Business Requirements)
Usually a “good fitting” existing market should already implement a significant
subset of the required technical and business functionality of the new market. Missing
features have to be implemented by extending or replacing the existing code artifacts
where necessary.

Use Case 7 (Review Implementation)
Once the set of business requirements is implemented, tested and running live on
a testing system BO, MD, and ME jointly conduct a review based on the running
system. The experiences and insights from this live review then become the basis
for the formulation of new requirements / features, or for requirement changes. The
review ends with an approval (or, if critical issues are detected with a reject) of the
new, implemented feature set.

Use Case 8 (Release Market)
After the review process is finished and the implemented feature set was approved,
a new version of the market is released. A new market release essentially triggers a
redeployment of the revised market on the production systems as described in the
following use cases.

5 For example in Chapter 5 the development of several prediction markets is described
that all use a double auction mechanism and are base on a simple double auction market
platform developed before.

3.3 Use Case Analysis 53

Operations Phase

After an instance of the electronic market is released at the end of a development
phase a new market operations phase begins.

Log Market Activity

Monitor / Adjust

Technical Market

Operation

Deploy Market

Perform Trades, Consume

Market Information

Create / Adjust Business

Requirements

Derive Market Metrics, Observe

Market Performance, Analyse

Participant Behavior

Set Market Fees

Manage Market

Participants

Manage Products

Business Owner (BO)

Market Operation Phase

Market Participant (MP)

Market Operator (M0)

Market Expert (ME)

Fig. 3.3. Use Cases Market Operation Phase

Use Case 9 (Deploy market)
The market operator installs the executable code of the electronic market on the pro-
duction server infrastructure. Sometimes, especially in early development, deploy-
ments can be made to a “staging” environment, a second production environment
that contains sample data and allows for intensive testing under realistic conditions
without influencing operations of the production environment. For both deployment
types, the MO ensures that all necessary runtime components are configured cor-
rectly including e.g. configuration for database access and email connectivity and
that the market is accessible online.

Use Case 10 (Manage products)
The business owner creates, edits, removes, and enables or disables products and
the corresponding trade activities.

Use Case 11 (Manage market participants)
The business owner grants or restricts access to products, and controls orders, depot
positions and account settings. In other words, the business owner exerts market
control in order to ensure smooth market operations and compliance with market
rules.

54 3 Requirement Analysis

Use Case 12 (Set market fees)
The business owner can introduce and adjust market fees for (i) general market
participation or (ii) trading activities.

Use Case 13 (Derive Market Metrics, observe performance)
The BO – supported by the ME – observes the economic performance of the market
by analyzing occurred trades and by deriving appropriate market metrics like implicit
transaction costs, product prices, transaction volume or liquidity. These insights can
then serve as input in form of new requirements and change requests for subsequent
market development phases.

Use Case 14 (Create / Adjust Requirements)
Based on observations of market activity and MP behavior, the BO – supported
by ME and his market performance analysis – formulates new or adapts existing
requirements.

Use Case 15 (Monitor / adjust technical market operation)
The MO continuously observes and maintains the market by monitoring log files
and processor and memory consumption. He reports runtime errors to MD where
required.

Use Case 16 (Perform trades, consume market information)
Market participants get information about tradable products and product categories,
they place orders, view their trading history, depot position and money account
transactions, and edit their personal user details.

3.4 Requirements for an Agile Market Development

Several articles in literature postulate requirements that electronic markets need to
address. In the following paragraphs, a short overview of these requirements is com-
piled, which provides insights on what type of functionality is commonly considered
important for electronic markets.

According to Malone et al. (1987) electronic markets need to provide easy intercon-
nectivity with other applications or services and multi-channel access. They should
also facilitate automated information aggregation providing some sort of automated
decision support to customers during product and offer assessment and selection.
Their reasoning builds on theory of Coase (1937) who claims that a market will be
the coordination mechanism of choice if its transaction cost (e.g. cost for searching or
matchmaking) are lower than those of a firm (i.e. hierarchy), which is set up to serve
the same purpose. Consequently, Malone et al. see a market’s ability to reducing
transaction cost as core requirements for its success.

Schmid (1997) follows this argumentation and notes that most importantly transac-
tion costs for product browsing and searching need to be kept low. In other words,
providing transparency is a key requirement for electronic markets. Additionally,
Schmid argues that functional components for conducting negotiations, for support-
ing contracting, and for accomplishing settlements are key functionalities of a market

3.4 Requirements for an Agile Market Development 55

and always required. Furthermore, negotiation rules6 need to be easy to define and
to adjust. Last no least, he notes that support for calculating logistics cost, possibil-
ities to store meta-information on products (e.g. consumer feedback or ratings), and
decision support for customers selecting and evaluating offers on the market would
be desirable.

Bichler et al. (1998) note that transparent listing of products, prices and historic
transactions is a key requirement for electronic markets. They also argue that the
availability of human or electronic brokers (mediators) can be an important value-
add for markets as they can provide assistance during the product search / discovery
phase as well as during subsequent negotiations. Furthermore, Bichler et al. state
that brokers might take on the role of market facilitators and serve the e.g. as
liquidity providers in financial markets.

In contrast to Bichler et al., Segev et al. (1999) claim from the observation of
business-to-business procurement markets that complete market transparency would
rather deter possible bidders (suppliers) from market entry as they fear stiff price
competitions that do not leave them room for differentiating themselves from com-
petitors via value adding services. Thus, they argue that limited market transparency
is a key success factor in the procurement domain and can be seen as a price to be
paid for attracting participants. On the other hand, the authors admit that the
ability to transparently find and reliably authenticate potential contracting partners
can be an important attractor as well. Lastly, Segev et al. point out that electronic
markets on the business-to-business level need good interfaces for human users but
should also provide technical interfaces that allow connections to and integration
of other systems (e.g. ERP systems of market participants) and data sources (e.g.
third party catalogue data).

In summary, an optimal degree of market transparency seems to be difficult to de-
termine and dependent on the application domain. Still, the authors agree, that (i)
good human user interfaces that facilitate and ease product search, (ii) technical
market interfaces for machine-to-machine communication, (iii) decision support for
product choice and during negotiations, and (iv) support for contracting and settle-
ment are amongst the most important requirements that electronic markets need to
fulfill.

Based these recommendations, based on the review of existing market engineering
process models, and based on the uses case analysis from the preceding section the
following requirements are deduced.

3.4.1 Business Requirements

Requirement 1 (Adjustable support for common market functionality)
Common market functionality comprises the definition of (i) a market language,
(ii) an allocation mechanism, (iii) a pricing mechanism, and (iv) rules that pertain

6 In the nomenclature of Schmid negotiation rules include rules for market communication,
permitted types of market participants as well as their respective rights and obligations
on the market.

56 3 Requirement Analysis

to information flow and information disclosure (market transparency) (see Anan-
dalingam et al., 2005, p.322). An electronic market needs to implement all of these
elements. But as the literature analysis in the preceding section shows the particular
requirements might change over time and are likely to be dependent on the respec-
tive market domain. Thus extending and adjusting these core market components
should be simple to accomplish.

Requirement 2 (Authentication & Authorization)
An electronic market needs to support secure and trustworthy user authentica-
tion (see Segev et al., 1999) that allows market participants to believe in the claimed
identities of the contracting counterparties, which is necessary to create trust and
thus to foster trade.

Additionally, electronic markets need to allow for at least two basic authorization
roles or profiles: market participant and business owner (see use case analysis in Sec-
tion 3.3.2). Market participants will have restricted access to the electronic market
in that they are only permitted to (i) access the market’s information facilities, (ii)
learn about tradable products, (iii) view the market history, (iv) participate in trad-
ing activities, and (v) administrate their own personal data. In contrast, members of
the business owner role are usually not authorized to trade in the market but instead
are able to manage the trading platform, i.e. to activate or suspend trading of dif-
ferent products, to set and adjust market fees, to manage the catalogue of tradable
products, to verify and adjust user accounts and inventories, and to monitor market
activity.

Requirement 3 (Integrated & adjustable information services)
Beside the core functionality of a trading platform, the markets should provide basic
information services, in order to offer relevant pre-trade and post- trade information
for market participants, like the state of the order book of a product or current
product prices effectively reducing transaction cost for information retrieval. The
exact information type and granularity should be easily customizable (see discussion
at the beginning of Section 3.4).

Requirement 4 (Support for multi-channel market access)
Market information services as well as core trading functionality should be avail-
able via web-based user interfaces. Optionally, it should be possible to expose these
functionalities to different communication channels (e.g. web services, AMQP, or
E-Mail). Web Service access will be particularly important for automatic trading
agents and external decision support systems (see Malone et al., 1987; Segev et al.,
1999).

Requirement 5 (Optional decision & automation support)
It should be possible to easily integrate decision support functionality dedicated to
both product selection support, and / or negotiation support into the electronic
market (see Schmid, 1997; Bichler et al., 1998).

3.5 Summary 57

3.4.2 Technical Requirements

Requirement 6 (Simple software architecture)
To enable rapid development and customization of market templates, a software
architecture common to most types of electronic markets should be created. This
architecture needs to be as simple as possible (see discussion in Section 3.2) but still
flexible enough to easily allow adding new or removing unnecessary architectural
elements (such as decision support, see discussion in Section 3.4). Also the modifi-
cation of existing components in the architecture should be easily possible and the
communication scheme between different components should be easily adjustably
where necessary.

Requirement 7 (Reusability of markets)
A market instance built on top of the market framework described in this thesis
should be fully functional, providing general functionality of a trading platform.
Besides core components like a task scheduler a clearing module, or a settlement
component, market instances should also contain an integrated user and product
management (see use case analysis in Section 3.3.2). All these facets of the markets
should build on (carefully chosen) defaults and conventions that allow for easy reuse
in later projects.

3.5 Summary

In the first part of this chapter, existing market engineering process models as well
as existing market engineering software artifacts are analyzed in order to identify
gaps and shortcomings in these previous works. Subsequently, a use case analysis is
conducted in order to identify important stakeholders as well as typical tasks (use
cases) that frequently occur during the development of a new market. Based on these
insights a set of requirements is formulated that an agile market engineering process
model needs to address. With this set of requirements at hand the following chapter
describes a market architecture as well as a market development process model that
strives to fulfill these requirements.

4

Agile Market Engineering

Based on the requirement analysis in Chapter 3 an agile market engineering process
model together with a set of supporting software artifacts is described in this chap-
ter. The combination of both, process model and software artifacts, is designed to
address the shortcomings of existing market engineering process models and software
tools identified in Chapter 3. Building on previous work of Beck (1999); MacCor-
mack (2001); Cohen et al. (2004); Cockburn (2004); Poppendieck and Poppendieck
(2006) the proposed model is an adaptation and specification of general purpose
agile software engineering practices for the domain of market engineering Cao et al.
(2009). This process model is designed to particularly fit relatively small project
teams (2 – 7 persons) who...

1. develop and release market platforms in short and time boxed cycles

2. have change tolerance in their minds and in their technical market architecture
and thus frequently reflect and (whenever necessary) adapt the developed market
as well as the market engineering process itself as new ideas and insights grow
over time

3. work physically close to each other (in one large room or at least in adjacent
rooms)

4. make intensive use of whiteboards, flip charts, informal communication pro-
cesses, and feedback from end users to develop, discuss and document ideas and
solutions

5. have market (mechanism design) experts within their team or at least in close
vicinity so that frequent communication is ensured

6. can communicate openly within the team without fearing any type of repressions

7. employ test automation, continuous integration, and automated software depen-
dency management in combination with rapid application development frame-
works

The proposed agile market engineering process model can be understood and used
as a strict process prescription for a market engineering project. In this case the
respective project team can simply follow the process steps shown in Figure 4.1
from top to bottom and from left to right. However, this is not how this model is

60 4 Agile Market Engineering

intended to be used. Rather than strictly prescribing or even enforcing particular

Step X

I: Develop Market Vision

and Assess Market

Environment

II: Collect Initial

Requirements

III: Search for Existing

Market as Template

VIII: Observe & Assess

Market Activites

IX: Add & Revise

Requirements

VII: Release & Deploy

Market Platform

VI: Design, Implement & Test
V: Concretize, Estimate &

Choose Requirements
IV: Prioritize Requirements

Artifacts developed as part

Operation Phase

Development Phase

Pre-Development Phase

R
e
p
e
a
t

Fig. 4.1. The Agile Market Engineering Process Model

process steps, user roles, actions, or software artifacts the whole framework merely
aims at providing a coherent collection of best practices, experiences, and tools, and
furthermore shows one way to orchestrate them, which proved to be successful in
previously accomplished market engineering projects. In this spirit, the following

4 Agile Market Engineering 61

sections describe the core “building blocks” of agile market engineering that have
been tested and were found to be useful in the past.

In Section 4.1 a lightweight and agile market engineering process is described. Sec-
tion 4.2 then provides an overview of specific software artifacts that can support this
process.

Several general terms and notions are frequently used throughout the following pro-
cess descriptions, which generally follow the common terms and notions of Scrum
(see also Section 2.1.2). Requirements are collected in a list called product back-
log. It consists of a set of user stories where each story describes a small piece
of required functionality on an abstract level (i.e. detailing what functionality is re-
quired but not how it should be realized). Stories are usually written down on story
cards as shown in Figure 4.2. A user story can be broken down into several specific
tasks that need to be accomplished for the user story to be completed.

Fig. 4.2. A sample TAC Energy User Story broken down into several tasks

Technically, the product backlog is maintained on a Taskboard. In its simplest (but
usually sufficient) form this is just a magnetic whiteboard where the user stories and
their corresponding tasks can be easily pinned up and sorted manually with minimal
effort required. Figure 4.3 shows a stylized taskboard, Figure 4.4 shows a snapshot
of the Taskboard used to track the development of the TAC Energy project.

62 4 Agile Market Engineering

Fig. 4.3. Taskboard Mockup (Source: Cohn,
2009)

Fig. 4.4. Taskboard used in TAC Energy
Project

4.1 A Lightweight and Agile Market Engineering Process
Model

In general three different agile market engineering phases can be distinguished (see
Figure 4.1), “Pre-Development”, “Development”, and “Operations”. As already de-
scribed in Section 3.3.2 the pre-development phase roughly comprises market as-
sessment and theoretic market modeling activities as covered by the frameworks
of Kambil and van Heck (2002) and Neumann (2007). The development phase com-
prises all tasks related to the technical creation and implementation of the new
market platform, while all tasks pertaining to running the market are subsumed in
the operation phase.

The Pre-Development Phase occurs only once and is dedicated to developing the
overall market idea and the attached business model. Development phases are re-
peated in short cycles, each delivering potentially shippable and incrementally im-
proved versions of the market platform. The operation phase continues to take place
over time and in parallel to the development phases. From market operation new
ideas on how to improve the platform arise based on observing market activity and
are mirrored back to the development phase. Each of these phases is described in
more detail in the following sections.

4.1.1 Pre-Development Phase

During the pre-development phase an initial concept for the future (electronic) mar-
ket is developed. This concept includes the development of a broad vision for the new
market, a thorough analysis of the existing market environment, and an assessment
of previously developed market platforms in search of a sufficiently similar market
as template to build the new project upon.

4.1 A Lightweight and Agile Market Engineering Process Model 63

Develop Market Vision and Assess Market Environment

Phase: Pre-Development Phase
Responsible: Business Owner
Also involved: —

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

Finding and formulating a vision is a creative process. Different techniques can be
used to foster creativity. One of them is called freewriting. Belanoff et al. (1991)
provide an inverse definition for this technique: “Freewriting is what you get when
you remove almost all of the normal constraints involved in writing.” This means
that a person (in the market engineering context the business owner) sits down,
takes a blank sheet of paper, ensures that there will be no interruption for the next
10 minutes, and starts writing whatever comes to his mind after (initially) thinking
about the future market to be developed. The only strict rule is to continuously
put down words on the paper without stopping or correcting anything. Spelling,
grammar, topic, line of argumentation, quality, correctness – all this is completely
unimportant as the outcome will never be exposed to to anybody else.

(Elbow, 1998, p.9) notes on freewriting that “much or most of it will be far inferior
to what you can produce through care and rewriting. But the good bits will be much
better than anything else you can produce by any other method.” And exactly these
good bits will be the basis for the vision and the concept of the new market.

Once the business owner has developed a sufficiently concrete vision by repeating
the freewriting technique (or other techniques such as brainstorming or mind map-
ping) the process / stakeholder benefit framework of Kambil and van Heck (2002)
can then be used to systematically explore the market environment and to iden-
tify important stakeholders. Also, potential obstacles and opportunities for the new
market idea can be assessed using their methodology so that in the end, a strategy
on how to position and introduce the new market into the existing environment is
clearly defined. Further information on how to apply this framework is provided in
Section 2.2.1 an by the authors in Kambil and van Heck (1998, 2002).

Collect Initial Requirements

Phase: Pre-Development Phase
Responsible: Business Owner
Also involved: Market Expert

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

After the market vision is formulated and the market environment is assessed thor-
oughly initial requirements in form of “user stories” (Jeffries, 2001) each describing

64 4 Agile Market Engineering

a small facet of the required overall functionality are collected and written down by
the business owner who is supported where necessary by the market expert. The
collection of all user stories is called product backlog. According to Cohn (2004) a
user story should be . . .

• independent

• negotiable

• valuable to end users (market participants)

• estimable

• small

• testable

Wirdemann (2009) suggests to write user stories from an end user perspective and
in the language of the end user detailing the requirement (the “What?”) but leaving
out implementation details (i.e. the “How?”) completely. The rationale behind this
is the observation that the requirement itself doesn’t change very often while the
implementation part does as the project goes on an insights from implementing the
overall market are collected. Separating the requirement part from the implementa-
tion part saves the business owner from rewriting user stories whenever new ideas
and solution approaches on how to best implement them are found or developed.

Consequently, Cockburn (2008) calls a user story “the title of one scenario”, which
inherently bears “a promise for a conversation [...] about the scenario for which this
is the title!”. At this point in the overall process it is sufficient to find the “titles”
that basically serve as mnemonics for conversations to be conducted later on (during
the development phase) between business owner and market developer on how to
realize the story.

As a good practice for writing user stories the following textual format has been pro-
posed: “As a [User Role] I need a [functionality] so that I get [business value]” (Cohn,
2004; Gloger, 2008).

Thus, examples for user stories would be something like “As a market participant
I need to be able to list all my orders so that I can track their statuses and don’t
lose the overview.” or “As a business owner I need to be able to lock, unlock and
delete user accounts so that I can appropriately react to misconduct and violations
of market rules.”

Technically, writing and collecting user stories on small (A5 size) index cards was
found to be quick, simple, persistent, easy to appended (and to dispose) and also
allows for simple sorting and reordering on a whiteboard or a flip chart as shown
in Figure 4.4. This board is also called taskboard and it fosters transparency and
collaboration among all market developers and business owner. Story cards can
be used later on to protocol the conversation between business owner and market
developer on how the particular user story should be implemented.

Specifically in the context of agile market engineering, the business owner (possi-
bly supported by the market expert) also needs to ensure that the market micro

4.1 A Lightweight and Agile Market Engineering Process Model 65

structure, i.e. the market rules that define allocation and pricing rules, the mar-
ket language, and information dissemination policies (Anandalingam et al., 2005,
see:) are set according to sound economic principles. Here, existing experiences and
knowledge from previous market engineering projects and from mechanism design
research need to be taken into account. For this purpose a market design knowledge
base was developed that is able to store market design recommendations in a flexible
parameterized format and makes them easily accessible and searchable (Block and
Neumann, 2008). Section 4.2.1 provides more details on this agile market engineering
software artifact and its usage.

Search for Existing Market as Template

Phase: Pre-Development Phase
Responsible: Business Owner
Also involved: Market Expert, Market Developer

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

With the vision, an initial set of user stories, and a sound mechanism design at
hand the BO possesses an abstract description of the new market. Supported by
ME and MD the BO can now examine previously developed market platforms that
can possibly serve as a technical basis for the development of the new market. For
this purpose a specific market template repository was developed that is capable of
storing, maintaining, and easily provisioning (the source code of) different market
instances (Schönfeld and Block, 2010). Initially, two simple but fully functional mar-
ket instances (a call market and a continuous double auction market) were developed
and contributed as “initial endowment” to the template repository. In the mean time
several market platforms originate from these templates (see Chapter 5) and a spe-
cific prediction market template has been contributed back to the repository as new
for future prediction market projects to build on.

Though several different market instances are available as templates, it is well pos-
sible that the product owner does not find any them particularly well fitting for his
new market idea. In this case the development process begins without a template
and is therefore somewhat slower initially.

If a template is found, it can be instantiated with minimal effort1 and run out of the
box on every computer that has the required development environment installed.
This allows the business owner – possibly supported by the market expert – to test
and evaluate the different template market platforms “live”, in order to find out if

1 “Minimal” in this context means that – provided the base software development frame-
work is installed on the system – instantiating and running the market template can
be accomplished with three command line statements and should take no longer than
approximately a minute depending on how fast required and automatically installed
third-party artifacts can be downloaded from the Internet (see also Section 4.2.2).

66 4 Agile Market Engineering

one of them is similar enough to the system he envisions and thus can be used as a
foundation to build on.

Even if no template sufficiently fits to the envisioned new market the process of
inspecting and “hands-on” testing existing templates helps the business owner to
better express his requirements by pointing to existing functionality in the templates
and by delineating that from functionality required for the new market platform.

The technical functionality of the market repository as well as its usage is described
in more detail in Section 4.2.2. Design, implementation and core functionalities of
the initial market templates in the repository are described in more detail in Sec-
tion 4.2.2.

4.1.2 Development Phase

Software development (and as such the development of electronic markets) happens
within given boundaries for cost, time and scope. Consequently unforeseeable or
unplanned changes during project runtime and erroneous plans or estimations lead
to situations where tradeoffs between these three constraints have to be made. Three
core principles guide the development phase of the agile market engineering process
and prescribe resolution strategies for these situations:

Self Organization: The Market developers take over sole responsibility for the
development process and for organizing their work. Following this principle re-
quires some learning in the beginning of a project where errors are made (e.g.
overly optimistic estimations) and tasks are not executed completely. Especially
in this phase, a change manager (see Section 3.3.1) can provide valuable support
to MD and BO by providing them with an an outside view on their work helping
them to better organize themselves and their work processes without prescribing
or enforcing solution concepts or process workflows.

Timeboxing: Project meeting durations and deadlines are defined upfront and are
strictly enforced by the change manager. This enforcement forces all involved
persons to work concentrated and focused on the tasks of the respective meetings.
Also, keeping time constant, means that a development cycle is never prolongated
even if e.g. requirement changes or obstacles in the implementation process occur.
Instead the amount of delivered functionality has to be adjusted.

Pull-Principle: The pull-principle is based on the Kanban idea (Louis, 2006) and
regulates the number of user stories chosen for implementation in a specific
development phase. The basic idea is to let the market developers (and not the
BO) chose (“pull”) exactly that number of user stories from the product backlog
they think can be implemented in one single development phase. Like this a self
regulatory circuit is created that ensures that the MDs work capacity is used
but also prevents overload.

4.1 A Lightweight and Agile Market Engineering Process Model 67

Prioritize Requirements

Phase: Development Phase
Responsible: Business Owner
Also involved: —

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

In this step all previously collected requirements (in the form of user stories) are
prioritized by the business owner. The simple base rule for prioritization is that
most important stories are put to the top of the product backlog, not so impor-
tant requirements to the bottom. Still, the question remains what important means.
To answer the question Clegg and Barker (1994) and Ash (2007) developed the
MoSCoW Prioritization scheme. MoSCoW stands for

Must Have (M): key requirements that have to be implemented in any case before
the market could be released

Should Have (S): equally important requirements as must haves but not necessarily
to be delivered within the current timebox as there is an acceptable workaround
or alternative that can be used until the requirement is implemented

Could Have (C): “nice-to-haves” that add value to the market from a customer
point of view but that can be dropped or retarded to a later timebox if the
implementation effort was initially underestimated

Won’t Have (W): All requirements that are on the original list of the business owner
but that won’t be delivered within the current development cycle (timebox).

During the development cycle the ‘M’ stories are implemented first, followed by ‘S’
and ‘C’ stories if time permits.

A business owner who prioritizes his initial list of user stories into the above cate-
gories immediately understands what this prioritization means for the current de-
velopment cycle. E.g it is immediately clear to him that ‘W’ stories are certainly
not delivered in this cycle, which might be not as clear if categories such as ‘high’,
‘medium’ or ‘low’ are chosen as category names.

Selhorst (2006) proposes another prioritization scheme, which was originally de-
veloped by Kano et al. (1994) for the measurement of customer satisfaction. Here
requirements are divided into the following categories:

Must Be (M): As in MoSCoW must be requirements have to be implemented in the
initial release

Surprise and Delight (S): Are features that help differentiate the own product from
that of competitors. Amazon’s 1-click-Buy is an example for such a feature.
Market participants did not expect this feature but they like it as it reduces
their efforts (i.e. their transaction cost) for buying a good to almost zero.

68 4 Agile Market Engineering

Better Not (N): Requirements that fall into this category have to be rethought be-
cause market participants will likely object to using the platform due to these
features. An example could be a forced registration before any market func-
tionality can be used though, for pure browsing and searching of the available
products in the market, such a registration would not be necessary.

More is better (M): These requirements are also called linear requirements. More
of it is better. The time required for order execution at a stock exchange is an
example for such a requirement: The shorter the better. On the other hand, more
of these requirements is usually also more expensive to build. Thus a balance
between expected increase in customer satisfaction and expected increase in
development cost has to be found.

Indifferent (I): These requirements do not affect the acceptance ratings of market
participants. An example could be the back-end software used to operate the
market. For the market participant it is of no importance if this technology is
based on a PHP or a Java server software as long as it delivers the value-add
the customer expects.

For the assignment of requirements into the above categories Selhorst recommend
collecting preferences from real (potential) customers by means of questionnaires.
The collected feedback is then used as the basis for prioritization.

Either way, at the end of this process step all user stories in the product backlog are
prioritized according to business value, with important stories first.

Concretize, Estimate & Choose Requirements

Phase: Development Phase
Responsible: Business Owner, Market Developer
Also involved: —

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

Concretize requirements: Essentially, each user story is a short, high level de-
scription of an idea or a requirement. Cohn (2004) calls them “promises for a con-
versation”. Now these conversations need to take place. Market developer(s) and
business owner step through the prioritized product backlog discussing each of the
stories in detail. The purpose of this exercise is to build a common and detailed
understanding between business owner and market developer(s) on what is takes to
realize each of the stories. A short transcript of the conversation can be written down
on the story card itself together with testable acceptance criteria. Specific tasks that
belong to a user story can be written on additional cards as shown in Figure 4.3 and
4.4. These are used later on to judge if a particular user story is “fully implemented”,
which is the case only if it fulfills all of the listed acceptance criteria.

Estimate stories by size: With a detailed understanding on what it takes for each
user story to be completely realized and tested, the market developers then estimate
the size (and not the effort) of each story.

4.1 A Lightweight and Agile Market Engineering Process Model 69

The rationale for estimating user story sizes and not development effort is the follow-
ing: Effort basically measures the time duration required for accomplishing a certain
task. Estimating efforts in an environment of industrial piecework manufacturing
is likely to yield quite precise results as each task is well defined or can be broken
down into well defined subtasks each being measurable in time required for accom-
plishing the task. For example a task of “assembling workpiece 1 and workpiece 2”
can be broken down into the subtasks “reach for workpiece 1” (effort: 2 seconds),
“reach for a screw” (effort: 2 seconds), “reach for workpiece 2” (effort: 3 seconds),
“screw together workpiece 1 and workpiece2” (effort: 8 seconds). The overall effort
for accomplishing the task is thus estimated at 15 seconds overall. This estimate is
assumed to be (almost) independent from the person or team who accomplishes the
task.

For software projects this approach is likely to produce much more imprecise results.
First, writing a software artifact is usually a unique task that has not been accom-
plished before and thus requires a certain amount of (difficult to predict) creativity
and development experience; empirical evidence suggests that very good software
developers can be 25 (Spolsky, 2005) to 37 (Coplien, 1994) times more productive
than average ones. Consequently, estimating effort (i.e. time duration) for the real-
ization of a software development task is strongly dependent on the particular person
or team executing the task. But this in turn is usually not determined yet at the
time of estimation. For these reasons estimating effort is not recommended (Gloger,
2009).

Still predictions are important for a project’s time and resource management. Cohn
(2005) thus proposes to estimate the size of user stories instead of the required
efforts as follows: Out of the list of all user stories a small and well understood story
is chosen as reference and assigned an (arbitrarily chosen) “size” value.2. Already
the process of choosing a reference story and assigning it a size value forces market
developers and business owner to discuss (and define for their project) characteristics
and factors that essentially make up the size of the story. These factors may include
the story’s perceived “complexity”, the underlying technology used for its realization,
etc.

With a reference story at hand the market developers can start to estimate the
sizes of all other stories as multiples of the reference story’s size. For example, if the
reference story is assigned a value of 3 and the developers perceive another story
as being twice as large, they assign that story a size of 6. Cohn (2005) and Gloger
(2009) suggest to use only few discrete values for story sizes that follow a stylized
Fibonacci sequence as shown in Table 4.1.

Step 0 1 2 3 4 5 6 7 8 9

Estimated Story Size 0 1 2 3 5 8 13 20 40 100 ?

Estimation Tolerance +/- 0 0.5 1 1.5 2.5 4 6.5 10 20 50 ?

Table 4.1. Stylized Fibonacci Series (Source: Gloger, 2009, p. 141)

2 “Size” in this context is basically a unit-less measure though the measurement unit name
story points is oftentimes used in the agile software engineering community.

70 4 Agile Market Engineering

This approach prevents the developers from discussing if a story has a size of – say
– 48 or 49, which would be not too meaningful a difference. Additionally stories
estimated at 40 or 100 story points are implicitly also marked as being “difficult to
estimate” while stories with sizes of 3 or 5 are not only small but also well understood
and well predictable. 40 or 100 point stories likely have to be specified in more detail
and will possibly be broken down into smaller (and thus better estimable) sub stories.

A popular technique to efficiently and quickly estimate large amounts of user stories
is called planning poker. This method is a consensus-based estimation technique
developed by Grenning (2002) and based on the Wideband Delphi method (Boehm,
1981). Details on how this method can be practically employed are provided by Cohn
(2005); Gloger (2009); Wirdemann (2009).

Choose accomplishable subset of stories for current development phase:
After all user stories are estimated the market developers need to select that number
of the topmost user stories from the product backlog they think can be completely
realized in one single development phase (pull-principle, see above).

It should be noted that the initial estimations in the first few development cycles will
likely be imprecise. But with each new development cycle the market developers get
a better feeling for their work capacity, which is sometimes also called team velocity
of the MDs. With this knowledge at hand they will be able deliver more and more
precise estimations over time. Knowing the velocity of the market developers helps
the business owner to better plan ahead. Based on the velocity, i.e. the number of
story points the market developers are able to deliver during one development cycle
(on average), and with the estimated sizes of the stories in the product backlog he
will be able to predict how long it will take until certain user stories are imple-
mented. Based on this knowledge, he will finally also be able to estimate cost for the
development of a specific story (if required).

Design, Implement & Test

Phase: Development Phase
Responsible: Market Developer
Also involved: Business Owner, Market Expert,

Change Manager Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

The most important thing to note about the implementation and testing step itself
is that it is supposed to last only a short period of time. If one single cycle takes
more than a few weeks (at most) something has very likely gone wrong.

With a detailed work plan at hand the technical development process itself can
start. Ideally all market developers sit in one large room with one or more separate
meeting rooms available nearby for bilateral discussions. Like this informal (or in
the nomenclature of Cockburn osmotic, see Section 2.1.2) communication among
the market developers becomes possible. Also, business owner, market expert and

4.1 A Lightweight and Agile Market Engineering Process Model 71

change manager should be in close physical vicinity to the market developers so that
questions pertaining to market design, to realization details of certain user stories,
or to impediments relating to team or process organization can be quickly addressed
by the respective experts without any formal meeting appointments.

One story at a time: Members of the market developer team then start developing
by shifting the topmost user story on the task board into the WiP (work in progress)
column. Ideally they will all focus on one story only at a time so that at the end of the
current development phase at most one story is in WiP state. Sometimes this course
of action is impractical as the story might be too small to be shared among several
market developers. In this case, some parallel work on separate stories is appropriate
though the stories should be independent from each other in order to avoid situations
where one market developer is blocked in his work progress by another developer
who has not yet finished a dependent task required as prerequisite.

Test Driven Development: Production code for the new market is preferably
written in a test-driven manner. This means that a market developer first writes
several unit and integration tests that cover typical use cases as well as cases with
extreme, invalid, or missing data. For each of these cases expectations on how the
production software should behave (e.g. delivering a particular value as result of a
computation or throwing a particular error if invalid data was supplied) are defined.
All of these tests will initially fail when being executed as no production code is
written yet. But with this testing harness in place, the market developer can then
start writing the production code, which – in the end – has to be executed against
all previously developed test cases without any of them failing. A more detailed
description of the test-driven development methodology including many examples is
provided by Beck (2002).

Additionally, to ensure that all features and processes are fully operational, auto-
mated user acceptance testing software such as Selenium,3 WebTest,4 or Watij,5 can
be used. These tools allow the definition of arbitrary task sequences that can later
be automatically executed in a web browser. For example, the code in Listing 4.1

Listing 4.1. Web Browser Task Sequence for Offer Submission (see: Block and Chen, 2007)

1 //Login
2 IE i e = new IE (”http :// i n v i t e . concord ia . ca/ i n v i t e ”) ;
3 i e . t e x tF i e l d (id (”username”) . s e t (”MyUserName”) ;
4 i e . t e x tF i e l d (id (”password”) . s e t (” s e c r e t pas sword ”) ;
5 i e . button (name(” submit”) . c l i c k () ;
6

7 //Submit order
8 i e . l i n k (id (”Send o f f e r ”)) . c l i c k () ;
9 i e . t e x tF i e l d (id (”message”)) . s e t (’New o f f e r . . . ’) ;

10 i e . s e l e c t L i s t (id (’ c once r t s ’)) . opt ion (8) . s e l e c t () ;
11 i e . s e l e c t L i s t (id (’ new songs ’)) . opt ion (14) . s e l e c t () ;
12 i e . s e l e c t L i s t (id (’ r o y a l t i e s ’)) . opt ion (2 . 0) . s e l e c t () ;
13 i e . s e l e c t L i s t (id (’ bonus ’)) . opt ion (125000) . s e l e c t () ;
14 i e . button (id (” subm i t o f f e r ”)) . c l i c k () ;
15

16 //Check response
17 a s s e r t (i e . tag (” t i t l e ”) . va lue () == ”Of f e r Submitted ! ”)

3 http://seleniumhq.org/
4 http://webtest.canoo.com
5 http://watij.com/

72 4 Agile Market Engineering

defines a task sequence that (i) logs in to the electronic market system, (ii) browses
to the offer submission form, (iii) submits an offer to the market system by automat-
ically filling in the appropriate web form (see Figure 4.5) with pre-defined values,
and (iv) checks that the returned page is named “Offer Submitted!”. Task sequences

Fig. 4.5. Invite order submission form (Source: Block and Chen, 2007)

like this can be define for all use cases a market participant is supposed to be able
to execute on the developed platform and thus allow for a close inspection of the
operativeness of all desired market features from an end users point of view (Block
and Chen, 2007).

Definition of Done: Once the production code for a user story is written and
executable against the respective unit and integration tests, the question arises on
when the user story is done. At the end of the development phase the business owner
reviews all implemented stories and has the privilege of finally judging them “done”
or “not done”. But, in order to improve clear judgement criteria and concrete guid-
ance to MD throughout the development phase a written and commonly accepted
definition of done (DoD) should be jointly developed by business owner and market
developers. Appendix C contains a sample DoD developed and used for the TAC
Energy project (which is described in more detail in Section 5.6).

Source Code Management & Continuous Integration: Every change in pro-
duction and test code should be checked in to a source code management system
(SCM), which provides a change history allowing users to easily revert erroneous
code additions, and also ensures that all market developers share one single latest
code version. The SCM system should also be complemented by a continuous in-
tegration system (CI Server) that monitors the SCM repository for incoming code
changes and then (i) executes all unit and integration tests against the new version
of the software and (ii) automatically compiles a new binary release of the (market
platform) software. Errors during test execution or during compilation of the binary
release can then immediately be reported back to the market developers so that they
get quick feedback on how their code changes affect the overall system. For exam-

4.1 A Lightweight and Agile Market Engineering Process Model 73

ple, in the TAC Energy project the open source systems Hudson6 for continuous
integration in combination with Bazaar7 for SCM are used.

Continuous Status Reporting: After a story is finished by a market developer
he shifts the corresponding story card from the WiP column on the taskboard into
the Done column and then updates the burndown chart by drawing a new point on
it using the current time on the x-axis and the previous story point value minus the
story points of the story just finished as the y-axis value. Figure 2.5 show a sample
burndown chart from a TAC Energy coding week. This chart is simple to maintain
and to update on the one hand, and on the other hand immediately visualizes the
current progress of the respective development phase to MDs, BO and interested
others.

Retrospective: At the end of each day a short 10-15 minute introspection meeting
is held. Moderated by the change manager each market developer reports on (i)
what he achieved that day, (ii) what he wants to achieve the next day, and (iii)
which problems or impediments delay his progress. The change manager will take
any reported problem on his agenda trying to find solutions for it as quickly as
possible in order to provide the MDs with an optimal development environment.

Review: At the end of a development phase a review meeting is held. First the
objective(s) of the current development phase and the selected product backlog is
presented again by the business owner. Then the market developers present and
describe all user stories they completed according to the DoD. The product owner
(potentially supported by beta testing market participants) then gets a live demon-
stration of the newly implemented features on a running testing system. The product
owner now has the final say in judging each of the the implemented stories as done
or not donqe.

All stories that are not considered done as well as those stories that were not finished
during the current development phase are returned to the product backlog and then
re-prioritized at the beginning of the next development phase.

Market Simulations: Sometimes, especially during the introduction of new market
mechanisms, the expected dynamics of the new market are not completely foresee-
able for the business owner and the market expert. In these cases the market fea-
tures are done in a technical sense but need further acceptance testing, e.g. through
simulated market participants that expose a behavior similar to that of expected
real market participants. In these cases a market simulation environment developed
particularly for this case might proof to be useful. Instead of a deployment to the
production systems the market can be deployed to the market simulation frame-
work instead, which is an agent based simulation environment developed specifically
for this purpose. Once the market is installed in the market simulation framework,
various types of electronic agents can be defined that subsequently simulate market
participants and their trading behavior on the market. Section 4.2.3 describes the
market simulation framework in more detail.

Release: After the review meeting is finished and no specific market simulation
runs are required the current development phase ends. On the one hand this event

6 http://hudson-ci.org/
7 http://bazaar.canonical.com

74 4 Agile Market Engineering

triggers the start of a new development phase, that receives all unfinished user stories
as initial input, on the other hand a deployment of the latest release of the market
platform to the production systems is triggered. This latter process is described in
the following section.

4.1.3 Operation Phase

Contrary to the development phase, which is clearly timeboxed and repeatedly exe-
cuted, the operation phase is a continuous process. It starts with the initial deploy-
ment of the market system to the production environment and then continues with-
out interruptions in parallel to further development phases until the market platform
is forcibly stopped for some reasons (e.g. bankruptcy of the business owner). This
section describes (i) a best practice release process for the market as the connecting
element between development and operation phase, (ii) several ways to observe and
assess market activity, and (iii) possibilities to collect explicit and implicit feedback
from market participants and other stakeholders in order to add or revise require-
ments (user stories) for further market development phases.

Release & Deploy Market Platform

Phase: Operation Phase
Responsible: Market Developer, Market Operator
Also involved: —

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

The preceding development phase ends with a review meeting. In this meeting the
newly implemented features are either approved or rejected by the business owner.
In case of an approval, the new, feature-enriched version of the market platform
has to be released and deployed to the production market server environment. This
process is described in more detail in this section.

The release and deploy process starts with the creation of a code snapshot. The goal
of this step is to create and archive the latest version of the platform’s code base
in an archivable form for later reference and for possible rollbacks if later versions
of the platform should cause problems. At first, in the source code management
system, the market developer assigns the code base a version tag (e.g. v0.1) so that
this particular state can easily be recovered later on. Next he checks out the source
code and compresses it into an archive file named after the current version (e.g.
market_v0.1_src.zip). The source code should also be compiled and the resulting
binary code should be archived into a separate file (e.g. market_v0.1_bin.zip).
The market developer (i) keeps these files in a separate version history on a file
server and (ii) hands over the binary version of the code to the market operator for
deployment.

4.1 A Lightweight and Agile Market Engineering Process Model 75

The market operator then starts deploying the new binary release of the market
platform to a so called staging system. The staging system is (ideally) an exact
mirror of the software and hardware infrastructure of the production system, and
thus serves as a realistic testing environment. Any errors during the deployment
of the market platform to the staging system will cause the deployment process
to halt. In that case the market operator notifies the market developer who then
analyzes the causes of the error(s). If these cannot easily be fixed (e.g. by correcting
a simple mis-configuration) the deployment process is cancelled, the current version
of the market platform is kept operational, and the market developers start the next
development phase with a the particular bug fixing task as highest priority item in
the product backlog.

If the deployment of the new version of the market platform to the staging system
was successful, business owner and market developers test the proper functioning of
the running system.

Once all testing activities on the staging system are successfully completed, the mar-
ket operator takes the production system offline so that a complete and consistent
backup of all its data can be generated. Afterwards he deploys the new release of
the market platform to the production environment and ensures that the market (as
well as all dependent systems such as mail server and database) are running stable
and without errors before making the new release of the market platform available
to the open public. In case any errors occur in this step an immediate rollback to
the previous market version and the saved market data is executed and developers
are requested to take care of the errors in the next development phase.

Otherwise the market operator starts observing market platform log files and server
load ensuring stable operation of the system as described in more detail in the
following section.

Observe & Assess Market Activity

Phase: Operation Phase
Responsible: Market Operator, Business Owner
Also involved: Market Expert

Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

Market activity needs to be monitored on two different levels, (i) business level
and (ii) technical level. On the business level the business owner needs to ensure
the integrity of the market activity. This includes verification, authentication, and
authorization of market participants but also the detection and prevention of fraud
or other forms of market mis-conduct. One approach to accomplishing this task was
developed by Blume et al. (2008). They propose a graph-based approach for fraud
detection and market activity monitoring that was used to supervise the Stoccer
market and is now also used to monitor the EIX market (see Section 5.4) in order to
detect fraudulent user behavior on the markets. Therefore regular trade and quote

76 4 Agile Market Engineering

data (TAQ) is represented in a graph structure and analyzed e.g. to detect cycles,
which could be an indication for money laundering or – in the case of prediction
markets – for fraudulent money shifting between fake and real user accounts.

Sometimes, besides TAQ data even more information about user behavior need to
be collected, e.g. to better understand how market participants interact with the
market platform’s web interfaces so that (web) design weaknesses can be detected
and addressed. In these cases, all markets based that are based on the default market
templates (described in more detail in Section 4.2.2) can easily be equipped with
extra data recording plugins for click-stream 8 and audit-logging. The first plugin
records each single click of a user in his web browser providing the business owner
with a complete (but also complex) picture on how market participants use and
navigate the market platform. The second plugin records each database transaction
with timestamp and the respective market participant’s name in a separate database
table effectively allowing the business owner to reconstruct all data manipulations
on the market platform in their original chronological order.

On the technical level, the market operator needs to monitor resource utilization of
the production system environment as well as runtime errors of the market platform
itself in order to adjust the technical runtime environment to changing usage patterns
and to appropriately dispatch runtime error messages to market developers.

For server monitoring specialized software such as OpenNMS 9, Zenoss 10, or Pan-
doraFMS 11 can be used. The monitoring of runtime errors can be accomplished
through the logging framework already included in the market templates (see Sec-
tion 4.2.2). This framework allows for a flexible configuration of logging targets 12 as
well as fine-grained log levels13 that can be configured separately for different parts of
the application. For example, all log messages at minimum log level ‘WARN’ from
the market’s settlement component can be sent out via email while log messages
from the web interface are only logged if they are of type ‘ERROR’ and will then
be written to a special log file. The default market templates come with a dynamic
logging plugin installed that allows the market operator to adjust log levels of the
different market components during market runtime via a web interface shown in
Figure 4.6.

8 http://www.opensymphony.com/clickstream/
9 http://www.opennms.org

10 http://www.zenoss.com
11 http://pandorafms.org
12 Logging targets are output devices including files, database tables, e-mails, or short

messages (SMS) where logging information can be written to.
13 A log level defines a minimum threshold level, such as ‘INFO’, ‘WARN’, or ‘ERROR’.

Each log messages is assigned one of these levels. During runtime the MO can adjust the
market system’s log level effectively filtering out all log messages below this level.

4.1 A Lightweight and Agile Market Engineering Process Model 77

Fig. 4.6. Web Interface for dynamic adjustment of log levels in TAC Energy

Add & Revise Requirements

Phase: Operation Phase
Responsible: Business Owner
Also involved: Market Expert, Market Developer,

Market Operator Operation Phase

Pre-Development Phase

Development Phase

III III

IV V VI

IXVIIIVII

The running market system is a rich source for the elicitation of feedback on how to
make the market even more convenient and efficient to use.

Two different forms of feedback can be distinguished, explicit and implicit feedback.
Explicit feedback methods require extra efforts from users. The might, for example,
require users to answer questionnaires or to accomplish interviews. Implicit feedback
methods are more unobtrusive in that the natural interaction of users with a system
is observed and evaluated (Kelly and Teevan, 2003).

In information systems literature questionnaire based (i.e. explicit) models for feed-
back elicitation and evaluation are well established and have a long research tra-
dition. For example, models aimed at testing user acceptance of specific informa-
tion systems like the Technology Acceptance Model (TAM, see Davis et al., 1989;
Venkatesh et al., 2003) have attracted much research for over 20 years though re-
cently the TAM model and its derivatives have been criticized for their “questionable
heuristic value, limited explanatory and predictive power, [...] and lack of any prac-
tical value” (Chuttur, 2009).

78 4 Agile Market Engineering

Besides rather complex and difficult to evaluate TAM style models for feedback
elicitation and evaluation, very simple online feedback tools that are easy to integrate
into web-applications, have recently gained much interest (Hrastinski et al., 2010).
Figure 4.7 shows a screenshot of the user feedback elicitation function built into the
TAC Energy project. The tool is based on UserVoice14 online service and relies on
a simple web interfaces for end users that allows them to report and rank ideas and
issues that came to their attention during usage of the platform.

Fig. 4.7. TAC Energy online user feedback elicitation tool

An implicit feedback evaluation approach is described by Vandenpoel and Buckinx
(2005) who use click-stream data (see Section 4.1.3) to evaluate user behavior and
preferences based on detailed recordings of their respective system interaction be-
havior using datamining techniques. Choros and Muskala (2009) and Schüller and
Wörndl (2008) use the same source of data to visualize user clicks in called heat
maps as shown in Figure 4.8. Like this interesting (i.e. often clicked-on) parts of a
web page can be easily identified. This knowledge can then for example be used to
to place important information in these often clicked page areas.

In short, several different techniques for implicit and explicit feedback elicitation
exist and can be used as input for a continuous improvement of the market platform.
Additionally, these insights should be persisted in the marked design knowledge base
(see Section 4.2.1) for future re-use.

4.1.4 Summary

In summary, the previous sections described a lightweight and agile market engi-
neering process. It consists of a “pre-development”, a “development”, and an “op-
erations” phase. Each of the phases consists of three process steps each. With this
process model at hand, the next sections describe several different software artifacts
(also highlighted in Figure 4.1 in bold) that were specifically developed to support
agile market engineering teams in their daily project work.

14 http://www.uservoice.com

4.2 (Software) Artifacts to Support Agile Market Engineering 79

Fig. 4.8. Website Heat Map for Usability Analysis (Source: Choros and Muskala, 2009)

4.2 (Software) Artifacts to Support Agile Market Engineering

4.2.1 Market Design Knowledge Base

Economic research as well as field experience produced a large amount of knowledge
on how or how not to design (electronic) markets covering market types as diverse
as electronic catalogue systems, e-negotiations to e-auctions in its many different
forms. Each situation for the application of markets is different and there exists
no single best solution for setting up and running markets. Each mechanism rather
has certain advantages and disadvantages. From economic theory, especially from
mechanism design theory, it is well known that even small changes in the design of
exchange mechanisms can have considerable impact on the outcome. Consequently,
a market design knowledge base system (MDKB) was designed that is aimed at
supporting business owners and market experts in their decision making process
on which mechanism to choose best in a specific situation (see Step II of the agile
market engineering process). Additionally, new insights from running markets can
be persisted in the MDKB for future re-use in other market engineering projects.

Knowledge Acquisition, Storage and Evaluation

Davenport and Prusak (2000) define knowledge as ”a fluid mix of framed experience,
contextual information, values and expert insight that provides a framework for eval-
uating and incorporating new experiences and information.” Thus the MDKB system
has to accomplish both, providing (i) a storage facility for contextual information,
values and expert insight and (ii) a mechanism that allows knowledge retrieval in a

80 4 Agile Market Engineering

context of new experiences and information. For fulfilling the first part, the Market
Design Knowledge Base (MDKB) offers several different fields to store e.g. verbal
recommendations (e.g. “use an English reverse auction”), literature and other ref-
erences as well as a variable number of parameters describing the preconditions for
which a particular recommendation holds (e.g. “at most low probability of collu-
sion among bidders” for the recommendation to use an English Auction). Figure 4.9
shows an example screenshot of MDKB during data entry of new knowledge.

Fig. 4.9. Screenshot of the Edit Recommendation Screen of MDKB

The second part is implemented by an inference mechanism that takes a set of
parameters describing a situation the user seeks advice for, and computes similarities
to those cases (situations) already stored in the knowledge base. Sufficiently similar
cases, which consist of a set of preconditions describing the market environment as
well as suitable recommendations, are returned to the user conveying knowledge on
how to proceed best in the respective setting or (possibly also) on what type of
market rules to avoid in that situation.

As with all knowledge based systems, the most crucial task is to acquire, adapt,
verify and maintain the underlying knowledge base. Possible sources for knowledge
acquisition are normative literature on auction design as well a empirical literature,
structured interviews with domain experts from industry, or academic staff that
focuses on mechanism design research. Also lessons learned from particular market
engineering projects should be captured in dedicated retrospective sessions during
the development process itself.

A specific feature of MDKB may prove to be valuable when eliciting advice during
interviews: In the author’s on experience domain experts were oftentimes unable to

4.2 (Software) Artifacts to Support Agile Market Engineering 81

give a definite recommendation on which market mechanism to choose best for a
particular domain and a specific market environment. Still they were still quite clear
on which mechanism not to choose. E.g. in a case where strong bidder asymmetries
occur one can predict in practice that an English auction will lead to an economically
inefficient outcome, while it is not clear if e.g. a Dutch auction or an electronic
negotiation might be the more favorable alternatives instead.15 In such a case, the
MDKB user might still receive a warning (i.e. negative recommendations) not to
choose an English auction along with an appropriate explanation, which increases
his awareness and helps him avoid stepping into a “trap” of severe design failures.

With a growing number of recommendations entered into the knowledge base, data
consistency becomes an important issue. As users are allowed to define their own
parameters, rules, and recommendations, an automated approach for consistency
checks is hard to implement. Thus the current solution to this problem is to give
users of MDKB the possibility to manually check at the time of entering new recom-
mendations into the system, which other existing recommendations also match their
specific set of preconditions (c.f. button “Show all matching recommendations” in
Figure 4.9). Furthermore a simple five star rating system is implemented that en-
ables users to judge recommendations and thus to provide qualitative information
on the goodness of the knowledge stored.

Figure 4.9 shows a screenshot of MDKB that displays the administration page used
to enter or adjust recommendations. Basically a MDKB user wishing to enter knowl-
edge needs to specify the type of recommendation that should be stored (e.g. “Rec-
ommendation”, “Warning”, . . .). Subsequently he fills in a short (and optionally an
extended) description of the recommendation (e.g. “Use English Reverse Auction”)
before (optionally) adding references to related literature or other resources that are
suited to increase the credibility of the particular recommendation and may provide
additional background information.

Left in this state, the recommendation would be generally valid and thus always
be displayed to users of MDKB no matter which search parameters they specify.
In order to limit the applicability or scope of a recommendation one can add an
arbitrary number of preconditions. MDKB then only returns the recommendation
as a search result if the preconditions match the search parameters.

For specifying a precondition, a MDKB user first has to choose a parameter (e.g.
”Switching Cost” of a product) from an (extensible) list of parameters provided by
MDKB. In the case of ”Switching Cost”, the parameter is specified as an enumer-
ation16, which basically means that for this parameter a user defined, ordered set
of parameter values is given. After having selected the parameter, the expert needs
to determine the parameter value (e.g. ”Medium”) and an operator (e.g. ”LessOrE-

15 The term “inefficient” is used here to express the fact that in this situation an English
auction would result in a smaller expected revenue for the auction owner, than for
example a Dutch auction would do. Thus, from the auction owner’s perspective, the
English Auction seems to be “inefficient” as compared to other alternatives.

16 Supported parameter types in MDKB are String, Boolean, Number, Decimal, and Enu-

meration

82 4 Agile Market Engineering

qual”17) in order to finish adding the precondition. Overall, the expert specified
in this case that “use English Reverse Auction” is a valid recommendation only if
product switching cost are at most medium.

System Design and Implementation of MDKB

In this paragraph the implementation of MDKB is described. First, the system ar-
chitecture is introduced to establish a common notion of the domain model and its
interaction with the system. Subsequently, the case-based reasoning for the recom-
mendation retrieval is shown.

Following the typical Separation of Concern (SoC) pattern, MDKB is divided into
five distinct application tiers (Alur et al., 2003), user interface, controller, service,
persistence and domain model. Each of these layers encapsulates its specific tasks
and logic from the other layers in order to achieve a maximum code decoupling and
like this a high system stability, maintainability and adaptability.

The domain model is implemented in a relational database as displayed in Figure
4.10. The main entity is called Recommendation which stores instances of recommen-
dations, warnings and so on. For each recommendation to be valid, 0..∗ prerequisites
must hold. These prerequisites are specific values (or value ranges) from different
parameters, stored in the database. If a recommendation is true, not only a ver-
bal description – as stored in the Recommendation entity – but also a structured
(parameterized) recommendation stored in Mechanism and MechanismParam may
be returned. These mechanism parameter sets could be parsed into several formats
(XML, yaml, JSON) that afterwards might be used to automatically pre-configure
market platforms.

The relational database storing the domain model is accessed from MDKB applica-
tion via a distinct persistence layer, which allows the manipulation of the data using
the data access objects (DAO) pattern. Like this, the underlying storage technology
could be appended or switched with minimal impact on the program itself. Above
the persistence layer, a service layer implements the more complex business logic like
e.g. the case-based reasoning algorithm. Separating this logic from the DAO on the
one hand, and from the application workflow on the other, ensures that e.g. differ-
ent recommendation retrieval mechanisms could be implemented without changing
the principal workflow. The last distinct layer is introduced between application
workflow and view layer, the fifth layer of MDKB. This separation allows different
front-ends like a HTML interface and a web services interface to be implemented
transparently using the same application logic.

For the implementation of recommendation retrieval algorithms, several approaches
already exist. Forgy (1982) introduces RETE, an algorithm for matching many pat-
terns on many objects, which is oftentimes used in rule based expert systems. Many
alternatives have been proposed since then, the most notable ones being TREAT
(Miranker, 1987) and LEAPS (Batory, 1994). The main problem with this group of
algorithms is of technical nature: Existing implementations of these rule engines rely

17 Different operators are provided for different parameter type as e.g. LessOrEqual is not
meaningful for string parameters.

4.2 (Software) Artifacts to Support Agile Market Engineering 83

Fig. 4.10. Entity Relationship Model of the Knowledge Base

on proprietary storage formats that do not cope well with traditional DBMS. To the
authors’ knowledge only one (quite complex) approach exist that adapts the RETE
algorithm to directly work on a database (Jin et al., 2005).

For MDKB a database for storage and retrieval of recommendations was more ad-
vantageous as it provides a convenient way to store verbal recommendations along
with structured information and allows easy manipulation of the stored data. Thus
an alternative approach for recommendation retrieval was developed, which stems
from the research on recommender-systems. In this area, case-based reasoning is
oftentimes used to compute similarities between a new case and existing (historic)
cases (Chi and Kiang, 1991; Porter et al., 1993).

MDKB implements a case based reasoning algorithm that compares a new case
(recommendation request) to cases (recommendations) already stored in MDKB.
Like this the task of finding a suitable mechanism recommendation can be reduced
to comparing parameter lists with each other and returning one list if the number
of matches between the list elements exceeds a certain predefined threshold value.

The first list (c.f. Figure 4.11) consists of parameters a user enters into the system
in order to describe the procurement situation he seeks advice for. The second list
contains parameters from the same parameter domain as the first list but in this
case the parameters are prerequisites that must be fulfilled for a recommendation
to be valid. Figure 4.11 shows schematic examples of these lists. For the recommen-
dation retrieval, the input parameter list is compared with each recommendation
prerequisite list stored in the knowledge base. For each comparison cycle the simi-
larity between all list items from both compared lists is computed on a per attribute

84 4 Agile Market Engineering

basis. If an attribute is found in the input parameter list but not in the respective
recommendation prerequisite list, the parameter is counted as relaxation, as it is
not necessary for the current recommendation to be valid. If a parameter on the
other hand is only found in the recommendation prerequisite list, it is counted as
restriction as the parameter was not specified by the user but is required for the
recommendation to be valid.

Fig. 4.11. Input Parameter List and Recommendation Prerequisite List

If a parameter is found in both lists, the similarity between both parameter values
will be computed. It is counted as a match if the similarity exceeds an (adjustable)
threshold level. Finally, after all comparisons, three measures are available indicating
the matching quality of a recommendation:

• ♯ restrictions

• ♯ relaxations

• matching quality := ♯matching parameters
♯ parameters compared overall

A recommendation is returned to the user if (i) its matching quality exceeds a
predefined threshold, (ii) the number of restrictions does not exceed a predefined
threshold, and (iii) none of the ”restriction” parameter was marked as ”knock-out”
criterion. For convenience, the results are sorted by matching quality in descending
order. The number of relaxations and the number of restrictions are also displayed
in the result list as further matching quality indicators.

Overall, MDKB is a system that is aimed at supporting market engineering with
systematic decision support on which market mechanism to choose best in what
type of market environment. This artifact can be used as an add-on during market
development and was initially used in an industry project specifically focused on
industrial sourcing (see Neumann et al., 2007; Block and Neumann, 2008). However,
MDKB is not limited to procurement scenarios but can be used to store all types of
market design recommendations in a parameterized and easily searchable format as
shown in Figure 4.11 for arbitrary types of markets.

4.2 (Software) Artifacts to Support Agile Market Engineering 85

4.2.2 Market Repository

The market repository was created to support market developers in quickly instanti-
ating new market instances from a set of previously developed and archived market
platforms. Instead of developing new electronic markets from scratch in each new
market engineering project, and instead of using generic but complex and hard to
extend market runtime environments (see Section 2.2.2), small, simple, and highly
specific market templates have been developed as foundations to build new electronic
market projects upon. After initial instantiation of a specific market template, it can
be incrementally customized to eventually meet all requirements of the envisioned
new market platform. All market templates are immediately executable as web ap-
plications and exhibit default market functionality specific to the respective market
template. For example, a continuous double auction market (CDA) template offers
all matching, pricing, and settlement functionality as well as simple user, user-rights,
and product management functions required to run a minimal but fully functional
CDA market. The market provides a default web interface for human user interaction
and a default web services interface for machine-to-machine communication which
can be used e.g. by electronic trading agents. Like this, at the beginning of a new
project, an initial version of the market platform can be set up, interactively tested
and incrementally adjusted and refined with almost no installation and initialization
overhead.

The market repository itself consists of a set of software artifacts. In particular, it
comprises the following:

1. Specificmarket templates that implement one specific market mechanism (e.g.
a call auction) each. Market templates are ready-to-deploy trading platforms
with carefully chosen default conventions.

2. A central repository for market template storage and retrieval.

3. Several command line scripts (list-markets, install-market, release-market) that
automate the work with the repository and the instantiation of market instances.

In Figure 4.16 the structure of the market repository as well as the interaction
between market developer and market repository is shown. Initially (i.e. at the be-
ginning of Step III of the agile market engineering process – see Section 4.1.1), the
market developer lists all currently stored market templates available in the market
repository as shown in Figure 4.12. Business owner, market expert, and market de-
veloper jointly choose the best fitting template for the current market development
project, which is then instantiated via the command install-market as shown in
Figure 4.13. Finally, the newly installed market instance (in the example here a CDA
Market) is started as shown in Figure 4.14) using the run-app command script. This
script automatically compiles the market’s source code and then deploys the binary
code to a locally running web application server. BO, MD, and ME can then im-
mediately evaluate and test the running system (Figure 4.15 and all of its default
functionality.

In subsequent development cycles, the market developer(s) then start to customize
the instantiated market template in order to make it fit to the functional require-
ments of the respective project. After a new market instance has matured enough

86 4 Agile Market Engineering

Fig. 4.12. List available market templates in the Market Repository

Fig. 4.13. Install a market template locally

(and if it provides significant new functionality as compared to the original market
template), it can easily be contributed to the market repository as a new market
template for other projects to build on.

Two initial market instances, a call market and a continuous double auction market
were developed and contributed to the market repository as “base templates”. Both
are described in more detail later in this chapter.

At the beginning of the development of the market repository and the aforemen-
tioned market templates, a number of different software development frameworks
were evaluated. The initially considered frameworks included Grails18, Ruby-on-
Rails 19, Django20, and TurboGears21. All of them follow the Model-View-Controller
(MVC) design pattern as described in Gamma et al. (1995) and provide features like
automated object relational mapping, extensibility via well defined plugin APIs, or

18 http://grails.org
19 http://rubyonrails.org
20 http://www.djangoproject.com/
21 http://turbogears.org/

4.2 (Software) Artifacts to Support Agile Market Engineering 87

Fig. 4.14. Run a newly installed market template locally

Fig. 4.15. Welcome Screen of a newly installed CDA Market instance

automatic generation (scaffolding) of simple web interfaces for standard use cases
such as retrieving, adding, updating, or deleting of database objects. After a thor-
ough comparison the Grails framework was chosen as software platform for the
development of the market framework. Three main reasons guided this decision.

I. Grails offers the possibility to seamlessly combine Java and Groovy source code,
which offers the conciseness and elegance of type-free languages on the one hand
(Groovy) in combination with Java’s execution speed, hardware system indepen-
dence, and the rich variety of industry strength open source APIs (e.g. for authenti-

88 4 Agile Market Engineering

Market Repository

Market Repository

<<artifact>>

<<Instance>>

Prediction Market

<<artifact>>

<<Instance>>

CDA Market

<<artifact>>

<<Template>>

Prediction Market

<<artifact>>

<<Template>>

Call Market

<<artifact>>

<<Template>>

CDA Market

<<artifact>>

<<Instance>>

CDA Market

<<artifact>>

<<Instance>>

CDA Market

Market Developer (MD)

<<artifact>>

<<Template>>

Call Market

<<artifact>>

<<Template>>

CDA Market

release-market

Customization to Prediction Market

list-markets

install-market CDA Market

Fig. 4.16. Sample market engineering workflow using the market repository

cation/authorization22, job scheduling23, or database connectivity24. Electronic mar-
kets developed on top of this software infrastructure can thus be operated on any
computer system a Java Runtime Environment (JRE) exists for and integrates well
into the existing enterprise Java software infrastructure.

II. Staff at IISM had good experiences with Java as a programming language from
previous market engineering projects (in particular from meet2trade project, see Sec-
tion 2.3.3). A Java based framework thus offered the advantage of having well trained
developers in the team who did not have to learn a new programming language.

III. Grails offers a powerful plugin concept and with more than 400 readily available
plugins. Several of these can be used to support different steps in the agile market
engineering process. In particular, unit, integration, and acceptance testing based on

22 http://static.springsource.org/spring-security/site/index.html
23 http://www.opensymphony.com/quartz
24 http://www.hibernate.org

4.2 (Software) Artifacts to Support Agile Market Engineering 89

JUnit25 and Selenium,26, as well as code coverage and complexity metrics reporting
based on Cobertura,27 and CodeNarc28 provide good support for market developers
during step VI (Design, Implement & Test) of the development process. An adaptive
logging framework based on log4j29, as well as a special plugin for clickstream-
logging30 support market operators during step VIII in the agile market engineering
process (Observe & Assess Market Activity).

For these reasons the Grails framework was finally chosen as the basis for the im-
plementation of the market repository and its initial market templates.

The market repository itself extends the default Grails plugin management func-
tionality. For its implementation, a source code management system for market
templates was installed on a public Internet server. Then, particular Grails scripts
for listing, installing, and publishing market templates were were developed. With
this infrastructure at hand, the installation and execution of a new market instance
can now be accomplished using three simple command line statements. Thus, a mar-
ket developer can instantiate and start to adapt and refactor a market template at
almost no effort at the beginning of the very first development phase. This allows
a market developer to quickly deliver an initial, but fully functional and running
version of the new market. The initial market templates consist of approx. 2000
Lines of Code (LOC) each (for a precise evaluation see Section 5.1), thus adaptation
and customization of these instances is easier to accomplish than it was before on
generic market platforms such as meet2trade. As most of the programmatic changes
can applied to the code base while the market system is running, market developers
can immediately see the changes in the corresponding web or web services interfaces.

Market Templates

Two initial market instances, a continuous double auction market (CDA), and a call
market were developed and published in the market repository as base templates
for future market development projects. Based on the requirements described in
Section 3 both market templates were developed to provide

• a web-based interface for human market participants that uses reverse-ajax server
push technology (Crane and McCarthy, 2008) for automatic delivery of market
updates to the market participant’s web browsers.

• a web services interface providing connectivity for external services such trading
agents or decision support systems.

• adjustable functionality for user authentication and authorization.

• secure third-party authentication functionality by means of OpenID (Recordon
and Reed, 2006) and LDAP (Howes et al., 1998) protocols.

25 http://www.junit.org/
26 http://seleniumhq.org/
27 http://cobertura.sourceforge.net/
28 http://codenarc.sourceforge.net/
29 http://logging.apache.org/log4j/index.html
30 http://www.opensymphony.com/clickstream

90 4 Agile Market Engineering

• provide integrated market information and statistics services for different levels
of information granularity.

• have a small code base (approx. 2000 LOC) and are thus simple to maintain and
to extend.

• possess an embedded build and deployment mechanism including an em-
bedded application server (Tomcat31) and an embedded relational database
(HSQLDB32), which allows the market platform to be executed on any com-
puter system that has Java installed (see Figure 4.14).

• compliance with industry standards for enterprise software in order to be easily
integrable into existing software application landscapes.

• rely on open source technologies and components where possible and are licensed
under Apache 2.0 open source license.

The different prediction market projects as well as the TAC Energy project described
in Chapter 5 are all based on these market templates.

Both, CDA and call market template use the same initial set of domain objects
shown in Figure 4.17. These are used to persistently store all data required to run a
CDA or a call market. A Person domain object represents a market participant and
is used to store personal details like user name, password, email address, or activa-
tion state. Person objects can be assigned zero or more Roles (e.g. administrator,
trader, ...). These in turn are used to grant particular permissions on the market
platform to different groups of persons. For example, market participants with role
“regular user” may trade products while users with role “Administrator” are allowed
to manage the product catalogue. A Product domain object represents a good or
service that can be traded on the market platform. It contains several properties
such as product name, description, or activation state. To announce the willingness
to buy or sell a product on the market, a Person creates a Shout domain object,
which represents a buy or sell order.33 A shout object contains the person’s offer
details for buying or selling a particular product. Specifically, order type (limit order
or market order), limit price, order quantity, buy/sell indicator, and creation date
of the order can be specified. A DepotPosition domain object describes the quan-
tity a particular person owns of a particular product. More specifically, it describes
(i) the relative change in product quantity a Person owns, and stores the market
transaction that lead to this change. Moreover it stores the running balance of the
product that the person owns at the point in time when the market transaction
took place. For example, if a person owns 100 pieces of a product and buys 100
additional pieces of the same product a new DepotPosition object will be created
with the property change=100 and the property absolute=200. Like this, changes
can be tracked and reconstructed over time. CashPosition objects are similar to
DepotPositions but are used to track the relative change and the absolute balance
of money a person possesses over time. Whenever a trade occurs (i.e. whenever a

31 http://tomcat.apache.org
32 http://hsqldb.org
33 In most database systems the word “order” is a reserved word so that naming objects or

database tables like this can cause runtime errors. The word shout was chosen following
the naming conventions of Phelps (2007)

4.2 (Software) Artifacts to Support Agile Market Engineering 91

certain amount of a product is transferred from one person to another and the corre-
sponding amount of money is transferred in reverse direction) TransactionLog and
Orderbook objects are created that store transaction prices, trade quantities, and
the new, updated orderbook states. Overall, this domain structure was designed to
closely reflect Sirca’s34 data model for storing ThompsonReuters financial market
data. Like this, statistics tools and services developed for financial market research
can be easily applied to default market data from market platforms that build upon
on of the templates.

Fig. 4.17. Entity Relationship Diagram for CDA and Call Market Templates

Besides data persistence, the market templates also contain specific business logic
that implements the market rules and provides all functionality required for market
participants to trade on the market platform. All business logic code is collected in
a set of services. In particular, the following services are provided by default:

• Allocator Service computes the product allocations

• Auction Service aggregates all sub services and exposes order entry and order
update / delete functionality of the market platform to the web as well as to the
web services interfaces

34 http://www.sirca.org.au/

92 4 Agile Market Engineering

• Authentication Service authenticates users and controls their access to the func-
tionality and data of the market platform

• Billing Service charges market participants a service fee for their market usage
(e.g. for order submission or for trade execution)

• Clearing Service deletes outdated orders and clears the market by dispatching
incoming orders to allocator, pricing, settlement, and billing services, and by
triggering market information and market log service after a new transaction
occurred.

• Market Information Service delivers market data to market participants

• Market Log Service performs logging of market transaction data for monitoring
and analysis purposes

• Pricing Service determines transaction prices based on an allocation

• Security Margin Service (optionally) provides functionality that ensures that a
market participant has enough money (or stocks respectively) available before a
new order is accepted for execution

• Settlement Service settles trades by manipulating depot and cash accounts of the
involved market participants

Detailed sequence diagrams that show the order processing workflow and the inter-
action of these services are provided in Appendix D for the default CDA market
template and for the call market template respectively.

Conceptually, the approach of using small and very specific market templates to
build new market platforms upon differs significantly from previous approaches in
this field (see Section 2.3). GEM, AuctionBot and meet2trade relied on complex
platforms that were adjusted by means of configuration to meet requirements for a
particular market. This approach builds on the assumption that every single market
project is that specific that its requirements can never be met by a generic default
platform solution. Instead some specific customizing (and thus programming) always
has to be accomplished. But the realization of these customizations needs to be as
easy to accomplish as possible. Thus each single market consists of very concise
and very specific code for one single type of market mechanism only. This reduces
complexity and speeds up development. The CDA market template, for example,
does not contain any logic required to run a call market and vice versa. Still they
share (where possible) a set of conventions such as common names for domain classes
and a common project directory structure that allows market developers to easily
orient themselves in a new market projects due to these similarities. As a result
small and simple but still fully functional market instances have been developed
each consisting of approximately 2000 LOC only. A more detailed evaluation of the
market templates is conducted in Section 5.1.

4.2.3 Market Simulation Framework

The market simulation framework provides business owner and market developer
with a realistic and simple to use market simulation testbed that facilitates the

4.2 (Software) Artifacts to Support Agile Market Engineering 93

evaluation of newly developed electronic market platforms in situations where the
platform is technically developed but business owner and market expert do not feel
confident enough to open it up for public access yet (see Section 4.1.2).

Similar to the concept of Collins et al. (2009) the market simulation framework was
developed as a web-based system for defining and running market simulations, and
for collecting results. In contrast to Collins et al. the market simulation framework
is not limited to one specific market mechanism. It is a research tool, intended
to support experimentation and evaluation of alternate market configurations in
different environmental settings based on an agent-based computational simulation
approach (Tesfatsion, 2002). With the market simulation framework, BO and MD
are able to set up experiment series, each of which runs multiple market simulations
with a fixed set of configuration parameters. Market and agent logs are gathered
together for later analysis and stored centrally. Experiment series can be queued,
and given enough hardware, multiple simulations can be run in parallel.

The market simulation framework consists of three core components:

Experiment Center: A web based interface for configuring and managing market
simulation series.

Experiment Runner: A market and agent runtime environment, that executes
pre-configured market simulations and can be remotely controlled from the ex-
periment center.

Time Series Data Store: A web based service for storage and retrieval of arbi-
trary historic time series data that can be used to initialize electronic agents
with historic (market) data.

Figure 4.18 visualizes the general workflow and the interaction between the three
market simulation environment components.

Initially, the experiment center is started and one or more experiment runner in-
stances are deployed and started on different computers. Once an experiment runner
instance is started, it stays in idle mode and periodically triggers the experiment cen-
ter requesting new experiment instances to be executed (1). All experiment runners
can be centrally controlled from the experiment center.

MD or BO can now create and execute market simulation series (experiments) us-
ing the experiment center’s web interface (2). Each single simulation instance can
be individually configured using a set of key-value pairs following the conventions
of Phelps (2007) and Weidlich (2008).

Once a new simulation experiment (or a simulation experiment series) is added to the
experiment center the experiment details (in particular the experiment id and the
experiment configuration) are distributed to the next available experiment runner
instance. Based on the given experiment configuration, the experiment runner then
configures the market runtime environment initializing market and electronic trading
agents as prescribed by the configuration (3). During initialization of the trading
agent instances, some of them might need to be bootstrapped with historic time series
data from the time series data store (4). This task of fetching the required timeseries
data and providing it to the respective trading agent is completely automated and
requires no manual user interaction.

94 4 Agile Market Engineering

Fig. 4.18. Market Simulation Framework components and their interaction

After the environment and all agent instances are properly initialized, the market
is started and the agents begin trading (5). All activity in the simulation run is
monitored by the experiment runner, which logs market as well as agent activity
and – after the end of the simulation run – transfers all of the data back to the
experiment center (6) where is is permanently stored for later analysis.

The experiment center has a data analysis and reporting center included that allows
users to define and execute individual reports and to download the results in several
different file formats as shown in Figure 4.19.

Fig. 4.19. Report Management in the Experiment Center

4.2 (Software) Artifacts to Support Agile Market Engineering 95

Technically, the experiment center’s reporting functionality builds on top of the open
source reporting framework JasperReports35. This allows users to graphically design
specific data analysis reports using JasperReport’s graphical report designer. Re-
ports are stored as specific xml files, which can be easily uploaded to the experiment
center then become immediately available for data analysis. Once a new report is
available online in the experiment center it can be executed against simulation data
stored in the experiment center. Figure 4.20 shows how a custom report is defined
in the JasperReport graphical report designer as well as some sample results after it
was uploaded to the experiment center and executed against stored simulation data.

Fig. 4.20. Graphical report creation and sample report results

Time Series Data Store A distinct feature of the simulation framework is its
time series data store, which is designed to provide (i) flexible and fast storage
for large amounts of historic time series data from different data sources and (ii)
provides several different interfaces for data retrieval, each of them being restrictable
through a flexible permission management system. Besides storage and retrieval for
historic time series data, a plugin infrastructure for artificial time series generators is
provided as well. As of writing of this thesis, a first plugin for the creation of artificial
driving profiles for electric vehicles was realized and made publicly available (Dietz
et al., 2010). Figure 4.21 shows a sample screenshot of one of the historic data profiles
(in this case historic trading data) stored in the the time series data store.

A data Profile groups one ore more TimeSeries. It contains the master data for one
or more interrelated time series, in particular profile name, description, data licensing
conditions, and (if applicable) mail address, geographic coordinates as well as several
other information like tags or contact details of the data provider. A TimeSeries

contains information about the respective time series itself, most importantly the
time series’ name and its measurement unit. A profile also references one or more
TimeSeriesDate objects. TimeSeriesDates store date and time information in a
compact format (Unix Timestamp) as well as split up into separate date and time
fields (i.e. year, month, day, hour, minute, second, millisecond). Like this, searching

35 http://jasperforge.org/projects/jasperreports

96 4 Agile Market Engineering

Fig. 4.21. Profile with several time series

for subsets of time series like e.g. “all entries in year x and month y” can be quickly
executed on the underlying relational database.

A particular TimeSeries object and a particular TimeSeriesDate object reference
a TimeSeriesEntry domain instance, which only stores a single value (a decimal
number or a String). With this domain topology in place “vertical data queries” (e.g.
select all time series entries from time series “Max Price”) as well as “horizontal data
queries” (select all time series entries for 2008-01-01 03:00:00.0) can be efficiently
retrieved from the relational database. The time series data store is publicly available
at http://ibwmarkets.iw.uni-karlsruhe.de.

4.3 Summary

In this chapter an agile market engineering process model is described that is de-
signed to address the shortcoming of existing market engineering process models (see

4.3 Summary 97

Chapter 3). In particular, the agile market engineering process model relies on short,
incremental market development cycles and frequent user feedback as main sources
of input for market development. Like this, experiences and insights from the market
development process itself as well as end user experiences from the running market
platform can be incorporated into the incremental development and improvement
process.

The agile market engineering process model is complemented by a set of supporting
software artifacts. The Market Design Knowledge Base provides a technical infras-
tructure for storing and maintaining insights and experiences form market develop-
ment projects over time and across project teams. The Market Repository in combi-
nation with a set of initial Market Templates helps market developers to quick-start
the development of a new market platform by technically building their code base
on small but fully functional market templates. Like this, agile market engineering
projects can start the development based on a running and fully functional default
market, that is subsequently customized to the needs and requirements of the spe-
cific project. The Market Simulation Framework provides a convenient and simple to
use testbed for evaluating newly developed market platforms based on agent-based
computational simulations.

Several market engineering projects have been conducted that relied on this process
model and the aforementioned software artifacts. These are described in more detail
in the following chapter in the form of case studies.

5

Evaluation

In this chapter, the agile market engineering process model and its supporting soft-
ware artifacts are evaluated. Section 5.1 analyses the developed cda and call market
templates with respect to their technical properties. Subsequently, in Section 5.2,
5.3. 5.4, 5.5 several short case studies are presented where the agile market engineer-
ing process model has been applied as project management methodology and where
agile market engineering software artifacts were used to support the development
process. The TAC Energy project described in Section 5.6 is another case study,
which represents the most complex application scenario so far and is thus described
in greater detail. Section 5.7 compares the developed process model and its artifacts
with the original requirements described in Chapter 3 and concludes the chapter
with a summary of the main findings.

5.1 Assessment of Default Market Templates

In its core, the agile market engineering process model builds on short, incremen-
tal market development cycles and frequent user feedback in order to develop and
to continuously refine and improve the electronic market platform. Consequently,
refactorings and adaptations of the platform’s code base occur frequently. It is thus
important that the software infrastructure an agile market engineering project builds
upon facilitates and eases frequent changes and improvements. Empirically the three
metrics cyclomatic complexity, non commentary lines of code (LOC), and number
of methods per class have been shown to be good proxies for estimating develop-
ment and maintenance efforts of software projects (see Section 3.2 for details). In
short, low code complexity few number of methods per class as few LOC per class
(and overall) have been shown to be well correlated with good maintainability and
adaptability of program code(Kafura and Reddy, 1987; Grady, 1994; Kan, 2002).

For all service classes (i.e. for the complete business logic) of the basic cda and call
market templates these metrics have been calculated. The results are presented in
Table 5.1.

With one exception, the cyclomatic complexity (McCabe, 1976) of all of the markets’
business logic is well below the value of 14 as recommended by Kafura and Reddy

100 5 Evaluation

CDA Market Call Market

Class name max. CC LOC #Methods max. CC LOC #Methods

AllocatorService 17 92 1 17 91 1

AuctionService 12 81 2 12 81 2

AuthenticationService 2 18 2 2 16 2

BillingService 1 27 3 1 27 3

ClearingService 6 71 2 6 67 2

MarketInformationService 4 157 7 4 148 7

MarketLogService 2 37 2 2 37 2

PricingService 1 12 1 1 12 1

SecurityMarginService 6 81 4 6 81 4

SettlementService 7 130 5 7 128 5

Total 93 706 29 93 688 29

Table 5.1. Software metrics for the business logic of CDA & Call market template

(1987); Grady (1994). Only for AllocatorService (the component that computes
the allocated set of orders, see Section 4.2.2) the cyclomatic complexity exceeds the
value of 14 by 3 points. Still, on average both market templates comply with rec-
ommendations from empirical literature. The maximum number of LOC per class
is 157, though each single method is well below 100 LOC (see Appendic 5.1). The
maximum number of methods per class (7 in MarketInformationService) is small
too. Thus, also these metrics are well within common recommendations (see e.g.
Kan, 2002). Appendix E contains the complete complexity analysis for both mar-
ket templates. In total the call market template consists of 2174 LOC; the cda
market template is composed of 1903 LOC. For comparison: The meet2trade’s
ARTE core platform (not including the adaptive trading clients as main user
interfaces) consists of 13,811 methods, written in 847 classes, and divided into
92 code packages. The maximum measured cyclomatic complexity is 185 (class
org.efits.Trade.Markt.Allocator_CDA_III), the maximum LOC per class is
3368 (class org.efits.Trade.MetaMarkt.MetaMarkt), which also contains the most
methods per class (282).

In summary, the low cyclomatic complexity as well as the small number of methods
and LOC in the cda and call market templates are good indicators for the manage-
ability, adaptability, and comprehensibility of the templates’ code bases.

These analytical findings were confirmed throughout a series of applied agile market
engineering projects, which have been conducted over the last years. All of them
built their code bases on one of the two aforementioned market templates and all
of them used the agile market engineering process model for project management.
The following sections describe these projects in more detail and show that the
different project teams were able to quickly develop and operate new electronic
market platforms using the agile market engineering process model and building
their market platforms on top of one of the market templates analyzed in this section.

5.2 Use Case EM-Stoxx Market 101

5.2 Use Case EM-Stoxx Market

EM-Stoxx was the first publicly accessible market platform that was built using the
agile market engineering process model and its accompanying software framework.
The development of EM-Stoxx was jointly lead by Stefan Luckner at University of
Karlsruhe and Stephan Stathel at Research Center of Informatics (FZI). Project
Kick-Off was April 07, 2008 two months ahead of the European Football Cham-
pionship, which provided the framing for the project. The main objective was to
evaluate the influence of electronic market maker agents on the forecasting quality
of prediction markets (Stathel et al., 2008). Consequently, an electronic prediction
market platform was created that allowed registered users to trade stocks of all
soccer teams participating in European Soccer Cup 2008 via Internet. Additionally
the market platform comprised electronic market maker agents that automatically
generated buy and sell orders for each stock in the market following a pre-defined
trading strategy.

Immediately after the project start, the team (the author of this thesis was involved
as change manager, see Section 3.3.1) decided to choose the cda market template as
the technical basis to build the new prediction market platform upon. This choice
was natural because the new prediction market was expected to utilize a continuous
double auction as its underlying market mechanism.

After instantiation and execution of the cda market, a first assessment of the default
functionality provided by the market template was conducted and the following ad-
ditional requirements were identified. (i) A user ranking functionality was required
that was capable of producing a list of all registered market participants sorted
according to their respective overall depot values. Furthermore, (ii) portfolio trad-
ing (Graefe and Weinhardt, 2008), (iii) automated market making functionalities
realized by means of electronic trading agents, and (iv) the possibility to assign
signed-up market participants to different, identically looking but completely inde-
pendently running, market segments, were identified as additional key requirements.

At the end of the first project week, the portfolio trading and user ranking function-
ality was implemented and tested, which required an overall effort of about 10 FTE
days (i.e. two market developers working full time for one week). Also, a simple but
functional implementation of the required market maker agents was realized at an
estimated effort of approximately 5 FTE days. Technically, four new services (i.e.
classes containing the additional business logic) were created to extend the existing
functionalities (see Section 4.2.2) as follows:

The Ranking Service comprised all business logic to compute aggregate portfolio
values and to generate and update market participant ranking lists.

The Portfolio Service encapsulated the business logic required for portfolio trading.

The Liquidity Agent Service implemented the agent logic and the trading strategy
of the liquidity provider, i.e. the automated creation of bids and asks with an
adjustable spread size.

The Portfolio Agent Service encapsulated the portfolio agent’s trading logic that
was programmed to continuously observe the market, to calculated arbitrage

102 5 Evaluation

potentials, and to realize these by issuing corresponding portfolio buy or sell
orders.

Thus, with an overall effort of about 15 FTE days, the initial cda market template
was extended and adjusted to become a basic but fully functional and running
electronic prediction market platform. During the project weeks that followed the
trading agent logic was refined and many small incremental improvements to the web
interface were realized. Figure 5.1, for example, shows the new order entry interface
of the EM-Stoxx market that provided current (and automatically updated) market
prices right next to the order entry mask in order to help market participants to
make their trading decisions based on the latest market data available. Parallel to the
development of the market platform the production server environment (including
database server, application server, firewall, etc.) was set up and tested, which took
about 3 FTE days overall and was conducted by the market operator at FZI.

Fig. 5.1. Order Entry Screen of the EM-Stoxx Market

The existing market services (settlement service, clearing service, etc.) did not have
to be adjusted. Still, in a later phase of the market development, a logical separa-
tion of the overall market into separate, identical, but separately operated market
segments was introduced. This functionality was required to randomly assign new
signed-up market participants to one of two market segments. The first group traded
in a market segment where liquidity provider and portfolio agent were activated, the

5.2 Use Case EM-Stoxx Market 103

other group served as a benchmark and traded in a market segment where no elec-
tronic agents were used at all. Both markets ran simultaneously. From a market
participant’s perspective both market segments looked completely identical though
trading activities in each segment were completely separated from the other and
market participants did not know about the market segmentation. To accomplish
this task, the original domain model of the cda market template had to be extended.
In particular, the Product domain class was extended to contain a role property.
Afterwards the web interface of the market platform was restricted to only dis-
play those products to market participants that had the same role assigned as the
market participant itself. Afterwards, during market operation, two sets of identi-
cal products were created and assigned either of two market roles ROLE GROUP1
or ROLE GROUP2. Market participants that signed up for the EM-Stoxx market
were randomly assigned to one of the two groups. The trading agents were restricted
to only provide bids and asks for products assigned to ROLE GROUP1. Realized
like this, the market segmentation requirement was easily implemented at an overall
effort of about 3 FTE days.

Every week, a new version of the EM-Stoxx market platform was released to the
production server environment and made available to a closed group of beta testers.
Based on the feedback of this group, new requirements for subsequent development
phases were elicited in the form of user stories and implemented later on. Techni-
cally the management of the user stories was accomplished using the open source
Buildix system1, which provides an integrated infrastructure for continuous integra-
tion, source code management, documentation wiki, and an electronic taskboard for
requirements tracking (see Step VI: Design, Implement & Test in Section 4.1.2).

The market performance and in particular the prediction quality in the market
segment with agents was compared to that without agents during an ex-post analysis
of the market data after the end of the European Football Championship . Stathel
et al. (2008) provide details and information on the research agenda of this field
project and report research results of the the experiment study itself.

In summary, during the course of the EM-Stoxx market project, a prediction market
trading platform was developed within about 8 weeks of time and about 70 FTE days
of overall market development effort. The market was launched on June 7th, 2008
and ran stable throughout the course of the European Football Championship, which
ended June 29th 2008. Apart from insights pertaining to the projects underlying
research agenda, several new insights on practical (prediction) market engineering
were gained. Most prominently, it was recognized that untrained prediction market
participants sometimes had difficulties to correctly translate their estimates into
corresponding buy or sell orders on the market. This important finding for future
prediction market projects was stored in the Market Design Knowledge Base (see
Section 4.2.1).

After the project was finished, the EM-Stoxx market platform was considered being
mature enough to become a market template on its own and thus was published as
new prediction market template in the market repository. With the new knowledge
on prediction market design and with a new prediction market template at hand

1 http://buildix.thoughtworks.com

104 5 Evaluation

a follow-up project, the Australian Knowledge Exchange (AKX), was started. This
project is described in more detail in the following section.

5.3 Use Case Australian Knowledge Exchange (AKX)

The Australian Knowledge Exchange was a joint project between Commonwealth
Scientific and Industrial Research Organization (CSIRO), Australia and University
of Karlsruhe, Germany. This research project started in September 2008 with the
objective of exploring the forecasting potential of prediction markets in the area
of water resource management. Thus, in this project, a prediction market platform
had to be developed that allowed market participants to trade their expectations
pertaining to fill levels of five important water reservoirs in Canberra and in southern
New South Wales, Australia (Stathel et al., 2009). Florian Teschner from Institute
of Information system and ,anagement at University of Karlsruhe had the technical
lead for the realization of the market platform in this project.

At the beginning of the project, initial requirements for the AKX project were col-
lected. An electronic market platform had to be developed, with water reservoirs
as tradable stocks (products). The underlying real value of each stock was set to
be equal to the (ex-ante unknown) fill level of the respective reservoir at a pre-
defined date in the future (so called payout date) where all trading activity ended.
AKX market participants had to be provided with an initial endowment of stocks
and play-money (so called AKX Dollars), which they could use for trading. Par-
ticipants of AKX were supposed to buy and sell stocks until the market’s payout
date was reached. At that date, all trading activity was suspended and all stocks
of all participants were converted into money, each with the money equivalent of
the respective reservoir’s fill level. Assume, for example, a participant bought 10
“Hume Reservoir” stocks in the market for a price of $10AKX, which equals to
$100AKX for this transaction and this participant overall. If the reservoir’s fill level
at the payout date later on was measured to be, say, 50%, the participant’s stock
would have been converted in to AKX money at a price of $50AKX per stock, i.e.
10stocks · $50AKX = $500AKX overall. Among the best market participants (in
terms of overall money balance at the payout date) a price money of $50 AUD was
distributed.

Besides the aforementioned basic prediction market functionality, the AKX project
also required a market segmentation into a so called expert market and a public
market. Access to the expert market was restricted to specially invited water ex-
perts from Australia who were supposed to trade their expectations in this market
segment. In contrast, the public market was open for everybody to sign-up. The ob-
jective of this segmentation was to analyze ex-post if systematic differences between
the expert and the public market segment occurred.

As in the EM-Stoxx market before both market segments had to provide completely
identical functionality while market activity in both segments had to be completely
separated. Different to EM-Stoxx market, no trading agent functionality was re-
quired.

5.3 Use Case Australian Knowledge Exchange (AKX) 105

Another key requirement, which stemmed from the insights of the previous EM-Stoxx
market project, was the addition of some decision support functionality aimed at
(optionally) guiding market participants in the process of converting their reservoir
fill level expectations into corresponding buy or sell orders in the AKX market.
Figure 5.2 shows the order entry wizard developed for the AKX market, which was
offered to market participants as an additional alternative for entering buy or sell
orders into the AKX market.

Fig. 5.2. Order Entry Wizard of AKX

Using this order entry wizard, traders were enabled to simply choose the expected
water dam levels and their own prediction confidence using simple slider bars. Based
on this data the order entry wizard automatically generated appropriate buy or sell
orders, which the market participant could check and submit to the market.

After the collection of the initial requirements and after an thorough inspection of
the available market templates the project team chose the existing prediction market
template as technical basis for the development of the AKX Market Platform. It
was considered to be well suited for this project and provided most of the required
functionality by default.

Technically, the market maker trading agent functionality, provided by the predic-
tion market template by default had to be removed. The DSS functionality for
supporting market participants during order entry only required changes to the web

106 5 Evaluation

interface of the prediction market. Thus the conceptualization and realization of this
functionality was accomplished with an effort of approximately 5 FTE days.

The development of the AKX market platform – including a complete customization
of the web interface layout to an AKX branding – took an overall of about 25
FTE days. The market platform itself was operated stable and without incidents
throughout the project runtime. Unfortunately only about 85 market participants
signed up for the public market and only very few experts were attracted to trade
their expectations in the expert market.

From a market engineering perspective, one of the key lessons learned from this
project was the fact that the attractiveness of a prediction market depends in good
parts on the frequent occurrence of events during market runtime that lead to “sig-
nificant” changes in corresponding stock prices. During the AKX runtime, several
heavy rainfalls occurred. But the corresponding changes in reservoir water levels
were usually only in the magnitude of less than one percent and so did change the
corresponding stocks on the AKX market, These were designed to be valued be-
tween 0 and $100AKX depending on the real percentage reservoir fill level. As a
result stock prices usually changed only within the order of cents rather than dollars
and the differences in the corresponding time series visualizations were small. This
proved to be unattractive for traders who quickly seemed to loose interest in trading
their expectations on the AKX market. Still, technically and mechanism wise the
market platform ran stable and without incidents.

This insight was added to the market design knowledge base together with the rec-
ommendation for future prediction market projects to increase the degree of financial
leverage of the traded stocks in situations similar to this one. In other words: In order
to increase the prediction market’s attractiveness, the fundamental stock value dy-
namics should be magnified e.g. in the AKX case by translating 1 per mille change in
reservoir fill level (instead of 1 percent) into 1$ AKX change in stock value. Stathel
et al. (2009) provide details on underlying research agenda of the project and its
research findings.

5.4 Use Case EIX Market

The Economic Indicator Exchange (EIX) is an ongoing cooperation project between
Institute of Information Systems and Management (IISM), Research Center of Infor-
matics (FZI), Institut der deutschen Wirtschaft Köln e.V. (IW), Handelsblatt GmbH
& Co. KG, and Intuity Media Lab GmbH, which started in September 2009 and is
still running at the time of writing of this thesis. The main objective of this project
is to create, operate and evaluate an open electronic prediction market platform
in order to forecast the development of several economic indicators (gross domestic
product, rate of inflation, unemployment, exports, and gross fixed capital formation)
for Germany.

Under the technical lead of Florian Teschner and Stephan Stathel, the development
of the EIX market platform was started in September 2009 using the agile market
engineering process model for project management. As in the AKX project before,

5.4 Use Case EIX Market 107

the project development team decided to choose the prediction market template as
base platform to build the EIX market upon.

Based on the experiences from the AKX market project, the key requirements for
this project included (i) the development and implementation of more sophisticated
activity rules for market participants to attract more trading activity on the market
platform, (ii) a complete revision of the existing web interface (including examples
and tutorials that describe the market rules) to further increase usability for market
participants and to comply with corporate design guidelines of the project partners,
(iii) a more sophisticated decision support assistant for order entry, and (iv) a de-
tailed logging of market participant activity, in particular their usage of different
types of decision support functionalities provided by the web interface of the EIX
market for later analysis.

To realize the first requirement, the RankingService (see Section 5.2) was extended
to calculate the number of transactions a market participant has concluded over
time as well as the percentage change in his portfolio value. Under the activity rules
of EIX market, only participants with more than five transactions per month and a
relative increase in portfolio value qualify for participation in monthly prize money
tombolas. The implementation and testing of these rules required an overall of 8
FTE days.

The complete revision of the prediction market’s web interfaces, the creation of
tutorials and trading examples (requirement II) was accomplished in close cooper-
ation with Intuity, Handelsblatt, and IW. Here, the original decision to build the
web interfaces of the underlying market templates – as far as possible – in pure
HTML, facilitated the cooperation with the web and interface designers of the co-
operation partners. Figure 5.3 shows the new order entry interface with (adjustable)
information boxes that provide additional information (e.g. current orderbook, last
trades, related news, etc.) providing the market participant with up to date market
information during order entry.

108 5 Evaluation

Fig. 5.3. Order Entry Mask in EIX Market

The task of redesigning the interface and the creation of tutorials and help descrip-
tions proved to be labour intensive though, requiring an overall of approximately 50
FTE days. The technical integration of the new web layout and the adapted mar-
ket descriptions and tutorials, however, were easy and fast to accomplish requiring
about 2 FTE days in effort.

Also, the implementation of order entry decision support assistants was easy to
realize as it required changes only in the view layer of the market. Figure 5.4 shows
two different order entry assistants developed for use in the EIX market.

Fig. 5.4. Two different Order Entry Assistants for the EIX Market

The initial version of the EIX market platform was developed in the time between
September and October 2009 and required an overall effort of approximately 120
FTE days (including the complete redesign of the web interface). Since the public
launch of the platform on November 1st, 2009, about 950 traders have registered

5.5 Use Case Microgrid Market 109

as market participants on the EIX prediction market platform. About 350 of these
trade regularly.

Right now, wile the EIX market is running (Mai 2010), the development of the mar-
ket platform still continues in short incremental cycles, which are used to implement
improvements and ideas from the project team itself but also incorporate ideas based
on feedback from market participants. Most prominently, user feedback elicited via
the platform’s online user feedback mechanism (see also Section 4.1.3 Step IX: Add
& Revise Requirements) lead to an adaptation of the EIX platform’s market rules. In
a development phase in early February 2010, a short selling functionality for stocks
was developed and subsequently released into the live EIX prediction market plat-
form. Since then, participants have been able to express their predictions even in
situations where they (temporarily) do not have sufficient stocks for sale in their de-
pots. More details on this functionality are provided by Teschner and Storkenmaier
(2010).

In summary, the initial EIX market development was successfully accomplished
within a timespan of about two months and an overall effort of about 120 FTE
days. The platform is running in stable operation since November 2009 without any
major incidents and is currently serving a community of about 350 active predic-
tion market participants on http://www.eix-market.de. The EIX market platform
was developed based on the agile market engineering process model and is techni-
cally built upon the market repository’s prediction market template. It is planned
to replace the original prediction market template in the market repository with an
improved version base on the current code base of the EIX market platform.

5.5 Use Case Microgrid Market

The microgrid market platform was developed from August 2008 onwards as a small
project in preparation for the launch of the E-Energy MEREGIO project2 in Oc-
tober 2008. Its main purpose was to develop a proof-of-concept electronic market
platform and different types of specialized electronic trading agents for the dynamic
scheduling of heat and power resources in microgrids equipped with a district heat-
ing infrastructure. The underlying economic concept and the market’s mechanism
design are described in more detail in Block (2007); Block et al. (2008).

The key requirements for this market platform were (i) the realization and timely
demonstration of a combinatorial allocation and pricing mechanism capable of pro-
cessing combinatorial heat and power orders in accordance with the market mecha-
nism concept for microgrids developed in Block et al. (2008), and (ii) availability of
a web services interface for electronic trading agents to automatically interact with
the market during demonstrations.

After the project was started, the market development team (lead by the author of
this thesis) decided to choose the call market template as initial code base to build
the market platform upon. For the realization of the combinatorial allocation and
pricing mechanisms the domain class model of the call market had to be extended

2 http://www.meregio.de

110 5 Evaluation

first. In particular, the Shout domain class (see Section 4.2.2) was extended to con-
tain additional properties for exectuionQuantityHeat, executionQuantityPower,
remainingQuantityHeat, remainingQuantityPower, as well as minAlloc and
maxAlloc properties. Additionally, the DepotPosition domain class was extended to
contain balancePower, balanceHeat, and changePower and changeHeat properties.
After the realization of these extensions, the market’s domain model was capable of
storing combinatorial orders e.g. from a trading agent representing a combined heat
and power generator of the microgrid. Figure 5.5 shows the extended order entry
mask of the microgrid market’s web interface.

Fig. 5.5. Order Entry Mask of the Microgridmarket

With the extended domain model at hand the AllocatorService and the
PricingService had to be rewritten to implement the combinatorial allocation
and pricing mechanism described in Block et al. (2008). The computation of the
allocated set of orders requires solving a mixed integer problem. The adapted
AllocatorService thus collects all new, unmatched orders available in the mar-
ket at the time of market clearing and then builds a mixed integer optimization
model out of them. This optimization model is handed over to the lp solve3 mixed
integer problem solver, which computes the optimal order allocation. The result re-
turned from the solver is translated into a set of allocated orders, which are then

3 http://lpsolve.sourceforge.net

5.5 Use Case Microgrid Market 111

used by the adapted PricingService to compute the bundle prices for all orders
in the allocation set. Finally, the adapted SettelementService updates the power
and heat stocks of all participants whose orders have been allocated.

The technical realization of the microgridmarket platform required about 25 days
FTE in overall effort (excluding the invention of the underlying combinatorial market
mechanism).

Based on this market infrastructure, two different electronic trading agents, (i) a
demand shifting agent representing private households (Deindl et al., 2008) and a
CHP agent representing small-scale combined-heat-and-power plants were developed
as part of two master thesis projects conducted by Matthias Deindl and Jan Huss.

As originally planned, the market platform and its trading agents were demonstrated
live as proof-of-concept realization of a regional energy exchange market during the
MEREGIO project kick-off meeting in October 2008. At the same time the code
bases of the microgridmarket platform and the two trading agents was publicly
released at http://microgridmarket.sourceforge.net and have been downloaded
more than 400 times since then (as of May 2010). For the MEREGIO project itself,
the microgridmarket trading platform has also been fitted into the market simulation
framework (see Section 4.2.3) in order to run agent-based market simulations of the
MEREGIO pilot region based on historic energy load and production data elicited
from there simulating, for example, extreme events that cannot be studied in the
field. This simulation concept is described in more detail in Hirsch et al. (2010).

Though principally attractive, the concept of the microgrid market platform and its
trading agents as mechanism for efficient energy scheduling and energy distribution
on an end consumer level is still in its early beginnings. One of the biggest obstacles
that oppose a fast adoption of this concept is the fundamental lack of understand-
ing of the market dynamics in situations where many different trading agents (fully
or semi) autonomously compete against each other in acquiring or selling energy
resources. Internationally, several large research projects have been conducted in-
cluding EU Fenix (Jansen et al., 2009); ECN Powermatcher (Kok et al., 2005), EU
CRISP (Schaeffer and Akkermans, 2006); US Olympic Peninsula (Hammerstrom
et al., 2007), EU Microgrids (Hatziargyriou et al., 2006), or US CERTS (Lasseter
et al., 2002). All of them rely on markets and price incentives in one form or the other
in combination with intelligent automation technology for market interaction. And
all of these projects showed in field trials that the principle concept of market-based
energy management on the end consumer level works in a closed environment where
all parameters can be controlled or at least significantly influenced by the respective
project teams. But none of these project (and neither the microgrid market project)
were able to demonstrate that their concepts are applicable in a competitive envi-
ronment too where overall market control is limited and other market participants
are likely to act or react in an unforeseeable manner. This insight lead to the idea
of inventing an energy trading agent competition, which is described in more detail
in the next section.

112 5 Evaluation

5.6 Use Case TAC Energy

By 2020, about 35% of the overall electricity demand in the European Union, EU, will
be generated through distributed and intermittent “green energy” resources (Com-
mission, 2009a). This presents a severe challenge to the existing energy infrastruc-
ture, which was designed to distribute power from a few large generating plants. It
is thus very important to adopt a “smart” management approach that will facili-
tate effective integration of these resources into the existing energy generation and
distribution infrastructure. Currently, much of the distributed generation capacity
installed is virtually unmanaged, and cannot be supervised form centralized grid
control and power dispatch systems.

With a small share of renewables in the overall generation capacity mix, this integra-
tion has not been a problem. But this strategy has almost reached its limits. Grid bal-
ancing capacities within the European Union for the Coordination of Transmission
of Electricity (UCTE) high voltage grid are designed to cope with short-term vari-
ations in generator output of at most 3000 MW. Planned investments and projects
underway in renewable capacity are expected to increase overall production volatil-
ity within the next five years to well beyond this level (Kox, 2009). Furthermore,
the number of renewable producers and their wide-spread distribution will strongly
increase. In Germany, for example, a roll-out of 100 000 distributed Combined Heat
and Power (CHP) power plants has begun, with a planned overall installed capacity
of 2 GW4. A purely centralized command-and-control approach to managing the
grid and its generators has reached its limit, with the number of generators and the
volatility of their output increasing even further over the next decade.

One approach to addressing this problem is to use the resource-allocation power of a
market to find a near-optimal balance between producers and consumers of electrical
power at lower levels of the grid hierarchy, and to make the participants in this mar-
ket responsible for near-real-time balancing at the local level. So far, there is limited
experience from pilot projects and field studies that could guide design and opera-
tion of such regional markets (Hatziargyriou et al., 2007; Blaabjerg et al., 2006). All
these projects rely on “intelligent devices” and automation technology to facilitate
or even automate energy management at both consumer and producer sites. But
the automation solutions proposed within these projects are “unchallenged” in the
sense that no other (competing) automation technology was deployed within these
pilot projects, though competing technologies and solutions will be the default case
in large-scale technology deployments on regional or national levels. The California
energy market breakdown in 2000 (Joskow and Kahn, 2001; Borenstein et al., 2002)
is an example of the problems that can occur if potential strategic, competitive
or collusive behavior of market participants is not sufficiently accounted for in the
design of such markets.

In the following the design and implementation of a competitive simulation envi-
ronment is described that will address the need for solid research understanding of
a market-based management structure for a local energy grid, which would mirror
reality fairly closely. This simulation environment would challenge research teams to

4 This is roughly the capacity equivalent of two nuclear power plants, see
http://www.lichtblick.de/h/idee 302.php

5.6 Use Case TAC Energy 113

create agents (Wooldridge and Jennings, 1995), or possibly agent-assisted decision
support systems for human operators (Varga et al., 1994), that could operate effec-
tively and profitably in direct competition with each other. Teams would also be
challenged to exploit the structure of the market, and that structure would be ad-
justed periodically to defeat counterproductive strategic behaviors. The result would
be a body of valuable research data that could guide energy policy, along with a much
higher degree of confidence that such a mechanism could be safely introduced into
operating energy systems.

The project is called “TAC Energy” because it is an example of a Trading Agent
Competition5 applied to energy markets. The main goals of the simulation are (i) to
provide a competitive testbed for the development and validation of a market struc-
ture for managing electrical power distribution in a local grid, (ii) to spur research
and development on intelligent agents and decision support systems that help auto-
mate decision processes in such markets, and (iii) to ease knowledge transfer between
research and application by providing a testing environment that closely resembles
reality. The entities competing in this market will broker electrical power in a lo-
cal energy grid that contains a mix of intermittent energy sources, with residential,
commercial, and industrial demands.

The next subsection gives background on the structure and organization of current
electrical energy production and distribution systems, and reviews previous work
both in competitive simulations and in other approaches to addressing the control
and resource allocation problems in future energy grids. Then the essential decision
problems are outlined that must be solved by a successful competing agent. Finally,
the development of the TAC Energy market platform based on the agile software
engineering process model is described before this case study description is con-
cluded with a discussion of open research questions that can be addressed through
a well-designed competitive simulation environment, many of which would be either
impossible or highly risky to explore in the real world.

Background and Related Work for TAC Energy

In the following, portions of the existing electrical energy distribution systems that
are relevant to the discussion in this paper are described in more detail. Subsequently
some of the principal industry and government initiatives that are intended to resolve
the problems of integrating new energy sources into the grid are discussed. Finally,
related work in multi-agent modeling and competition testbeds is reviewed.

Energy infrastructure

Traditionally, the electrical energy infrastructure is organized in a strict hierarchy:
A few centralized control facilities manage relatively few large power plants and
schedule their production according to forecast energy demands, which are usually
based on synthetic load profiles, i.e. average historic consumption time series for

5 see www.tradingagents.org

114 5 Evaluation

different consumer groups. With these estimates at hand, generation capacities are
dispatched. Traditionally, power is transmitted from power plants to consumers over
a network of super-high, high, and medium voltage transmission grids into low volt-
age distribution grids that provide the connection to end customers.

With an increasing share of distributed, renewable generation capacities installed
in the medium and low voltage grids, production volatility will increase and power
flow inversions will occur, which the current technical grid infrastructure and control
strategies are not designed for. In parallel, consumers are currently being equipped
with smart metering technology and demand side management devices (DSM) that
help them monitor and actively manage their loads. Consequently, their consumption
flexibility will increase and load predictability via synthetic load profiles may become
difficult. At the same time they will become at least somewhat responsive to time-
varying energy prices.

In order to be able to manage this complex and highly dynamic system, the existing
energy grid will have to be transformed into a smart grid with secure real-time ICT
integration and communication among all of its components. Based on this informa-
tion and communication infrastructure, an “Internet of Energy” will evolve (Block
et al., 2008) that serves as a key enabler for new distributed and highly automated
approaches to managing producers, consumer loads and the grid infrastructure.

Initiatives

The U.S. National Institute of Standards and Technology (NIST) recently published
the first draft of a “Smart Grid Interoperability Standards Roadmap” (von Dollen,
2009). It defines a simplified domain model for a future smart grid with identified
“Distribution”, “Market,” and “Customer” domains being in the core of the overall
model. Furthermore a list of prioritized actions for the fast transformation of the
current infrastructure into a smart grid is provided. Highest priority, according to
NIST, are demand response and consumer energy efficiency measures. In particu-
lar they state that “market information is currently not available to the customer
domain. Without this information, customers cannot participate in the wholesale or
retail markets. In order to include customers in the electricity marketplace, they need
to understand when opportunities present themselves to bid into the marketplace and
how much electricity is needed.”

In October 2009 the EU Commission announced the Strategic Energy Technology
Plan (SET Plan) (Commission, 2009a) along with a draft technology roadmap (Com-
mission, 2009b). One of the priority actions mentioned in this roadmap is the de-
velopment of so called “smart cities” that efficiently and intelligently manage local
energy production and consumption. In particular “5-10 development and deploy-
ment programmes for smart grids in cities, in cooperation all relevant SET-Plan
Initiatives, including priority access for local generation and renewable electricity,
smart metering, storage, and demand response” should be established within the
next two years.

The BDI, a German industry group, has published a technology roadmap that de-
scribes the transition from the current energy infrastructure into a so called “Internet

5.6 Use Case TAC Energy 115

of Energy” (Block et al., 2008) on a timeline from 2009 to 2020. The document was
written by a group of experts from various industries in cooperation with researchers
from several different institutions. According to this roadmap, regional energy mar-
kets, virtual power plants based on micro CHP turbines, as well as DSM technologies
will be mainstream by 2015, and one of the key challenges will be the development
of “applications and services for coordinating the energy grid on the business level.”
In other words, the technical infrastructure will be in place but smart coordination
and operation strategies are yet to be developed.

Multi-Agent Modeling

Electricity production and distribution systems are complex adaptive systems (Miller
et al., 2007) that need to be managed in real time to balance the load of an elec-
tricity grid. Electricity markets are undergoing a transition from centrally regulated
systems to decentralized markets (North et al., 2002). These transitions are very
risky since there exists only limited experience in setting up decentralized energy
markets and predicting their effect on the economy. Failures in designing such sys-
tems can cause major damage while deploying them in the real world. The California
energy market (Borenstein et al., 2002), and the recent collapse of Enron, challenge
the wisdom of deregulating the electricity industry, and have demonstrated that the
success of competitive electricity markets crucially depends on market design, de-
mand response, capacity reserves, financial risk management and reliability control
along the electricity supply chain. Therefore, it is very important to thoroughly test
system design proposals in a risk free simulated environment before deploying these
ideas into the real world.

As energy systems move more toward open, competitive markets, the need for com-
plex modeling systems becomes more obvious. Although traditional optimization
and simulation tools will continue to provide many useful insights into market oper-
ations, they are typically limited in their ability to adequately reflect the diversity of
agents participating in these markets, each with unique business strategies, risk pref-
erences, and decision processes. Rather than assuming that the behavior of market
participants is predictable, the TAC Energy project is aimed at using agent-based
tools in a laboratory setting, which – on a technical level – extends the infrastructure
of the Experiment Center described in Section 4.2.3. This framework will represent
electricity markets and market participants using multiple agents, each with their
own objectives and decision rules. Agents representing energy producers and con-
sumers, the network operator and the regional wholesale market will be part of the
simulation environment. The broker agents will be developed by competing research
teams, thereby avoiding the cognitive blindness that can limit the value of results
arising from non-competitive experimental work in such simulation environments.

Intelligent software agents (Wooldridge and Jennings, 1995; Jennings, 2000) offer
many possibilities for automating, augmenting and coordinating business decision
processes. These agents act on behalf of users, with some degree of independence or
autonomy, employing some representation of the user’s goals or desires. The focus
in TAC Energy is on enhancing the adaptive learning component of such agents;
the corresponding research is thus focused on trading agents that learn to operate
effectively in competitive economic environments.

116 5 Evaluation

Agent-based modeling and simulation has emerged over the last few years as a
dominant tool of the energy sector. For instance, the Electricity Market Complex
Adaptive Systems Model (EMCAS) electric power simulation is an agent simulation
that represents the behavior of an electric power system and the producers and con-
sumers that work within it (North et al., 2002). In Sueyoshi and Tadiparthi (2008),
the authors have developed MAIS, an agent-based decision support system for an-
alyzing and understanding dynamic price changes for the U.S. wholesale electricity
market before and during the California energy crisis.

Further, energy storage is one of the key underpinnings of the vision of the Smart
Grid. In Vytelingum et al. (2010), the authors have developed a framework to an-
alyze agent-based micro-storage management for the smart grid. Specifically, they
designed a storage strategy (with an adaptive mechanism based on predicted market
prices) for consumers and empirically demonstrated that the average storage profile
converges towards a Nash equilibrium. Weidlich and Veit (2008) survey agent-based
market models for wholesale electricity markets, and Zhou et al. (2007) review agent-
based simulation tools and their application to the study of energy markets.

The field of Agent-based Computational Economics (ACE) (Tesfatsion, 2002) is the
computational study of economic processes modeled as dynamic systems of inter-
acting agents. Here “agent” refers broadly to a bundle of data and behaviors that
represents an entity in a computationally constructed world. ACE models can sup-
port a variety of research agendas, such as understanding and evaluating market
designs (McMillan, 2003; Marks, 2006), evaluating the interactions of automated
markets and trading agents (MacKie-Mason and Wellman, 2006), creating rich eco-
nomic decision environments for human-subject experiments (Duffy, 2006), and
advising policy makers on the expected behaviors of markets or market interven-
tions (Sun and Tesfatsion, 2007; Veit et al., 2009). A number of studies have used
ACE methods to study electrical power markets, for example Nicolaisen et al. (2001);
Conzelmann et al. (2004); Sun and Tesfatsion (2007).

The simulation approach used within TAC Energy extends ACE in the direction
of developing strategies and decision procedures for competing agents in modeled
market environments. Therefore, tools and methods of ACE, and in particular the
infrastructure of the Market Simulation Framework developed as part of this thesis,
are used to construct a rich simulated market environment in which one of the agent
types faces competition from other agents of the same type. Researchers will be
invited to implement their own agents to operate in that role, and pit them against
each other in the simulated market. This provides a much more rigorous test of
the market design, and produces deep knowledge of strategy options and decision
procedures for these agents, such as the empirical game theory work of Jordan et al.
(2007) or the economic-regime work of Ketter et al. (2009).

Multi-Agent Competitions

Along with the vision and development of the “Internet of Energy”, a lack of intelli-
gent, distributed energy coordination strategies is probably one of the key problems
in the future of electricity production and distribution. In this context, agents are
a promising tool to help solve these issues. This “TAC Energy” competition will

5.6 Use Case TAC Energy 117

provide a realistic, low-risk platform to effectively test and evaluate agent strate-
gies and decision procedures. Over the last decade competitions are becoming in-
creasingly prevalent in the research world. The current Trading Agent Competitions
use a multi-year competition format to study trading in simultaneous online mar-
kets (TAC Classic) (Wellman et al., 2007), operation of a three-tier supply chain
(TAC SCM) (Collins et al., 2005), trading of search keywords for advertising pur-
poses (TAC AA) (Jordan et al., 2009), and the operation of online exchanges (TAC
CAT) (Niu et al., 2010). The TAC CAT market design game explicitly seeks to en-
courage research in adaptive and automated mechanism design, a topic very closely
related to our alternative market structures. CAT entrants compete against each
other in attracting buyers and sellers and making profits. This is achieved by hav-
ing effective matching rules and setting appropriate fees that are a good trade-off
between making profit and attracting traders. The TAC CAT competition comes in
spirit the closet to our TAC Energy competition. All these competitions are examples
of crowd-sourcing, i.e. ask multiple, competing participants to innovate solutions to
a problem (Howe, 2006).

Each research methodology has strengths and limitations. A well designed compe-
tition has many benefits (Stone, 2003). Much has been learned through designing,
developing, and researching TAC SCM over the last eight years. This experience will
guide the design of TAC Energy. For instance, one of the awkward features of TAC
SCM is the design of the start and end of the scenario; agents start with no inventory
at the beginning, and inventory has no residual value at the end of the scenario. TAC
Energy will not have these problems, since the broker agents need to balance the
energy grid in real time with extremely limited opportunity to store energy. Another
shortcoming of TAC SCM is that the simulation is completely driven using prede-
termined statistical distributions. These distributions and parameters were carefully
designed to balance the game among the three main agent types (supplier, manufac-
turer, and customer), but nevertheless they have been exploited in unrealistic ways
by some research teams, and have generated much discussion among participants
about the generalizability of results to real world scenarios. For the TAC Energy
simulations a large body of anonymize real world energy consumption and produc-
tion data should be used, which was collected from the campus energy management
system at KIT, Karlsruhe, a small municipal utility in the middle of Germany, and
(hopefully) also from a pilot region of the MEREGIO project covering 900 house-
holds in Germany (Hirsch et al., 2010). The data stored in and provided by the time
series data store, which is part of the market simulation framework developed as
part of this thesis. In case empirical data will not sufficiently be available, artificial
time series generator plugins of the time series data store such as, for example, the
artificial driving profile generator developed by Dietz et al. (2010)), will be used to
generate artificial data series that still model reality as closely as possible.

TAC Energy has many more potential benefits as a research platform, such as the
natural human desire to win. This will be a strong motivation to create a competi-
tive agent by solving the challenges of the domain. Another advantage is that com-
petitions force researchers to build complete, working systems by a specified date.
Competitions such as TAC Energy can be strong research drivers for work in specific
domains. For example, over the last seven years the annual TAC SCM tournament
has pitted autonomous manufacturing agents against each other to determine which

118 5 Evaluation

is the best performing agent. Each year, results from the previous competition have
been published, such as Kiekintveld et al. (2009); Benisch et al. (2004); Ketter et al.
(2009), which rapidly raises the bar for research. Since all teams have to solve the
same problems in the same domain, this becomes a strong driver for research, and
different teams learn from each other. Teams are encouraged to contribute their
agents to a shared repository, allowing researchers to run controlled experiments
that demonstrate the effect of individual agent designs, such as described by Jordan
et al. (2007); Sodomka et al. (2007).

Market liberalization changes the landscape for corporate managers and public pol-
icy makers, who face difficulty in both predicting and understanding price changes in
electricity markets. Price changes occur due to many uncontrollable factors such as
changes in weather conditions, demographic changes, and different trading strategies
among traders. Therefore, tools are needed to identify and predict market conditions
in a dynamic fashion, such as the economic regimes method described in Ketter et al.
(2009).

Competition Scenario

The competition is focused on the role of a broker acting as an “aggregator” of energy
supply and demand, represented by a trading agent. According to von Dollen (2009)
“aggregators combine smaller participants (as providers or customers or curtailment)
to enable distributed resources to play in the larger markets.”. In reality brokers could
be energy retailers, municipal utilities, or cooperatives; in some cases large utilities
could also take on the role of brokers.

Within the competition a broker sells tariff contracts to end customers (e.g. house-
holds, small and medium enterprises, owners of electric vehicles), which are attracted
or deterred by the respective tariff conditions. Tariff conditions may include flat
prices, time of use prices, peak prices, load caps for certain times of the day, con-
tract runtime, etc. In addition to “classical” tariff contracts for energy consumption,
a broker can also sell “energy production” tariffs to end customers. Under such a
tariff agreement, a customer may be paid for operation of a decentralized energy
generator such as a Combined Heat and Power (CHP) plant that feeds power into
the grid.

Another type of special customers are Plug-in Electric Vehicles (PEVs). These cus-
tomers receive special tariff contracts that have separate, time dependent prices
for charging the vehicle (consuming energy) and for feeding energy back into the
grid (effectively producing energy). As compared to households, PEV customers are
comparably large energy consumers during their charge cycle but might decide to
discharge some of their stored energy at their own discretion if the power genera-
tion prices are sufficiently attractive. Brokers may limit the maximum charge rate
for PEVs (e.g. at most 16A), effectively throttling the speed of recharge, and they
might encourage PEVs to feed energy back into the grid by setting the generation
price appropriately, but they cannot directly enforce charging or discharging. This
will allow PEV owners (and owners of other types of energy storage capacity) to
engage in arbitrage by consuming power when prices are low and producing when
prices are higher, thereby offsetting a portion of their capital costs.

5.6 Use Case TAC Energy 119

On the tactical level (planning horizon: 1 week – 3 months) brokers have to man-
age their portfolios of consumer, producer and PEV contracts. On the operational
level (planning horizon: 1 day – 1 month) brokers have to balance the fluctuating
energy demands of their customers against the actual output of their contracted en-
ergy production capacity. Differences can be compensated through balancing power
purchased or sold at an energy exchange.

The competition is designed to model most of these challenges, primarily from an
economic rather than from a technical point of view. Real-world data is used where
it is available, while keeping computational and technical complexity manageable.

In particular the following assumptions are made:

1. Within the simulated region, grid constraints (line capacity limitations) are as-
sumed to be non existent, i.e. power flows within the region are unconstrained.
Local distribution grids are typically overdimensioned with respect to their line
capacities, thus this assumption is not a strong restriction but may have to be
rethought in future once much more distributed generators and storage facilities
are installed.

2. The point of common coupling (PCC) between the simulated distribution grid
and the higher level transmission grid has a maximum capacity for power inflow
and outflow. A specialized agent that serves as a “liquidity provider” on the
regional energy spot market, and is able to arbitrage with the national energy
spot market, has to obey these technical limits.

3. Power factor effects, i.e. phase shifts between voltage and current, are not taken
into account. Modeling these effects would possibly influence the brokers’ deci-
sion making on which consumers and producers to add to their portfolios but is
out of scope at this time.

4. Power distribution and transformation losses are ignored. In Germany these
losses are estimated at 6% (StatBA, 2008); for North America they are estimated
at 5,5% (Program, 2006). These losses can be considered as being more or less
constant within a distribution grid and identical for all grid participants. Thus
the validity of the simulation results is not affected.

5. Two kinds of producers (energy production facilities) are distinguished. One kind
(photovoltaic arrays, wind turbines) produce power when active, and are under
control of their respective owners. The second kind (PEV batteries, some CHP
units) is called “controllable” and may be switched on or off, or have its output
adjusted remotely within its capacity range.

6. Technical load balancing (i.e. the real time operations of the local distribution
grid) is accomplished outside the action domain of the competition participants
using a combination of controllable generators and spinning reserves.

7. The simulation will model time as a series of discrete “timeslots” rather than as
continuous time. This models the trading intervals in the wholesale market, and
enables the simulation to model a period of days rather than minutes or hours.

8. The temporal distribution of energy consumption and generation within a times-
lot is not taken into account. This means for example that balancing power de-

120 5 Evaluation

mand for a timeslot is calculated as the difference of the sum of generation and
the sum of consumption for that timeslot and not as the instantaneous difference
between the two timeseries.

9. Some portion of the load, including the charging and discharging of Plug-in
Electric Vehicles, could be controlled by voluntary or automated means, using
prospective or real-time price signals.

In order to expose the broker agents to tactical and operational decision making,
the competition scenario proceeds through a series of alternating contracting and
execution phases as depicted in Figure 5.6. The number of such phases will be
indeterminate, to prevent strategic behaviors that exploit boundary effects. Both
phases are described in more detail in the subsequent paragraphs.

Fig. 5.6. Simulation timeline

To enhance the realism of the competition scenario, the simulation will be driven
with real historical data on generation, consumption, and weather information, along
with a model of preferences of potential customers derived from customer surveys and
pilot projects. One potential source of such data series might be the German MeRegio
project, a smart grid project that is implementing a combination of advanced grid
control systems and innovative real-time pricing tariffs (Hirsch et al., 2010). The
area around Freiamt currently serves as a pilot region for MeRegio; it contains a
range of different distributed renewable energy generation facilities in combination
with households and small and medium enterprises (SMEs) that are equipped with
demand side management devices allowing them to flexibly react to price signals
from the distribution grid.

With historic consumption and generation data collected from a region like this,
the simulation environment exposes the broker agents to the challenge of managing
virtual consumers and producers, which exhibit realistic energy consumption and
generation patterns based on the history data.

5.6 Use Case TAC Energy 121

Contracting phase

On the simulation timeline, a contracting phase represents a short period of time
(perhaps 60-120 seconds). During this phase, broker agents try to acquire energy
generation capacity from local producers and sell energy tariffs to local consumers.

Brokers can buy and sell energy through two different mechanisms. For most cus-
tomers, such as households, small businesses, and small energy producers, brokers
may offer tariffs that specify pricing and other terms. For large producers or con-
sumers (for example, a large industrial facility or a greenhouse complex with many
CHP units), brokers may negotiate individual contracts. During a contracting phase,
brokers may simultaneously negotiate over individual contracts and offer tariffs as
depicted in Figure 5.7.

Brokers start with

endowment of

existing tariffs

and contracts

Energy futures

trading

End

Broker

Market

intelligence

service

offers

matches, profiles

offers

matches, profiles

Customers

preferences

profiles

RFQ

offer

counteroffer

counteroffer

Large

customers

Broker

Fig. 5.7. Contracting process. Tariff offerings proceed in parallel with individual contract
negotiation.

Contract and tariff terms and conditions must be described in a language that has
clear semantics along with the necessary features to describe a variety of possible
business agreements between brokers and their customers. The development of a
common semantic model and a common pricing model to describe various kind of
energy tariffs are considered top priorities on the EPRI / NIST Smart Grid roadmap
for the development of a smart grid (von Dollen, 2009). With no common standard in
place to build on for TAC Energy, the work of Tamma et al. (2005) serves as starting
point. They developed an ontology that describes a negotiation process including (i)
the involved parties, (ii) the object to negotiate on, and (iii) the negotiation process,
i.e. the economic mechanism itself.

Within the TAC Energy domain, negotiations and the contracts (including tariffs)
that are the subject and result of negotiations must be able to specify:

Time: including points in time, time intervals, periodicity (days, weeks, months,
etc.), and temporal relationships (before, after, during, etc.). These terms can
be used to specify contract duration as well as other time-related contract terms.

Energy: including amounts of energy produced or consumed, and rate of produc-
tion or consumption (power). Some contracts or tariffs will also need to specify

122 5 Evaluation

amounts of power that can be remotely controlled, for example by shutting off a
domestic water heater for 15 minutes every hour during peak demand periods.
Such remotely-controllable sources or loads are called “balancing power.”

Money: Agreements must specify payments to or from the customer based on time
(one-time signup fee or bonus, fixed monthly distribution fees), or time and
energy (fixed or variable prices for a kilowatt-hour).

Communication: contract award and termination, notification of price changes, etc.

During the contracting phase, a broker must use tariff offerings and contract nego-
tiations to develop a portfolio of contracted consumers and producers. To do this,
brokers will need to estimate and reason about consumer and producer preferences
in order to design appropriate tariffs and to appropriately respond to Requests for
Quotes (RFQs). Brokers will also need to estimate future consumer and producer
behavior to build a portfolio that has well-balanced demand and supply over time
and that provides sufficient balancing capacity to achieve an acceptably low risk of
execution-time imbalance.

Commonly, companies delegate the tasks of determining customer preferences and
estimating business potential for new products (tariffs) to their marketing depart-
ments, or they outsource them to specialized service providers. Within the compe-
tition scenario, brokers may request such information from the market intelligence
service (c.f. Fig. 5.7). This service is used somewhat differently for developing tariffs
and individual contracts, as described in the next subsection.

The market intelligence service also provides brokers with historic consumption time
series for all consumers and producers already under contract. With these time series
at hand, a broker will be able to estimate how much generation and consumption
capacity will be available over time and whether its portfolio is well balanced. Fig-
ure 5.8 shows an example of such a historic time series for a wind turbine with a
nominal capacity of 150kW.

Negotiating tariffs

Tariffs are offered contracts that can be accepted or not by anonymous energy con-
sumers and producers. The problem faced by broker agents in a competitive market
is how to know whether a particular tariff will “sell.” What happens in the real world
is that firms are continually bidding against each other, attempting to attract the
most “desirable” customers with their offerings.

One way to simulate this process is to allow brokers to offer tariffs in multiple
“rounds,” with the number of rounds |R| indeterminate to prevent “sniping” at-
tacks. In each round r ∈ R, agents are permitted to add or withdraw tariffs from
their current offerings, resulting in a set of tariffs Ur for round r. The market in-
telligence service then runs a customer preference model (under development) to
allocate customers to offered tariffs. Each agent is then provided with the number of
customers who would agree to each of their offered tariffs, and they may then query
the market intelligence service for predicted “demand profiles” for the projected cus-
tomer base associated with each of their currently offered tariffs. These are simply

5.6 Use Case TAC Energy 123

Fig. 5.8. Sample wind turbine generation timeline as provided by the market intelligence
service.

aggregated time series for the set of customers who currently prefer the individual
tariffs. At the end of the last round, no more offerings may be made, and brokers
are charged a fee for each concurrently offered tariff. In other words, in each round
r, a set of tariffs Ub,r is offered by broker b. If the fee for offering a tariff is pfee, then
the total tariff fee pfeeb for broker b in the current contracting cycle will be

pfeeb = pfee max
R

(|Ub,r|), ∀r ∈ R. (5.1)

At the end of the last round, all currently-offered tariffs will be available for inspec-
tion by all agents through the market intelligence service.

The customer preference model aggregates a realistic range of household and business
models. The function of the market intelligence service is not to “clear” the market
in any sense, but rather to simply reflect the aggregate behavior of a population
of agents with a range of preferences. As in the real world, individual customers
will act in their own interest, even if that interest means that they are not paying
attention to the cost of their electrical power at any particular time. In other words,
every customer always has a tariff that he had agreed to in the past, and new tariff
offerings from brokers may fail to attract the attention of most customers. This will
protect the tariff market from large swings, and will prevent a single broker from
cornering the market easily.

Negotiating individual contracts

Individual contracts are negotiated through an RFQ process, initiated by producers
or consumers of power, and proceeding through one or more rounds with as many

124 5 Evaluation

agents as continue to be interested. The process ends when any party accepts the
current contract, or when either the RFQ originator or all brokers choose to with-
draw. The smallest entities that will engage in this process will have capacities of
at least 100 times the mean demand of individual households. The specifics of the
negotiation process are undefined at this point, but there are many examples in the
literature, such as Jonker and Treur (2001).

Execution phase

During an execution phase (see Figure 5.9), each broker must manage the supply
and demand resources acquired during the contracting phase over a set of at least
seven consecutive simulated days. Besides strong diurnal effects energy demand also
differs significantly between working days and weekends. The length of seven days
ensures an inclusion of both type of days within each execution phase. The exact
length of an execution phase is drawn from a random distribution but is not revealed
in advance to the agents, to reduce boundary effects within the competition.

Fig. 5.9. Execution phase

The broker’s main task during this timespan is to balance his customer and producer
portfolios. The broker needs to ensure that the total energy demand and supply of
the consumers and producers in his portfolio are balanced at any given point in
time throughout the whole execution phase. Deviations between production and
consumption might still occur but will be charged an (expensive) balancing power
fee. The total energy consumption for broker b in timeslot s is

ec(b, s) = eex(b, s) +

|Cb|
∑

i=1

ei(s) (5.2)

or the sum of the loads during timeslot s of each energy consumer in the set Cb, the
consumers in the portfolio of broker b, plus the energy exported from the grid by

5.6 Use Case TAC Energy 125

broker b during timeslot s through sales commitments in the regional energy market.
Similarly, the total energy production for broker b in timeslot s is

eg(b, s) = eim(b, s) +

|Gb|
∑

j=1

ej(s) (5.3)

or the sum of outputs during timeslot s of each energy producer in the set Gb of
producers in the portfolio of broker b, plus the energy imported by b through purchase
commitments in the regional energy market.

In this context, balance between supply and demand means that supply equals de-
mand for each broker in each timeslot,

∀s ∈ S, eg(b, s)− ec(b, s) = 0 (5.4)

Note that eg(b, s) can include an arbitrary portion of contracted balancing power,
and ec(b, s) may include an arbitrary portion of contracted controllable load as
described in the following subsection. Ultimately, it is the job of the Independent
System Operator (ISO, part of the simulation) to ensure exact balance between
supply and demand in real time. Any imbalance remaining after summing supply
and demand across all brokers will be balanced by the ISO using its own resources
(for example, it could start up a gas turbine) and charged to the brokers who are
responsible for the residual imbalance.

A broker’s consumer and producer portfolio (i.e. the set of contracts) remains stable
throughout an execution phase, but the overall energy demand and supply within
the portfolio is volatile over time. The reason is that the actual behavior of producers
and consumers is modeled based on historic generation or consumption profiles of
corresponding real world entities. A wind turbine under contract with a broker will
be bootstrapped with a historic time series data of a real wind turbine. Figure 5.8
shows an example for such a time series. The wind turbine modeled within the
competition will expose the same significant generation volatility over time as its
real world counterpart did; the same applies to consumers.

Collecting information and predicting the future

As during the contracting phase, a broker may request historic time series data
for the seven preceding days (i.e. the approximate length of one complete execution
phase) from the market intelligence service for all producers and consumers currently
under contract. With this historic data series at hand a broker will be able to build its
own prediction model for future energy consumption and production of its portfolio,
in order to be able to detect and address likely future imbalances.

In general, retrieval of future time series data from the market intelligence service
is not permitted throughout the competition with one exception: For intermittent
generators such as photovoltaics or wind turbines, the estimation of future output
solely based on historic time series data is problematic and unrealistic. Predictions
about the output of these types of generators are usually based on weather forecasts
as described for example in Sanchez (2006).

126 5 Evaluation

In order to shield brokers from having to model weather forecasts, and also because
forecasts for specific generators as input for the competition are usually not publicly
available6 the approach for this competition is to permit future time series data
lookups (only) for intermittent generators. Still, in order to model reality closely,
these future time series will be artificially distorted (see Ahlert and Block, 2010, for
background).

Instead of returning the exact future energy production time series for a generator
j, the simulation will return an artificial (forecasted) production e′g(j, sk) for each
time slot sk, (n+ 1) ≤ k ≤ η from the currently running time slot sn up to a future
time slot sη. Each forecasted generation capacity e′g(j, sk) is calculated as:

e′g(j, sk) = eg(j, sk) (1 + ζg(j, sk)) , sn ≺ sk � sη (5.5)

where ζg(j, sk) represents a forecasting error for the generation capacity of generator
j in time slot sj . For example, if ζg(j, sk) = 0.05 for generator j during timeslot sk,
then the prediction will be 5% higher than the actual output. The forecasting error
ζj(j, sk) is computed using a stochastic process, in particular a Wiener process (Orey
and Pruitt, 1973).

ζj(j, sk) = εk + α

k−1
∑

i=n+1

εi (5.6)

Variable α is used to adjust the autocorrelation between two forecasts for generation
capacity in adjacent time slots. Setting α = 1 results in a perfect positively auto-
correlated time series while α = 0 leads to a completely uncorrelated time series. In
order to produce realistic forecasts, α needs to be adjusted manually for each time
series (each type of intermittent generator) for which to create forecasts. The noise
variable εi(n+1 ≤ i ≤ k−1) is normally distributed εi ∼ N(0, σi) and the standard
deviation σi is defined as:

σi = φ1 ·
√
2π

2
·

(η + i
φη

φ1

− i− φη

φ1

)
√

1 + α2 · i− α2 · (η − 1)
(5.7)

The result of this process is that predictions of the future become progressively less
accurate as the time horizon increases. This process can be modeled by considering
the mean absolute percentage error (MAPE) of a prediction. φ1 is assumed to be
the mean absolute percentage error (MAPE) of a production forecast in the first
forecasted time slot (sn+1), and φη is the MAPE for production in the last forecasted
time slot sη. The expected errors φ(sk) for the time slots sk, (n + 1) < k < η are
linearly interpolated by this process:

φ(sk) = φ1 + (φη − φ1)
k − 1

η − 1
(5.8)

The idea for the creation of this type of artificial forecasts originally stems from
Ahlert and Block (2010) and is described there in detail.

Based on (i) the historic generation schedules of “predictable” generators (e.g. micro
turbines or CHP plants), (ii) the historic consumption schedules of the consumers

6 Such forecasts are provided by specialized companies that charge significant fees.

5.6 Use Case TAC Energy 127

under contract, and (iii) the forecasted generation schedules of intermittent gen-
erators, a broker will have to predict the estimated future energy generation and
consumption schedules for its portfolio as visualized in Figure 5.10. Note how the
uncertainty for the expected demand and supply in time slots far into the future is
higher than for those near to the current time slot. In Figure 5.10(a) the maximum
expected overall generation capacity for broker b in time slot sn+5, e

′
g(b, sn+5), is

much lower than the expected overall load e′c(b, sn+5). But as the MAPEs for both
numbers are high (indicated as gray boxes), the accuracy of this prediction is low.7

120 Minutes later (Figure 5.10(b)) the expectation values for supply and demand
remained unchanged but the standard deviation decreased. At this point in time the
broker is able to predict an excess demand situation (e.g. see Ketter et al., 2009)
for the time slot with a good confidence and thus can now already introduce ap-
propriate countermeasures. In this case he decided to acquire additional energy for
time slot sn+5 from the regional energy exchange as indicated in the Figure. An
alternative would be to adjust energy and supply within b’s portfolio as described
in the following section.

Adjusting energy demand and supply

For each time slot s, each broker b must balance expected supply and demand closely
enough that the ISO can achieve exact balance without expending any of its own re-
sources. Expected demand is the total expected load, or the sum of committed power
exports and the expected loads e′i(s) of each consumer i in the broker’s consumer
portfolio Cb during time slot s (see Equation 5.2):

e′c(b, s) = eex(b, s) +

|Cb|
∑

i=1

e′i(s) (5.9)

Expected supply is committed power imports plus total expected production ca-
pacity of all generators g within the broker’s portfolio Gb during timeslot s (see
Equation 5.3):

e′g(b, s) = eim(b, s) +

|Gb|
∑

j=1

e′j(s) (5.10)

These values are maximum values in case some consumers and/or some producers
in the broker’s portfolios have agreed to external control, presumably in exchange
for better prices. For example, a combined heat and power generator with a nominal
output of 50kW can be adjusted by an external control so that its real production is
within certain boundaries, e.g. [40kW − 50kW]. Similarly, a domestic water heater
may be configured to permit remote shutoff for up to 15 minutes every hour. The

7 Note that the MAPE for the overall consumption stems from the demand forecasting
model the broker has to build on its own. The MAPE for the overall generation stems in
part from the artificial distortion of future generation data as described in this section
and in part from a generation prediction model that the broker has to implement for
forecasting its non intermittent generation capacities like e.g. CHP engines or micro gas
turbines

128 5 Evaluation

total controllable load for a broker b during timeslot s is ǫc(b, s), and the total
controllable production capacity is ǫg(b, s). As long as eg(b, s) − ǫg(b, s) ≤ ec(b, s)
and ec(b, s)−ǫc(b, s) ≤ eg(b, s), then supply and demand during timeslot s is expected
to be in balance. Within this range, the ISO will either reduce load or reduce output
as needed to achieve exact balance.

The dispatching of balancing power (or load) by the ISO is done only during the
current simulation time slot sn. In Figure 5.10(a), one can see in the current slot sn
that both the actual observed supply and demand have deviated from the forecasted
overall supply and demand for broker b. But as the difference between ec(b, sn) and
eg(b, sn) was smaller than ǫg(b, sn), the controllable production capacity of broker
b in this slot, the ISO was able to automatically reduce supply such that overall
demand and supply for timeslot sn was rebalanced.

Fig. 5.10. Broker’s expected and actual energy supply and demand at two points in time.

For time slot sn+1 in Figure 5.10(a), expected overall demand is forecasted to be
within range of the available production capacity, but the uncertainty envelope (grey
boxes) shows that this is not certain. In other words e′g(b, sn+1) − ǫg(b, sn+1) ≤
e′c(b, sn+1). After 2τ simulation time has elapsed (Figure 5.10(b)), this slot is now
designated sn−1, and one can see that the real consumption ec(b, sn−1) in this time

5.6 Use Case TAC Energy 129

slot turned out to be lower than eg(b, sn−1)−ǫg(b, sn−1). This means that even after
the simulation environment reduced the broker’s production capacity to its minimum
level, the overall production still exceeded the overall consumption. In this case the
ISO used an external balancing load (either a shortage of power from some other
broker, or something like a large pumped-storage power plant outside the broker’s
portfolio) to absorb the excess generated energy. In the energy industry this type of
balancing power is usually called an “ancillary service” and its utilization is billed
to the broker at a defined (high) price.

In slot sn+2 in Figure 5.10(a), a significant difference between overall production and
overall consumption is forecast. Internal balancing capacity is likely to be insufficient
for leveling the expected difference. In order to avoid the (expensive) utilization of
external balancing power, broker b can either sell some of its surplus energy on
the regional energy exchange market, or use its contracted pricing power to try to
encourage (i) some or all of its consumers to increase their demand, or (ii) some or
all of its producers to reduce their production. Technical adjustments (e.g. a remote
activation of loads at consumer premises) is not allowed within the competition.
But a consumer’s energy consumption is subject to the energy consumption price
for consumer i in a time slot s, which is defined as pc(i, s). In particular,

êc(i, sn+2) = e′c(i, sn+2, pc(i, sn+2)) (5.11)

is defined as the predicted load for consumer i in time slot sn+2, given price
pc(i, sn+2). If the broker changes the underlying consumption price to p′c(i, sn+2)
the forecasted consumption of this consumer is expected to increase as

ê′c(i, sn+2) = e′c(i, sn+2, p
′
c(i, sn+2)) (5.12)

The ratio of demand change to price change

PE i =
êc(i, s, p)− êc(i, s, p

′)

p− p′
(5.13)

is called the “price elasticity” for consumer i. Price elasticities will have to be mod-
eled within the different consumer agents provided by the competition environment
following empirical findings on price elasticity as described for example in Spees and
Lave (2008); Siddiqui et al. (2004).

Some producers in the broker’s portfolio (such as electric vehicle batteries that can be
discharged into the grid) might have agreed to flexible pricing as well, and therefore
their output will be sensitive to price in a similar way. In other words, the power
generation capacity of broker b in time slot s, eg(b, s), is likely to change if the
generation price pg(j, s) is changed to p′g(j, s), decreasing if p′g(j, s) < pg(j, s).

Different kinds of customer models are available within the TAC Energy simulation
framework, such as electric vehicles, CHPs, wind turbines, and private households.
As an example Figure 5.11 shows the difference between the electricity load profile
of a household’s washing machine under a flat tariff and under real-time pricing. A
simulation tool generates the load profile of a household for one year under a flat
tariff by using historical data. For shifting it is assumed that customers face real-
time electricity prices. The simulation shifts the use of each device to the cheapest
time slot within a day under consideration of customer preferences.

130 5 Evaluation

For estimating the load profile of a household the consumption share of a device on
the total yearly electricity consumption of a four person household is used. Historical
mean values for annual electricity consumption and the share of a device on this
consumption are used. Yearly load per device and the consumption of a device
enable to calculate the number of runs for each device. The runs are distributed on
different time slots of a year. Each season, day of the week and time of the day has
different probabilities for the allocation of device runs. Additionally, the presence of
the persons living in the household is determined and for some devices (e.g., washing
machine, dish washer) the calculated start slot for a run is updated if no one is at
home.

In the shifting simulation for the washing machine shown above it is assumed that
a household loads its washing machine in the morning between 5:30 and 7:30, for all
machines started after 5:30 am. For a wash that started between 0 am and 5:30 am
under the flat tariff the point of loading does not change. After loading the machine
the customer selects a time period in which the wash should finish. There are four
modes available: finish within the next 5 hours, between 5 to 10 hours from now,
after 10 hours from now or the wash can be done at each time slot during that day.
Selection of a mode is based on the presence of the household occupants. A mode
can only be selected if a customer is at home during the two hours after the end
of the interval specified by a mode. Next, the simulation determines the cheapest
period for running the washing machine, which must be within the interval set by
the selected mode. 66% of the washes have to be finished before 10:30pm as 66% of
the German population are asleep at 11pm (Meier, 2004).

Figure 5.11 sums the load corresponding to a washing machine in each hour during
the whole year under a flat tariff and under real-time pricing. The average European
Energy Exchange (EEX) price curve explains the differences between the two load
curves: in times of high prices load is reduced, meanwhile a load increase in low
period prices can be observed.

Fig. 5.11. Demand shifting of a household washing machine.

5.6 Use Case TAC Energy 131

Buying or selling futures on the energy market

The re-adjustment of energy prices for consumers and producers as well as the
advance reservation of (partial) producer capacity as balancing power reserves are
two possibilities to level out a broker’s portfolio over time. Besides these two options,
a third one is to buy missing or to sell excess capacities on the energy market.
Within the competition this market is modeled as a continuous double auction with
uniform pricing and thus resembles the prevalent mechanism design in place for
energy spot market trading in Europe and North America (Meeus and Belmans,
2007). On this market standardized energy futures are traded. An energy future
is a binding commitment to consume or to produce a defined amount of energy
(e.g. 1kWh) within a defined future time slot (e.g. Aug 01, 2007, 03:00 – 03:59) at
a defined price (e.g. 20 ct/kWh). In order to buy or sell energy futures, a market
participant sends bid or ask orders to the energy market, which then clears (matches)
all incoming bids in a continuous double auction.

Table 5.2 shows a sell order before its submission to the energy market (left) and after
its clearing (right). In this example Broker 1 wants to sell 100 kWh of power within
the time slot Aug 01, 2007 03:00 – 03:59 at a minimum price of 0.14 EUR/kWh. The
offer is set to expire on Aug 01, 2007 01:52h, i.e. if no matching takes place until
that time, the order will be canceled. At 01:37 the order is matched on the energy
market at a price of 0.15 EUR/kWh and a quantity of 100kWh. Broker 1 managed
to sell 100kWh of energy for this time slot, which helps him to better balance his
portfolio’s overall energy supply and demand in this time slot (see Figure 5.10).

(a) Submitted Sell Order

Order ID: 1
Order Owner: Broker 1
Timeslot: Aug 01, 2007 03:00 – 03:59
Order Type: Sell
Order Status: Open
Quantity: 100 kWh
Limit: 0.14 EUR / kWh
Created at: Aug 01, 2007 01:37
Valid Until: Aug 01, 2007 01:52
Clearing Date: –
Clearing Quantity: –
Clearing price: –

(b) Matched Sell Order

Order ID: 1
Order Owner: Broker 1
Timeslot: Aug 01, 2007 03:00 – 03:59
Order Type: Sell
Order Status: Matched
Quantity: 100 kWh
Limit: 0.14 EUR / kWh
Created at: Aug 01, 2007 01:37
Valid Until: Aug 01, 2007 01:52
Clearing Date: Aug 01, 2007 01:42
Clearing Quantity: 100 kWh
Clearing price: 0.15 EUR / kWh

Table 5.2. Orders submitted to and later matched on the regional energy market.

Besides the brokers trading energy futures on the regional energy market, there is
also a special agent called “liquidity provider.” The liquidity provider is basically
representing the point of common coupling (PCC) between simulated region and
national grid on the regional market. He can buy energy at the national market
and transfer it via the PCC to the simulated region and vice versa. Thus the liq-
uidity provider serves as an arbitrage agent that levels prices of the regional and
the national energy market and constitutes an explicit market coupling (Meeus and
Belmans, 2007).

132 5 Evaluation

Agent decision problems

Brokers in the simulation may be individual autonomous learning agents, as in TAC
SCM (Collins et al., 2005; Ketter et al., 2009). They may also be agent communities;
for example, it might make sense to separate the contracting and execution behav-
iors into two separate agents. It is also possible that the “agent,” at least for the
contracting phase, could be one or more human decision-makers operating with the
assistance of appropriate user interfaces and decision-support tools. This section de-
scribes in some detail the decisions such broker agents must make to operate within
the TAC Energy simulation. The discussion is separated into the Contracting and
Execution phases as described in the previous sections. There is very little overlap
between the behaviors and decisions during these two phases, except that (i) both
phases allow trading in the regional spot market, and (ii) the decisions made during
the contracting phase will profoundly influence the required behaviors during the
following execution phase.

Contracting phase

The primary goal of the contracting phase is to acquire access to power sources
and customers that result in a portfolio that is profitable and balanced, at least
in expectation, over the period of the next execution phase. A secondary goal is
to manage financial and supply/demand imbalance risks. For example, an agent
will benefit from having reasonably-priced energy sources that can be expected to
produce power when demand is expected to be highest within its load portfolio.
Predictability is also important, and will generally improve both with volume (be-
cause noise as a proportion of demand or supply will be lower with larger numbers
of randomly-behaving sources and load, even if they are correlated) and with a bal-
anced portfolio of uncorrelated sources and loads. Risk can be managed by acquiring
uncorrelated sources and loads that can be expected to balance each other in real
time, by acquiring storage capacity, by acquiring sources that can be used as needed
(balancing sources), and by trading futures contracts on the regional exchange.

At the beginning of a contracting phase, an agent will have some number of contracts
in force, having negotiated them earlier. Such contracts have expiration dates beyond
the current date. Also, tariffs offered earlier may remain in force; customers who have
agreed to a tariff in the past may or may not have an opportunity to opt out and
choose a different tariff, and if they have the opportunity they may not choose to
exercise it.

Acquire power sources

Power source commitments are obtained by three different methods:

• Large local sources (large wind turbines, wind farms, large CHP plants, etc.) are
traded in the local market through the RFQ process.

• Small local sources (household and small-business sources) are obtained by of-
fering tariffs in the local market.

5.6 Use Case TAC Energy 133

• Power from the regional grid is obtained by trading in the regional exchange.

Power sources can be continuous or intermittent, and local continuous sources may
have a non-zero balancing component. Continuous sources include power obtained
from the regional exchange, as well as the continuous portion of the output from
many CHP and hydro plants. Intermittent sources include most renewable sources
such as wind and solar plants.

Acquire storage capacity

Storage capacity can be used to absorb excess power or to source power during
times of shortage. Power can be absorbed by capacity that is not fully charged,
and sourced by capacity that is above its contracted minimum charge level. Storage
capacity that is below its minimum charge level is considered to be a load that is
possibly responsive to real-time price signals.

Storage capacity can be contracted through the local market through the tariff or the
RFQ process. For example, individual owners of PEVs could sign up for tariffs that
provide for both charging of the batteries as well as limited discharging as needed
for load balancing by the contracted broker. On the other hand, a battery-exchange
service for electric vehicles might negotiate a contract for the use of a portion of its
current battery inventory for balancing purposes.

Acquire loads

Loads may be contracted through both the local market and the regional exchange,
as is the case with power sources.

• Large local loads (industrial facilities and large office parks, for example), could
negotiate rates through the RFQ process.

• Small local loads (households and small businesses, for example) must choose
tariffs in the local market.

• Agents may choose to sell future power capacity in the regional exchange for
periods when it expects to have a surplus. Such advance sales are binding com-
mitments; the sold quantity of power will be transferred out of the system during
that interval at a constant rate.

Execution phase

A detailed timeline of events prior to and during the execution phase is shown in
Figure 5.12. At time t, the simulation is partway through one of the 60-minute
timeslots defined by the regional exchange, which started in the past at time tn.
Trading has closed on that slot, and on slot sn+1. Trading will close on slot sn+2

at the beginning of slot sn+1 at time tn + 60. Between time t and time tn + 60,
the agent may continue to trade in slot sn+2 and all future slots. The agent may

134 5 Evaluation

also send price signals to its contracted loads and sources at any time, to the extent
allowed in their respective contracts. At the end of each slot (time tn + 60 in this
example), the agent will receive information about its supply and demand status at
the end of the just-completed slot (slot sn), and may then send price signals to its
contracted sources and loads. These signals will arrive during the next timeslot (slot
sn+1 in this example) but will not take effect, regardless of the contract terms, until
the beginning of the following timeslot (slot sn+2).

Fig. 5.12. Timeline of interaction between agent and simulation.

Execution set-up

At the end of the contracting phase, the agent has knowledge of its current contract
commitments, and of the number of customers who have agreed to its offered tariffs.
Execution covers some period of time while these contracts are in place. In order to
avoid a lengthy period of adjustment at the beginning of each execution phase, a
single timeslot s−1 is run in execution mode immediately prior to the period that is
to be simulated and evaluated. Results of this preliminary timeslot, along with the
current date and time, are then made available to the agent, and the agent is given
an opportunity to request history and forecast data, to adjust its variable prices,
and to trade in the regional exchange, before full execution commences. During this
setup interval, energy can be traded for all timeslots starting with s0 instead of being
restricted to timeslots starting with s1, and leadtime restrictions for price changes
are waived. This allows the execution phase to begin in a relatively stable state,
without requiring agents to spend multiple cycles fine-tuning their balance.

Execution

After the setup period, beginning at time t0, the simulation runs continuously. Agents
may trade in the exchange and set variable prices at any time. At the end of each
timeslot, the agent will receive a performance report giving the supply and demand
volume for each of its contracts and tariffs. For each future timeslot s ≻ sn a broker b
must maintain a forecast of its total expected load and capacity. Total load is the sum
of the expected loads e′c(i, s) of each consumer i in the broker b’s consumer portfolio

5.6 Use Case TAC Energy 135

Cb for timeslot s. Total production is the sum of expected capacity e′g(j, s) for each
producer j within its producer portfolio Gb. Given this information, the agent’s task
is to adjust prices, and trade in the regional exchange, in order to achieve expected
balance.

Performance evaluation

Within a competition the performance of its participants has to be evaluated and
compared at a certain point in time. This is usually accomplished by rank ordering
all participants according to one or more defined performance criteria and to declare
the best performer in this rank order winner of the competition. This principle also
applies to TAC Energy. Consequently this section describes (i) the performance
criteria used to rank order the TAC Energy participants, and (ii) the sampling
method.

Performance criteria

Each TAC Energy participant (broker) is assessed and an overall rank order of all
participants is created based on overall profits pprofit, calculated as the (monetary)
payments, ppay, minus costs, pcost, minus fees, pfee:

pprofit = ppay − pcost − pfee (5.14)

• Payments are monetary transfers from consumers to brokers and are based
on the agreed contract conditions and the actual (ex-post) measured energy
consumptions of the respective consumers.

• Costs are monetary transfers from brokers to producers and are based on the
agreed contract conditions between the respective producer and broker and the
actual (ex-post measured) energy produced.

• Fees are (i) the cost for external balancing power used, and (ii) a carbon tax.
The carbon tax is a fixed fee (in EUR / kWh) for each kWh of energy produced
from non renewable energy sources. The carbon tax remains constant throughout
a competition and is publicly announced ahead of the start of the first round.

Sampling method

Several randomly chosen timeslots from each each execution phase are selected as
“reference timeslots” before a particular competition starts. The chosen timeslots for
a particular execution phase are kept secret until that phase ends. Afterwards, profits
are calculated for each of the reference timeslots of the particular execution phase
and then averaged over all reference timeslots. The individual profits of the reference
timeslots as well as the average profit of an execution phase are publicly announced
immediately after the phase ends. The overall ranking of brokers is calculated as the
average profit over all reference timeslots from all execution phases. These will be
ranked to produce the winner ranking at the end of the competition.

136 5 Evaluation

Initial results from prototype

At the time of writing of this thesis, an initial version of the competition platform
and a demo agent for the execution phase of the TAC Energy competition is im-
plemented and publicly accessible at http://www.tacenergy.org. This version of
the competition is not yet feature complete in terms of the competition scenario
described before, but merely represents an intermediate state of the development.

In its current version, broker agents are assigned a fixed portfolio of energy sources
and loads to manage, and they must sell or acquire energy on the exchange in order
to achieve balance. Price sensitive-consumers and producers are not implemented
yet. The screenshot in Figure 5.13 shows the view of one agent at just before 6:00.
At this point, one can see that the agent purchased less than the needed power for
timeslots 0:00, 1:00, 3:00, and 4:00, and more than needed in the 2:00 timeslot.

Fig. 5.13. One agent’s view during an execution phase.

The problem the agent must solve is illustrated by the difference between the “fore-
cast” and “demand” curves for the future. The agent sees only the forecast data, of
course; the TAC Energy competition platform produces the forecast from the actual
supply and demand data for the agent’s portfolio using real historic consumption
data from the time series data store (see Section 4.2.3) as the basis, which is then
artificially distorted as described in Ahlert and Block (2010). Given these forecasts,
the agent must acquire (or sell) enough energy, by trading in future timeslots, to
achieve balance before each timeslot becomes the current timeslot.

5.6 Use Case TAC Energy 137

This version of the TAC Energy platform is fully functional and open to inter-
ested participants. Like this, early “hands-on” feedback can be elicited from these
participants through an online feedback elicitation tool as shown in Figure 4.7 in
Section 4.1.3. This feedback is used to continuously revise and refine the TAC Energy
requirements, which the project team notes in the form of user stories as shown in
Figure 4.2, and collects and prioritizes them on a taskboard as shown in Figure 4.4.
In short, the development of the TAC Energy platform has successfully been con-
ducted so far according to the agile market engineering process model described in
Chapter 4.

Technically, the TAC Energy market simulation platform is based on (i) the cda
market template (see Section 4.2.2) embedded into the market simulation framework
described in Section 4.2.3.

The market intelligence service (c.f. Figure 5.7) is realized as an extension to the time
series data store component of the market simulation framework (see Section 4.2.3).
Also the liquidity provider agent, used for coupling the regional spot market to the
national energy exchange, is created based on default functionality provided by the
market simulation framework. The national energy exchange market is simulated
based on historic time series data stored in and provided by the time series data
store component of the market simulation framework. Overall, the development of
the TAC Energy platform up to its current state required an effort of about 60 FTE
days for realization.

At the time of writing of this theses a seminar at Institute of Information Systems
and Management with 16 graduate students is running who are building broker
agents and will compete against each other in an internal competition by the end of
the summer. These initial results as well as their feedback serves as further input for
the finalization of the competition specification and implementation so that a full
competition system can be introduced as planned in Spring 2011.

Summary of TAC Energy Use Case

The TAC Energy project is aimed at developing a competitive simulation of a
market-based management structure for a regional energy grid that would closely
model reality by bootstrapping the simulation environment with real historic load,
generation, weather, and consumer preference and usage data. Such a simulation
environment would challenge research teams from around the world to write au-
tonomous agents, or agent-assisted decision support systems for human operators
Varga et al. (1994), that could operate effectively and profitably in direct compe-
tition with each other, while also continuously balancing supply and demand from
their portfolios. Teams would also be challenged to exploit the structure of the mar-
ket, and that structure would be adjusted periodically to defeat counterproductive
strategic behaviors. The result would be a body of valuable research data, along
with a much higher degree of confidence that such a mechanism could be safely
introduced into operating energy systems.

Agents in this market simulation would act as “brokers,” purchasing power from dis-
tributed sources and from regional energy exchanges, and selling power to consumers

138 5 Evaluation

and exchanges. These agents must solve a set of complex supply-chain problems in
which the product is infinitely perishable, and the environment is subject to high
variability and uncertainty (e.g. weather effects, equipment and network outages)
and limited visibility. They will operate in a dynamic network at multiple timescales,
from negotiating long-term contracts with energy producers and tariffs for customers
that balance supply and demand in expectation, to day-ahead spot-market trading,
to real-time load balancing. They must deal with individual customers and suppli-
ers, while at the same time aggregating the preferences of large groups of customers
into market segments for tariff offerings. They must predict supply and demand over
monthly, quarterly, and yearly timescales as they develop their portfolios of supplier
and customer relationships, and over hours and minutes as they adjust dynamic
prices and trade in the spot market in order to maintain real-time balance in the
grid.

The simulation environment and broker agents are subject to high variability, uncer-
tainty and limited visibility. This allows, for example, the study of exogenous shocks
(e.g. a power plant outage) and their impact on system stability, or competition
effects among broker agents. Effects of policy changes, such as taxes and incentives
can be modeled and examined too. Markets are self-organizing mechanisms, and the
TAC Energy environment is designed to become an effective tool for research in
self-organizing networks and complex adaptive systems Miller et al. (2007).

Technically the TAC Energy development is developed based on the agile market
engineering process model and uses several of its accompanying software artifacts.
Like this, it was possible to develop and run an early version of the competition after
about 60 FTE days in overall effort. User feedback from the running competition
platform is used to continuously refine and adjust the requirements for the further
development of TAC Energy. A first, fully implemented version of the competition
is set to be launched in 2011.

5.7 Summary

In this chapter the agile market engineering process model is evaluated. Section 5.1
analyses the complexity of the default cda and call market templates. The main find-
ing from this analysis is that the market templates possess an overall low complexity
and are generally small and concise in terms of program code size. Each template
consists of approximately 2000 lines of program code overall and thus should be
easy to adapt and to extend to particular project needs. These analytical findings
are confirmed in a series of case studies where the agile market engineering process
model has been used for project management and where one of the market templates
served as basis for the development of the respective electronic market platforms.

After the end of the EM-Stoxx market project (see Section 5.2), its electronic predic-
tion market platform was released as new prediction market template in the market
repository and subsequently served as the (enhanced) technical basis for the AKX
and EIX prediction market projects described in Section 5.3 and 5.4.

In Section 5.5 a case study is described that used and extended the default call mar-
ket template to implement a proof-of-concept combinatorial heat-and-power market

5.7 Summary 139

platform as basis for energy scheduling in regional energy grids. Insights from this
project lead to the development of the TAC energy competition platform described
in Section 5.6. Here the agile market engineering process model and several of its
software artifacts are used to develop a competitive testbed for energy market trad-
ing automation.

All of the aforementioned projects applied the agile market engineering process
model for project management and were able to quickly adapt and extend one of the
default market templates according to their needs. The overall required efforts for
developing the respective market platforms in the different projects range between
approximately 25 and 70 FTE days.8 Compared to previously conducted market
engineering projects such as the Stoccer project with an overall development effort
of approximately 1.5 years FTE (see Section 3.2) for the realization of a prediction
market platform, the agile market engineering approach described in this thesis has
been shown to perform well.

In Section 3.4.1 and 3.4.2 a set of requirements was formulated that the agile market
engineering process model in combination with its accompanying software artifacts
needs to address. In the following listing these requirements are recapitulated and
their adherence is assessed.

Adjustable support for common market functionality: Several different
market templates provide default market functionality for one particular market
mechanism each. As was shown throughout all of the case studies, these default
functionalities can be adjusted and customized to the specific project needs
with relatively low effort.

Authentication & Authorization: All market templates come with a default au-
thentication and authorization module included. To increase the trustworthiness
of the claimed user identities, OpenID and LDAP, two common network authen-
tication protocols, are supported by default in all of the market templates so
that the task of reliably authenticating market participants can be outsourced
to trusted third parties if required.

Integrated & adjustable information services: All market templates are
equipped with default web interfaces that provide (automatically updated) mar-
ket information to users. These interfaces can be adjusted and extended (see e.g.
Figure 5.3) to the particular project needs with relatively little effort.

Support for multi-channel market access: By default, all market templates
are equipped with a web interface and additionally provide a web services in-
terface via the Simple Object Access Protocol (SOAP) for machine-to-machine
communication. Like this, human market participants as well as, for example,
electronic trading agents have access to the electronic market platforms by de-
fault.

Optional decision & automation support: Neither decision support nor sup-
port for automation technology (besides the aforementioned web services inter-

8 The TAC Energy as well as the EIX Market projects are still ongoing as of writing of
this thesis. Thus estimated efforts for these project represent only the efforts expended
to date.

140 5 Evaluation

face for machine-to-machine communiction) is provided by default. Still decision
support functionality can be easily added at limited extra effort (see e.g. Fig-
ure 5.4) if this is required in a specific project context. Also market automation
functionality, e.g. by means of electronic trading agents can be integrated into
the technical market infrastructure (see e.g. Section 5.6) though no trading au-
tomation is provided by default.

Simple Software Architecture: The complexity analysis conducted in Sec-
tion 5.1 shows that the code base of the default market templates is concise
and of relatively low complexity.

Reusability of markets: One example for “applied” reusability of the markets
developed based on the agile market engineering process model is the EM-Stoxx
market. After the end of this project, its code base was converted into a market
template, published in the market repository, and subsequently used as technical
code base for the AKX and the EIX market project.

Overall, the evaluation in this chapter shows that the agile market engineering pro-
cess model and its accompanying software artifacts are suitable for the development
of electronic market platforms. Both, process model and software artifacts, were
successfully used in in five different real-life market engineering projects. In all of
these projects, electronic market platforms for different, specific purposes have been
developed and successfully operated. The efforts required for the realization of these
projects were moderate as compared to similarly scoped projects that used different
project management approaches and software tools for the development of electronic
markets.

6

Summary & Future Work

6.1 Summary & Main Contributions

In this thesis an agile market engineering process model is introduced and evalu-
ated. Different to previous market engineering process models, it does not rely on
extensive and detailed upfront design and modeling of a new electronic market plat-
form. Instead it fosters and supports short, lightweight, incremental development
cycles, each delivering a fully functional and incrementally improved electronic mar-
ket platform that can be tested and evaluated “hands-on” as a running system.
The rationale in behind is to pragmatically address the inherent “wickedness” and
complexity of market design and development by relying on frequent feedback from
market participants and by following a “flexible, iterative design-and-build strategy”
as recommended by Kambil and van Heck (2002, p. 100). Like this, a continuous
improvement and change process is established that favors learning, pragmatic de-
velopment and refactoring over extensive design and theoretical upfront modeling.

Several software artifacts have been developed that were designed to support and
facilitate the agile market engineering process.

The Market Design Knowledge Base is a software platform for storage and retrieval
of market (mechanism) knowledge. Its parametric approach to describing market
engineering knowledge is flexible enough to preserve insights on how (or how not) to
design and realize electronic market platforms optionally also covering information
on the respective market environment, the traded products, or the types of market
participants a specific market design recommendation is valid for.

The Market Repository was built to support market developers in quickly instanti-
ating new market instances from a set of previously developed and archived market
platforms. Instead of developing new markets from scratch every time, and instead of
using a generic but complex and hard to extend market runtime environment, small,
simple, and specific market templates have been developed as technical foundations
to built new electronic market platforms upon. Three basic market templates, one
for a continuous double auction market, one for a call market, and one specific pre-
diction market template were developed and published in the market repository as
initial market templates.

142 6 Summary & Future Work

The Market Simulation Framework was developed to provide a convenient to use
agent-based simulation environment as realistic testbed for newly developed market
platforms. It allows for an extensive and realistic testing in cases where the market
development team is unsure about the fundamental market design. The framework
consists of computer-grid enabled experiment runners for parallelization of simu-
lation runs, a central simulation experiment control center, and a time series data
store for the unified provisioning of historic market data as agent bootstrapping for
simulations.

The agile market engineering process model as well as the aforementioned software
artifacts were successfully used to develop different market platforms. All of them
haven been fully operational and were open to the public. In particular, several
successive prediction market platforms were built, all of them based on the initial
continuous double auction market template that was developed as part of this the-
sis: EM-Stoxx was a sports market where stocks of soccer teams participating in
European Soccer Cup 2008 were traded. Based on the insights of this initial predic-
tion market platform, the Australian Knowledge Exchange (AKX) prediction market
was developed as successor of EM-Stoxx and operated for almost one year under the
lead of Stathel et al. (2009). This market was used to forecast water dam levels in
Australia. One year later, the EIX prediction market was developed under the lead
of Teschner et al. (2010), as successor to AKX. The EIX market is used to predict
economic key performance indicators (e.g. GDP, rate of unemployment, or export
surplus) for Germany. As of writing of this thesis the market is open to the public,
accessible at http://www.eix-market.de, and serving about 950 registered partic-
ipants. All of the aforementioned projects used the agile market engineering process
model for project management to deliver fully functional and stable running market
platforms.

Additionally, a proof-of-concept energy market platform for combinatorial heat and
power trading was developed based on the call market template using the agile
market engineering process model for project management. The market was demon-
strated at the official launch of the E-Energy project MEREGIO and published
under open source license at http://www.microgridmarket.sourceforge.net. As
of May 2010 it has been downloaded more than 400 times.

In November 2009 another project, the Trading Agent Competition for the Energy
Market (TAC Energy) has been started. The objective of this project is to design
an open, competitive market simulation platform that will be used to produce ro-
bust research results on the structure and operation of retail power markets as well
as on automating market interaction by means of competitively tested and bench-
marked agents (Block et al., 2009, 2010a). Also the development of this platform has
been guided by the agile market engineering process model. Technically, the plat-
form builds on top of the cda market template and uses several components of the
experiment center’s agent based simulation environment. A first version of the com-
petition has been released and is open to the public at http://tacenergy.org. A
first international TAC Energy tournament is planned for 2011 (Block et al., 2010b).

6.3 Future Work 143

6.2 Critical Assessment

Although the agile market engineering process model and its supporting software
artifacts have been successfully used throughout several market engineering projects,
several limitations pertaining to the process model, to the software artifacts, and to
the evaluation method have to be noted.

First, the agile market engineering process model has not yet been applied in projects
that were conducted completely independent from the author of this work. Thus,
the accomplishment of the already conducted projects described in Chapter 5 cannot
unanimously be traced back to the utilization of the agile market engineering process
model but might also depend on the direct or indirect involvement of the author in
all of the projects.

Second, the success of the agile market engineering process model itself has not
objectively been investigated. Only indirect evidence, like running market platforms
and fulfilled project requirements (see Chapter 5), are used to conclude that the agile
market engineering process model is well suited for the development of electronic
market platforms. Additionally, the sample of already accomplished projects is small
and the type of developed markets is similar to each other. Thus, one cannot conclude
that the proposed process model and the proposed supporting software artifacts are
also well suited for the development of different types of electronic markets. Last but
not least all of the projects were small in terms of project team size and in terms of
overall budget. It is thus not guaranteed, that the process model is also applicable
to large-scale projects with big project teams and large project budgets “at risk”
though this limitation is explicitly stated in the beginning of Chapter 4.

Third, concerning the Market Design Knowledge Base (MDKB) an incentive problem
has been identified that leads to little or no effort for market development teams
to provide their knowledge to the MDKB. The problem is that those persons who
donate their knowledge are usually not the same persons who profit from it. More
severely, the donator’s knowledge loses its uniqueness and thus might weaken his
position in his company. Thus he has no incentive to report the knowledge to the
MDBK, which leads to little or no knowledge being stored at all.

Fourth, a downside of the current approach of providing specific market templates
as foundations for new market platforms to build on, becomes apparent as soon as
adaptations or extensions are applied to the original market templates. Currently,
after each such change to a template’s code base a market developer manually needs
to determine if these changes also need to be applied to spawned child market in-
stances too. This process is not trivial as child markets originally inherited the code
base from the corresponding market template but might have changed it in the mean
time. As a result, this manual update process is cumbersome and error prone and
clearly needs to be improved in future.

6.3 Future Work

The agile market engineering process and its supporting software artifacts have been
successfully used to develop and run several real-life electronic market platforms. Still

144 6 Summary & Future Work

several areas for further improvement remain. These are described in more detail in
the following subsections.

Additional Market Templates

As of today, the market repository only contains double auction market templates
of different flavors and a specific prediction market template. The reason for this
is that all agile market engineering projects conducted so far required one of these
three market mechanisms to build their market platforms upon. In future this will
change. E.g. within the TAC Energy project, a negotiation platform needs to be
developed that support semi or fully automated tariff negotiations in an energy
market context. After its development the negotiation mechanism can be added to
the market repository for future contract negotiation platforms to build on.

Better Maintenance of Market Templates

One potential approach to overcome the template maintenance problem described in
Section 6.2 might be to provide the complete initial market functionality in the form
of a plugin, which can be installed into a blank project. Such a plugin would provide
exactly the same default market functionality the corresponding market template
offers right now. The difference is that the plugins code base is located in a different
directory than the project’s own code base. Only during runtime the plugin and
the project code base are then compiled together with the project’s own codebase
dynamically overwriting plugin functionality in the compiled version of the market
platform. Like this market developers can change market functionality by simple
writing their own implementations of, say, a market information service. But as the
plugin’s source code and the project’s source code are kept in strictly separated lo-
cations, plugin updates can be conducted as soon as they become available. During
the next compilation of the market platform the (possibly changed) default mar-
ket functionality of the plugin is then overridden again by the specific functionality
from the project’s codebase. Likewise, a customized market functionality that is no
longer required can be simply reset to the default behavior by deleting the corre-
sponding source code from the project’s code base and by subsequently recompiling
the market.

Still, in cases where the fundamental market design is revised (e.g. the market infor-
mation service is completely removed) updating the plugin may break the market’s
code integrity. Still for (more likely and more frequent) small changes to the plu-
gin’s code base this plugin concept will likely improve overall usability of the market
repository and its default templates.

Standardized Decision Support Extensions for Market Templates

Currently the default market instances provide only limited decision support, e.g.
by allowing simple search and sorting functionalities for product lookup and selec-
tion. Still several specific decision support functionalities have been realized within

6.3 Future Work 145

several of the previously described market projects (see e.g Section 5.3 and 5.4).
Clearly, much space for improvement is left. For example, data mining functionality
for price and feature comparison could be developed to support market participants
in their search efforts. Similarly, specialized market monitoring and analysis tools
could be developed that facilitate market monitoring beyond the tools presented in
Section 4.1.3 or the ones implemented in the EIX market (see Section 5.4). With an
increasing number of DSS extensions their handling should be standardized as well.
Also in this case a plugin approach similar to the one described above could be used
to manage and easily install these add-on market functionalities on demand if this
is required for a particular market project.

Trading Agent Templates

Besides standard market mechanisms the market repository could be extended to
also store and provide standard trading agents (Gjerstad and Dickhaut, 2001, see
e.g.) as templates for new electronic agent development projects to build upon. Au-
tomated trading becomes more and more important in electronic commerce repre-
senting more than 50% of the overall trading volume in some financial markets (Hen-
dershott and Riordan, 2009).

For example, the trading agents developed during future TAC Energy competitions
could be collected and stored in a central repository for new teams to build their own
trading agents upon. A first demo agent for the competition is currently developed
and its source code is made available under open source license at 1. Similar agents
could be developed and centrally managed for all different types of markets that are
provided by the market repository.

Payment-per-Service

As of today the default market templates ship with a specific billing service com-
ponent that provides default functionality to for charging market participants sign-
up or transaction fees. In future each particular market service (e.g. clearing ser-
vice, pricing service, market information service, etc. – see Section 4.2.2) could be
equipped with a dedicated billing component on its own. A market participant could
then be charged more fine grained fees, such as, for example, a transaction fee for each
request to the information service. This type of billing would also allow for a simple
decoupling and outsourcing of the different market services. By default, all of them
are currently operated by one single market operator. With a per-service billing in
place, the market services could be outsourced to specialized service providers each
of them charging a separate fee for its service. On the technical level this could in-
creases scalability of the market platform as each of the services could be operated
separately on independent hardware systems. On the business level, a per-service
billing approach would provide the foundation for a legal separation of the service
providers. Service separation and outsourcing is a common practice in several in-
dustries. For example, trading and settlement services in the financial industry are
traditionally provided by distinct legal entities.

1 https://launchpad.net/tacenergydemo

146 6 Summary & Future Work

In summary, the agile market engineering process model and the supporting software
artifacts developed throughout this thesis project have been successfully applied
in several real-life market engineering projects aimed at developing and operating
publicly accessible electronic market platforms. The process model as well as its
accompanying software tools represent “purposeful, novel, and innovative artifacts”
that target a “relevant problem” and “utilize available means to reach desired ends
while satisfying laws in the problem domain.” (Hevner et al., 2004). This thesis
itself as well as several previously published articles on certain aspects of this work
contribute to the communication of the results.

A

Notation

symbol explanation units

B The set of brokers
C Set of energy consumers
G Set of energy producers (generators)
t A particular time, typically the current simulation

time (now)
time point

τ timeslot duration minutes
S set of all timeslots
sn the current timeslot time interval
tn start time of timeslot sn time point
e energy (typically, power integrated over a timeslot) kilowatt-hours (kWh)
ec load (energy consumed) kWh
ec(i, s) (maximum) load of consumer i in timeslot s kWh
ǫc(i, s) controllable load (balancing capacity) for consumer

i in timeslot s
kWh

ǫc(b, s) controllable load (load portion of balancing capac-
ity) for broker b in timeslot s

kWh

eg production (energy generated) kWh
eg(j, s) (maximum) generation capacity of producer j in

timeslot s
kWh

ǫg(j, s) controllable production (generation portion of bal-
ancing power capacity) for producer j in timeslot
s

kWh

ǫg(b, s) controllable portion of total production capacity for
broker b in timeslot s

kWh

e′c forecasted load (energy consumption) kWh
e′c(i, s) forecasted load of consumer i in timeslot s kWh
e′c(b, s) overall forecasted load of broker b in timeslot s kWh
e′g forecasted production capacity (energy production) kWh
e′g(j, s) forecasted energy production of producer j in times-

lot s
kWh

e′g(b, s) overall forecasted energy production of broker b in
timeslot s

kWh

148 A Notation

symbol explanation units

ζg(j, s) Forecasting uncertainty for energy output of gener-
ator j in timeslot s

kWh

p, p′ prices $
pj,s price for production, generator j, timeslot s $/kWh
pi,s price for consumption, consumer i, timeslot s $/kWh

PE g(j) Price elasticity for generator j kWh2/$
êg(j, s, p) Forecast for generator j in timeslot s, given produc-

tion price p
kWh

PE c(i) Price elasticity for consumer i kWh2/$
êc(i, s, p) Forecast for consumer c in timeslot s, given con-

sumption price p
kWh

B

AuctionBot & meet2trade Configuration

AuctionBot Configuration

Listed below is a sample AuctionBot configuration that can be used to instantiate
and run a specific auction on the AuctionBot platform (Taylor and Wurman, 2000).

1

2 <auct ion>
3

4 <roundInformation>
5 <currentRound>1</currentRound>
6 <numberOfRounds>12</numberOfRounds>
7 </ roundInformation>
8

9 <biddingRules>
10 <mult ip leBuyers>t rue</mult ip leBuyers>
11 <mu l t i p l e S e l l e r s> f a l s e</ mu l t i p l e S e l l e r s>
12 <b i dD i v i s i b l e> f a l s e</ b i dD i v i s i b l e>
13 <a c t i v i t y>n/a</ a c t i v i t y>
14 <se l lerBidDominance>none</ se l lerBidDominance>
15 <buyerBidDominance>none</buyerBidDominance>
16 <e xp r e s s i v en e s s>s i n g l eUn i t</ exp r e s s i v en e s s>
17 <beatTheQuote>
18 <agent>buyer</ agent>
19 </beatTheQuote>
20 <withdrawelAllowed> f a l s e</withdrawelAllowed>
21 </ biddingRules>
22

23 <i n fo rmat ionReve la t i on>
24 <quoteBid> f a l s e</quoteBid>
25 <quoteAsk>t rue</quoteAsk>
26 <quoteTiming><a c t i v i t y /></quoteTiming>
27 <orderBook>winner</orderBook>
28 <showPrices> f a l s e</ showPrices>
29 <showQuantity>t rue</showQuantity>
30 <showIdent i ty>t rue</ showIdent i ty>
31 </ in fo rmat ionReve la t i on>
32

33 <c l e a r i n gPo l i c y>
34 <c learTiming><scheduled /></ c learTiming>
35 <c l o s i ngCond i t i on><scheduled /></ c l o s i ngCond i t i on>
36 <matchingFunction>k=1</matchingFunction>
37 <t i eBreake r>e a r l i e s t</ t i eBreake r>
38 <auct i onee rFee s>entrance</ auct i onee rFee s>
39 <auct i onee rFee s>non l in ea r</ auct i onee rFee s>
40 </ c l e a r i n gPo l i c y>
41

42 </ auct ion>

150 B AuctionBot & meet2trade Configuration

Sample meet2trade MML instance

Listed below is a sample meet2trade configuration that can be used to instantiate
and run double auction on the meet2trade platform. In particular this configuration
mimics the behavior of large stock exchanges that usually open a trading day with
a call auction and then switch to continuous trading through a continuous double
auction mechanism (Weinhardt et al., 2006).

1

2 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”yes ”?>
3 <MML>
4 <MarketModel>
5 <MarketModelName>Cal l auct ion</MarketModelName>
6 <ProductCategoryID>1</ProductCategoryID>
7 <AuctionType>CallMarket</AuctionType>
8 <VisibleInformationFromOrderbook>
9 <Buy>

10 <Vis ib leDepth>0</Vis ib leDepth>
11 <Accumulat ionPropert ies>no accumulation</

Accumulat ionPropert ies>
12 <propertyKeys>
13 <key>volume</key>
14 <pos>1</pos>
15 </propertyKeys>
16 <propertyKeys>
17 <key>p r i c e</key>
18 <pos>2</pos>
19 </propertyKeys>
20 </Buy>
21 <S e l l>
22 <Vis ib leDepth>0</Vis ib leDepth>
23 <Accumulat ionPropert ies>no accumulation</

Accumulat ionPropert ies>
24 <propertyKeys>
25 <key>volume</key>
26 <pos>1</pos>
27 </propertyKeys>
28 <propertyKeys>
29 <key>p r i c e</key>
30 <pos>2</pos>
31 </propertyKeys>
32 </ S e l l>
33 </Vis ibleInformationFromOrderbook>
34 <Of f e rL imi ta t i on />
35 <WithDrawBid> f a l s e</WithDrawBid>
36 <PriceFunct ion>
37 <Firs tOrder>t rue</ Fir s tOrder>
38 </Pr iceFunct ion>
39 <Desc r ip t i on>The c a l l auct ion i s used to ” get the market s t a r t ed ” .</

Desc r ip t i on>
40 <Part i a lExecut i on> f a l s e</ Par t i a lExecut i on>
41 <MatchExecutionRules>
42 <MatchingExecution durationTime=”60000” start ingTime=”300000”/>
43 <Liquid ityTriggeredMatchExecut ion pe r i odOfL iqu id i tyProo f ing=”−1”

s tar tTimeForL iqu id i tyProo f ing=”−1” l i qu id i tyBuyS ide=”−1”
l i q u i d i t y S e l l S i d e=”−1”/>

44 <TimeExtendedMatchExecution numberOfExtensions=”−1”
extensionForMatching=”−1”/>

45 </MatchExecutionRules>
46 <Mult iAttr ibuteTrading />
47 </MarketModel>
48 <MarketModel>
49 <MarketModelName>CDA </MarketModelName>
50 <ProductCategoryID>1</ProductCategoryID>
51 <AuctionType>CDA</AuctionType>
52 <AllowedOrderTypes>d i s c r e t i o n a r y</AllowedOrderTypes>
53 <AllowedOrderTypes>r e l a t i v e</AllowedOrderTypes>
54 <AllowedOrderTypes>bracket</AllowedOrderTypes>
55 <AllowedOrderTypes> t r a i l i n g</AllowedOrderTypes>

B AuctionBot & meet2trade Configuration 151

56 <AllowedOrderTypes>stop</AllowedOrderTypes>
57 <AllowedOrderTypes>un l imi t</AllowedOrderTypes>
58 <AllowedOrderTypes> l im i t</AllowedOrderTypes>
59 <VisibleInformationFromOrderbook>
60 <Buy>
61 <Vis ib leDepth>0</Vis ib leDepth>
62 <Accumulat ionPropert ies>no accumulation</

Accumulat ionPropert ies>
63 <propertyKeys>
64 <key>volume</key>
65 <pos>1</pos>
66 </propertyKeys>
67 <propertyKeys>
68 <key>p r i c e</key>
69 <pos>2</pos>
70 </propertyKeys>
71 </Buy>
72 <S e l l>
73 <Vis ib leDepth>0</Vis ib leDepth>
74 <Accumulat ionPropert ies>no accumulation</

Accumulat ionPropert ies>
75 <propertyKeys>
76 <key>volume</key>
77 <pos>1</pos>
78 </propertyKeys>
79 <propertyKeys>
80 <key>p r i c e</key>
81 <pos>2</pos>
82 </propertyKeys>
83 </ S e l l>
84 </Vis ibleInformationFromOrderbook>
85 <Of f e rL imi ta t i on />
86 <WithDrawBid> f a l s e</WithDrawBid>
87 <PriceFunct ion>
88 <Firs tOrder>t rue</ Fir s tOrder>
89 </Pr iceFunct ion>
90 <Desc r ip t i on>CDA fo r the r e s t o f the meta market runtime</

Desc r ip t i on>
91 <Part i a lExecut i on> f a l s e</ Par t i a lExecut i on>
92 <MatchExecutionRules>
93 <MatchingExecution/>
94 <Liquid ityTriggeredMatchExecut ion pe r i odOfL iqu id i tyProo f ing=”−1”

s tar tTimeForL iqu id i tyProo f ing=”−1” l i qu id i tyBuyS ide=”0”
l i q u i d i t y S e l l S i d e=”0”/>

95 <TimeExtendedMatchExecution/>
96 </MatchExecutionRules>
97 <Mult iAttr ibuteTrading i sMu l t iAt t r i bu t e t r ad ing=” f a l s e ”/>
98 </MarketModel>
99 <MetaMarket>

100 <MarketAttr ibutes>
101 <MarketStart ingRule>
102 <TimeRule>
103 <Time>1000</Time>
104 </TimeRule>
105 </MarketStart ingRule>
106 <MarketStoppingRule>
107 <TimeRule>
108 <Time>300000</Time>
109 </TimeRule>
110 </MarketStoppingRule>
111 <MarketName>Cal l auct ion</MarketName>
112 </MarketAttr ibutes>
113 <MarketAttr ibutes>
114 <MarketStart ingRule>
115 <EventRule>
116 <MarketGestoppt>
117 <MarketNameStopped>Cal l auct ion</MarketNameStopped>
118 </MarketGestoppt>
119 </EventRule>
120 </MarketStart ingRule>
121 <MarketStoppingRule>
122 <TimeRule>

152 B AuctionBot & meet2trade Configuration

123 <Time>1800000</Time>
124 </TimeRule>
125 <EventRule>
126 <Vo l a t i l i t y>
127 <RelativAmount>5 .0</RelativAmount>
128 <TimeInte rva l l>60000</TimeInte rva l l>
129 <AbsolutAmount>−1.0</AbsolutAmount>
130 <NumberOfAllowedInterruptions>5</

NumberOfAllowedInterruptions>
131 </ Vo l a t i l i t y>
132 </EventRule>
133 </MarketStoppingRule>
134 <MarketName>CDA </MarketName>
135 </MarketAttr ibutes>
136 <MetaMarketAttributes>
137 <Name>Xetra Meta Market</Name>
138 <ProductCategoryId>1</ProductCategoryId>
139 <ProductCategoryDescr ipt ion>Stock</ProductCategoryDescr ipt ion>
140 <MetaMarketInfo>This i s a demo xetra market with Cal l auct ion

and CDA</MetaMarketInfo>
141 <Ti t l e> t i t l e</ T i t l e>
142 <NumberOfOrdersPerUser>100</NumberOfOrdersPerUser>
143 <ProductInformation />
144 <AuctionInfoID>1</AuctionInfoID>
145 <Use r IdV i s i b l e>t rue</ Use r IdV i s i b l e>
146 <AllUsersAl lowed>t rue</Al lUsersAl lowed>
147 <Order IdVi s ib l e>t rue</Order IdVi s ib l e>
148 <OrderBookVis ible>t rue</OrderBookVis ible>
149 <TimeStampVisible>t rue</TimeStampVisible>
150 <UserId>1</UserId>
151 <UserNameVisible>t rue</UserNameVisible>
152 <UserName>jma</UserName>
153 <AllowedProducts>
154 <ProductID>1</ProductID>
155 <Product IdDescr ipt ion>BMW</Product IdDescr ipt ion>
156 </AllowedProducts>
157 <StartRule>
158 <Time>1164631320000</Time>
159 </ StartRule>
160 <StopRule>
161 <Time>1164633139430</Time>
162 </StopRule>
163 </MetaMarketAttributes>
164 </MetaMarket>
165 </MML>

C

Definition of Done

The following Definition of Done was developed and used in the TAC Energy project:

Definition of Done

A user story is done if all of its identified tasks are:

• implemented

• reviewed

• tested

• documented

• deployed

• making the product owner happy

The remainder of this document details the parts of “done”:

Implemented: Implemented code adheres to the following principles:

• adheres to coding style guide1

• code is compiled and runs against the current “HEAD” version in source control

• code is commented according to the coding style guide

• all FIXME/TODO tags in the code have been addressed. If they are not resolved
(yet) the product owner has to explicitly agree that thy story still is “done”

It must also be possible to automatically build the implemented code. This will be
accomplished by Hudson CI server, which automatically creates a binary release
of the latest HEAD version from the code repository as soon as a code change is
checked in.

1 http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

154 C Definition of Done

Reviewed: Every task must be peer reviewed. There is no formal process how this
should be done. Just make sure that a colleague has a look at the changes you made
an incorporate his / her feedback.

Tested:Make sure that all changes are thoroughly tested to keep overall code quality
consistently high. For Java / Groovy Code this means:

• Write unit tests for all non-supertrivial code

• Make sure that Cobertura reports a solid code coverage for your piece of code
(grails test-app -coverage runs Cobertura automatically for you on your
local machine and hudson will do so on the CI server as well)

• Write integration tests to automatically test the end-to-end scenario described in
the user story (involves creating / manipulating database objects, like e.g. orders
or user depots)

• Write Selenium based tests if there is a web interface involved

Deployed: Code must be deployed on the production machine (currently http:

//ibwmarkets.iw.uni-karlsruhe.de)

Documented: The documentation must allow a reasonably knowledgeable person
to understand the implemented code. To check this level of documentation, reviews
should be usually handed over just pointing the reviewer to the code documenta-
tion (java / groovy doc) and / or the documentation generated through the grails
documentation engine (check http://www.tacenergy.org/docs/latest/manual/

index.html to see how generated documentation of the grails documentation en-
gine looks like). In addition you have to clearly state licensing conditions whenever
you use a 3rd party API or tool if that license is different from our currently used
one (for TAC Energy this is Apache 2 License)

Making the Product Owner Happy: Ask the product owner on how satisfied
he is with the implementation of the user story (best before the review meeting).
Please note that we are not developing for ourselves or for the product owner but
for the prospect students that have to use the framework during the summer term
as the basis for achieving good grades!

D

Order Processing in Call and CDA Market
Templates

156 D Order Processing in Call and CDA Market Templates

Fig. D.1. Order Process in CDA Market Template

D Order Processing in Call and CDA Market Templates 157

Fig. D.2. Order Processing in Call Market Template

!"#$%&'()*+,&$"-)+!.%%+/.-0&)

!"#$%&'&()"*&+)#,'-./-0/1-2-'23,1-,45

/&)-(1+,&23%)2

4.10.5&6!%.226/&)7"8
!"#$%&'()*
9)").%:

!"#$%&'()*
9.;&-.5&:

!%.22
<(=&2
9)").%:

!%.22
<(=&2

9.;&-.5&:

/&)7"8
<(=&2
9)").%:

/&)7"8
<(=&2

9.;&-.5&:

!"#$!""#$%&'%()* %&' %() *+'+ '+(, *&)* **(&

!"#$!"#$%&'#((%** %(% *-'- ,&() *).+ **('

!"#$!"#$%&'#(()*+,-"+%%."& *)& %() ,,+ +-(, &/* .(+

678'!"#$%&'(!&)#'&**$' 25 1/- 35 35 5. 3/9

6)8'+),$- 2 2 :;< :;< 2 2

6)8'*+.# 1 1 :;< :;< 0 0

6)8'./&0 2 2 :;< :;< . .

6)8',$*$#$ 1 1 :;< :;< 21 21

6)8'$,+# 1 1 :;< :;< 22 22

6)8'12,"#$ 0 0 :;< :;< 23 23

6)8'3'$"#$ 2 2 :;< :;< 4 4

6)8'."4$. . :;< :;< 2- 2-

678'5$2&.+#+&)!&)#'&**$' 24 2/9 35 35 51 3/=

6)8'+),$- 2 2 :;< :;< 2 2

6)8'*+.# . . :;< :;< 5 5

6)8'./&0 2 2 :;< :;< 0 0

6)8',$*$#$ 1 1 :;< :;< 22 22

6)8'$,+# 1 1 :;< :;< 2- 2-

6)8'12,"#$. . :;< :;< 24 24

6)8'3'$"#$ 2 2 :;< :;< 4 4

6)8'."4$ 1 1 :;< :;< 2- 2-

678'6$'.&)!&)#'&**$' 1. 1/. 204 204 213 21/3

6)8'+),$- 2 2 :;< :;< 2 2

6)8'*+.# 2 2 :;< :;< . .

6)8'./&0 2 2 :;< :;< 0 0

6)8',$*$#$ 1 1 :;< :;< 22 22

6)8'$,+# 1 1 :;< :;< 9 9

6)8'12,"#$ = = :;< :;< 04 04

6)8'3'$"#$ 2 2 :;< :;< 3 3

6)8'."4$. . :;< :;< 15 15

6)8'*&%+) . . :;< :;< 25 25

6)8'*&%&1# 2 2 :;< :;< 4 4

678'6'&,13#!&)#'&**$' 25 2/5 =2 =2 54 5/4

6)8'+),$- 2 2 :;< :;< 2 2

6)8'*+.# 1 1 :;< :;< 0 0

6)8'./&0 2 2 :;< :;< . .

6)8',$*$#$ 1 1 :;< :;< 21 21

6)8'$,+# 1 1 :;< :;< 9 9

6)8'12,"#$. . :;< :;< 24 24

6)8'3'$"#$ 2 2 :;< :;< 4 4

6)8'."4$ 1 1 :;< :;< 2- 2-

6)8'&',$'7&&8 2 2 :;< :;< . .

6)8'3/"'# 2 2 :;< :;< . .

678'9/&1#!&)#'&**$' 25 1/3 2.. 2.. =1 2./3

!"#$!"#$% % % &'(&'(% %

!"#$&!'()) &'(&'(%* %*

!"#$')*+ % % &'(&'(+ +

!"#$#$&$($, , &'(&'(%- %-

!"#$,-$.($ % % &'(&'(+ +

!"#$'./$)) &'(&'(+. +.

!/#$0(.(!'(!,'1*"(-*&&$- %+ %01 *2 *2 -+ 10.

!"#$!"#$% % % &'(&'(% %

!"#$&!'(3 3 &'(&'(+ +

!"#$')*+ % % &'(&'(, ,

!"#$#$&$($ 3 3 &'(&'(%3 %3

!"#$$#!(3 3 &'(&'(%% %%

!"#$23#.($, , &'(&'(%* %*

!"#$,-$.($ % % &'(&'())

!"#$'./$ 3 3 &'(&'(%% %%

!/#$4-."'.,(!*"5*61*"(-*&&$- + %0, *2 *2 1 30*

!"#$!"#$% % % &'(&'(% %

!"#$&!'(3 3 &'(&'(+ +

!"#$')*+ % % &'(&'(, ,

!"#$!"#$%&'#(()*+,#$- %& %'(%)* +,'& -) &'*

!/#$1.($6*-7 3 %0. %* %* * ,0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(, ,

!/#$8$3*(9*'!(!*" 3 %0. 3* 3* %3 -0.

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(1 1

!/#9-'*" 3 %0. 3* 3* 2 +0)

!"#$(*0(-!"6 % % &'(&'(, ,

!"#$,*"'(-.!"(' % % &'(&'(- -

!/#$9-*#2,(3 %0. %1 %1 1 +0.

!"#$(*0(-!"6 % % &'(&'(, ,

!"#$,*"'(-.!"(' % % &'(&'())

!/#$0)*2(3 %0. +- +- %) *0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(%% %%

!/#$0(.(!'(!,' 3 %0. %2 %2 * ,0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(, ,

!/#$4-."'.,(!*"5*6 3 %0. 3+ 3+ 2 +0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'())

!"#$!"#$%&'#(()&."/$0.& ./ /'+ -** -*'* ,,% %.'(

!/#$:&&*,.(*-0$-/!,$ %* %*0. 2% 2% 1) 1)0.

!"#6(:&&*,.(!*" %* %* &'(&'(1) 1)

!/#$:2,(!*"0$-/!,$ %) *0) 1% 1% *. ,)0.

!"#$#$&$($0)*2(, , &'(&'(%3 %3

!"#$'$"#0)*2(%3 %3 &'(&'()1)1

!/#$:2()$"(!;!,.(!*"0$-/!,$, %0) %- %- %.)0.

!"#$/.&!#.($<'$- 3 3 &'(&'(* *

!"#$$",-73(9.''+*-# % % &'(&'(, ,

!/#$=!&&!"60$-/!,$, %0. 3* 3* %+ +0*

!"#$>!&&?.>'*&2($?;$$ % % &'(&'(+ +

!"#$>!&&?(2-"*/$-?;$$ % % &'(&'(+ +

!"#$>!&& % % &'(&'(- -

!/#$1&$.-!"60$-/!,$ * ,0) -* -*)1 320.

EC
o
m
p
le
x
ity

R
e
p
o
rts

fo
r
M

a
rk

e
t
T
e
m
p
la
te
s

!"#$!"#"$"%&'()"!*+,-$. % % &'(&'())

!"#$/#"0)1)!")2,,3 * * &'(&'(+) +)

!,#$40)3"$567,*")8(/" %- ./) %)0 %)0 1* %2/-

!"#$9"$:/$-0#;),!-/$;)(/" . . &'(&'(1 1

!"#$(67,)<:2,-$=">?&)) &'(&'(+ +

!"#$7(##?(/3") 2 2 &'(&'(.) .)

!"#$-'!0$"?(/3"))) &'(&'(.% .%

!"#$-'!0$"@+0)$. . &'(&'(.3 .3

!"#$-'!0$"1)!")A,,3 % % &'(&'(%) %)

!"#$."$*")8#"$@,6$"&$ % % &'(&'(2 2

!,#$40)3"$B,9*")8(/" 2 %/+ 2- 2- 23 %+/3

!"#$>)($"?)06.0/$(,6B,9 % % &'(&'(%3 %3

!"#$>)($"*0(.$(/. . . &'(&'(.3 .3

!,#$;)(/(69*")8(/" % %/3 %. %. + +/3

!"#$!"$")<(6"C;)(/" % % &'(&'(+ +

!,#$*"/-)($D40)9(6*")8(/" %2 2/2 0% 0% *1 %-/2

!"#$)"#"0."*"/-)($D40)9(6 2 2 &'(&'(%- %-

!"#$#,/3*"/-)($D40)9(6 * * &'(&'(23 23

!"#$0!E-.$*"/-)($D40)9(6 % % &'(&'(- -

!"#$9"$F"',$;,.($(,6 2 2 &'(&'(%+ %+

!,#$*"$$#"<"6$*")8(/" %) ./0 %.0 %.0 %%) ../0

!"#$."$$#" - - &'(&'(-2 -2

!"#$"&"/-$" % % &'(&'(* *

!"#$9"$F"',$;,.($(,6 2 2 &'(&'(%* %*

!"#$$)06.7")4,6"D % % &'(&'(* *

!"#$$)06.7")*$,/3. . . &'(&'(%2 %2

!"#$!"# % %&' () ()&' (* (*&'

!"#$!"#$%"&&'(% %&' () ()&' (* (*&'

!,#$*+,-$@,<'0)0$,) * */3 %0 %0 %+ %+/3

!"#$/,<'0)" * * &'(&'(%+ %+

!"#$)*!) +% (&' ,)% (%&(+-. ((&/

!"#$)*!)$+,)*%"-)+&, +% (&' ,)% (%&(+-. ((&/

!,#$:##,/0$,)*")8(/"?".$. 2 %/3 %2) %2) %.+)%/-

!"#$$".$:##,/0$(,6G % % &'(&'(+% +%

!"#$$".$%<'$D:##,/0$(,6G % % &'(&'(2) 2)

!"#$$".$%<'$D:##,/0$(,6H % % &'(&'()3)3

!,#$:-/$(,6*")8(/"?".$. % %/3 .- .-/3

!"#$$".$*")8(/" % % &'(&'(.. ..

!,#$:-$+"6$(7(/0$(,6*")8(/"?".$. % %/3 %3 %3 + +/3

!"#$$".$*")8(/" % % &'(&'(+ +

!,#$A(##(69*")8(/"?".$. % %/3 %+ %+ %% %%/3

!"#$$".$*")8(/" % % &'(&'(%% %%

!,#$@0$"9,)D@,6$),##")?".$. % %/3 * * 2 2/3

!"#$$".$*,<"$+(69 % % &'(&'(2 2

!,#$@0$"9,)D?".$. % %/3 * * 2 2/3

!"#$$".$*,<"$+(69 % % &'(&'(2 2

!,#$@#"0)(69*")8(/"?".$. % %/3 * * 2 2/3

!"#$$".$*,<"$+(69 % % &'(&'(2 2

!,#$F"',$;,.($(,6@,6$),##")?".$. % %/3 * * 2 2/3

!"#$$".$*,<"$+(69 % % &'(&'(2 2

!,#$F"',$;,.($(,6?".$. % %/3 * * 2 2/3

!"#$$".$*,<"$+(69 % % &'(&'(2 2

!,#$40)3"$567,*")8(/"?".$. % %/3 * * 2 2/3

!"#$$".$*,<"$+(69 % % &'(&'(2 2

!"#$!"#$%&'()*%#+,-%.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$3%#/(24(2&#(55%#.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$3%#/(2.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$3#,-,2)*%#+,-%.%/&/ % %&' %. %. / /&'

!*#$&%/&*%#+,-% % % +,- +,- / /

!"#$3#(67-&4(2&#(55%#.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$3#(67-&.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$*%-7#,&8!"#),2*%#+,-%.%/&/ % %&' 0(0(0% 0%&'

!*#$&%/&*%#+,-% % % +,- +,- 0% 0%

!"#$*%&&5%0%2&*%#+,-%.%/&/ % %&' 0' 0')1)1&'

!*#$&%/&*%#+,-% % % +,- +,-)1)1

!"#$*1(7&4(2&#(55%#.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$*1(7&.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$*&"&,/&,-/4(2&#(55%#.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$*&"&,/&,-/.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$.#"2/"-&,(2'()4(2&#(55%#.%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$.#"2/"-&,(2'().%/&/ % %&' (())&'

!*#$&%/&*(0%&1,2) % % +,- +,-))

!"#$%&'(")&$%*#%+,)

- !"#$%&'./0" (")&$%*#%+,

% 12/))3%,"1+4,# 23456735$893$:6*;37$<=$>?:35$?:$34"9$">455$<7$?:837=4"3&

. 15&2+0/#%&1+0*2"6%#5
23456735$893$@2"A4;3B$!"#$%&'()#*!%&+$,-)("$<=$5<67"3$"<C3&$D33$893$E?F?G3C?4$3:87H

=<7$AH"><*48?"$A<*G>3I?8H&

) !"#7+83%,"1+4,# 23456735$893$:6*;37$<=$>?:35$?:$34"9$*389<C&

J2387?"5$'&.

!"#$%&'()*+,&$"-)+!./+01-2&)

!"#$%&'&()"*&+)#,'-./-0/1-2-'23,23,14

0&)-(3+,&45%)4

613217&8!%14480&)9":
!"#$%&'()*
;)")1%<

!"#$%&'()*
;1=&-17&<

!%144
>(?&4
;)")1%<

!%144
>(?&4

;1=&-17&<

0&)9":
>(?&4
;)")1%<

0&)9":
>(?&4

;1=&-17&<

!"#$!""#$%&'%()* %&' %() *+&% '+(, *'++ **(&

!"#$!"#$%&'#((%** %(% *-'. ,&(* *)./ **('

!"#$!"#$%&'#(()*+,-"+%%."& *)& %() ,,. +-(& &/) .(+

567'!"#$%&'(!&)#'&**$' 28 1/- 38 38 8. 3/9

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# 1 1 :;< :;< 0 0

5)7'./&0 2 2 :;< :;< . .

5)7',$*$#$ 1 1 :;< :;< 21 21

5)7'$,+# 1 1 :;< :;< 22 22

5)7'12,"#$ 0 0 :;< :;< 23 23

5)7'3'$"#$ 2 2 :;< :;< 4 4

5)7'."4$. . :;< :;< 2- 2-

567'5$2&.+#+&)!&)#'&**$' 24 2/9 38 38 81 3/=

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# . . :;< :;< 8 8

5)7'./&0 2 2 :;< :;< 0 0

5)7',$*$#$ 1 1 :;< :;< 22 22

5)7'$,+# 1 1 :;< :;< 2- 2-

5)7'12,"#$. . :;< :;< 24 24

5)7'3'$"#$ 2 2 :;< :;< 4 4

5)7'."4$ 1 1 :;< :;< 2- 2-

567'6$'.&)!&)#'&**$' 1. 1/. 204 204 213 21/3

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# 2 2 :;< :;< . .

5)7'./&0 2 2 :;< :;< 0 0

5)7',$*$#$ 1 1 :;< :;< 22 22

5)7'$,+# 1 1 :;< :;< 9 9

5)7'12,"#$ = = :;< :;< 04 04

5)7'3'$"#$ 2 2 :;< :;< 3 3

5)7'."4$. . :;< :;< 18 18

5)7'*&%+) . . :;< :;< 28 28

5)7'*&%&1# 2 2 :;< :;< 4 4

567'6'&,13#!&)#'&**$' 28 2/8 =2 =2 84 8/4

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# 1 1 :;< :;< 0 0

5)7'./&0 2 2 :;< :;< . .

5)7',$*$#$ 1 1 :;< :;< 21 21

5)7'$,+# 1 1 :;< :;< 9 9

5)7'12,"#$. . :;< :;< 24 24

5)7'3'$"#$ 2 2 :;< :;< 4 4

5)7'."4$ 1 1 :;< :;< 2- 2-

5)7'&',$'7&&8 2 2 :;< :;< . .

5)7'3/"'# 2 2 :;< :;< . .

567'9/&1#!&)#'&**$' 28 1/3 2.1 2.1 =2 2./4

!"#$!"#$% % % &'(&'(% %

!"#$&!'()) &'(&'(%* %*

!"#$')*+ % % &'(&'(+ +

!"#$#$&$($, , &'(&'(%- %-

!"#$,-$.($ % % &'(&'(+ +

!"#$'./$)) &'(&'(,. ,.

!/#$0(.(!'(!,'1*"(-*&&$- %+ %01 *. *. -+ 102

!"#$!"#$% % % &'(&'(% %

!"#$&!'(3 3 &'(&'(+ +

!"#$')*+ % % &'(&'(, ,

!"#$#$&$($ 3 3 &'(&'(%3 %3

!"#$$#!(3 3 &'(&'(%% %%

!"#$23#.($, , &'(&'(%* %*

!"#$,-$.($ % % &'(&'())

!"#$'./$ 3 3 &'(&'(%% %%

!/#$4-."'.,(!*"5*61*"(-*&&$- + %0, *. *. 1 30*

!"#$!"#$% % % &'(&'(% %

!"#$&!'(3 3 &'(&'(+ +

!"#$')*+ % % &'(&'(, ,

!"#$!"#$%&'#(()*+,#$- %& %'(%)* +,'- -) &'.

!/#$1.($6*-7 3 %02 %* %* * ,0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(, ,

!/#$8$3*(9*'!(!*" 3 %02 3* 3* %3 -02

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(1 1

!/#9-'*" 3 %02 31 31 . +0)

!"#$(*0(-!"6 % % &'(&'(, ,

!"#$,*"'(-.!"(' % % &'(&'(- -

!/#$9-*#2,(3 %02 %1 %1 1 +02

!"#$(*0(-!"6 % % &'(&'(, ,

!"#$,*"'(-.!"(' % % &'(&'())

!/#$0)*2(3 %02 +- +- %) *0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(%% %%

!/#$0(.(!'(!,' 3 %02 %. %. * ,0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(, ,

!/#$4-."'.,(!*"5*6 3 %02 3+ 3+ . +0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'())

!"#$!"#$%&'#(()&."/$0.& */ /'+ -*% -*'% ,,(%*'(

!/#$:&&*,.(*-0$-/!,$ %* %*02 .% .% 1) 1)02

!"#6(:&&*,.(!*" %* %* &'(&'(1) 1)

!/#$:2,(!*"0$-/!,$ %) *0) 1% 1% *2 ,)02

!"#$#$&$($0)*2(, , &'(&'(%3 %3

!"#$'$"#0)*2(%3 %3 &'(&'()1)1

!/#$:2()$"(!;!,.(!*"0$-/!,$, %0) %- %- %2)02

!"#$/.&!#.($<'$- 3 3 &'(&'(* *

!"#$$",-73(9.''+*-# % % &'(&'(, ,

!/#$=!&&!"60$-/!,$, %02 3* 3* %+ +0*

!"#$>!&&?.>'*&2($?;$$ % % &'(&'(+ +

!"#$>!&&?(2-"*/$-?;$$ % % &'(&'(+ +

!"#$>!&& % % &'(&'(- -

!/#$1&$.-!"60$-/!,$ * ,0) -1 -1)- 3102

!"#$%&'()*+,&$"-)+!./+01-2&)

!"#$%&'&()"*&+)#,'-./-0/1-2-'23,23,14

0&)-(3+,&45%)4

613217&8!%14480&)9":
!"#$%&'()*
;)")1%<

!"#$%&'()*
;1=&-17&<

!%144
>(?&4
;)")1%<

!%144
>(?&4

;1=&-17&<

0&)9":
>(?&4
;)")1%<

0&)9":
>(?&4

;1=&-17&<

!"#$!""#$%&'%()* %&' %() *+&% '+(, *'++ **(&

!"#$!"#$%&'#((%** %(% *-'. ,&(* *)./ **('

!"#$!"#$%&'#(()*+,-"+%%."& *)& %() ,,. +-(& &/) .(+

567'!"#$%&'(!&)#'&**$' 28 1/- 38 38 8. 3/9

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# 1 1 :;< :;< 0 0

5)7'./&0 2 2 :;< :;< . .

5)7',$*$#$ 1 1 :;< :;< 21 21

5)7'$,+# 1 1 :;< :;< 22 22

5)7'12,"#$ 0 0 :;< :;< 23 23

5)7'3'$"#$ 2 2 :;< :;< 4 4

5)7'."4$. . :;< :;< 2- 2-

567'5$2&.+#+&)!&)#'&**$' 24 2/9 38 38 81 3/=

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# . . :;< :;< 8 8

5)7'./&0 2 2 :;< :;< 0 0

5)7',$*$#$ 1 1 :;< :;< 22 22

5)7'$,+# 1 1 :;< :;< 2- 2-

5)7'12,"#$. . :;< :;< 24 24

5)7'3'$"#$ 2 2 :;< :;< 4 4

5)7'."4$ 1 1 :;< :;< 2- 2-

567'6$'.&)!&)#'&**$' 1. 1/. 204 204 213 21/3

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# 2 2 :;< :;< . .

5)7'./&0 2 2 :;< :;< 0 0

5)7',$*$#$ 1 1 :;< :;< 22 22

5)7'$,+# 1 1 :;< :;< 9 9

5)7'12,"#$ = = :;< :;< 04 04

5)7'3'$"#$ 2 2 :;< :;< 3 3

5)7'."4$. . :;< :;< 18 18

5)7'*&%+) . . :;< :;< 28 28

5)7'*&%&1# 2 2 :;< :;< 4 4

567'6'&,13#!&)#'&**$' 28 2/8 =2 =2 84 8/4

5)7'+),$- 2 2 :;< :;< 2 2

5)7'*+.# 1 1 :;< :;< 0 0

5)7'./&0 2 2 :;< :;< . .

5)7',$*$#$ 1 1 :;< :;< 21 21

5)7'$,+# 1 1 :;< :;< 9 9

5)7'12,"#$. . :;< :;< 24 24

5)7'3'$"#$ 2 2 :;< :;< 4 4

5)7'."4$ 1 1 :;< :;< 2- 2-

5)7'&',$'7&&8 2 2 :;< :;< . .

5)7'3/"'# 2 2 :;< :;< . .

567'9/&1#!&)#'&**$' 28 1/3 2.1 2.1 =2 2./4

!"#$!"#$% % % &'(&'(% %

!"#$&!'()) &'(&'(%* %*

!"#$')*+ % % &'(&'(+ +

!"#$#$&$($, , &'(&'(%- %-

!"#$,-$.($ % % &'(&'(+ +

!"#$'./$)) &'(&'(,. ,.

!/#$0(.(!'(!,'1*"(-*&&$- %+ %01 *. *. -+ 102

!"#$!"#$% % % &'(&'(% %

!"#$&!'(3 3 &'(&'(+ +

!"#$')*+ % % &'(&'(, ,

!"#$#$&$($ 3 3 &'(&'(%3 %3

!"#$$#!(3 3 &'(&'(%% %%

!"#$23#.($, , &'(&'(%* %*

!"#$,-$.($ % % &'(&'())

!"#$'./$ 3 3 &'(&'(%% %%

!/#$4-."'.,(!*"5*61*"(-*&&$- + %0, *. *. 1 30*

!"#$!"#$% % % &'(&'(% %

!"#$&!'(3 3 &'(&'(+ +

!"#$')*+ % % &'(&'(, ,

!"#$!"#$%&'#(()*+,#$- %& %'(%)* +,'- -) &'.

!/#$1.($6*-7 3 %02 %* %* * ,0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(, ,

!/#$8$3*(9*'!(!*" 3 %02 3* 3* %3 -02

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(1 1

!/#9-'*" 3 %02 31 31 . +0)

!"#$(*0(-!"6 % % &'(&'(, ,

!"#$,*"'(-.!"(' % % &'(&'(- -

!/#$9-*#2,(3 %02 %1 %1 1 +02

!"#$(*0(-!"6 % % &'(&'(, ,

!"#$,*"'(-.!"(' % % &'(&'())

!/#$0)*2(3 %02 +- +- %) *0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(%% %%

!/#$0(.(!'(!,' 3 %02 %. %. * ,0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'(, ,

!/#$4-."'.,(!*"5*6 3 %02 3+ 3+ . +0)

!"#$(*0(-!"6 % % &'(&'(+ +

!"#$,*"'(-.!"(' % % &'(&'())

!"#$!"#$%&'#(()&."/$0.& */ /'+ -*% -*'% ,,(%*'(

!/#$:&&*,.(*-0$-/!,$ %* %*02 .% .% 1) 1)02

!"#6(:&&*,.(!*" %* %* &'(&'(1) 1)

!/#$:2,(!*"0$-/!,$ %) *0) 1% 1% *2 ,)02

!"#$#$&$($0)*2(, , &'(&'(%3 %3

!"#$'$"#0)*2(%3 %3 &'(&'()1)1

!/#$:2()$"(!;!,.(!*"0$-/!,$, %0) %- %- %2)02

!"#$/.&!#.($<'$- 3 3 &'(&'(* *

!"#$$",-73(9.''+*-# % % &'(&'(, ,

!/#$=!&&!"60$-/!,$, %02 3* 3* %+ +0*

!"#$>!&&?.>'*&2($?;$$ % % &'(&'(+ +

!"#$>!&&?(2-"*/$-?;$$ % % &'(&'(+ +

!"#$>!&& % % &'(&'(- -

!/#$1&$.-!"60$-/!,$ * ,0) -1 -1)- 3102

References

Abrahamsson, P., K. Conboy, and X. Wang (2009, August). ’Lots done, more to
do’: the current state of agile systems development research. European Journal of
Information Systems 18 (4), 281–284.

Adam, M. T., M. Hagenau, D. Neumann, and C. Weinhardt (2008). Emotions in
Electronic Auctions - A Physio-Economic Approach on Information Systems. In
Proceedings of the 16th European Conference on Information Systems (ECIS’ 08),
Galway, Ireland, pp. 315–325.

Ahlert, K.-H. and C. Block (2010). Assessing the impact of price forecast errors
on the economics of distributed storage systems. In 43rd Hawaii International
Conference on System Science (HICSS-43), Hawaii, USA. (forthcoming).

Alur, D., D. Malks, and J. Crupi (2003). Core J2EE Patterns: Best Practices and
Design Strategies (2 ed.). Prentice Hall.

Anandalingam, G., R. W. Day, and S. Raghavan (2005). The landscape of electronic
market design. Management Science 51 (3), 316–327.

Ash, S. (2007, October). Moscow prioritisation. Technical report, DSDM Consortiu,.

Bartolini, C., C. Preist, and N. R. Jennings (2005). A software framework for au-
tomated negotiation. In Software Engineering for Multi-Agent Systems III, pp.
213–235.

Batory, D. (1994). The leaps algorithm. Technical report, University of Texas at
Austin.

Bauer, O. and S. Czajka (2009, December). Online shopping liegt im trend. Technical
report, Statistisches Bundesamt.

Beck, K. (1999, Oct). Embracing change with extreme programming. Com-
puter 32 (10), 70–77.

Beck, K. (2002, November). Test Driven Development by Example. Amsterdam,
The Netherlands: Addison-Wesley Longman.

162 References

Beck, K. and C. Andres (2004). Extreme programming explained: embrace change.
Addison-Wesley Professional.

Belanoff, P., P. Elbow, and S. I. Fontaine (Eds.) (1991, January). Nothing Begins
with N: New Investigations of Freewriting (1 ed.). Southern Illinois University
Press.

Benisch, M., A. Greenwald, I. Grypari, R. Lederman, V. Naroditskiy, and
M. Tschantz (2004). Botticelli: A supply chain management agent designed to
optimize under uncertainty. ACM Trans. on Comp. Logic 4 (3), 29–37.

Bichler, M., C. Beam, and A. Segev (1998). Offer: A broker-centered object frame-
work for electronic requisitioning. In Trends in Distributed Systems for Electronic
Commerce, pp. 154+.

Blaabjerg, F., R. Teodorescu, M. Liserre, and A. Timbus (2006). Overview of con-
trol and grid synchronization for distributed power generation systems. IEEE
Transactions on Industrial Electronics 53 (5), 1398–1409.

Block, C. (2007). Price-based coordination in decentralized micro power grids. In
Group Decision and Negotiation 2007, Montreal, Canada.

Block, C., F. Bomarius, P. Bretschneider, F. Briegel, N. Burger, B. Fey, H. Frey,
J. Hartmann, C. Kern, B. Plail, G. Praehauser, L. Schetters, F. Schoepf, D. Schu-
mann, F. Schwammberger, O. Terzidis, R. Thiemann, C. van Dinther, K. von
Sengbusch, A. Weidlich, and C. Weinhardt (2008, 12). Internet of Energy - ICT
for Future Energy Markets. Bdi-drucksache nr. 418, Bundesverband der Deutschen
Industrie e.V. (BDI).

Block, C. and E. Chen (2007). Fast Prototyping of Electronic Agents for the Web.
In G. E. Kersten, J. Rios, and E. Chen (Eds.), Group Decision and Negotiation
(GDN) 2007, Montreal, Canada.

Block, C., J. Collins, L. Filipova-Neumann, and W. Ketter (2010, June). A compet-
itive testbed for the development of intelligent agents in the energy domain. In
11th Conference on Group Decision and Negotiation (GDN), Delft, Netherlands.

Block, C., J. Collins, and W. Ketter (2010a, August). Agent-based competitive
simulation: Exploring future retail energy markets. In Proceedings of the 12th
International Conference on Electronic Commerce (ICEC), Hawaii, USA.

Block, C., J. Collins, and W. Ketter (2010b, June). Exploring retail energy markets
through competitive simulation. In K. Larson (Ed.), ACM EC 2010 Workshop on
Trading Agent Design and Analysis (TADA), Harvard University.

Block, C., J. Collins, W. Ketter, and C. Weinhardt (2009). A multi-agent energy
trading competition. Technical Report ERS-2009-054-LIS, RSM Erasmus Univer-
sity, Rotterdam, The Netherlands.

References 163

Block, C., G. Kersten, H. Gimpel, and C. Weinhardt (2006). Reasons for rejecting
Pareto-improvements in negotiations. In S. Seifert and C. Weinhardt (Eds.),Group
Decision and Negotiation (GDN) 2006, International Conference, Karlsruhe, Ger-
many, June 25-28, 2006.

Block, C. and D. Neumann (2008). A decision support system for choosing market
mechanisms in e-procurement. In H. Gimpel, N. R. Jennings, Kersten, G. E.,
Ockenfels, Axel, and C. Weinhardt (Eds.), Negotiation, Auctions, and Market
Engineering, Volume 2, pp. 44–57. Springer Berlin Heidelberg.

Block, C., D. Neumann, and C. Weinhardt (2008). A market mechanism for en-
ergy allocation in micro-chp grids. In Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual, pp. 172.

Blume, M., S. Luckner, and C. Weinhardt (2008, December). Fraud detection in play-
money prediction markets. Information Systems and E-Business Management .

Boehm, B. (1981). Software engineering economics. Englewood Cliffs .

Borenstein, S., J. B. Bushnell, and F. A. Wolak (2002). Measuring market ineffi-
ciencies in California’s restructured wholesale electricity market. The American
Economic Review 92 (5), 1376–1405.

Broy, M. and A. Rausch (2005, June). Das neue v-modell® xt. Informatik-
Spektrum 28 (3), 220–229.

Campbell, C., G. Ray, and W. A. Muhanna (2005). Search and collusion in electronic
markets. Management Science 51 (3), 497–507.

Cao, L., K. Mohan, P. Xu, and B. Ramesh (2009, August). A framework for
adapting agile development methodologies. European Journal of Information Sys-
tems 18 (4), 332–343.

Chavez, A. and P. Maes (1996). Kasbah: An agent marketplace for buying and
selling goods. In Proceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology, Volume 31, pp. 40.

Chen, E., B. Yu, and K. Kolitz (2006). Negotiation or Auction? The NorA Project.
In Proceedings from Dagstuhl Seminar: Negotiation and Market Engineering.

Chi, R. H. and M. Y. Kiang (1991). An integrated approach of rule-based and case-
based reasoning for decision support. In CSC ’91: Proceedings of the 19th annual
conference on Computer Science, New York, NY, USA, pp. 255–267. ACM Press.

Choros, K. and M. Muskala (2009). Block map technique for the usability evaluation
of a website. In N. T. Nguyen, R. Kowalczyk, and S.-M. Chen (Eds.), Computa-
tional Collective Intelligence. Semantic Web, Social Networks and Multiagent Sys-
tems, Volume 5796, Chapter 65, pp. 743–751. Berlin, Heidelberg: Springer Berlin
Heidelberg.

164 References

Chuttur, M. (2009). Overview of the technology acceptance model: Origins, devel-
opments and future directions. Sprouts: Working Papers on Information Systems
9(37), Indiana University, USA.

Clegg, D. and R. Barker (1994, May). Case Method, Fast-Track: Fast-Track - A
RAD Approach. Amsterdam, The Netherlands: Addison-Wesley Longman.

Coase, R. (1937). The nature of the firm. Economica 4 (16), 386–405.

Cockburn, A. (2004, Ostober). Crystal Clear: A Human-Powered Methodology for
Small Teams (1 ed.). Addison-Wesley Professional.

Cockburn, A. (2005, June). The crystal family of methodologies for software devel-
opment. http://alistair.cockburn.us/Articles, last accessed 2010/03/19.

Cockburn, A. (2008, June). A user story is the title of one scenario whereas a
use case is the contents of multiple scenarios. http://ac.cockburn.us/1610, last
accessed 2010/03/17.

Cohen, D., M. Lindvall, and P. Costa (2004). An Introduction to Agile Methods,
Volume 62 of Advances in Computers, pp. 1–66. Elsevier.

Cohn, M. (2004, March). User Stories Applied: For Agile Software Development.
Addison-Wesley Professional.

Cohn, M. (2005). Agile Estimating and Planning. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

Cohn, M. (2009). Task boards. http://www.mountaingoatsoftware.com/pages/17-
training-for-scrum-task-board-use, last accessed 2010/03/17.

Collins, J., R. Arunachalam, N. Sadeh, J. Ericsson, N. Finne, and S. Janson (2005,
November). The supply chain management game for the 2006 trading agent com-
petition. Technical Report CMU-ISRI-05-132, Carnegie Mellon University, Pitts-
burgh, PA.

Collins, J., W. Ketter, and A. Pakanati (2009, July). An experiment management
framework for TAC SCM agent evaluation. In Workshop: Trading Agent Design
and Analysis (TADA) at Twenty-First International Joint Conference on Artifi-
cial Intelligence (IJCAI 2009), pp. 9–13. AAAI: AAAI Press.

Commission, E. (2009a, October). Investing in the development of low carbon tech-
nologies (SET-plan). Commission Documents COM(2009) 519 final, Commission
of the European Communities.

Commission, E. (2009b, October). Investing in the development of low carbon tech-
nologies (SET-plan): A technology roadmap. Commission Staff Working Docu-
ment SEC(2009) 1295, Commission of the European Communities.

References 165

Conzelmann, G., M. North, G. Boyd, R. R. Cirillo, V. Koritarov, C. M. Macal,
P. R. Thimmapuram, and T. D. Veselka (2004). Simulating strategic market
behavior using an agent-based modeling approach. In 6th IAEE European Energy
Conference on Modeling in Energy Economics and Policy, Zurich.

Copeland, L. (2001, December). Extreme programming.
http://www.computerworld.com/s/article/66192, last retrieved 2010/03/10.

Coplien, J. O. (1994). Borland software craftsmanship: A new look at process, quality
and productivity. Technical report, AT&T Bell Laboratories, Orlando, Florida.

Costa, A. C. (2003). Work team trust and effectiveness. Personnel Review 32 (5),
605 – 622.

Cramton, P. (2003). Electricity market design: The good, the bad, and the ugly.
Hawaii International Conference on System Sciences 2, 54b+.

Crane, D. and P. McCarthy (2008). Comet and Reverse Ajax: The Next Generation
Ajax 2.0. Springer.

Czernohous, C. (2005). Simulations for evaluating electronic markets — an agent-
based environment. In SAINT-W ’05: Proceedings of the 2005 Symposium on
Applications and the Internet Workshops, Washington, DC, USA, pp. 392–395.
IEEE Computer Society.

Davenport, T. H. and L. Prusak (2000). Working Knowledge (2 ed.). Harvard
Business School Press.

Davis, F., R. Bagozzi, and P. Warshaw (1989). User acceptance of computer tech-
nology: a comparison of two theoretical models. Management science 35 (8), 982–
1003.

DeGrace, P. and L. H. Stahl (1990, May). Wicked Problems, Righteous Solutions:
A Catolog of Modern Engineering Paradigms. Yourdon Press Computing Series.
Englewood Cliffs, N.J.: Prentice Hall.

Deindl, M., C. Block, R. Vahidov, and D. Neumann (2008). Load shifting agents
for automated demand side management in micro energy grids. In 2nd IEEE
International Conference on Self-Adaptive and Self-Organizing Systems.

Dietz, B., K.-H. Ahlert, and C. Block (2010). Driving profile generator. Social
Science Research Network Working Paper Series .

Dröschel, W. and M. Wiemers (1999). Das V-Modell 97. Der Standard für die
Entwicklung von IT-Systemen mit Anleitung für den Praxiseinsatz. Munich, Ger-
many: Oldenbourg.

Dröschel, W. and M. Wiemers (2000). Das V-Modell 97. Oldenbourg.

Duffy, J. (2006). Agent-based models and human subject experiments. In L. Tesfat-
sion and K. Judd (Eds.), Handbook of Computational Economics, pp. 949–1011.
Elsevier.

166 References

Dumas, M., B. Benatallah, N. Russell, and M. Spork (2004). A configurable match-
making framework for electronic marketplaces. Electronic Commerce Research
and Applications 3 (1), 95 – 106.

Dyba, T. and T. Dingsoyr (2008, August). Empirical studies of agile software de-
velopment: A systematic review. Information and Software Technology 50 (9-10),
833–859.

Elbow, P. (1998, Jnue). Writing without Teachers (2 ed.). Oxford University Press.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence 19 (1), 17–37.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns. Addison-
Wesley Professional.

Garicano, L. and S. N. Kaplan (2001). The effects of business-to-business e-commerce
on transaction costs. The Journal of Industrial Economics 49 (4), 463–485.

Gimpel, H. (2006). Possession, Obsession, and Concession: Preferences and Attach-
ment in Negotiations. Ph. D. thesis, Universität Karlsruhe (TH).

Gjerstad, S. and J. Dickhaut (2001, April). Price formation in double auctions. In
J. Liu and Y. Ye (Eds.), E-Commerce Agents, Volume 2033 of Lecture Notes in
Computer Science, Chapter 7, pp. 106–134. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Gladden, G. R. (1982). Stop the life-cycle, i want to get off. SIGSOFT Softw. Eng.
Notes 7 (2), 35–39.

Gloger, B. (2008, April). Scrum – Produkte zuverlässig und schnell entwickeln (1
ed.). Munich, Germany: Hanser.

Gloger, B. (2009, July). Scrum – Produkte zuverlässig und schnell entwickeln (2
ed.). Munich, Germany: Hanser.

Gode, D. and S. Sunder (1993). Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. Journal of Po-
litical Economy 101 (1), 119–137.

Grady, R. B. (1994). Successfully applying software metrics. Computer 27 (9), 18–25.

Graefe, A. and C. Weinhardt (2008, September). Long-term forecasting with pre-
diction markets a field experiment on applicability and expert confidence. The
Journal of Prediction Markets , 71–91.

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release
planning. Technical report, Renaissance Software Consulting.

References 167

Hammerstrom, D. J., R. Ambrosio, J. Brous, T. A. Carlon, D. P. Chassin, J. G.
DeSteese, R. T. Guttromson, G. R. Horst, O. M. Järvegren, R. Kajfasz, S. Kati-
pamula, L. Kiesling, N. T. Le, P. Michie, T. V. Oliver, R. G. Pratt, S. Thompson,
and M. Yao (2007, October). Pacific northwest gridwise testbed demonstration
projects: The Olympic Peninsula project. Final report, Pacific Northwest National
Laboratory, Richland, Washington 99352.

Hatziargyriou, N., H. Asano, R. Iravani, and C. Marnay (2007, July). Microgrids: An
overview of ongoing research, development, and demonstration projects. Berke-
ley Lab Publications LBNL-62937, Ernest Orlando Lawrence Berkeley National
Laboratory.

Hatziargyriou, N. D., A. Dimeas, A. G. Tsikalakis, Pecas, G. Kariniotakis, and
J. Oyarzabal (2006, September). Management of microgrids in market environ-
ment. International Journal of Distributed Energy Resources 2 (3), 177–193.

Hendershott, T. J. and R. Riordan (2009, September). Algorithmic trading and
information. Social Science Research Network Working Paper Series .

Hevner, A., S. March, J. Park, and S. Ram (2004). Design science in information
systems research. Mis Quarterly , 75–105.

Hirsch, C., L. Hillemacher, C. Block, A. Schuller, and D. Moest (2010). Simulation
studies within the meregio field experiment. it - Information Technology forth-
coming.

Howe, J. (2006). The rise of crowdsourcing. Wired Magazine 14 (6), 1–4.

Howes, T., G. Good, and M. Smith (1998). Understanding and deploying LDAP
directory services. Alpel Publishing.

Hrastinski, S., N. Z. Kviselius, H. K. Ozan, and M. Edenius (2010). A review
of technologies for open innovation: Characteristics and future trends. Hawaii
International Conference on System Sciences 0, 1–10.

Hutton, D. W. (1994). The Change Agents’ Handbook: A Survival Guide for Quality
Improvement. ASQ Quality Press.

IEEE (1990). Ieee standard glossary of software engineering terminology. IEEE std
610.12-1990, Institute of Electrical and Electronics Engineers.

Jackson, M. (2000). Mechanism theory. The Encyclopedia of Life Support Systems .

Jansen, J., A. van der Welle, and F. Nieuwenhout (2009). The virtual power plant
concept from an economic perspective: updated final report. Fenix Techreport
Deliverable D3.2.4, Energy Research Centre of the Netherlands (ECN).

Jeffries, R. (2001, August). Essential XP: Card, Conversation, Confirma-
tion. http://xprogramming.com/articles/expcardconversationconfirmation/, last
accessed 2010/03/17.

168 References

Jennings, N. (2000). On agent-based software engineering. Artificial Intelli-
gence 117 (2), 277–296.

Jin, C., J. Carbonell, and P. Hayes (2005). Argus: Rete + dbms = efficient persistent
profile matching on large-volume data streams. In M.-S. Hacid, Z. W. Ras, and
S. Tsumoto (Eds.), Foundations of Intelligent Systems, Lecture Notes in Computer
Science, pp. 142–152. Springer.

Jonker, C. M. and J. Treur (2001). An agent architecture for multi-attribute nego-
tiation. In International joint conference on artificial intelligence, pp. 1195–1201.

Jordan, P. R., B. Cassell, L. F. Callender, and M. P. Wellman (2009). The ad
auctions game for the 2009 trading agent competition. Technical report, University
of Michigan, Department of Computer Science and Engineering.

Jordan, P. R., C. Kiekintveld, and M. P. Wellman (2007, May). Empirical game-
theoretic analysis of the TAC supply chain game. pp. 1188–1195.

Joskow, P. and E. Kahn (2001). A quantitative analysis of pricing behavior in
California’s wholesale electricity market during summer 2000. NBER Working
Paper Series 8157, National Bureau of Economic Research.

Kafura, D. and G. R. Reddy (1987). The use of software complexity metrics in
software maintenance. IEEE Trans. Softw. Eng. 13 (3), 335–343.

Kaldik, M. and M. Eisenblaetter (2010, 03). Internet shopping continues to gain
ground. Press Release March 3, 2010, GFK SE, Nuremberg, Germany.

Kambil, A. and E. van Heck (1998). Reengineering the Dutch flower auctions:
A framework for analyzing exchange organizations. Information Systems Re-
search 9 (1), 1–19.

Kambil, A. and E. van Heck (2002). Making Markets: How Firms Can Design and
Profit from Online Auctions and Exchanges. Harvard Business School Press.

Kan, S. (2002). Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA.

Kano, N., N. Seraku, F. Takahashi, and S. Tsuji (1994, April). Attractive quality
and must-be quality. Journal of the Japanese Society for Quality Control 14 (2),
39–48.

Katok, E. and A. E. Roth (2004). Auctions of homogeneous goods with increasing
returns: Experimental comparison of alternative ”dutch” auctions. Management
Science 50 (8), 1044–1063.

Kay, J. (2010). Obliquity. London, UK: Profile Books Ltd.

Keil, M. and E. Carmel (1995). Customer-developer links in software development.
Commun. ACM 38 (5), 33–44.

Kelly, D. and J. Teevan (2003). Implicit feedback for inferring user preference: a
bibliography. SIGIR Forum 37 (2), 18–28.

References 169

Kersten, G. E. and H. Lai (2006). Negotiation support and e-negotiation systems.
Internet Research Paper Series INR13/06, InterNeg Research Center, Montreal,
Canada.

Ketter, W., J. Collins, M. Gini, A. Gupta, and P. Schrater (2009). Detecting and
forecasting economic regimes in multi-agent automated exchanges. 47 (4), 307–
318.

Kiekintveld, C., J. Miller, P. R. Jordan, L. F. Callender, and M. P. Wellman (2009).
Forecasting market prices in a supply chain game. Electronic Commerce Research
and Applications 8 (2), 63–77. Special Section: Supply Chain Trading Agent Re-
search.

Klemperer, P. (2002a, May). How (not) to run auctions: The european 3g telecom
auctions. European Economic Review 46 (4-5), 829–845.

Klemperer, P. (2002b). What really matters in auction design. The Journal of
Economic Perspectives 16 (1), 169–189.

Kok, J. K., C. J. Warmer, and I. G. Kamphuis (2005). Powermatcher: multiagent
control in the electricity infrastructure. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, New
York, NY, USA, pp. 75–82. ACM.

Kolitz, K. (2008). Systemdesign im Market-Engineering - Experimente zu Teil-
nehmerverhalten und Technologieakzeptanz. Number 8 in Studies on eOrganisation
and Market Engineering. Karlsruhe: Universitätsverlag Karlsruhe.

Kolitz, K., C. Block, and C. Weinhardt (2007). meet2trade: An Electronic Market
Platform and Experiment System. In G. E. Kersten, J. Rios, and E. Chen (Eds.),
Group Decision and Negotiation (GDN) 2007, Montreal, Canada.

Kolitz, K. and D. Neumann (2007). The Impact of Information System Design on
eMarketplaces – An Experimental Analysis. In G. E. Kersten, J. Rios, and E. Chen
(Eds.), Group Decision and Negotiation (GDN) 2007, Montreal, Canada.

Kox, A. (2009, January). Erneuerbare Energien. European Federation of Energy
Traders.

Larman, C. and V. R. Basili (2003, June). Iterative and incremental development:
a brief history. Computer 36 (6), 47–56.

Lasseter, R., A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson, S. A.
Meliopoulous, R. Yinger, and J. Eto (2002, April). Integration of distributed
energy resources: The certs microgrid concept. Technical report, Consortium for
Electric Reliability Technology Solutions.

Lee, H. G. and T. H. Clark (1996). Impacts of the electronic marketplace on trans-
action cost and market structure. Int. J. Electron. Commerce 1 (1), 127–149.

Louis, R. (2006). Custom Kanban: designing the system to meet the needs of your
environment. Productivity Press.

170 References

Luckner, S., F. Kratzer, and C. Weinhardt (2005). STOCCER - A Forecasting
Market for the FIFA World Cup 2006. In Proceedings of the 4th Workshop on
e-Business (WEB 2005), Las Vegas, USA, pp. 399–405.

MacCormack, A. (2001). Product-development practices that work: How internet
companies build software. MIT Sloan Management Review 40 (2).

MacKie-Mason, J. and M. Wellman (2006). Automated markets and trading agents.
In L. Tesfatsion and K. Judd (Eds.), Handbook of computational economics, Vol-
ume 2, pp. 1381–1431. Elsevier.

Mäkiö, J. and I. Weber (2004). Component-based Specification and Composition
of Market Structures. In M. Bichler and C. Holtmann (Eds.), Coordination and
Agent Technology in Value Networks, pp. 127 – 137. Berlin, Germany: Gito.

Mäkiö, J. and I. Weber (2005). Modeling approach for auction based markets.
Applications and the Internet Workshops, IEEE/IPSJ International Symposium
on 0, 400–403.

Malone, T. W., J. Yates, and R. I. Benjamin (1987, June). Electronic markets and
electronic hierarchies. Commun. ACM 30 (6), 484–497.

Marks, R. (2006). Market design using agent-based models. In L. Tesfatsion and
K. Judd (Eds.), Handbook of Computational Economics, pp. 1339–1380. Elsevier.

McAfee, R. et al. (1998). Four issues in auctions and market design. Revista de
Análisis Económico 13 (1), 7–24.

McBreen, P. (2002, July). Questioning Extreme Programming. Addison Wesley.

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engi-
neering 2 (4), 308–320.

McConnell, S. (1996, July). Rapid Development: Taming Wild Software Schedules.
Microsoft Press.

McCracken, D. D. and M. A. Jackson (1982). Life cycle concept considered harmful.
SIGSOFT Softw. Eng. Notes 7 (2), 29–32.

McMillan, J. (2003). Reinventing the bazaar: A natural history of markets. WW
Norton & Company.

Meeus, L. and R. Belmans (2007). Is the prevailing wholesale market design in
europe and north america comparable? In Power Engineering Society General
Meeting, 2007. IEEE, pp. 1–5.

Meier, U. (2004, July). Das schlafverhalten der deutschen bevölkerung – eine
repräsentative studie. Somnologie 8 (3), 87–94.

Miller, J., S. Page, and B. LeBaron (2007). Complex adaptive systems: An introduc-
tion to computational models of social life. Princeton University Press Princeton
and Oxford.

References 171

Miranker, D. P. (1987). Treat: A better match algorithm for ai production system
matching. In AAAI, pp. 42–47.

Monson-Haefel, R. and A. Weissinger (2003). Enterprise JavaBeans. O’Reilly &
Associates, Inc. Sebastopol, CA, USA.

Myerson, R. B. and M. A. Satterthwaite (1983, April). Efficient mechanisms for
bilateral trading. Journal of Economic Theory 29 (2), 265–281.

Neumann, D. (2007). Market Engineering - A Structured Design Process for Elec-
tronic Markets. Universitätsverlag Karlsruhe.

Neumann, D., C. Block, C. Weinhardt, and Y. Karabulut (2007, June). Knowledge-
Driven Selection of Market Mechanisms in E-Procurement. In Proceedings of
the 15th European Conference on Information Systems (ECIS’ 07), St. Gallen,
Switzerland, pp. 143–154.

Nicolaisen, J., V. Petrov, and L. Tesfatsion (2001). Market power and efficiency
in a computational electricity market with discriminatory double-auction pricing.
Evolutionary Computation, IEEE Transactions on 5 (5), 504–523.

Nisan, N. and A. Ronen (2001, April). Algorithmic mechanism design,. Games and
Economic Behavior 35 (1-2), 166–196.

Niu, J., K. Cai, S. Parsons, P. McBurney, and E. Gerding (2010). What the 2007 TAC
Market Design Game tells us about effective auction mechanisms. Autonomous
Agents and Multi-Agent Systems. Special Issue on Market-Based Control of Com-
plex Computational Systems .

North, M., G. Conzelmann, V. Koritarov, C. Macal, P. Thimmapuram, and
T. Veselka (2002). E-laboratories: agent-based modeling of electricity markets.
In 2002 American Power Conference, pp. 1–19.

Orey, S. and W. Pruitt (1973). Sample functions of the n-parameter wiener process.
The Annals of Probability 1 (1), 138–163.

Osborne, L., J. Brummond, R. Hart, M. Zarean, and S. Conger (2005, October).
Clarus: Concept of operations. Technical Report FHWA-JPO-05-072, U.S. De-
partment of Transportation.

Pahl, G. and W. Beitz (1984). Engineering Design. Bath, UK: The Pitman Press.

Phelps, S. G. (2007, July). Evolutionary Mechanism Design. Ph. D. thesis, University
of Liverpool.

Poppendieck, M. and T. Poppendieck (2006, September). Implementing Lean Soft-
ware Development: From Concept to Cash (1 ed.). Addison-Wesley Professional.

Porter, B. W., R. Bareiss, and R. C. Holte (1993). Readings in Knowledge Acquisition
and Learning: Automating the Construction and Improvement of Expert Systems.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 1-55860-163-5.

172 References

Prechelt, L., B. Unger, and W. Tichy (1999). A controlled experiment on inheritance
depth as a cost factor for maintenance. IEEE Trans. on Software Engineering 65,
115–126.

Program, U. C. C. T. (2006, September). Technology options for the near and long
term. Technical report, U.S. Department of Energy.

Rachlevsky-Reich, B., I. Ben-Shaul, N. Chan, A. Lo, and T. Poggio (1999). GEM:
a global electronic market system. Information Systems 24 (6), 495–518.

Recordon, D. and D. Reed (2006). Openid 2.0: a platform for user-centric identity
management. In DIM ’06: Proceedings of the second ACM workshop on Digital
identity management, New York, NY, USA, pp. 11–16. ACM.

Rittel, H. W. J. and M. M. Webber (1973, June). Dilemmas in a general theory of
planning. Policy Sciences 4 (2), 155–169.

Royce, W. (1970). Managing the development of large software systems. In Proceed-
ings of IEEE Wescon, Volume 26, pp. 1–9.

Sanchez, I. (2006, January). Short-term prediction of wind energy production. In-
ternational Journal of Forecasting 22 (1), 43–56.

Schaeffer, G. J. and H. Akkermans (2006, July). Distributed intelligence in critical
infrastructures for sustainable power: Final summary report. Project Deliverable
ECN FSP WP53 002, Energy Research Centre of the Netherlands (ECN).

Schmid, B. (1997). Requirements for electronic markets architecture. Electronic
Markets 7 (1), 3–6.

Schönfeld, A. and C. A. Block (2010, May). A meta-framework for agile development
of soa market platforms. Social Science Research Network Working Paper Series .

Schüller, C. and W. Wörndl (2008, September). Automated user feedback gen-
eration in the software development of mobile applications. In J. Roth (Ed.), 5.
GI/ITG KuVS Fachgespräch Ortsbezogene Anwendungen und Dienste, Volume 42
of Schriftenreihe der Georg-Simon-Ohm-Hochschule Nürnberg.

Schwaber, K. (2009, January). What is Scrum?
http://www.scrumalliance.org/resources/227, retrieved 2010/03/10.

Schwaber, K. and M. Beedle (2001, October). Agile Software Development with
Scrum. Upper Saddle River: Prentice Hall.

ScrumAlliance (2010). What Is Scrum? http://www.scrumalliance.org/learn about scrum.

Segev, A., J. Gebauer, and F. Färber (1999). Internet-based electronic markets.
Electronic Markets 9 (3), 138–146.

Seifert, S. and K.-M. Ehrhart (2005). Design of the 3G Spectrum Auctions in the
UK and in Germany: An Experimental Analysis. German Economic Review 6 (2),
229 – 248.

References 173

Selby, R. (2007). Software engineering: Barry W. Boehm’s lifetime contributions to
software development, management, and research. Wiley-IEEE Computer Society
Pr.

Selhorst, S. (2006). Prioritizing software requirements with kano analysis. The
Pragmatic Marketer Magazine 4 (3), 24 – 29.

Shepperd, M. (1988). A critique of cyclomatic complexity as a software metric.
Softw. Eng. J. 3 (2), 30–36.

Shingo, S. (1989, July). A Study of the Toyota Production System (Rev Sub ed.).
Productivity Press.

Siddiqui, A., E. Bartholomew, and C. Marnay (2004, July). Empirical analysis of
the spot market implications of price-elastic demand. Berkeley Lab Publications
LBNL-56141.

Smith, V. (1982). Microeconomic systems as an experimental science. The American
Economic Review 72 (5), 923–955.

Sodomka, E., J. Collins, and M. Gini (2007). Efficient statistical methods for eval-
uating trading agent performance. pp. 770–775.

Spees, K. and L. Lave (2008). Impacts of responsive load in PJM: Load shifting and
real time pricing. The Energy Journal 29 (2), 101–122.

Spolsky, J. (2005, July). Hitting the high notes.
http://www.joelonsoftware.com/articles/HighNotes.html, last accessed
2010/03/17.

Standish Group (1995). Chaos. Technical report, The Standish Group.

StatBA (2008). Monatsbericht über die Elektrizitätsversorgung. Technical report,
Statistisches Bundesamt, Wiesbaden, Germany.

StatBA (2009, November, 26). Umsatzvolumen über elektronischen handel steigt.
Pressemitteilung 453, Statistisches Bundesamt, Bonn.

Stathel, S., S. Luckner, F. Teschner, C. Weinhardt, A. Reeson, and S. Whitten
(2009). Akx – an exchange for predicting water dam levels in australia. In Infor-
mation Technologies in Environmental Engineering, Chapter 6, pp. 78–90. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Stathel, S., S. Luckner, and C. van Dinther (2008). Information Efficiency and Liq-
uidity in Information Markets - A market maker based approach, Vortrag. In
Third Workshop on Prediction Markets, ACM Conference on Electronic Com-
merce 2008, Chicago, USA.

Stephens, M. and D. Rosenberg (2003, August). Extreme Programming Refactored:
The Case Against XP (1 ed.). Apress.

174 References

Stone, P. (2003). Multiagent competitions and research: Lessons from RoboCup and
TAC. In G. A. Kaminka, P. U. Lima, and R. Rojas (Eds.), RoboCup-2002: Robot
Soccer World Cup VI, pp. 224–237. Berlin: Springer Verlag.

Strecker, S. and S. Seifert (2003). Preference revelation in multi-attribute bidding
procedures: an experimental analysis. In 14th International Workshop on Database
and Expert Systems Applications, 2003. Proceedings., pp. 850–854. IEEE Comput.
Soc.

Sueyoshi, T. and G. Tadiparthi (2008). An agent-based decision support system for
wholesale electricity market. Decision Support Systems 44 (2), 425–446.

Sun, J. and L. Tesfatsion (2007). Dynamic testing of wholesale power market designs:
An open-source agent-based framework. Computational Economics 30 (3), 291–
327.

SWEBOK (2004). Guide to the Software Engineering Body of Knowledge (SWE-
BOK). IEEE Computer Society.

Takeuchi, H. and I. Nonaka (1986). The new new product development game. Har-
vard Business Review 64 (1), 137–146.

Tamma, V., S. Phelps, I. Dickinson, and M. Wooldridge (2005, March). Ontologies
for supporting negotiation in e-commerce. Engineering Applications of Artificial
Intelligence 18 (2), 223–236.

Taylor, D. and P. Wurman (2000). An xml schema for the parameterization of
auctions. Technical report, Intelligent Commerce Research Group, North Carolina
State University.

Teschner, F. and A. Storkenmaier (2010). Short Selling in Prediction Markets. Pro-
ceedings of the 11th Group Decision and Negotiation Conference (GDN), Ex-
tended Abstract.

Tesfatsion, L. (2002). Agent-based computational economics: Growing economies
from the bottom up. 8 (1), 55–82.

Tsvetovatyy, M., M. Gini, B. Mobasher, and Z. W. Ski (1997). Magma an agent
based virtual market for electronic commerce. Applied Artificial Intelligence: An
International Journal 11 (6), 501–523.

van Dinther, C. (2006, August). Adaptive Bidding in Single Sided Auctions under
Uncertainty – An Agent-based Approach in Market Engineering. Ph. D. thesis,
Universität Karlsruhe (TH), Karlsruhe, Germany.

van Dinther, C., A. Weidlich, and C. Block (2006). Energiemaerkte der zukunft.
White paper, Universitaet Karlsruhe (TH).

Vandenpoel, D. and W. Buckinx (2005, October). Predicting online-purchasing be-
haviour. European Journal of Operational Research 166 (2), 557–575.

References 175

Varga, L. Z., N. R. Jennings, and D. Cockburn (1994). Integrating intelligent sys-
tems into a cooperating community for electricity distribution management. Int.
Journal of Expert Systems with Applications 7 (4), 563–579.

Veit, D., A. Weidlich, and J. A. Krafft (2009). An agent-based analysis of the german
electricity market with transmission capacity constraints. Energy Policy 37 (10),
4132–4144.

Venkatesh, V., M. Morris, G. Davis, and F. Davis (2003). User Acceptance of Infor-
mation Technology: Toward a Unified View. MIS Quarterly 27 (3), 425–478.

Verrecchia, R. (1979). On the theory of market information efficiency. Journal of
Accounting and Economics 1 (1), 77–90.

von Dollen, D. (2009, June). Report to NIST on the smart grid interoperability stan-
dards roadmap. Technical Report SB1341-09-CN-0031, Electric Power Research
Institute (EPRI).

Vytelingum, P., T. D. Voice, S. D. Ramchurn, A. Rogers, and N. R. Jennings (2010).
Agent-based micro-storage management for the smart grid.

Wang, S., S. Zheng, L. Xu, D. Li, and H. Meng (2008, November). A literature
review of electronic marketplace research: Themes, theories and an integrative
framework. Information Systems Frontiers 10 (5), 555–571.

Weidlich, A. (2008). Engineering Interrelated Electricity Markets – An Agent-Based
Computational Approach. Ph. D. thesis, Universität Karlsruhe (TH).

Weidlich, A. and D. Veit (2008). A critical survey of agent-based wholesale electricity
market models. Energy Economics 30 (4), 1728–1759.

Weinhardt, C., C. v. Dinther, M. Grunenberg, K. Kolitz, M. Kunzelmann, J. Mäkiö,
I. Weber, and H. Weltzien (2006). CAME-Toolsuite meet2trade - auf dem Weg zum
Computer Aided Market Engineering. Abschlussbericht des Projekts Electronic Fi-
nancial Brokerage als wissensintensive Dienstleistung - ein generischer Ansatz
(EFB). Number 3 in Studies on eOrganisation and Market Engineering. Karl-
sruhe: Universitätsverlag Karlsruhe.

Weinhardt, C., D. Neumann, and C. Holtmann (2003). Market engineering.
Wirtschaftsinformatik 45 (6), 635–640.

Weinhardt, C., D. Neumann, and C. Holtmann (2006). Computer-aided market
engineering. Communications of the ACM 49 (7), 79.

Wellman, M. P., A. Greenwald, and P. Stone (2007). Autonomous Bidding Agents.
MIT Press.

West, D. and T. Grant (2010, January). Agile development: Mainstream adoption
has changed agility – trends in real-world adoption of agile methods. Technical
report, Forrester Research.

176 References

Wiegers, K. (2000). Karl Wiegers describes 10 requirements traps to avoid. Software
Testing & Quality Engineering 2 (1).

Wirdemann, R. (2009). Scrum mit User Stories. Munich, Germany: Hanser.

Womack, J. P., D. T. Jones, and D. Roos (1991, November). The Machine That
Changed the World: The Story of Lean Production (Reprint ed.). HarperPaper-
backs.

Wooldridge, M. and N. Jennings (1995). Intelligent agents: Theory and practice.
Knowledge engineering review 10 (2), 115–152.

Wurman, P., M. Wellman, W. Walsh, and K. O’Malley (1999). Control architecture
for a flexible Internet auction server. In Proceedings of the First IAC Workshop
on Internet Based Negotiation Technologies, Yorktown Heights, New York.

Wurman, P. R. (1999). Market structure and multidimensional auction design for
computational economies. Ph. D. thesis, University of Michigan.

Wurman, P. R., W. E. Walsh, and M. P. Wellman (1998, November). Flexible double
auctions for electionic commerce: theory and implementation. Decis. Support
Syst. 24 (1), 17–27.

Zhou, Z., W. Chan, and J. Chow (2007). Agent-based simulation of electricity
markets: a survey of tools. Artificial Intelligence Review 28 (4), 305–342.

