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Preface

In this work, we consider the scattering of acoustic and electromagnetic waves
from penetrable periodic structures in R3. The periodicity is manifested here in
the physical parameter of the scatterer which controls the propagation of the inci-
dent field and is given as a function of the three spatial coordinates. The emphasis
of our research is on the geometric reconstruction of the scatterer by means of
scattering data collected in its near field region. Since this task is ‘inverse’ to the
‘direct scattering problem’ of computing the scattered field caused by a specified
structure, it is called a problem of ‘inverse scattering’. Both of these problems
are of high and rapidly growing practical relevance. The focus is certainly set on
the case of an electromagnetic incidence. A major driving force for this is made
up by the technical advances in the fabrication of optical devices in the last thirty
years, which opened a broad range of exciting new applications and functions.
Processes from the semiconductor industry allow to produce structural features
on the lengthscale of electromagnetic waves, in particular light (≈ 380 nm−780
nm). In this so-called ‘resonance region’ of similar lengthscales, the radiation in-
teracts with the structure in a complicated way which prohibits an accurate repre-
sentation by geometrical optics. In fact, it necessitates to deal with the full electro-
magnetic vector-field equations, the Maxwell’s equations. Tackling this challenge
makes it possible nowadays e.g. to design diffraction elements, frequency filters,
and waveguides. At the same time, there is an increasing demand for modeling
and simulating the propagation of acoustic as well as electromagnetic radiation
in complex microscopic and macroscopic settings. On each lengthscale, there are
evident and pressing problems of ‘inverse scattering’, referring to the reconstruc-
tion of certain features of a target structure from the knowledge of the generated
scattered field. Applications which lead to such problems are found e.g. in medi-
cal imaging, near field microscopy, surface inspection, object detection and con-
trol, exploration geophysics, remote sensing, as well as in the iterative design of
sonic and optical devices. It is the latter application which this thesis contributes
to. We consider the important class of penetrable periodic devices, irradiated by
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either acoustic or electromagnetic fields. The main part of the thesis is devoted
to the proof that the so-called Factorization Method, a well-known reconstruction
technique, can be adapted to these settings in order to solve the corresponding
inverse scattering problems. The central intention here is to let the governing ma-
terial parameter be essentially unrestricted, taking into account the fast progress
in material science and assembling techniques. In addition, we formulate an ef-
ficient numerical solver for the direct problem for smooth material parameters
and devise a related, but new solver for piecewise constant parameters, as they
characterize many of today’s configurations. We combine these solvers with an
implementation of the Factorization Method and validate our theoretical results
in a couple of simulated scattering problems.

The work on this thesis has been supported by the German Research Founda-
tion (DFG) through a grant within the program of the Research Training Group
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at the Department of Mathematics, Universität Karlsruhe (TH) (now integral part
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I want to thank my present and former colleagues from the Research Training
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Chapter 1

Introduction

1.1 Physical background

Let us start with a description of the physical background of scattering prob-
lems. These problems refer to the scattering of an acoustic or electromagnetic
incident field at some scattering object (or scatterer) embedded in some back-

ground medium in Rd for d ∈ {2,3}. Depending on whether or not the incident
field can propagate inside the scatterer, one distinguishes between penetrable and
impenetrable objects. The latter ones are often called ‘obstacles’.

An acoustic field is a pressure field. The position-dependent propagation speed
c(x) of sound is determined by properties of the matter at x. We do not examine
this relation here, but simply consider the speed of sound as the characteristic
physical feature for the acoustic scattering problem. The function n(x) = c2

0/c(x)2

of the space variable x is called the refraction index and appears naturally in the
mathematical model later on. Here, c0 denotes the speed of sound in air. We
assume the propagation speed not to depend on the direction, so that c and n are
scalar-valued. For acoustic scattering, we let the background medium consist of
air, so that n equals 1 there. To include the possibility of energy absorption, we
let the refraction index have the general form n = nR + inI with functions nR, nI :
Rd → R∪{+∞} of the space variable. For an impenetrable acoustic scatterer, |n|
is finite only outside the scatterer.

The propagation of an electromagnetic field is governed by the position-depen-
dent permittivity ε(x), conductivity σ(x), and permeability µ(x). Roughly speak-
ing, the permittivity refers to the ability of a material to transmit an electric field
and the conductivity to its ability to conduct an electric current. The permeabil-
ity indicates the degree of magnetization of a material in response to a magnetic
field. We combine the former two functions in the complex-valued permittivity
ε̂(x) = ε(x)+ iσ(x)/ω . In the mathematical formulation of the electromagnetic
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problem, we use εr(x) = ε̂(x)/ε0 and µr(x) = µ(x)/µ0 where the subscript 0 de-
notes the respective constant values of ε and µ in vacuum. Opposed to acous-
tic fields, electromagnetic fields can also propagate in vacuum, and we let vac-
uum make up the background in this case. We confine ourselves in this work
to isotropic and non-magnetic materials, so the functions above are scalar-valued
and µr is constant equal to 1 in the whole space Rd. If the scatterer is impenetra-
ble, i.e. a perfect conductor, |εr| is finite only outside the scatterer.

In both settings above, the frequency of the incident radiation is denoted by
ω > 0. The wave number k0 is given by k0 = ω/c0 in the acoustic and by k0 =
ω
√

ε0 µ0 in the electromagnetic case. Throughout the work, we assume that the
fields are time-harmonic, meaning that their dependence on time t is described by
exp(−iω t) for all t ∈ R. We factor out this dependence and deal with the time-
independent part only. For details about the constitutive physical laws we refer
the reader to standard literature like e.g. [35]. For a thorough (mathematical)
reference for electromagnetic wave theory see [56].

1.2 Basic notation and terminology

Notation

Let C⋆ denote the set C⋆ = {cR + icI : cR, cI ∈R∪{−∞,+∞}}. We define the so-
called contrast q : Rd → C⋆ for d ∈ {2,3} by q(x) = n(x)−1 in the acoustic and
by q(x) = 1− 1/εr(x) in the electromagnetic case. This function naturally arises
in the formulation of the scattering problems later on. We let |q| take arbitrary val-
ues in the range [0,+∞], which allows us to handle penetrable and impenetrable
objects in a uniform manner here. For a concise formulation of the next section,
we summarize some basic notation in the following definition.

Definition 1.1. Let f : Rd → C⋆ and e j denote the j-th unit vector in Rd for
j ∈ {1, . . . ,d}, d ∈ {2,3}.

(i) We call the function f periodic with period p > 0 in the x j-dimension in the
usual way if

f (x+ p e j) = f (x) for almost all x ∈ Rd.

(ii) Let Λ = (p1, . . . , pd) ∈ Rd\{0} with p j ≥ 0 for all j ∈ {1, . . . ,d}. If f is
periodic with period p j in the x j-dimension for j with p j > 0 and either
constant, i.e. trivially periodic, almost everywhere or not at all periodic in
the x j-dimension for j with p j = 0, then we call f Λ-periodic for short.
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(iii) If we call f simply periodic and do not specify Λ, we assume that the fol-
lowing holds:

• f is periodic in the x1-dimension with some period p1 > 0,

• f is either periodic in the xd−1-dimension with some period pd−1 > 0 or
constant almost everywhere in the xd−1-dimension.

(iv) A set S ⊆ Rd is called the essential support of f if S is the smallest closed
set in Rd such that f is unequal to zero almost everywhere in S and vanishes
almost everywhere in Rd\S. For convenience, we denote this set also by
supp f and call it simply the support of f .

(v) We call a set S ⊆ Rd periodic with period p > 0 in the x j-dimension, Λ-
periodic, or periodic if its indicator function idS has the respective prop-
erty. In particular, if f is periodic with period p > 0 in the x j-dimension,
Λ-periodic, or periodic, then so is supp f respectively.

Moreover, we always stick to the following convention.

Definition 1.2. Whenever we talk about periodic contrasts q, in addition to Defi-
nition 1.1 (iii) we assume that

• q(x) = 0 for almost all x ∈ Rd with xd ≥ h for some h > 0.

For simplicity, we omit in the following the annotation ‘almost everywhere’
in the statements that q vanishes or is constant almost everywhere in some set.
Throughout the work, we exclusively consider scattering objects associated with
periodic contrasts q. Further conditions on q are announced later. As an essential
geometric object for our problem treatment, we define the so-called unit cell by

Π =
(
− p1

2 , p1
2

)
×R for d = 2,

Π =
(
− p1

2 , p1
2

)
×

(
− r2

2 , r2
2

)
×R for d = 3,

where r2 is set to 2π if q is constant in the x2-direction and to p2 > 0 otherwise.
The restriction q

∣∣
Π

characterizes q everywhere except on a Lebesgue null set in
Rd . It will become clear in the next chapter that, under natural conditions, scat-
tering problems for periodic objects can be posed and handled entirely in the unit
cell. Finally, we let Ω′ ⊂ Rd be any open periodic set whose closure contains
suppq and define

Ω = Ω′∩Π, Γ = ∂Ω∩Π, Ωext = Π\Ω. (1.1)
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To keep the formulations simple, by the ‘scattering object’ or ‘scattering medium’
we mean the pair (q,suppq) in the following. The context makes it clear whether
the contrast or its support is addressed in particular. In the mathematical treat-
ment, penetrable periodic objects lead to transmission problems in Π, with some
transmission condition(s) set at Γ. Impenetrable objects are modeled by boundary
value problems in Π\suppq, imposing some characteristic boundary condition(s)
on the field at ∂ (suppq)∩Π. The type of the condition(s) depends on the physi-
cal properties of the scattering object and on whether acoustic or electromagnetic
fields are considered.

Terminology

For a first orientation, we repeat some common terminology. All scattering ob-
jects in Rd , d ∈ {2,3}, which are associated with periodic contrasts q are sub-
sumed under the term ‘periodic media’. Those for which suppq is simply con-
nected and q is constant in suppq are called ‘(diffraction) gratings’. Gratings in
R3 divide into ‘lamellar gratings’, which are invariant in the x2-direction, and
‘crossed gratings’, corresponding to p2 > 0. If a grating is impenetrable and a
Dirichlet boundary condition is imposed on the total field at ∂ (suppq)∩Π, the
grating is said to be ‘perfectly reflecting / conducting’. In the acoustic case,
this corresponds to a ‘sound- or acoustically soft’ grating, whereas a Neumann
boundary condition is used to model a ‘sound- or acoustically hard’ grating, cf.
[17]. The boundary of a grating is referred to as the ‘interface’ or ‘scattering
surface’. It is also called the ‘profile’, especially when it is given as the graph
of some function. We remark that ∂ (suppq)∩Π might consist of more than one
connected component. The problem to compute a scattered field for a specified
medium and incidence is called the direct problem. Complementary, as inverse

problem we consider the identification of the shape of the medium, i.e. the support
of the contrast, by means of the scattered fields for a number of incident fields.
Clearly, for a grating it is about the identification of its interface. The objective
is usually not a full reconstruction of the contrast q as a function of the spatial
variable x.

1.3 Previous results and aim of this work

To give an overview of the state of research in the field of wave scattering from
periodic objects, we classify now some important publications. For lamellar grat-
ings, there are two cases for scattering of an electromagnetic incident plane wave.
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If the incidence direction is orthogonal to the x2-direction, then the resulting scat-
tered field is invariant in the x2-coordinate. The governing equations for the elec-
tromagnetic field, the time-harmonic Maxwell’s equations, can be reduced in this
case to a system of two scalar equations for the x2-components of the electric
and the magnetic field. If the permittivity is piecewise constant in the princi-
pal x1-x3-plane, both equations are of the same type as the governing equation
for an acoustic field, the Helmholtz equation, in 2D. Moreover, as an important
feature of the case of an orthogonal incidence, they are not coupled by any sup-
plemental conditions in the problem model, hence the x2-components can be con-
sidered separately. The scattered field can then be decomposed into modes with
either transverse electric (TE) polarization, corresponding to a vanishing electric
x2-component, or transverse magnetic (TM) polarization, where the magnetic x2-
component is zero. In other words, for transverse electric modes the amplitude
vector of the electric field is perpendicular to the x2-direction and for transverse
magnetic modes so is the amplitude vector of the magnetic field. For a compre-
hensive study of this problem, see the monograph by WILCOX [71]. Opposed to
that, an oblique incident plane wave leads to so-called conical diffraction. Here,
the equations of the electromagnetic field can again be transformed into a system
of the above form, but the equations for the x2-components are coupled at the
interface of the grating, cf. [20]. The monograph [57], edited by PETIT and pub-
lished about thirty years ago, can serve as an entry point to the whole subject of
scattering from gratings. The authors discuss many aspects for different types of
gratings, including the above-mentioned. There are various widely-used numer-
ical methods for these problems, among which are powerful boundary integral
equation techniques, cf., e.g., [58, 54]. Further information can be found in Chap-
ters 2–5 in [10]. In [37], the direct problem of scattering of a plane wave from
a smooth sound-soft grating in 2D is treated. The author establishes existence of
a solution for all frequencies and uniqueness for all but finitely many frequen-
cies. The exceptional ones are the so-called Rayleigh frequencies. The articles
[38, 23, 22] deal with a closely related inverse problem for a perfectly reflecting
grating in 2D. In [38] it is proven that, except for the Rayleigh frequencies, the
scattered fields which belong to all so-called ‘quasi-periodic’ incident fields and
are measured on a straight line above the grating uniquely determine a smooth
profile. The more recent paper [22] establishes the same result for piecewise lin-
ear profiles by means of significantly less data. The survey [9] summarizes the
status of research in 2003 concerning the inverse problem for perfectly reflecting
gratings in 2D and 3D and provides a rich bibliography of related publications.
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Results on the uniqueness of the inverse problem in the 2D case of a penetrable
grating with Lipschitz profile are obtained in [24], extending the approach fol-
lowed in [31] for a smooth, perfectly reflecting grating. This work deals with the
direct and the inverse problem for penetrable periodic media of finite height in
R3, with variable material parameter n and εr, respectively. We require that the
material parameter has essentially finite absolute value in Ω′ and that the con-
trast satisfies q(x) = 0 for almost all x ∈ R3 with x3 ≤ −h for some h > 0, in
addition to the conditions in Definitions 1.1 and 1.2. The medium is allowed
to be disconnected and is irradiated by some time-harmonic acoustic or electro-
magnetic field. For the treatment of the inverse problem, we will make some
additional requirements. Earlier works in this direction include [19, 8, 63, 64]
for the direct problem of electromagnetic scattering from general periodic media
in 3D and [5, 4] for the inverse problem of reconstructing impenetrable lamellar
gratings. In [8], the same type of periodic media is considered as in this work.
The author chooses a variational approach to prove existence and uniqueness of
a solution to the electromagnetic direct problem (in an appropriate sense) for a
plane wave incidence, under exclusion of the Rayleigh frequencies. The article
[63] extends the results for the direct problem obtained in [21] for periodic con-
trasts which are piecewise constant and invariant in one direction to a large class
of periodic contrasts, including those treated here. The related work [64] also ad-
dresses conical diffraction from those of the general media which are constant in
one direction. The inverse problem for a smooth and perfectly reflecting grating is
solved for all but the Rayleigh frequencies in [5, 4], by setting up and applying a
suitable Factorization Method. This method belongs to the class of qualitative re-
construction methods (cf. [15]) and has been proposed by KIRSCH in the context
of scattering from bounded objects in [39, 40]. It has a complete and profound
mathematical foundation and initiated vigorous research in the field, cf. the mono-
graph by KIRSCH AND GRINBERG [45] and the references given therein. In the
main part of our work, we develop a variant of this method to solve the inverse
problem for general, in particular inhomogeneous periodic media. Complement-
ing the theoretical framework, in the final chapter we setup numerical solvers for
the direct as well as the inverse acoustic problem in 2D. For the direct problem,
we follow and enhance the approach by VAINIKKO in [68], cf. also the mono-
graph by VAINIKKO AND SARANEN [61]. This leads to an efficient solver for
the so-called Lippmann-Schwinger equation, a Fredholm volume integral equa-
tion of the second kind, which is proven to provide an equivalent formulation of
the direct problem. Our reconstruction scheme for the inverse problem describes
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the implementation of the central assertion of the Factorization Method, which
is established in Chapter 6. We combine and apply both solvers in a couple of
numerical examples to demonstrate the applicability of our results.





Chapter 2

Geometric setting and basic tools

2.1 The geometric setting

Throughout the work, we consider scattering problems for periodic media in R3.
We recall that the contrast q is defined by q(x) = n(x)− 1 in the acoustic and by
q(x) = 1− 1/εr(x) in the electromagnetic case, where n is the complex-valued
refraction index and εr is the complex-valued relative permittivity. The scattering
medium is embedded in a homogeneous background matter which occupies the
whole space R3 and acts like air in acoustics and like vacuum in electromagnetics,
respectively. An open periodic set Ω′⊂R3 with finite extension in the x3-direction
is chosen such that suppq ⊆ Ω′. By a proper scaling, we can guarantee without
loss of generality that q is 2π-periodic in the x1- as well as the x2-direction, so
Λ = (2π ,2π ,0)T . Thus, the unit cell Π is given by Π = (−π ,π)2×R. Moreover,
we require that Ω′ as well as Ω = Ω′ ∩Π are Lipschitz and suppq∩Π is not
degenerate, according to the following definition.

Definition 2.1. Let S ⊆ R3.

(i) We call S degenerate if ∂ (S◦) 6= ∂S, where as usual S◦ denotes the interior of
S and ∂S = S\S◦ denotes the boundary of S.

(ii) We call S a Lipschitz set or just Lipschitz if S is open and if for every x ∈ ∂S

there exists a neighborhood O ⊂ R3 of x and a new orthogonal coordinate
system with coordinates (y1,y2,y3) = y, resulting from the original coordi-
nate system by a rotation plus a translation, such that

(a) O is a cube in the new coordinates, i.e. O = {y : −a j < y j < a j, j =

1,2,3} for some vector a ∈ (R+)
3.

(b) There exists a scalar-valued Lipschitz continuous function τ defined in

O′ = {(y1,y2) : −a j < y j < a j, j = 1,2}
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that satisfies |τ(y′)| ≤ a3/2 for all y′ ∈ O′ and

S∩O = {y ∈ O : y3 < τ((y1,y2))},
∂S∩O = {y ∈ O : y3 = τ((y1,y2))}.

We note that, in particular, S might be unbounded and disconnected. S

is called a Lipschitz domain if S is Lipschitz and connected.

Further restrictions on Ω and q are stated in the places where they are needed.
The medium is irradiated by a time-harmonic acoustic or electromagnetic field of
the form

U(x,t) = Re{u(x)e−iω t}
with fixed frequency ω > 0 and a complex-valued, space-dependent part u. In
acoustics, U is scalar-valued and represents a pressure field, whereas in elec-
tromagnetics it is vector-valued and might either represent the electric or the
magnetic field. In general, the space-dependent part u does not share the Λ-
periodicity of the contrast q. In fact, we consider so-called α-quasi-periodic fields
uα : R3 → Cd , d ∈ {1,3}, as defined next.

Definition 2.2. Let α ∈ R2 ×{0}. A function uα : R3 → Cd , d ∈ {1,3}, which
satisfies

uα(x+Λ⊙ e j) = eiα j Λ j uα(x) for all j ∈ {1,2,3} and almost all x ∈ R3

is called α-quasi-periodic with quasi-period Λ and phase shift α . Here, ⊙ de-
notes the componentwise multiplication and e j again the j-th unit vector. For
such a function uα ,

ũ(x) = e−iα·x uα(x)

is the Λ-periodic counterpart.

In the following, we omit the indication of the quasi-period Λ. We note that for
α = (0,0,0)T , an α-quasi-periodic function is Λ-periodic. Since Λ = (2π ,2π ,0)T

is fixed, we call Λ-periodic functions just periodic. Moreover, we abbreviate
α = (0,0,0)T by α = 0 from now on. Let us shortly illustrate the notion of
α-quasi-periodicity for the common choice of a plane wave incidence. The space-
dependent part u(pw) : R3 → Cd of a plane wave with d ∈ {1,3} is given as

u(pw)(x) = p eikθ ·x. (2.1)

Here, k is the wave number, θ ∈ R3 is a unit vector which indicates the prop-
agation direction of the wave, and p ∈ Rd\{0} is either the scalar amplitude of
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φ1

φ2

θ

plane wave

scattering object

Figure 2.1: Plane wave incidence

an acoustic wave (d = 1) or the polarization of an electric or magnetic transverse
wave, satisfying p ·θ = 0 (d = 3). The direction θ can be stated in terms of the
incidence angles as

θ = (sinφ1 cosφ2, sinφ1 sinφ2, −cosφ1)
T ,

where φ1 ∈ [0,π/2) and φ2 ∈ [0,2π). Figure 2.1 sketches the geometric situation
for a plane wave. Obviously, u(pw) is α-quasi-periodic with

α = k (sinφ1 cosφ2, sinφ1 sinφ2, 0)T

and e−iα·x u(pw) = p e−ik cosφ1 x3 is trivially periodic. However, in the main part of
this work we consider a broader class of α-quasi-periodic incident fields, made up
by weighted superpositions of the fields of point sources on some flat surface. The
point sources are either acoustic point sources or magnetic dipoles. In this class
of fields, a plane wave (precisely, its space-dependent part) can be approximated
based on Huygens’ Principle. In addition to (1.1), we use the notation

Γ± = {x ∈ Π : x3 = m±},
Ω± = {x ∈ Π : x is connected to Γ± in Ωext = Π\Ω},
R± = {x ∈ Π : x3 ≷ m±}

(2.2)

where m+ > sup{x3 : x ∈ Ω′} and m− < inf{x3 : x ∈ Ω′}. Without loss of gener-
ality, we assume that sup{x3 : x ∈ Ω′} ≥ 0 and inf{x3 : x ∈ Ω′} ≤ 0. Note that the
sets Ω+ and Ω− might coincide if Ω′ is disconnected. Figure 2.2 illustrates the
setting apart from Ωext and Ω±.
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Γ+

Γ−

Π

Ω′Ωx3 = 0 −π +π

Γ

R+

R−

Figure 2.2: The geometric setting

2.2 Basic function spaces

Clearly, a central role in the problem treatment is played by the proper choice of
function spaces. We mostly work with Sobolev spaces on Lipschitz sets and their
boundaries. In this section, we introduce these spaces after summarizing some
basic definitions.

Definition 2.3. Let S ⊆ R3 be some open set and ϕ j, j ∈ N, be a sequence in
C∞(S) =

⋂
r≥0Cr(S). Let K denote a compact subset of S in the following. We

define the function spaces

Cr
K(S) = {u ∈Cr(S) : supp(u) ⊆ K} and C∞

K (S) =
⋂

r≥0

Cr
K(S)

and also C∞
0 (S) = {u : u ∈C∞

K(S) for some K}. Let now µ ∈ N3
0 be a multi-index

of order |µ | = ∑3
j=1 µ j and

∂ µu(x) =
∂ µ1

∂ µ1x1

∂ µ2

∂ µ2x2

∂ µ3

∂ µ3x3
u(x) (2.3)

denote the partial derivative of u ∈C|µ|(S) with respect to the index µ . We write

ϕ j → 0 in C∞
K (S) ⇐⇒ ∂ µϕ j → 0 uniformly in K for all µ ∈ N3

0 (2.4)
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and similarly

ϕ j → 0 in C∞
0 (S) ⇐⇒ ϕ j → 0 in C∞

K (S) for some K. (2.5)

By E(S) we denote the space C∞(S) combined with the notion of sequential con-
vergence in the sense that

ϕ j → 0 in E(S) ⇐⇒ ∂ µϕ j → 0 uniformly in K for all µ ∈ N3
0 and all K.

The space E(S) consists of all functions u ∈ E(S) for which all derivatives have
continuous extensions to ∂S. Moreover, D(S) denotes the space C∞

0 (S) with se-
quential convergence in the sense of (2.5). The elements of D(S) are referred to
as test functions on S. A linear, sequentially continuous functional l : D(S) → C
is called a (Schwartz) distribution on S. The set of all distributions on S is denoted
by D(S)′.

Sobolev spaces of integer order and their duals

We can now continue to define the notion of a weak (partial) derivative and of
a Sobolev space (of integer order). In the following, we let S ⊆ R3 be some
Lipschitz set.

Definition 2.4. Let u ∈ L2(S) and µ ∈ N3
0 be fixed. If there is a function fµ ∈

L2(S) such that

〈u,∂ µφ〉S = (−1)|µ| 〈 fµ ,φ〉
S

for all φ ∈ D(S),

then fµ is called the weak partial derivative of u with respect to the index µ .

We just remark here that if u ∈ L2(S) has a classical partial derivative, then the
corresponding weak partial derivative exists and coincides with the classical one.
For this reason, we denote the function fµ , in generalization of (2.3), also by ∂ µu.
For m ∈ N0, the space

Hm(S) = {u ∈ L2(S) : ∂ µu ∈ L2(S) for all µ with |µ | ≤ m} (2.6)

is called the Sobolev space of order m on S. Equipped with the inner product

〈u,v〉Hm(S) = ∑
|µ|≤m

∫

S
∂ µu∂ µvdx, (2.7)

Hm(S) is a Hilbert space with the naturally induced norm ‖·‖Hm(S). An alternative
characterization of Hm(S) is given by the closure

Hm(S) = E(S)
‖·‖Hm(S)

. (2.8)
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It is an important observation that for bounded S and m ≥ 1 the space D(S) is not
dense in Hm(S), thus we define in addition

Hm
0 (S) = D(S)

‖·‖Hm(S).

For m = 0, there holds H0(S) = H0
0 (S) = L2(S), cf. Corollary 3.5 in [53]. More-

over, for any Lipschitz set S ⊆ R3, we define the space

Hm
loc(S) =

{
u : S → C : u

∣∣
S̃
∈ Hm(S̃) for any compact S̃ ⊂ S

}
. (2.9)

As a particular case (for m = 0), we have

L2
loc(S) =

{
u : S → C : u

∣∣
S̃
∈ L2(S̃) for any compact S̃ ⊂ S

}
.

Finally, by H−m(S) with m ∈ N0 we denote the space of distributions u ∈ D(S)′

that admit a representation of the form

u = ∑
|µ|≤m

∂ µgµ with gµ ∈ L2(S),

see Lemma 1.2 in [28]. For bounded S, H−m(S) is the (topological) dual space of
Hm

0 (S), rather than that of Hm(S), see Subsection 6.4.9 in [59]. For S = R3, it is
the dual of Hm(S).

Sobolev spaces of fractional order

In addition to the Sobolev spaces of integer order, we can define such of fractional
order. To this end, let s > 0 be non-integer and s = m+σ be its unique decompo-
sition with m ∈ N0 and σ ∈ (0,1). The semi-norm | · |σ induced by the Hermitian
form

(u,v)σ =

∫

S

∫

S

(u(x)−u(y))(v(x)− v(y))

|x− y|3+2σ
dxdy

is called the Slobodeckiĭ semi-norm. Using this, we define the Sobolev space
Hs(S) of fractional order s by

Hs(S) = {u ∈ Hm(S) : |u|σ < ∞}. (2.10)

Equipped with the inner product

〈u,v〉Hs(S) = 〈u,v〉Hm(S) + ∑
|µ|=m

(∂ µu,∂ µv)σ , (2.11)



2.2. BASIC FUNCTION SPACES 15

Hs(S) is a Hilbert space with the naturally induced norm ‖·‖Hs(S). It can also be
characterized by

Hs(S) = E(S)
‖·‖Hs(S)

. (2.12)

Analog to Hm
0 (S), we define the space

Hs
0(S) = D(S)

‖·‖Hs(S).

The scalars m from (2.6) and s from (2.10) are sometimes called the Sobolev

indices of the corresponding spaces.

α-quasi-periodic Sobolev spaces and their duals

Since we are mainly interested in α-quasi-periodic functions (with quasi-period
Λ = (2π ,2π ,0)T ), the following spaces are especially important to us. Let here
S ⊆ Π be a Lipschitz set in the unit cell Π and s > 1/2. We define the space

Eα(S) =
{

uα : uα = Uα

∣∣
S

for some α-quasi-periodic Uα ∈ E(R3)
}
. (2.13)

Then, in analogy to (2.12), we set

Hs
α(S) = Eα(S)

‖·‖Hs(S)
. (2.14)

Equipped with the inner product (2.7) or (2.11), depending on whether s is integer
or not, Hs

α(S) is a Hilbert space. We note that if S 6= Π, in particular if ∂S∩∂Π =
/0, then for every wα ∈ Hs

α(S) there are uα ,vα ∈ Hs
α(Π) with uα 6≡ vα and wα =

uα |S = vα |S. Now, we make some remarks concerning the dual space of Hs
α(S).

First, for α = 0 any function ũ ∈ Eα=0(S) is the restriction to S of a periodic
function Ũ on R3. Hence, for every fixed x3, the function Ũx3(x1,x2) = Ũ(x) is
a (2π ,2π)-periodic function on R2. Every such function can be interpreted as to
live on the 2-torus T2 = S1 × S1, which is the direct product of two unit circles
S1, see Figure 2.3. These circles reflect the periods in the x1-direction and the
x2-direction, respectively. Now, let Π j ⊂ ∂Π for j = 1,2,3,4 be the four closed
faces of ∂Π given by

Π1 = {−π}× [−π ,π ]×R, Π2 = {π}× [−π ,π ]×R,

Π3 = [−π ,π ]×{−π}×R, Π4 = [−π ,π ]×{π}×R.
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Figure 2.3: the torus T2

Having this, we let

Γ1,2 = {x ∈ Π1 : x ∈ (∂S∩Π1)
◦∧ x+(2π ,0,0)T ∈ (∂S∩Π2)

◦},
Γ3,4 = {x ∈ Π3 : x ∈ (∂S∩Π3)

◦∧ x+(0,2π ,0)T ∈ (∂S∩Π4)
◦},

Γ1 = Γ1,2 ∪{x+(2π ,0,0)T : x ∈ Γ1,2},
Γ2 = Γ3,4 ∪{x+(0,2π ,0)T : x ∈ Γ3,4},
Γ̂ = ∂S\(Γ1 ∪Γ2).

These sets are defined simply in order to separate the ‘periodic part’ of a function
in Hs

α=0(S). The situation in 2D is illustrated in Figure 2.4. Precisely, for any
sufficiently regular periodic function ũ, we find

∫

∂ S

∂ ũ

∂ν
ds =

∫

Γ̂

∂ ũ

∂ν
ds,

where ν denotes the outward unit normal vector to S. With

E◦(S) =
{

ũ ∈ Eα=0(S) : ∂ µ ũ
∣∣
Γ̂◦ = 0 for all µ ∈ N3

0

}
,

by H−s
α=0(S) we denote the dual space of

Hs
◦(S) = E◦(S)

‖·‖Hs(S)
,

cp. definition (2.14) and Definition 6.111 in [59]. In particular, for S = Π it is
Hs
◦(S) = Hs

α=0(S) since Γ̂◦ = /0 in this case. On the opposite, for Γ1 = Γ2 = /0
there holds E◦(S) = D(S), and so H−s

α=0(S) is the dual space of Hs
0(S). For α 6= 0,

by H−s
α (S) we always denote the dual space of Hs

0(S). However, at the end of
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S

Π

Π1 Π2

Γ1

Figure 2.4: separation of the ‘periodic part’ in 2D

this section, we will show that there is a one-to-one correspondence between the
functionals in H−s

α=β
(S) with β 6= 0 and those in H−s

α=0(S). We finally consider the
periodic extension Sper of S ⊆ Π, given by

Sper = {x ∈ R3 : x+Λ⊙ z ∈ S for some z ∈ Z3}◦, (2.15)

where again ⊙ denotes the componentwise multiplication. Note that in general
there holds Sper ∩ ∂Π 6= S∩ ∂Π, as demonstrated by Figure 2.5. For this reason,
we define Sc = Sper ∩Π, which satisfies Sper ∩ ∂Π = Sc ∩ ∂Π. We remark that Sc

is not a topological domain since it is closed and possibly disconnected. It might
also be degenerate in the sense of Definition 2.1, as it is the case for the example
shown in Figure 2.5. We will frequently consider integrals over

(Sper ∩∂Π)∪ (∂Sper∩Π) = (Sc ∩∂Π)∪∂S

for some S ⊆ Π. Then, for any sufficiently regular periodic function ũ we obtain
∫

(Sc∩∂ Π)∪∂ S

∂ ũ

∂ν
ds =

∫

∂ S∩Π

∂ ũ

∂ν
ds,

i.e. the integral contributions of ∂ ũ/∂ν over the faces of Sc ∩ ∂Π cancel out.
We want to point out that if Sc is not degenerate, then the above boils down to
(Sc ∩∂Π)∪∂S = ∂S and

∫

∂ S

∂ ũ

∂ν
ds =

∫

∂ S∩Π

∂ ũ

∂ν
ds. (2.16)
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l

SSper

S∩∂Π

Π

Figure 2.5: Sper ∩∂Π = (S∩∂Π)∪ l

In particular, with the assumptions made at the beginning of this chapter, this is
the case for S = (suppq∩Π)◦.

Vectorial Sobolev spaces

The definition of vectorial Sobolev spaces Hs(S,C3) and their variants follows the
above definitions in a straightforward manner. For the sake of brevity, we skip the
details here and give MCLEAN [53] as a reference. For electromagnetic scattering
problems, the proper solution space, i.e. the space of finite-energy solutions, turns
out to be

H(curl,S) = {u ∈ L2(S,C3) : curlu ∈ L2(S,C3)},
normed by the graph norm

‖u‖H(curl,S) =
(
‖u‖L2(S,C3) +‖curlu‖L2(S,C3)

)1/2
,

with S any Lipschitz set in R3. Here, curl denotes the vectorial differential op-
erator curl = ∇× with ∇ = (∂/∂x1,∂/∂x2,∂/∂x3), meant in the weak sense.
Moreover, we will need the space

H(div,S) = {u ∈ L2(S,C3) : divu ∈ L2(S)},
which is naturally normed by

‖u‖H(div,S) =
(
‖u‖L2(S,C3) +‖divu‖L2(S)

)1/2
,
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where div denotes the weak vectorial differential operator div = ∇·. For a bounded
Lipschitz domain S ⊂ R3, it is proven in [55], Theorems 3.22 and 3.26, that the
spaces H(curl,S) and H(div,S) can be characterized alternatively as the closure
of E(S) in the norm ‖·‖H(curl,S) and ‖·‖H(div,S), respectively. In analogy to (2.16),

we note that for any Lipschitz S ⊆ Π with non-degenerate Sc = Sper ∩Π and for
any sufficiently regular periodic vectorial function ũ there hold the identities

∫

∂ S
ν · ũds =

∫

∂ S∩Π
ν · ũds and

∫

∂ S
ν × ũds =

∫

∂ S∩Π
ν × ũds.

Trace spaces

It remains now to clarify whether and in which sense the concept of the restric-
tion to ∂S of a continuous function on S with continuous extension to ∂S can be
transferred to a function from one of the above Sobolev spaces. In fact, there is a
consistent generalization, which leads to the concept of a trace of a function on
∂S. This is an essential issue in the handling of boundary value problems where
Sobolev spaces serve as solution spaces. The characteristic objects in this context
are the trace operators, which we introduce and discuss in the following sections.
We will show which functions have a trace on ∂S and how the associated trace

spaces look like. Thus, we reproduce here only a basic characterization of a trace
space, cp. Subsection 3.2.1 in [55]. Let here S ⊂ R3 be some bounded Lipschitz
domain and associate every x ∈ ∂S with a set O ⊂ R3 and a Lipschitz continuous
function τ defined on O′ = {(y1,y2) : y ∈ O} which are of the type specified in
Definition 2.1. Moreover, define (locally) the mapping T by T (y′) = (y′,τ(y′)),
y′ ∈ O′. We note that T−1 exists and is Lipschitz continuous on the range of
T . Then a distribution u on ∂S belongs to Hs(∂S) for |s| ≤ 1 if for all O and T

meeting the above conditions there holds

u◦T ∈ Hs(O′∩T−1(∂S∩O)).

For s ∈ [0,1), Hs(∂S) is a Hilbert space with the inner product

〈u,v〉Hs(∂ S) =
∫

∂ S
u(x)v(x)ds(x)+

∫

∂ S

∫

∂ S

(u(x)−u(y))(v(x)− v(y))

|x− y|2+2s
dxdy

for u,v ∈ Hs(∂S). We have not yet characterized the dual space of a trace space.
Since this is a quite technical issue and we want to confine the presentation to
some basic ideas here, we refer the reader to Chapter 3 in [53]. In the acoustic
case, we use the trace space for functions in H1(S), which is H1/2(∂S), and its
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dual H−1/2(∂S). An appropriate notion of traces of fields in H(curl,S) and the
corresponding trace spaces in the electromagnetic case require a separate consid-
eration. We postpone the details to the discussions in Section 2.3 and Subsection
2.4.1.

Periodic and α-quasi-periodic functions which have a well-defined trace on ∂Π
are determined by their behavior in the open unit cell Π. Therefore, to avoid an
overload of notation, we identify such functions with their restrictions to Π. For
any normed space X , we finally introduce the dual pairing [·, ·]X : X ×X ′ → C by

[u, f ]X = f (u) for all u ∈ X , f ∈ X ′,

where, as usual, X ′ denotes the topological dual space of X . If X is a (complex)
Hilbert space with scalar product 〈·, ·〉X , then by the Riesz representation theorem
the mapping Φ : X → X ′, y 7→ 〈·,y〉X , is an isometric (anti-)isomorphism. Thus,
for any f ∈ X ′ there is some y f ∈ X such that f = 〈·,y f 〉X

. Then there holds

[u, f ]X = f (u) = 〈u,y f 〉X
=

∫
u · y f dx for all u ∈ X .

For convenience, we will adapt later on the integral notation for any dual pairing
[·, ·]X with a normed space X and write

[u, f ]X =
∫

u · f dx for all u ∈ X , f ∈ X ′.

We close the section by pointing out that there is a one-to-one correspondence
between the functionals in H−s

α=β
(S) with β 6= 0 and those in H−s

α=0(S). This can

be seen as follows (based on [1]). According to Definition 2.2, for any β ∈R3 the
multiplication operator Mβ : Hs

α=0(S) → Hs
α=β (S) defined by

(Mβ u0)(x) = eiβ ·x u0(x), u0 ∈ Hs
α=0(S),

maps a periodic function to its β -quasi-periodic counterpart. This operator is
linear and bounded and has a bounded inverse M−1

β
. Now, denoting for short

Hs
α(S) by Xα , there hold the identities

[uβ , fβ ]
Xβ

= [Mβ u0, fβ ]
Xβ

= [u0,Mβ
′ fβ ]

X0
and

[u0, f0]X0
= [M−1

β uβ , f0]
X0

= [uβ ,(M−1
β )

′
f0]

Xβ

(2.17)
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for all uβ ∈ Xβ , u0 = M−1
β

uβ ∈ X0, fβ ∈ Xβ
′, and f0 ∈ X0

′. Using standard no-
tation, by Mβ

′ : Xβ
′ → X0

′ we denote the normed space adjoint of Mβ , given by
(Mβ

′ fβ )(u0) = fβ (Mβ u0) for all fβ ∈ Xβ
′, u0 ∈ X0. The identities (2.17) already

prove the assertion. Moreover, since Xα = Hs
α(S) is a Hilbert space, there holds

[Mβ u0, fβ ]
Xβ

= 〈Mβ u0,y fβ
〉

Xβ
= 〈u0,M

∗
β y fβ

〉
X0

= 〈u0,yMβ
′ fβ

〉
X0

= [u0,Mβ
′ fβ ]

X0
,

where M∗
β = Φ−1

0 Mβ
′Φβ : Xβ → X0 is the Hilbert space adjoint of Mβ and Φ0, Φβ

are the anti-isomorphisms of the form stated above for X = X0, X = Xβ , respec-
tively. Of course, a similar relation applies to [M−1

β
uβ , f0]

X0
.

Further results on Sobolev spaces are given, e.g., in the thorough references
[2, 53]. Specific spaces and results will be announced later, in the places where
they are needed.

2.3 Trace operators

Definition 2.5. Let S ⊂ R3 be a bounded Lipschitz set. We define the operators
γD : C∞(S) →C(∂S) and γN : C∞(S) → L2(∂S) by

γD : u 7→ u
∣∣
∂ S

and γN : u 7→ ∂u

∂ν
= ν · γD(∇u)

for u ∈C∞(S), where ν is the exterior unit normal vector to S.

An important result is the following.

Proposition 2.6. Let S ⊂ R3 be a bounded Lipschitz domain. The operators γD

and γN from Definition 2.5 have unique extensions to bounded linear operators

γD : H1(S) → H1/2(∂S) and γN : H2(S) → H1/2(∂S).

The operator γD is called the (Dirichlet) trace operator for S, and γN the Neumann
trace operator for S.

A proof of the extension of γD is given in [53], see Theorem 3.37 therein.
Concerning the extension of γN , see Bemerkung 2.7.5 in [62]. For the treatment
of electromagnetic problems, we need some more operators.

Definition 2.7. Let S ⊂ R3 be a bounded Lipschitz domain and L2
t (∂S) = {v ∈

L2(∂S,C3) : ν · v = 0 a.e. on ∂S} be the space of tangential fields on ∂S, where
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ν is the exterior unit normal vector to S. Define Pt and PT as mappings from
L2(∂S,C3) to L2

t (∂S) by

Pt : w 7→ ν ×w and PT : w 7→ (ν ×w)×ν

for w ∈ L2(∂S,C3). Then, let γt and γT be the operators from C∞(S,C3) to L2
t (∂S)

given by γt : u 7→ Pt(u|∂ S) and γT : u 7→ PT (u|∂ S) for u ∈ C∞(S,C3). These op-
erators can be extended to bounded linear operators from H1(S,C3) to L2

t (∂S)
by

γt = Pt ◦ γD and γT = PT ◦ γD.

Here, γD : H1(S,C3) → H1/2(∂S,C3) is the trace operator for vectorial functions,
meant as the componentwise application of the trace operator from Definition 2.5.
The operator γt is called the tangential trace operator for S, and γT the tangential

components trace operator for S. Moreover, let L2
n(∂S) = {v ∈ L2(∂S,C3) : ν ×

v = 0 a.e. on ∂S} denote the space of normal fields on ∂S and define Pn as a
mapping from L2(∂S,C3) to L2

n(∂S) by

Pn : w 7→ ν ·w
for w ∈ L2(∂S,C3). The operator γn : C∞(S,C3) → L2

n(∂S) which maps u ∈
C∞(S,C3) to Pn(u|∂ S) can be extended to a bounded linear operator γn : H1(S,C3)→
L2

n(∂S) with
γn = Pn ◦ γD,

where γD is as given above. The operator γn is called the normal trace operator

for S.

In the above definitions, we have used that the normal vector ν exists almost
everywhere on ∂S according to Rademacher’s theorem, see Satz 2.7.1 in [62].

2.4 Green’s identities

Equipped with the operators from the previous section, we can now setup some
important integral identities, the Green’s identities.

Theorem 2.8. Let S⊂R3 be a bounded Lipschitz domain. Further, let ∆ : H2(S)→
L2(S) denote the weak Laplacian and curl the weak curl operator.

(i) For all u ∈ H2(S) and v ∈ H1(S) there applies the first Green’s identity
∫

S
∆uvdx =

∫

∂ S
γNuγDvds−

∫

S
∇u ·∇vdx. (2.18)
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(ii) For all u,v ∈ H2(S) there holds the second Green’s identity
∫

S
(∆uv−u∆v)dx =

∫

∂ S
(γNuγDv− γDuγNv)ds. (2.19)

(iii) For all vectorial u,v ∈ H1(S,C3) there holds
∫

S
(curlu · v−u · curlv)dx =

∫

∂ S
γtu · γDvds. (2.20)

Proof.

(i) We make the following operator identifications and refer to Lemmata 4.1
and 4.2 in [53]. According to the notation in [53], we write the operator
P = ∆ : H2(S) → L2(S) as

Pu = −
3

∑
j=1

3

∑
k=1

∂ j(A jk ∂ku), u ∈ H2(S),

with the coefficients A jk = −δ jk and ∂ j denoting the weak derivative w.r.t.
the j-th coordinate, j,k ∈ {1,2,3}. The ‘formal adjoint’ P∗ of P and the
‘conormal derivatives’ Bν and B̃ν are given on H2(S) by

P∗u = ∆u

and Bνu = B̃νu = −ν · γD(∇u).

With γN =−Bν , the identity (2.18) is recognized as a special case of the first
Green’s identity as stated in Lemma 4.1 in [53].

(ii) The identity (2.18) is obtained as the difference of (2.18) and its dual version
implied by Lemma 4.2 in [53].

(iii) Again, we make some operator identifications and refer to Lemma 4.2 in
[53]. We write the operator curl : H1(S,C3) → L2(S,C3) as

Pu =
3

∑
j=1

A j∂ ju, u ∈ H1(S,C3),

with the coefficient matrices

A1 =




0 0 0
0 0 −1
0 1 0


 , A2 =




0 0 1
0 0 0
−1 0 0


 , A3 =




0 −1 0
1 0 0
0 0 0


 ,
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and ∂ j denoting the weak derivative w.r.t. the j-th coordinate, j ∈ {1,2,3}.
The ‘conormal derivative’ Bν vanishes here. With

B̃ ju = A∗
ju = −A ju = −e j ×u,

for the ‘formal adjoint’ P∗ of P and the ‘dual conormal derivative’ B̃ν we
get, respectively,

P∗u = −
3

∑
j=1

∂ jB̃ ju =
3

∑
j=1

∂ jA ju = Pu,

B̃νu =
3

∑
j=1

ν j γD(B̃ ju) = −
3

∑
j=1

ν j(e j × γDu) = −ν × γDu.

Using γt = −B̃ν and

γDu · B̃νv = γDu · (−ν × γDv) = γDv · (ν × γDu) = γDv · γtu,

the identity (2.20) is found to be a special case of the dual first Green’s
identity as stated in Lemma 4.2 in [53].

2.4.1 Generalized trace operators and identities

Now, we show that the trace operators introduced above can be generalized by
means of abstract variants of the Green’s identities from Theorem 2.8. First, we
assume that for some u ∈ H1(S) and some f ∈ H−1(R3) there holds ∆u = f in S.
For u ∈ H1(S), ∆u is defined as a distribution on S via

(∆u)(v) = −
∫

S
∇u ·∇vdx for all v ∈ D(S),

cp. p. 116 in [53]. Then, according to Lemma 4.3 in [53], there exists a gu ∈
H−1/2(∂S) such that

∫

S
f vdx =

∫

∂ S
gu γDvds−

∫

S
∇u ·∇vdx for all v ∈ H1(S), (2.21)

where the first and the second term should be understood as dual pairings. We note
that this equality is a generalization of the first Green’s identity (2.18). Therefore,
a bounded linear extension γN : H1(S) → H−1/2(∂S) of γN from Proposition 2.6
is defined by γN : u 7→ gu with gu from (2.21). However, the functional gu depends
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on f , see the explanation on p. 117 in [53]. We are especially interested in the
case that ∆u ∈ L2(S) for some u ∈ H1(S). Hence, we define the space

H1
∆(S) = {u ∈ H1(S) : ∆u ∈ L2(S)}. (2.22)

Based on (2.21) with f = ∆u in S and f = 0 in R3\S, we then define by γN : u 7→ gu

a unique bounded linear extension γN : H1
∆(S)→ H−1/2(∂S). For more details, we

refer to Section 2.7 in [62].
Regarding the identity (2.20), the condition u ∈ H1(S,C3) appears restric-

tive, since with v ∈ H1(S,C3) the left-hand side of (2.20) is well-defined for
u ∈ H(curl,S) and the right-hand side of (2.20) requires simply that γtu formally
defines a bounded functional on H1/2(∂S,C3). So, by enforcing this identity
(2.20) for all u ∈ H(curl,S) and all v ∈ H1(S,C3), we define a unique bounded
linear extension of γt to an operator γt : H(curl,S) → H−1/2(∂S,C3), cf. [13].
Moreover, since the left-hand side of (2.20) remains well-defined likewise for
v ∈ H(curl,S), one might think of an even more refined identity. In fact, one can
prove

Theorem 2.9. Let S ⊂ R3 be a bounded Lipschitz domain and let Y (∂S) be the

space

Y (∂S) = { f ∈ H−1/2(∂S,C3) : ∃u ∈ H(curl,S) with γtu = f}, (2.23)

normed by

‖ f‖Y (∂ S) = inf
u∈H(curl,S),γtu= f

‖u‖H(curl,S).

With this norm, Y (∂S) is a Banach space.

(i) The operator γt : H(curl,S) → Y (∂ S) is surjective and bounded.

(ii) For all u ∈ H(curl,S) and v ∈ H1(S,C3) there holds

∫

S
(curlu · v−u · curlv)dx =

∫

∂ S
γtu · γDvds. (2.24)

(iii) There is a unique bounded extension of γT to an operator γT : H(curl,S) →
Y (∂S)′ such that for all u,v ∈ H(curl,S) there holds

∫

S
(curlu · v−u · curlv)dx =

∫

∂ S
γtu · γT vds. (2.25)
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Proof.

(i) This is clear by the definition of Y (∂S) and its norm. In fact,

‖γt‖H(curl,S)→Y (∂ S) ≤ 1.

(ii) The operator γt is defined on H(curl,S) such that the identity (2.24) holds.

(iii) Although its statement differs slightly from the one here, careful inspection
of the proof of Theorem 3.31 in [55] reveals the assertion.

The space Y (∂S) is a proper subset of H−1/2(∂S,C3), cp. Remark 3.30 in [55].
For a detailed characterization of γt and its range Y (∂S), see Theorem 4.1 in [13].
For a Lipschitz polyhedron S, we also mention the earlier article [12]. In addition
to the above generalized identities, one has the following result for the normal
trace operator.

Theorem 2.10. Let S ⊂ R3 be a bounded Lipschitz domain. The normal trace

operator γn from Definition 2.7 can be extended by continuity to a bounded linear

operator γn : H(div,S)→ H−1/2(S), and for all u ∈ H(div,S) and v ∈ H1(S) there

holds the Green’s identity

∫

S
(u ·gradv+(divu)v)dx =

∫

∂ S
γnuγDvds. (2.26)

A proof is given in [55], see Theorem 3.24 therein. As a reference, we collect
the results of this subsection in the following corollary.

Corollary 2.11. Let S ⊂ R3 be a bounded Lipschitz domain. The trace operators

are well-defined as bounded linear mappings

γD : H1(S) → H1/2(∂S),

γn : H(div,S) → H−1/2(S),

γN : H2(S) → H1/2(∂S),

γN : H1
∆(S) → H−1/2(∂S),

γt : H(curl,S) → Y (∂S),

γT : H(curl,S) → Y (∂S)′,

with Y (∂ S) as defined in (2.23).
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Further extensions of the trace operator γD from Definition 2.5 are stated in
Theorems 3.37 and 3.38 in [53]. We have shown the unique extensions of the
trace operators from the classical spaces C∞(S) and C∞(S,C3), respectively, to
Sobolev spaces on a bounded Lipschitz domain S. However, in the following we
let these operators frequently refer to a Lipschitz set S ⊂ R3, i.e. to a possibly
unbounded and disconnected S. If S is unbounded, the application of some trace
operator is guaranteed to be well-defined by a truncation procedure in the given
context. In addition, if S is disconnected, the respective trace operator is meant
to denote the corresponding unique trace operator for the (bounded) connected
component for which it is evaluated. We will use the notations u|∂ S, ν · u|∂ S,
∂u/∂ν , ν × u|∂ S, and (ν × u|∂ S)×ν synonymously with γDu, γnu, γNu, γtu, and
γT u, respectively. A particular notation is chosen in any occurrence only for a
better readability.

2.5 Additional function spaces

Besides the space Hs
α(S), defined for a Lipschitz set S ⊆ Π and s > 1/2 in (2.14),

we introduce the spaces

Hα(div,S) = Eα(S)
‖·‖H(div,S)

and Hα(curl,S) = Eα(S)
‖·‖H(curl,S)

(2.27)

for a Lipschitz set S ⊆ Π. For a function u in one of the spaces Hs
α(S), Hα(div,S),

and Hα(curl,S), we write uα instead of u. Finally, we define the spaces Hs
α,loc(S),

Hα,loc(div,S), and Hα,loc(curl,S). In view of (2.9), one might define Hs
α,loc(S) for

a Lipschitz set S⊆Π and s > 1/2 as the set of functions uα such that uα |S̃ ∈Hs
α(S̃)

for every compact subset S̃ of S. The other both spaces could be defined analo-
gously. Now, let S ⊆ Π be a Lipschitz set such that ∂S∩∂Π 6= /0 and Sc = Sper∩Π
is not degenerate, hence (Sc ∩∂Π)∪∂S = ∂S. If the Hα,loc-spaces are defined in
the above manner then they do not provide a statement about the behavior of a
space element at the boundary ∂S. However, we will work with fields on S whose
α-quasi-periodic extensions are Hs

α -, Hα(div)-, or Hα(curl)-regular even across
the (partial) boundary ∂S∩ ∂Π. To capture this feature in the spaces, we define
them by

Hs
α,loc(S) =

{
uα : S → C : Uα

∣∣
S̃
∈ Hs

α(S̃) for any compact S̃ ⊂ Sper
}
,

Hα,loc(div,S) =
{

uα : S → C3 : Uα

∣∣
S̃
∈ Hα(div, S̃) for any compact S̃ ⊂ Sper

}
,

Hα,loc(curl,S) =
{

uα : S → C3 : Uα

∣∣
S̃
∈ Hα(curl, S̃) for any compact S̃ ⊂ Sper

}
,
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where Uα denotes the α-quasi-periodic extension of uα , Sper is defined according
to (2.15), and s > 1/2. A few times, we will also need the space

Hs
α,loc(S) =

{
uα : S → C : Uα

∣∣
S̃
∈ Hs

α(S̃) for any compact S̃ ⊂ S
(2)
per

}

and the corresponding counterparts of Hα,loc(div,S) and Hα,loc(curl,S) for Lip-

schitz sets S with S ⊆ 2 ·Π, but S * Π. The set S
(2)
per is given by

S
(2)
per = {x ∈ R3 : x+(2Λ)⊙ z ∈ S for some z ∈ Z3}◦,

and the spaces Eα(S̃), Hs
α(S̃), Hα(div, S̃), and Hα(curl, S̃) are defined exactly as

in (2.13), (2.14), and (2.27), with S̃ replacing S and the α-quasi-periodicity still
referring to the quasi-period Λ = (2π ,2π ,0)T . Finally, we let

Hs
α,loc(R

3) =
{

uα : R3 → C α-q.-p. : uα

∣∣
S̃
∈ Hs(S̃) for any compact S̃ ⊂ R3},

and Hα,loc(div,R3), Hα,loc(curl,R3) similarly.



Chapter 3

The acoustic case

3.1 The direct problem

3.1.1 Problem formulation

We start with a schematic description of the direct problem in the acoustic case.
At this point, we do not yet care about the regularity of the contrast q = n− 1
and the scattered acoustic field us

α . We assume first that the incident acoustic
field ui

α satisfies the Helmholtz equation ∆ui
α + k2

0 ui
α = 0 in the whole unit cell

Π. This holds true for a plane wave incidence (see Section 2.1). We now consider
the following problem: Given an α-quasi-periodic incident field ui

α , determine an
α-quasi-periodic scattered field us

α from the equations

∆uα + k2
0 (1+q)uα = 0 in Π, (3.1)

uα = ui
α +us

α in Π, (3.2)

[uα ]Γ = 0, (3.3)[
∂uα

∂ν

]

Γ

= 0, (3.4)

and the representation

us
α(x) = ∑

z∈Z

u±z ei(αz·x±βz x3) in R± (3.5)

where Z = Z2×{0}, αz = α +z, and βz =
√

k2
0 −|αz|2. Later on, we will need that

none of the coefficients βz, z ∈ Z, vanishes. Since in acoustics the wave number k0

and the frequency ω of the incident field are related by k0 = ω/c0, this condition
amounts to excluding the frequencies in the set

E = {ω ∈ R+ : ω = c0 |αz| for some z ∈ Z}, (3.6)
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the so-called Rayleigh frequencies. Obviously, E is a discrete set and ωz = c0 |αz|
tends to infinity as |z| goes to infinity. The equations (3.3) and (3.4) represent
transmission conditions at Γ = ∂Ω∩Π (see (1.1)). Further, ν is the exterior unit
normal vector to Ω and [ f ]Γ denotes the jump [ f ]Γ = f |+ − f |−, where f |± is
the trace of f on Γ when approaching Γ from the outside and the inside of Ω,
respectively. The series in (3.5) is required to converge uniformly on compact
subsets of R+ ∪R−. Here and below, the complex square root is defined as the
unique holomorphic extension of the square root on R+

0 to all of C\(−i∞,0), i.e.
to the complex plane slit at the negative imaginary axis. The representation (3.5) is
easily recovered by a Fourier expansion of the periodic field ũs(x) = e−iα·xus

α(x)
and ensuring radiating behavior as well as boundedness of us

α . Hence, it acts
as a radiation condition on us

α and is called the Rayleigh (expansion) radiation

condition. For given phase shift α and wave number k0, the so-called Rayleigh

coefficients u±z ∈ C, z ∈ Z, completely determine the field us
α . A function which

fulfills (3.5) is said to be radiating. Together, the equations (3.1)–(3.5) make up
the mathematical model for an α-quasi-periodic acoustic transmission problem,
with transmission in Ω′. Entailing a first modification of the above problem, we
consider a special type of incident fields, which is chosen in a related setting
in [44]. Let Γi = Γi,+ ∪Γi,− be an incidence surface where Γi,+ ⊂ R+ ∩Π and
Γi,− ⊂ R− ∩Π are flat surfaces with non-empty relative interiors in the planes
containing Γi,+ and Γi,−, respectively. We assume α-quasi-periodic incident fields
which are superpositions of fields generated by acoustic point sources located on
Γi. Such a field is a classical solution to the Helmholtz equation ∆ui

α + k2
0 ui

α = 0
in the restricted domain Π\Γi. For the scattered field us

α , we obtain the equation

∆us
α + k2

0 (1+q)us
α = −k2

0 qui
α in Π. (3.7)

By (3.2) and the smoothness of ui
α in a neighborhood of Γ, the transmission con-

ditions (3.3) and (3.4) imply

[us
α ]Γ = 0 and

[
∂us

α

∂ν

]

Γ

= 0. (3.8)

In the following, we choose L∞(Π) as the source space for the contrast q. How-
ever, to ensure a proper problem formulation and treatment, we actually have to
restrict to a modest subset of L∞(Π). In fact, we require that the boundary of the
essential support of q is a Lebesgue null set in R3, that the periodic extension of
q into R3 has a piecewise smooth representative, and that the (countably many)
interfaces between smooth parts of one such representative enclose Lipschitz do-
mains. This class contains virtually all physically relevant contrasts. At all of the
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interfaces between smooth parts we have to impose transmission conditions of the
type (3.8). But, not to put large effort in similar and frequently arising details, we
keep this issue in mind and leave the problem formulation at stating the conditions
at Γ = ∂ Ω∩Π. Clearly, the differential equation (3.7) has no classical solution
in all of Π in general, and we have to make precise the notion of solutions we are
interested in. Moreover, making considerations analog to those above for q, we
replace ui

α on the right-hand side of (3.7) by a ‘source’ f and let f be an element
of L2(Π) which is essentially supported in Ω. In this more abstract setting, we
write vα instead of us

α .

Precisely, we treat the following generalized direct problem: Given f ∈ L2(Π)
with support in Ω, find a radiating function vα which satisfies

∆vα + k2
0 (1+q)vα = −k2

0 q f in Π (3.9)

together with the transmission conditions

[γDvα ]Γ = 0 and [γNvα ]Γ = 0. (3.10)

Here, [γDvα ]Γ = γD,+vα |Γ − γD,−vα |Γ, where γD,+ and γD,− denote the trace oper-
ators for Ωext and Ω, respectively. The jump of the Neumann trace on Γ is given
by [γNvα ]Γ = −γN,+vα |Γ − γN,−vα |Γ, where γN,+ and γN,− are the Neumann trace
operators for Ωext and Ω, respectively. The minus sign in front of γN,+ is due to
the fact that γN,+ is the generalization of the normal derivative on ∂Ωext, where
the normal vector points into rather than out of Ω on Γ (check against (3.8)).

Variational formulation We understand (3.9) with (3.10) in the variational
sense. In fact, for f as given above, we seek a radiating function vα ∈ H1

α,loc(Π)
such that

∫

Π

(
∇vα ·∇ψ−α − k2

0 (1+q)vα ψ−α

)
dx = k2

0

∫

Ω
q f ψ−α dx (3.11)

holds for all ψ−α ∈ H1
−α(Π) with compact support with respect to x3. This latter

requirement is meant in the sense that there is a compact set M ⊂ Π such that
ψ−α((x1,x2, ·)) is (essentially) supported in M for all (x1,x2) ∈ (−π ,π)2. We re-
call that the α-quasi-periodic extension of a function in H1

α,loc(Π) is H1
α -regular

across the boundary ∂Π. Now, we make some remarks about the formulation
(3.11). All terms in (3.11) are clearly well-defined and vα naturally satisfies the
first transmission condition in (3.10) by the ansatz space H1

α,loc(Π). However,
only if a radiating solution vα to (3.11) is sufficiently regular, this vα can be in-
terpreted as a variational solution to the problem (3.9) with (3.10). In this case,
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the jump [γNvα ]Γ is well-defined (cf. Corollary 2.11) and the transmission condi-
tion [γNvα ]Γ = 0 is already accounted for in the formulation (3.11). The latter is
seen by separate application of the Green’s identity (2.21) to the equation (3.9)
in the domains Ω and Ωext to derive (3.11). In the arising boundary integrals, the
contributions on ∂Π cancel out. We keep in mind the problem (3.9), (3.10) as the
motivation for (3.11).

Closing this subsection, we comment on the existence, uniqueness, and regularity
of a variational solution vα to the direct problem. Let us start with the regularity.
An adaptation of a standard interior elliptic regularity result (e.g. [27, Theorem
8.8]) to our problem implies that a weak solution to (3.9), in particular vα , lies in
fact in H2

α,loc(Π). It is even a classical solution in Ωext ([27, Corollary 8.11] or
[69, Weyl’s Lemma]) and so analytic there ([16, Theorem 3.5]). This also makes
the Rayleigh expansion (3.5) well-defined for vα . Since Π meets the cone condi-
tion, vα is continuous in Π according to Sobolev’s Lemma ([69, Lemma 13.XI]).
We confine ourselves here to describing now a common procedure to show ex-
istence and uniqueness, rather than conducting a complete proof for our setting.
First, one incorporates the Rayleigh radiation condition into a variational formu-
lation by considering the scattering problem in the truncated domain Π\R+∪R−,
instead of in Π as for (3.11), and imposing transparent boundary conditions on
the artificial boundaries Γ+ and Γ−. These conditions are set via the Dirichlet-

to-Neumann operators on Γ+ and Γ−, obtained by simple formal derivation of
the Rayleigh expansion, noting that the unit normal on Γ± equals ±e3, respec-
tively. Here, we have used that the Rayleigh expansion in fact still holds in some
neighborhood of Γ± (in Π), as it is easily seen by the definition of the sets R±.
From the fact that eiαz·x, z ∈ Z, as functions of (x1,x2) ∈ (−π ,π)2 are orthogonal
to each other it follows that the Rayleigh coefficients of a solution ṽα to the just
described variational problem are uniquely determined. By this, ṽα characterizes
completely the behavior in R+∪R− of any radiating solution vα to (3.11) which
coincides with ṽα in Π\R+∪R−. One finds that the problem on the truncated
domain is equivalent to the formulation (3.11) combined with the radiation con-
dition. Usually, the variational problem is stated for the total field uα rather than
for the scattered field vα = us

α . Then, the main step is to prove that the operator
induced by the associated sesquilinear form is Fredholm with index zero (on a
properly chosen space) and depends holomorphically on the wave number in a
set S ⊂ C which we specify in a moment. For the theoretical analysis, the wave
number is allowed here to be complex-valued, we therefore write k instead of k0.
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We recall that for a plane wave ui
α(x) = p eikθ ·x the phase shift α ∈ C2×{0} and

the wave number k are related by

α = kθ = k (sinφ1 cosφ2, sinφ1 sinφ2, 0)T , (3.12)

where φ1 and φ2 are the angles of incidence (see p. 11). Moreover, the wave
number and the frequency ω are related in acoustics by k = ω/c, where c stands
for the speed of sound in a homogeneous background medium. One may equiv-
alently assume two of the quantities k, ω , and c to be complex-valued. The set
S = S(φ1,φ2) of admissible wave numbers is given by

S = {k ∈ C : k2 −αz ·αz /∈ (−i∞,0] for all z ∈ Z}
where αz = α + z with α = α(k) from (3.12). To these wave numbers there ob-
viously correspond the frequencies in S̃ = {ω ∈ C : ω/c ∈ S}. Aside, we remark
that the set E of the Rayleigh frequencies, considered in (3.6) for real-valued wave
numbers k = k0 for c = c0 ∈ R+, is given as E = R+\S̃. In addition to the main
step, one can show that for certain contrasts q as well as for sufficiently small
wave numbers k0 > 0, the direct problem is uniquely solvable (see [65]). Com-
bining the above results on the variational form with such a particular uniqueness
result and applying analytic Fredholm theory (cf. [29]) finally yields that the di-
rect problem is uniquely solvable for all k0 ∈ S+\D where S+ = S∩R+ and D is
a discrete subset of S+ without finite accumulation point. This approach is cho-
sen e.g. in [65] for a smooth contrast and a plane wave source f = ui

α . We only
remark here that the arguments therein can, with some modifications, be carried
over to our setting.

3.1.2 The Green’s function and a representation theorem

For the treatment of the problems in this chapter, we choose an integral equation
approach. In a different, yet related setting, this has been suggested in [44]. A
central ingredient for this approach is the α-quasi-periodic scalar Green’s function
for the Helmholtz operator in free field conditions, which can be represented as

Gα(y,x) =
i

8π2 ∑
z∈Z

1
βz

ei(αz·(x−y)+βz|x3−y3|) (3.13)

for x,y ∈ Π with x3 6= y3. At this point our initial assumption enters that βz 6= 0
for all z ∈ Z. The restriction x3 6= y3 for (3.13) is necessary in order to guarantee
absolute convergence of the series. Anyway, the Green’s function Gα is well-
defined for all x,y ∈ Π with x 6= y, and there are more advanced representations
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of Gα without the limitation x3 6= y3, see e.g. [3] and, for the 2D case, the com-
prehensive article [51]. We use the series form for simplicity. For fixed y ∈ R3,
Gα(y, ·) as a distribution can be interpreted as an array of point sources. In fact, a
technical, but straightforward proof reveals that formally there holds

∆xGα(y,x)+ k2
0 Gα(y,x) = −∑

z∈Z

e2π iα·zδy+2πz(x). (3.14)

This implies that inside the unit cell Π it is

∆xGα(y,x)+ k2
0 Gα(y,x) = −δy(x), x ∈ Π, (3.15)

and analogously, for fixed x,

∆yGα(y,x)+ k2
0 Gα(y,x) = −δx(y), y ∈ Π. (3.16)

It is easy to show that in (Π×Π)\{(x,x) : x ∈ Π} the function Gα has the form

Gα(y,x) = Φ(x,y)+Ψ(x− y), (3.17)

where Φ denotes the fundamental solution to the scalar Helmholtz equation in
R3 and Ψ is a classical solution to the Helmholtz equation in 2 ·Π (and hence
analytic). Moreover, it follows from the representation (3.13) that Gα satisfies
Gα(y,x) = G−α(x,y) and obeys the radiation conditions

Gα(y,x) = ∑
z∈Z

g±z (y)ei(αz·x±βz x3), x3 ≷ y3, and (3.18)

Gα(y,x) = ∑
z∈Z

g±z (x)e−i(αz·y±βz y3), x3 ≷ y3, (3.19)

for fixed y and fixed x, with Rayleigh coefficients g±z (y) and g±z (x), respectively.

Representation theorem

The α-quasi-periodic Green’s function is especially important for the following
representations of α-quasi-periodic functions in the interior and the exterior of
some Lipschitz set.

Theorem 3.1. Let L ⊂ Π be a bounded Lipschitz set such that Lper is also Lip-

schitz and Lc = Lper ∩Π is not degenerate, according to Definition 2.1.

(i) Assume vα ∈ H1
α,∆(L). Then there holds Green’s formula

∫

∂ L

(
vα(y)

∂

∂νy

Gα(y,x)− ∂vα

∂ν
(y)Gα(y,x)

)
ds(y)+

+

∫

L
(∆vα(y)+ k2

0 vα(y))Gα(y,x)dy =

{
−vα(x), x ∈ L

0, x ∈ Π\L
(3.20)
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for almost all x ∈ Π. If vα ∈C2
α(L), then (3.20) holds for all x ∈ Π.

(ii) Assume vα ∈ H1
α,loc(Π\L) is a radiating solution to the Helmholtz equation

∆vα + k2
0 vα = 0 in Π\L. Then vα satisfies

∫

∂ L

(
vα(y)

∂

∂νy

Gα(y,x)− ∂vα

∂ν
(y)Gα(y,x)

)
ds(y) =

{
0, x ∈ L

vα(x), x ∈ Π\L
.

(3.21)

Proof (scheme). The proof relies on the arguments in Section 3.3 in [3]. By a
sophisticated analysis of the Green’s function Gα(·,x), in particular for real wave
numbers (like k0), it is shown there that results from standard potential theory (see
e.g. Section 2.2 in [17]) can be transferred to the α-quasi-periodic case. These
also yield the identities (3.20) and (3.21). To show the second claim in (i), we
modify the proof of Theorem 2.1 in [17] using the second Green’s identity for a
bounded Lipschitz set, cp. Corollary 3.20 (3) in [55]. In the proof of the identity
(3.21) for x ∈ L, the radiation conditions (3.5) for vα and (3.19) for Gα(·,x) are
applied.

3.1.3 The near field operator

In this subsection, we introduce the so-called near field operator, which will be
the central object in our following discussion. From the form of this operator it
becomes clear that its computation is essentially equivalent to the solution of the
direct problem in Ωext. In a more abstract context, the operator which reflects the
direct problem (in Ωext) is called the forward operator.

In our scattering problem, the incident field has the form

ũi
α(x) =

∫

Γi

Gα(y,x)φ(y)ds(y), x ∈ Π\Γi, (3.22)

with Γi as defined on p. 30. Here, φ(y) describes the ‘moment’ of the acoustic
point source at y ∈ Γi, which is represented by Gα(y, ·). This function φ evi-
dently characterizes the incident field ũi

α . Due to the superposition principle, the
scattered acoustic field generated by ũi

α is given by

ũs
α(x) =

∫

Γi

ũs
p,α(x,y)φ(y)ds(y), x ∈ Π,

where ũs
p,α(·,y) denotes the response to the incidence of a single point source lo-

cated at y ∈ Γi. In practice, this field is measured on some surface Γs ⊂ Ωext =
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Γ+

Γ−

Γi,+

Γi,−

Γs,+

Γs,−

Π

−π +π

Figure 3.1: Incidence and measurement surfaces

Π\Ω not too far away from the medium. This fact is captured in the name ‘near
field’. Our analysis requires that Γs is the union of two flat surfaces Γs,+ ⊆ Γ+ and
Γs,− ⊆ Γ− with non-empty relative interiors in Γ+ and Γ−, respectively. Besides,
we note that each of the sets Γi,+, Γi,−, Γs,+, and Γs,− might be disconnected. Fig-
ure 3.1 exemplifies the geometric situation. The operator which maps the moment
function φ of the incident field ũi

α to the scattered field ũs
α on Γs is called the near

field operator M̃ : L2(Γi) → L2(Γs), reading

(M̃φ)(x) =

∫

Γi

ũs
p,α(x,y)φ(y)ds(y), x ∈ Γs. (3.23)

An approximant for the operator M̃ is computed in practice from the given data φ
and a discrete set of measurements of ũs

α on Γs. However, in order for the Factor-
ization Method to be applicable later, it is necessary that the near field operator
maps a Hilbert space into its dual. This requirement obviously is not satisfied if
the incidence surface Γi and the measurement surface Γs are different. To over-
come these problems, in [44] an auxiliary forward operator (a far field operator
therein) is used, which is computed approximately from the original, physical
one. We adapt this procedure here and define the somewhat artificial near field
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operator M : L2(Γs) → L2(Γs) by

(Mϕ)(x) =

∫

Γs

us
p,α(x,y)ϕ(y)ds(y), x ∈ Γs, (3.24)

where us
p,α(·,y) is the response to the complex conjugate point source G−α(y, ·)

at y ∈ Γs. This means that Mϕ corresponds to the α-quasi-periodic incident field

ui
α(x) =

∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Π\Γs. (3.25)

The radiation properties of G−α(y, ·) = Gα(·,y) (see (3.19)) imply that ui
α satisfies

ui
α(x) = ∑

z∈Z

u±z (ϕ)ei(αz·x∓βz x3), x3 ≷ m±, (3.26)

where

u±z (ϕ) = − i
8π2

1

βz

∫

Γs

ϕ(y)e−i(αz·y∓βz y3) ds(y).

The reason why we have to restrict the representation (3.26) to R+ = {x ∈ Π :
x3 > m+} and R− = {x ∈ Π : x3 < m−} is that Ωext might be connected. In this
case, incident waves originating on Γs,+ and Γs,− can propagate to Γ− and Γ+,
respectively. For x ∈ Π inbetween Γ+ and Γ−, neither x3 > y3 nor x3 < y3 holds
for all y∈Γs. However, we can decompose ui

α as the sum of ui
α,+ and ui

α,− defined
by

ui
α,± =

∫

Γs,±
G−α(y,x)ϕ(y)ds(y),

which allow a more detailed representation of ui
α by

ui
α,+(x) = ∑

z∈Z

u±z,+(ϕ)ei(αz·x∓βz x3), x3 ≷ m+, (3.27)

and
ui

α,−(x) = ∑
z∈Z

u±z,−(ϕ)ei(αz·x∓βz x3), x3 ≷ m−, (3.28)

with evident coefficients u±z,+(ϕ) and u±z,−(ϕ). We only remark that the signs
of the x3-terms in the exponents in (3.27) and (3.28) are flipped compared to
those of the corresponding terms in the expressions for the physical incident field
ũi

α , defined in (3.22). It means that the waves caused by ui
α are travelling in

the opposite x3-direction. The approximation of the auxiliary near field operator
M, which we will work with, by means of the physical near field operator M̃ is
discussed in detail in Chapter 5.



38 CHAPTER 3. THE ACOUSTIC CASE

3.2 The inverse problem

With the above preparations, we now address our main goal, referring to a prob-
lem which is ‘inverse’ to the problem described in Section 3.1. At first go, one
might think that it is about the inversion of the operator M̃, whose computation
represents in a way the direct problem, or to a full reconstruction of the contrast,
which governs the direct problem. However, the inversion of M̃ is useless since
its argument, the moment function φ , is the known input in practice. The full re-
construction of the contrast is a sensible, but also the most ambitious objective. In
many applications, the focus is instead on the determination or the optimization
of the shape of some object.

This motivates the following inverse problem: Given the scattered fields ũs
α on

Γs for all moment functions φ ∈ L2(Γi) (and a single fixed wave number k0), find
the shape of the scattering medium or, equivalently, the support of the contrast q!

To be precise, by the ‘shape’ of the medium we always mean its actual shape
together with its location in R3. We note that, due to superposition, knowing
the scattered fields ũs

α (on Γs) for all φ ∈ L2(Γi) is equivalent to knowing the re-
sponses ũs

p,α(·,y) (on Γs) for all y ∈ Γi. Anticipating the unique solvability of the
above inverse problem, one might apply some iterative method to solve it. For
inverse scattering from bounded inhomogeneous media in R3, one can prove that
even the contrast q, not only its support, is uniquely determined by the complete
far field patterns for all directions of incident plane waves, see e.g. Theorem 4.3 in
[45]. A similar rigorous uniqueness result for periodic contrasts seems to be still
an open issue. An iterative method for the full reconstruction of q from far field
data for a bounded inhomogeneity is proposed in [33]. For the reconstruction of
the profile of a perfectly reflecting lamellar grating, an iterative method based on
the so-called domain derivative of the scattered field is established in [30]. On
the one hand, iterative methods are powerful and widely applicable, on the other
hand they have some inconvenient requirements, including conditions on the for-
ward operator, a reasonable initial estimate of the (unique) solution, or so-called
source conditions to guarantee convergence rates, cf. [25, 32]. Moreover, on the
downside of being highly non-specific, these methods do not utilize directly the
characteristics of the problem at hand. For the adequate goal of reconstructing the
support of the contrast, there are more suitable (non-iterative) alternatives which
in fact do not require an initial estimate, see, e.g., [15] for qualitative methods in
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inverse scattering theory. A well-known such alternative is the so-called Factor-

ization Method. It has been proposed by KIRSCH in [39] for inverse scattering
from a bounded obstacle and extended to a class of inverse elliptic problems in
[42]. Under modest assumptions, this method allows an efficient and easy-to-
implement identification of the support of the respective contrast. It is based on a
factorization of the forward operator and a substantial use of the properties of its
factors, thereby taking account of the nature of the problem. In the last decade,
the Factorization Method was developed further by several people, we refer to the
bibliography of the monograph [45]. This book provides a thorough discussion of
the method along with different applications. The problem of inverse scattering
from homogeneous periodic media is treated in the articles [5, 4] and the thesis
[49]. So far, the Factorization Method has not been investigated in the context
of inverse scattering from inhomogeneous periodic media. Our intention is to fill
this gap.

3.2.1 Factorization of the near field operator

Let us start by briefly sketching the idea of the Factorization Method. The first
main feature of the method is the characterization of the range R(B∗) of the adjoint
operator B∗ of B from a certain factorization A = B∗C B in terms of the operator
A. This relies on a functional analytic result and depends on the properties of the
operators B and C. In our discussion, the operator A is the artificial near field op-
erator M and depends implicitly on the medium via the response us

p,α . The second
feature of the Factorization Method, specific to the application in inverse scatter-
ing problems, is expressed in the proof that for some factorization M = B∗C B

there is a deep connection between the range of B∗ and the shape of the scattering
medium. The combination of both relations then enables us to identify the shape
of the medium by means of the artificial near field operator M.

In the following, we make some general assumptions, which we collect for refer-
ence in

Assumptions 3.2.

• The sets Ω′ and Ω = Ω′∩Π are Lipschitz, and the set Ωc = Ωper ∩Π is not
degenerate.

• The connected components of Ω′ are simply connected.

• The contrast q is essentially bounded, i.e. q ∈ L∞(Π), and satisfies
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Π

Ω

Figure 3.2: the connected components of Ω ⊂ R2 are simply connected

(i) q = 0 almost everywhere (a.e.) in Ωext,

(ii) 1+Req = Ren ≥ c0 a.e. in Ω for some constant c0 > 0,

(iii) Imq ≥ 0 a.e. in Ω,

(iv) |q| is locally bounded from below in Ω, meaning that for every compact
subset S ⊂ Ω there is a constant cS > 0 such that |q| ≥ cS a.e. in S.

• The direct problem, defined on p. 31, is uniquely solvable.

We remark that, since Ω′ is Lipschitz, Ωper coincides with Ω′. Due to the third
assumption, Ω does not only contain, but is equal to suppq∩Π. Moreover, the
second and the third assumption imply that Ω′ does not show any inclusions of
the background medium (where q vanishes). For this to hold, we have to require
the simple connectivity of the connected components of Ω′ rather than of those of
the set Ω, to exclude cases similar to the 2D example shown in Figure 3.2. Here,
the connected components of Ω are simply connected, but those of Ω′ (which are
rings) are not. Since every Lipschitz set fulfills the cone condition, the embedding
of H1

α(Ω) into L2(Ω) is compact according to the Rellich-Kondrachov theorem,
cf. [2]. Now, in the style of the incident field (3.25), we define the integral operator
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HΓs : L2(Γs) → L2(Ω) by

(HΓsϕ)(x) =
√

|q(x)|
∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Ω. (3.29)

The meaning of the weighting factor
√
|q| in (3.29) will be clarified in the proof

of Theorem 3.8. The adjoint H∗
Γs

: L2(Ω) → L2(Γs) of HΓs is found to be given by

(H∗
Γs

g)(x) =
∫

Ω
G−α(x,y)g(y)

√
|q(y)|dy, x ∈ Γs. (3.30)

Moreover, we define the solution operator G : L2(Ω) → L2(Γs) which maps f̂ ∈
L2(Ω) to vα |Γs

where vα is radiating and satisfies
∫

Π

(
∇vα ·∇ψ−α − k2

0 (1+q)vα ψ−α

)
dx = k2

0

∫

Ω

q√
|q|

f̂ ψ−α dx

⇐⇒
∫

Π
(∇vα ·∇ψ−α − k2

0 vα ψ−α)dx = k2
0

∫

Ω

(
q√
|q|

f̂ +qvα

)
ψ−α dx

(3.31)

for all ψ−α ∈ H1
−α(Π) with compact support with respect to x3. The equation

(3.31) resembles the variational formulation (3.11), here f̂ plays the role of
√

|q| f |Ω
in (3.11). According to Assumptions 3.2, there is a unique radiating solution to
(3.31), hence the operator G is well-defined. Inspecting the above definitions, one
observes that the near field operator M can be written as

M = GHΓs. (3.32)

Finally, we define the operator T : L2(Ω) → L2(Ω) by

T f̂ = k2
0 sign(q)

(
f̂ +

√
|q|vα

)∣∣
Ω
. (3.33)

Here, sign(z) = z/|z| denotes the complex sign of z ∈ C and vα ∈ H1
α,loc(Π) is the

variational solution to the direct problem with source f , i.e. the radiating solution
to (3.31), where f̂ is given as the argument of T and related to the source f as
described above. Then, (3.31) is easily seen to be the variational form of

∆vα + k2
0 vα = −k2

0
q√
|q|

f̂ − k2
0 qvα = −

√
|q|T f̂ (3.34)

in Π, where the right-hand side is extended by zero into Ωext. In a next step, we
show that (3.31) is equivalent to a formulation as an integral equation. Based on
this integral equation, we will refine the factorization (3.32) of M and, along the
way, prove the well-known (acoustic) Lippmann-Schwinger equation. The main
tool is established in the following proposition.
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Proposition 3.3. Let W be the volume potential operator defined by

(W g)(x) =
∫

Ω
G−α(x,y)g(y)

√
|q(y)|dy (3.35)

with g ∈ L2(Ω) and x ∈ Π. We consider the potential wα = Wg for some g.

(i) Let the density
√
|q|g be bounded and Hölder continuous,

√
|q|g ∈C0,γ(Ω)

with 0 < γ ≤ 1. Then the potential wα = W g is in C2
α(Π\Γ)∩C1

α(Π) and a

classical radiating solution to

∆wα + k2
0 wα = −

√
|q|g in Π\Γ. (3.36)

The right-hand side of (3.36) is extended by zero into Ωext.

(ii) For densities
√
|q|g∈ L2(Ω), in particular for q∈ L∞(Ω) and g∈ L2(Ω), the

potential wα is in H1
α,loc(Π) and a radiating variational solution to (3.36).

(iii) The mapping of g to the restriction of wα to Ω defines a bounded linear

operator from L2(Ω) to H1
α(Ω).

Proof.

(i) We recall the decomposition (3.17) of the Green’s function Gα and the fact
that the fundamental solution Φk0 = Φ to the Helmholtz equation in R3 is
the product of the fundamental solution Φ0 to the Laplace equation in R3

and a smooth function. Using this, the regularity of wα and the equation
(3.36) can be shown in a similar way as Lemmata 4.1 and 4.2 in [27]. See
also p. 141 (a) in [69] and Theorem 8.1 in [17]. The potential wα inherits
the radiating behavior from the integration kernel of W . Besides, we want to
emphasize that (3.36) does not imply that

√
|q|g is (or needs to be assumed)

α-quasi-periodic since (3.36) is asserted only to hold in Π\Γ and we have not
yet made any statement about the regularity of wα across the boundary ∂Π.
If the α-quasi-periodic extension of

√
|q|g is C0,γ-regular across ∂Π\∂Ω′,

then (the α-quasi-periodic extension of) wα is in C2
α(R3\∂Ω′)∩C1

α(R3) and
(3.36) holds in R3\∂Ω′.

(ii) Concerning the regularity of wα , we refer to Theorem 8.2 in [17], again un-
der consideration of the relation (3.17). Since a classical solution is also a
variational solution, the second part of the assertion results from the dense-
ness of the set of bounded C0,γ(Ω)-functions in L2(Ω) with respect to the
norm of the latter. We also point here to the regularity discussion in Subsec-
tion 3.1.1.
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(iii) This is a consequence of the definition of wα and part (ii).

Obviously, the operators W from (3.35) and H∗
Γs

from (3.30) are related by

H∗
Γs

g = (W g)
∣∣
Γs

, g ∈ L2(Ω).

By Proposition 3.3 (ii) and the identity G−α(x,y) = Gα(y,x), a solution to the
integral equation

vα(x) = k2
0

∫

Ω
Gα(y,x)

(
q(y)√
|q(y)|

f̂ (y)+q(y)vα(y)

)
dy

= k2
0

∫

Ω
Gα(y,x)q(y)( f (y)+ vα (y))dy (3.37)

in Π is a radiating solution to (3.31). The equation (3.37) is called the α-quasi-
periodic (acoustic) Lippmann-Schwinger equation. Vice versa, since the only
radiating solution to ∆ṽα + k2

0 ṽα = 0 in Π is ṽα ≡ 0, the unique solution to (3.31)
satisfies (3.37). Hence, (3.31) and (3.37) are equivalent, and we can write (3.37)
for short as

vα(x) =
∫

Ω
Gα(y,x)(T f̂ )(y)

√
|q(y)|dy. (3.38)

From this and (3.30), we realize the identity H∗
Γs

T f̂ = vα |Γs
= G f̂ . Finally, insert-

ing this into (3.32), we obtain a factorization of the artificial near field operator M

in the form
M = H∗

Γs
T HΓs. (3.39)

We complete the description of the integral equation approach in a corollary to
Proposition 3.3. It just rephrases for the periodic case the comments on p. 92 in
[45].

Corollary 3.4. Let Assumptions 3.2 hold.

(i) If vα ∈ H1
α,loc(Π) is a radiating solution to (3.31), then the restriction vα |Ω ∈

H1
α(Ω) solves the equation

ṽα = k2
0 W

(
q√
|q|

( f + ṽα)

)∣∣∣∣
Ω

. (3.40)

(ii) If vα ∈ H1
α(Ω) solves (3.40), then it can be extended by the right-hand side

of (3.37) to a radiating solution to (3.31).
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Our final result in this subsection deals with some properties of the operator
HΓs and its adjoint, which are necessary for the setup of a suitable Factorization
Method. A thorough analysis of the inner operator T in (3.39), defined in (3.33),
is the subject of Subsection 3.2.3.

Proposition 3.5.

(i) The operators HΓs and H∗
Γs

are compact.

(ii) The operator HΓs is injective.

Proof.

(i) We recall that H∗
Γs

is given by

(H∗
Γs

g)(x) =
∫

Ω
G−α(x,y)g(y)

√
|q(y)|dy

with x∈Γs. This is a Hilbert-Schmidt integral operator with kernel in L2(Γs×
Ω) and thus compact, cf. Theorem 7.83 in [59]. The compactness of HΓs

is
a direct consequence, see e.g. Theorem 4.19 in [60].

(ii) Let ϕ ∈ kerHΓs. Since q 6= 0 a.e. in Ω, we conclude that the potential hα :
Π → C defined by

hα(x) =
∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Π,

vanishes in Ω, cp. (3.29). An analytic continuation argument then shows that
hα = 0 in {x ∈ Π : m− < x3 < m+}, where m− and m+ have been introduced
on p. 11. Since for ϕ ∈ L2(Γs) there holds hα ∈ H1

α,loc(Π) (cf. Theorem 6.11
in [53]), hα does not jump across Γ+ and Γ−. This yields γD,+hα = 0 on
Γ+∪Γ−, where γD,+ denotes the trace operator for R+∪R−. Moreover, hα

solves the Helmholtz equation in R+ ∪R− and obeys the expansion (3.26).
Given these equations, the problem to determine hα in R+∪R− is an unusual,
α-quasi-periodic exterior Dirichlet problem. Compare the classical exterior
Dirichlet problem for a bounded region, treated in [16]. This problem has
at most one solution, which is seen by the smoothness of a solution to the
Helmholtz equation and the representation (3.26) together with the fact that
ei(αz·x) as well as e−i(αz·x) with z ∈ Z form a basis of L2(Γr) for every Γr =
{x ∈ Π : x3 = r} with r ∈ R. We conclude that hα vanishes in R+ ∪ R−.
Finally, by the jump relation [γNhα ]Γs

= −ϕ ([53, Theorem 6.11]) we obtain
ϕ ≡ 0. Hence, HΓs is injective.
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3.2.2 The interior transmission eigenvalue problem

Before we proceed with the analysis of the inner operator T in (3.39), we present
here a special kind of an eigenvalue problem called the interior transmission

eigenvalue problem. This problem has some analogy to a transmission problem,
but while in the latter the interior as well as the exterior of some domain are in-
volved, in the former the ‘transmission’ manifests in a coupling at the boundary
of a domain of two functions which are both defined in the interior of the domain.
It turns out that this special problem, stated for our setting, affects some properties
of the near field operator M. To begin, we introduce the equation system

∆vα + k2
0 (1+q)vα = 0, ∆wα + k2

0 wα = 0 in Ω
γDvα = γDwα , γNvα = γNwα on Γ

}
, (3.41)

where γD is the trace operator for Ω and γN is the Neumann trace operator for
Ω. In a classical formulation for a sufficiently smooth contrast, k2

0 is said to be
an interior transmission eigenvalue if there is a nontrivial solution (vα ,wα) ∈
(C2

α(Ω)∩C1
α(Ω))2 to (3.41). For a contrast q ∈ L∞(Π), the problem (3.41) has, of

course, to be understood in the variational sense.

Definition 3.6. The value k2
0 is said to be an interior transmission eigenvalue

with corresponding eigenpair (vα ,wα)∈H1
α(Ω)×H1

α(Ω) if (vα ,wα) 6= (0,0) and
(vα ,wα) satisfies

∫

Ω

(
∇vα ·∇ψ−α − k2

0 (1+q)vα ψ−α

)
dx =

∫

Ω
(∇wα ·∇ψ−α − k2

0 wα ψ−α)dx

(3.42)
for all ψ−α ∈ H1

−α(Ω) and
∫

Ω
(∇wα ·∇ψ−α − k2

0 wα ψ−α)dx = 0 (3.43)

for all ψ−α ∈ H1
−α,0(Ω).

Under sufficient regularity of the functions vα and wα of an eigenpair (vα ,wα)
is a variational solution to the system (3.41). The coupling boundary condition
γNvα = γNwα on Γ is then implied by the formulation (3.42), (3.43), due to the
claim that (3.42) holds for all ψ−α ∈ H1

−α(Ω). This can be seen by applying the
first Green’s identity (2.18) separately to the first both equations in (3.41) and
comparing the resulting equations with (3.42), (3.43). The arguments here are
analog to those in the short discussion following the variational equation (3.11)
for the direct problem. Now, we shortly address a type of contrast for which there
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are no interior transmission eigenvalues. Let U ⊆ Ω be some non-empty open
set which has non-empty intersection with each connected component of Ω. If
Imq > 0 on U , then there is no interior transmission eigenvalue k2

0 > 0. This can
be proven using the fact that any variational solution vα to the first equation in
(3.41) lies in H2

α(Ω0) for any subdomain Ω0 ⊂ Ω [27, Theorem 8.8] and applying
a differential inequality for vα for unique continuation, cf. Lemma 4.15 in [55].
An important consequence of the absence of such eigenvalues for the near field
operator M is stated in the following proposition.

Proposition 3.7. Assume that k2
0 is not an interior transmission eigenvalue. Then

M : L2(Γs) → L2(Γs) is injective and has dense range R(M) in L2(Γs).

Proof. We use the idea of the proof of Theorem 1.8 (d) in [45]. Let ϕ ∈ kerM.
The radiation condition (3.5), an analytic continuation argument, and the fact that
Ω′ has no inclusions of the background medium yield that the scattered field us

α

with the near field Mϕ ≡ 0 vanishes in Ωext. From the definition of the operator
M, it is clear that us

α is raised by the incident field ui
α =

∫
Γs

G−α(y, ·)ϕ(y)ds(y).
Now, the functions vα = ui

α + us
α and wα = ui

α satisfy the interior transmission
eigenvalue problem (3.41). By the assumption on k2

0, vα and wα have to vanish in
Ω. As a consequence of the form of the incident field ui

α and the injectivity of HΓs

(see Proposition 3.5 (ii)), this is possible only for ϕ ≡ 0. Hence, M is injective.
For the second part of the assertion, we use the common identity R(M)⊥ = kerM∗

and show that also the adjoint M∗ is injective. This is easily seen to be given by

(M∗ϕ)(x) =
∫

Γs

us
p,α(y,x)ϕ(y)ds(y) =

∫

Γs

us
p,α(y,x)ϕ(y)ds(y), x ∈ Γs.

The definition of us
p,α and the form of the Green’s function imply the reciprocity

relation us
p,α(y,x) = us

p,α(−x,−y) for all x,y ∈ Γs, hence

(M∗ϕ)(x) =

∫

Γs

us
p,α(−x,−y)ϕ(y)ds(y), x ∈ Γs. (3.44)

Now, let ϕ ∈ kerM∗. We define M− like M with −Γs replacing Γs and note that
−Γs as well as Γs are contained in Γ+∪Γ−. With (3.44), we obtain M−ϕ− = 0
on −Γs where ϕ−(y) = ϕ(−y). By similar arguments as above, M− is shown
to be injective. Therefore, ϕ− ≡ 0 on −Γs and, accordingly, ϕ ≡ 0 on Γs. This
completes the proof.
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3.2.3 The inner operator

Complementing the preceding considerations, we address now the inner operator
T , which remains to be examined in the factorization (3.39) of the artificial near
field operator M. Properties of the inner operator are crucial in the functional
analytic foundation of the Factorization Method as presented in [45]. Hence, for
an application of the Factorization Method it is a key step to prove that the inner
operator in a suitable factorization of the respective forward operator (here M) has
the required properties. Our next theorem collects the results for the operator T

from (3.39).

Theorem 3.8. Let Assumptions 3.2 hold.

(i) The operator T defined in (3.33) can be written in the form T = T̃ +K where

T̃ : L2(Ω) → L2(Ω) is defined by T̃ f̂ = k2
0 sign(q) f̂ and K : L2(Ω) → L2(Ω)

is compact. If there exist two constants t ∈ [0,2π) and c0 > 0 such that

Re(ei tq) ≥ c0|q| holds a.e. in Ω, then the operator Re(ei t T̃ ) is coercive,

precisely,

Re
(
ei t〈T̃ f̂ , f̂ 〉L2

)
≥ k2

0 c0‖ f̂‖2
L2 (3.45)

holds for all f̂ ∈ L2(Ω).

(ii) The operator ImT is positive semi-definite, i.e. Im〈T f̂ , f̂ 〉L2 ≥ 0 for all f̂ ∈
L2(Ω).

(iii) Assume that there is a constant c1 > 0 such that Imq ≥ c1|q| holds a.e. in Ω.

Then ImT is coercive, meaning that there is a constant c2 > 0 such that

Im〈T f̂ , f̂ 〉L2 ≥ c2‖ f̂‖2
L2 (3.46)

applies for all f̂ ∈ L2(Ω).

(iv) The operator T is injective.

Proof.

(i) The form T = T̃ +K is obvious where K maps f̂ ∈ L2(Ω) to k2
0 q/

√
|q|vα

∣∣
Ω

and vα is the radiating solution to the variational equation (3.31). The op-
erator K is compact due to the compact embedding of H1

α(Ω) ∋ vα |Ω into
L2(Ω). Further, we get

Re
(
ei t〈T̃ f̂ , f̂ 〉L2

)
= k2

0

∫

Ω

Re(ei tq)

|q| | f̂ |2 dx ≥ k2
0 c0

∫

Ω
| f̂ |2 dx,

which proves (3.45).
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(ii) The first half of the proof is based on the idea of the proof of Theorem 4.8 (b)
in [45]. We define ĝ ∈ L2(Ω) by ĝ = ( f̂ +

√
|q|vα)

∣∣
Ω

and use the definition
(3.33) of T to find

〈T f̂ , f̂ 〉L2 = k2
0

∫

Ω
sign(q) |ĝ|2 dx− k2

0

∫

Ω

q√
|q|

ĝ vα dx. (3.47)

Since vα satisfies the equation

∆vα + k2
0 vα = −

√
|q|T f̂ = −k2

0
q√
|q|

ĝ (3.48)

in Π in the variational sense (cp. (3.34)), (3.47) can be written as

〈T f̂ , f̂ 〉L2 = k2
0

∫

Ω
sign(q) |ĝ|2 dx+

∫

Ω
(∆vα + k2

0 vα)vα dx.

Now, we let R = {x∈Π : |x3|< r} with r > 0 such that Ω∩Π⊂ R. Applying
the Green’s identity (2.18) in Ω and afterwards in R\Ω, we obtain

〈T f̂ , f̂ 〉L2

=k2
0

∫

Ω
sign(q) |ĝ|2 dx+

∫

Ω
(k2

0 |vα |2 −|∇vα |2)dx +
∫

Γ

∂vα

∂ν
vα ds

=k2
0

∫

Ω
sign(q) |ĝ|2 dx+

∫

R
(k2

0 |vα |2 −|∇vα |2)dx+
∫

∂ R∩Π

∂vα

∂ν
vα ds.

We point out that the boundary integrals have to be taken here only over
Γ = ∂Ω∩Π and ∂R∩Π, respectively, since the contributions on Ω′ ∩ ∂Π
and R∩∂Π cancel out. Using the radiation condition (3.5), the orthogonality
of eiαz·x, z ∈ Z, as functions of (x1,x2) ∈ (−π ,π)2, and the fact that ν = ±e3

on ∂R∩Π, we arrive at

〈T f̂ , f̂ 〉L2 = k2
0

∫

Ω
sign(q) |ĝ|2 dx+

∫

R
(k2

0 |vα |2 −|∇vα |2)dx+

+ i
∫

∂ R∩Π
∑
z∈Z

βz|v±z |2 e−2Im βz x3 ds. (3.49)

Finally, letting r → +∞ and noting that then in (3.49) the partial sum of the
terms corresponding to z ∈ Z with βz ∈ iR+ vanishes, we obtain

〈T f̂ , f̂ 〉L2 = k2
0

∫

Ω
sign(q) |ĝ|2 dx+

∫

Π
(k2

0 |vα |2 −|∇vα |2)dx+

+ i4π2 ∑
βz∈R+

βz|v±z |2.
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Under Assumptions 3.2, this yields

Im〈T f̂ , f̂ 〉L2 = k2
0

∫

Ω

Imq

|q| |ĝ|2 dx+4π2 ∑
βz∈R+

βz|v±z |2 ≥ 0, (3.50)

which is the assertion.

(iii) The short proof is in the same spirit as the proof of Theorem 5.12 (c) in
[45]. Assume that there is no constant c2 > 0 such that (3.46) holds for
all f̂ ∈ L2(Ω). Then we can find a sequence f̂ j, j ∈ N, with ‖ f̂ j‖L2 = 1
such that Im〈T f̂ , f̂ 〉L2 → 0. From (3.50) and the definition of ĝ we conclude
that ĝ j = ( f̂ j +

√
|q|vα, j)

∣∣
Ω
→ 0 in L2(Ω), where vα, j denotes the radiating

solution to (3.31) with f̂ replaced by f̂ j. Thus, vα, j is the radiating variational
solution to

∆vα, j + k2
0 vα, j = −k2

0
q√
|q|

f̂ j − k2
0 qvα, j = −k2

0
q√
|q|

ĝ j

in Π, where the right-hand side is extended by zero into Ωext. From Proposi-
tion 3.3 we obtain that vα, j, j ∈ N, converges to zero in H1

α(Ω) and therefore
f̂ j → 0 in L2(Ω). This contradicts ‖ f̂ j‖L2 = 1, the assertion is proven.

(iv) Let f̂ ∈ kerT . Then (3.48) turns into the Helmholtz equation ∆vα +k2
0 vα = 0

in Π. This means that from the theoretical perspective the scattering medium
is invisible for f̂ ∈ kerT . We understand the Helmholtz equation in the vari-
ational sense, but recall that every variational solution to it is indeed a clas-
sical one. Now, we apply the representation formulas (3.20) and (3.21) with
any bounded Lipschitz set L ⊂ Π. Since in the situation considered here the
assumptions for both formulas are fulfilled, we combine them to conclude
that vα vanishes identically in Π. Then from

T f̂ = k2
0 sign(q)

(
f̂ +

√
|q|vα

)∣∣
Ω

= 0

⇐⇒
(

f̂ +
√
|q|vα

)∣∣
Ω

= 0 (3.51)

there follows f̂ ≡ 0, hence T is injective.

We finally remark that the weighting factor
√

|q| in the definition (3.29) of
HΓs is important for the coercivity of Re(ei tT̃ ) and ImT . If e.g. the contrast q is
continuous, then the coercivity could not be ensured without the weighting factor
because of the resulting form of the operator T and the fact that q decays to zero
in a neighborhood of Γ.





Chapter 4

The electromagnetic case

4.1 The direct problem

4.1.1 Problem formulation

Like in the acoustic case, we start regardless of regularity issues by introducing
the basic model equations for the electromagnetic direct problem. These are the
α-quasi-periodic time-harmonic Maxwell’s equations

curlH̃α + iω ε Ẽα = σ Ẽα , curl Ẽα − iω µ H̃α = 0,

where H̃α and Ẽα represent an α-quasi-periodic magnetic and electric field, re-
spectively. Again, we let the permeability µ be constant equal to its value µ0 in
vacuum, hence the relative permeability µr(x) = µ(x)/µ0 equals one in all of R3.
We also recall that εr(x) = ε̂(x)/ε0 with ε̂(x) = ε(x)+ iσ(x)/ω denotes the rela-

tive permittivity. Substituting in the above equations H̃α by µ
−1/2
0 Hα and Ẽα by

ε
−1/2
0 Eα , we obtain

curlHα + ik0 εr Eα = 0, curlEα − ik0 Hα = 0, (4.1)

where k0 = ω
√

ε0 µ0 is the wave number in vacuum, being the background matter
in the model. We assume at first that the equations (4.1) hold in the whole unit
cell Π. If these equations hold in the classical sense then, due to the identity
divcurl = 0, they imply that div(εr Eα) = 0 and divHα = 0. This means that for
a constant permeability the magnetic field Hα is divergence-free (in the classical
sense), whereas for the normal case of a non-constant complex permittivity ε̂
the electric field Eα is not. Since this feature of Hα remains valid in a proper
sense also for the notion of a weak (or variational) solution (Hα ,Eα) to (4.1),
which we discuss below, it is convenient to deal with the magnetic field rather than
the electric field. Once Hα is found, Eα can be computed according to the first
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equation in (4.1). Utilizing the first in the second equation yields the second-order
Maxwell’s equation curl(ε−1

r curlHα)− k2
0 Hα = 0 for the magnetic field in Π.

The full direct problem for the electromagnetic case now reads in a first version:
Given an incident α-quasi-periodic magnetic field H i

α , compute the corresponding
scattered magnetic field Hs

α as a solution to the equations

curl

(
1
εr

curlHα

)
− k2

0 Hα = 0 in Π, (4.2)

Hα = H i
α +Hs

α in Π, (4.3)

[ν ×Hα ]Γ = 0, (4.4)

[ν ×Eα ]Γ = 0 ⇔ [ν × (ε−1
r curlHα)]Γ = 0. (4.5)

Again, [ f ]Γ = f |+− f |− denotes the jump of f across the boundary Γ = ∂Ω∩Π
and ν is the exterior unit normal vector to Ω. In analogy to the Rayleigh expansion
(3.5) in acoustics, we require in addition that Hs

α obeys a representation of the
form

Hs
α(x) = ∑

z∈Z

curl
(
h̃±z ei(αz·x±βz x3)

)
= ∑

z∈Z

h±z ei(αz·x±βz x3) in R±, (4.6)

where Z = Z2 ×{0}, αz = α + z, βz =
√

k2
0 −|αz|2, and

h±z = i




αz,1

αz,2

±βz


× h̃±z .

The series in (4.6) is assumed to converge uniformly on compact subsets of R+∪
R−. Moreover, we require that βz 6= 0 for all z ∈ Z. With k0 = ω

√
ε0 µ0, the

associated Rayleigh frequencies form the set

E = {ω ∈ R+ : ω = (ε0 µ0)
−1/2 |αz| for some z ∈ Z}.

The Rayleigh expansion (4.6) acts as the radiation condition for the Maxwell prob-
lem. Obviously, for given phase shift α and wave number k0, the Rayleigh coef-

ficient vectors h±z ∈ C3, z ∈ Z, completely characterize the scattered field Hs
α . A

function which satisfies (4.6) is said to be radiating in the following. Together,
the equations (4.2)–(4.6) model an α-quasi-periodic electromagnetic transmis-
sion problem, with transmission in Ω′ (recall Ω = Ω′∩Π). We now fix the class
of incident fields and to this end let Γi = Γi,+∪Γi,− be a surface of the same type
as in the acoustic case, cp. p. 30. We consider α-quasi-periodic incident fields
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H i
α which originate from a collection of point sources located on Γi. The point

sources are magnetic dipoles here. Such a field solves the homogeneous second-
order Maxwell’s equation curl2H i

α − k2
0 H i

α = 0 in Π\Γi and is smooth there. For
the scattered field Hs

α , we then obtain (formally) the equation

curl

(
1
εr

curlHs
α

)
− k2

0 Hs
α = curl(q curlH i

α) in Π. (4.7)

With (4.3) and the continuity of H i
α across Γ, from the transmission conditions

(4.4) and (4.5) we derive

[ν ×Hs
α ]Γ = 0 and [ν × (ε−1

r curlHs
α)]Γ = −ν × (q curlH i

α)
∣∣
−. (4.8)

For the following problem treatment, we let the relative permittivity εr and the
contrast q = 1−1/εr be elements of L∞(Π). However, we refer back to the expla-
nation on p. 30 and make, in fact, the same implicit assumptions for εr and q as
for the contrast in the acoustic case. We restrict also here to stating the transmis-
sion conditions at Γ = ∂Ω∩Π. Consequently, there is no classical solution to the
equations (4.6)–(4.8) in general. We specify now a proper notion of a solution to
this problem and comment on the formal rearranging leading to (4.7) and (4.8).

Similar to the approach in the acoustic case, we consider a slightly more abstract
direct problem: Given a vectorial function f with support in Ω, find a radiating
function vα which satisfies

curl

(
1
εr

curlvα

)
− k2

0 vα = curl f in Π, (4.9)

together with the transmission conditions

[γtvα ]Γ = 0 and [γt(ε
−1
r curlvα)]Γ = −γt,− f . (4.10)

Here, [γtvα ]Γ denotes the jump of the tangential trace across Γ and is given by
[γtvα ]Γ = −γt,+vα |Γ − γt,−vα |Γ, where γt,+ and γt,− are the tangential trace oper-
ators for Ωext and Ω, respectively. The minus sign in front of γt,+ is due to the
fact that γt,+ is the generalization of the operator ν × γD,+(·) on ∂Ωext, where the
normal vector ν points into rather than out of Ω on Γ (check against (4.8)).

Variational formulation Under the given assumptions, we understand (4.9)
with (4.10) in the variational sense. For f ∈ L2(Π,C3), we seek a radiating func-
tion vα ∈ Hα,loc(curl,Π) such that

∫

Π

(
1
εr

curlvα · curlψ−α − k2
0 vα ·ψ−α

)
dx =

∫

Ω
f · curlψ−α dx (4.11)
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is fulfilled for all ψ−α ∈ H−α(curl,Π) with compact support with respect to the
x3-variable, meaning that there is a compact set M ⊂ Π such that ψ−α((x1,x2, ·))
is (essentially) supported in M for all (x1,x2) ∈ (−π ,π)2. We recall that the α-
quasi-periodic extension of a function in Hα,loc(curl,Π) is Hα(curl)-regular across
the boundary ∂Π, cf. the definition of the space Hα,loc(curl,S) on p. 27. With the
spaces chosen above, (4.11) is well-defined and vα naturally meets the first trans-
mission condition in (4.10). However, in order to explain the relation between
(4.11) and (4.9) with (4.10), we have to clarify some points. First, we note that for
f ∈ L2(Π,C3) the right-hand side of the second transmission condition in (4.10)
is certainly not well-defined. Even more, the left-hand side of the condition as
well as the equation (4.9) in the actual variational sense are not well-defined in
general. To see this, one should be aware that for the derivation of the variational
formulation the Green’s identity (2.25) has to be applied, but neither ε−1

r curlvα

nor f is H(curl)-regular. The equation (4.11) is obtained by a formal application
of this identity to (4.9). Nevertheless, it can be justified rigorously as follows. We
go back to our starting point (4.1) and note that it is reasonable to require that
the physical total fields Hα and Eα = −(ik0 εr)

−1 curlHα are Hα(curl)-regular, in
order for the Maxwell’s equations (4.1) to be fulfilled in a proper sense. Also,
the physical incident field H i

α as well as curlH i
α are Hα(curl)-regular since H i

α is
smooth in its domain of definition. Hence, under consideration of the regularity
issues, the equations in (4.7) and (4.8) are stated in a proper form as

curl

(
1
εr

curlHα − curlH i
α

)
− k2

0 Hs
α = 0 in Π (4.7′)

in the variational sense, together with the transmission conditions

[γtH
s
α ]Γ = 0,

[γt(ε
−1
r curlHα − curlH i

α)]Γ = 0
⇐⇒ γt,+(curlHs

α)+ γt,−(ε−1
r curlHα) = γt,−(curlH i

α).



 (4.8′)

Applying the Green’s identity (2.25) to (4.7′) separately in the domains Ω and
Ωext, the variational form of (4.7′) is found to be

∫

Π

((
1
εr

curlHα − curlH i
α

)
· curlψ−α − k2

0 Hs
α ·ψ−α

)
dx−

−
∫

Γ

[
γt(ε

−1
r curlHα − curlH i

α) · γT ψ−α

]
Γ
ds = 0. (4.12)

Here, we have used that the integral contributions on ∂ Π cancel out. By the sec-
ond transmission condition in (4.8′) and the fact that ψ−α ∈ H−α(curl,Π) implies
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[γtψ−α ]Γ = 0 and likewise [γT ψ−α ]Γ = 0, the boundary integral term in (4.12)
vanishes. On the other hand, if this boundary integral is required to vanish for all
ψ−α ∈ H−α(curl,Π) then this implies [γt(ε

−1
r curlHα − curlH i

α)]Γ = 0. The for-
mulation (4.11) is based on the observation that the remaining volume integral on
the left-hand side of (4.12) stays well-defined for Hα ∈ Hα,loc(curl,Π), without
requiring that ε−1

r curlHα lies in Hα,loc(curl,Π). From this more general perspec-
tive, Hα is not understood as a magnetic field anymore. Now, one can rearrange
terms and, replacing Hs

α = Hα −H i
α by vα and (1− ε−1

r )curlH i
α = q curlH i

α by
f (as done before at an early stage), one arrives at (4.11). This derivation shows
that only for certain sources f ∈ L2(Π,C3) and for certain radiating solutions
vα ∈ Hα,loc(curl,Π) to (4.11), these vα can be reinterpreted as variational so-
lutions to the physical problem (4.7′) with (4.8′), where vα stands for Hs

α , f/q

stands for curlH i
α in Ω, and ε−1

r curlHα − curlH i
α equals curlvα in Ωext. In this

case, (4.11) incorporates the second transmission condition in (4.8′) as explained
above. Keeping this relation between (4.11) and the physical problem in mind,
we continue to use the convenient ‘schematic’ formulation by (4.9) and (4.10).

Existence and uniqueness of a variational solution to the direct problem can be
shown by a similar procedure as outlined for the acoustic case at the end of Sub-
section 3.1.1. These and more results for the electromagnetic direct problem, for
the medium type considered here and a plane wave incidence, are obtained in the
articles [8, 63]. We finally comment on the regularity of a radiating variational
solution vα to (4.9) with (4.10). For constant permeability µ , as we assume it to
be the case with µ ≡ µ0, the α-quasi-periodic extension of vα , which we identify
with vα , is divergence-free in all of R3 in the weak sense. To show this, one uses
the Green’s identity (2.26) and the fact that for constant µ the normal trace γnvα

of vα does not jump in R3 (cp. Subsection 1.2.2 in [55]). Hence, vα lies in the
space

H⋄
α(Π) = {uα ∈ Hα,loc(curl,Π) : divuα ∈ L2

loc(R
3)}

and so in fact is H1
α -regular on every compact subset of R3, cf. Corollary 2.10 in

[28]. In Ωext, i.e. outside the supports of the contrast q and the source f in Π,
the equation (4.9) reduces to the homogeneous equation curl2vα − k2

0 vα = 0. The
classical differential operators D j, j ∈ {1,2,3}, which are uniquely determined
by 


D1vα,1

D2vα,2

D3vα,3


 = curl2vα − k2

0 vα
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are not strictly elliptic. However, using the identities divcurl = 0 and curl2 =
−∆+graddiv, one finds that the homogeneous second-order Maxwell’s equation
is equivalent to the system

∆vα + k2
0 vα = 0

divvα = 0

}
, (4.13)

where the Laplace operator ∆ is meant componentwise. Since this equivalence
holds in the classical sense, so it does in the weak sense. Now, with ∆+k2

0 id being
strictly elliptic componentwise, we can apply Corollary 8.11 in [27] to conclude
that every weak solution to curl2vα − k2

0 vα = 0 is a classical one. According to
Theorem 3.5 in [16], vα is even analytic in Ωext. Thus, in particular, the Rayleigh
expansion (4.6) is well-defined for vα .

4.1.2 The Green’s tensor and representation theorems

Like for the treatment of the acoustic problem, we choose an integral equation
approach. In the electromagnetic case, this necessitates the α-quasi-periodic
Green’s tensor for the Maxwell operator curl2 − k2

0 id. It is simple to verify that
this tensor is given by

Gα(y,x) = Gα(y,x)I3×3 + k−2
0 gradxdivx(Gα(y,x)I3×3) (4.14)

where x,y ∈Π with x 6= y (see [50]). Here, Gα again denotes the α-quasi-periodic
scalar Green’s function for the Helmholtz operator, I3×3 is the identity in C3×3,
and div is meant columnwise, grad componentwise. As a consequence of the
relation (3.14) for the scalar Green’s function and the identities curl2 = −∆ +
graddiv and curlgrad = 0, Gα as a distribution formally satisfies

curl2xGα(y,x)− k2
0 Gα(y,x) = ∑

z∈Z

e2π iα·zδy+2πz(x)I3×3, (4.15)

which implies

curl2xGα(y,x)− k2
0 Gα(y,x) = δy(x)I3×3 and

curl2yGα(y,x)− k2
0 Gα(y,x) = δx(y)I3×3

for x,y ∈ Π. The tensor Gα maps (y,x) to a symmetric matrix and there holds
Gα(y,x) = G−α(x,y). Moreover, it is easy to see that Gα fulfills radiation condi-
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tions of the forms

Gα(y,x) = curlx ∑
z∈Z

G̃±
z (y)ei(αz·x±βz x3), x3 ≷ y3, and (4.16)

Gα(y,x) = curly ∑
z∈Z

G̃±
z (x)e−i(αz·y±βz y3), x3 ≷ y3, (4.17)

for fixed y and fixed x, respectively. Here, G̃±
z (y) and G̃±

z (x), z ∈ Z, are coeffi-
cient matrices and curl is meant columnwise. For a clearer view of (4.16), one
should consider that the columns of Gα(y, ·) satisfy the Rayleigh radiation condi-
tion (4.6). A similar statement applies to (4.17) for Gα(·,x).

Representation theorems

Now, having introduced the Green’s tensor, we can establish representations for
α-quasi-periodic vector fields in the interior and the exterior of some Lipschitz
set. These representations can be proven to be equivalent to the well-known
Stratton-Chu formulas stated for our setting, see Section 9.2 in [55] and, for
smooth domains, Section 6.2 in [17]. The following theorem is the counterpart of
Theorem 3.1.

Theorem 4.1. Let L ⊂ Π be a bounded Lipschitz set such that Lper is also Lip-

schitz and Lc = Lper ∩Π is not degenerate, according to Definition 2.1.

(i) Assume vα ∈ Hα(curl2,L). Then there holds

∫

∂ L

(
Gα(y,x)

(
ν(y)× curlvα(y)

)
− curlyGα(y,x)

(
ν(y)× vα(y)

))
ds(y)−

−
∫

L
Gα(y,x)

(
curl2vα(y)− k2

0 vα(y)
)
dy =

{
−vα(x), x ∈ L

0, x ∈ Π\L
(4.18)

for almost all x ∈ Π. If vα ∈C2
α(L,C3), then (4.18) holds for all x ∈ Π.

(ii) Assume vα ∈ Hα,loc(curl,Π\L) is a radiating solution to the homogeneous

Maxwell’s equation curl2vα − k2
0 vα = 0 in Π\L. Then vα is represented by

∫

∂ L

(
Gα(y,x)

(
ν(y)× curlvα(y)

)
− curlyGα(y,x)

(
ν(y)× vα(y)

))
ds(y)

=

{
0, x ∈ L

vα(x), x ∈ Π\L
. (4.19)
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The first integrals on the left-hand sides of (4.18) and (4.19) can be rewritten

componentwise as

∫

∂ L

(
Gα(y,x)( j) ·

(
ν(y)× curlvα(y)

)
− vα(y) ·

(
ν(y)× curlyGα(y,x)( j)))ds(y)

(4.20)
where G

( j)
α denotes the j-th column of Gα .

Proof. We only prove the first case in (4.18). To start, let x ∈ Π and Lρ = {y ∈
L : |x− y| ≥ ρ} for some ρ > 0. For the ease of notation, in all integrals below,
hidden dependencies and derivatives are meant with respect to the variable y. By
using twice the identity (2.24), for u∈H(curl2,Lρ) and v with curlv∈H1(Lρ ,C3)
we obtain

∫

∂ Lρ

(
(ν × curlu) · v+(ν ×u) · curlv

)
ds(y) =

∫

Lρ

(curl2u · v− curl2v ·u)dy.

Now, we insert vα for u and Gα(·,x)( j) for v and get
∫

∂ Lρ

(
Gα(·,x)( j) · (ν × curlvα)+ curlyGα(·,x)( j) · (ν × vα)

)
ds(y)

=
∫

Lρ

(
curl2vα ·Gα(·,x)( j) − curl2yGα(·,x)( j) · vα

)
dy

=
∫

Lρ

Gα(·,x)( j) · (curl2vα − k2
0 vα)dy

with x ∈ Π. Moreover, using matrix notation and exploiting that Gα(y,x) is sym-
metric and curlyGα(y,x) is skew symmetric, we obtain

∫

∂ Lρ

(
Gα(·,x)(ν × curlvα)− curlyGα(·,x) (ν × vα)

)
ds(y)

=

∫

Lρ

Gα(·,x)(curl2vα − k2
0 vα)dy (4.21)

with x ∈ Π. With the identities

curlxGα(y,x) = −curlyGα(y,x),

curlx(Gα(y,x)h(y)) = curlx(Gα(y,x)h(y)), and

curlxcurlx(Gα(y,x)h(y)) = k2
0 Gα(y,x)h(y)
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for x 6= y it is a straightforward computation to show that the left-hand side of
(4.21) equals

curl
∫

∂ Lρ

(ν × vα)Gα(·,x)ds(y)+
1

k2
0

curl2
∫

∂ Lρ

(ν × curlvα)Gα(·,x)ds(y).

(4.22)
Let now vα ∈ C2

α(L,C3). Then, by the arguments on p. 158f. in [17] and those
behind Theorem 3.1, for x ∈ L the expression (4.22) turns into

vα(x)+ curl
∫

∂ L
(ν × vα)Gα(·,x)ds(y)+

1

k2
0

curl2
∫

∂ L
(ν × curlvα)Gα(·,x)ds(y)

in the limit of ρ → 0. Hence, if vα ∈C2
α(L,C3) is a solution to curl2vα −k2

0 vα = 0
in L, from (4.21) we recover the Stratton-Chu formula

− vα(x) = curl
∫

∂ L
(ν × vα)Gα(·,x)ds(y)+

+
1

k2
0

curl2
∫

∂ L
(ν × curlvα)Gα(·,x)ds(y)

for x ∈ L. Under sufficient regularity of the field vα (as given) it is valid to con-
sider Lipschitz domains here instead of C2-domains as in Theorem 6.2 in [17], cf.
Theorems 3.19 and 9.2 in [55]. Based on (4.21), we arrive at

− vα(x) =

∫

∂ L

(
Gα(·,x)(ν × curlvα)− curlyGα(·,x) (ν × vα)

)
ds(y)−

−
∫

L
Gα(·,x)(curl2vα − k2

0 vα)dy (4.23)

for vα ∈ C2
α(L,C3) and x ∈ L. The denseness of C2

α(L,C3) in Hα(curl2,L) with
respect to the norm of the latter finally leads to the asserted weak form in (4.18).
The componentwise reformulation (4.20) of the first integral in (4.23) is easily
seen by the symmetry of Gα(y,x), the skew symmetry of curlyGα(y,x), and the
vector identity a ·(b×c) =−c ·(b×a) for a,b,c ∈C3. In the proofs of the second
case of (4.18) and the identities in (4.19), the radiation conditions (4.6) for vα and
(4.17) for Gα(·,x) are used, cp. the proofs of Theorems 4.1 and 4.5 in [16].

4.1.3 The near field operator

We are now prepared to introduce the near field operator for the electromagnetic
case, which will be our main object of interest in the following. Again, the com-
putation of this operator is related to the solution of the direct problem in Ωext.
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The incidence surface Γi and the measurement surface Γs are assumed to have the
same form as in the acoustic case, i.e.

Γi = Γi,+∪Γi,− and Γs = Γs,+∪Γs,−,

where Γi,± ⊂ R± ∩Π and Γs,± ⊆ Γ± are flat surfaces with non-empty relative
interiors in the planes which contain them, see Figure 3.1 on p. 36. We remind
the reader that we consider α-quasi-periodic incident fields ũi

α which originate
from magnetic dipoles on Γi. Precisely, we let

ũi
α(x) =

∫

Γi

Gα(y,x)φ(y)ds(y), x ∈ Π\Γi, (4.24)

where φ(y) is the vectorial moment of a dipole at y ∈ Γi, represented by Gα(y, ·).
Due to the superposition principle, this field generates the scattered field

ũs
α(x) =

∫

Γi

ũs
p,α(x,y)φ(y)ds(y), x ∈ Π, (4.25)

where ũs
p,α(·,y) is the scattering response to the field of the single dipole at y ∈ Γi.

The associated near field operator M̃ : L2(Γi,C3) → L2(Γs,C3) reads

(M̃φ)(x) =
∫

Γi

ũs
p,α(x,y)φ(y)ds(y), x ∈ Γs. (4.26)

However, since the surfaces Γi and Γs are not required to coincide, the function
spaces do not suit an adaptation of the Factorization Method. Using the same
technique as in the acoustic case, we resolve this problem by means of the auxil-
iary near field operator M : L2(Γs,C3) → L2(Γs,C3) defined by

(Mϕ)(x) =

∫

Γs

us
p,α(x,y)ϕ(y)ds(y), x ∈ Γs, (4.27)

where us
p,α(·,y) stands for the response to the field of a complex conjugate dipole

at y ∈ Γs, modeled by G−α(y, ·). It is essential here that still we can construct an
approximation for M from the given moment function φ and measurements of the
scattered field ũs

α on Γs, caused by the physical incidence ũi
α . We explain this in

detail in Chapter 5.

4.2 The inverse problem

We are interested in the following inverse problem: Given the scattered fields ũs
α

on Γs for all moment functions φ ∈ L2(Γi,C3) (and a single fixed wave number
k0), determine the support of the contrast q!
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Again, we develop a variant of the Factorization Method in order to solve this
problem. The procedure resembles that for the acoustic case.

4.2.1 Factorization of the near field operator

Since we described the general idea of the Factorization Method at the beginning
of Section 3.2, we directly proceed with a suitable factorization of the auxiliary
near field operator M defined in (4.27). In the remainder of the section, we make
similar general assumptions as in the acoustic case. We collect them in

Assumptions 4.2.

• The sets Ω′ and Ω = Ω′∩Π are Lipschitz, and the set Ωc = Ωper ∩Π is not
degenerate.

• The connected components of Ω′ are simply connected.

• The relative permittivity εr lies in L∞(Π) and satisfies

(i) εr = 1 ⇔ q = 1−1/εr = 0 almost everywhere (a.e.) in Ωext,

(ii) Reεr ≥ c0 a.e. in Ω for some constant c0 > 0,

(iii) Imεr ≥ 0 ⇔ Imq ≥ 0 a.e. in Ω,

(iv) |εr−1| is locally bounded from below in Ω, i.e. for every compact subset
S ⊂ Ω there is a constant cS > 0 such that |εr −1| ≥ cS a.e. in S.

• The direct problem, defined on p. 53, is uniquely solvable.

We note that the assumptions on εr imply in particular that q ∈ L∞(Π). In the
style of the artificial incident field

ui
α(x) =

∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Π\Γs,

which underlies the near field operator M, we define the integral operator HΓs :
L2(Γs,C3) → L2(Ω,C3) by

(HΓsϕ)(x) =
√
|q(x)| curl

∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Ω. (4.28)

The adjoint H∗
Γs

: L2(Ω,C3) → L2(Γs,C3) of HΓs is straightforwardly shown to
read

(H∗
Γs

g)(x) = curl
∫

Ω
G−α(x,y)g(y)

√
|q(y)|dy, x ∈ Γs. (4.29)
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Analog to the acoustic case, we define the solution operator G : L2(Ω,C3) →
L2(Γs,C3) which maps f̂ ∈ L2(Ω,C3) to vα |Γs

where vα radiates according to
(4.6) and solves

∫

Π

(
1
εr

curlvα · curlψ−α − k2
0 vα ·ψ−α

)
dx =

∫

Ω

q√
|q|

f̂ · curlψ−α dx

or, equivalently,
∫

Π
(curlvα · curlψ−α − k2

0 vα ·ψ−α)dx

=
∫

Ω

q√
|q|

(
f̂ +

√
|q| curlvα

)
· curlψ−α dx (4.30)

for all ψ−α ∈ H−α(curl,Π) with compact support in the x3-dimension. The equa-
tion (4.30) is equivalent to the variational formulation (4.11) of the direct problem
except that here f̂ plays the role of

√
|q|/q f

∣∣
Ω

in (4.11). Recalling the initial sub-
stitution of the source term q curlH i

α from (4.7) by f in (4.9), the requirement
f̂ ∈ L2(Ω,C3) appears reasonable. By Assumptions 4.2, there is a unique ra-
diating solution to (4.30), thus the operator G is well-defined. From the above
definitions, it follows that the near field operator M can be factorized by

M = GHΓs. (4.31)

Moreover, motivated by the right-hand side of (4.30), we define the operator T :
L2(Ω,C3) → L2(Ω,C3) by

T f̂ = sign(q)
(

f̂ +
√
|q| curlvα

)∣∣
Ω

(4.32)

where sign(z) = z/|z| for z ∈ C and vα ∈ Hα,loc(curl,Π) satisfies (4.30) with the
source f̂ given as the argument of T. Then, (4.30) is recognized as the variational
form of

curl2vα − k2
0 vα = curl

(
q√
|q|

f̂ +q curlvα

)
= curl

(√
|q|T f̂

)
(4.33)

in Π, where the right-hand side is extended by zero into Ωext. As a key step in our
approach, we now prove that (4.30) can be equivalently formulated as an integro-
differential equation. This will allow us to refine the factorization (4.31) of M

and to deduce the so-called electromagnetic Lippmann-Schwinger equation. The
central ingredient is the following result, cp. Lemma 5.2 in [45].
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Proposition 4.3. Let W be the volume potential operator defined by

(Wg)(x) = curl
∫

Ω
G−α(x,y)g(y)dy (4.34)

with g ∈ L2(Ω,C3) and x ∈ Π. We consider the potential wα = Wg for some

density g.

(i) Assume for now that the connected components of Γ = ∂ Ω∩Π = ∂Ω′∩Π
are C2-regular. (Clearly, this holds in particular if ∂Ω′ ∈ C2.) For Hölder

continuous densities g∈C1,γ(Ω,C3) with 0 < γ ≤ 1 the potential wα = Wg is

in C2
α(Π\Γ,C3)∩Cα(Π,C3) and a classical radiating solution to the trans-

mission problem

curl2wα − k2
0 wα = curlg in Π\Γ, (4.35)

[γtwα ]Γ = 0, (4.36)

[γt(curlwα)]Γ = g×ν. (4.37)

In (4.35), we have extended the right-hand side by zero into Ωext.

(ii) Let again Assumptions 4.2 hold and Ω be just Lipschitz. For densities g ∈
L2(Ω,C3), the potential wα is a radiating variational solution to the equa-

tion curl2wα − k2
0 wα = curlg in Π, where the right-hand side is extended by

zero into Ωext. This means that wα lies in Hα,loc(curl,Π) and satisfies

∫

Π
(curlwα · curlψ−α − k2

0 wα ·ψ−α)dx =
∫

Ω
g · curlψ−α dx (4.38)

for all ψ−α ∈ H−α(curl,Π) with compact support in the x3-dimension.

(iii) The mapping of g to the restriction of wα to Ω defines a bounded linear

operator from L2(Ω,C3) to Hα(curl,Ω).

Proof.

(i) First, we remark that by the identities G−α(x,y) = Gα(y,x) and curlgrad = 0
the integration kernel of W equals

curlx(Gα(y,x)g(y)) = curlx(Gα(y,x)I3×3 g(y)) = curlx(Gα(y,x)g(y))

and hence
wα(x) = curl

∫

Ω
Gα(y,x)g(y)dy. (4.39)
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We also remark that, even if the connected components of Γ = ∂Ω∩Π are
C2-regular, Ω might still be just Lipschitz. Now, let g ∈ C1,γ(Ω,C3) with
0 < γ ≤ 1 and a ∈ C3 be a fixed vector. Analogous to the proof of Lemma
5.2 (a) in [45], with x 6∈ ∂Ω we obtain

a ·wα(x) =
∫

Ω
a · curlx(Gα(y,x)g(y))dy

= −
∫

Ω
a · (gradyGα(y,x)×g(y))dy

=
∫

Ω
g(y) · curly(Gα(y,x)a)dy

=
∫

Ω
Gα(y,x)a · curlg(y)dy+

∫

∂ Ω
Gα(y,x)a · (g(y)×ν(y))ds(y),

where we used the identity gradxGα(y,x) = −gradyGα(y,x) and, for the last
equality, Theorem 2.9 (ii). Since this holds for all a ∈ C3, we conclude that

wα(x) =

∫

Ω
Gα(y,x) curlg(y)dy+

∫

∂ Ω
Gα(y,x)(g(y)×ν(y))ds(y).

We recall that the unit normal vector ν exists almost everywhere on ∂Ω.
Under consideration of the decomposition (3.17) of the Green’s function Gα ,
from the regularity of the standard volume potential ([17, Theorem 8.2]) and
the jump relations for the single-layer potential for Lipschitz domains ([53,
Theorem 6.11]) we conclude that wα does not jump across ∂Ω ⊇ Γ. By
Proposition 3.3 (i) and the properties of the single-layer potential we have
that wα ∈ C2

α(Π\Γ,C3)∩Cα(Π,C3) and ∆wα + k2
0 wα = −curlg in Π\Γ,

where the right-hand side is extended by zero into Ωext. In addition, the
divergence of wα vanishes in Π\Γ, which proves (4.35). To show (4.37),
we note the following. The standard volume potential over Ω is H2-regular
in a neighborhood of Ω ([17, Theorem 8.2]), hence the (weak) curl of this
potential does not jump across ∂Ω. Moreover, since the normal vector ν
exists everywhere on Γ and g|Γ ×ν is a tangential field on Γ, the integrand
ν(x)× curlx(Gα(y,x)(g(y)×ν(y))) has the same type of singularity on Γ
as the kernel of the double-layer potential, cf. the proof of Theorem 2.26 in
[16]. Finally, the jump relations of the double-layer potential ([53, Theorem
6.11]) yield (4.37).

(ii) The asserted regularity of wα follows from the decomposition (3.17) of the
Green’s function, the H2-regularity of the standard volume potential (cf. [17,
Theorem 8.2]), and the relation (4.39). Since under the conditions of (i) the
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potential wα solves the variational equation (4.38), a denseness argument
implies this also for g ∈ L2(Ω,C3). Note that we do not need to make any
further regularity assumption on Γ since the support of g ∈ L2(Ω,C3) can
have any regularity.

(iii) This is a consequence of the definition of wα and part (ii).

We remark that the operators W from (4.34) and H∗
Γs

from (4.29) are related
by

H∗
Γs

g = W
(√

|q|g
)∣∣

Γs
, g ∈ L2(Ω,C3).

By Proposition 4.3 (ii), a solution to the integro-differential equation

vα(x) = curl
∫

Ω
Gα(y,x)

q(y)√
|q(y)|

(
f̂ (y)+

√
|q(y)| curlvα(y)

)
dy (4.40)

in Π is a radiating solution to (4.30). The equation (4.40) is called the α-quasi-
periodic electromagnetic Lippmann-Schwinger equation. Since the only radiating
solution to curl2ṽα − k2

0 ṽα = 0 in Π is ṽα ≡ 0, the unique solution to (4.30) satis-
fies (4.40). Hence, the formulations (4.30) and (4.40) are equivalent, and we can
write (4.40) for short as

vα(x) = curl
∫

Ω
Gα(y,x)(T f̂ )(y)

√
|q(y)|dy. (4.41)

Now, in view of (4.29) and G−α(x,y) = Gα(y,x), (4.41) reveals the identity
H∗

Γs
T f̂ = vα |Γs

= G f̂ . Combining this with (4.31), we arrive at the factorization

M = H∗
Γs

THΓs (4.42)

for the artificial near field operator. The connection between the variational for-
mulation (4.30) and the integro-differential equation (4.40) is made precise in the
following corollary to Proposition 4.3, cp. Theorem 2.3 in [43].

Corollary 4.4. Under Assumptions 4.2 there hold:

(i) If vα ∈ Hα,loc(curl,Π) is a radiating solution to (4.30), then the restriction

vα |Ω ∈ Hα(curl,Ω) solves the equation

ṽα = W

(
q√
|q|

f̂ +q curl ṽα

)∣∣∣∣
Ω

. (4.43)

(ii) If vα ∈ Hα(curl,Ω) solves (4.43), then it can be extended by the right-hand

side of (4.40) to a radiating solution to (4.30).
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In [34], HOHAGE devises a fast numerical solver for the electromagnetic Lipp-
mann-Schwinger equation with a Hölder contrast q ∈ C1,γ(R3), but formulated
for a bounded scatterer and for the total electric field rather than for the scattered
magnetic field as done in (4.40). We have some hope that an efficient solver for
(4.40) can be constructed in a similar fashion. In the last chapter of this thesis, we
set up a solver for the considerably simpler acoustic Lippmann-Schwinger equa-
tion, which nevertheless shares many basic ideas with [34] as both methods are
inspired by VAINIKKO’S primal article [68]. Moreover, we mention that KIRSCH

investigates an equation related to, but more general than (4.40) in [43]. We close
the subsection with the proof of some properties of the operator HΓs and its ad-
joint, which become important later on. Subsection 4.2.3 complements this by a
discussion of the inner operator T in the factorization (4.42).

Proposition 4.5.

(i) The operators HΓs and H∗
Γs

are compact.

(ii) The operator HΓs is injective.

Proof.

(i) The operator H∗
Γs

: L2(Ω,C3) → L2(Γs,C3) (see (4.29)) can be restated as

(H∗
Γs

g)(x) =
∫

Ω
curlx(G−α(x,y)I3×3)g(y)

√
|q(y)|dy, x ∈ Γs.

This is a Hilbert-Schmidt integral operator with kernel in L2(Γs ×Ω,C3×3)
and thus compact [59, Theorem 7.83]. The compactness of HΓs is a direct
implication [60, Theorem 4.19].

(ii) Let ϕ ∈ kerHΓs. Since q 6= 0 a.e. in Ω, we have that the potential hα ∈
Hα,loc(curl,Π) given by

hα(x) = curl
∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Π,

vanishes in Ω, cp. (4.28). An analytic continuation argument shows that hα

vanishes in {x ∈ Π : m− < x3 < m+} with m− and m+ as specified on p. 11.
By the jump relation [γt(curlhα)]Γ+∪Γ− = 0 (see p. 354 of [44]) we obtain
γt,+(curlhα) = 0 on Γ+∪Γ−, where γt,+ is the tangential trace operator for
R+∪R−. Moreover, hα satisfies the homogeneous second-order Maxwell’s
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equation curl2hα − k2
0 hα = 0 in R+ ∪ R− and a radiation condition of the

form

hα(x) = ∑
z∈Z

h̃±z (ϕ)ei(αz·x∓βz x3) in R±, (4.44)

with vectorial coefficients h̃±z (ϕ). By applying another ‘curl’ to the second-
order Maxwell’s equation and defining a function h̃α by the equation curlhα +
ik0 h̃α = 0 in R+∪R−, for this h̃α we derive the problem

∆h̃α + k2
0 h̃α = 0 in R+∪R−

γD,+(div h̃α) = 0 on Γ+∪Γ−
γt,+h̃α = 0 on Γ+∪Γ−





. (4.45)

This is an unusual, α-quasi-periodic exterior electric boundary value prob-

lem. The classical form of this problem for a bounded region is discussed in
[16]. Due to unique solvability of (4.45), h̃α vanishes in R+∪R−. Now, we
may use the complementary equation curl h̃α − ik0 hα = 0 to back-substitute
h̃α , since together with the one above it simply states the given homogeneous
Maxwell’s equation for hα . We conclude that also hα vanishes in R+ ∪R−.
The jump relation [γthα ]Γs

= ϕ finally implies ϕ ≡ 0.

4.2.2 The interior transmission eigenvalue problem

As for the acoustic case, we want to expose shortly the interior transmission

eigenvalue problem for the Maxwell’s equations and its impact on the near field
operator M. We consider the problem of finding a solution (vα ,wα) to the equa-
tion system

curl
(

1
εr

curlvα

)
− k2

0 vα = 0, curl2wα − k2
0 wα = 0 in Ω

γtvα = γtwα , γt

(
1
εr

curlvα

)
= γt(curlwα) on Γ

}
, (4.46)

where γt denotes the tangential trace operator for Ω. For how to interpret (4.46)
with regard to the regularity of the involved terms, we refer to the similar discus-
sion of the variational formulation (4.11) for the direct problem.

Definition 4.6. The value k2
0 is said to be an interior transmission eigenvalue

with corresponding eigenpair (vα ,wα)∈ Hα(curl,Ω)×Hα(curl,Ω) if (vα ,wα) 6=
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(0,0) and (vα ,wα) satisfy γtvα = γtwα on Γ,
∫

Ω

(
1
εr

curlvα · curlψ−α − k2
0 vα ·ψ−α

)
dx

=
∫

Ω
(curlwα · curlψ−α − k2

0 wα ·ψ−α)dx (4.47)

for all ψ−α ∈ H−α(curl,Ω), and
∫

Ω
(curlwα · curlψ−α − k2

0 wα ·ψ−α)dx = 0 (4.48)

for all ψ−α ∈ H−α,(0)(curl,Ω) = {u−α ∈ H−α(curl,Ω) : γT u−α = 0 on Γ}.

The formulation (4.47) is based on a separate application of the Green’s iden-
tity (2.25) to the first both equations in (4.46). If the functions vα and wα of an
eigenpair are sufficiently regular, then (vα ,wα) is a variational solution to the sys-
tem (4.46). In this case, the absence of any boundary integral in (4.47) accounts
for the second coupling boundary condition in (4.46). We now give a first result
on conditions under which interior transmission eigenvalues do not exist.

Proposition 4.7.

(i) If Imq > 0 a.e. in Ω, then k2
0 > 0 is no interior transmission eigenvalue.

(ii) Suppose that every connected component ωl of Ω can be decomposed into

non-empty subdomains Ω
(l)
j with piecewise analytic boundaries ∂Ω

(l)
j . More-

over, assume that the contrast q is analytic on each Ω
(l)
j and there is at

least one subdomain Ω
(l)
j0

of each component ωl such that Imq(x) > 0 for all

x ∈ Ω
(l)
j0

and ∂Ω
(l)
j0
∩Γ has non-empty relative interior. Then k2

0 > 0 is no

interior transmission eigenvalue.

Proof.

(i) We argue almost exactly as in the proof of Theorem 3.2 in [43]. Let (vα ,wα)∈
Hα(curl,Ω)×Hα(curl,Ω) solve (4.47) and (4.48) with γtvα = γtwα on Γ. For
ψ−α = vα , from (4.47) we obtain

∫

Ω

(
1
εr

|curlvα |2 − k2
0 |vα |2

)
dx

=

∫

Ω
(|curlwα |2 − k2

0 |wα |2)dx+

∫

Ω
(curlwα · curlzα − k2

0 wα · zα)dx

=
∫

Ω
(|curlwα |2 − k2

0 |wα |2)dx,
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where zα = vα − wα and the last equality holds by (4.48) due to γtzα =
0 ⇒ γT zα = 0 ⇒ zα ∈ H−α,(0)(curl,Ω). Taking the imaginary part, with
Imq > 0 ⇔ Im(1/εr) < 0 a.e. we conclude that curlvα vanishes identically.
Inserting this into (4.47) and using (4.48) shows that

∫
Ω k2

0 vα ·ψ−α dx = 0
for all ψ−α ∈ H−α,(0)(curl,Ω) and thus vα ≡ 0 by k2

0 > 0 and a denseness
argument. Then, we see that wα solves curl2wα − k2

0 wα = 0 in Ω (in the
variational sense) together with γtwα = 0 and γt(curlwα) = 0 on Γ. By the
representation Theorem 4.1, we finally get that also wα ≡ 0. Thus, according
to Definition 4.6, k2

0 is no interior transmission eigenvalue.

(ii) We restrict the discussion first to a single connected component ωl and let
Ω

(l)
j0

⊆ ωl be a subdomain as described in the statement. To beautify no-

tation, we write Ω
(l)
j0

as Ω0 for short. We repeat the argumentation of (i)
up to the point where we can conclude that curlvα vanishes in Ω0. Then,
from the variational formulation of the first equation in (4.46), we obtain that∫

Ω0
k2

0 vα ·ψ−α dx = 0 for all ψ−α ∈ H−α,(0)(curl,Ω) with compact support
in Ω0. Thus, by k2

0 > 0 and a denseness argument, vα vanishes identically
in Ω0. Now, we define a function ṽα by the equation curlvα + ik0 εr ṽα = 0
in Ω0, understood in the variational sense. We note that, since q is ana-
lytic in Ω0, εr is analytic and has no roots in Ω0, hence ṽα is well-defined.
From the first equation in (4.46) we deduce the complementary equation
curl ṽα − ik0 vα = 0 in Ω0, both understood in the variational sense. With
vα = ṽα = 0 in Ω0, we are now in a similar situation as in the proof of The-
orem 7 in [63] and conclude that vα and ṽα vanish in the whole connected
component ωl . Thus, wα solves curl2wα −k2

0 wα = 0 in ωl (in the variational
sense) together with γtwα = 0 and γt(curlwα) = 0 on ∂ωl ∩Γ. Similar to
above, we define a function w̃α by curlwα + ik0 w̃α = 0 in ωl and observe
curl w̃α − ik0 wα = 0. Again, by the arguments in the proof of [63, Theorem
7], we find that wα vanishes in ωl . Argueing likewise for the other connected
components yields vα = wα ≡ 0 in Ω, which finishes the proof.

The next proposition points out the impact of this special transmission problem
on the near field operator M, cp. Theorem 4.4 (d) in [45].

Proposition 4.8. Assume that k2
0 is not an interior transmission eigenvalue. Then

the operator M : L2(Γs,C3) → L2(Γs,C3) is injective and has dense range in

L2(Γs,C3).
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Proof. We recall that M refers to the artificial incident field

ui
α(x) =

∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Π\Γs,

which generates the scattered field

us
α(x) =

∫

Γs

us
p,α(x,y)ϕ(y)ds(y), x ∈ Π.

Now, let ϕ ∈ kerM. Then us
α has a vanishing near field Mϕ ≡ 0 on Γs. The

radiating behavior of us
α , an analytic continuation argument, and the fact that Ω′

has no inclusions of the background medium imply that us
α vanishes identically in

Ωext. Therefore, the functions vα = ui
α + us

α and wα = ui
α lead to a solution pair

for the interior transmission eigenvalue problem (4.47). From the assumption that
k2

0 is not an interior transmission eigenvalue, there follows vα = wα = 0 in Ω. By
analytic continuation, ui

α is then seen to vanish in {x ∈Π : m− < x3 < m+}. Using
the jump relation [γt(curl2ui

α)]Γ+∪Γ− = 0 (see Theorem 6.11 in [17]), we obtain

γt,+(curl2ui
α) = k2

0 γt,+ui
α = 0 on Γ+∪Γ−. Here, γt,+ denotes the tangential trace

operator for R+∪R−. Similar to the proof of Proposition 4.5 (ii), we now formu-
late an α-quasi-periodic exterior electric boundary value problem for ui

α and con-
clude that ui

α vanishes in R+∪R−. Finally, the jump relation [γt(curlui
α)]Γs

= ϕ
yields ϕ ≡ 0, showing that M is injective. The second part of the assertion can be
proven following the idea of the proof of Proposition 3.7.

4.2.3 The inner operator

In order to set up a Factorization Method for the electromagnetic inverse problem,
we also need to inspect the inner operator T in the factorization (4.42), defined in
(4.32). The following theorem establishes the same properties for T as Theorem
3.8 does for the inner operator T in the acoustic setting.

Theorem 4.9. Let Assumptions 4.2 hold.

(i) The operator T can be written in the form T = T̃+K where K : L2(Ω,C3)→
L2(Ω,C3) is compact and, if q is real-valued and q > 0 a.e. in Ω, the operator

Re T̃ is coercive, precisely,

Re〈T̃ f̂ , f̂ 〉L2 ≥ ‖ f̂‖2
L2 (4.49)

holds for all f̂ ∈ L2(Ω,C3).
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(ii) The operator ImT is positive semi-definite, i.e. Im〈T f̂ , f̂ 〉L2 ≥ 0 for all f̂ ∈
L2(Ω,C3).

(iii) Assume that there is a constant c1 > 0 such that Imq ≥ c1|q| holds a.e. in Ω.

Then ImT is coercive with

Im〈T f̂ , f̂ 〉L2 ≥ c2‖ f̂‖2
L2

for all f̂ ∈ L2(Ω,C3) and some constant c2 > 0.

(iv) The operator T is injective.

Proof. We make some preparations first and for these use an idea from the proof
of Theorem 5.12 in [45]. We recall that T : L2(Ω,C3) → L2(Ω,C3) is defined by

T f̂ = sign(q)
(

f̂ +
√
|q| curlvα

)∣∣
Ω

where vα ∈ Hα,loc(curl,Π) is a radiating variational solution to

curl

(
1
εr

curlvα

)
− k2

0 vα = curl

(
q√
|q|

f̂

)
in Π.

This means that vα solves, for all ψ−α ∈H−α(curl,Π) with compact support in the
x3-dimension, the variational equation (4.30), which we repeat here for reference
as

∫

Π

(
1
εr

curlvα · curlψ−α − k2
0 vα ·ψ−α

)
dx =

∫

Ω

q√
|q|

f̂ · curlψ−α dx. (4.50)

Now, we define Cr = {x ∈ Π : |x3| < r} for any r > 0 such that Ω∩Π ⊂ Cr and
Π̃ = C2r\Cr. Let further φ ∈C∞(Π) be a mollifier with φ = 1 in Cr ∩Π and φ = 0
in Π\C2r. Then (4.50) states in particular that with ψ−α = φ vα ∈ H−α(curl,Π)
there holds

∫

Ω

q√
|q|

f̂ · curlvα dx =
∫

Cr∩Π

(
1
εr

|curlvα |2 − k2
0 |vα |2

)
dx+

+

∫

Π̃

(
curlvα · curl(φ vα)− k2

0 φ |vα |2
)
dx.

By an application of the Green’s identity (2.24), we find that
∫

Π̃

(
curlvα · curl(φ vα)− curl2vα · (φ vα)

)
dx = −

∫

∂ Π̃
(ν × curlvα) · (φ vα)ds



72 CHAPTER 4. THE ELECTROMAGNETIC CASE

is equivalent to
∫

Π̃

(
curlvα · curl(φ vα)− k2

0 φ |vα |2
)
dx = −

∫

∂Cr∩Π
(curlvα ×ν) · vα ds

where ν denotes the exterior unit normal to ∂Cr ∩Π. Here, we have used that φ
vanishes on ∂C2r ∩Π. Thus, we obtain

∫

Ω

q√
|q|

f̂ · curlvα dx =
∫

Cr∩Π

(
1
εr

|curlvα |2 − k2
0 |vα |2

)
dx−

−
∫

∂Cr∩Π
(curlvα ×ν) · vα ds. (4.51)

The left-hand side of this equation, and so the right-hand side, is actually inde-
pendent of the parameter r. In a last preparatory step, we let r go to infinity and
derive a convenient expression for

lim
r→∞

∫

∂Cr∩Π
(curlvα ×ν) · vα ds.

Since vα radiates, it has the Rayleigh expansion

vα(x) = ∑
z∈Z

v±z ei(αz·x±βz x3) in R± (4.52)

with the Rayleigh coefficient vectors

v±z = i




αz,1

αz,2

±βz


× ṽ±z .

Using this, a straightforward computation leads to

curlvα(x) = ∑
z∈Z


k2

0 ṽ±z −




αz,1

αz,2

±βz










αz,1

αz,2

±βz


 · ṽ±z





E±

z (x) in R±

where E±
z (x) = ei(αz·x±βz x3). For x ∈ ∂Cr∩Π there hold |x3|= r and either ν(x) =

e3 or ν(x) = −e3. In (4.52), the partial sum over all terms corresponding to z ∈ Z

with βz ∈ iR+ vanishes for |x3| → ∞. Moreover, ei(αz·x) with z ∈ Z as functions of
(x1,x2) ∈ (−π ,π)2 are orthogonal to each other. A technical calculation reveals
that

lim
r→∞

∫

∂Cr∩Π
(curlvα ×ν) · vα ds = i4π2 ∑

βz∈R+

βz|v±z |2. (4.53)
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Combining (4.53) with (4.51), we finally arrive at
∫

Ω

q√
|q|

f̂ · curlvα dx =
∫

Π

(
1
εr

|curlvα |2 − k2
0 |vα |2

)
dx− i4π2 ∑

βz∈R+

βz|v±z |2.

(4.54)
We will exploit this relation in the proof of parts (i)–(iii).

(i) We note first that the operator T depends on the wave number k0 via vα

solving (4.50). We make this dependence explicit here by writing Tk0 and
vα,k0, respectively. Now, we decompose Tk0 as

Tk0 = Ti +(Tk0 −Ti)

and show that T̃ = Ti and K = Tk0 − Ti have the asserted properties. We
consider the hypothetical case k0 = i here only to define the auxiliary op-
erator Ti; apart from that, we assume k0 = ω

√
ε0 µ0 ∈ R+. The operator

Ti : L2(Ω,C3) → L2(Ω,C3) is given by

Ti f̂ = sign(q)
(

f̂ +
√
|q| curlvα,i

)∣∣
Ω
,

where vα,i ∈ Hα,loc(curl,Π) radiates and satisfies
∫

Π

(
1
εr

curlvα,i · curlψ−α + vα,i ·ψ−α

)
dx =

∫

Ω

q√
|q|

f̂ · curlψ−α dx

(4.55)
for all ψ−α ∈ H−α(curl,Π) with compact support in the x3-dimension. This
operator is well-defined by the following argumentation, cf. the proof of [43,
Lemma 2.4 (a)]. The equivalence between the variational formulation (4.50)
for a radiating vα,k0 and the integro-differential equation (4.40), stated by
Corollary 4.4, also holds for k0 = i, cp. the proof of [43, Theorem 2.3]. We
denote the Green’s function Gα and the Green’s tensor Gα more precisely
here by Gα,k0 and Gα,k0, respectively. The definition of Gα,i shows that
every solution vα,i to (4.40) lies in fact in Hα(curl,Π). In consequence, the
variational equation (4.55) holds for all ψ−α ∈ H−α(curl,Π). Finally, the
theorem of Lax-Milgram yields the existence of a unique solution to (4.55)
and the boundedness of the operator from L2(Ω,C3) to Hα(curl,Ω) which
maps f̂ to vα,i|Ω. Thus, Ti : L2(Ω,C3) → L2(Ω,C3) is well-defined. Using
(4.54), we find that

Re

(∫

Ω

q√
|q|

f̂ · curlvα,i dx

)
=

∫

Π

(
Re

(
1
εr

)
|curlvα,i|2 + |vα,i|2

)
dx ≥ 0,
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where Reε−1
r = |εr|−2 Reεr ≥ 0 by Assumptions 4.2. For real-valued con-

trast q, there holds

Re

(∫

Ω

q√
|q|

curlvα,i · f̂ dx

)
= Re

(∫

Ω

q√
|q|

f̂ · curlvα,i dx

)
≥ 0.

Hence, under q > 0 in Ω, which implies sign(q) ≡ 1, we obtain

Re〈Ti f̂ , f̂ 〉L2 =

∫

Ω
| f̂ |2 dx+Re

(∫

Ω

q√
|q|

curlvα,i · f̂ dx

)
≥ ‖ f̂‖2

L2,

which shows the coercivity of Re T̃ for T̃ = Ti. It remains to prove the com-
pactness of the operator K = Tk0 −Ti, which reads

(Tk0 −Ti) f̂ =
q√
|q|

curl(vα,k0 − vα,i)
∣∣
Ω
.

By the integro-differential equation (4.40) and the remarks in the proof of
Proposition 4.3 (i), we can write (vα,k0 − vα,i)|Ω as

(vα,k0 − vα,i)(x)

=curl
∫

Ω
Gα,k0(y,x)q(y)curl (vα,k0 − vα,i)(y)dy+

+ curl
∫

Ω
(Gα,k0 −Gα,i)(y,x)

q(y)√
|q(y)|

(
f̂ (y)+

√
|q(y)| curlvα,i(y)

)
dy

with x ∈ Ω. Equivalently, (vα,k0 − vα,i)|Ω satisfies the equation

(id−Bk0)(vα,k0 − vα,i)|Ω = Ck0 f̂

where the operators Bk0 and Ck0 are given by

(Bk0 ṽα)(x) = curl
∫

Ω
Gα,k0(y,x)q(y)curl ṽα(y)dy, ṽα ∈ Hα(curl,Ω),

and

(Ck0 f̂ )(x) = curl
∫

Ω
(Gα,k0 −Gα,i)(y,x)

q(y)√
|q(y)|

·

·
(

f̂ (y)+
√

|q(y)| curlvα,i(y)
)
dy

with x ∈ Ω. By similar considerations as in the proofs of [43, Lemma
2.2] and [44, Lemma 3.1], together with the decomposition Gα,k(y,x) =
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Φk(x,y)+ Ψk(x− y) in (Π×Π)\{(x,x) : x ∈ Π} with the fundamental so-
lution Φk to the Helmholtz equation in R3 and a smooth function Ψk on
2 · Π for arbitrary k ∈ C\{0} with Rek ≥ 0 and Imk ≥ 0, we find that
Bk0 is bounded from Hα(curl,Ω) to Hα(curl,Ω) and Ck0 is bounded from
L2(Ω,C3) to Hα(curl,Ω). Moreover, using arguments analog to those in
the proof of [43, Lemma 2.4 (b)], it can be shown that Ck0 is compact and
id−Bk0 is the sum of a boundedly invertible operator and a compact opera-
tor, i.e. id−Bk0 is a Fredholm operator with index zero. Now, we note that
the restriction of the integro-differential equation (4.40) to Ω can be written
as

(id−Bk0)vα,k0|Ω = curl
∫

Ω
Gα,k0(y, ·)

q(y)√
|q(y)|

f̂ (y)dy. (4.56)

Since we assume that the direct problem defined on p. 53 is uniquely solv-
able (cf. Assumptions 4.2) and the variational problem (4.50) as well as the
integro-differential equations (4.40) and (4.56) are uniquely solvable alike,
the operator id−Bk0 is also injective. Hence, this operator is boundedly in-
vertible in Hα(curl,Ω), cf. Corollary 1.20 in [16]. The observation that

K = Tk0 −Ti =
q√
|q|

curl(id−Bk0)
−1 Ck0

finally reveals the compactness of K : L2(Ω,C3) → L2(Ω,C3). The proof is
finished.

(ii) We define ĝ ∈ L2(Ω,C3) by ĝ = ( f̂ +
√
|q| curlvα)

∣∣
Ω

, so that

〈T f̂ , f̂ 〉L2 =

∫

Ω
sign(q) |ĝ|2 dx−

∫

Ω

q√
|q|

ĝ · curlvα dx. (4.57)

For the second term on the right-hand side, we calculate

∫

Ω

q√
|q|

ĝ · curlvα dx =
∫

Ω

(
|curlvα |2 −

1
εr

|curlvα |2
)

dx+

+

∫

Ω

q√
|q|

f̂ · curlvα dx,

and, plugging in the relation (4.54), we get
∫

Ω

q√
|q|

ĝ · curlvα dx =

∫

Π
(|curlvα |2 − k2

0 |vα |2)dx− i4π2 ∑
βz∈R+

βz|v±z |2.
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Using this expression in (4.57), we then obtain

Im〈T f̂ , f̂ 〉L2 =
∫

Ω

Imq

|q| |ĝ|2 dx+4π2 ∑
βz∈R+

βz|v±z |2.

Since Imq ≥ 0 by Assumptions 4.2, the assertion is shown.

(iii) This follows from part (ii) and an argumentation similar to that in the proof
of Theorem 5.12 (c) in [45].

(iv) Let f̂ ∈ kerT. Then (4.33) turns into the homogeneous Maxwell’s equation
curl2vα − k2

0 vα = 0 in Π. According to the discussion at the end of Subsec-
tion 4.1.1, for each component of vα we can now argue as in Theorem 3.8
(iv) and conclude that vα vanishes identically in Π. Then from

T f̂ = sign(q)
(

f̂ +
√
|q| curlvα

)∣∣
Ω

= 0

⇐⇒
(

f̂ +
√
|q| curlvα

)∣∣
Ω

= 0

there follows f̂ ≡ 0, hence T is injective.



Chapter 5

Approximation of the near field operators

In Subsections 3.1.3 and 4.1.3 we introduced the acoustic and electromagnetic
near field operators M and M, respectively. These were the starting points in
our construction of Factorization Methods for the acoustic and electromagnetic
inverse problems and have been factorized and discussed subsequently. However,
M and M are not the physically relevant near field operators and have been defined
as auxiliary operators to meet a basic requirement of the Factorization Method.
In this chapter, we prove that M and M can be approximated (arbitrarily well in
theory) by means of only the physical near field operators M̃ and M̃, see (3.23)
and (4.26). These operators can be computed (approximately) from data known or
measured in practice. Precisely, we will not require any knowledge which cannot
be acquired from the data. Afterwards, in Chapter 6, we show that the functional
analytic result which underlies the Factorization Method can be applied to M and
M, as opposed to the situation for the physical operators M̃ and M̃.

5.1 The acoustic case

To begin, we examine the mapping properties of the operators involved in the
acoustic problem. The operator H ′

Γs
defined by

(H ′
Γs

ϕ)(x) =
∫

Γs

G−α(y,x)ϕ(y)ds(y), x ∈ Ω,

is an element of L(L2(Γs),H
1
α(Ω)) and related to HΓs by HΓsϕ =

√
|q|H ′

Γs
ϕ , cp.

(3.29). Having this, the preliminary factorization (3.32) states that

Mϕ = G
√

|q|H ′
Γs

ϕ (5.1)

holds for all ϕ ∈ L2(Γs). Analogously, the physical near field operator M̃ obeys

M̃φ = G
√

|q|H̃ ′
Γi

φ (5.2)
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for all φ ∈ L2(Γi) where H̃ ′
Γi
∈ L(L2(Γi),H

1
α(Ω)) is given by

(H̃ ′
Γi

φ)(x) =

∫

Γi

Gα(y,x)φ(y)ds(y), x ∈ Ω.

In (5.1) and (5.2), G is the solution operator defined on p. 41. Now, let R = {x ∈
Π : |x3|< r} with r > 0 chosen such that Ω∩Π ⊂ R and R∩Γi = R∩Γs = /0. Our
main tool in the approximation procedure for M are the operators ṼΓi

: L2(Γi) →
H

1/2
α (∂R) and VΓs : L2(Γs) → H

1/2
α (∂R) defined as

ṼΓi
φ =

∫

Γi

Gα(y, ·)φ(y)ds(y) and VΓsϕ =
∫

Γs

G−α(y, ·)ϕ(y)ds(y).

In the next lemma, we collect some important facts about ṼΓi
and VΓs .

Lemma 5.1.

(i) The operators ṼΓi
and VΓs are compact.

(ii) If k2
0 is not a Dirichlet eigenvalue of −∆ in R, i.e. if the problem

∆vα + k2
0 vα = 0 in R

γDvα = 0 on ∂R∩Π

}
(5.3)

has only the trivial solution, then ṼΓi
and VΓs are injective and their ranges

are dense in H
1/2
α (∂R). We note that the subscript α prescribes an α-quasi-

periodic boundary condition on ∂R∩∂Π.

(iii) Assume that k2
0 is not a Dirichlet eigenvalue of −∆ in R, such that ṼΓi

is

injective. Let {P̃δ}δ>0 be a family of operators P̃δ : H
1/2
α (∂R) → L2(Γi)

which forms a regularization for the (unbounded) inverse of ṼΓi
on R(ṼΓi

),

cf. [25]. Then with Pδ = P̃δVΓs : L2(Γs) → L2(Γi) for δ > 0 there holds the

pointwise convergence

ṼΓi
Pδ ϕ →VΓsϕ in H

1/2
α (∂R) for δ → 0 (5.4)

for every ϕ ∈ L2(Γs).

Proof.

(i) The compactness of ṼΓi
and VΓs follows directly from the smoothness of

Gα(y,x) for all y ∈ Γi ∪Γs and all x in an open proper superset of R which
does not intersect Γi∪Γs. Such set exists due to the conditions on R.
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(ii) The proof scheme for this part is adopted from the proof of Lemma 5.1 in
[44]. Let g ∈ kerVΓs. Then, for the potential

vα(x) =
∫

Γs

G−α(y,x)g(y)ds(y), x ∈ Π,

there holds vα |∂ R∩Π = (VΓsg)|∂ R∩Π = 0. Note that the restriction of vα to
∂R∩Π is well-defined here. Due to the properties of the single-layer poten-
tial ([53, Theorem 6.11]), vα lies in H1

α,loc(Π) and satisfies the jump relations

[γDvα ]Γ+∪Γ− = 0 and [γNvα ]Γs
= −g. (5.5)

Moreover, vα solves the Helmholtz equation in Π\Γs and has an expansion
of the form (3.26) in R±. Hence, vα |R is a solution to the interior Dirichlet
problem (5.3). From the assumption on k2

0, we conclude that vα vanishes in R

and, by an analytic continuation argument, even in {x ∈ Π : m− < x3 < m+}.
Then, the first jump relation in (5.5) implies γD,+vα = 0 on Γ+∪Γ−, where
γD,+ is the trace operator for R+∪R−. We are now in the same situation as
in the proof of Proposition 3.5 (ii) and obtain that vα vanishes in R+ ∪R−.
Finally, the second jump relation yields g ≡ 0, hence VΓs is injective. The
argumentation for ṼΓi

is essentially the same. To prove the denseness of

R(VΓs
) in H

1/2
α (∂R), we show that also the adjoint V ∗

Γs
: H

−1/2
α (∂R)→ L2(Γs)

is injective. Again, the procedure for Ṽ ∗
Γi

is similar. The adjoint of VΓs is

easily found to read (V ∗
Γs

ϕ)(x) =
∫

∂ R Gα(y,x)ϕ(y)ds(y) for ϕ ∈ H
−1/2
α (∂R)

and x ∈ Γs. Let now ϕ ∈ kerV ∗
Γs

. We define the potential wα ∈ H1
α,loc(2 ·Π)

by

wα(x) =
∫

∂ R
Gα(y,x)ϕ(y)ds(y), x ∈ 2 ·Π,

such that wα |Γs
= V ∗

Γs
ϕ = 0. We use the extended domain 2 ·Π here since

we will have to consider the behavior of wα on both sides of the boundary
∂R 6⊂ Π. Again by Theorem 6.11 in [53], there hold the jump relations

[γDwα ]∂ R = 0 and [γNwα ]∂ R = −ϕ. (5.6)

The geometric setting is illustrated in Figure 5.1. We note first that, by the
analyticity of wα((·, ·,x3)) in Γ+ ∪ Γ−, wα |Γs

= 0 implies wα |Γ+∪Γ− = 0.
Moreover, wα solves the Helmholtz equation in Π\∂R and has a Rayleigh
expansion in R̃ = {x ∈ 2 ·Π : |x3| > r}. From the uniqueness of a radiating
solution to the exterior Dirichlet problem in {x ∈ 2 ·Π : x3 < m−∨x3 > m+},
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R

Π

−π +π

Figure 5.1: Extended domain

we conclude again by an analytic continuation argument that wα vanishes in
all of R̃. As a consequence of the continuity of wα across ∂R (in the sense
of traces), we have γD,−wα = 0 on ∂R∩Π, where γD,− is the trace opera-
tor for R. Hence, wα |R solves the interior Dirichlet problem (5.3). Under
the assumption on k2

0, there follows wα = 0 in R. Exploiting the α-quasi-
periodicity of wα and the second jump relation in (5.6), we finally obtain
ϕ ≡ 0. This completes the proof.

(iii) The pointwise convergence (5.4) follows from standard regularization the-
ory, cf., e.g., [25]. We note that since by (ii) the operator ṼΓi

: L2(Γi) →
H

1/2
α (∂R) is injective and has a dense range, its (unbounded) inverse on

R(ṼΓi
) coincides with its generalized inverse Ṽ

†
Γi

: R(ṼΓi
)⊕R(ṼΓi

)⊥→ L2(Γi).
In addition, we remark that convergence in the operator norm does not hold,
i.e. ‖ṼΓi

Pδ −VΓs‖ 9 0.

From now on, we assume that k2
0 is not a Dirichlet eigenvalue of −∆ in R. Then

the α-quasi-periodic interior Dirichlet problem

∆vα + k2
0 vα = 0 in R

γDvα = fα on ∂R∩Π

}
(5.7)
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is uniquely solvable for every fα ∈Cα(∂R), cp. Theorem 3.24 in [16] for the clas-
sical interior Dirichlet problem for a bounded medium with C2-boundary. Since
with ϕ ∈ L2(Γs) both α-quasi-periodic potentials

x 7−→
∫

Γi

Gα(y,x)(Pδ ϕ)(y)ds(y) and x 7−→
∫

Γs

G−α(y,x)ϕ(y)ds(y)

solve the Helmholtz equation in R, the pointwise convergence (5.4) and the con-
tinuous dependence of the solution to the problem (5.7) from its boundary data on
∂R yields that H̃ ′

Γi
Pδ ϕ converges to H ′

Γs
ϕ in H1

α(Ω) as δ goes to zero. Thus, we
obtain the pointwise convergence

M̃Pδ ϕ = G
√

|q|H̃ ′
Γi

Pδ ϕ → G
√
|q|H ′

Γs
ϕ = Mϕ for δ → 0 (5.8)

for every ϕ ∈ L2(Γs). In view of (5.8), we can, in principle, evaluate the artificial
near field operator M at any given instance ϕ with a prescribed accuracy, since
the physical operator M̃ can be constructed from measurements of the scattered
field and the operator Pδ can be computed for any δ > 0, provided that a set
R with the above properties is known, see p. 78. (This requirement does not
cause extra trouble as choosing a proper incidence surface Γi is essentially the
same.) However, our final objective is the characterization of the range of an
operator which depends on the exact operator M. It is an open question whether
the pointwise convergence (5.8) is sufficient and convenient to accomplish this by
means of the approximants M̃Pδ . For the tool we refer to later on, it is crucial that
M̃Pδ converges to M even in the operator norm. Although our proof of this fact has
a different background, it is strongly inspired by the proof of Proposition III.12 in
[49]. Beforehand, we prove an auxiliary result, following the next definition.

Definition 5.2. Let L ⊂ R3 be a bounded Lipschitz set. We define the operator
SL∂ L : H

−1/2
α (∂L) → H1

α,loc(R
3) by

(SL∂ Lϕ)(x) =
∫

∂ L
Gα(y,x)ϕ(y)ds(y)

with x ∈ R3. The function SL∂ Lϕ is called the single-layer potential with density

ϕ on ∂L. The associated single-layer operator S∂ L : H
−1/2
α (∂L) → H

1/2
α (∂L) is

defined by S∂ L = γDSL∂ L where γD denotes the trace operator for L.

A proof of the asserted mapping property of SL∂ L can be found e.g. in [53].

Lemma 5.3. Let R be given as above, i.e. R = {x ∈ Π : |x3| < r} with r > 0
such that Ω∩Π ⊂ R and R∩Γi = R∩Γs = /0. The single-layer operator S∂ R :
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H
−1/2
α (∂R) → H

1/2
α (∂R) is a Fredholm operator with index zero. Moreover, if k2

0
is no Dirichlet eigenvalue of −∆ in R, then S∂ R is injective and has a bounded

inverse.

Proof. Clearly, the set R is bounded and Lipschitz. Analog to Theorem 7.6 in [53],
it can be shown that S∂ R can be decomposed into S∂ R = S0 + (S∂ R − S0) where

S0 : H
−1/2
α (∂R) → H

1/2
α (∂R) has a coercive real part and S∂ R − S0 is compact.

Hence, S∂ R is a Fredholm operator with index zero. To prove the second part of
the assertion, assume ϕ ∈ kerS∂ R. Since S∂ R ϕ = γDSL∂ R ϕ and the potential uα =
SL∂ R ϕ solves the Helmholtz equation in Π\∂R, uα solves the interior Dirichlet
problem (5.3). So, if k2

0 is not a Dirichlet eigenvalue of −∆ in R, uα vanishes
in R. In this case, we obtain γD,+uα = 0 on ∂R∩Π, where γD,+ denotes the
trace operator for Π\R. By the uniqueness of a radiating solution to the exterior
Dirichlet problem in Π\R, we find that uα also vanishes in Π\R, hence uα ≡ 0
in Π. The α-quasi-periodicity of uα and the jump relation ϕ = −[γNuα ]∂ R then
yield ϕ ≡ 0. Hence, S∂ R is injective. For a Fredholm operator with index zero,
the Fredholm alternative applies, cf. [53]. Therefore, the equation S∂ Rϕ = gα is
uniquely solvable for every gα ∈ H

1/2
α (∂R), i.e. S∂ R is bijective, and the inverse

S−1
∂ R

: H
1/2
α (∂R) → H

−1/2
α (∂R) is bounded (see Corollary 2.12 in [60]). The proof

is finished.

Theorem 5.4. Assume that k2
0 is no Dirichlet eigenvalue of −∆ in R. Let, for all

δ > 0, gδ : [0,‖ṼΓi
‖2] → R be piecewise continuous and such that

|λ gδ (λ )| ≤C and lim
δ→0

gδ (λ ) =
1
λ

for all λ ∈ (0,‖ṼΓi
‖2] and some constant C > 0. We define the operators P̃δ :

H
1/2
α (∂R) → L2(Γi) by P̃δ = gδ (Ṽ ∗

Γi
ṼΓi

)Ṽ ∗
Γi

, with gδ (Ṽ ∗
Γi

ṼΓi
) as a functional cal-

culus, as well as Pδ : L2(Γs) → L2(Γi) by Pδ = P̃δVΓs, for δ > 0. Then, M̃Pδ

converges to M in the operator norm, i.e. ‖M̃Pδ −M‖→ 0, for δ → 0.

Proof. The proof bases on and slightly enhances the proof of Proposition III.12
in [49]. From the strong convergence M̃Pδ ϕ → Mϕ stated in (5.8) there follows
the weak convergence P∗

δ M̃∗ϕ ⇀ M∗ϕ for δ → 0, for all ϕ ∈ L2(Γs). According
to Theorem 4.1 in [25], P̃δ converges pointwise for δ → 0 to the (unbounded)
inverse of ṼΓi

on R(ṼΓi
). We recall that ṼΓi

is injective and has a dense range
according to Lemma 5.1 (ii). Hence, {P̃δ}δ>0 forms a regularization for ṼΓi

, see
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Proposition 3.4 in [25]. The adjoint P̃∗
δ of P̃δ is represented by

P̃∗
δ = ṼΓi

gδ (Ṽ ∗
Γi

ṼΓi
) = gδ (ṼΓi

Ṽ ∗
Γi

)ṼΓi
(5.9)

(see p. 44 in [25] for an argument) and converges pointwise for δ → 0 to the
(unbounded) inverse of Ṽ ∗

Γi
on R(Ṽ ∗

Γi
). We note that with ṼΓi

also Ṽ ∗
Γi

is injective

and has a dense range. With (5.9) and Pδ = P̃δVΓs, we find the identity

P∗
δ M̃∗ = V ∗

Γs
gδ (ṼΓi

Ṽ ∗
Γi

)ṼΓi
M̃∗. (5.10)

The prior action of M̃∗ in (5.10) allows to make use of the pointwise convergence
of P̃∗

δ for δ → 0. In fact, the range inclusion R(M̃∗) ⊆ R(Ṽ ∗
Γi

) holds. To prove

this, we first remark that the preliminary factorization (5.2) implies R(M̃∗) ⊆
R((H̃ ′

Γi
)∗). Second, as we are going to show now, the operator H̃ ′

Γi
: L2(Γi) →

H1
α(Ω) can be factorized in the form

H̃ ′
Γi

= H∂ R S−1
∂ R

ṼΓi
. (5.11)

This result leads to R((H̃ ′
Γi

)∗) ⊆ R(Ṽ ∗
Γi

) and, together with the previous inclu-

sion, to the asserted inclusion. In (5.11), S∂ R : H
−1/2
α (∂R) → H

1/2
α (∂R) denotes

again the single-layer operator on ∂R, which has a bounded inverse according to
Lemma 5.3. Now, we define the operator H∂ R : H

−1/2
α (∂R)→ H1

α(Ω) by H∂ Rϕ =
(SL∂ R ϕ)|Ω, where R satisfies Ω∩Π ⊂ R and R∩Γi = R∩Γs = /0. To establish

(5.11), let φ ∈ L2(Γi) and ψ = ṼΓi
φ . For any cuboid C ⊂ Π and ϕ ∈ H

−1/2
α (B)

with B ⊂ ∂C, we define the extension ϕ∂C ∈ H
−1/2
α (∂C) by

ϕ∂C =

{
ϕ on B

0 on ∂C\B
.

Moreover, by Ci we denote the cuboid which is enclosed by ∂Π and the planes
which contain Γi,+ and Γi,−, respectively. Recall that Γi,+ and Γi,− are flat and
make up the incidence surface Γi = Γi,+∪Γi,−. Then, we find the identities

γD(SL∂ R S−1
∂ R

ψ) = ψ = ṼΓi
φ and γD(SL∂Ci

φ∂Ci
) = ṼΓi

φ ,

where γD denotes the trace operator for R. From the assumption that k2
0 is no

Dirichlet eigenvalue of −∆ in R, we conclude that the potentials SL∂ R S−1
∂ R

ψ and

SL∂Ci
φ∂Ci

are equal in R and so, in particular, in Ω. The fact that H̃ ′
Γi

maps φ to
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(SL∂Ci
φ∂Ci

)|
Ω

then shows (5.11). Returning to (5.10), we note that the physical

near field operator M̃ and its adjoint are compact, and V ∗
Γs

preserves the point-
wise convergence since it is bounded (even compact, too). We are now prepared
to apply Theorem 10.6 from [46] and obtain that P∗

δ M̃∗ converges in norm to
V ∗

Γs
(Ṽ ∗

Γi
)†M̃∗. Since P∗

δ M̃∗ϕ ⇀ M∗ϕ and the weak and the strong limit coincide,

there holds M∗ = V ∗
Γs

(Ṽ ∗
Γi

)†M̃∗. This finally proves the claim by ‖M̃Pδ −M‖ =

‖P∗
δ M̃∗−M∗‖ → 0 for δ → 0.

5.2 The electromagnetic case

Many aspects of the approximation of M by M̃ in the electromagnetic case are
similar to those in the acoustic case, therefore we skip some details in this sec-
tion. We adopt here the concept of Section 5 in [44]. To simplify notation
below, we define first the auxiliary operators J̃ : L2(Γi,C3) → L2

loc(Π,C3) and
J : L2(Γs,C3) → L2

loc(Π,C3) by

J̃φ =
∫

Γi

Gα(y, ·)φ(y)ds(y) and Jϕ =
∫

Γs

G−α(y, ·)ϕ(y)ds(y).

The incident field (4.24) then reads ũi
α = (J̃φ)|Π\Γi

, where φ ∈ L2(Γi,C3) is
some fixed moment function. The operator HΓs defined in (4.28) can be writ-
ten as HΓsϕ =

√
|q|H′

Γs
ϕ where H′

Γs
is given by H′

Γs
ϕ = (curlJϕ)|Ω for ϕ ∈

L2(Γs,C3). The latter operator is bounded as a mapping from L2(Γs,C3) to
Hα(curl,Ω) and, similarly, H̃′

Γi
(·) = (curl J̃(·))|Ω is bounded from L2(Γi,C3) to

Hα(curl,Ω). The near field operators M and M̃ satisfy

M̃φ = G
√
|q|H̃′

Γi
φ and Mϕ = G

√
|q|H′

Γs
ϕ (5.12)

for all φ ∈ L2(Γi,C3) and ϕ ∈ L2(Γs,C3), where G is the solution operator de-
fined on p. 62. Again, by R we denote a set {x ∈ Π : |x3| < r} with r > 0 such
that Ω∩Π ⊂ R and R∩Γi = R∩Γs = /0. Finally, we define the operators Ṽ′

Γi
:

L2(Γi,C3)→ L2(∂R,C3), ṼΓi
: L2

t (Γi)→ L2
t (∂R), V′

Γs
: L2(Γs,C3)→ L2(∂R,C3),

and VΓs : L2
t (Γs) → L2

t (∂R) by

Ṽ′
Γi

(·) = (curl J̃(·))
∣∣
∂ R

, ṼΓi
= P∂ R

T Ṽ′
Γi

∣∣
L2

t (Γi)
,

V′
Γs

(·) = (curlJ(·))
∣∣
∂ R

, VΓs = P∂ R
T V′

Γs

∣∣
L2

t (Γs)
,
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where P∂ R
T : L2(∂R,C3) → L2

t (∂R), P∂ R
T : w 7→ (ν ×w)×ν , is the tangential pro-

jection on ∂R, with ν denoting the outward unit normal to ∂R. Statements analog
to those for ṼΓi

and VΓs in Lemma 5.1 apply to ṼΓi
and VΓs:

Lemma 5.5.

(i) The operators ṼΓi
and VΓs are compact.

(ii) If k2
0 is not an eigenvalue of the problem

curl2vα − k2
0 vα = 0 in R

γt(curlvα) = 0 on ∂R∩Π

}
(5.13)

(with an α-quasi-periodic boundary condition on ∂R∩ ∂Π), then ṼΓi
and

VΓs are injective and their ranges are dense in L2
t (∂R).

(iii) Assume that k2
0 is not an eigenvalue of the problem (5.13). Let {P̃δ}δ>0 be a

family of operators P̃δ : L2
t (∂R) → L2

t (Γi) which forms a regularization for

the (unbounded) inverse of ṼΓi
on R(ṼΓi

). Then with Pδ = P̃δVΓs : L2
t (Γs)→

L2
t (Γi) for δ > 0 there holds the pointwise convergence

ṼΓi
Pδ ϕ → VΓsϕ in L2

t (∂R) for δ → 0 (5.14)

for every ϕ ∈ L2
t (Γs).

Proof.

(i) Since R∩Γs = /0 and the Green’s tensor G−α(y,x) = Gα(x,y) is smooth for
all y ∈ Γs and all x in an open proper superset of R which does not intersect
Γs, the mapping ϕ 7→ (curlJϕ)|R is bounded from L2

t (Γs) to H2
α(R,C3). The

embedding H2
α(R,C3) →֒ H1

α(R,C3) is compact, and the tangential compo-
nents trace operator γT is bounded as a mapping from H1

α(R,C3) to L2
t (∂R).

Hence, the compactness of VΓs : L2
t (Γs) → L2

t (∂R) follows by the represen-
tation VΓsϕ = γT ((curlJϕ)|R). A similar argumentation applies to ṼΓi

.

(ii) The proof uses the idea of the proof of Lemma 5.1 in [44]. Again, we confine
ourselves to considering the operator VΓs . Let g ∈ kerVΓs and define the
vector potential vα ∈ Hα,loc(curl,Π) by

vα(x) = curl
∫

Γs

G−α(y,x)g(y)ds(y) = curl
∫

Γs

G−α(y,x)g(y)ds(y)
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with x ∈ Π. According to the definitions, there holds (ν × vα |∂ R)× ν =
VΓsg = 0 and, since ν × vα |∂ R and ν are perpendicular, also ν × vα |∂ R = 0.
Inspecting Theorem 6.11 in [17] and Theorem 6.11 in [53] reveals that vα

satisfies the jump relations

[γtvα ]Γs
= g and [γt(curlvα)]Γ+∪Γ− = 0. (5.15)

Moreover, vα solves the homogeneous Maxwell’s equation curl2vα −k2
0 vα =

0 in Π\Γs and has an expansion of the form (4.44) in R±. In particular, it
solves the interior eigenvalue problem

curl2vα − k2
0 vα = 0 in R

ν × vα = 0 on ∂R∩Π

}
. (5.16)

Now, we define a function ṽα by curlvα + ik0 ṽα = 0 in R. Due to the ho-
mogeneous Maxwell’s equation, there holds the complementary equation
curl ṽα − ik0 vα = 0 in R. By applying another ‘curl’ to the first equation
in (5.16), we find that ṽα fulfills

curl2ṽα − k2
0 ṽα = 0 in R

ν × curl ṽα = 0 on ∂R∩Π

}
. (5.17)

This is just the interior eigenvalue problem (5.13), hence ṽα has to vanish
under the assumption on k2

0. We conclude that also vα vanishes in R and, by
analyticity, so it does in {x ∈ Π : m− < x3 < m+}. From this and the second
jump relation in (5.15) we obtain γt,+(curlvα) = 0 on Γ+∪Γ−, where γt,+ is
the tangential trace operator for R+∪R−. We are now in a similar situation as
in the proof of Proposition 4.5 (ii), with ṽα playing the role of h̃α there, and
conclude that ṽα and vα vanish in R+∪R−. Finally, the first jump relation in
(5.15) yields g ≡ 0, showing that VΓs is injective. To prove the denseness of
its range in L2

t (∂R), we prove that also the adjoint V∗
Γs

: L2
t (∂R) → L2

t (Γs) is
injective. First, we observe that

〈P∂ R
T g,h〉∂ R = 〈P∂ R

T g,P∂ R
T h+(id−P∂ R

T )h〉∂ R

= 〈P∂ R
T g,P∂ R

T h〉∂ R

= 〈P∂ R
T g+(id−P∂ R

T )g,P∂ R
T h〉∂ R

= 〈g,P∂ R
T h〉∂ R

holds for all g,h∈ L2(∂R,C3), where 〈·, ·〉∂ R denotes the usual scalar product
for this space. Of course, a similar relation applies to the tangential projec-
tion P

Γs
T : L2(Γs,C3) → L2

t (Γs) with respect to the scalar product 〈·, ·〉Γs
in
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L2(Γs,C3). Using this, we derive that

〈VΓsg,h〉∂ R = 〈VΓsP
Γs
T g,h〉∂ R

= 〈P∂ R
T V′

Γs
P

Γs
T g,h〉

∂ R

= 〈g,PΓs
T (V′

Γs
)∗P∂ R

T h〉
Γs

= 〈g,PΓs
T (V′

Γs
)∗h〉

Γs

holds for all g ∈ L2
t (Γs) and h ∈ L2

t (∂R). Hence, the adjoint of VΓs is given
by V∗

Γs
= P

Γs
T (V′

Γs
)∗|

L2
t (∂ R)

, and (V′
Γs

)∗ : L2(∂R,C3) → L2(Γs,C3) is easily

found to be

((V′
Γs

)∗ϕ)(x) = curl
∫

∂ R
G−α(x,y)ϕ(y)ds(y)

with ϕ ∈ L2(∂R,C3) and x ∈ Γs. Now, we choose h ∈ kerV∗
Γs

and define
wα ∈ Hα,loc(curl,2 ·Π) by

wα(x) = curl
∫

∂ R
G−α(x,y)h(y)ds(y) = curl

∫

∂ R
G−α(x,y)h(y)ds(y)

with x ∈ 2 ·Π, such that (ν ×wα |Γs
)×ν = V∗

Γs
h = 0 and also ν ×wα |Γs

= 0.
Similar to (5.15), there hold the jump relations

[γtwα ]∂ R = h and [γt(curlwα)]∂ R = 0. (5.18)

By the analyticity of wα((·, ·,x3)) in Γ⋆ = {x ∈ 2 ·Π : x3 = m−∨ x3 = m+}
and ν = ±e3 on Γs,±, from ν ×wα |Γs

= 0 we gain ν ×wα |Γ⋆ = 0. In partic-
ular, wα solves the exterior problem

curl2wα − k2
0 wα = 0 in R⋆

ν ×wα = 0 on Γ⋆

}
(5.19)

where R⋆ = {x ∈ 2 · Π : x3 < m− ∨ x3 > m+}, together with an α-quasi-
periodic boundary condition (still with respect to Π, i.e. to the quasi-period
Λ = (2π ,2π ,0)T ) on R⋆∩ ∂ (2 ·Π). By (5.19) and the smoothness of wα in
{x ∈ 2 ·Π : |x3| > r}, we obtain

∆wα + k2
0 wα = 0 in R⋆

divwα = 0 on Γ⋆

ν ×wα = 0 on Γ⋆



 . (5.20)
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Accompanied by radiating behavior of wα , this is a special, quasi-periodic
exterior electric boundary value problem, cp. the proof of Proposition 4.5
(ii). Using the Rayleigh expansion of the component functions of wα and
the boundary conditions on Γ⋆, one easily proves that (5.20) has at most
one solution. Hence, wα vanishes in R⋆ and, by analyticity, so it does in
all of {x ∈ 2 ·Π : |x3| > r}. The second jump relation in (5.18) then implies
γt,−(curlwα) = 0 on ∂R∩Π, where γt,− is the tangential trace operator for R.
Moreover, wα satisfies an α-quasi-periodic boundary condition on ∂R∩∂Π
and solves curl2wα − k2

0 wα = 0 in R. Thus, it is a solution to the interior
eigenvalue problem (5.13) and vanishes in R under the assumption on k2

0.
The α-quasi-periodicity of wα and the first jump relation in (5.18) now reveal
h ≡ 0. The proof is complete.

(iii) This is a consequence of standard regularization theory, see, e.g., [25].

In the following, we assume that the condition in Lemma 5.5 (ii) is fulfilled,
i.e. k2

0 is no eigenvalue of the problem

curl2vα − k2
0 vα = 0 in R

γt(curlvα) = 0 on ∂R∩Π

}
. (5.21)

The inhomogeneous eigenvalue problem, which corresponds to the problem (5.21)
with γt(curlvα) = fα on ∂R∩Π with arbitrary fα ∈ Yα(∂R) instead, can be for-
mulated in the variational sense via the Green’s identity (2.25). The volume in-
tegral part of this formulation defines a sesquilinear form on Hα(curl,R). It can
be shown that this form induces a Fredholm operator with index zero, cf. [14,
Section 3]. Due to the above condition on k2

0, this operator is injective. More-
over, the boundary integral part constitutes a bounded conjugate-linear functional
on Hα(curl,R). In consequence, there is a unique solution to the inhomogeneous
eigenvalue problem and the solution depends continuously on the tangential trace
data. Besides, we remark that there is a slight connection between the eigenvalue
problem (5.21) and the problem

∆wα + k2
0 wα = 0 in R

γD(divwα) = 0 on ∂R∩Π
γtwα = 0 on ∂R∩Π



 , (5.22)

which is an α-quasi-periodic variant of the so-called interior electric boundary

value problem, cf. [16]. The latter one can be derived from the former one by
applying another ‘curl’ to the homogeneous Maxwell’s equation in (5.21) and
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defining wα by the equation curlvα + ik0 wα = 0 in R. Obviously, if curl2vα −
k2

0 vα holds in R, then there also applies the complementary equation curlwα −
ik0 vα = 0 in R. From this we conclude that if k2

0 is an eigenvalue of the problem
(5.21), then it is an eigenvalue of the problem (5.22).

Now, for ϕ ∈ L2(Γs,C3), both α-quasi-periodic vector potentials

x 7−→ (J̃Pδ ϕ)(x) =
∫

Γi

Gα(y,x)(Pδ ϕ)(y)ds(y) and

x 7−→ (Jϕ)(x) =
∫

Γs

G−α(y,x)ϕ(y)ds(y)

satisfy the homogeneous Maxwell’s equation in R. Since the pointwise conver-
gence (5.14) implies

ν × Ṽ′
Γi

Pδ ϕ → ν ×V′
Γs

ϕ in L2
t (∂R) for δ → 0,

the continuous dependence of the unique solution to the problem (5.21) from the
tangential trace data yields that H̃′

Γi
Pδ ϕ converges to H′

Γs
ϕ in Hα(curl,Ω) as δ

goes to zero. Finally, we arrive at the pointwise convergence

M̃Pδ ϕ = G
√

|q|H̃′
Γi

Pδ ϕ → G
√

|q|H′
Γs

ϕ = Mϕ for δ → 0 (5.23)

for every ϕ ∈ L2(Γs,C3). In principle, we can compute Mϕ to a prescribed accu-
racy for any given density ϕ ∈ L2(Γs,C3). As in the acoustic case, it will become
crucial later that M̃Pδ converges to M even in the operator norm. We prove now
that this in fact holds.

Theorem 5.6. Assume that k2
0 is no eigenvalue of the problem (5.21). Let, for all

δ > 0, gδ : [0,‖Ṽ′
Γi
‖2] → R be piecewise continuous and fulfill

|λ gδ (λ )| ≤C and lim
δ→0

gδ (λ ) =
1
λ

for all λ ∈ (0,‖Ṽ′
Γi
‖2] and some constant C > 0. Then the operator family {P̃δ}δ>0

with P̃δ = gδ ((Ṽ′
Γi

)∗Ṽ′
Γi

)(Ṽ′
Γi

)∗ : L2(∂R,C3) → L2(Γi,C3) forms a regularization

for the (unbounded) inverse of Ṽ′
Γi

on R(Ṽ′
Γi

). With Pδ = P̃δV′
Γs

for δ > 0, M̃Pδ

converges to M in the operator norm as δ goes to zero.

Proof. It is sufficient to show that the range inclusion R((H̃′
Γi

)∗) ⊆ R((Ṽ′
Γi

)∗)
holds. Then an argumentation similar to that in the proof of Theorem 5.4 verifies
the assertion. To start, we recall that H̃′

Γi
: L2(Γi,C3) → L2(Ω,C3) is given by

H̃′
Γi

φ = (curl J̃φ)
∣∣
Ω

= curl
∫

Γi

Gα(y, ·)φ(y)ds(y). (5.24)



90 CHAPTER 5. APPROXIMATION OF THE NEAR FIELD OPERATORS

R

C+

C−

Π

−π +π

Figure 5.2: Example for C±

Letting aside the ‘curl’ in this expression, the remainder has the form of the oper-
ator H̃ ′

Γi
from the acoustic case, discussed in Section 5.1, but is applied here to a

vectorial argument φ ∈ L2(Γi,C3). We denote this operator by Ha
Γi

, it is bounded
from L2(Γi,C3) to H1

α(Ω,C3) and, because of Ω∩ Γi = /0, also to H2
α(Ω,C3).

Since the action of Ha
Γi

on φ does not involve any mixing of the components of
φ , Ha

Γi
allows a factorization in the form

Ha
Γi

= Ha
∂ R (Sa

∂ R)−1Ṽa
Γi

, (5.25)

where the operators on the right-hand side are the vectorial counterparts of the
corresponding operators in the factorization (5.11). Since the adjoint of H̃′

Γi
is

given by (H̃′
Γi

)∗g = curl(Ha
Γi

)∗g for g ∈ L2(Ω,C3), by means of (5.25) we obtain

(H̃′
Γi

)∗g = curl(Ṽa
Γi

)∗X∗g (5.26)

where X = Ha
∂ R

(Sa
∂ R

)−1 : H
1/2
α (∂R,C3) → H1

α(Ω,C3) is bounded. The operator

(Ṽa
Γi

)∗ is given by (Ṽa
Γi

)∗φ = (S̃L∂ R φ)|Γi
for φ ∈ H

−1/2
α (∂R,C3) where S̃L∂ R φ

denotes the single-layer vector potential

(S̃L∂ R φ)(x) =
∫

∂ R
Gα(x,y)φ(y)ds(y), x ∈ R3. (5.27)
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This potential solves the vector Helmholtz equation in (2 ·Π)\∂R, see the first
comment on p. 138 in [62], and thus is smooth there. Now, think of Γi,± as part of
a closed Lipschitz surface C± in {x ∈ 2 ·Π : |x3| > r}, respectively, as illustrated
in Figure 5.2. The ‘curl’ of the potential (5.27) lies in H1

α,loc((2 ·Π)\R) and hence

has a well-defined Dirichlet trace on C± in H
1/2
α (C±,C3), respectively. Now,

restricting the trace again to Γi, it follows that g 7→ curl(Ṽa
Γi

)∗X∗g is well-defined
as a mapping from L2(Ω,C3) to L2(Γi,C3). Finally, there holds

(H̃′
Γi

)∗g = curl(Ṽa
Γi

)∗X∗g

= curl
∫

∂ R
Gα(·,y) (X∗g)(y)ds(y)

= curl
∫

∂ R
Gα(·,y)(X∗g)(y)ds(y),

which reveals R((H̃′
Γi

)∗) ⊆ R((Ṽ′
Γi

)∗).





Chapter 6

Reconstruction of the shape

In Chapters 3 and 4, we set up and discussed the factorization of the acoustic and
electromagnetic artificial near field operators M and M. Now, we consider the
identification of the shape of the periodic medium based on these factorizations,
which we recall to be

M = H∗
Γs

T HΓs
and M = H∗

Γs
THΓs

, (6.1)

see (3.39) and (4.42). We first restate the theorems which form the abstract foun-
dation of the Factorization Method and have been proposed by KIRSCH in the pa-
pers [39, 42], with one important enhancement by LECHLEITER, cf. Theorem I.7
in [49]. In Subsections 3.2.3 and 4.2.3 it was shown how the type of the contrast
determines properties of the inner operators T and T. These in turn play a central
role in the functional analytic result behind the Factorization Method, which we
formulate in Section 6.2. It can be applied for a decent class of contrasts in our
inverse scattering problem. For almost everywhere absorbing media one can use
a corollary to this result. The reconstruction of such media and those described
by the more general contrasts is then made concrete in Sections 6.3 and 6.4.

6.1 Range tests

The next two results illustrate an immanent link between the shape of the scatter-
ing medium and the range of the first operator (which cannot be evaluated without
the knowledge of Ω) in the factorization of M and M, respectively. The statements
and the proofs of this link are very similar in the acoustic and the electromagnetic
case.

Theorem 6.1. For any z ∈ Π we define ψα,z ∈ L2(Γs) by

ψα,z(x) = Gα(z,x), x ∈ Γs.

There holds z ∈ Ω if and only if ψα,z ∈ R(H∗
Γs

).
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Proof. The proof follows the idea of the proof of Theorem 4.6 in [45]. Assume
first that z ∈ Ω. Let ε > 0 be such that the closed ball B(z,ε) with center z and
radius ε is contained in Ω. We choose a mollifier φ ∈ C∞(R) with φ(t) = 1 for
|t| ≥ ε and φ(t) = 0 for |t| ≤ ε/2, and define vα ∈ C∞

α (Π) by vα(x) = φ(|x −
z|)Gα(z,x). In Π\B(z,ε), it satisfies vα = Gα(z, ·) and thus ∆vα + k2

0 vα = 0.
Since Gα(z, ·) obeys the radiation condition (3.18), vα radiates according to (3.5).
Therefore, by Green’s formula (3.20) with L = Ω, we obtain

vα(x) =

∫

∂ Ω∩Π

(
Gα(y,x)

∂

∂νy

Gα(z,y)−Gα(z,y)
∂

∂νy

Gα(y,x)

)
ds(y)−

−
∫

|y−z|<ε
(∆vα(y)+ k2

0 vα(y))Gα(y,x)dy

= −
∫

|y−z|<ε
(∆vα(y)+ k2

0 vα(y))Gα(y,x)dy

for x ∈ Ω, where the first integral vanishes by formula (3.21). Using an analytic
continuation argument for vα in Ωext, we conclude that

ψα,z = vα = −
∫

|y−z|<ε
(∆vα(y)+ k2

0 vα(y))Gα (y, ·)dy on Γs. (6.2)

Now, we define

g =

{
−(∆vα + k2

0 vα)/
√

|q| in B(z,ε)

0 in Ω\B(z,ε)
. (6.3)

It is g ∈ L2(Ω) since |q| is locally bounded from below in Ω ⊃ B(z,ε), cf. As-
sumptions 3.2. Then, by (6.2) and the form of the operator H∗

Γs
from (3.30), we

find ψα,z = H∗
Γs

g, i.e. ψα,z ∈ R(H∗
Γs

).
Let now z∈Π\Ω and assume, on the contrary, that there exists some g∈ L2(Ω)

such that H∗
Γs

g = ψα,z = Gα(z, ·) on Γs. Then, by the one-to-one correspondence
in Ωext = Π\Ω between radiating solutions to the Helmholtz equation and their
near fields on Γs, we obtain

∫

Ω
Gα(y,x)g(y)

√
|q(y)|dy = Gα(z,x), x ∈ Π\(Ω∪{z}). (6.4)

Here, we also used that Ω′ has no inclusions of the background medium and
the function defined by the left-hand side has a continuous extension from Ωext to
∂Ω∩Π. This function even lies in C1

α(Π), cf. Lemma 4.1 in [27] together with the
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decomposition (3.17) of Gα . Moreover, it is a solution to the Helmholtz equation,
and thus analytic, in Ωext. The right-hand side, however, has a singularity at z /∈Ω,
which leads to a contradiction. We conclude that ψα,z /∈ R(H∗

Γs
).

The counterpart of Theorem 6.1 for the electromagnetic case has been proven
for a related setting in [44, Theorem 4.2]. The proof for our setting could be done
in an analogous manner with the aid of Proposition 4.3. However, we give an
alternative proof here, which uses our representation Theorem 4.1 and reveals the
same structure as the above proof for the acoustic case.

Theorem 6.2. For any z ∈ Π and fixed p ∈ R3 we define ψ̃α,z ∈ L2(Γs,C3) by

ψ̃α,z(x) = k2
0 Gα(z,x) p, x ∈ Γs.

There holds z ∈ Ω if and only if ψ̃α,z ∈ R(H∗
Γs

).

Proof. We assume first that z ∈ Ω and let ε > 0 be such that the closed ball
B(z,ε) is contained in Ω. In addition, let φ ∈ C∞(R) be such that φ(t) = 1 for
|t| ≥ ε and φ(t) = 0 for |t| ≤ ε/2. Then, we define vα ∈ C∞

α (Π,C3) by vα(x) =

curl2(φ(|x− z|)Gα(z,x) p). In Π\B(z,ε), it satisfies vα = curl2(Gα(z, ·) p) =
k2

0 Gα(z, ·) p and, in particular, vα |Γs
= ψ̃α,z. Since Gα(z, ·) obeys the radiation

condition (4.16), vα radiates according to (4.6). By Theorem 4.1 with L = Ω, we
obtain

vα(x) = −
∫

∂ Ω∩Π

(
Gα(·,x)(ν × curlvα)− curlyGα(·,x) (ν × vα)

)
ds(y)+

+

∫

|y−z|<ε
Gα(·,x)(curl2vα − k2

0 vα)dy

=

∫

|y−z|<ε
Gα(·,x)(curl2vα − k2

0 vα)dy (6.5)

for x∈Ω, where the first integral vanishes by formula (4.19) and vα = k2
0 Gα(z, ·) p

on ∂Ω∩Π. By analyticity of vα in Π\B(z,ε), the representation (6.5) holds in
fact in all of Π. Now, by a similar argument as in the proof of Theorem 6.1, we
find that ψ̃α,z is in the range of the operator

g 7−→
∫

Ω
Gα(y,x)g(y)

√
|q(y)|dy, x ∈ Γs.

However, comparing the form of the operator H∗
Γs

from (4.29), the proof is not

yet finished. We note that in a neighborhood Γ̃ of Γs (in Π) we can reformulate
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vα as

vα(x) =
∫

|y−z|<ε

1

k2
0

(curl2yGα(y,x))
(
curl2vα(y)− k2

0 vα(y)
)
dy

=
∫

|y−z|<ε

1

k2
0

curlx(−curlyGα(y,x))
(
curl2vα(y)− k2

0 vα(y)
)
dy

= curl
∫

Ω
(curlyGα(y,x)) g̃α(y)dy

for x ∈ Γ̃, where g̃α is defined by

g̃α =

{
−k−2

0 (curl2vα − k2
0 vα) in B(z,ε)

0 in Ω\B(z,ε)
.

It is easy to see that g̃α is in C∞
α (Ω,C3), and thus we can apply the identity (2.20)

to deduce that
∫

Ω
(curlyGα(y,x)) g̃α(y)dy =

∫

Ω
Gα(y,x)curl g̃α(y)dy

holds for x ∈ Γ̃ since γDg̃α = 0 on ∂Ω. Hence, for g ∈ L2(Ω,C3) defined by

g = curl g̃α/
√
|q| =

{
(curlvα − k−2

0 curl3vα)/
√

|q| in B(z,ε)

0 in Ω\B(z,ε)

we finally obtain ψ̃α,z = H∗
Γs

g, showing ψ̃α,z ∈ R(H∗
Γs

).
Let now z ∈ Π\Ω and assume that there is a g ∈ L2(Ω,C3) such that ψ̃α,z =

H∗
Γs

g. By the one-to-one correspondence in Ωext between radiating solutions to
the homogeneous Maxwell’s equation curl2vα −k2

0 vα = 0 and their near fields on
Γs, we conclude that

curl
∫

Ω
Gα(y,x)g(y)

√
|q(y)|dy = k2

0 Gα(z, ·) p, x ∈ Ωext\{z}.

Again, we used that Ω′ has no inclusions of the background medium. This leads
to a contradiction since by Proposition 4.3 (ii) there holds vα |B ∈ Hα(curl,B)
for any ball B ⊂ Π which contains z, whereas (k2

0 Gα(z, ·) p)|
Be /∈ L2(Be,C3) for

Be = B∩Ωext by the strong singularity at z. This completes the proof.

In connection with the range identities discussed below, Theorems 6.1 and 6.2
will make it possible to identify the shape of the scattering medium by known
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data, rather than by H∗
Γs

and H∗
Γs

, respectively. On the other hand, the regularity
arguments used in the proofs above make clear why the Factorization Method in
the form we use here is incapable of reconstructing the contrast q as a function.
As mentioned already, it is, however, sufficient in many applications to recover
the support of q.

6.2 Range identity

We now state the functional analytic result behind the Factorization Method,
which for certain factorizations A = B∗C B establishes the identity of the ranges of
the operator B∗ and of a self-adjoint operator which can be computed (in a quite
simple way) from the factorized operator A. As usual, B∗ denotes the adjoint of
B. The properties of the operators involved in (6.1) which have been proven in the
previous chapters will show that the factorizations of the near field operators M

and M match the required pattern. In [49], Theorem I.7, LECHLEITER refined a
result from [42] which asserts a range identity of the described type. We will use
the following, completely analogous extension of Theorem 2.15 from [45]. We
do not reproduce its elaborate proof here.

Theorem 6.3. Let X ⊆ U ⊆ X∗ be a Gelfand triple with Hilbert space U and

reflexive Banach space X such that the embedding is dense. Furthermore, let H

be a second Hilbert space and let A : H → H, B : H → X, and C : X → X∗ be

linear and bounded operators such that

A = B∗C B.

We make the following assumptions:

(i) B is compact and injective.

(ii) For some t ∈ [0,2π) the operator Re(ei tC) has the form Re(ei tC) = C̃ + K

with some coercive operator C̃ and some compact operator K from X to X∗.

(iii) ImC is non-negative on X, i.e. 〈ImCφ ,φ〉 ≥ 0 holds for all φ ∈ X.

Moreover, we assume that one of the next conditions is fulfilled.

(iv)-a C is injective.

(iv)-b ImC is positive on the (finite-dimensional) null space of Re(ei tC), that is

〈ImCφ ,φ〉 > 0 holds for all φ 6= 0 with Re(ei tC)φ = 0.
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Then the operator A♯ = |Re(ei tA)|+ImA is positive, and the ranges of B∗ : X →H

and A
1/2
♯ : H → H coincide.

Here, A
1/2
♯ denotes the square root of the operator A♯. Every non-negative op-

erator G ∈ L(H) on a complex Hilbert space H has a unique non-negative square
root G1/2 ∈ L(H), which solves S2 = G, cf. [60, Theorem 12.33]. The absolute
value |G| of any operator G ∈L(H) is defined as |G|= (G∗G)1/2, see, e.g., p. 329
in [70]. Since, in Theorem 6.3, B is compact and C is bounded, A, Re(ei tA), and

ImA are compact. Finally, according to [70, Satz VI.3.4], |Re(ei tA)| and A
1/2
♯ are

compact and self-adjoint. In Section 6.5, we will summarize properties of posi-
tive compact operators on H (to which A♯ belongs). It will turn out in a moment
that Theorem 6.3 allows us in particular to solve the acoustic as well as the elec-
tromagnetic inverse problem for a decent class of media. For almost everywhere
absorbing media, we will apply the following theorem, which is significantly eas-
ier to prove than Theorem 6.3.

Theorem 6.4. Let H1 and H2 be Hilbert spaces and A : H1 → H1, B : H1 → H2,

and C : H2 → H2 be linear and bounded operators such that

A = B∗C B.

In addition, let there hold:

(i) B is compact and injective.

(ii) ImC is coercive.

Then A♯ = ImA is positive, and the ranges of B∗ and A
1/2
♯ coincide.

Theorem 6.4 is a simple application of Theorem 4.1 from [41], with σ =
ei 3/2π =−i. We note that under the conditions of Theorem 6.4, for t = 3

2π the con-
clusions of Theorems 6.3 and 6.4 are equivalent, with A♯ = |ImA|+ ImA = 2ImA

in the former. Hence, Theorem 6.4 can be considered as a corollary to Theorem
6.3. The next two sections give evidence that we can apply both theorems to our
inverse problems. To this end, let for any z ∈ Π the probe functions ψα,z ∈ L2(Γs)
and ψ̃α,z ∈ L2(Γs,C3) be defined as in Theorems 6.1 and 6.2, respectively, i.e.

ψα,z(x) = Gα(z,x) and ψ̃α,z(x) = k2
0 Gα(z,x) p, x ∈ Γs, (6.6)

with some fixed p ∈ R3. We start with the treatment of the easier situation where
the scattering medium is absorbing.
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6.3 Absorbing media

We deal with absorbing media with a refraction index n (acoustic scattering) and a
relative permittivity εr (electromagnetic scattering) such that the contrast q = n−1
and q = 1−1/εr, respectively, satisfies

Imq ≥ c1|q| almost everywhere in Ω (6.7)

with some constant c1 > 0.

6.3.1 The acoustic case

The following proposition ensures that under the condition (6.7) we can apply
Theorem 6.4 to the acoustic near field operator M.

Proposition 6.5. Using the notation from Chapter 3, there hold:

• H1 = L2(Γs) and H2 = L2(Ω) are Hilbert spaces.

• The operators A = M, B = HΓs , and C = T are bounded linear operators.

• The operator B = HΓs fulfills Theorem 6.4 (i) by Proposition 3.5.

• Given (6.7), the operator C = T fulfills Theorem 6.4 (ii) by Theorem 3.8 (iii).

Finally, by the combination of Theorems 6.1 and 6.4, we gain the following
characterization of the scattering medium.

Theorem 6.6. The point z ∈ Π lies in Ω if and only if ψα,z from (6.6) lies in the

range of (ImM)1/2.

In practical applications, the operator M is computed approximately from the
physical near field operator M̃ using the relation (5.8).

6.3.2 The electromagnetic case

Theorem 6.4 can also be applied to the electromagnetic near field operator M.
The next proposition collects the necessary results.

Proposition 6.7. Using the notation from Chapter 4, there hold:

• H1 = L2(Γs,C3) and H2 = L2(Ω,C3) are Hilbert spaces.

• The operators A = M, B = HΓs , and C = T are bounded linear operators.
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• The operator B = HΓs fulfills Theorem 6.4 (i) by Proposition 4.5.

• Given (6.7), the operator C = T fulfills Theorem 6.4 (ii) by Theorem 4.9 (iii).

Combining Theorems 6.2 and 6.4 yields

Theorem 6.8. The point z ∈ Π lies in Ω if and only if ψ̃α,z from (6.6) lies in the

range of (ImM)1/2.

In practice, the operator M can be approximated by means of the physical near
field operator M̃ and the relation (5.23).

6.4 More general media

Supplementing Section 6.3, we now consider non-absorbing media and media
which might be only partially absorbing. The conditions which we impose on
the contrast q here differ in the cases of acoustic scattering and electromagnetic
scattering.

6.4.1 The acoustic case

Assume that the contrast q = n−1 obeys

Re(ei tq) ≥ c0|q| almost everywhere in Ω (6.8)

with some constants t ∈ [0,2π) and c0 > 0. Then we can make use of Theorem
6.3, as affirmed next.

Proposition 6.9. Using the notation from Chapter 3, there hold:

• X = X∗ = U = L2(Ω) is a Hilbert space and as such a reflexive Banach

space. H = L2(Γs) is a Hilbert space.

• The operators A = M, B = HΓs , and C = T are bounded linear operators.

• The operator B = HΓs fulfills Theorem 6.3 (i) by Proposition 3.5.

• Given (6.8), the operator C = T fulfills Theorem 6.3 (ii), (iii), and (iv)-a by

Theorem 3.8 (i), (ii), and (iv).

Thus, via Theorem 6.1 we obtain the following.

Theorem 6.10. The point z ∈ Π lies in Ω if and only if ψα,z from (6.6) lies in the

range of M
1/2
♯ where M♯ = |Re(ei tM)|+ ImM.
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6.4.2 The electromagnetic case

Let the contrast q = 1−1/εr be real-valued and satisfy

q > 0 ⇐⇒ εr > 1 almost everywhere in Ω. (6.9)

Proposition 6.11 verifies that Theorem 6.3 applies then with t = 0.

Proposition 6.11. Using the notation from Chapter 4, there hold:

• X = X∗ = U = L2(Ω,C3) and H = L2(Γs,C3) are Hilbert spaces.

• The operators A = M, B = HΓs , and C = T are bounded linear operators.

• The operator B = HΓs fulfills Theorem 6.3 (i) by Proposition 4.5.

• Given (6.9), the operator C = T fulfills Theorem 6.3 (ii) with t = 0, (iii), and

(iv)-a by Theorem 4.9 (i), (ii), and (iv).

Using this and Theorem 6.2, we arrive at

Theorem 6.12. The point z ∈ Π lies in Ω if and only if ψ̃α,z from (6.6) lies in the

range of M
1/2
♯ where M♯ = |ReM|+ ImM.

6.5 Regularization of the Factorization Method

In the statements of Theorems 6.6, 6.8, 6.10, and 6.12 we refer to the ranges
of operators which depend on the exact artificial near field operator M (acoustic
case) or M (electromagnetic case). However, all we can compute from given
data are approximants to M and M, respectively. It is not yet clear in which
sense, if at all, the characterizations of the medium Ω in the previous sections can
be met “in the limit” when one has to deal with a sequence of approximants to
the artificial near field operator. Since the same questions arise for the acoustic
and the electromagnetic case, we address only the acoustic case in the following
discussion. To state the problem more precisely: How can we benefit from the
range criterions in Theorems 6.6 and 6.10 to recover Ω (asymptotically) when we
are given a sequence of operators M j, j ∈ N, which satisfy ‖M j −M‖ → 0 in the
operator norm for j → ∞? In this sort of abstract question, we leave aside the
difficulty to obtain approximants M j from measurement data in the form of M̃Pδ j

,
defined in Theorem 5.4, with δ j → 0 for j → ∞. To tackle this question, we first
note that the operators ImM in Theorem 6.6 and M♯ in Theorem 6.10 are positive
and compact.
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To collect some basic properties of such operators, let F ∈ L(H) denote a
positive and compact operator on a complex Hilbert space H. Then F is self-
adjoint [60, Theorem 12.32] and injective. Due to the compactness, the spectrum
of F is the union of {0} and the at most countable set {λi} of eigenvalues of F .
The eigenvalues λi 6= 0 have finite geometric multiplicities di = dimker(λi id−F)
and accumulate at most at zero, see Theorems 4.18 and 4.25 in [60]. The self-
adjointness of F implies that all λi are real, the eigenvectors belonging to dif-
ferent eigenvalues are orthogonal, and the algebraic multiplicities ai = dimN(λi),
N(λi) = {x∈H : ∃k ≥ 1 (λi id−F)kx = 0}, for λi 6= 0 coincide with the geometric
ones, cf. Lemma VI.3.1 and p. 299f. in [70]. The spectral theorem [70, Theorem
VI.3.2] states that in fact there is an orthonormal basis of H which consists of
eigenvectors of F . Due to the injectivity of F and the geometric multiplicities of
the non-zero eigenvalues being finite, F has infinitely many eigenvalues if H is
infinite-dimensional. Since F is positive, all its eigenvalues are indeed positive.
Now, let (σn,φn) denote a sequence of pairs of eigenvalues and normalized eigen-
vectors of F , where σn takes the value of each λi according to its multiplicity,
and all φn which belong to those σn equal to λi span the eigenspace ker(λi id−F).
Then F can be represented by

Fx = ∑
n

σn〈x,φn〉φn for all x ∈ H.

As a positive operator, F has a unique square root F1/2 ∈ L(H) [60, Theorem
12.33]. In fact, by [70, Satz VI.3.4], the spectral representation of F1/2, and the
positivity of F , the operator F1/2 is seen to be positive and compact. Hence, it
shares all the above properties of F .

Now, let, for instance, {(σn,φn)} denote an eigensystem of (ImM)1/2. We
assume that the σn are ordered such that σ1 ≥ σ2 ≥ . . . > 0. Theorem 6.6 asserts
that a point z ∈ Π lies in Ω if and only if the equation

(ImM)1/2g = ψα,z (6.10)

has a solution. Equivalently, z ∈ Π lies in Ω if and only if the Picard sequence

pz(N) =
N

∑
n=1

|〈ψα,z,φn〉|2
σ2

n

, N ∈ N, (6.11)

stays bounded for N → ∞. This demonstrates that the identification of Ω by the
operator (ImM)1/2 is an ill-posed problem since σn decay to zero as n goes to
infinity, cp. Section 4.3 in [17]. It is an unconventional ill-posed inverse problem
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in the sense that the ‘data’ are given by the specified function ψα,z = Gα(z, ·)
and that the focus is not on the computation of an approximate solution to (6.10),
but on the solvability of (6.10) itself. The ill-posedness comes into play with the
numerical representations of ψα,z and of the eigensystem {(σn,φn)} of (ImM)1/2.
This in turn connects the nature of the identification problem with the type of our
initial question. Since we only have a sequence of noisy operators M j at hand, the
challenge is to imitate for j → ∞ the behavior of the exact Picard sequence pz(N)

for N → ∞, using the perturbed eigensystem {(σ ( j)
n ,φ

( j)
n )} of (ImM j)

1/2. Aside,

we remark that the sequence σ
( j)
n , n ∈ N, could be finite, i.e. σ

( j)
n = 0 for big

enough n. This problem has been solved for a related setting by LECHLEITER in
[48], see also Section I-6 in [49]. His method provides a suitable truncation of the
perturbed Picard sequence. We want to address shortly an important ingredient for
that. To this end, let A denote the operator of interest in [48] and {A j} a family of
approximants which satisfy ‖A−A j‖ → 0 for j → ∞. The exact Picard sequence
therein refers to the square root of the operator A♯ = |ReA|+ ImA. Preceding the
construction of the truncation index, LECHLEITER uses an estimate from [66] to
conclude from the norm convergence of A j to A that

‖|ReA j|− |ReA|‖ → 0 and ‖(A j)♯−A♯‖ → 0 for j → ∞,

where (A j)♯ is defined analogously to A♯. To adapt the method to our setting, we
have to guarantee that ‖ImM j − ImM‖ → 0 in the case of absorption (6.7) and
that ‖(M j)♯−M♯‖ → 0 with M♯ = |Re(ei tM)|+ ImM in the more general case

(6.8). Based on Theorem 5.4 and M j = M̃Pδ j
, the former convergence is a direct

consequence of

‖ImM j − ImM‖ ≤ 1
2
‖M j +M∗

j − (M +M∗)‖ ≤ ‖M j −M‖,

while the latter one can be shown using again the estimate from [66]. Operator
estimates of this type are discussed thoroughly in [52]. Let now p

( j)
z (N), N ∈ N,

denote the Picard sequence with respect to the eigensystem {(σ ( j)
n ,φ

( j)
n )} of either

(ImM j)
1/2 or ((M j)♯)

1/2, depending on whether the contrast q obeys (6.7) or (6.8).
With our preparation, a mapping j 7→ N( j) can be designed following [48] such

that j 7→ p
( j)
z (N( j)) stays bounded if and only if z ∈ Ω. The incorporation of this

regularized Picard criterion into Theorems 6.6 and 6.10 then yields an asymptotic
identification of the medium by known data only. Similar statements hold for the
electromagnetic inverse problem, substituting M by M and M j by M j = M̃Pδ j

,
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cf. Theorem 5.6. We finally note that the proposed Picard technique requires the
knowledge of a growing part of the disturbed eigensystem {(σ ( j)

n ,φ
( j)
n )} for j →

∞, which might become expensive in practice. However, first considerations let
us suppose it to be very difficult to construct an alternative regularization method
for the range criterions which at least avoids the knowledge of the eigenfunctions.



Chapter 7

Numerical solvers

In this final chapter, we develop and apply numerical solvers for the direct and
the inverse scattering problem which we investigated in theory in the previous
chapters. We restrict ourselves here to the acoustic case in 2D, but remark that
a big part of the presentation can be carried over in a straightforward way to the
3D case and also to the electromagnetic setting. In the first section, we adapt to
our problem a fast solver for the Lippmann-Schwinger equation which has been
proposed by VAINIKKO in [68] and discussed in detail in the monograph [61]. In
particular, we demonstrate features of this approach which arise from the α-quasi-
periodicity of our setting. The original and the adapted solver work properly only
for continuous contrasts (we show a numerical example for this later). However,
the optical devices which are produced up to now and which are of interest in
today’s applications have discontinuous contrasts. A main drawback of the con-
tinuity requirement is that it implies a smooth transition of the contrast to zero at
the boundary of the medium. Thus, the usability of the solver for exact practical
computations is limited. At the end of the first section, we propose a variant of
the solver for our Lippmann-Schwinger equation which can treat contrasts which
are piecewise constant on rectangles. This class of contrasts is covered by our
theoretical considerations in the previous chapters and includes a major part of
the devices used today. On the downside, our current implementation of the new
solver requires a very expensive one-time precomputation for each medium ge-
ometry. This, however, can be improved significantly, we will comment on this.
We show some numerical results for the adapted as well as the new method. The
second section deals with the inverse problem of reconstructing the shape of the
(inhomogeneous) medium from scattering data. Our intention is a numerical val-
idation of our variant of the Factorization Method as a solver for this problem.
The computations rely on the application of the solvers from the first section for
the simulation of the direct problem and the setup of the numerical near field
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operator used in the implementation of the Factorization Method. We describe
the overall computation scheme to show how the main results of this thesis are
integrated in a practical realization. Afterwards, we present numerical examples
for a smooth and a piecewise constant contrast and illustrate the dependence of
the reconstructions on the different parameters. We close the thesis with a short
conclusion.

7.1 Direct problem: A fast solver for the α-quasi-periodic Lipp-

mann-Schwinger equation

7.1.1 The ⋆-periodic Lippmann-Schwinger equation

We start by rephrasing the α-quasi-periodic acoustic Lippmann-Schwinger equa-
tion as

uα(x) = ui
α(x)+ k2

0

∫

Ω
Gα(y,x)q(y)uα (y)dy, x ∈ Π. (α-LSE)

The integral is over Ω = Ω′ ∩Π, where Ω′ ⊇ suppq, the contrast q = n− 1 is
assumed to be 2π-periodic in the x1-dimension, and Π = (−π ,π)×R is the 2D
unit cell. Moreover, Γi ⊂ Ωext = Π\Ω consists of horizontal lines and Gα denotes
the α-quasi-periodic scalar Green’s function for the 2D Helmholtz equation in
free field conditions. It is given by

Gα(y,x) =
i

4π ∑
z∈Z

1
βz

ei(αz·(x−y)+βz|x2−y2|) (7.1)

for x,y ∈ Π with x2 6= y2, where α ∈ R×{0}, Z = Z×{0}, αz = α + z, and

βz =
√

k2
0 −|αz|2 6= 0 for all z ∈ Z. Point sources on Γi generate the incident

acoustic field ui
α . Again, uα is the total field, i.e. the sum of ui

α and the associ-
ated scattered field us

α . The difference between the acoustic Lippmann-Schwinger
equation (3.37) in Chapter 3 and equation (α-LSE) above is that (3.37) is formu-
lated for the scattered field rather than the total field, with a generalized incidence
and in three dimensions. To emphasize that the Green’s function Gα depends only
on the difference of its arguments, we change the notation for this chapter from
Gα(y,x) to Gα(x− y). Moreover, we write fα for ui

α . Recall that we identify any
periodic or α-quasi-periodic function with its restriction to the unit cell Π. Now,
we define the set

Cr = {x ∈ Π : |x2| < r} (7.2)
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with r > 0 such that Ω∩Π ⊂ Cr and Cr ∩ Γi = /0. Since the periodic contrast
q : Π→C is supported in Ω, we may enlarge without effect the integration domain
in (α-LSE) to Cr. Thus, we obtain the equation

uα(x) = fα(x)+ k2
0

∫

Cr

Gα(x− y)q(y)uα(y)dy, x ∈ Π. (7.3)

Obviously, the function uα is completely determined by its restriction to the inte-
gration domain Cr and even to Ω. It is now important to note that x,y ∈Cr implies
x− y ∈ 2 ·Cr and that the y-dependent part of the integrand in (7.3) is periodic
in the first coordinate, since Gα(x−·) is −α-quasi-periodic and quα is α-quasi-
periodic. The latter function might, however, not have a well-defined trace on ∂Π,
depending on the regularity of q. In consequence, only the restriction of Gα to the
set C2r = (2 ·Cr)∩Π counts for the integral in (7.3). This is a simple implication
of the α-quasi-periodicity of our problem. VAINIKKO’S solver (see Section 10.5
in [61]) is based on the observation that a modification of the integral kernel in the
Lippmann-Schwinger equation outside a specific ‘relevant’ region does not affect
the computation of the total field. Stated precisely for our setting, a modification
of Gα in Π\C2r does not change the function uα in Cr. Therefore, we introduce a
third set Cr̃ with r̃ ≥ 2r such that C2r ⊆Cr̃ and a new kernel Kα on Cr̃ by

Kα(y) =

{
Gα(y) , y ∈C2r

0 , y ∈Cr̃\C2r

. (7.4)

Here, we include a part of the boundary of the unit cell for consistency of the
following presentation. To avoid an overload of notation, we redefine

fα(y) =

{
fα(y) , y ∈C2r

0 , y ∈Cr̃\C2r

and denote uα |Cr̃
now by uα . Then, we extend Kα , fα , and uα from Cr̃ to R2 as

functions which are α1-quasi-periodic in the first coordinate and 2r̃-periodic in the
second coordinate. We call such functions ⋆-periodic for short. In addition, we
extend the contrast q from Cr̃ to R2 as a (2π ,2r̃)-periodic function. This preserves
the form of the original contrast q in the strip {x ∈R2 : |x2|< r̃}, but comes with a
new x2-dependence below and above this strip. For convenience, we use the same
symbols for the extended functions as for their restrictions to Cr̃. We point out that
the new kernel Kα differs from the Green’s function Gα only in the dependence
on the second coordinate. Enlarging again the integration domain, we arrive at
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the ⋆-periodic equation

uα(x) = fα(x)+ k2
0

∫

Cr̃

Kα(x− y)q(y)uα(y)dy, x ∈Cr̃. (7.5)

In this equation, the characteristic part of all functions lies in Cr̃ and the integral
is over Cr̃. This is the starting point for an efficient numerical solution of (7.5)
by a Fourier technique. We finish our preparations and denote by H

µ
⋆ (Cr̃) the

space of ⋆-periodic functions of Hµ -regularity, with µ chosen such that they have
a well-defined trace on ∂Cr̃. In fact, from now on we assume

q ∈ H
µ
per(Cr̃) and q fα ∈ H

µ
⋆ (Cr̃) for some µ > 1, (7.6)

where H
µ
per(·) stands for H

µ
α=0(·). According to Sobolev’s Lemma (cf. [69]), q

and q fα are then continuous in Cr̃. Moreover, they have continuous extensions to
∂Cr̃. Multiplication of (7.5) with q finally yields

wα(x) = (q fα)(x)+ k2
0 q(x)

∫

Cr̃

Kα(x− y)wα(y)dy, x ∈Cr̃, (⋆-LSE)

with wα = quα . This is the ⋆-periodic Lippmann-Schwinger equation which we
consider in the following. Simple considerations make clear that the equations
(7.3), (7.5), and (⋆-LSE) are equivalent with respect to existence and uniqueness
of a solution. For instance, if (7.5) has at most one solution, then (⋆-LSE) has at
most one solution. To show this, assume on the contrary to the conclusion that
wα,1 and wα,2 solve (⋆-LSE) and wα,1 6≡ wα,2. Then by (⋆-LSE) there also holds
wα,1|suppq∩Π 6≡ wα,2|suppq∩Π. But then ((wα,1 −wα,2)/q)|suppq∩Π 6≡ 0 solves (7.5)
in suppq∩Π with fα ≡ 0 and determines (uniquely) a nontrivial solution to (7.5)
in Cr̃ with fα ≡ 0. This is a contradiction to the assumption that (7.5) has at most
one solution. If uα is a solution to (7.5), then (the ⋆-periodic extension of) quα

solves (⋆-LSE).

7.1.2 Trigonometric collocation

The equation (⋆-LSE) is a Fredholm volume integral equation of the second kind.
In order to solve it numerically, we set up a finite-dimensional collocation problem
for (⋆-LSE). To start, we introduce the index set

Z2
N =

{
j ∈ Z2 : −N

2
< jk ≤

N

2
, k = 1,2

}
, N ∈ 2 ·N, (7.7)
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and the N2-dimensional linear space T⋆,N of ⋆-periodic trigonometric polynomials
on Cr̃ of the form vα,N = ∑ j∈Z2

N
a j ϕα, j with a j ∈ C and

ϕα, j(x) = (4π r̃)−1/2eiα·x eiπ ( j1 x1/π+ j2 x2/r̃), x ∈Cr̃.

We note that ϕα, j, j ∈ Z2, form an orthonormal basis of L2(Cr̃). We will use the
abbreviations

( j./c) · x = j1 x1/π + j2 x2/r̃, c = (π , r̃), c̃ = (4π r̃)−1/2,

so that ϕα, j(x) = c̃ ei(α+π j./c)·x. Associated with the space T⋆,N , we define the
interpolation projection QN : H

µ
⋆ (Cr̃) → T⋆,N for µ > 1 by claiming

QNvα ∈ T⋆,N, (QNvα)( j⊙hN) = vα( j⊙hN) for all j ∈Z2
N, hN =

2c

N
, (7.8)

for vα ∈H
µ
⋆ (Cr̃), where ⊙ stands for a componentwise multiplication. This means

that QN performs a collocation on the grid GN = Z2
N ⊙ hN in the space T⋆,N . The

grid GN lacks grid points on the left and at the bottom of Cr̃, which is due to the
⋆-periodicity of the functions to be handled. The next theorem makes a statement
about the approximation quality of QN in a certain Sobolev range, cp. Theorem
8.5.3 in [61].

Theorem 7.1. For any vα ∈ H
µ
⋆ (Cr̃) with µ > 1 there holds

‖vα −QNvα‖λ ≤ cλ ,µ Nλ−µ ‖vα‖µ (7.9)

for any 0 ≤ λ ≤ µ , where cλ ,µ = 2µ−λ
(
2λ ∑∞

l,l′=0 (l2 + l′2)−µ
)1/2

and ‖·‖µ de-

notes the norm of Hµ(Cr̃).

We consider the approximate solution of (⋆-LSE) by the trigonometric collo-
cation method

wα,N = QN(q fα)+QN(k2
0 qKαwα,N) (7.10)

where Kα : L2(Cr̃) → H2
⋆ (Cr̃) is the integral operator given by

(Kαv)(x) =
∫

Cr̃

Kα(x− y)v(y)dy, x ∈Cr̃. (7.11)

With Kα being a convolution operator, one shows by means of the convolution
theorem that

Kαϕα, j = c̃−1K̂α( j)ϕα, j, j ∈ Z2, (7.12)
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holds, where K̂α( j) are the Fourier coefficients of Kα with respect to {ϕα, j},
j ∈ Z2. We derive a simple expression for these coefficients at the end of this
subsection. The relation (7.12) will allow us to avoid any explicit integration
later on in our numerical scheme. To this end, we also need to compute the
Fourier coefficients v̂α,N( j) for j ∈ Z2

N of a function vα,N ∈ T⋆,N . However, these
coefficients are simply given by

v̂α,N( j) =
∫

Cr̃

vα,N(y)ϕα, j(y)dy

= c̃−1N−2 ∑
l∈Z2

N

vα,N(l ⊙hN)e−iα·(l⊙hN) e−i 2π l· j/N, j ∈ Z2
N. (7.13)

The right-hand side of (7.13) is a discrete 2D Fourier transform of the modified
node values vα,N( j ⊙ hN)e−iα·( j⊙hN), j ∈ Z2

N . We abbreviate this transform by
Fα,N . Complementary, F−1

α,N denotes the inverse transformation, given by

vα,N( j⊙hN) = (F−1
α,N v̂α,N)( j) = c̃ eiα·( j⊙hN) ∑

l∈Z2
N

v̂α,N(l)ei 2π l· j/N, j ∈ Z2
N.

Now, we can write the collocation problem (7.10) in the discrete form

wα,N
N

= (q fα)
N

+ k2
0 q

N
⊙F−1

α,N K̂α N Fα,Nwα,N
N
, (7.14)

where ×N denotes the nodal values of × on the grid GN and K̂α N represents
the pointwise multiplication with the coefficients c̃−1K̂α( j), j ∈ Z2

N . In order
to restate (7.14) as a linear equation system, we need to introduce the invertible
operator TN : CN×N →CN2

which converts a matrix into a vector by concatenation
of its columns. One should keep in mind that ×N is matrix-valued. Using the
operator TN , for (7.14) we obtain the equivalent system

AN2TNwα,N
N

= TNgα N
, AN2 = IN2 − k2

0 HN2, gα N
= (q fα)

N
, (7.15)

where IN2 is the identity in CN2×N2
and HN2 ∈CN2×N2

is the matrix representation
of the linear operator q

N
⊙F−1

α,N K̂α N Fα,N : CN×N → CN×N, which is consistent
with the element ordering by TN . The application of the Fourier transformation
Fα,N and its inverse F−1

α,N each costs N4 multiplications and additions when they
are computed in the straightforward way. As the alternative of choice, one should
use the fast Fourier transform (FFT) and the fast inverse transform for this task
and by that reduce the complexity to O(N2 logN) arithmetical operations. From
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the vast amount of literature on this algorithm, we only cite the seminal paper [18]
by Cooley and Tukey and the reference [11]. To use the FFT for some vα,N ∈ T⋆,N ,
we have to eliminate the α-quasi-periodicity in the sample values vα,N( j⊙hN) by
multiplication with e−iα·( j⊙hN), j ∈ Z2

N , and also to take care of the index as well
as the phase shifts in the data since the two-dimensional FFT: CN×N → CN×N

computes the expression

(FFT v) j =
N−1

∑
l1,l2=0

vl e−i 2π l· j/N, l = (l1, l2),

for j ∈ Z̃2
N = { j ∈Z2 : 0 ≤ jk < N, k = 1,2}, compare (7.7). This is accomplished

by applying twice the shift theorem, giving

(Fα,Nvα,N) j−s = FFT
({

vl−s ei 2π/N l·s}
l∈Z̃2

N

)
j
ei 2π/N ( j−s)s, j ∈ Z̃2

N,

where s = (N/2− 1,N/2− 1) and vn = vα,N(n⊙ hN)e−iα·(n⊙hN), n ∈ Z2
N . Nev-

ertheless, these additional operations do not destroy the order O(N2 logN). In
(7.14) and (7.15), the FFT evaluation can not be realized, since in both equations
the argument wα,N

N
is the unknown variable and in (7.15) the operators Fα,N and

F−1
α,N are hard-coded as matrices into HN2. However, since the application of the

operator AN2 is cheap, it is convenient to solve the linear system (7.15) by some
iteration method. There, AN2 does not need to be represented in matrix form, and
we can take advantage of the fast evaluations of Fα,N and F−1

α,N. A very efficient
solution method, which has the same complexity O(N2 logN) as the fast Fourier
transforms, is made up by two-grid iterations. These are the subject of Subsection
7.1.3. Instead of (7.15), we consider primarily its Fourier counterpart, reading

ÂN2TNŵα,N = TN ĝα,N, ÂN2 = IN2−k2
0 ĤN2, ĝα,N = Fα,N(q fα)

N
, (7.16)

where ĤN2 is the matrix representation of the operator Fα,N

(
q

N
⊙F−1

α,N K̂α N

)
.

The central result about the collocation method is the following, cp. Theorem
10.5.1 in [61].

Theorem 7.2. Assume that q ∈ H
µ
per(Cr̃) and q fα ∈ H

µ
⋆ (Cr̃) for some µ > 1.

Moreover, let the homogeneous problem corresponding to (7.3) with fα ≡ 0 have

only the trivial solution. Then equation (⋆-LSE) has a unique solution wα ∈
H

µ
⋆ (Cr̃), the collocation equation (7.10) has a unique solution wα,N ∈ T⋆,N for

sufficiently large N, and

‖wα,N −wα‖λ ≤ cNλ−µ ‖wα‖µ , 0 ≤ λ ≤ µ ,
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with c > 0 independent of α and N.

Proof. By the boundedness of Kα as a mapping from L2(Cr̃) to H2
⋆ (Cr̃) and the

assumption q ∈ H
µ
per(Cr̃) with µ > 1, the operator qKα is bounded from L2(Cr̃)

to H
min(µ,2)
⋆ (Cr̃) and hence is compact as an operator in L2(Cr̃). Since the ho-

mogeneous integral equation corresponding to (⋆-LSE) with fα ≡ 0 has only the
trivial solution, the operator id−k2

0 qKα ∈ L(L2(Cr̃)) is boundedly invertible by
the Riesz theory, cf. Theorem 1.16 in [16]. By Theorem 7.1 with µ > 1 and λ = 0,
it is seen that

‖qKα −QN(qKα)‖L(L2(Cr̃))
→ 0 for N → ∞.

Hence, the inverse to id−QN(k2
0 qKα) in L(L2(Cr̃)) exists for sufficiently large

N, say N ≥ N0, and by a standard perturbation result the norm of the inverse is
uniformly bounded in N, i.e.

‖(id−QN(k2
0 qKα))−1‖L(L2(Cr̃))

≤ c′ for all N ≥ N0 (7.17)

for some constant c′ > 0. Moreover, by (7.10) and (⋆-LSE), there hold the equal-
ities

(id−QN(k2
0 qKα))(wα,N −wα) = QN(q fα)−wα +QN(k2

0 qKαwα)

= QNwα −wα .

Combining this with (7.17), the assertion follows for λ = 0 by Theorem 7.1,

‖wα,N −wα‖0 ≤ c′ c0,µ N−µ ‖wα‖µ .

For the case 0 < λ ≤ µ , we exploit that the orthogonal projection PN : H
µ
⋆ (Cr̃) →

T⋆,N satisfies

‖wα −PNwα‖λ ≤
(

N

2

)λ−µ

‖wα‖µ , λ ≤ µ ,

cf. Lemma 8.5.1 in [61]. Using also the inverse inequality

‖vα,N‖λ ≤ 2−λ/2 Nλ ‖vα,N‖0 for vα,N ∈ T⋆,N ,

see p. 319 in [61], we estimate

‖wα,N −wα‖λ ≤ ‖wα,N −PNwα‖λ +‖wα −PNwα‖λ

≤
(

N√
2

)λ(
‖wα,N −wα‖0 +‖wα −PNwα‖0

)
+

(
N

2

)λ−µ

‖wα‖µ

≤
(
2−λ/2 c′ c0,µ +2µ−λ/2 +2µ−λ

)
Nλ−µ ‖wα‖µ .

This completes the proof.
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Fourier coefficients of Kα

Now, we compute the Fourier coefficients K̂α( j), j ∈ Z2, of the kernel Kα , which
are used for the application of the integral operator Kα in the Fourier space ac-
cording to the relation (7.12). First, we note that the Helmholtz operator applied
to ϕα, j yields

(∆+ k2
0)ϕα, j = (k2

0 −|α +π j./c|2)ϕα, j. (7.18)

Setting λα, j = k2
0 − |α + π j./c|2, there obviously holds λα, j = λ−α,− j ∈ R, and

we assume in the following that λα, j 6= 0 for all j ∈ Z2. Then, the relation (7.18)
can be used to apply the representation formula (3.20) and derive

K̂α( j) =

∫

Cr̃

Kα(y)ϕα, j(y)dy

=
1

λα, j

∫

C2r

Gα(y)(∆+ k2
0)ϕα, j(y)dy

=
1

λα, j

(
−ϕα, j(0)+

∫

∂C2r

(
Gα(y)

∂

∂ν
ϕα, j(y)−

∂

∂ν
Gα(y)ϕα, j(y)

)
ds(y)

)
.

The boundary ∂C2r can be decomposed as ∂C2r = C+
2 ∪C−

2 ∪V such that C+
2

and C−
2 are horizontal lines with ν = ±e2 on C±

2 , respectively, and V is a union
of vertical lines. Since Gα(y)ϕα, j(y) is periodic, the contributions on V in the
boundary integral in the above expression cancel out. Whereas for non-periodic
problems, Vainikko’s solver is based on artificial periodic extensions of the func-
tions involved, we can exploit here the problem-specific periodicity of the func-
tions. This is a particular feature of our variant of Vainikko’s solver and leads to
a simple expression for the coefficients K̂α( j), j ∈ Z2. Computing explicitly the
boundary integral over the remaining lines C+

2 and C−
2 , we get

∫

C±
2

∂

∂ν
Gα(y)ϕα, j(y)ds(y) = − c̃

4π

∫ π

−π
e−i(α+π j./c)·y ∑

z∈Z

ei(αz·y+βz 2r) dy1

= − c̃

4π

∫ π

−π
e−iπ j./c·y ∑

z∈Z

ei(z·y+βz 2r) dy1

= − c̃

2
e

i(β( j1,0)∓π j2/r̃)2r,

and, found in a similar fashion,
∫

C±
2

Gα(y)
∂

∂ν
ϕα, j(y)ds(y) = ± c̃

2
π j2

r̃

1
β( j1,0)

e
i(β( j1,0)∓π j2/r̃)2r

.
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Thus, there holds
∫

C±
2

(
Gα(y)

∂

∂ν
ϕα, j(y)−

∂

∂ν
Gα(y)ϕα, j(y)

)
ds(y)

=
c̃

2

(
1± π j2

r̃

1
β( j1,0)

)
e

i(β( j1,0)∓π j2/r̃)2r
.

Summing up the integrals over C+
2 and C−

2 , for the coefficients K̂α( j), j ∈ Z2, we
finally obtain

K̂α( j) = − c̃

λα, j

(
1− e

iβ( j1,0) 2r

[
cos

(
π j2

r̃
2r

)
+ i

π j2

r̃

1
β( j1,0)

sin

(
π j2

r̃
2r

)])
.

(7.19)

We remark that for r̃ = 2r this expression simplifies further to

K̂α( j) = − c̃

λα, j

(
1− (−1) j2e

iβ( j1,0) 2r)
, j ∈ Z2. (7.20)

Due to the form of λα, j and the fact that β( j1,0) becomes purely imaginary for
sufficiently big modulus of j1, there holds

K̂α( j) = O(| j|−2).

This implies that the convolution operator Kα defined in (7.11) is bounded as a
mapping from L2(Cr̃) to H2

⋆ (Cr̃).

7.1.3 Two-grid iteration scheme

In this subsection, we formulate a two-grid iteration scheme for the efficient so-
lution of the collocation equation (7.10). Theorem 7.2 asserts that for sufficiently
large N we obtain from (7.10) a suitable approximation to the solution to (⋆-LSE).
Our construction of the scheme follows Subsections 10.5.3 and 10.5.4 in [61], see
also Section 3.7 in [68].

So, let N ∈ N be even and fixed. We define the function gα,N ∈ T⋆,N and the
operators TM : T⋆,N → T⋆,M for even M ≤ N by

gα,N = QN(q fα) and TM = QM(k2
0 qKα). (7.21)

Then the collocation equation (7.10) turns into (id−TN)wα,N = gα,N . Applying
the operator (id−TM)−1 to both sides of this equation yields

wα,N = TM,Nwα,N +gM,N (7.22)
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where

TM,N = (id−TM)−1(TN −TM) and gM,N = (id−TM)−1gα,N.

We recall that the operator (id−TM)−1 exists for sufficiently large M, according
to the proof of Theorem 7.2. From Theorem 7.1 and estimate (7.17), we conclude
that ‖TM,N‖L(L2(Cr̃))

is small, and so it is reasonable to apply the two-grid iteration

w
( j)
α,N = TM,Nw

( j−1)
α,N +gM,N, j = 1,2, . . . , (7.23)

starting e.g. from w
(0)
α,N = wα,M = (id−TM)−1gM. Concerning the approximation

quality of the j-th iterate w
( j)
α,N and the choice of the stopping index Nmax ≥ j,

we refer to the analog discussion in Section 3.7 in [68]. With (id−TM)−1 =
id+(id−TM)−1 TM, the equation (7.23) can be rewritten as

w
( j)
α,N =

[
id+(id−TM)−1 TM

][
(TN −TM)w

( j−1)
α,N +gα,N

]
, j = 1,2, . . . ,

(7.24)
where the inverse (id−TM)−1 is applied only to functions in T⋆,M. This feature
is the main factor for the performance of the two-grid iteration scheme. From
now on, we assume that the coarsening factor D = N/M is integer. Rather than
using the representation (7.24) in the finite-dimensional function space T⋆,N , for
the numerical computation it is appropriate to use its discrete Fourier form

ŵ
( j)
α,N =

[
IN + k2

0 PN,M T−1
M Â−1

M2 TM Fα,M

(
q

M
⊙RM,NF−1

α,N K̂α N

)]
·

·
[
k2

0

(
Fα,N(q

N
⊙)−PN,M Fα,M(q

M
⊙RM,N)

)
F−1

α,N K̂α N

̂
w

( j−1)
α,N + ĝα,N

]
(7.25)

with j = 1,2, . . ., starting from ŵ
(0)
α,N = ŵα,M = PN,M T−1

M Â−1
M2 TMĝα,M. Here, ÂM2,

K̂α N , and TM are the operators introduced in Subsection 7.1.2, and PN,M and RM,N

are the prolongation and restriction operators defined by

(PN,MvM)( j) =

{
vM( j) , j ∈ Z2

M

0 , j ∈ Z2
N\Z2

M

and (RM,NvN) = vN(JM,N),

where

JM,N =

{(
j− N

2
,k− N

2

)
: j,k =

N

M
,
2N

M
, . . . ,N

}

and vN(JM,N) is reindexed by j ∈ Z2
M.

We remark that a procedure for extending this two-grid scheme to an even
more efficient multi-grid method is proposed in [34], Sections 4.3–4.5, therein
formulated for an electromagnetic scattering problem in 3D.
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7.1.4 Extension to discontinuous contrasts

The collocation method (7.10) for the approximate solution of (⋆-LSE) yields a
proper result only for sufficiently smooth contrasts (and appropriate values of N).
We are now going to construct a related, yet new collocation method which can
treat a class of discontinuous contrasts, precisely those which are piecewise con-
stant on rectangles. This includes many contrasts given in current applications.
Let us start with a short discussion of the arguments underlying the collocation
method (7.10). The choice of the ansatz space T⋆,N is motivated by the hope
that the solution wα,N ∈ T⋆,N to (7.10) approximates the solution wα = quα to
(⋆-LSE) arbitrarily well for increasing N. This is verified by the convergence re-
sult in Theorem 7.2, which, however, is proven only under the conditions (7.6),
implying at least continuity of q and q fα . An inspection of the proof of The-
orem 7.2 reveals that these assumptions are needed in order to apply Theorem
7.1 to guarantee that ‖vα −QNvα‖0 exhibits the same asymptotic decay behavior
as ‖vα −PNvα‖0, where QN : H

µ
⋆ (Cr̃) → T⋆,N is the interpolation projection with

respect to the grid GN = Z2
N ⊙ hN and PN : H

µ
⋆ (Cr̃) → T⋆,N is the orthogonal pro-

jection. Details can be found in the proof of Theorem 8.5.3 in [61], for the general
idea see also Theorems 8.2.1 and 8.3.1 therein. This relation between the error
decays for the orthogonal and the interpolation projection is not guaranteed any-
more for discontinuous functions (which still permit a point evaluation such that
interpolation remains well-defined). We will show now that this problem can be
avoided by computing an approximate solution to (7.3) in a slightly different way.
Again, we start from the ⋆-periodic equation (7.5), but consider it only within the
medium,

uα(x) = fα(x)+ k2
0

∫

Ω
Kα(x− y)q(y)uα(y)dy, x ∈ Ω. (7.26)

We recall that with fα = ui
α in Ω the function uα represents the total field in

the direct scattering problem. Before, we multiplied equation (7.5) with the
contrast to obtain (⋆-LSE), following the intention to ‘isolate’ the field uα in
Ω = (suppq∩Π)◦, which is the actual relevant region contained in Cr. Opposed to
this, in (7.26) we consider the fields by declaration in Ω only. By not multiplying
with the contrast q, we prevent a loss of regularity in the case of a discontinuous
contrast, comparing uα with wα = quα . Now, we define the bounded operators
D : L2(Ω) → L2(Cr̃) and R : L2(Cr̃) → L2(Ω) by

Du =

{
u in Ω

0 in Cr̃\Ω
and Ru = u

∣∣
Ω
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and introduce the new integral operator K̃α = R◦Kα ◦D. This operator is bounded
as a mapping from L2(Ω) to H2

α(Ω) and thus compact as a mapping in L2(Ω).
Moreover, let Eα be a bounded linear extension operator Eα : H2

α(Ω) → H2
⋆ (Cr̃),

which maintains the α-quasi-periodicity. We do not prove rigorously here that
such an operator exists, but outline a rough scheme for a proof. Think of Ω as a
subset of a torus which represents Cr̃, with the vertical parts of the boundary ∂Cr̃

glued together and the horizontal parts likewise. Identify the functions in H2
per(Ω)

with suitable counterparts living on this subset of the torus. For the definition of
(and results for) Sobolev spaces on Riemannian manifolds, we refer to [7, Chap-
ter 2]. Under our assumptions on Ω, for the space of these functions an extension
operator can be constructed which maps into a Sobolev space of functions on
the whole torus, see also Remarks 5.23 in [2] and Appendix A in [53]. To this
operator there corresponds an extension operator from H2

per(Ω) to the space of
H2-regular functions which are (2π ,2r̃)-periodic. Combining this with the multi-
plication operator Mα , (Mαu)(x) = eiα·x u(x), then yields an operator Eα with the
required properties. Let now wα ∈ H2

⋆ (Cr̃) denote a solution to the equation

wα(x) = (Eα fα)(x)+ k2
0 Eα

(
R

∫

Ω
Kα(·− y)q(y)wα(y)dy

)
(x), x ∈Cr̃.

(7.27)
It is easy to show that if the assumptions of Theorem 7.2 are fulfilled, then as
well as (⋆-LSE) the equations (7.26) and (7.27) are uniquely solvable and, by the
linearity of Eα , the solution wα to (7.27) equals Eαuα where uα solves (7.26). We
want to point out that only wα |Ω = uα has a physical meaning in the context of
our scattering problem. The artificial extension provided by Eα serves to obtain a
continuous function wα which encapsulates the physical field in Ω and is acces-
sible to collocation on Cr̃. Due to the ⋆-periodicity, it is guaranteed that wα has
a continuous extension to ∂Cr̃. This function can be approximated in T⋆,N by the
solution to the collocation equation

wα,N = QNEα fα + k2
0 QNEαK̃α(qRwα,N) (7.28)

with respect to the grid GN , where for the ease of notation q is considered as
a function on Ω. The focus here lies on a good approximation of wα |Ω by the
restriction to Ω of a function in T⋆,N . We prove the following convergence result
for the solution wα,N to (7.28) in a similar manner as Theorem 7.2.

Theorem 7.3. Assume that q ∈ L∞(Ω) and fα ∈ H2
α(Ω). Let the homogeneous

problem corresponding to (7.3) with fα ≡ 0 have only the trivial solution. Then
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equation (7.27) has a unique solution wα ∈ H2
⋆ (Cr̃), the collocation equation

(7.28) has a unique solution wα,N ∈ T⋆,N for sufficiently large N, and

‖wα,N −wα‖λ ≤ cNλ−2‖wα‖2, 0 ≤ λ ≤ 2,

with c > 0 independent of α and N. As before, ‖·‖λ denotes the norm of Hλ (Cr̃).

In particular, wα,N|Ω converges to wα |Ω = uα in Hλ
α (Ω) with λ < 2 for N → ∞.

Proof. We recall that the equations (7.3) and (7.5) are equivalent with respect to
existence and uniqueness of a solution. Restating the equations (7.5) and (7.27)
as

uα(x) = fα(x)+ k2
0 (Kα ◦D)(qRuα)(x), x ∈Cr̃, (7.29)

wα(x) = (Eα fα)(x)+ k2
0 Eα

(
(R◦Kα ◦D)(qRwα)

)
(x), x ∈Cr̃, (7.30)

respectively, a straightforward argumentation using the linearity of Eα shows that
also these equations are equivalent with respect to existence and uniqueness of a
solution. In particular, if (7.29) has only the trivial solution for fα ≡ 0, then also
(7.30) has only the trivial solution for fα ≡ 0. Now, we define the operator

K⋄
α = Eα ◦

(
(R◦Kα ◦D)q

)
◦R = Eα ◦

(
K̃α q

)
◦R,

such that (7.30) reads wα = Eα fα + k2
0 K⋄

αwα in Cr̃. It follows directly from the
definitions of the operators that K⋄

α is bounded as a mapping from L2(Cr̃) to
H2

⋆ (Cr̃) and hence is compact as an operator in L2(Cr̃). Compare the argumen-
tation for the operator qKα in the proof of Theorem 7.2. Again by the Riesz
theory, id−k2

0 K⋄
α ∈ L(L2(Cr̃)) is boundedly invertible. Moreover, by Theorem

7.1 with µ = 2 and λ = 0, there holds ‖K⋄
α −QN K⋄

α‖L(L2(Cr̃))
→ 0 for N → ∞.

Hence, for sufficiently large N there exists (id−k2
0 QN K⋄

α)−1 ∈L(L2(Cr̃)), and its
norm is uniformly bounded in N. The rest of the proof goes along the lines of the
proof of Theorem 7.2, noting that

(id−k2
0 QN K⋄

α)(wα,N −wα) =QNEα fα −wα + k2
0 QNK⋄

αwα

=QNEα fα −wα + k2
0 QNEαK̃α(qRwα)

=QNEα

(
fα + k2

0 K̃α(qRwα)
)
−wα

=QNwα −wα .

We point out that Theorem 7.3 asserts the optimal convergence order for wα,N

for all contrasts q ∈ L∞(Ω), but the price we have to pay for this generalization
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is that we lose the main advantage of the collocation method (7.10), namely the
exact and extremely efficient evaluation of the convolution operator Kα applied
to functions in T⋆,N . Only for these functions the Fourier coefficients with respect
to {ϕα, j}, j ∈ Z2

N , coincide with those obtained by the discrete Fourier transform
(7.13) and the restatement of the operator Kα in (7.14) is exact. In this case,
the Fourier coefficients which belong to j ∈ Z2\Z2

N vanish. In (7.28) with K̃α =
R◦Kα ◦D, however, the argument of Kα is only in L2(Cr̃).

Numerical treatment for piecewise constant contrasts

In the remainder of the subsection, we deal with contrasts which are piecewise
constant on rectangles. Precisely, we assume that the contrast has the form q =

∑L
l=1 ql idωl

where ql ∈C\{0}, ωl ⊆ Ω are rectangles, and idωl
denotes the indica-

tor function of ωl . For such contrasts, an explicit integration over the singularity
of the kernel Kα of the operator K̃α in (7.28) can be avoided for x ∈ Ω\⋃L

l=1 ∂ωl

by applying the representation formula (3.20) on each ωl. First, we rewrite the
collocation equation (7.28) as

wα,N = QNEα fα + k2
0 QNEαK̃α(qRwα,N)

= QNEα fα + k2
0 QNEα

(
L

∑
l=1

ql K̃α Rl wα,N

)

= QNEα fα + k2
0 QNEα

(
L

∑
l=1

ql R

(
TN

̂
K

(l)
α,N ·TNFα,Nwα,N

N

))
, (7.31)

where Rl : L2(Cr̃) → L2(Ω) denotes the operator

Rlu =

{
u in ωl

0 in Ω\ωl

and
̂
K

(l)
α,N : Cr̃ → CN×N is a matrix-valued function defined by

[̂
K

(l)
α,N(x)

]
j
=

∫

ωl

Gα(x− y)ϕα, j(y)dy, x ∈Cr̃, j ∈ Z2
N, (7.32)

for l = 1, . . . ,L. This function and the integral operator Kα from (7.11) are related
by [̂

K
(l)
α,N(x)

]
j
= (Kα ◦D◦Rl)(ϕα, j)(x) for x ∈Cr ⊃ Ω, j ∈ Z2

N.
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We want to emphasize that we have to use the set Cr rather than Cr̃ here, due to the
definition (7.4) of the kernel Kα of Kα . The integral in (7.32) can be interpreted
as a x-dependent generalized Fourier coefficient with respect to the function ϕα, j

and the rectangle ωl. To see this, one should compare (7.32) with the equality

K̂α( j) =

∫

Cr̃

Kα(y)ϕα, j(y)dy =

∫

C2r

Gα(0− y)ϕα, j(y)dy

for the Fourier coefficients of Kα , which are used in the discrete form (7.14) of
the previously discussed collocation method (7.10). To compute the generalized
Fourier coefficients in (7.31) for x ∈ Ω, we do not apply the convolution theorem
to Kα , cp. the relation (7.12). This would involve the Fourier coefficients with re-
spect to {ϕα, j}, j ∈ Z2, of a discontinuous function which vanishes in Cr̃\ωl, and
these coefficients have a poor decay in | j|. Instead, we rely on the representation
formula (3.20), which yields

[̂
K

(l)
α,N(x)

]
j
=

1
λα, j

(
−ϕα, j(x) idωl

(x)+

+
∫

∂ ωl

(
Gα(x− y)

∂

∂ν
ϕα, j(y)−

∂

∂νy

Gα(x− y)ϕα, j(y)

)
ds(y)

)
(7.33)

for x ∈Cr̃\∂ωl. For a technical reason, we require now, without big loss of gener-
ality, that the periodic contrast q can be written as the periodic extension of some
q̃ = ∑L

l=1 ql idω̃l
, ql ∈C\{0}, where ω̃l ⊂R2 are rectangles and none of the bound-

aries ∂ ω̃l contains grid points, i.e. ∂ω̃l ∩GN = /0 for all l = 1, . . . ,L. We note that
here ω̃l do not need to be subsets of Ω = Ω′∩Π. In addition, we assume that the
x2-coordinates of the corners of each ω̃l are not multiples of hN,2 = 2c2/N. Then
the grid GN is contained in Cr̃\

⋃L
l=1 ∂ω̃l, and for every grid point x ∈ GN each of

the boundaries ∂ω̃l contains at most two points y with x2 = y2. We illustrate these
technical details in Figure 7.1. In this case, we can derive a formal expression for
the second term on the right-hand side of (7.31) by means of formula (3.20) and
the series representation (7.1) of the Green’s function Gα . We do not state this
expression here, but only remark that it can be computed to a sufficient accuracy
by truncation of the series for Gα at some big index modulus |z|, possibly depend-
ing on the grid constant hN = 2c/N. At this point, we should also comment on
the numerical realization of the extension operator Eα : H2

α(Ω) → H2
⋆ (Cr̃) (which

is not unique). Our current MATLAB implementation for a discretized extension
operator follows the scheme
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gridpoints

hN,2

height x2 = 0

Figure 7.1: (left) inadmissible segmentation (with L = 6), (right) admissible segmentation (with
L = 4) for the same medium; the shading color indicates the value of the contrast

INPUT: α-quasi-periodic dataset on Ω∩GN

(i) Remove the α-quasi-periodicity from the data.

(ii) Enlarge the grid GN to G̃N =
{

j ∈ Z2 : −N
2 ≤ jk ≤ N

2 , k = 1,2
}
⊙ hN (i.e.

insert a column on the left and a row at the bottom of GN) and frame the data
by artificial data points on FN = G̃N\(Ω∩GN). Impose (2π ,2r̃)-periodicity
by choosing the data on the first and the last column of the grid G̃N to be
equal and likewise the data on the first and the last row of G̃N .

(iii) Use the MATLAB command ‘griddata’ with the option ‘linear’ for the
discrete linear interpolation of the non-uniformly distributed data on (Ω∩
GN)∪FN . This yields an extension of the data onto the grid G̃N .

(iv) Keep the part on the original grid GN and incorporate again the α-quasi-
periodicity into the data.

OUTPUT: α-quasi-periodic dataset on Cr̃ ∩GN = GN , including the given data on
Ω∩GN

We point out that we have not validated this sort of ad hoc approach in terms of
boundedness of the discretized operator and convergence for N → ∞ to a valid
operator Eα . Regardless of this evident shortcoming, we observe a clear and ap-
propriate numerical effect.

Instead of with (7.31), we will work with its discrete Fourier representation

ÂN2TNŵα,N = TN ĝα,N, ÂN2 = IN2 − k2
0 ĴN2, ĝα,N = Fα,N(Eα fα)

N
,

(7.34)
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where ĴN2 ∈ CN2×N2
is the matrix representation of the operator Fα,N(K⋄

α N)
N

:

CN×N → CN×N and K⋄
α N : CN×N → H2

⋆ (Cr̃) maps v ∈ CN×N to the function

x 7−→ Eα

(
L

∑
l=1

ql R
(

TN
̂
K

(l)
α,N(·) ·TNv

))
(x), x ∈Cr̃. (7.35)

In a similar fashion as for the collocation equation (7.10) for wα = quα , one
can construct a two-grid iteration scheme for the collocation equation (7.31) for
wα = Eαuα . This can be done equivalently for its Fourier representation (7.34).
Doing so, we derive the scheme

ŵ
( j)
α,N =

[
IN + k2

0 PN,M T−1
M Â−1

M2 TM Fα,M(K⋄
α N)

M

]
·

·
[
k2

0

(
Fα,N(K⋄

α N)
N
−PN,M Fα,M(K⋄

α N)
M

)̂
w

( j−1)
α,N + ĝα,N

]
(7.36)

with j = 1,2, . . ., starting from ŵ
(0)
α,N = ŵα,M = PN,M T−1

M Â−1
M2 TMĝα,M. We fin-

ish this subsection with the remark that the article [68] discusses an alternative
Lippmann-Schwinger solver of cubature type, which can handle general piece-
wise C2 contrasts and for which a neat convergence result can be proven, based
on the theory developed in [67].

7.1.5 Simulation scheme

The complete scheme for the approximate computation of the scattered field us
α

in Cr̃ (more precisely, on the grid Cr̃∩GN = GN) for a given incident field fα = ui
α

in Ω now reads as follows.

For a continuous contrast q:

(i) Compute the Fourier coefficients ŵα,N( j) for j ∈ Z2
N of the approximation

to wα = quα by either

(a) solving the system (7.16) by some direct solver or

(b) applying the two-grid iteration scheme (7.25) with a coarsening factor
D = N/M, stopped after a fixed number J of iterations.

(ii) Compute the Fourier coefficients of the approximate ⋆-periodic scattered
field by

ûs
α,N( j) = k2

0 c̃−1K̂α( j) ŵα,N( j) for j ∈ Z2
N

with K̂α( j) from (7.19).
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(iii) Compute the scattered field us
α on the grid GN = Z2

N ⊙hN approximately by

us
α( j⊙hN) ≈ us

α,N( j⊙hN) =
(
F−1

α,N ûs
α,N

)
( j) for j ∈ Z2

N. (7.37)

For a piecewise constant contrast q = ∑L
l=1 ql idωl

:

(i) Compute the matrix-valued function

L̂α,N =
L

∑
l=1

ql
̂
K

(l)
α,N on GN , (7.38)

with
̂
K

(l)
α,N as defined in (7.32). For this, use the series representation (7.1)

of the Green’s function Gα , truncated at the indices with a fixed modulus
S. This function L̂α,N is closely related to the discretization of the operator
K⋄

α N on GN , see (7.35).

(ii) Compute the Fourier coefficients ŵα,N( j) for j ∈ Z2
N of the approximation

to wα = Eαuα by either

(a) solving the system (7.34) by some direct solver or

(b) applying the two-grid iteration scheme (7.36) with a coarsening factor
D = N/M, stopped after a fixed number J of iterations.

(iii) Compute the scattered field us
α on the grid GN approximately by

us
α( j⊙hN) ≈ us

α,N( j⊙hN) = k2
0 TNŵα,N ·TNL̂α,N( j⊙hN) for j ∈ Z2

N.
(7.39)

We make some final remarks about (7.38). The computation of the matrix-valued
function L̂α,N is a very expensive task in our current implementation. However,

the generalized Fourier coefficients
̂
K

(l)
α,N do not depend on the values ql of the

contrast, l = 1, . . . ,L, and the computation might be dramatically accelerated by
using a more advanced representation of the Green’s function Gα to evaluate the
right-hand side of (7.33), cf., e.g., [47]. Since the biggest part of the boundary of
any of the rectangles which make up Ω normally is well apart from the singularity
of the integrand in (7.33), one might also benefit from a simple numerical integra-

tion. Moreover, one could compute
̂
K

(l)
α,N for a big number L of small rectangles

in advance and by that make the time-consuming part of the computation fairly
independent of the geometry of a given medium. This is meant in the sense that
for a medium whose components are unions of any of the small rectangles, the
corresponding generalized Fourier coefficients are sums of precalculated ones.
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7.1.6 Numerical examples

To get a first idea of the scattered fields, we present some numerical results now.
All computations in this and the next section are carried out with a C/MATLAB-
package (written by the author) on a PC with an AMD Athlon 64 3800+ @2,4
GHz and 2 GB RAM, using openSUSE 10.3 and MATLAB R2009a. The com-
putation times for the approximate scattered fields are indicated in the subti-
tles of the plots below. We will point out in particular the dependence of the
plots on the discretization constant N in regard of Theorems 7.2 and 7.3. Also,
we will illustrate the difference of the plots for a fixed discontinuous contrast
which are produced by the two-grid iteration schemes for (7.16) and (7.34), re-
spectively. We recall that the grid GN = Z2

N ⊙ hN has the convex hull HN =
[−π + hN,1,π ]× [−c2 + hN,2,c2]. For the definitions of sets we will still use the
familiar notation for the non-discrete setting, but all plots show the area of HN

only. For simplicity, we let r̃ = 2r here, see the simplified expression (7.20) for
the coefficients K̂α( j), j ∈ Z2, in this case. Moreover, to avoid the approximation
of the artificial acoustic near field operator M by the physical near field oper-
ator M̃, discussed in Section 5.1, we use directly the artificial incidence which
M refers to. This incidence is given as the superposition of fields generated by
complex conjugate point sources on Γs, cf. (3.25). Clearly, this choice enters the
direct problem in the form of fα . We make some remarks which supplement the
explanation at the beginning of Subsection 7.1.4. To obtain a reasonable approx-
imate solution to (⋆-LSE) on p. 108 by the collocation method (7.14) for a fixed
constant N, the Fourier coefficients of the interpolation projection of the unknown
function wα = quα on T⋆,N should approximate sufficiently well the Fourier co-
efficients of the orthogonal projection of wα on T⋆,N . Obviously, the type of the
contrast q is the crucial factor for this. Although the actual smoothness of q is
not observable on the grid GN , big jumps of q on adjacent grid points worsen the
described approximation of the Fourier coefficients. This should be regarded in
assessing the computations in this section.

Example 1

To start, we consider the simple example of a homogeneous medium given by

Ω =
(
− NΩ

2 , NΩ
2

)
hΩ,1×

(
− NΩ

8 − 1
2,

NΩ
8 + 1

2

)
hΩ,2, q =

{
1 in Ω

0 in Ωext ,
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Figure 7.2: (left) discontinuous contrast q, (right) smoothed contrast q0.2

with NΩ = 64 and hΩ = 2c/NΩ. The rectangle Ω extends over the whole width
of the unit cell and represents the characteristic part of a trivially 2π-periodic
medium, which is just the strip of height (NΩ/4 + 1)hΩ,2. We choose r̃ = 1 ⇒
c = (π ,1), α = [0.5,0], and k0 = 3. If not stated otherwise, we let the number
N ≤ NΩ of grid points in each dimension be N = 64. Finally, we choose Γs,+ =
{x ∈ Π : x2 = m+} for a single-sided incidence and Γs = Γs,+∪Γs,− with Γs,± =
{x ∈ Π : x2 = m±} for a double-sided incidence with m± = ±20hΩ,2 = ±0.625.
The setting for a single-sided incidence is shown in Figure 7.2 (left). In order to
make Theorem 7.2 applicable, we consider also the smoothed contrast given as
the convolution of q with the function

ϕε(x) =

{
c̃(ε)
ε2 exp

(
− 1

1−|x|2/ε2

)
, |x| < ε

0 , |x| ≥ ε
.

Here, c̃(ε) is chosen such that the integral over ϕε equals one. The parameter
ε controls the support of ϕε and thus the decay of the convolution qε = q ∗ϕε .
Hence, it has direct impact on the approximation quality of the interpolation coef-
ficients, computed by the discrete Fourier transform (7.13). In the choice of ε , we
also have to take care that suppqε ∩Π is contained in Cr = {x ∈ Π : |x2| < 1/2},
cp. (7.2). For ε = 0.2, qε is shown in Figure 7.2 (right), with the straight thin lines
indicating its support. We remark that the smoothing affects only the x2-direction
since q continues periodically and has no discontinuity in the x1-direction. For
the plots in Figures 7.3, 7.4, and 7.5 we have chosen a point source incidence
fα = G−α(y, ·) originating in y = (0,20h64,2) on Γs,+. Figure 7.3 (left) shows
the real part of the approximate scattered field us

α,64 for the discontinuous con-
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Figure 7.3: (left) real part of us
α,64 for q, computed using the iteration scheme (7.36) (1.5 h

precomp. + 2 s), (right) modulus of ĝα,64( j) for j ∈ Z2
64

trast q, computed by means of the two-grid iteration scheme (7.36) with S = 50,
D = 2, and J = 1, i.e. stopped after a single iteration. For this example, the
precomputation of the function L̂α,N from (7.38) with S = 50 takes 1.5 h using
our current implementation, whereas the subsequent computation of the scattered
field needs 2 s. So, the computation of L̂α,N is the single concern and, up to now,
an extreme bottleneck. The starting vector ŵα,32 shows an error of only 2.23 %,
which is reduced by the iteration to 0.04 %. The error in the resulting scattered
field also amounts to 0.04 %. These data refer to a computation using the exact
solution ŵα,64 of the system (7.34) and the 2-norm of the vectors obtained by
concatenation of the columns. Crucial for the size of the error in the initial guess
is the distribution of the Fourier coefficients ĝα,64 (and the resulting information
loss in ĝα,32). For the contrast q, the coefficients ĝα,64 from (7.34) are shown in
Figure 7.3 (right). With M = 32, the information loss in ĝα,M amounts to only
1.10 %. Opposed to this, if we apply the scheme (7.25) with D = 2 and J = 1 to
the discontinuous contrast q, the error in the initial guess is 124.54 %, hence the
guess is useless. Here, the information about gα 64

= (q fα)
64

is spread over many
Fourier coefficients, see Figure 7.4 (right), and the coarsening done to compute
ĝα,32 causes an information loss of 20.10 %. The single iteration by (7.25) ampli-

fies the error in
̂
w

( j)
α,64 to 154.82 %, giving the useless result shown in Figure 7.4

(left), compared to Figure 7.3 (left). This demonstrates the fact that convergence
of the two-grid iteration can be established only for sufficiently good initial esti-
mates, inspect the related results in Sections 3.5 and 3.7 in [68]. However, using
the exact solution ŵα,64 of the system (7.16) for the discontinuous contrast, we
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Figure 7.4: (left) real part of us
α,64 for q, computed using the iteration scheme (7.25) (3 s), (right)

modulus of ĝα,64( j) for j ∈ Z2
64

obtain a scattered field which differs from the almost exact field, computed by
means of the exact solution of the system (7.34), only by 4.77 %. Now, we apply
the iteration scheme (7.25) with the same parameters as above to the smoothed
contrast q0.2. Here, the situation improves a lot, with the relative error in ĝα,32

only 0.22 %. The starting vector ŵα,32 is affected by an error of 0.22 %, and
the first iterate is virtually exact with an error below 0.001 %. The same holds
true for the resulting scattered field us

α,64, whose real part is plotted in Figure 7.5
(left). These data refer to a computation using the exact solution ŵα,64 of the sys-
tem (7.16). Our final plots illustrate the evolution of the discrepancy between the
Fourier coefficients of the orthogonal projection and the interpolation projection
of gα on T⋆,N in dependence of N. The second plot in Figure 7.6 shows the evolu-
tion of the error in wα,N and in the approximate scattered field us

α,N with respect
to a reference solution. We consider only powers of two for the value of N and do
not take N bigger than 64 here for the following reasons. The evaluation of us

α,N

according to (7.39) involves the function L̂α,N , and the preceding computation of
(an approximation to) ŵα,N via the system (7.34) or the two-grid iteration (7.36)
requires the closely related discretization of the operator K⋄

α N on the grid GN .
This becomes simply too expensive for N ≥ 128. To get an idea of the numerical
cost, we note that the computation of L̂α,N on GN comprises N2 ·N2 ·L evalua-
tions of the right-hand side of (7.33), for each of which essentially a (truncated)
series needs to be computed. This amounts to about 1.3 billion series compu-
tations for this example for N = 128. The representation of L̂α,128 on GN as a

matrix in CN2×N2
would occupy about 4 GB of memory for double precision. On
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Figure 7.5: (left) real part of us
α,64 for q0.2, computed using the iteration scheme (7.25) (3 s),

(right) modulus of ĝα,64( j) for j ∈ Z2
64

the other hand, it seems in fact unnecessary to consider a broad range of spec-
tral components, that is a big N, since wα = Eαuα is a continuous function on
Cr̃ and the operator K⋄

α = Eα ◦
(
K̃α q

)
◦R from the initial collocation equation

(7.31) is a smoothing operator. Hence, we restrict to N = 64. Nevertheless, for
the contrast q0.2 we can afford to test the result for N = 128 of the iteration (7.25)
since it does not involve an expensive precomputation like the iteration (7.36). It
makes sense in general to consider bigger values of N in (7.16) and (7.25) than in
(7.34) and (7.36), since wα = qε uα has bigger jumps on adjacent grid points than
wα = Eαuα . However, the change from wα,64 to wα,128, both evaluated on the grid
G128, is minimal for q0.2, assuming that the first iterate is almost equal to ŵα,128.
Figure 7.7 (left) illustrates the projection errors for gα = q0.2 fα , and Figure 7.7
(right) shows the error in the approximations wα,N with respect to wα,128. While
the coefficients ŵα,128 are obtained by the two-grid iteration (7.25), the matrices
ŵα,N for the other values of N are exact solutions of the respective system (7.16).
Again, also the error in us

α,N given by (7.37) with respect to us
α,128 is plotted in

Figure 7.7 (right). We want to point out that the error decays for wα,N in Figure
7.7 (right) and Figure 7.6 (right) are governed by the error estimates from The-
orems 7.2 and 7.3 for λ = 0, respectively, and provide good numerical evidence
for these.
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Figure 7.6: (left) error in the interpolation projection and the orthogonal projection on T⋆,N of
gα = Eα fα , (right) error in the approximation wα,N to wα = Eαuα with respect to wα,64 and error
in us

α,N with respect to us
α,64

Figure 7.7: (left) error in the interpolation projection and the orthogonal projection on T⋆,N of
gα = q0.2 fα , (right) error in the approximation wα,N to wα = q0.2 uα with respect to wα,128 and
error in us

α,N with respect to us
α,128
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Figure 7.8: (left) discontinuous contrast q, (right) smoothed contrast q0.1

Example 2

To show a more expressive application of our direct solvers, we now consider an
example for an inhomogeneous medium with a more interesting geometry than the
medium from the first example. Let it consist of the five rectangular components

Ω1 =
(
− NΩ

2 , NΩ
8 + 1

2

)
hΩ,1×

(
− NΩ

8 − 1
2,

NΩ
16 + 1

2

)
hΩ,2, q1 = 1,

Ω2 =
(
− 3NΩ

8 − 1
2,

1
2

)
hΩ,1×

[
NΩ
16 + 1

2,
3NΩ
16 + 1

2

)
hΩ,2, q2 = 1.5,

Ω3 =
[

NΩ
8 + 1

2,
3NΩ

8 − 1
2

]
hΩ,1 ×

(
− 1

2,
NΩ
16 + 1

2

)
hΩ,2, q3 = i,

Ω4 =
(3NΩ

8 − 1
2,

NΩ
2

)
hΩ,1×

(
− NΩ

8 − 1
2,

NΩ
16 + 1

2

)
hΩ,2, q4 = 1,

Ω5 =
(3NΩ

16 − 1
2,

5NΩ
16 + 1

2

)
hΩ,1×

(
− 3NΩ

16 − 1
2,−1

2

]
hΩ,2, q5 = 1+ i,

where the contrast is given by q|Ωl
= ql for l = 1, . . . ,5 and q = 0 outside Ω =

⋃5
l=1 Ωl . Note that in Ω3 and Ω5 energy is absorbed. Again, we choose N = NΩ =

64, c = (π ,1), α = [0.5,0], k0 = 3, and Γs,± as before, with m± =±0.625. For the
application of the solver based on the collocation system (7.16), we smooth q by
means of ϕε , to meet the regularity assumptions of Theorem 7.2. To ensure that
suppqε ∩Π lies in Cr = {x ∈ Π : |x2|< 1/2}, we choose ε = 0.1 this time. Figure
7.8 illustrates both settings, showing the modulus of the contrasts q and q0.1. We
compute the scattered field for the discontinuous contrast by the iteration scheme

(7.36) with D = 2 and J = 1. In the computation of
̂
K

(l)
α,64 for l = 1, . . . ,5 in (7.38),

we choose S = 50 for coefficients corresponding to j ∈ Z2
64 with ‖ j‖∞ > 5, but

S = 1500 for ‖ j‖∞ ≤ 5. Otherwise, distinctive artifacts occur for this contrast.
However, for these values of S and the given medium geometry, the precompu-
tation of L̂α,N in (7.38) needs the prohibitive processing time of 10.6 h! Hence,
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Figure 7.9: (left) real part of us
α,64 for q, computed using the iteration scheme (7.36) (10.6 h

precomp. + 2 s), (right) modulus of ĝα,64( j) for j ∈ Z2
64

there is a big need for improvements for this part of the code, like those mentioned
at the end of Subsection 7.1.5, in order not to spoil the performance of this solver.
The real part of the resulting field is plotted in Figure 7.9 (left), the modulus of the
coefficients ĝα,64 in Figure 7.9 (right). For this case, the information loss in ĝα,32

is 2.91 %, and the starting vector ŵα,32 is corrupted by a small error of 3.05 %.
This error is diminished by the single iteration to 0.02 %, yielding a relative error
in the approximate scattered field of as little as 0.01 %. Analog to the arrangement
for the previous example, these data refer to a computation using the exact solu-
tion ŵα,64 of the system (7.34) and the 2-norm of the vectors obtained by concate-
nation of the columns. Opposed to this, if we apply the iteration method (7.25) to
the discontinuous contrast q, ĝα,32 carries an error of 25.70 % and ŵα,32 an error
of 41.14 % with respect to the exact solution of (7.16). This initial guess seems to
lie inside the convergence zone of the iteration (7.25), anyhow, the first iterate de-
viates from the solution of (7.16) by 14.33 %. The associated scattered field has an
error of 12.25 %. Compared to the exact scattered field computed from the solu-
tion of the system (7.34), it even has an error of 17.06 %. The results of the appli-
cation of (7.25) to the smoothed contrast q0.1 are shown in Figure 7.11. Here, the
loss of information in ĝα,32 is 7.52 % and the initial error is 8.06 %. The iteration
reduces the latter to 0.43 %, producing an error in the approximate scattered field
of 0.23 %. These figures refer to a computation using the solution ŵα,64 of the sys-
tem (7.16). The last couple of plots illustrate the discrepancy between the Fourier
coefficients for gα = q0.1 fα and the error decays for wα,N and us

α,N , where the data
are computed in the same way as in Example 1. As before, we let the incident field
fα be generated by a complex conjugate point source at y = (0,20h64,2) on Γs,+.
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Figure 7.10: (left) real part of us
α,64 for q, computed using the iteration scheme (7.25) (3 s), (right)

modulus of ĝα,64( j) for j ∈ Z2
64

Figure 7.11: (left) real part of us
α,64 for q0.1, computed using the iteration scheme (7.25) (3 s),

(right) modulus of ĝα,64( j) for j ∈ Z2
64
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Figure 7.12: (left) error in the interpolation projection and the orthogonal projection on T⋆,N of
gα = Eα fα , (right) error in the approximation wα,N to wα = Eαuα with respect to wα,64 and error
in us

α,N with respect to us
α,64

Figure 7.13: (left) error in the interpolation projection and the orthogonal projection on T⋆,N of
gα = q0.1 fα , (right) error in the approximation wα,N to wα = q0.1 uα with respect to wα,128 and
error in us

α,N with respect to us
α,128
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7.2 Inverse problem: Reconstruction of the medium shape

In this final section, we combine the simulation scheme from Subsection 7.1.5
with the results from Sections 6.3 and 6.4 to set up a complete scheme for the re-
construction of the medium shape from simulated acoustic scattering data in 2D.
We intend to validate numerically the variant of the Factorization Method which
we established in Chapters 3 and 6 as a reconstruction method for periodic, (pos-
sibly) inhomogeneous scattering media. After we have formulated the scheme in
the next subsection, we do exemplary computations for the media introduced in
Subsection 7.1.6 and examine the impact of the parameters on the reconstructions.

7.2.1 Reconstruction scheme (for simulated data)

In real-world experiments, the scattered field is measured on some Γs ⊂ Ωext,
see p. 36 for details on the form of Γs. In the numerical simulation, we assume
Γs ⊂ Cr̃ and Γs,N = Γs ∩ GN to be the non-empty discrete counterpart. These
conditions are not essential, but simplify the computations to some extent. The
overall reconstruction scheme is as follows:

(i) For every point y ∈ Γs,N , compute the scattered field on the grid GN by the
procedure described in Subsection 7.1.5 for the incident field generated by a
complex conjugate point source at y.

(ii) For each y ∈ Γs,N , extract from the dataset obtained in (i) the values on Γs,N

and arrange them in a column vector as the discretization of the response
field us

p,α(·,y) from (3.24) on Γs, traversing the grid GN from the left to the
right and top down. Assemble these column vectors in a matrix U s

p,α in the
same order.

(iii) Approximate the integration in (3.24) by the trapezoidal rule. Multiply the
sample values in U s

p,α with the corresponding weights. The resulting matrix
is the numerical near field operator MN : Γs,N → Γs,N , our approximation to
the artificial acoustic near field operator M : L2(Γs) → L2(Γs).

(iv) Compute the Hermitian matrices ImMN and MN,♯ = |Re(ei tMN)|+ ImMN

under the conditions (6.7) and (6.8), respectively.

(v) Compute the eigensystem {(σn,φn)}n∈N of the square root of the respective
matrix from step (iv) and evaluate the Picard series with the discretized probe
function (ψα,z = Gα(z, ·))|

GN
for all z ∈ GN , cp. (6.11). Truncate the Picard
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series either at a fixed index T or the index Tσ which belongs to the last
eigenvalue σn not falling below a certain threshold σ . Plot the reciprocals of
the values of the truncated series on GN and colorize the convex hull HN =
[−π +hN,1,π ]× [−c2 +hN,2,c2] suitably. The resulting figure gives a rough
illustration of the shape of the medium in HN , according to the criterion from
Theorem 6.6 and Theorem 6.10, respectively.

Here, steps (i)–(iii) provide simulated scattering data in the form of the numerical
near field operator. Due to the artificial incident field used, this operator can not
be composed directly from measurements in practice, but has to be approximated
by means of the (approximate) physical near field operator M̃ according to the
convergence relation (5.8). In the computation of the incident fields in step (i) and
of the probe functions in step (v), the Green’s function Gα is evaluated based on
its Ewald’s representation. For the derivation and analysis of this representation,
we refer to [26, 36] (for the 3D case) and also the forthcoming paper [6] (for
the 2D and 3D cases). A survey-like discussion of various techniques to derive a
convenient expression for the Green’s function (for the 2D case), including new
results for Ewald’s method, can be found in [51]. We choose this approach here
mainly for the purpose of a good accuracy in the neighborhood of a singularity
of Gα , but also for efficiency. Since the ‘probing grid’ for the points z and the
‘computation grid’ GN ∋ x are chosen the same in our scheme, we take a very
small value for x− z to imitate the singularity of ψα,z(x) at x = z. Finally, we note
that in order to identify the medium Ω one might restrict in step (v) to evaluating
the truncated Picard series on the subset Cr ∩GN of the grid, due to the condition
Ω∩Π⊂Cr, cf. (7.2). We compute the series on the whole grid GN only to maintain
the plotting area HN , used in the previous section.

7.2.2 Numerical examples

Let us check the above scheme with the scattering media from Subsection 7.1.6.
We are going to examine the sensitivity of the reconstructions to the phase shift α ,
the wave number k0, the eigenvalue threshold σ , the measurement height |m±|,
and to noise in the numerical near field operator MN . All reconstruction plots
below are normalized to fit into the value range [0,1].

Example 1

We start and apply the scheme for the reconstruction of the discontinuous contrast
from Example 1. We use the iterative solver (7.36) with D = 2 and J = 1 in the
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Figure 7.14: single-sided incidence: (left) eigenvalues σn of M
1/2
N,♯ , (right) reconstruction of the

support of q for T1e-4 = 31 (18 s)

simulation of the direct problem and the threshold σ = 10−4 in step (v). Since
the contrast is real-valued, we take t = 0 in step (iv), the condition (6.8) being
satisfied with c0 = 1. For a first numerical experiment, we choose the single-
sided incidence from Γs,+ = {x ∈ Π : x2 = 0.625}; we will comment on this in a
moment. Figure 7.14 (left) shows, on a logarithmic scale, the eigenvalues of the
numerical operator M

1/2
N,♯ for this case, where the dashed line indicates the trunca-

tion level σ . The corresponding reconstruction of the contrast is plotted in Figure
7.14 (right). The straight lines mark the boundary of the medium and allow to as-
sess the reconstruction quality. If instead we use the double-sided incidence from
Γs = Γs,+ ∪Γs,−, we obtain the result shown in Figure 7.15. These reconstruc-
tions illustrate the fact that our Factorization Method yields valid results only for
a double-sided incidence in general. The reason is that the correspondence argu-
ment used in the proof of Theorem 6.1 fails for a single-sided incidence if there is
no connecting path between R+ and R− in Ωext = Π\Ω. It is therefore suggested
by theory that the bottom part of the shape of Ω is not identified in Figure 7.14
(right). From now on, we work with a double-sided incidence only. The applica-
tion of the scheme to the smoothed contrast q0.2, using the iterative solver (7.25)
in step (i) and the threshold σ = 10−4 in step (v), produces the plots in Figure
7.16. Here, the reconstruction deteriorates near by the boundary of the medium,
compare the reconstruction in Figure 7.15 (right). The reason for this numerical
effect is that, in the proof of the range criterion, the norm of the preimage g from
(6.3) for z ∈ Ω rises when z approaches ∂Ω∩Π since the contrast q0.2 decays to
zero there. We continue and check the dependence of the reconstruction on α and



7.2. INVERSE PROBLEM: RECONSTRUCTION OF THE SHAPE 137

Figure 7.15: double-sided incidence: (left) eigenvalues σn of M
1/2
N,♯ , (right) reconstruction of the

support of q for T1e-4 = 62 (35 s)

k0 for q0.2. In each test, we change a single parameter and let the others be fixed
to the values chosen above. As indicated by the plot for α = [0.05,0] in Figure
7.17 (left), the phase shift seems not to have a big impact, which is in accordance
with an observation made in [4] (for smaller changes in α than here). A change
of the wave number to k0 = 1, however, strongly affects the reconstruction, see
Figure 7.17 (right). The associated wavelength 2π/k0 = 2π is too big to make
the medium clearly visible. Similar results for scattering from bounded media are
obtained in [49], Section I-6.
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Figure 7.16: double-sided incidence: (left) eigenvalues σn of M
1/2
N,♯ , (right) reconstruction of the

support of q0.2 for T1e-4 = 70 (35 s)

Figure 7.17: double-sided incidence: (left) reconstruction of the support of q0.2 for α = [0.05,0]
(30 s), (right) reconstruction of the support of q0.2 for k0 = 1 (35 s)
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Figure 7.18: double-sided incidence: (left) eigenvalues σn of M
1/2
N,♯ , (right) reconstruction of the

support of q for T1e-4 = 65 (35 s)

Example 2

We move on to the inhomogeneous medium from Example 2. As before, we ap-
ply the iterative solver (7.36) with D = 2 and J = 1 in the simulation of the direct
problem and the threshold σ = 10−4 in step (v) of the reconstruction scheme.
In step (iv), we let t = 7

4π . We want to point out that this choice is generic in
that it lets the condition (6.8) be fulfilled with c0 = 1/

√
2 whenever Req ≥ 0 and

Imq ≥ 0 hold almost everywhere. The result for these parameters is shown in
Figure 7.18 (right), corresponding to the T1e-4 = 65 biggest eigenvalues of M

1/2
N,♯

indicated on the left. The generic value of t does not yield the best visual result for
this example, nonetheless the reconstruction is of high quality, with the straight
lines marking the contour of the medium. In particular, it resolves nicely the bump
on the upper left and the two narrow slots on the bottom right of the medium. The
artifacts which appear at the top and the bottom of the plot (and apparently are
reflections at Γs,+ and Γs,−, respectively) do not compromise the reconstruction
since we know that the medium lies inbetween Γs,+ and Γs,−. Now, we perturb
the numerical near field operator MN by 5 % noise with respect to the Frobenius
norm, to imitate the typical error source of noisy measurements. The noise ma-
trix which we take generates a relative discrepancy between the projections of the
exact and the noisy version of M

1/2
N,♯ onto the subspaces corresponding to the 65

biggest eigenvalues, respectively, of 18.50 %. Figure 7.19 shows the resulting
plots. Since the reconstruction is still quite decent, we suppose that primary in-
formation is carried by less than 65 eigenpairs of the exact operator M

1/2
N,♯ and that
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Figure 7.19: double-sided incidence: (left) eigenvalues σn of noisy M
1/2
N,♯ , (right) reconstruction

of the support of q for T = 65 (35 s)

the corresponding subset of noisy eigenpairs retains this information sufficiently
well. Numerical tests confirm this guess. For our next experiment, we recall that
the scattered field us

α satisfies a Rayleigh expansion of the form

us
α(x) = ∑

z∈Z

u±z ei(αz·x±βz x2) in R±, (7.40)

where Z = Z×{0}, αz = α + z, βz =
√

k2
0 −|αz|2 6= 0, R± = {x ∈ Π : x2 ≷ m±},

and u±z are the Rayleigh coefficients. It becomes important now to note that the
coefficients βz are real only for finitely many indices z ∈ Z, whereas for all indices
z with sufficiently big modulus βz are purely imaginary with positive imaginary
part. Hence, the field us

α decomposes in R+∪R− into finitely many propagating

modes, the summands in (7.40) which belong to βz ∈ R+, and infinitely many
evanescent modes, which belong to βz ∈ iR+ and decay exponentially into R+

and R−, respectively. A few wavelengths away from the medium, the information
contained in the Rayleigh coefficients of the evanescent modes is hardly observ-
able anymore. Moreover, the higher-frequency components are more likely to be
covered by noise. Hence, in the test application of our reconstruction scheme it is
pertinent to examine the impact of this information. We change the measurement
height now a bit from m± = ±20hΩ,2 to m± = ±30hΩ,2 (so that still Γs ⊂Cr̃, see
the comment on p. 134). Using apart from that the same parameters as above, we
obtain the plots in Figure 7.20. Obviously, the change affected the reconstruction.
We expect the effect to become stronger for bigger |m±|. For comparison, we
finally consider the smoothed contrast q0.1. We apply the iterative solver (7.25)
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Figure 7.20: double-sided incidence, m± = ±30hΩ,2: (left) eigenvalues σn of M
1/2
N,♯ , (right) re-

construction of the support of q for T1e-4 = 40 (35 s)

with the same configuration as the solver (7.36) before, choosing m± = ±20hΩ,2

first. In Figure 7.21 (right), the straight lines circumscribe the extended support
of q0.1. (We were a little bit sloppy at the corners.) Again, we notice the decline
in the reconstruction quality at the boundary of the medium. It is, however, more
constricted than in Figure 7.16 (right), due to the smaller value of ε . Now, let
us check what happens when we change m±. The reconstruction in Figure 7.22
(right) shows a severe deterioration, much stronger than that for the discontinu-
ous contrast. The situation does not improve for a lower truncation level σ . In
a following simulation, we removed some of the evanescent modes of the scat-
tered field and found that, for the given set of parameters, the evanescent modes
generated by the smoothed contrast carry more information about the shape of
the medium than those for the discontinuous contrast. This explains the observed
effect. We mention that [4] deals with the scattering of a plane wave from homo-
geneous periodic media by a boundary integral equation method and illustrates
the important role of the evanescent modes in this case.



142 CHAPTER 7. NUMERICAL SOLVERS

Figure 7.21: double-sided incidence, m± = ±20hΩ,2: (left) eigenvalues σn of M
1/2
N,♯ , (right) re-

construction of the support of q0.1 for T1e-4 = 66 (35 s)

Figure 7.22: double-sided incidence, m± = ±30hΩ,2: (left) eigenvalues σn of M
1/2
N,♯ , (right) re-

construction of the support of q0.1 for T1e-4 = 40 (35 s)
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7.3 Conclusion

To draw a conclusion, we think that with regard to the ill-posedness of our in-
verse problem (see Section 6.5) and some small error sources in our computation
schemes (see Subsections 7.1.5 and 7.2.1) the reconstruction plots give a good
idea of the location and the shape of the scattering medium. The plots might thus
be interpreted as numerical evidence for the results from Chapters 3 and 6 which
have been used here. The implementation of the Factorization Method is quite
simple, and we have shown that it is an efficient and well-founded technique for
the shape reconstruction for periodic inhomogeneous media. It can also be used
to enhance a full reconstruction method by a quick computation of an initial guess
for the contrast. We believe that convincing numerical results can be obtained as
well in the electromagnetic case, based on the foundation provided in Chapters
4–6. However, we do not want to conceal that the implementation of the approx-
imation of the physical near field operator (see Chapter 5) requires some addi-
tional work. For our direct problem, we developed two variants of a solver for the
periodic (acoustic) Lippmann-Schwinger equation. We considered this problem
and applied the solvers in order to set up and compute the numerical near field
operator. Apart from an expensive precomputation for the second variant, both
methods exhibit a very good performance. We hope that, after incorporating the
ideas for improvement outlined in Subsection 7.1.5, they can serve as competitive
stand-alone solvers for the simulation of time-harmonic scattering from periodic
media.
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