
Heuristic Contraction Hierarchies with
Approximation Guarantee

Robert Geisberger. Dennis Schieferdecker
Karlsruhe Institute of Technology,

Institute for Theoretical Computer Science,
76128 Karlsruhe, Germany

{geisberger,schieferdecker}@kit.edu

October 25, 2010

Abstract
We present a new heuristic point-to-point shortest path algorithm based

on contraction hierarchies (CH). Given an ε ≥ 0, we can prove that the
length of the path computed by our algorithm is at most (1 + ε) times the
length of the optimal (shortest) path. Exact CH is based on node contraction:
removing nodes from a network and adding shortcuts to preserve shortest
path distances. Our heuristic CH tries to avoid adding shortcuts even when a
replacement path is (1 + ε) times longer. However, we cannot avoid all such
shortcuts, as we need to ensure that errors do not stack. Combinations with
goal-directed techniques bring further speed-ups.

1 Introduction

The point-to-point shortest path problem in static road networks is essentially
solved. There exist fast algorithms that are exact [?]. However, for other graph
classes, these algorithms do not work very well. Also, when several objective
functions should be supported within a road network current algorithms face some
problems since the inherent ‘hierarchy’ of the graph changes with the used edge
weights, e. g. time and distance. One possibility to alleviate these problems is to
drop the exactness of the algorithms and allow some error. We show how to adapt
contraction hierarchies (CH) [?] so that we can guarantee a multiplicative error of
ε and extend it to use in combination with goal-directed techniques [?]. CH adds
shortcuts to the graph to reduce the query search space. But when too many short-
cuts are needed, as on some graph classes, the positive effect of them significantly
decreases. Thus, our idea is to avoid some shortcuts by allowing a small error. It
is straightforward to change the node contraction so that shortcuts are only added
when a potential replacement path (witness) is more than a factor (1 + ε) longer.
Our non-trivial contribution is how to ensure that errors do not stack during the
contraction, and how to change the query algorithm so that it is still efficient.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197553696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Related Work

The classic shortest path algorithm for nonnegative edge weights is Dijkstra’s al-
gorithm that computes from one source node the shortest paths to all other nodes.
During the execution of it, a node is either: unreached, reached (= open) or settled
(= closed). It iteratively settles the reached node with the smallest tentative dis-
tance and updates the tentative distances of its neighbors by relaxing the edges of
the settled node (= expanding the node).

However, on large graphs it is rather slow, so more sophisticated speed-up tech-
niques have been developed. There has been extensive work on speed-up tech-
niques for road networks [?]. All these techniques have in common that they per-
form precomputation to speed up shortest paths queries. We can classify current
algorithms into three categories: hierarchical algorithms, goal-directed approaches
and combinations of both.

Our algorithm is based on CH, a very efficient hierarchical algorithm. A CH
orders the nodes by ‘importance’ and contracts the nodes in this order. A node is
contracted by removing it from the network and adding shortcuts to preserve short-
est paths distances. The original graph augmented by all shortcuts is the result of
the preprocessing. A slightly modified bidirectional Dijkstra shortest path search
then answers a query request, touching only a few hundred nodes. For our algo-
rithm, we modify the node contraction, i.e. the decision which shortcuts we have
to add, and the query.

Transit node routing [?] is the only faster hierarchical algorithm than CH. The
most successful goal-directed algorithms are ALT [?] based on A* and landmarks,
and Arc-Flags (AF) [?]. For AF, the graph is partitioned into cells, and each edge
stores one flag (bit) per cell indicating whether this edge lies on a shortest path to
this cell. Combinations of goal-direction and hierarchy are extensively studied by
[?], including CHASE, a combination of CH and AF, and CALT, a combination of
simple node contraction and ALT. We show how to extend CHASE to our heuristic
scenario and introduce CHALT, a combination of CH and ALT with faster query
times than CALT.

Weighted A* [?] is a heuristic variant of A*, where the heuristic function is
weighted with (1 + ε) and guarantees an error of ε. [?] gives an overview of
further heuristic variants.

2 Heuristic Node Contraction

CH performs precomputation on a directed graph G = (V,E), with edge weight
function c : E → R+. Each node is assigned an one-to-one importance level, i.e.
I(u) = 1..n. Then, the CH is constructed by contracting the nodes in the above
order. Contracting a node u means removing u from the graph without changing
shortest path distances between the remaining (more important) nodes.

In the exact scenario, we want to preserve all shortest path distances. When
we contract u, this is ensured by preserving the shortest path distances between the

2

neighbors of u. So, given two neighbors v and w with edges (v, u) and (u,w), we
should find the shortest path P between v and w avoiding u. When the length of P
is longer than the length of the path 〈v, u, w〉, a shortcut edge between v and w is
necessary with weight c(v, u) + c(u,w). Otherwise, P is witness that no shortcut
is necessary.

Algorithm 1: SimplifiedHeuristicConstructionProcedure(G = (V,E),I ,ε)

1 c̃:= c; // store second weight per edge
2 foreach u ∈ V ordered by I(u) ascending do // contract all
nodes in order

3 foreach (v, u) ∈ E with I(v) > I(u) do
4 foreach (u,w) ∈ E with I(w) > I(u) do
5 find shortest path P = 〈v, . . . , w〉 using only nodes x with

I(x) > I(u);
6 if c(P) > (1 + ε)(c̃(v, u) + c̃(u,w)) then
7 E:= E ∪ {(v, w)} (use weight c(v, w):= c(v, u) + c(u,w),

c̃(v, w):= c̃(v, u) + c̃(u,w));
8 else
9 γ:= c(P)

c̃(v,u)+c̃(u,w) - 1; // c(P) = (1+ γ)(c̃(v, u) + c̃(u,w))

10 foreach (x, y) ∈ P do
11 c̃(x, y):= min

{
c̃(x, y), c(x,y)1+γ

}
;

In the heuristic scenario, we will not preserve the shortest path distances, but
we still want to guarantee an error bound. Intuitively, we also want to avoid a
shortcut between v and w, when the path P is just a bit longer than 〈v, u, w〉. To
guarantee a maximum relative error of ε, we need to ensure that the errors do not
stack when a node on P is contracted later. We call this algorithm approximate CH
(apxCH) (Algorithm 1). When a witness P prevents a shortcut, even though in the
exact scenario the shortcut would be necessary, the witness must remember this.
We let the edges (x, y) of the witness P remember this by storing a second edge
weight c̃(x, y), so that Lemma 1 is fulfilled, and c̃(P) ≤ c̃(v, u)+c̃(u,w) (Lines 9–
11). Intuitively, c̃(P) stores the minimal length of a shortcut that P prevented as
witness.

Lemma 1 For each edge (v, w) holds

c(v, w)

1 + ε
≤ c̃(v, w) ≤ c(v, w) .

A simple way to implement c̃ is to proportionally distribute the difference be-
tween c(P) and c(v, u) + c(u,w) among all edges of the witness. Example: Path
〈u, v, w〉 with c(u, v) = 8, c(v, w) = 4 prevents a shortcut of length 11. Thus,

3

c̃(u, v) = 8/12 · 11, c̃(v, w) = 4/12 · 11 unless c̃(u, v) or c̃(v, w) are already
smaller. However, we could distribute it differently or even try to find other poten-
tial witnesses. Also, avoiding a shortcut can lead to more shortcuts later, as every
shortcut is a potential witness later.

3 Heuristic Query

The basic apxCH query algorithm is the same as for CH. It is a symmetric Dijkstra-
like bidirectional procedure performed on the original graph plus all shortcuts
added during the preprocessing. However, it does not relax edges leading to nodes
less important than the current node. This property is reflected in the upward graph
G↑:= (V,E↑) with E↑:= {(u, v) ∈ E | I(u) < I(v)} and, analogously, the down-
ward graph G↓:= (V,E↓) with E↓:= {(u, v) ∈ E | I(u) > I(v)}).

We perform a forward search in G↑ and a backward search in G↓. Forward and
backward search are interleaved, we keep track of a tentative shortest-path length
and abort the forward/backward search process when all keys in the respective
priority queue are greater than the tentative shortest-path length (abort-on-success
criterion).

Both search graphs G↑ and G↓ can be represented in a single, space-efficient
data structure: an adjacency array. Each node has its own edge group of inci-
dent edges. Since we perform a forward search in G↑ and a backward search in
G↓, we only need to store an edge in the edge group of the less important inci-
dent node. This formally results in a search graph G∗ = (V,E∗) with E↓ :=
{(v, u) | (u, v) ∈ E↓} and E∗ := E↑ ∪ E↓. Finally, we introduce a forward and
a backward flag such that for any edge e ∈ E∗, ↑ (e) = true iff e ∈ E↑ and
↓ (e) = true iff e ∈ E↓. Note that G∗ is a directed acyclic graph (DAG).

In Lemma 2 we construct from an arbitrary path, a replacement path that can
be found by our query algorithm.

Lemma 2 Let G = (V,E) be the graph after apxCH preprocessing with I and
ε. Let P be an s-t-path in G. Then there exists an s-t-path P ′ in G of the form
〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N, I(ui) < I(ui+1) for i ∈ N, i < p
and I(uj) > I(uj+1) for j ∈ N, p ≤ j < q, called path form (PF). For P ′ holds
c̃(P ′) ≤ c̃(P).

Proof. Given a shortest s-t-pathP = 〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈
N and I(up) = max I(P), that is not of the form (PF). Then there exists a k ∈
N, k < q with I(uk) < I(uk−1), I(uk) < I(uk+1). We will recursively construct
a path of the form (PF).

Let MP := {I(uk) | I(uk) < I(uk−1), I(uk) < I(uk+1)} denote the set of
local minima excluding nodes s, t. We show that there exists an s-t-path P ′ with
MP ′ = ∅ or minMP < minMP ′ .

Let I(uk):= minMP and consider the two edges (uk−1, uk), (uk, uk+1) ∈ E.
Both edges already exist at the beginning of the contraction of node uk. So there

4

is either a witness path Q = 〈uk−1, . . . , uk+1〉 consisting of nodes more im-
portant than uk with c(Q) ≤ (1 + ε)(c̃(uk−1, uk) + c̃(uk, uk+1)) or a shortcut
(uk−1, uk+1) of the same weight is added. So the subpath P |uk−1→uk+1

can either
be replaced by Q or by the shortcut (uk−1, uk+1). If we replace the subpath by Q,
our construction ensures that c̃(Q) ≤ c̃(P |uk−1→uk+1

). Also if we added a short-
cut, c̃(uk−1, uk+1) ≤ c̃(P |uk−1→uk+1

) holds. So the resulting path P ′ consists of
nodes more important than uk and has the property c̃(P ′) ≤ c̃(P). Since n < ∞,
there must exist an s-t-path P ′′ with MP ′′ = ∅, is therefore of the form described
in (PF), and c̃(P ′′) ≤ c̃(P). �

Theorem 1 proves the correctness of our basic query algorithm by guaranteeing
an error bound.

Theorem 1 Given a source node s and a target node t. Let d̃(s, t) be the dis-
tance computed by the apxCH algorithm with ε ≥ 0 and let d(s, t) be the optimal
(shortest) distance in the original graph. Then d(s, t) ≤ d̃(s, t) ≤ (1 + ε)d(s, t).

Proof. Let (G = (V,E), I, ε) be an apxCH with ε ≥ 0. Let s, t ∈ V be the
source/target pair of a query. It follows from the definition of a shortcut, that the
shortest path distance between s and t in the apxCH is the same as in the original
graph. So we will never find a shorter path in the shortcut-enriched graph, thus
d(s, t) ≤ d̃(s, t) holds. Every shortest s-t-path in the original graph still exists in
the apxCH but there may be additional s-t-paths. However since we use a modified
Dijkstra algorithm that does not relax all incident edges of a settled node, our query
algorithm does only find particular ones. In detail, exactly the shortest paths of the
form (PF) are found by our query algorithm. From Lemma 2, we know that if
there exists a shortest s-t-path P then there also exists an s-t-path P ′ of the form
(PF) with c̃(P ′) ≤ c̃(P). Because of Lemma 1, we know that c(P

′)
1+ε ≤ c̃(P ′) and

c̃(P) ≤ c(P) so that c(P ′) ≤ (1 + ε)c(P). So our query algorithm will either find
P ′ or another path, that is not longer than P ′. �

Although we use c̃ in the proof, the query algorithm does not use it at all. So
we only require c̃ during precomputation but we do not need to store it for the
query. Also note that the correctness does not depend on the importance level I(·).
However, in practice, the choice of I(·) has a big impact on the performance, see
[?].

4 Heuristic Stall-on-Demand

In the previous section, we proved that the basic heuristic query algorithm does
not need any changes compared to the exact scenario. However, there are changes
necessary for the stall-on-demand technique, an important ingredient of a practi-
cally efficient implementation of CH. This single improvement brings additional
speed-up of factor two or more. We will first explain how exact stall-on-demand
stalls nodes that are reached with suboptimal distance. While a regular Dijkstra
search would never do that, it can happen during a CH query since we do not relax

5

s

x

y

v

z

u

t

no
de

or
de

r

1

1
+
ε

1
+
ε

1

2

3

1

1

Figure 1: The stalling condition of the exact query fails, as node z is never reached
in the forward search from s, since the path 〈s, x, y, v〉 to node v is stalled by the
path via u.

edges leading to less important nodes. We call a path leading only upwards being
an upward path. Our query algorithm can only find upward paths. There is a sim-
ple trick that allows us to check whether the currently settled node u is reached via
a suboptimal upward s-u-path P = 〈s = v1, . . . , vk = u〉: for each more impor-
tant neighbor v of u with edge (v, u) that was already reached by an upward path
〈s, . . . , v〉, we inspect the s-u-path P ′ = 〈s, . . . , v, u〉. As P ′ is no upward path,
P ′ could be shorter than P . In this case, if c(P) > c(P ′), we stall node u, i.e. we
do not relax its incident edges. This is correct, as our exact CH query is correct
and the suboptimal path P would never be part of an optimal path. We further try
to even stall the reached neighbors w of u, if the path via v is shorter than their
current tentative distance. For correctness, unstalling such a reached node w can
be necessary when the search later finds a shorter upward path than the path via v.

However, in the heuristic scenario with ε > 0, we would destroy the correct-
ness of our algorithm when we would apply the same rule, as our query algorithm
no longer computes optimal paths. Consider as example the graph in Figure 1. Dur-
ing the contraction of u, no shortcut for the path 〈x, u, v〉 is added since the path
〈x, y, v〉 is a witness that is just a factor (1 + ε) larger. The forward search starting
at s should settle the nodes in the order s, x, y, u, v, z. However, if we would not
change the stalling condition, we would stall u while settling it because the path
〈s, u〉 is longer than the path 〈s, x, u〉, which is not an upward path. Furthermore,
we would propagate the stalling information to v, so node v reached via upward
path P = 〈s, x, y, v〉 gets stalled by the shorter path P ′ = 〈s, x, u, v〉. Thus, node
v is stalled and we would never reach node z with the forward search and therefore
could never meet with the backward search there.

To ensure the correctness, we change the stalling condition. We split the path
s-u-path P ′ in paths P ′1 and P ′2 so that P ′1 is the maximal upward subpath starting
at s. Let x be the node that splits P ′ in these two parts, i.e. P ′1 = P ′|s→x and

6

Algorithm 2: HeuristicQuerySOD(s,t)

1 d↑:= 〈∞, . . . ,∞〉; d↑[s]:= 0; d↓:= 〈∞, . . . ,∞〉; d↓[t]:= 0, d:=∞;
// tentative distances

2 Q↑ = {(0, s)}; Q↓ = {(0, t)}; r:= ↑; // priority queues
3 while (Q↑ 6= ∅ or Q↓ 6= ∅) and (d > min {minQ↑,minQ↓}) do
4 if Q¬r 6= ∅ then r:= ¬r; // interleave direction, ¬ ↑=↓

and ¬ ↓=↑
5 (·, u):= Qr.deleteMin(); d:= min {d, d↑[u] + d↓[u]}; // u is

settled and new candidate
6 if isStalled(r, u) then continue; // do not relax edges of a

stalled node
7 foreach e = (u, v) ∈ E∗ do // relax edges of u
8 if r(e) and (dr[u] + c(e) < dr[v]) then // shorter path

found
9 dr[v]:= dr[u] + c(e); // update tentative distance

10 Qr.update(dr[v],v); // update priority queue
11 if isStalled(r, v) then unstall(r, v);

12 if (¬r)(e) ∧ dr[v] + (1 + ε)c(e) < dr[u] then // path via v
is shorter

13 stall(r, u, dr[v] + (1 + ε)c(e)); // stall u with
stalling distance dr[v] + (1 + ε)c(e)

14 break; // stop relaxing edges of stalled node
u

15 return d;

P ′2 = P ′|x→u. Then we stall u only if node x is reached by the forward search and

c(P ′1) + (1 + ε)c(P ′2) < c(P) (1)

The symmetric condition applies to the backward search, see Algorithm 2 for
pseudo-code. Note that for ε = 0, this algorithm corresponds the the exact query
algorithm with stall-on-demand.

To prove that stall-on-demand with (1) is correct, we will iteratively construct
in Lemma 3 a new path from a stalled one.

Lemma 3 Let (P, v, w) be a stall state triple (SST): P being an s-t-path of the
form (PF), node v being reached by the forward search by P |s→v and not stalled
and node w being reached by the backward search by P |w→t and not stalled. De-
fine a function g on an SST:

g(P, v, w) := c(P |s→v) + (1 + ε)c̃(P |v→w) + c(P |w→t).

7

If one of the nodes in P |v→w becomes stalled, then there exists an SST (Q, x, y)
with

g(Q, x, y) < g(P, v, w).

Proof. Let u ∈ P |v→w be the node that becomes stalled. W.l.o.g. we assume
that P |v→u is an upward path, i.e. the stalling happens during the forward search.
Then there exists an s-u-path P ′ that is split in P ′1 and P ′2 as defined in (1) so that
c(P ′1) + (1 + ε)c(P ′2) < c(P |s→u). Let x be the node that splits P ′ into these two
subpaths. Let R be the path of form (PF) that is constructed following Lemma 2
from the concatenation of P ′2 and P |u→w. LetQ be the concatenation of P ′1, R and
P |w→t and y:= w. By construction, (Q, x, y) is a SST and we will prove that it is
the one that we are looking for:
g(Q, x, y)
= c(Q|s→x) + (1 + ε)c̃(Q|x→y) + c(Q|y→t)
def.
= c(P ′1) + (1 + ε)c̃(R) + c(P |w→t)
L.2
≤ c(P ′1) + (1 + ε)(c̃(P ′2) + c̃(P |u→w)) + c(P |w→t)
L.1
≤ c(P ′1) + (1 + ε)c(P ′2) + (1 + ε)c̃(P |u→w)

+c(P |w→t)
(1)
< c(P |s→u) + (1 + ε)c̃(P |u→w) + c(P |w→t)
= c(P |s→v) + c(P |v→u) + (1 + ε)c̃(P |u→w)

+c(P |w→t)
L.1
≤ c(P |s→v) + (1 + ε)c̃(P |v→u) + (1 + ε)c̃(P |u→w)

+c(P |w→t)
= g(P, v, w)

�
With Lemma 3 we are able to prove the correctness of heuristic stall-on-demand

(1) in Theorem 2.

Theorem 2 Theorem 1 still holds when we use heuristic stall-on-demand (1).

Proof. The proof will iteratively construct SSTs with Lemma 3 starting with
the path P found in the proof of Theorem 1/Lemma 2 and the nodes s and t.
Obviously, at the beginning of the query, both nodes s and t are reached and not
stalled, so (P, s, t) is an SST and

g(P, s, t)
= c(P |s→s) + (1 + ε)c̃(P |s→t) + c(P |t→t)
= (1 + ε)c̃(P)
≤ (1 + ε)d(s, t) .
We will prove that after a finite number of applications of Lemma 3, we obtain

an SST (Q, x, y) so that Q is found by our query with stalling. For this path Q
holds:

8

s

v

x

u

t
no

de
or

de
r

10

110

12

1

100
1

Figure 2: Stalling may increase the observed error (ε = 10%). Node u gets stalled
while being on the shortest path of form (PF).

c(Q) = c(Q|s→x) + c(Q|x→y) + c(Q|y→t)
L.1
≤ c(Q|s→x) + (1 + ε)c̃(Q|x→y) + c(Q|y→t)
= g(Q, x, y)
L.3
≤ g(P, s, t)
≤ (1 + ε)d(s, t)

Since our graph is finite, and due to the “<” in Lemma 3, we can apply
Lemma 3 only finitely many times. The final SST (Q, x, y) will be found by
our query algorithm since x is reached in the forward search and not stalled, y
is reached in the backward search and not stalled. And since this is the final SST,
no node on the path Q|x→y will be stalled. Thus, our query will find the path Q or
a shorter path. �

Note that stall-on-demand can still increase the observed error of the query, we
just proved that it will never be larger than ε. Look at the example in Figure 2. The
shortest s-t-path 〈s, v, u, x, t〉 has length 112. During the contraction of node u, no
shortcut (v, x) was added as the existing edge is less than 10% longer. During the
query from s to t, path 〈s, v, u〉 of length 11 stalls node u reached with length 12.
So the query does not find the path 〈s, u, x, t〉 of length 113 but instead the path
〈s, v, x, t〉 of length 121 having an error of 8%.

5 Improved Node Ordering

Node ordering is the process to compute the importance levels I(·). The node or-
dering is done heuristically, as the computation of an optimal node ordering (i.e.
shortcut minimal or query search space minimal) is NP-hard [?]. We assign each
remaining node a priority on how attractive it is to contract this node. The priority
is a linear combination of several terms [?]. There are terms to keep the number of
shortcuts low, e.g. the edge difference between the number of necessary shortcuts
and the number of incident edges of the node, and to keep the search spaces small,
e.g. the number of contracted neighbors. We iteratively contract the node with
lowest priority and update the priorities of the remaining nodes. Updating these
priorities takes the most time during precomputation, as computing the number of
necessary shortcuts takes as much time as computing the set of necessary short-
cuts. Therefore, [?] already update only (a) the priorities of the neighbors of the

9

contracted node. As this does not catch all nodes with affected priority, they (b)
repeatedly update the priority of the node on top of the priority queue (lazy update)
and reinsert it until it does not change anymore. So nodes with increased priority
become updated in time. They further (c) update the priorities of all remaining
nodes when too many of these reinserts happened. This works very well for road
networks, but we observed in our experiments on other graph classes that we can
significantly reduce precomputation time by skipping (a) and (c), and only rely on
(b). We call this optimization OLU (only lazy updates).

6 Combination with Goal-directed Techniques

The CHASE algorithm combines CH and AF. Its preprocessing computes a CH
and then computes AF on a small core, consisting of the most important nodes. AF
preprocessing is usually very time- and space-consuming on a large graph, much
larger than a CH preprocessing. By applying AF only to a small core, we can get
faster queries than CH or AF alone at only slightly increased preprocessing costs
compared to CH. The CHASE query is performed in two phases, first a CH query
that does not relax edges within the core, and second a CH query within the core
guided by arc flags. The AF computation partitions the core into k cells. To set
the arc flags, we could compute the backward shortest path DAG (not a tree due to
paths of same length) from each node and set the arc flag for the cell of the node
for exactly each edge in this DAG. But it is sufficient to only do this from boundary
nodes that have a neighbor in another cell [?]. As we perform a bidirectional query,
we also compute symmetric arc flags using forward shortest path DAGs.

CHASE can be adapted to our heuristic scenario. Our apxCHASE preprocess-
ing uses an apxCH, and determines arc flags by a modified backward search that
only considers paths of the form (PF). For our apxCHASE query, we need to em-
ploy the changes to the stall-on-demand technique. Additionally, a path P ′ can
only stall an upward path P if the target arc-flags are set on all edges of P ′.

As on some graphs, ALT is superior to AF, we also propose to combine apxCH
with ALT to obtain the apxCHALT algorithm. The pattern is the same, we first
compute a apxCH and then apply ALT on a small core. ALT preprocessing selects
landmarks L heuristically and then computes the shortest path distances from/to all
nodes u in the core using Dijkstra’s algorithm. If the target node t is in the core,
the minimum of the distances d(L, t) − d(L, u) and d(u, L) − d(t, L) is a lower
bound on the distance d(u, t) used for the heuristic function. If not, proxy nodes
in the core are introduced [?]. It is symmetric to obtain a lower bound from the
source node. The apxCHALT query algorithm uses ALT instead of AF, but is still
performed in two phases.

10

preproc. query preproc. query
[s] [B/n] #settled [ms] error [s] [B/n] #settled [ms] error

sensor average degree 10 average degree 20
bidir. Dijkstra 0 0 326 597 127.1 - 0 0 327 626 181.2 -
CALT 62 165 954 1.4 - 188 432 2 616 4.4 -
bidir. AF 8 753 322 7 002 2.6 - 48 055 641 10 838 5.2 -
bidir. ALT-a64 194 512 3 173 2.8 - 240 512 3 852 4.6 -
bidir. WALT-a64-10% 194 512 687 1.3 0.99% 240 512 437 1.5 1.17%
bidir. WALT-a64-21% 194 512 636 1.3 1.86% 240 512 404 1.5 1.86%
unidir. ALT-a64 97 256 8 248 4.9 - 120 256 6 782 5.5 -
unidir. WALT-a64-10% 97 256 845 0.9 2.59% 120 256 372 0.8 1.62%
unidir. WALT-a64-21% 97 256 692 0.8 4.24% 120 256 327 0.8 2.30%
unidir. A* 0 16 57 385 36.6 - 0 16 31 928 31.2 -
unidir. WA*-10% 0 16 1 234 1.0 1.25% 0 16 308 0.61 1.16%
unidir. WA*-21% 0 16 724 0.7 2.87% 0 16 272 0.58 1.86%
CH 20 578 -2 2 816 2.9 - > 2 days - - - -
CH OLU 1 887 0 2 969 4.0 - 82 243 31 9 232 37.8 -
apxCH-1% 993 -4 2 742 2.7 0.16% 14 025 -2 7 657 17.6 0.19%
apxCH-10% 474 -18 2 584 1.9 2.17% 2 767 -48 5 496 6.6 1.75%
CHALT 20 597 22 257 0.5 - > 2 days - - - -
CHALT OLU 1 907 26 251 0.6 - 82 296 57 924 4.1 -
apxCHALT-1% 1 011 21 243 0.5 0.15% 14 057 22 784 2.2 0.19%
apxCHALT-10% 489 7 215 0.3 2.16% 2 786 -23 475 1.0 1.75%
apxCHALT-10% W-10% 489 7 102 0.2 3.56% 2 786 -23 269 0.45 3.20%

Table 1: Performance of our approximate algorithms on sensor networks.

7 Experiments

Environment. Experiments have been done on one core of a dual Xeon 5345
processor clocked at 2.33 GHz with 16 GB main memory and 2 × 2× 4 MB of
cache, running SuSE Linux 11.1 (kernel 2.6.27). The program was compiled by
the GNU C++ compiler 4.3.2 using optimization level 3.

Test Instances. We use the largest strongly connected component of the road
network of Western Europe, provided by PTV AG for scientific use, with 18 million
nodes and 42.2 million edges. The second class of instances are unit disk graphs
with 1 000 000 nodes and with an average degree of 10 and 20, modelling sensor
networks with limited connection range (sensor). We also use grid graphs of 2
and 3 dimensions having 250 000 nodes, with edge weights picked uniformly at
random between 1 and 1 000.

Setup. We report results in Tables 1–3. Graphs are stored explicitly in main
memory as adjacency array. We compare the algorithms in the three-dimensional
space of preprocessing time, preprocessing space and query time. Usually, there is
not a single best algorithm, but there are several ones providing different tradeoffs
between these three dimensions. The preprocessing space is the space overhead
compared to the space a bidirectional Dijkstra needs. We state it as Bytes per node
[B/n], as for our graph classes, the number of edges is roughly linear in the number
of nodes. The number of settled nodes, runtime, and error are average over 10 000
shortest path distance queries, selected uniformly at random. Although the number
of settled nodes gives a rough estimate on the runtime of the query, there can be
deviations: Reasons are cache locality (we observed 20% difference in runtime
by just choosing different node ids), and more shortcuts on most important nodes,
so that settling those is more expensive, and the cost for stall-on-demand. For

11

preprocessing query preprocessing query
[s] [B/n] #settled [ms] error [s] [B/n] #settled [ms] error

Europe travel time distance
bidir. Dijkstra 0 0 4.714 M 1 991 - 0 0 5.309 M 1 547 -
TNR1 6 720 204 N/A 0.0034 - 9 720 301 N/A 0.038 -
TNR+AF1 13 740 321 N/A 0.0019 - - - - - -
CH 1 510 -3 353 0.125 - 4 433 0 1 628 1.293 -
CH OLU 1 050 -1 430 0.206 - 1 258 0 1 333 1.198 -
apxCH-10% 1 099 -2 430 0.199 0.40% 950 0 1 248 0.873 1.32%
CHASE 8 699 4 44 0.023 - 72 278 12 73 0.062 -
CHASE OLU 13 421 7 42 0.028 - 84 759 15 59 0.058 -
apxCHASE-10% 11 977 5 42 0.026 0.40% 33 147 10 62 0.048 1.32%
CHALT 1 703 22 146 0.114 - 4 658 25 192 0.318 -
CHALT OLU 1 257 23 149 0.155 - 1 491 26 159 0.300 -
apxCHALT-10% 1 300 23 153 0.147 0.40% 1 163 24 232 0.322 1.32%
apxCHALT-10% W-10% 1 300 23 106 0.111 0.65% 1 163 24 70 0.116 2.14%

Table 2: Performance of our approximate algorithms on road networks.

CH node ordering, we use the aggressive variant from [?] to determine the node
priorities. CHASE uses k = 128 cells for AF, CHALT uses 64 avoid landmarks,
both on a core of the 5% highest ordered nodes.

Improved node ordering. Adding the OLU optimization to CH reduces prepro-
cessing time on sensor networks and the 3-dimensional grid network by one order
of magnitude. We cancelled the normal CH preprocessing of sensor20, it would
probably have taken 10 days. On the road network, we see a more differentiated
picture. For CH, the preprocessing for travel time metric is almost 3 times faster
than for distance metric, both on the same graph. With OLU we are able to decrease
the difference to a factor of 1.2. The difference is due to the travel time metric fea-
turing a hierarchy with fast highways and slower roads, so that most of the long
shortest paths use the highways. In contrast, the distance metric (also used on the
sensor networks) does not necessarily prefer the highways so that more shortcuts
are needed and a larger number of nodes has to be explored during a query. But
OLU can also decrease the performance, e.g. the query time with travel time met-
ric increases, and also the preprocessing time for CHASE, this is because there are
more boundary nodes.

Approximate CH. ApxCH uses OLU, and further decreases preprocessing time
and space by allowing some error, although the observed error is much smaller than
the error bound. On sensor20, apxCH-10% (ε = 10%) reduces preprocessing time
by a factor of 30 and has negative space overhead. The negative space overhead is
possible due to the adjacency array representation, as a bidirectional edge in a CH
is only stored with the less important endpoint. So, when we add fewer shortcuts
than there are input edges, we achieve a negative space overhead.

Node contraction is fast on sparse networks that also stay sparse in the remain-
ing graph during contraction. But on sensor networks, slight variations in source
and target positions suddenly make another path the shortest one, so that CH works
bad as a lot of shortcuts are necessary. ApxCH works very well on these graphs, as
there are a lot of similar paths with similar lengths, so we can omit a lot of short-
cuts by allowing some error. Road networks have a different structure than sensor

12

networks. Due to the travel time metric, there is hierarchy so that CH works well
as we mostly need shortcuts only for the fast highways. Also, there are not a lot of
similar paths, as most go through these highways, so that apxCH cannot skip a lot
of shortcuts and brings no advantage. The distance metric exhibits less hierarchy,
thus also slow roads become important when they represent a short path to the tar-
get, and there are more similar paths. So, apxCH shows some improvements over
CH there. The grid networks have some hierarchy due to the random edge weights,
but it is less structured so that apxCH shows only some improvements, especially
in the preprocessing time.

Approximate CHALT. The best query times on the sensor networks are achieved
using goal-direction. We report results for ALT, A* (based on coordinates on the
disk) and CHALT, and also for their weighted variant (marked with W). The coor-
dinates are stored in two double values (2× 8 Byte/node). Using ALT is faster than
A*, whereas bidirectional ALT is faster than unidirectional ALT. But the weighted
variant has just the opposite order, A* based on coordinates is the fastest with
0.58 ms on sensor20 using ε = 21%. It seems that having a denser network helps
WA* based on coordinates, as an about 3 times smaller search space is explored for
sensor20 in comparison to sensor10. So apxCHALT-10% is faster than WA-10%
on sensor10, but slower on sensor20. When we use weighed A* with CHALT,
we get the fastest query time of 0.45 on sensor20, being 20% faster than WA*-
21% and even 9 times faster than CHALT OLU. We compare to WA*-21%, as
apxCHALT-10% W-10% has a total error bound of 21% as the errors multiply.
You may note that both have almost the same number of settled nodes. But as
CHALT has fewer cache misses, due to a node numbering in the adjacency array
based on the importance levels and the upward-only query, CHALT is faster in
practice. The second advantage of apxCHALT-10% W-10% over WA*-21% is the
smaller space overhead in adjacency array representation.

Approximate CHASE. We only report results for CHASE on the road and grid
networks, as the preprocessing on the sensor networks took more than 2 days.
CHASE has a smaller preprocessing space and query times than CHALT. Fur-
thermore, on road networks it is the fastest speed-up technique except for TNR1.
However, in comparison to CHALT and CH, the preprocessing time is very large,
especially for the distance metric. With apxCHASE-10%, we are able to reduce
the preprocessing time by a factor of 2.

8 Applications

We described our heuristic for a single edge weight function and tested it on
some graph classes. They should provide comparable performance on other sim-

1Experiments done on a 2.0 GHz AMD Opteron running SuSE Linux 10.0 with 8 GB of RAM
and 2x1 MB of L2 cache.

13

preproc. query preproc. query
[s] [B/n] #settled [ms] error [s] [B/n] #settled [ms] error

grid 2-dimensional 3-dimensional
bidir. Dijkstra 0 0 80 168 22.59 - 0 0 44 244 19.78 -
CALT 40 226 445 0.82 - 53 409 598 1.30 -
bidir. AF 622 130 1 369 0.34 - 6 287 189 1 718 0.62 -
bidir. ALT-a64 42 512 1 083 0.86 - 55 512 722 1.10 -
CH 59 0 409 0.12 - 9 205 14 2 207 1.82 -
CH OLU 30 1 408 0.14 - 1 088 18 2 236 2.54 -
apxCH-10% 26 -1 388 0.13 0.70% 605 8 2 124 2.00 0.19%
CHASE 105 11 102 0.04 - 10 051 62 807 0.59 -
CHASE OLU 87 14 91 0.04 - 2 344 74 749 0.72 -
apxCHASE-10% 68 9 85 0.04 0.70% 1 418 49 777 0.66 0.19%
CHALT 61 25 90 0.06 - 9 210 39 524 0.65 -
CHALT OLU 33 26 80 0.07 - 1 094 44 494 0.77 -
apxCHALT-10% 28 23 76 0.06 0.70% 610 34 434 0.62 0.19%
apxCHALT-10% W-10% 28 23 55 0.05 1.38% 610 34 361 0.53 0.59%

Table 3: Performance of our approximate algorithms on grid networks.

ilar graph classes, e.g. game networks or communication networks. Other areas
may be time-dependent road networks, where not only the travel time functions
are approximations, but also the shortcuts. Also, it can help for multi-criteria op-
timization. It would be simple to extend it to the flexible scenario [?] with two
edge weight functions. There, a lot more shortcuts than in the single-criteria sce-
nario are added, which significantly increases preprocessing time and space. As
our heuristics reduce the number of shortcuts, this can bring a big improvement.

9 Conclusion

We developed an approximate version of contraction hierarchies with guaranteed
error bound. In our experimental evaluation, we showed that on certain graph
classes, this new version is able to reduce preprocessing time and space, and also
query time by an order of magnitude. Query times are further decreased by com-
bination with AF or ALT.

Continuing work should be done on testing our algorithms on other graphs.
Further tuning on the algorithms is possible, too. The node ordering priorities are
currently optimized for road networks, so there is potential for improvement. Also,
the shortcuts are currently avoided in a greedy fashion. Using smarter approaches
may further decrease the number of necessary shortcuts.

Acknowledgments. Partially supported by DFG Research Training Group GRK
1194 and DFG grant SA 933/5-1.

14

