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ABSTRACT
Machine management systems in off-highway machines such
as tractors or wheel loaders are designed for efficient op-
eration and reduced fuel consumption in some predefined
scenarios for which the machine has been developed. In this
paper, we outline how concepts from Organic Computing
may be used to realize a self-organizing, reliable, adaptive,
and robust machine management system that is capable of
adjusting to new situations. We propose an architecture for
a machine management system based on the generic Ob-
server/Controller architecture and focus on the structure of
the Observer. Furthermore, we study the feasibility of work-
ing cycle detection by the Observer and analyze real and
synthetic data from an off-highway machine. To extract
features by which different working cycles of an off-highway
machine can be distinguished, we employ principal compo-
nent analysis.

Categories and Subject Descriptors
J.7 [Computers in other Systems]: Command and con-
trol ; C.3 [Special-Purpose and Application-Based Sys-
tems]: Signal processing systems; I.5.4 [Pattern Recogni-
tion]: Applications—Signal processing ; J.2 [Physical Sci-
ences and Engineering]: Engineering

General Terms
Design, Reliability
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1. INTRODUCTION
Fuel consumption is one of the major issues in vehicle

technology, and particularly in mobile machinery. For this
reason, several machine management systems have been de-
veloped [2, 6, 5, 19], by which designers intend to reduce
fuel consumption, e. g., providing strategies and parameter
settings that ensure efficient coordination of the machine’s
components in different operating modes. In this paper, we
study the family of off-highway machines such as tractors,
wheel loaders, etc. Usually, these vehicles are designed to
work in specific pre-optimized modes. However, if they are
used in situations for which they have not been specifically
designed, fuel consumption increases dramatically. Other
off-highway machines like tractors are intended for multi-
purpose use, making it especially difficult to optimize them
for all eventualities.
The main idea of this paper is to present a new approach to
machine management systems that enables an off-highway
machine to adapt to new situations and optimize according
to given objectives. Minimization of fuel consumption in a
tractor is used as an example. For achieving a self-organizing
and adaptive machine management system we present an
architecture adopted from Organic Computing [3]. This
generic Observer/Controller (O/C) architecture [15] has been
developed in order to control complex self-organizing sys-
tems and improve their robustness and reliability. It intends
to keep them manageable, and to provide an interface for ex-
ternal users to influence the system.
The basic structure of this architecture is similar to an adap-
tive control loop [18, 1]. However, in adaptive control, pa-
rameters of the controller of a single system are adjusted in
order to enable this one controller to work efficiently in a
larger variety of environmental conditions. The three most
common approaches to adaptive control are Model Reference
Adaptive Control (MRAC), Self Tuning Regulators (STR)
and gain scheduling. In MRAC, basically the system is ex-
tended to contain the original controller, and an outer con-



trol loop is added in which an adaption mechanism controls
the inner controller’s parameters. Feedback of this outer
control loop is the difference (error) between the output of
the actual controlled process and the output of a model of
it. This difference is to be adjusted to zero. STR esti-
mates unknown system parameters of the controlled process
and adjusts controller parameters accordingly, while gain
scheduling implements a static mapping from certain a pri-
ori identified process variables to controller parameters.
In Organic Computing, however, not single systems or pro-
cesses are considered, but collectives of many subsystems,
each individually controlled, working together in order to
achieve a common goal. The task of the O/C architecture
in this is to monitor the whole system from a hierarchically
higher point of view, and to ensure that the collaboration
of all individually controlled subsystems works effectively.
This might, in some situations, even mean decreasing the
effectiveness of single subsystems in order to improve per-
formance of the whole system.
Another difference to adaptive control theory is that the
O/C architecture explicitly allows for learning. Although
also the adaption mechanisms in adaptive control loops can
be implemented as self learning, for instance using artificial
neural networks [21], the learning mechanism in the O/C
architecture is an integral part of the controller. It contains
online as well as offline learning mechanisms (see Section 2.2
or [13]) that enable the architecture to adjust even to situ-
ations that have been previously unknown or unforeseen.
In this paper, the generic Observer/Controller architec-
ture [15] is adapted to an off-highway machine, thus in-
troducing a hierarchically higher level of control than in
traditional machine management systems. In these, op-
timization usually takes place on a lower level, maximiz-
ing the efficiency of the individual components. The Ob-
server/Controller architecture is explicitly intended to re-
gard the system as a whole, optimizing the coordination of
the machine’s components, and realizing a self-organizing,
reliable, adaptive, and robust machine management system.
In this paper, we outline a specific design of the Obser-
ver/Controller architecture, in which we consider the off-
highway machine and its peripheral machinery components
as system under observation and control. Furthermore, we
focus on the Observer and analyze the behavior of the off-
highway machine during different working cycles. The Ob-
server, as proposed in the generic architecture, is responsible
for monitoring and analyzing the data measured in the ma-
chine. However, this data is highly noisy as measurements
take place during operation. Besides filtering of the data-
streams, the major task is to detect the current working situ-
ation, driving sequences and cycles from the incoming data.
We describe several working cycles in which off-highway ma-
chines are used and focus on the workscope of a tractor. The
aim is to recognize the specific working cycle the machine is
executing and to employ the right parameters via the Con-
troller to the system. These parameter settings depend on
the current working cycle and the machine itself. As a first
step, we intend to extract features from the datastream that
will enable the Observer to recognize the working cycles and
to distinguish the different types. We use Principal Compo-
nent Analysis (PCA) [10, 7] and examine feature extraction
in several datastreams of different dimensionalities.
The structure of the paper is as follows. In Section 2, we
shortly describe approaches of current machine management

systems and then introduce the generic Observer/Controller
architecture from Organic Computing. In Section 3, a trac-
tor is defined as part of this architecture. In Section 4, we
give a closer look at the structure of the Observer, and in
Section 5 at one of its components, the data analyzer. Its
purpose is described, and methods to fulfill this purpose
are determined. After a description of the experiments that
were performed and their results, the paper is completed by
a conclusion and an outlook on future work.

2. RELATED WORK
This section gives a brief outline of the existing machine

management systems and the concept of the generic Ob-
server/Controller architecture in Organic Computing.

2.1 Present Machine Management Systems
Today, existing machine management systems are designed

to optimize single components of the machine following static
functions.
Systems optimizing the engine- and gearing-management are
the current state of the art. They adjust engine power to
keep efficiency at a maximum [19] by reducing shaft speed
while driving at low load. Other systems regulate the shaft
speed of the engine with respect to the pivoting angle and
pressure of the hydraulic pump in order to achieve optimiza-
tions like low fuel consumption [5].
Currently, a combination of different optimization approach-
es is not in effect as each one considers the associated sub-
system only, while essential parameters that have to be set
pertain to several subsystems or are dependent of each other,
which might result in a conflict as soon as different strategies
are combined.

2.2 Observer/Controller Architecture
The generic Observer/Controller (O/C) architecture [15]

has been proposed to overcome design complexity of techni-
cal systems by leaving a considerable degree of freedom for
their structure and behavior and by bestowing upon them
some ”organic” characteristics allowing them to learn and
adapt with respect to dynamically changing environments.
The architecture is closely related to the MAPE architec-
ture from Autonomic Computing [8], where the data from
so called autonomic elements is monitored and analyzed and
then an interaction is planned and executed. While Auto-
nomic Computing focusses on large scale enterprise server
systems and on data centre management, the O/C architec-
ture adresses technical systems in general and provides both
online- and offline-learning methods and an interface for an
external user to set global objectives for the control strategy.
Thus, it is suitable to control complex systems, make them
adaptive to their environment, and at the same time keep
them controllable.
The O/C architecture contains three major components:
System under Observation and Control (SuOC), Observer,
and Controller. The SuOC is the actual technical system
that is to be controlled. The Observer is designed to monitor
and analyze the SuOC in order to characterize the current
system status, predict future states and identify possible
emergent behavior that needs to be either interrupted or en-
forced. To some extent emergent behavior in self-organizing
systems can be detected by quantitatively measuring statis-
tical or entropy values of the analyzed data [4]. The task of
the Controller is to influence the SuOC such that it exhibits



the desired behavior as specified by the user. Any undesired
(emergent) behavior should be disrupted as quickly and ef-
ficiently as possible. To enable the Controller to adjust to
a changing environment and continually improve its perfor-
mance, it is equipped with learning capabilities, both online
and offline. In online learning, the Controller continually
evaluates the impact of its actions in certain situations. In
offline learning, it uses an integrated simulation model of
the SuOC and a planning component (like an evolutionary
algorithm) to test new actions in known situations (more
details in [13]). An interesting aspect of the O/C architec-
ture is that the external user (or, the next level entity) can
change its preferences on the fly and the system has to be
able to adapt its parameters accordingly. To support this,
there is a feedback from Controller to Observer by which the
Controller can change the Observer’s model of observation,
meaning it can select the parameters of the SuOC that are
to be analyzed and influence the algorithms that process the
data in the Observer.
In its classical form, the O/C architecture can be employed
in a centralized approach, where the SuOC is being observed
and controlled by one centralized Observer and Controller.
For distributed systems, consisting of complex and largely
independent entities, a hierarchically structured approach is
designed where each entity has one local O/C architecture
possibly supplemented by a global (centralized) Observer
and Controller.
The O/C architecture has been applied to several practical
applications. In [11, 20], it has been successfully used in traf-
fic control where the SuOC consists of several traffic lights.
Usually, in a traffic system undesired effects such as traffic
jams or long waiting times at red traffic lights occur. This
could be improved considerably using the O/C architecture.
In another approach, O/C is applied to avoid the undesired
bunching effect that occurs when a large number of eleva-
tors work independently of each other in a building [12]. The
term bunching effect refers to a synchronized movement of
the elevators, that practically converts them into a single
big elevator.
In the following, we describe how the O/C architecture can
be customized for the requirements of an off-highway ma-
chine.

3. TRACTOR AS SYSTEM UNDER
OBSERVATION AND CONTROL

Based on the above described O/C architecture, we pro-
pose an architecture for observing and controlling off-highway
machines. In contrast to other SuOCs to which the generic
O/C architecture has already been successfully applied [14,
11, 20], an off-highway machine does not consist of several
separate entities. Instead, there are the components of a
single machine whose interactions are closely interrelated.
In off-highway machines, those components are the traction
drive, the power take-off, the hydraulic system, as well as
varying auxiliary components. These units are mechanically
or fluidically connected or they communicate and interact,
e.g., via bus-systems. The input to the SuOC consists of
a series of input variables such as fuel, driver interactions
and environmental conditions like changing subsoil or vary-
ing peripheral components connected to the machine. The
main output of the system which can be measured is its
fuel consumption. Sensors in the SuOC measure input and

output of the system, as well as different parameters of its
components, such as torque of rear and front axles, pres-
sures at different locations within the tilt and lift cylinders,
deflections of tilt, lift, and steering cylinders, pressures of
hydraulic and steerings pumps, shaft speed, engine torque,
left and right drive torque, engine speed, or vehicle speed.
The possibilities for the controller to interact with the sys-
tem consist in the setting of reference values for conventional
controllers within the machine, or communication with the
driver by providing suggestions how to increase efficiency.
Within the tractor, the data collected by the various sen-
sors is transferred to the Tractor Electronic Control Unit
(TECU), which is the customary central controller, contain-
ing substantial know-how of the manufacturer (see Figure 1).
To measure system parameters, the signals already present

Figure 1: Observer/Controller architecture as a
management layer of an off-highway machine

in the system will be routed to an external electronic control
unit (ECU) that serves as an interface between the tractor
and the prototyping hardware which contains the algorithms
of the O/C architecture. Further sensors can also be applied
throughout the vehicle with their signals being passed on di-
rectly to the prototyping hardware.
In an off-highway machine, Observer and Controller of the
O/C architecture form a management layer that is hierarchi-
cally superior to the already existing TECU (see Figure 1).
This TECU stays in charge of the low level control of the
vehicle, for which it was intended. This ensures that the
tractor as the System under Observation and Control is
completely capable of performing its functions independent
of the overlying control structures. These are intended to
monitor the SuOC as a whole and to interact only if a po-
tential for increasing efficiency is detected. For instance,
such interaction could be a reconfiguration of the traction
drive or of the hydraulic system.



4. OBSERVER IN OCOM
Figure 2 shows the internal structure of the Observer,

adapted to the requirements of an off-highway machine. Just

Figure 2: Internal structure of the Observer

as in the generic O/C architecture, it receives the sensor
measurements as raw data from the SuOC. After obtaining
the data via CAN-Bus and saving it in a log file, the next
step is to filter out noise and outliers.
Subsequently, the incoming data is divided into windows wi

and much larger background windows bwj that are processed
individually by the data analyzer module of the Observer.
The appropriate size for such windows, as well as the reason
for using a parallel approach with large background win-
dows, will be discussed in Section 5. In the feature extrac-
tion part of the data analyzer, several values are computed
that serve as input for the cycle identification part, as well
as for the predictor module. The data analyzer is the major
focus of this paper. Its purpose and structure will be de-
scribed in more detail in Section 5. Basically, the outputs of
the data analyzer module represent the current status of the
System under Observation and Control at any given time t,
computed from the measurement values in windows wi and
bwj .
The predictor module is intended to predict the system sta-
tus at time t+1. To do this, it takes as input the outputs of
the data analyzer for the past n windows wi and the current
background window bwj . Further research will investigate
the most appropriate value for n in order to achieve a satisfy-
ing prediction. As for the prediction algorithm, this module
will be implemented as an artificial neural network, to en-
able it to adjust its prediction to the specific operational
conditions of every individual machine. By continuous on-
line adaption, the predictor will learn which system state is
the most likely to occur next.
All the information that has been gathered in the Observer
during feature extraction, cycle identification, and predic-
tion, is collected by the aggregator module of the Observer.
From there, it is passed on to the Controller, where it will
serve as a basis for all decisions made by the architecture.

In the following section, we provide a closer look at the data
analyzer module within the Observer.

5. DATA ANALYZER
Off-highway machines usually perform specific working cy-

cles, which highly influence the efficiency of the machine. In
the following, we describe some typical working cycles:

• Y-cycle: In this working cycle, the off-highway ma-
chine is basically used to move a load from one loca-
tion to another, shovel by shovel. The vehicle moves
forward in one direction to take up a load, then re-
treats, and again moves forward into another direction
towards the target location to unload, thus following
a Y-shaped trajectory.

• Ploughing: Turning over the upper layer of soil to
bring up fresh nutrients and burying the remains of
previous crops.

• Grubbering: Loosening of soil, without turning it over
(as a plough does).

• Harrowing: Breaking up clods of soil after ploughing
or grubbering.

• Mowing: Cutting crops.

• Transport: This is the most unspecific working cycle.
The machine is used to drive from one location to an-
other, to get to a working site, or to transport goods
over a longer distance.

Since those are only some of the many possible working cy-
cles, the machines are usually produced for general purposes
and their parameter settings are optimized to accommodate
a large variety of possible applications. However, if such
sequences could be detected autonomously in an intelligent
way, the machine management system could make use of
the machinery parts of the system more efficiently and con-
trol the system according to the specific situation. Thus,
an important task of the Observer is to detect the current
working cycle while the machine is operating in order to
enable the Controller to choose the right parameters that
ensure an efficient use of system components. Appropriate
parameter selection depends on the detected working cycle
and the specific machine. In the OCOM architecture, cycle
identification is implemented in the data analyzer within the
Observer.
The first step to identify a working cycle or to recognize any
pattern within the data is to extract appropriate features
that are characteristic for different cycles.

5.1 Feature Extraction
The data stream from the sensors enters the Observer

continually, without interruption. There is no apparent in-
formation about where a working cycle starts or where it
ends. Moreover, the length of a cycle can vary consider-
ably. Therefore, it is important to identify features which
vary from one type of working cycle to another, but stay the
same for two cycles of the same type. At the same time,
they have to be indifferent to the possible variations that
can occur within several executions of the same working cy-
cle. A method is needed that does not exploit the absolute
values of the incoming data, but the correlations between



its different dimensions. In other words, we want to focus
on the dependencies between the data coming from different
sensors.
A method by which this can be achieved is principal com-
ponent analysis which is briefly explained below.
Principal Component Analysis (PCA) involves a mathemat-
ical procedure that transforms a number of possibly corre-
lated variables into a smaller number of uncorrelated vari-
ables called principal components. The principal compo-
nents are ordered by significance, each one containing infor-
mation about the dimensions, in which the data primarily
extends: each principal component is a vector that points
into the direction in which the data points are spread the
most. Figure 3 gives an impression of this, it illustrates an
example of m data points in two-dimensional space. Trans-

Figure 3: EV1 and EV2 illustrate the eigenvectors
computed from the covariance matrix of the under-
lying data.

ferred to an off-highway machine, this could be interpreted
as two sensors x1 and x2 each measuring a system parame-
ter. The longer vector EV1 is the most significant principal
component that has been computed. It points along the di-
rection where the data points are scattered the most. The
other vector EV2 is next in significance. If the data had more
then two dimensions, more principal components would have
been computed, respectively.
As known from statistics, two characteristic parameters for
the analysis of measurement series are their variance σ2 and
standard deviation σ of a given data set:

σ =

√∑m
i=1 (Xi −X)2

(m− 1)
,

where Xi (i = 1, . . . ,m) are the values in one dimension of
the measurement series and X is their mean value.
Furthermore, to analyze possible correlations between dif-
ferent dimensions their covariances are computed, i.e. for
any two dimensions di and dj one computes

cov(di, dj) =

∑m
i=1 (Xi −X)(Yi − Y )

(m− 1)
,

where Xi and Yi (i = 1, . . . ,m) denote the values in dimen-
sions di and dj of the measurement series and X and Y are
their mean values.
As is well-known, a positive value indicates that the val-
ues in both dimensions increase together, while a negative

value shows that the two dimensions are negatively corre-
lated. Between dimensions that are independent of each
other, the covariance value would be zero.
Thus, for n-dimensional data PCA computes an n-by-n-
matrix C where each entry cij is the covariance between the
i-th and the j-th dimension of the data. As cov(di, dj) =
cov(dj , di), this is a symmetric matrix.
To determine the main directions along which the data points
are distributed, PCA computes the eigenvalues and eigen-
vectors of C of the data. The resulting eigenvectors con-
stitute a new basis for the data, while the corresponding
eigenvalues are related to the variance of the data along
these axes. The vector that belongs to the largest eigen-
value is the most significant.

5.2 Experiments
In this section, the experiments that have been conducted

are briefly described. The next Section 5.3 presents the re-
sults.
The purpose of the experiments is to examine the potential
of the data analyzer within the Observer to identify different
working cycles using PCA. The cycles to be analyzed are Y -
cycle, ploughing, mowing, grubbering and harrowing. Two
different datasets are used: The first has been measured at
a wheel loader and contains the complete information of 17
sensors for 82 executions of a Y -cycle over approximately 45
minutes. The other one consist of artificially created data of
a tractor, describing a potential working day, filled with four
different cycle types typical for a tractor: ploughing, mow-
ing, grubbering and harrowing (P , M , G, and H, respec-
tively). It contains 20 consecutive executions of each cycle
type. All of them were measured with the same six sensors.
For both datasets the measurements have been sampled at
a frequency of 200 Hz. The measured parameters in the
first dataset (Y -cycle data) contain torque of rear and front
axles, pressures and deflections of different cylinders, pres-
sures of different pumps, shaft speed, tractive power, and
vehicle speed. The parameters in the other dataset (tractor
working day) consist of vehicle speed, tractive power, rear
and front torque, speed of rotation motor as well as volume
flow rate of the steering cylinder.
Results from the analysis of the first data set can not be
compared directly to results of the second one, because they
apply to a different kind of machine and the sensors used
to collect the data do not fully correspond. Therefore, the
first dataset will only be used to determine whether the ex-
tracted features are consistent throughout several instances
of Y -cycles.
The aim in this first step is to determine whether PCA is
suitable to distinguish between different types of working
cycles, while different instances of the same cycle should re-
sult in identical features.
For this purpose, all datasets are decomposed into smaller
subsets each containing the data of an individual instance
of a working cycle. PCA is performed on each subset by
computing the covariance matrix Csubset and identifying its
respective eigenvalues and eigenvectors. The most impor-
tant eigenvector of each subset (its most significant principal
component PC1(subset)) is used as the extracted feature.
To examine if the first principal component of one cycle is
characteristic for its cycle type, all PC1 of cycles of the same
type are compared with each other to check whether they
are alike.



After that it is analyzed whether different cycle types can
be held apart. For this, the PC1 of all types must be differ-
ent, so subsequently, for each cycle type the average PC1 is
compared to that of all other types, to observe if they can
be distinguished.
Although we are aware of the fact that, in practice, it will
hardly be possible to isolate the data of exactly one working
cycle in order to perform PCA on it, positive results to these
experiments would show that PCA is, in principle, capable
of distinguishing between different types of working cycles.
The next step is to examine whether these results can be
used to identify working cycles also online, during operation
and without having to ”cut out” a single cycle from begin-
ning to end. To do this, a sliding window is dragged over
the measurement data of the second data set, the tractor
working day with four different cycle types. For each win-
dow wi the first principal component PC1(wi) is computed
and then compared to the average principal components of
the four cycle types ploughing, mowing, grubbering and har-
rowing. It is assigned to the one that is the closest. Figure 4
illustrates this. To determine how the length of the window

Figure 4: Assignment of PC1(wi) to average PC1 of
cycle types

wi influences the result of this assignment, it is repeated for
several window lengths.

5.3 Results
In this section, Y , P , M , G and H indicate Y -cycle,

ploughing, mowing, grubbering and harrowing, respectively.
Table 1 shows the average angle between the first principal
component PC1 of each subset and that of all other subsets
of the same kind of working cycle (for 82 Y -cycles, this are
3321 comparisons, for the 20 executions of the other cycle
types 190 comparisons). Median and standard deviation σ
are also shown. As comparison is done only within one cy-
cle type, results of data set one (Y -cycle measurements) are
included. As expected, all the principal components point
into the same direction and the average angle between them
is close to zero with very low standard deviation. The only
exception is mowing (M). This is due to the fact that ap-
proximately half of the vectors for this cycle type point into
directly opposite directions. The values of median and stan-
dard deviation indicate that these are the only two major
occurring directions. As we are only interested in the di-
mensions along which the data is distributed the farthest,
it can be ignored in which direction along these dimensions
the principal component vector is pointing.

Table 1: Average angle, median and standard de-
viation σ between the first principal component of
all subsets of Y -cycle (Y ), ploughing (P ), mowing
(M), grubbering (G) and harrowing (H) (compared
within one type of working cycle)

avg median σ

Y 0.2572◦ 0.2151◦ 0.1520◦

P 0.0371◦ 0.0324◦ 0.0188◦

M 90.9370◦ 179.9206◦ 90.1988◦

G 0.0399◦ 0.0391◦ 0.0138◦

H 0.0228◦ 0.0197◦ 0.0128◦

These results show that PCA is able to characterize one type
of working cycle by means of the first principal component
of the high dimensional measurement data.
Now the average principal components of different working
cycles are compared with each other. Table 2 shows the an-
gle between the average first principal components of two
different kinds of working cycles, each computed over the 20
executions of each cycle type in data set one. In this com-

Table 2: Angle between the average first principal
components of two different kinds of working cycles

P M G H

P 0◦ 87.0468◦ 52.8273◦ 22.2571◦

M 87.0468◦ 0◦ 90.8125◦ 85.5550◦

G 52.8273◦ 90.8125◦ 0◦ 74.8631◦

H 22.2571◦ 85.5550◦ 74.8631◦ 0◦

parison of different kinds, only the tractor data from dataset
two is considered, with its four different cycle types (P , M ,
G, H). All computed angles between different cycles are by
far larger than the standard deviation of angles within one
type of cycle (see Table 1).
This indicates that, in principle, PCA can distinguishing be-
tween different types of working cycles.
The next step is to examine whether these results can be
used to identify working cycles also online, during operation.
To do this, a sliding window is dragged over the measure-
ment data of data set two (working day of a tractor), and
for each window wi the first principal component PC1(wi)
is computed. This is then compared to the average princi-
pal components of the four cycle types ploughing, mowing,
grubbering and harrowing, and assigned to the one that is
closest (cf. Figure 4). Finally, the percentage of correctly
assigned windows for each window size is determined. The
computation has been repeated for several different window
sizes, from 1000 samples to 30000 samples per window in
steps of 1000 (the length of the full cycles is 30000 in case
of ploughing, grubbering and harrowing, and 28000 in case
of mowing). Figure 5 shows the results of this computation.
For each window size, the y-axis displays the percentage of
windows over the whole day that have been assigned cor-
rectly to the average PC1 of the cycle type that has ac-
tually just been executed. It is evident, that the hit-rate
rises up to 100% as the window size approaches the cycle
length. What can also be seen, is that satisfying results will
only be achieved using very large windows. For instance,
a hit-rate of 95% requires a window size of 25000 samples,
which is, at a sample rate of 200 Hz a time span of 125 sec-



Figure 5: Hit-rate of assignment of windows to cycle
types

onds. For the Observer, that would mean that situation pa-
rameters can only be computed every two minutes, which is
too long. Therefore, the data analyzer within the Observer
has been designed with two kinds of windows, that are pro-
cessed in parallel (cf. Figure 2). Situation parameters that
are derived of a small window wi at time t enter the predic-
tion module directly, and the principal components PC1(wi)
and PC1(bwj) of a larger background window go into a hi-
erarchical cycle identification: bwj will provide information
about the background cycle, while wi determines the cur-
rently executed partial cycle within it. Both results go into
the predictor, as additional information in order to improve
prediction quality.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed an architecture for a machine

management system of an off-highway machine that is based
on the generic Observer/Controller (O/C) architecture. It
exceeds traditional systems in two major points: On the one
hand, while existing systems optimize the machine specifi-
cally towards efficient performance in its intended tasks, our
architecture contains machine learning mechanisms and is
thus capable of adjusting the machine to changing environ-
ments and situations. On the other hand, optimizations in
off-highway machines are often done at a low level of ab-
straction, maximizing the efficiency of single components.
The architecture described here introduces a hierarchically
superior management layer that regards the machine and
the interactions of its components as a whole.
After describing the architecture of our intended O/C based
machine management system, we took a closer look at the
Observer in this architecture and specifically the data ana-
lyzer module within it. We explained how it can be designed
to fulfill its major task of working cycle recognition, and out-
lined our corresponding experiments: we tested the ability
of principal component analysis to extract features from the
measurement data that are characteristic for each type of
working cycle, while at the same time they are indifferent
to the variations that might occur from one execution of

that working cycle to the next. The proposed method was
adjusted to online cycle recognition during operation, by ap-
plying it to a sliding window over the incoming data stream.
Future work will include an analysis of a suitable prediction
algorithm for the corresponding module within the Observer
and, subsequently, the appropriate design of the O/C Con-
troller to the requirements of an off-highway machine.
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