

 Karlsruhe Reports in Informatics 2010,20
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Software Security in Virtualized
Infrastructures

The Smart Meter Example

B. Beckert, D. Hofheinz, J. Müller-Quade, A. Pretschner, G. Snelting

beckert@kit.edu, dennis.hofheinz@kit.edu, joern.mueller-quade@kit.edu,

alexander.pretschner@kit.edu, gregor.snelting@kit.edu

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197553662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Software Security in Virtualized Infrastructures
– The Smart Meter Example –

B. Beckert, D. Hofheinz, J. Müller-Quade, A. Pretschner, G. Snelting

Karlsruher Institut für Technologie (KIT)

Abstract

Future infrastructures for energy, traffic, and
computing will be virtualized: they will con-
sist of decentralized, self-organizing, dynami-
cally adaptive, and open collections of physical
resources such as virtual power plants or com-
puting clouds. Challenges to software depend-
ability, in particular software security will be
enourmous.

While the problems in this domain transcend
any specific instantiation, we use the example of
smart power meters to discuss advanced tech-
nologies for the protection of integrity and con-
fidentiality of software and data in virtualized
infrastructures. We show that approaches based
on homomorphic encryption, deductive verifica-
tion, information flow control, and runtime ver-
ification are promising candidates for providing
solutions to a plethora of representative chal-
lenges in the domain of virtualized infrastruc-
tures.

1 Introduction

Future infrastructures for energy, traffic, and
computing will be virtualized, and will depend
on software to an unprecedented amount. Vir-
tual power plants will consist of dynamically
adaptive, heterogeneous collections of physical
power sources such as wind power generators
or photovoltaic panels. Traffic management will
rely on large-scale simulation and multi-modal
route planning; future trips will happen in a
virtual environment before they take place in
the physical world. Cloud computing – the
prototype of a virtualized infrastructure – pro-
vides computing power through Internet outlets,
in form of Software-as-a-Service, Platform-as-a-
Service, or Infrastructure-as-a-Service.

Hence, future infrastructures will depend on

software to an amount previously unimaginable.
And while the state of the art perhaps allows
to develop the necessary software functionality,
virtualization generates software dependability
problems, which cannot be handled by today’s
software technology. Dependable functional-
ity, communication, fault tolerance, adaptivity,
safety, security, and privacy will not only require
the adaption of known dependability techniques,
but also the development of new ones. For ex-
ample, model checking or verification have never
been applied to self-organizing software driving
virtual power plants.

Software security will pose a particular chal-
lenge in virtualized infrastructures. Recent
attacks, e.g. based on the Stuxnet worm,
on SCADA systems controlling electrical grids
demonstrate that even today, security is frag-
ile. It is beyond any doubt that this problem
will multiply in virtualized infrastructures. In
future infrastructures, integrity will be essen-
tial, meaning that input, output, and the pro-
cess of critical computations cannot be manip-
ulated from outside. For the protection of pri-
vacy, confidentiality will be essential (meaning
that private or secret data cannot flow to pub-
lic ports), as well as appropriate filtering and
aggregation of data such that, e.g., information
about energy demand and supply can no longer
be linked directly to specific individuals. Clas-
sical IT security techniques such as access con-
trol and encryption will need additional break-
throughs, such as homomorphic cryptography,
to be useful in cloud computing or traffic infra-
structures. New techniques such as semantics-
based software security analysis and information
flow control will be needed to master integrity
and confidentiality challenges.

The cluster initiative “Dependable Software
for Critical Infrastructures” (DSCI) will de-
velop new foundations and methods for soft-

1

ware dependability in virtualized infrastruc-
tures. DSCI focuses on E-Energy, E-Traffic, and
Cloud Computing. DSCI will provide guaran-
tees for dependable functionality, communica-
tion, fault tolerance, adaptivity, safety, security,
and privacy in future infrastructures. A general
overview of DSCI can be found in [7].

In particular, DSCI investigates new ap-
proaches to software security in virtualized in-
frastructures, which exploit recent achievements
in algorithmics, language-based security, cryp-
tography, and verification technology. DSCI will
also build on fundamental results to be devel-
oped by the new DFG Priority Programme “Re-
liably Secure Software Systems” (RS3). Several
DSCI researchers are also leading RS3 projects.
But note that RS3 is not concerned with criti-
cal infrastructures. In general, we are not aware
of any report that pinpoints the difficult secu-
rity problems in such infrastructures. Hence the
DSCI contribution, as outlined in the current
overview article, can be summarized as follows:
Contribution We investigate software secu-

rity problems in future virtualized infrastruc-
tures; using smart metering as an example. We
demonstrate how a toolbox of advanced security
technologies, such as homomorphic cryptogra-
phy, information flow control, deductive verifi-
cation, proof-carrying code, and runtime verifi-
cation, will be able to protect integrity and pri-
vacy in smart metering systems. We indicate
how our toolbox can be used to protect other
components in critical infrastructure, such as
SCADA systems.
Organization We start by introducing our

exemplary problem domain, that of smart en-
ergy meters, in Section 2. As a basis for dis-
cussion, we present an exemplary architecture
of such a system, perfectly aware that any con-
crete system is likely to differ in specific details.
On these grounds, we derive a set of challenges
and describe them in Section 3. In the remain-
ing sections, we show how to use different tech-
nologies to tackle a selection of relevant prob-
lems: Section 4 shows how to use homomorphic
encryption for privacy-preserving aggregation of
data. Section 6 shows how to use deductive ver-
ification to the end of ensuring correctness and
absence of undesired information flows. Sec-
tion 5 tackles the problem of undesired infor-
mation flows on the basis of language-based ap-
proaches. Section 7 builds on these approaches
and adds to the static approaches of Sections 6
and 5 a dynamic approach that is based on run-

time verification and that explicitly targets in-
formation flow across system boundaries. The
conclusion discusses more general applications
in critical infrastructures, e.g. for SCADA sys-
tems. Related work is discussed throughout the
text.

2 Smart Metering Systems

2.1 Background

Smart metering technology makes it possible to
continuously measure the consumption of en-
ergy, gas, and water. Because the measuring de-
vices are, or at least are planned to be, directly
connected to a respective IT infrastructure, it
is possible to transmit the measurement data in
varying intervals to a piece of data administra-
tion software (“cockpit”) which runs on a PC in
the respective household or company, or directly
to the energy provider or billing company.

The advantages are, depending on the per-
spective of the various stakeholders, considered
manifold: there is no need for physical peo-
ple to read the meters; households can them-
selves detect a potential waste of energy by con-
tinuously monitoring consumption and compar-
ing it with other households; fine-grained con-
sumption information allows energy providers to
tune the load balancing of their networks; since
ressources cost differently at different times,
households can automatically switch on, say,
washing machines at the cheapest moment of
the night.

Whether or not all these anticipated advan-
tages will become reality is not the subject of
this paper: for instance, we do not discuss if
the energy used for a continuously running DSL
modem does not outweigh the saved energy –
which in turn is estimated to not exceed roughly
Euro 3,00 per month per household, using to-
day’s technology –; nor do we discuss if load
balancing will not continue to be done at the
level of entire street blocks; nor do we discuss
if local operating networks (LONs) – possibly
do not necessitate smart metering technology
at all to implement intelligent switching of elec-
trical devices when it comes to the anticipated
next generation of smart meters that bidirec-
tionally “communicate” with the devices; nor do
we touch the legal perspective [26].

We are convinced, however, that smart me-
tering systems are an excellent example for the

2

convergence of business and embedded IT and
therefore are highly representative of tomor-
row’s virtualized infrastructures. Moreover, it
is a fact that there is a politically motivated
desire to install these devices on a large scale;
that in terms of smart meters for electricity,
a regulation (2006/32/EG) requires new houses
to be equipped with respective basic technology
for energy efficiency reasons as of January 2010,
and that consumption data must be transmitted
electronically in standardized form since April
2010; that the EnWG requires the unbundling
of energy providers, measurement device opera-
tors, and device readers; and that major energy
providers are running huge (e.g., 5000 house-
holds in Cologne) sets of test installations to-
day. On the other hand, the economic bene-
fits of rolling out smart metering technology re-
mains to be proved; information security prob-
lems that are concerned with the measuring de-
vices as well as with communication of the mea-
surement data have not fully been solved yet;
and it is also true that the population is becom-
ing increasingly aware of the potential privacy
issues that emerge from this innovative tech-
nology, as highlighted by the example of the
2008 Big Brother award to Yello Strom for their
smart metering technology.

2.2 Architecture of a Typical
Smart Metering System

In the following, we sketch the architecture of
an abstract, yet typical smart metering system
for electricity.

Energy is measured in the measuring device
itself. The measuring device sends the data to a
data concentrator (also called MUC, multi util-
ity communicator; the name is motivated by the
connection of a multitude of measuring devices
for gas, water, etc.). Taken together, these two
devices are usually called the smart meter. De-
pending on the frequency of transmittal (and,
consequently, the degree of aggregation of the
measurements), the meter sends measurement
data either directly to a mobile phone or PDA,
or via a power line or classical DSL modem (1)
to a local PC that runs data administration soft-
ware and (2) to the gateway of the billing com-
pany, that can but need not necessarily be the
same as the energy provider (unbundling; some
solutions also include the energy providers as
intermediaries). The data administration soft-
ware is used to check the current consumption,

to build personal profiles, and to contrast these
personal profiles to other profiles (see below for
the back end). We will assume that this soft-
ware is also used to control appliances 1.

Text messaging and email services are being
implemented that warn members of a household
if they have likely forgotten to switch off, say, an
oven (whether or not the smart metering soft-
ware and hardware alone can detect if specific
appliances are switched on is the subject of an
ongoing debate [31] – in any case, in conjunc-
tion with appliances connected to LONs, this
is clearly possible, even if the metering device
alone does not provide sufficient information for
this task). In any case, remote handling of ap-
pliances or radiators in intelligent buildings ap-
pears feasible.

Metering data can be sent from the data ad-
ministration software to many other IT systems,
including Web 2.0 services such as social net-
works where, among other things, people can
show off how “green” their household is, or where
avatars shrink and grow depending on the en-
ergy that has been consumed. Conversely, parts
of the data admin software can be implemented
in the cloud so that access via external PCs be-
comes possible.

When data is transmitted from the household
to the energy provider or the respective billing
company, a plethora of IT systems enters the
game. These include gateways for the meter-
ing data, a web back-end for the end customer’s
data administration software that, among other
things, can provide profiling data of comparable
households, billing services, CRM systems, the
implementation of sending the above warning
text messages or emails, etc. Finally, it is per-
fectly conceivable that in case customers agree,
their data is sent to third parties, including ap-
pliance vendors that, for instance, may offer
class A fridges that are guaranteed to be amor-
tized within a specific period of time, call cen-
ters, advertisement providers, marketing com-
panies, etc.

Accordingly, a typical architecture of the over-
all system – of which every energy provider
of course offers differing instantiations – very
roughly looks as depicted in Figure 1 (boxes are
components, arrows represent data flows).

The entire smart metering system is charac-
terized by two main features. Firstly, it com-

1Data management and control of appliances can and
should of course physically be implemented in separate
devices.

3

Data Admin SWCustomer

Energy Provider/

Billing Company

3rd Parties
External IT device

Appliance Manufacturers

„Web 2.0 Forum“

Mobile Phone/PDA

Smart Meter

(A)DSL modem
Powerline

adaptor

Billing

CRM

Gateway
Data Admin

Backend

Call Center

Text Msg Service

Appliance 1

Appliance 2
Appliance 3 Appliance 4

Figure 1: Smart metering systems: Bird’s eye view

bines an embedded system (the metering device
itself) with several IT systems and, as such, is
an excellent example for tomorrow’s integrated
cyber-physical systems. Secondly, it is a highly
distributed system with many different areas of
governance, responsibility, and liability: the me-
tering provider and operator, the home cockpit
software and its connection to Web 2.0 media,
the billing company, the energy provider, and
external third parties including call centers and
vendors. To date, it is unclear who will be the
responsible for the entire system, at least as far
as privacy is concerned.

2.3 Trusted Device

For security reasons, certain components of the
smart metering system must be physically pro-
tected from manipulation. In particular,

• the measuring device itself must be pro-
tected from physical manipulation to en-
sure that the measurement corresponds to
the true eletricity consumption;

• there must be a trusted device providing

certain (software) functionality, including
encryption, which is protected from manip-
ulation of its software;

• the devices that physically switch appli-
ances must be protected from manipula-
tions that may make it accept false switch-
ing commands. (These devices may be in-
tegral components of the appliances or, for
“dumb” appliances they may be part of the
socket or plug.)

In our architecture, we assume that the smart
meter (i.e., the measuring device and the MUC)
and the trusted device are the same logical com-
ponent.

Architecture of the trusted device. Soft-
ware with different trust levels runs on the
trusted device (core, kernel, application). The
core cannot be updated remotely. The kernel
can be updated but only from trusted sources.
The applications can come from the same source
as the cockpit software.

The kernel part is basically a micro kernel pro-
viding functionality with integrity guarantees.

4

Typical examples for critical functions that may
be provided by the trusted device kernel are:

• (secure) communication (in particular with
the provider and third parties), information
flow limits may be guaranteed for this com-
munication;

• cryptographic services (signing, encryption
etc.);

• access to the hardware (measuring device);

• switching appliances, i.e., secure communi-
cation with the devices that switch appli-
ances (by signing switching commands);

• getting authorisation from the provider for
changes in electricity consumption;

• enforcing upper limits for energy consump-
tion (set by the user or by the provider);

• software updates (this includes checking au-
thenticity of updates, checking proofs in
proof-carrying code);

• logging all relevant events.

3 Challenges

In a smart metering environment as described
above, a number of challenges arise, both related
to the integrity and confidentiality of software
and data. Concretely, we can isolate several de-
sirable properties of a smart metering system.

Confidentiality of customer data. A cus-
tomer (i.e., the owner of a household) might be
interested in protecting his or her detailed power
consumption traces. Namely, individual electri-
cal devices (ovens, hair dryers, TV sets, etc.)
have characteristic power consumption patterns
which make it possible to even identify single
appliances [31]. Hence, detailed power traces
reveal a level of information about the customer
that makes it useful for marketing purposes. For
instance, heavy users of kitchen devices are more
likely to be susceptible to food-related advertise-
ments. Heavy computer users might be more
susceptible to advertisements for microelectron-
ics or computer games.

Detailed information about power consump-
tion patterns can also be used on a larger
scale. For instance, one could match individual

power consumption patterns to isolate individ-
uals from certain groups (e.g., jobless persons,
night-shift workers, people who arrived home at
certain points in time, etc.). Specifically, large-
scale data mining could be used for dragnets.

Besides, detailed power traces can be used to
determine, e.g., how many people live in the
household, when the household members are on
vacation, or even when they leave the house.
In principle, this data is useful for burglars, in
particular when such data can be collected and
filtered on a large scale. Even more fine-grained
data about the household owners can be ex-
tracted by matching with typical consumption
patterns of, e.g., students, or persons with full-
time/part-time job, or without job.

Hence, to protect the customer’s privacy, de-
tailed power consumption traces should be pro-
tected [31]. Of course, on the other hand, the
energy provider has a legitimate interest in us-
ing power consumption information for billing
and to predict power demands and adjust its
infrastructure.

System Software Integrity. The integrity
of the system and, in particular, the trusted de-
vice must be protected from attacks from the
user, the provider, or third parties. For this,
the design and the correct implementation of
the software in the trusted device plays a central
rôle.

As the cockpit software runs on the user’s PC
on a standard operating system, the integrity
of the cockpit software ist hard to protect from
attacks by the user (except by obscurity) or by
third parties using malware.

As a smart meter will be installed in house-
holds for quite some time before they are ex-
changed, it should be possible to remotely up-
date the software on the trusted device (other-
wise updates are too costly). It is a difficult
challenge to nevertheless ensure integrity. The
core of the trusted device, which cannot be up-
dated itself, has to provide this assurance.

Authenticity and integrity of measure-
ments. Measurements exist both in raw and
in aggregated form. These aggregations per-
tain to the dimensions of both time (seconds,
hours, days, months) and space (one appliance,
a household, a house, a block, a district, a city).
Among other things, whenever these aggrega-
tions are used for control purposes, e.g., load

5

balancing, their integrity and authenticity be-
come crucial properties. Otherwise, a possible
attack consists of tricking an energy provider
into thinking that either too much or too little
energy will be needed at a specified moment of
time, with potentially hazardous consequences
for the infrastructure.

Authenticity of control signals. One has
to ensure that control signals are not falsified.
Even if they are generated by the cockpit or the
user via PDA they cannot be trusted completely.

Terrorists could start a distributed denial-of-
service attack or worse if they can install mal-
ware on the cockpit and thus switch a large num-
ber of appliances at the same time, producing a
surge in energy consumption and system break-
down.

The only protection is that switching is done
by the trusted device (possibly requiring autho-
risation from the provider for certain changes in
consumption).

Certification, trust, and adequacy of re-
quirements. It is not sufficient to build a se-
cure system. Security must be checkable and
certifiable. This is particularly important as
many stake holders are involved.

4 Fully Homomorphic En-
cryption: Operating on
Encrypted Data

In this section, we will outline techniques to se-
curely and efficiently aggregate data. This will
in particular be useful to our secure metering use
case. However, of course the techniques will be
versatile enough for more general applications.
Hence, we first introduce the technical tools, and
then comment on their use in our smart meter-
ing example.

4.1 Fully homomorphic encryp-
tion

Motivation: Cloud computing. Virtual-
ized infrastructures such as cloud computing al-
low to outsource computation tasks through In-
ternet outlets. These Internet outlets are not
necessarily trustworthy. In fact, in services such
as Amazon’s Elastic Cloud, the customer does
not even know where the computing outlets are

located. In particular when working with sen-
sitive data, it is of course highly undesirable to
send all data in plain to an unknown server.

An obvious solution is to encrypt the data
before transmitting it to servers in the cloud.
However, conventional encryption schemes do
not allow to compute on encrypted data: once
encrypted, the data can only be decrypted, but
not operated on. (In fact, in certain scenarios
such as Internet auctions, being able to manipu-
late encrypted data can become a security weak-
ness: encrypted bids can be modified and then
used to overbid a competitor.)

Fully homomorphic encryption (FHE).
Until very recently, fully homomorphic encryp-
tion schemes (i.e., encryption schemes that al-
low arbitrary computations on encrypted data)
were actually deemed impossible. However, in
a breakthrough work, in 2008 Craig Gentry
from the IBM T.J. Watson research center fi-
nally succeeded in constructing the first FHE
scheme [18]. His scheme allows to perform ar-
bitrary computations on encrypted data. The
result of such a computation is again encrypted,
so that the entity who performs the computa-
tion neither learns anything about the data nor
about the result.

Fully homomorphic encryption might seem
like the obvious way to achieve secure cloud
computing: instead of sending all data in plain
into the cloud to outsource computations on
that data, encrypt all data, and let the cloud
compute on this encrypted data. The encrypted
result can then be sent back to the customer,
who possesses the secret key to decrypt the re-
sult.

The (in)efficiency of general FHE. How-
ever, there is a catch with this idea. Namely, as
of today, FHE schemes are far too inefficient to
be useful in the cloud computing setting. That
is, computing on encrypted data is computa-
tionally far more expensive than computing on
plain, unencryted data. Depending on the de-
sired level of security, current (June 2010) imple-
mentations of FHE schemes require several sec-
onds to perform a single gate operation (i.e., a
bitwise and, or, or not operation) on encrypted
data. Besides, due to a highly redundant encod-
ing (in current schemes), encrypting data results
in a dramatic blowup in storage requirements.
Finally, all operations to be performed on the

6

encrypted data have to be expressed as circuits.
In particular, this requires to unroll loops, and
follow all branches of if...then...else...
constructs, which makes the computation in it-
self much more inefficient.

4.2 Additively homomorphic en-
cryption: an example

Outline. Hence, current homomorphic en-
cryption techniques do not seem ready yet for
a direct application to the cloud computing set-
ting. Still, there is hope for practical solutions
that only partially rest on the properties of ho-
momorphic encryption. (We will later on com-
ment on such solutions.) Besides, we can still
hope for practical solutions that are optimized
for specific settings.

Additively homomorphic encryption. In
our examples, we will only need to operate in
a very specific way on encrypted data. Put dif-
ferently, we will only need to perform a specific
class of homomorphic operations on ciphertexts.
More specifically, we will only need an addi-
tively homomorphic encryption scheme. (That
is, an encryption scheme which allows to com-
pute the encryption of the sum of several en-
crypted plaintexts.)

Paillier’s scheme. Such encryption schemes
are well-known to exist, and in fact are quite effi-
cient. As an example of an additively homomor-
phic encryption scheme, we recapitulate Pail-
lier’s encryption scheme [32]. Paillier’s scheme
works in the ring ZN 2 for a product N = PQ of
two large primes P and Q . Its algorithms are
defined as follows:

Key generation. Choose N = PQ and g ∈
ZN 2 with ord(g) = ϕ(N) = (P − 1)(Q −
1). Publish the public key pk = (N , g) and
keep the secret key sk = (P ,Q).

Encryption. To encrypt m ∈ {0, . . . ,N − 1},
uniformly choose r ∈ {0, . . . ,N − 1} and
compute the ciphertext

Enc(pk ,m) = rN (1 + N)m ∈ ZN 2 .

Decryption. To decrypt C ∈ ZN 2 , compute

C (P−1)(Q−1)

= rN (P−1)(Q−1)(1 + N)m(P−1)(Q−1)

= (1 + N)m(P−1)(Q−1)

= 1 + m(P − 1)(Q − 1)N ,

from which m(P − 1)(Q − 1) mod N and
thus m can be computed. (Note here that
1 +N has order N , since (1 +N)N = N 2 =
0 mod N 2.)

A distinguishing feature of Paillier’s encryption
scheme is the (additively) homomorphic prop-
erty: we have

Enc(pk ,m1) · Enc(pk ,m2)

= rN
1 (1 + N)m1 · rN

2 (1 + N)m2

= (r1r2)N (1 + N)m1+m2

= Enc(pk ,m1 + m2),

where r1r2 and m1 + m2 are computed mod-
ulo N . (Technically, to ensure that C :=
Enc(pk ,m1) ·Enc(pk ,m2) really is a properly dis-
tributed encryption ofm1+m2, we have to reran-
domize C by multiplying with a fresh random
value rN .)

4.3 Applications to smart meter-
ing

Setting. In a smart metering system, we can
think of securely aggregating measurements be-
fore transmitting them to the energy provider,
in order to ensure (a certain degree of) confiden-
tiality of the customer’s data. Concretely, we
can aggregate measurements in two dimensions:
over time (i.e., we can aggregate measurements
from throughout the week), or space (i.e., we
can aggregate from several customers). In both
cases, only an additively homomorphic encryp-
tion scheme is necessary.

A concrete protocol. [16] explain how the
secure aggregation of measurements across sev-
eral customers can be performed using an ad-
ditively homomorphic encryption scheme such
as Paillier’s scheme. Concretely, the idea is as
follows:

1. Each customer i performs his or her own
measurement mi . The goal is to compute

7

the aggregation
∑

i mi of several measure-
ments from several customers. Each cus-
tomer possesses a Paillier public/secret key-
pair, as does the energy provider.

2. All customers engage in an efficient multi-
party protocol to compute an encryption
of the aggregation

∑
i mi of measurements

under the energy provider’s public key.

C := Enc(pk ,
∑
i

mi).

(Note that this does not involve point-to-
point communication among the customers,
but only a link from each customer to the
energy provider.)

3. In the end, the energy provider decrypts C
and (only) learns the aggregation of mea-
surements, while no customer learns any-
thing (on top of his or her own measure-
ment of course).

How to go further. This approach of se-
cure aggregation demonstrates the applicabil-
ity of (limited) homomorphic encryption to the
smart metering setting. In particular, [16] show
how cryptography can be used to simultane-
ously achieve seemingly contradictory require-
ments (the energy provider’s desire to gather in-
formation vs. the customer’s privacy). Our goal
is to extend these ideas for the use in a practical
smart metering system.

For instance, as outlined in Section 3, an ad-
ditional requirement present in a smart meter-
ing system is the integrity (i.e., authenticity) of
measurements. Such an authenticity require-
ment can be fulfilled by digitally signing the
measurements. However, signed measurements
can no longer be easily accumulated (e.g., in-
side a Paillier encryption). It is an interesting
and unique challenge to combine such authen-
tication methods with aggregation techniques.
(More specifically, we would want to aggregate
signed pieces of data, such that an aggregated
signatures authenticates the accumulated data.)

4.4 More examples
Secure aggregation of traffic data. As an-
other example of the use of (limited) homomor-
phic encryption, consider the secure aggregation
of traffic data. We could imagine a number
of traffic sensors that measure the number of

passing cars and periodically transmit measure-
ments to a base station. Transmitting those
measurements in plain and unencrypted could
result in a loss of anonymity: it could become
possible to track individual cars. Only encrypt-
ing measurements and sending them to the base
station would still allow that base station to
track individual cars. However, suppose now
that encrypted measurements could be aggre-
gated, in the sense that each sensor
• first receives an encryption of the so far ag-

gregated measurements Enc(pk ,
∑i−1

j=1 mj)
of the previous station,

• then homomorphically adds its own (en-
crypted) measurement Enc(pk ,mi) to that
previous measurement,

• and sends the encrypted accumulated mea-
surement Enc(pk ,

∑i
j=1 mi) to the next sta-

tion.
In this scenario, a base station would only re-
ceive accumulated traffic information. Such ac-
cumulated information can still be helpful, e.g.,
to detect and potentially prevent traffic jams,
but protects the privacy of individuals. In fact,
we can even have a tradeoff between privacy
and monitoring accuracy by adjusting the de-
gree of accumulation. Thus, we have a system
whose properties can be adjusted by fine-tuning
parameters, similar to systems in algorithm en-
gineering. Depending on the desired concrete
application parameters, as well as security and
efficiency goals, we can hope to find an optimal
point in this continuum for a given specific ap-
plication.

In this traffic analysis setting, a certain ho-
momorphic property is required from the used
encryption scheme, since it must be possible to
aggregate natural numbers. However, very effi-
cient encryption schemes—such as Paillier’s en-
cryption scheme—with such a limited accumula-
tion property are well-known to exist. In partic-
ular, while fully homomorphic encryption would
lead to an impractical solution, a practical solu-
tion can be found by using the specific structure
of the problem.

Secure storage. Similarly, when merely large
storage capacities in the cloud are required,
again efficient solutions exist. For instance,
consider a scenario in which a large medi-
cal database that includes individual patient
records is to be outsourced into the cloud. En-
crypting this data alone might not be sufficient

8

to protect the privacy of individual patients. At
the very least, a potentially curious server in the
cloud might learn which (encrypted) records are
accessed more often.

However, in this setting, cryptographic tech-
nologies such as private information retrieval
(PIR) can be employed. PIR techniques allow
for a comparatively efficient access to encrypted
stored data, while the actual server on which
that data is stored learns essentially only that
an access took place (but not which part of the
data was accessed).

4.5 Supporting FHE by other
tools

Orthogonally, we can hope to use (fully) ho-
momorphic encryption techniques in an efficient
way when they are supported by additional
cryptographic tools. For instance, imagine a
small tamper-proof hardware device that per-
forms arbitrary computations. Of course, one
has to be careful in making such assumptions,
since
(a) it takes a significant effort in hardware de-

sign to protect such a device against phys-
ical attacks, and

(b) since the device is small, we cannot assume
that it is computationally very powerful.

Such hardware tokens can be used to bootstrap
a very general class of secure computations. In
particular, hardware tokens alone enable arbi-
trary secure two-party computations. (In a se-
cure two-party computation, both parties get
an input x1, resp. x2, and eventually receive an
output f (x1, x2), where the function f is agreed
upon. It should be stressed that both parties do
not learn anything about the other party’s in-
put, beyond f (x1, x2) of course.) Many real-life
protocol tasks (e.g., negotiations for a price) can
be expressed as such a secure two-party compu-
tation.

However, constructing tamper-proof devices
requires an expensive dedicated hardware de-
sign. In particular, if we have k different de-
vices for the use in different contexts, we will
have to design and protect k different pieces of
hardware. Fully homomorphic encryption can
come to our aid here: instead of designing k
different hardware devices, we only design one
universal decryption device. Such a device con-
tains the secret key that is necessary to decrypt
(fully homomorphic) encryptions. We can now
build a larger device that first of all encrypts its

inputs x1 and x2 (this can be done using a pub-
lic encryption key), and then homomorphically
computes an encryption of f (x1, x2) from the en-
crypted xi . Finally, the result is decrypted and
output. Observe that only the initial encryption
and final decryption steps actually have to be
protected; the actual computation takes place
on encrypted data and thus could even be per-
formed publicly.

Along these lines, fully homomorphic encryp-
tion allows to generically construct arbitrary
tamper-proof hardware from one single and very
specific piece of hardware for encryption and de-
cryption. In particular, an expensive hardware
protection process has only to be performed
once and for all. Arbitrary tamper-proof hard-
ware devices can be derived almost canonically.

Of course, we still have to ensure that our
solution is reasonably efficient. In particular,
when using fully homomorphic encryption, we
still suffer from a considerable slowdown. How-
ever, hardware tokens are already only used
for certain protocol-critical operations for which
hardware support is required to ensure security.
(One can think of using hardware tokens only
to store and thus physically protect long-term
secret keys.) Hence we can hope that the use
of computationally very expensive techniques
like fully homomorphic encryption is much more
practical than, e.g., in a generic cloud comput-
ing setting.

4.6 A tradeoff

We believe that the preceding examples demon-
strate that it is crucial to use “heavy” crypto-
graphic techniques like fully homomorphic en-
cryption with care, with a lot of fine-tuning for
the actual application. Again we have a trade-
off between efficiency and security, where the
degree to which a cryptographic tool like fully
homomorphic encryption is used determines the
characteristics of an implementation.

5 Language-Based Security

Traditional software security mechanisms, such
as access control, certifications of origin, pro-
tocol verification, intrusion detection, will of
course be necessary in virtualized infrastruc-
tures, but will not be sufficient. For DSCI, in-
tegrity will be essential, meaning that critical
computations cannot be manipulated from out-

9

side. For the protection of privacy, confiden-
tiality will be essential, meaning that private
data cannot flow to public ports. However, both
cannot be guaranteed with classical techniques
alone: classical approaches do not really give
guarantees about the behaviour of software, but
rather about its origin.

Fortunately, research in software security has
developed techniques such as proof-carrying
code and information flow control (IFC), which
analyze the true semantics of software, and pro-
vide guarantees about software behavior and not
just its “packaging”. As such analyses exam-
ine the program source code, they are called
“language-based”. Modern program analysis
based on interprocedural dataflow analysis, ab-
stract interpretation, or model checking has
developed very powerful tools for discovering
anomalies in software. Experimental security
infrastructures based on these techniques have
been developed in large European projects [5].
IBM developed a tool for IFC which can anal-
yse large programs written in full Java [35]. New
results concerning central notions such as non-
interference and declassification are pursued in
the new DFG priority program “Reliably Se-
cure Software Systems” (RS3). RS3 integrates
software security with advanced verification and
program analysis. In the following, we will de-
scribe some of the new security techniques, as
well as their application to smart meters. Note
that these techniques have many other applica-
tions in virtualized infrastructures.

5.1 Proof Carrying Code

Proof carrying code is code for software com-
ponents (typically mobile components), which
comes with an (encoded) formal proof of some
desireable property of the software. Proper-
ties might be functional, safety, or security re-
lated. Proofs are written in some formal logic,
and refer to the program text of the software
(e.g. loop invariants in Hoare logic). Upon in-
stallation or plug-in, the proof must automati-
cally be checked for correctness, and it must be
checked that the proof does indeed correspond
to the software component. Proof carrying code
is based on the fact that checking a proof can
be done efficiently, in contrast to the expensive
(manual) construction of the proof. In the liter-
ature, appropriate formal logics as well as effi-
cient proof checkers have been described in de-
tail. The European project “Mobius” has de-

c l a s s PasswordFi le {
p r i va t e S t r ing [] names ;

/∗ P: c o n f i d e n t i a l ∗/
p r i va t e S t r ing [] passwords ;

/∗ P: s e c r e t ∗/
// Pre : a l l s t r i n g s are in t e rned
pub l i c boolean check (St r ing user ,

S t r ing password /∗P: c o n f i d e n t i a l ∗/) {
boolean match = f a l s e ;
t ry {
f o r (i n t i =0; i<names . l ength ; i++) {
i f (names [i]==user

&& passwords [i]==password) {
match = true ;
break ;

}
}

}
catch (Nul lPo interExcept ion e) {}
catch (IndexOutOfBoundsException e) {} ;
r e turn match ; /∗ R: pub l i c ∗/
}

}

Figure 2: A Java password checker

veloped a security infrastructure based on proof
carrying code, which is used for Java code in
mobile devices.

In the smart meter application, proof carry-
ing code could be very helpful once new soft-
ware versions are downloaded to the smart me-
ter. Integrity and privacy properties must be
formalized when developing the software to be
downloaded, and corresponding formal proofs
be constructed (this will be a nontrivial task).
The checker is based on theorem prover tech-
nology, and must be part of the trusted device
(see section 2.3). Upon download, the checker
will guarantee functionality and security, or – if
proof checking fails – will disallow installation.

5.2 Information Flow Control

Proof carrying code can guarantee arbitrary
functional or security related properties, but re-
quires expensive proof preparation and nontriv-
ial checkers. As an alternative, new techniques
for language-based security can be applied to
guarantee integrity and privacy. In particular,
information flow control analyses the program
source or byte code for security leaks. Data
which are marked confidential (e.g. power con-
sumption traces) must not flow to public ports
(e.g. the gateway of the energy provider), or
perhaps only in aggregated form as discussed
in section 4. Similarly, critical computations

10

Figure 3: Program dependency graph for figure
2 (exceptions included)

(e.g. appliance switching commands) must not
be manipulated from outside (e.g. by the billing
company – but perhaps manipulation from the
“cockpit” is allowed).

Technically, information flow control is diffi-
cult, in particular for realistic programs (e.g.
100 kLOC) written in realistic languages (e.g.
full Java byte code). Concurrency and multi-
threading make information flow particular de-
manding. The theoretical foundations, such
as noninterference and declassification, are still
subject to ongoing research. The Mobius
project delivered the first information flow in-
frastructure for Java Card applications on mo-
bile devices; it is based on security type systems.
In Germany, the new SPP “reliably secure soft-
ware” integrates information flow control with
modern program analysis and verification tech-
nology. Let us thus describe one such approach,
as developed in the group of G. Snelting [22], in
more detail.

Security type systems, as used by Mobius,
have been an important step and are quite ef-
ficient, but can be unprecise, resulting in false
alarms. A more precise analysis must exploit
flow-sensitive, object-sensitive, and context-
sensitive information as computed by interpro-
cedural dataflow analysis. The results of such
an analysis can be encoded in form of a pro-
gram dependency graph, as indicated in figure
3. Without going into details, note that in-
formation can flow in the program only along
paths in the dependency graph. If there is no
path, it is guaranteed that there is no (illegal)

Figure 4: Program dependency graph for fig-
ure 2 (exceptions excluded) with computed se-
curity levels (white=public, grey=confidential,
dark=secret). The program contains a security
leak showing up as a level conflict in the return
node (upper right). Indeed, there is an informa-
tion flow from the secret password table to the
public output, which can be exploited.

flow of information. This fundamental property
(for which a machine-checked formal proof ex-
ists [38]) makes dependency graphs so suitable
for information flow control. Note that in the
presence of procedures, arrays, objects, excep-
tions, etc. the construction of the graph be-
comes very complex. Hundreds of papers have
been written on the subject; today, two depen-
dency graph implementations for full Java exist
(one, the JOANA tool, developed in Snelting’s
group), as well as a commercial implementation
for C/C++, called CodeSurfer.

For information flow control, input and out-
put ports in the graph must be annotated with
security levels. For the rest of the program resp.
its dependency graph, security is checked by a
fixpoint iteration which is based on the following
fundamental equations:

S (x) ≥

P(x) t

⊔
y∈pred(x)

S (y), if x ∈ dom(P)⊔
y∈pred(x)

S (y), otherwise

R(x) ≥ S (x) if x ∈ dom(R)

where S is the security level of a graph node
x , P the annotation of an input port, and R
the annotation of an output port. For figure 2,
the resulting security levels are shown in figure
4. The JOANA analysis can handle full Java
bytecode and scales up to 50kLOC; it is imple-
mented as an Eclipse plug-in (figure 5). Full
details can be found in [22, 20, 21]. The analy-
sis is currently adapted for mobile components
in the scope of the above-mentioned SPP.

11

Figure 5: Eclipse plugin for information flow control

For smart meters and many other software
in virtualized infrastructures, it will be neces-
sary to apply information flow control to (se-
lected parts of) the source code. In particular,
the analysis can guarantee that integrity of the
trusted device cannot be broken by software at-
tacks. This is in turn essential for dependable
cryptography and proof checking. Information
flow control can also guarantee that household
appliances cannot be controlled directly by ex-
ternal software, thus protecting safety and in-
tegrity of the appliances. Information flow con-
trol will guarantee pricavy protection by intro-
ducing appropriate security levels for secret, en-
crypted, aggregated, and public data; analysing
the information flow for all such data in the
smart meter and the cockpit, and by carefully
introducing declassification [30] e.g. at aggrega-
tion points.

For software outside the smart home, a com-
plete information flow analysis will not be possi-
ble due to the tremendous software size and the
number of stakeholders. Still, information flow
control can analyse critical software kernels, but
must be combined with more traditional tech-
nology such as cryptography, certificates and
mandatory access control. Static information
flow control will also be extended by dynamic
analysis and runtime verification, as described
in the next chapter.

6 Deductive Program Verifi-
cation

6.1 Deductive Verification for En-
suring Confidentiality and In-
tegrity in Smart Meters

Various measures can be taken to ensure the
confidentiality and integrity of software in smart
meters. But for the smart meter to be trustwor-
thy, in the end it is indispensable that the ker-
nel software in the trusted device is functionally
correct.

Even if other techniques (e.g., run-time check-
ing or proof-carrying code) are used to ensure
critical properties, certain functionality of the
kernel must be verified in addition (e.g., it must
be shown that the run-time checker is imple-
mented correctly). One may use information-
flow control to show that communication mech-
anisms are used in such a way that confiden-
tiality is preserved. But one must still verify
that these communication mechanisms are im-
plemented correctly and do not allow informa-
tion leaks.

Thus, validating the functional correctness of
the trusted device’s system kernel is central to
ensuring the integrity of the smart metering sys-
tem. And since bugs in the kernel could be ex-
ploited for system-wide attacks against a critical
infrastructure, it is justified to use heavy-weight

12

formal methods – such as deductive program
verification – to ensure the kernel’s correctness.

Formal methods are also needed because
smart metering technology combines two trade-
offs in a complex way: confidentiality vs. intelli-
gent control, and integrity vs. adaptability and
openness. This entails that properties need to
be ensured that balance these trade-offs and are
accordingly complex and difficult to formulate.
The integration with the physical world adds
further complexity.

There are different possibilities for who per-
forms the verification of different system parts.
In particular, we applications and device drivers
running on top of the trusted kernel. A certifi-
cation agency may be involved in different roles.
It may validate the softare itself, it may check a
verication performed by the system developer, it
may certify tools used for verification, or it may
provide (formalisations of) properties, and/or
tools that allow the user to check evidence pro-
vided by the developer (proof-carrying code).

6.2 Deductive Verification of Sys-
tem Code

Overview. The field of deductive program
verification, i.e., formal reasoning about the be-
haviour of programs, is old. The idea of apply-
ing deduction to programs goes back at least
to the work of Scott, Plotkin, and Milner in
the late 1960s. Recent years have brought
tremendous advances in both scope and prac-
ticality, however. Today, program verification
is applied to real-world software. For exam-
ple, security-critical system software is verified
in the VerisoftXT project (see, e.g., the paper
by [9] on deductive verification in VerisoftXT)
and the L4.verified project (see the overview pa-
per by [27]).

As an example for a successful method for de-
ductive verification of system code, we below
describe the approach used in the VerisoftXT
project. While VerisoftXT did not lead to a
full verification of a mikro kernel (mostly due
to a lack in time and man-power), it was clearly
demonstrated that a complete verification is fea-
sible. The kernel considered in VerisoftXT,
SYSGO’s PikeOS, may very well serve as the
basis for implementing a trusted device kernel
for an advanced smart meter implementation.

VerisoftXT: Verifying the PikeOS Mi-
cro Kernel In the first phase of the Verisoft
project it has been shown that pervasive formal
verification of an academic operating system in-
cluding its execution environment, like the un-
derlying hardware and the compiler, is feasible.

In the subproject Avionics of the successor
project VerisoftXT, this knowledge was applied
and refined to the verification of a real world
implementation of a microkernel used in indus-
trial embedded systems, namely PikeOS from
SYSGO AG which operates in safety-critical en-
vironments. One goal of the VerisoftXT sub-
project Avionics was to prove functional prop-
erties of the source code of the microkernel using
Microsoft’s verification tool VCC [10].

PikeOS (see http://www.pikeos.com/) con-
sists of a microkernel acting as paravirtualizing
hypervisor and a system software component.
The PikeOS kernel is particularly tailored to
the context of embedded systems, featuring real-
time functionality and orthogonal partitioning
of resources such as processor time, user address
space memory and kernel resources.

PikeOS could easily be adapted to the require-
ments of a smart metering system. It would, of
course, have to be extended by additional func-
tionality for this particular application, such as
encrypted communication, switching appliances
etc.

The Verifying Compiler Approach. It is
widely recognized that interaction is indispens-
able in deductive verification of real-world code.
Verification engineers have to guide the proof
search and provide information reflecting their
insight into the workings of the program. Lately
we have seen a shift towards a paradigm, called
verifying compilers [25], where the required in-
formation is provided in form of program an-
notations instead of interactively during proof
construction. This has some interesting conse-
quences upon the verification process and the
way annotations are used to specify programs
as the lines between requirement specification
and information required for proof construction
and proof search guidance get blurred.

Also, verifying compilers allow for new ways
of coping with programming language seman-
tics. Instead of directly axiomatizing the com-
plex semantics of the high-level programming
language, verification is done at the level of an
intermediate language with clear and simple se-

13

mantics. A prominent example is Microsoft’s
BoogiePL [13], which is used in Spec# and VCC
among other tools. Annotated code in the in-
termediate language is typically obtained from
annotated source code by using compiler tech-
nology. Despite additional problems – the trans-
formation from annotated source code to inter-
mediate code, for example, obfuscates the verifi-
cation problem and makes it harder to map ver-
ification results back to the source code level –,
the use of an intermediate language offers sub-
stantial advantages. It facilitates adaptation to
other programming languages, but foremost it
allows a separation of concerns, namely the se-
mantics of the source code programming lan-
guage on the one hand and the genuine verifi-
cation problem on the other. Also, intermedi-
ate languages usually have constructs, such as a
non-deterministic choice operator, that are dif-
ficult to include in a real programming language
but are very useful for formal specification and
verification.

Tools following the verifying compiler
paradigm include Spec# [4], VCC [34], and
Caduceus [15]. They are all based on pow-
erful fully-automatic provers and decision
procedures, and they support real-world pro-
gramming languages such as C and C#. VCC
was used in the VerisoftXT project.

Verification in VCC is modular, both with re-
spect to threads and functions. Functions are
equipped with contracts in form of pre- and
post-conditions, giving all necessary conditions
to call the function and the guarantees on the
state, when the function returns. Callers are
then verified with respect to the contracts, not
bodies, of the called functions. The program is
verified as if it were executed by a single thread
but, to handle concurrency, predicates describ-
ing knowledge about the state are weakened at
possible points of interleavings to simulate the
effects of other threads.

Specifying a microkernel with a simula-
tion relation. As explained above, properties
of a smart metering system that need to be ver-
ified to ensure integrity and confidentiality are
rather complex and difficult to formulate.

The standard approach to specifying the re-
quired properties on an abstract level is a sim-
ulation theorem. The proof is conducted by in-
ductively showing that each step of the specifi-
cation, which includes an abstract model of the

smart meter’s trusted device, is realized by a
certain number of steps in the implementation.

For example, a simulation theorem has been
developed and proven in the first Verisoft
project [36]. While a real-world micro ker-
nel differs from the “academic” system used in
Verisoft I (e.g., full C semantics, interruptible
kernel, shared memory, real-world architecture),
the principal approach to show its correctness
remains the same: formally verifying a simula-
tion theorem between an abstract specification
and the concrete implementation of the system.

For a simulation proof we need to look at
the system at different layers of abstraction. In
our case there are three of them. The first
and most abstract one is cvm – the specifica-
tion model. It consists of an abstract kernel
that specifies the user-visible parts of the im-
plementation and hides hardware functionality.
The other part consists of the additional (possi-
bly untrusted) processes running on the system.
We interpret these processes as separate virtual
machines that communicate with each other
only via defined channels (e.g. shared memory,
IPC). The concrete kernel layer represents the
C and assembly implementation which precisely
describes the functionality of most parts of the
kernel, given one has assigned an unambiguous
semantics to C by fixing a compiler and an archi-
tecture. Finally, the architecture layer models
the physical hardware on which assembly code,
compiled C code, and the additional processes
are executed. Formally we can model these lay-
ers as follows

• cvm – the abstract model consisting of:

– cvm.vm(i) – the virtual machine of
the i -th process, consisting of the a
CPU context vm(i).cpu and a virtual
memory portion vm(i).m of some ad-
justable size.

– cvm.c(i) – the C configuration of the
abstract kernel thread i , comprising
components like program code or a lo-
cal memory stack and sharing global
memory with the other threads. Note
that c(i) only becomes active when
vm(i) enters the kernel (e.g., via a sys-
tem call).

• k(i) – the C configuration of the concrete
kernel thread which implements c(i), in-
cluding additional data structures not visi-
ble from outside and assembly code.

14

• h – the model of the underlying hardware
architecture, basically comprising the CPU
context h.cpu and physical memory h.m.

One can then define relations connecting the
different layers. For instance, we define a B-
relation [17] that relates specification and im-
plementation of the additional processes. It
states that the context of the active process
agrees with the CPU registers and all other pro-
cesses are encoded in dedicated data structures
of the kernel. For the virtual machines’ memory
it demands that memory contents are equal to
those of the corresponding regions on the phys-
ical machine. There is also an abstraction re-
lation between abstract and concrete kernel as
well as a compiler consistency relation between
C code and compiler-generated assembly code,
that guarantee that the concrete kernel program
is correctly executed on the underlying hard-
ware.

Formally, one combines these relations into
an overall relation cvm-sim(cvm, k , h) stating
that the cvm model is simulated by the con-
crete kernel k and the hardware state h. In ad-
dition there are implementation invariants impl -
inv(cvm, k , h) for specific layers, which specify
that the contained components and data struc-
tures remain well-defined.

For any n execution steps in the cvm model
a trace of m hardware steps can be found that
simulates the cvm execution, such that all three
layers are consistent to each other.

With transitions on the cvm model and the
hardware defined by step functions δcvm and
δh , the overall simulation theorem between cvm,
concrete kernel and architecture layer can be
stated as follows. Assuming validity and induc-
tion start preconditions on the initial configura-
tions cvm0 and h0 we have:

∀n ∃m ∃ k
(
impl -inv(δncvm(cvm0), k , δmh (h0)) ∧
cvm-sim(δncvm(cvm0), k , δmh (h0)

)
6.3 Deductive Verification of

Information-flow Properties

As said above, tremendous progress has been
achieved in formal verification of functional
properties of software. At the same time seminal
papers have been published showing that it is in
principle possible to formulate information-flow
problems as proof obligations in program logics.
We can leverage these advances together with

our own experience in formal methods for func-
tional properties in order to specify and verify
information flow properties.

In the simplest case, a confidentiality policy
can be formalized as non-interference [12] and
described in terms of an indistinguishability re-
lation on states. That is, two program states are
indistinguishable for L if they agree on values
of L variables. The non-interference property
says that any two runs of a program starting
from two initial states indistinguishable for L,
yield two final states that are also indistinguish-
able for L variables. This notion is employed
and made explicit in the information-flow anal-
ysis.

In a smart-metering system, more complex
properties such as controlled information release
need to be assured. Verifying such properties is
a current hot research topic. We will carry out
related research in the DeduSec project within
the DFG Priority Programme 1496 “Reliably Se-
cure Software Systems – RS3”. In this project,
we plan to define syntax and semantics of a spec-
ification language for information-flow proper-
ties at the level of (Java) programs. The goal
is a language that is expressive enough to al-
low security requirements at the system level to
be easily and flexibly broken down into program
level requirements. Further, we will design and
implement a system for verifying programs an-
notated with security properties and specifica-
tions. More specifically, we will be concerned
with the rule-based generation of first-order ver-
ification conditions from annotated Java pro-
grams. The technological basis will be the KeY
system (co-developed by us) [8].

Our project is based on recent advances in
using program logics (such as Hoare Logic or
Dynamic Logic) for the specification and veri-
fication of information-flow properties at code
level. Using program logics, non-interference
can be directly formalized (e.g., [6, 12, 37]); or
it can be translated into dependence proper-
ties, which in turn can be formalized in pro-
gram logics logic (this has been investigated for
a simple imperative language [2, 1], for a simple
object-oriented language [3], and for sequential
Java [19]). Non-interference can also be trans-
lated into proof obligations that can – in prin-
ciple – be handled by unmodified existing pro-
gram verification tools using a technique called
self-composition [12, 11, 6].

We also plan to adapt the concept of owner-
ship the verification of information-flow prop-

15

erties. This concept has been developed in
the context of deductive verification of func-
tional properties to specify that complex data
structures are not changed in unexpected ways
(e.g. [28]). For information-flow properties,
ownership has to be adapted so that one can
specify that data structures are not read in an
unintended way.

6.4 Further Challenges

Adequacy of Requirements and Certifi-
cation As explained in this report, enforcing
confidentiality and integrity of a smart metering
system involves a varity of measures. While the
deductive methods described above mostly ap-
ply to the implementation at code-level, the ver-
ified properties must be related to higher-level
requirements (e.g., policies). Relating these lev-
els to each other is a scientific challenge that still
demands research.

Also, it is important for certification, that not
only are the verified properties adequate and
validation and analysis techniques are correctly
applied but that this adequacy and correctness
can be checked and validated by third parties.
This requires further research and extensions of
existing verification methods.

Verification of Evolving Software. For
evolving software, analyses of properties have to
be repeated. This fact has not been addressed
in current software verification and certification
approaches, which are design-once-change-never
oriented. Most quality assurance methods are
challenged by adaptability. How to adapt and
“repair” verification proofs and formal models
after an adaptation is an unsolved problem, and
verifying self-adaptive systems is a great chal-
lenge.

7 Data Usage Control with
Runtime Verification and
Dynamic Data Flow Anal-
ysis

The system architecture in Figure 1 depicts
several data flows some of which are poten-
tially privacy-sensitive and deserve protection.
The data types in question include raw sensor
data, profiles, and customer master data, but

also traffic data that is created whenever the
customer interacts with any other of the var-
ious stakeholders. The problem, then, is to
make sure that these different kinds of data are
used w.r.t. laws and regulations, but also w.r.t.
customer-defined requirements.

This problem spans three dimensions. The
first dimension is usage control proper, as found
in digital rights management systems: given a
specific data item, how can the usage – events
including printing, saving, copying, etc. – of
this data be controlled. Typical solutions to
this problem include, among other things, run-
time verification (the scientific roots of which
are temporal logics and automata theory), and
complex event processing (the scientific roots
of which are active data base technology and
event-condition-action rules). The second prob-
lem dimension is data flow analyis across differ-
ent representations. Usage control mechanisms,
as mentioned above, are fundamentally bound
to the notion of events and usually do not con-
sider data at all. As such, the events in question
are usually parameterized with one concrete rep-
resentation of a sensitive data item. However,
usage control policies are usually meant to be
concerned not with one but rather with all rep-
resentations of the data. For instance, if the
customer’s master data should not be copied,
this requirement applies to both some textual
representation and the pixel representation on
a screen. Similarly, daily energy consumption
comes in the form of a number of raw measure-
ments as well as in the form of some graph on
a screen. If the raw data must not be copied,
then this means that a screenshot of the graph-
ical representation must not be taken as well.
The scientific core of this problem is, on the
one hand, data flow and information flow anal-
ysis within one layer of abstraction, e.g., within
.NET CIL or within some RTL language. On
the other hand, data flows in-between these lev-
els of abstraction must be monitored, which is
a rather new and open problem. Finally, the
third problem dimension is distribution: Data
flows must not only be detected (second prob-
lem dimension) and controlled (first problem di-
mension) within one of the IT systems repre-
sented by boxes in Figure 1, but also in-between
different systems and governance domains. In
other words, different representations may exist
on different machines, and all of them must be
controlled.

As an example, data is collected by the smart

16

metering device and sent to the customer’s data
management system on a per-second basis, and
to the frontend of the energy provider on a 15-
minutes basis. The data managament software
computes profiles, deltas with other people’s
profiles and historical data, and displays the re-
sult of these computations in graphical form.
Because the customer has provided his consent,
this fine-grained measurement data is sent to a
vendor of appliances who can recommend some
class A fridge. At the same time, the customer
may not fully understand his monthly bill and
contact a call center which, in turn, has access
to a plethora of different kinds of data. In this
setting, there are different kinds of data in differ-
ent representations on different machines in dif-
ferent governance (and liability domains). The
problem then is, how can this data be controlled.
This is a real problem: Among other things,
only recently, a variety of Android mobile phone
applications—that could be part of the smart
metering system—have been shown to disclose
location information to advertisement servers or
SIM and phone numbers to other stakeholders
without explicitly asking for the user’s consent
[14].

7.1 Runtime Verification

Roughly speaking, runtime verification denotes
a set of techniques that implement decision pro-
cedures for whether a future or past temporal
logic formula is satisfied, open, or violated for a
finite prefix of a possibly infinite trace of (sets
of events). As such, runtime verification is, in
contrast to model checking or deductive theo-
rem proving, a technique that is solely used dy-
namically. Statements on the truth value of a
formula are hence made for one given trace and
one moment in time rather than for all traces of
the system under consideration.

Runtime verification is relevant in the con-
text of smart metering contexts when it comes
to monitoring the usage of data. Roughly, mon-
itors are implemented that listen to the events
that happen in the system. These events in-
clude the access to possibly sensitive data items,
copying these items, but also deletion require-
ments. These events happen at different levels
of abstraction, including the level of machine
language, data bases, runtime systems such as
.NET or Java virtual machines, infrastructure
applications such as X11, within applications
such as those in Microsoft Office, etc. For each

of these layers, events that relate to sensitive
data items must be observed. This is done by
(automatically) transforming the temporal logic
formulas that specify adequate data usage into
respective monitors at the respective layers of
abstraction.

There is a variety of algorithms for performing
runtime verification with a variety of optimal-
ity results concerning, among other things, the
possibility to decide on truth or falsity of a for-
mula at the earliest possible moment in time,
the number of states that need to be stored,
etc. [29].

For controlling data usage, a simple tempo-
ral logic with abstractions for limited cardinality
constraints is the Obligation Specification Lan-
guage, or OSL [23]. As we will explain below,
traces are sequences of sets of events. Then,
given an OSL formula ϕ and a trace (prefix)
t , runtime verification decides at runtime, for
each moment in time n, whether or not ϕ is
true at n (can never be violated in the future),
violated (can never become true in the future),
or whether this decision cannot be taken yet. It
is possible to automatically synthesize monitors
from policies written in OSL. These generated
monitors allow us to detect runtime violations
of properties like those described in Section 3.
With minor extensions, it is in many cases also
possible to prevent a policy violation.

7.1.1 System Model

We introduce the syntax and semantics of OSL.
We formalize both in Z, a formal language based
on typed set theory and first-order logic with
equality. We have chosen Z because of its rich
notation, which we explain as it is encountered.
We have also given a more user-friendly syntax
to OSL [24], which we do not present here for
brevity’s sake. The current version of OSL sup-
ports all usage control requirements identified
above, except environment conditions.

The semantics of our language is defined over
traces with discrete time steps. At each time
step, a set of events can occur. An event corre-
sponds to the execution of an action and we use
these two terms interchangeably.

Each Event has a name and parameters, spec-
ifying additional details about the event. For ex-
ample, a usage event can indicate on which data
item it is performed or by which device. An ex-
ample of an event is (snd , {(obj , o), (rcv , r)}),
where snd is the event name and the parameter

17

with name obj has value o while the value of rcv
is r—intuitively, the object o is sent to receiver
r .

Each event belongs to an event class. Possible
event classes include usage and other, the latter
standing for all non-usage events, e.g., payments
or notifications. This distinction enables us to
prohibit all usages on a data item while still al-
lowing other events such as payments.

7.1.2 Syntax

An OSL policy consists of a set of event decla-
rations and a set of obligational formulae. Each
obligational formula consists of the data con-
sumer’s name and a logical expression.

Φ defines the syntax of the logical expressions
contained in obligational formulae, as shown in
Figure 6. For brevity’s sake, we omit the formal
definition of the set of events, Event, here—we
may simply assume this set to be given. Efst(e)
refers to the start of an event e and Eall(e) to
ongoing events.

We define an additional restriction on the pol-
icy syntax (omitted here): we demand that all
events that are mentioned in a policy are com-
pliant with the event declaration, i.e., they may
only contain parameters that are declared and
corresponding values. Fewer parameters are al-
lowed in a policy, because of the implicit univer-
sal quantification over unspecified parameters.

7.1.3 Informal Semantics

We informally describe the semantics of OSL’s
operators here; a formal definition is provided
elsewhere [23]. They are classified into proposi-
tional operators, temporal operators, cardinal-
ity operators, and permit operators, the latter
of which we do not discuss here.

Propositional Operators The operators
not , and , or , and implies have the same seman-
tics as their propositional counterparts ¬,∧,∨,
and ⇒.

Temporal Operators The until operator
corresponds to the weak until operator from
LTL [33]. We use the weak version of the until
operator because it is better suited for express-
ing usage control requirements (cf. §??). We
generalize the next operator of LTL to after ,
which takes a natural number n as input and
refers to the time after n time steps. With after ,

we can express concepts like during (something
must hold constantly during a given time inter-
val) and within (something must hold at least
once during a given time interval).

Cardinality Operators Cardinality opera-
tors restrict the number of occurrences of a spe-
cific event or the accumulated duration of an
event. The repuntil operator limits the maxi-
mum number of times an event may occur until
another event occurs. For example,

repuntil(15,Efst(snd , {(obj , sd), (rcv , ep)}),
Efst((chck ,∅)))

states that sensor data sd is sent at most
15 times to the energy provider ep before a
self check event chck must take place. With
repuntil , we can also define repmax , which is
syntactic sugar for defining the maximum num-
ber of times an event may occur in the unlimited
future.

A policy is satisfied by a trace iff all obliga-
tions specified in the policy are satisfied by the
trace. The definition of obligation satisfaction
builds on the above semantics but requires a
system model that includes activations of obli-
gations. Such a complete system model is pre-
sented in [24].

7.2 Dynamic data flow analysis

In the following, we assume a reserved param-
eter, obj, indicating which object the event is
related to and a reserved value for that object
nil, used to indicate no object. In the case of
events that need more than one object param-
eter (like copy, which requires a source and a
destination), we assume the presence of a sin-
gle obj parameter only; other parameters will
be defined using different names. For instance,
the syntax for a send command will be similar
to send({(obj , obj1), (dst , obj2)}).

7.2.1 Data Items and Data Containers

To the end of data flow analysis, we need to in-
troduce the distinction between data items and
containers for data items. Roughly, the idea
is that in order to control all copies of a data
item, we keep track of all its representations,
or containers. Containers are the different rep-
resentations of data, including files, database
records, network packets, memory regions, etc.
This leads to the distinction between two classes

18

Φ ::= true | false | Efst〈〈Event〉〉 | Eall〈〈Event〉〉 | not〈〈Φ〉〉 | and〈〈Φ× Φ〉〉 | or〈〈Φ× Φ〉〉 |
implies〈〈Φ× Φ〉〉 | until〈〈Φ× Φ〉〉 | always〈〈Φ〉〉 | after〈〈N× Φ〉〉 | within〈〈N× Φ〉〉 |
during〈〈N× Φ〉〉 | repmax 〈〈N× Φ〉〉 | repuntil〈〈N× Φ× Φ〉〉

Figure 6: Syntax of OSL

of events, according to the type of the obj pa-
rameter: events of class dataUsage define ac-
tions on data objects, while events of class con-
tainerUsage refer to a single container.

Within the system, only events of class con-
tainerUsage can happen, because each moni-
tored event in a trace is related to a specific
representation of the data. DataUsage events
are used only in the definition of policies, where
it is possible to define a rule abstracting from
the specific representation of the information.
Accordingly, we define two subsets of events,
CEvent and DEvent, respectively for events of
class dataUsage and containerUsage.

We demand that all events of class usage have
an object parameter. This parameter indicates
the object the event is referred to. So, as we
discussed before, ParamName obj for events of
class dataUsage has to be mapped to data, as
well as for events of class containerUsage it has
to be mapped to a container.

Of course, the system has to satisfy some
additional sanity constraints that we omit for
brevity’s sake.

7.2.2 Data State

In order to integrate information flow detection
capabilities into the semantic model of OSL, we
need to add also functions for modeling the re-
lationship between containers and data.

The same data can be stored in multiple con-
tainers. Multiple data items can be stored in a
single container. We model this n-to-n relation
with two functions, one from Data to a set of
Container , and another one from a Container
to a set of Data. Although one can be derived
from the other, we use two functions for simplic-
ity’s sake.

We also have to define an InitialCont func-
tion, a bijective mapping between data and con-
tainers that represents the initial container that
stores a data item as soon as it starts to be mon-
itored by the system.

Moreover, we introduce the Alias function to
model the relation between connected contain-

ers. By connected, we mean that a content up-
date of the first implies a content update of the
other ones. This happens when, for instance,
multiple containers are mapped to (totally or
partially) overlapping memory areas. In this
case, writing data in one of them implies writ-
ing in the other ones. Last but not least, we
define the Naming function from a set of names
(a subset of the set of parameter values, Param-
Values) to Container. As discussed before, this
is useful to model renaming activities.

Name : PParamValue
Alias : Container 7→ PContainer
Naming : Name 7→ Container

Now we are ready to define a state (IFState)
of the information flow model as the triple
Storage ×Alias ×Naming . The transition re-
lation among states is of course dependent on
the system that is modeled. We define IFR
as IFState × Event 7→ IFState. According to
the semantic model of OSL, at each time step,
a trace consists of a set of events rather than
a single one. For this reason we need to de-
fine a state transition relation IFRSet of type
IFState × PEvent 7→ IFState. If all the events
in the set are independent, then this is equiva-
lent to the union of IFR applied to the set. But
this being not always the case, we must consider
transitions caused by a set of events.

We need to consider a particular state Σi
where the storage function contains only an
empty mapping for the reserved object nil and
the alias function is empty. W.l.o.g we can as-
sume this to be the initial state of the system.

IFState : Storage ×Alias ×Naming
IFR : IFState × Event 7→ IFState
IFRSet : IFState × PEvent 7→ IFState
Σi == ((nil ,∅),∅,∅)

7.2.3 Syntax and State based formulae

In order to monitor data flows, we keep track of
the data state: which containers contain which
data. Our extension of OSL will now be evalu-

19

ated not only over traces of events, but also over
states of the data flow model.

To define state-based formulae we add an op-
erator state〈〈Φs〉〉 to Φ on the grounds of a new
set of state-based operators Φs . In order to ex-
press constraints on data instead of contain-
ers, we introduce three new operators, denyC ,
denyD and limit .

Φs ::= denyC 〈〈Data × PContainer〉〉 |
limit〈〈Data × PContainer〉〉 |
denyD〈〈Data ×Data〉〉

7.2.4 Informal Semantics

We can concentrate on the new construct state()
and on the set Φs . The state() operator is
needed to syntactically merge the new state-
formulae with the original system while keeping
the two models separate: pure state formulae
appear as argument of a state() function.

Intuitively, denyC (d ,C) forbids the presence
of data d in one of the containers in set C. This
operator is useful to express constraints, like for
instance “profile s must not be distributed over
the network”, which becomes denyC (s, {cnet}).
The rule denyD(d1, d2) claims that data d1 and
data d2 cannot be combined, which means they
can never be in the same container.
limit(d ,C) is the dual of denyC : it expresses

the constraint that data d can only be in con-
tainers of set C. If AC is the set of all possi-
ble containers of the system, then denyC (d ,C)
is equivalent to limit(d ,AC\C). This can be
used to express concepts like “data d must be
deleted”, limit(d ,∅), which is useful for forensic
analyses.

7.2.5 Implementation

We have implemented generic technology to per-
form this data flow tracking. In the SPP 1496,
Reliably Secure Software System, we are cur-
rently working on a general schema for connect-
ing different layers of abstraction (which, to it-
erate, has not been done in the case of the smart
metering system yet). It is noteworthy here that
the static information flow detection technolo-
gies from Sections 5 and 6 are likely to, at one
single layer, substitute dynamic detection tech-
niques for the same layer. This is particularly
appealing if the static techniques prove to be
very precise, which appears to be the case for

Java bytecode, for instance, when not too much
dynamic binding takes place.

7.2.6 Application to Smart Metering

With the help of OSL, augmented by constructs
to speak of a system’s data state, it is possible
to specify policies that allow or disallow the flow
of information within a distributed system, even
when the boundaries of internal components are
crossed. This is formally captured by contain-
ers that may or may not contain specific data
items. Because OSL can be expressed in LTL, it
is almost trivial to automatically derive generic
monitors from usage control policies. In order
to be applied to the smart metering system, we
need to connect these generic monitors to the
concrete different subsystems, thus yielding a
controlled system where it is possible to detect
or prevent the flow of data from, say, the data
management software, to, say, a call center.

More concretely, we would need to deploy
several of these monitors at different locations
in the system. One monitor tracks the data
flow within the smart meter itself (that is, the
trusted device). In reality, this will not be one
monitor but rather a set of monitors that mon-
itor data flows at and in-between the different
levels of abstraction within the trusted device,
including the operating system and application
layers. Another monitor is required for the cock-
pit. This is a full-fledged PC, so the monitor
again consists of a set of monitors that track
data flow at and in-between the different layers
of abstraction of this PC, including the operat-
ing system, window manager, data bases, and
applications like web browsers or email clients.
At this stage, the granularity of data to be mon-
itored also changes; we are more likely to speak
of user profiles than of single measurements at
this stage. In case the cockpit communicates
with third party software, either Web 2.0 media,
or billing or CRM software, then these systems
need to be monitored in an identical way; and
this process continues when considering the fact
that data may be forwarded to call centers.

For all of these different systems, we need to
either write or generate OSL policies to con-
figure the generic runtime monitors that im-
plement usage control and data flow detection.
As mentioned above, some of the monitors (or
submonitors at one layer of abstraction) are
likely to leverage static results from the work
on language-based security and static verifica-

20

tion. Once such a system is in place, we can
provide guarantees in terms of system-wide data
flows in the overall distributed smart metering
system, thus addressing the important privacy
challenges described in Section 3.

8 Conclusions
The recent Stuxnet attacks on SCADA systems
controlling industrial plants demonstrate that
the software security risk is high for today’s crit-
ical infrastructures. It will be even higher for
tomorrow’s virtualized infrastructures such as
E-Energy, E-Traffic, and Cloud Computing. In
this report, we have described a mix of tech-
niques which will reduce security and privacy
risks in such infrastructures. Concentrating on
smart metering, we have shown:

• Homomorphic encryption schemes, as well
as their combination with authentification
methods, allows E-Energy providers to col-
lect usage profiles in aggregated form, while
customer privacy is still protected.

• Language-based security methods analyse
the true semantics of smart metering soft-
ware, instead of just providing guarantees
about its origin.

• Proof carrying code allows to securely
download software into the smart meter
while checking its functionality. The neces-
sary proof checker (as well as the encryption
software) resides in a trusted device inside
the smart meter.

• Information flow control protects critical
computations, such as control of household
appliances, and discovers privacy leaks.
IFC is also used to protect integrity of the
trusted device.

• Deductive verification can guarantee func-
tional correctness for e.g. the proof checker
and the encryption software, as well as for
the smart meter kernel. Verification can as
well support IFC.

• Runtime verification can dynamically de-
tect information flow in smart meters
against predefined privacy policies ex-
pressed as dynamic (temporal) properties
in case static IFC is not possible or too un-
precise, or system boundaries need to be
crossed.

While we have concentrated on the smart me-
tering example, let us conclude with an outlook
to how our technology will help to prevent at-
tacks on SCADA systems (SCADA being abun-
dant in critical infrastructures); such as the re-
cent Stuxnet attacks:

• Stuxnet used stolen certification keys. This
highlights the approach of DSCI and RS3,
namely that we need to analyse the true
semantics of a program and not just cer-
tify its origin. It is not clear whether
today’s language-based security techniques
can analyse the full Stuxnet code, but pro-
gram analysis and IFC are becoming more
powerful every year.

• Current SCADA systems lack a trusted de-
vice, which would greatly reduce the risk of
infiltration.

• Stuxnet relies on a whole set of zero-day ex-
ploits. The latter are often based on soft-
ware bugs or attacks such as buffer over-
flow attacks. Modern program analysis has
developed powerful tools for bug-finding or
IFC, which help to discover such anomalies.

• Verification, while expensive, can today
formally verify realistic systems such as
SCADA security cores or even operating
systems.

• Proof carrying code techniques prevent
downloading malware, and runtime verifi-
cation can dynamically discover illegal in-
formation flow.

We do not claim that we can prevent Stuxnet
with our current box of DSCI security ap-
proaches. But techniques as proposed in the
current article will certainly make attacks much
more difficult, not just on smart meters, but on
general SCADA systems, and on critical infra-
structures as a whole.

We plan to actually develop and apply the
techniques in the scope of the DSCI cluster ini-
tiative. If funding is agreed, work will start in
2012. We plan to engineer available methods
for usage in E-Energy, E-Traffic, and Cloud sys-
tems; as well as to develop new approaches to
security. Several demonstrators will be used to
evaluate the DSCI approach, such as the “KIT
Smart Home” and the “KIT Federated Cloud”.
The Smart Meter example will be the first re-
alistic case study for our new approaches to de-
pendable software in critical infrastructures.

21

References
[1] Torben Amtoft, Sruthi Bandhakavi, and

Anindya Banerjee. A logic for informa-
tion flow in object-oriented programs. In
J. Gregory Morrisett and Simon L. Pey-
ton Jones, editors, Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages,
POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006, pages 91–102.
ACM, 2006.

[2] Torben Amtoft and Anindya Banerjee. In-
formation flow analysis in logical form. In
Roberto Giacobazzi, editor, Static Anal-
ysis, 11th International Symposium, SAS
2004, Verona, Italy, August 26-28, 2004,
Proceedings, volume 3148 of LNCS, pages
100–115. Springer, 2004.

[3] Torben Amtoft and Anindya Banerjee. A
logic for information flow analysis with an
application to forward slicing of simple im-
perative programs. Sci. Comput. Program.,
64(1):3–28, 2007.

[4] Mike Barnett, Rustan Leino, and Wolfram
Schulte. The Spec# programming sys-
tem: An overview. In Construction and
Analysis of Safe, Secure, and Interopera-
ble Smart Devices (CASSIS), International
Workshop, 2004, Marseille, France, Re-
vised Selected Papers, LNCS 3362, pages
49–69. Springer, January 2005.

[5] Gilles Barthe, Lennart Beringer, Pierre
Crégut, Benjamin Grégoire, Martin Hof-
mann, Peter Müller, Erik Poll, Germán
Puebla, Ian Stark, and Eric Vétillard.
Mobius: Mobility, ubiquity, security. ob-
jectives and progress report. In TGC
2006: Proceedings of the second symposium
on Trustworthy Global Computing, LNCS.
Springer-Verlag, 2006.

[6] Gilles Barthe, Pedro R. D’Argenio, and
Tamara Rezk. Secure information flow by
self-composition. In 17th IEEE Computer
Security Foundations Workshop, CSFW-
17, Pacific Grove, CA, USA, pages 100–
114. IEEE Computer Society, 2004.

[7] B. Beckert, T. Dreier, A. Grunwald,
T. Leibfried, J. Müller-Quade, R. Reuss-
ner, P. Sanders, H. Schmeck, G. Snelting,

S. Tai, W. Tichy, P. Vortisch, D. Wag-
ner, and M. Zitterbart. Dependable soft-
ware for critical infrastructures: Comput-
ing, energy, mobility. Project proposal,
Karlsruher Institut für Technologie, 2010.

[8] Bernhard Beckert, Reiner Hähnle, and Pe-
ter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Ap-
proach. LNCS 4334. Springer-Verlag, 2007.

[9] Bernhard Beckert and Michał Moskal. De-
ductive verification of system software in
the VerisoftXT project. KI, 2009. Online
first version available at SpringerLink.

[10] Ernie Cohen, Markus Dahlweid, Mark
Hillebrand, Dirk Leinenbach, Michał
Moskal, Thomas Santen, Wolfram Schulte,
and Stephan Tobies. VCC: A practical
system for verifying concurrent C. In Proc.
TPHOLs 2009, LNCS 5674, pages 23–42.
Springer, 2009. Invited paper.

[11] Ádám Darvas, Reiner Hähnle, and Dave
Sands. A theorem proving approach to
analysis of secure information flow. In
Roberto Gorrieri, editor, Workshop on Is-
sues in the Theory of Security, WITS. IFIP
WG 1.7, ACM SIGPLAN and GI FoM-
SESS, 2003.

[12] Ádám Darvas, Reiner Hähnle, and Dave
Sands. A theorem proving approach to
analysis of secure information flow. In Di-
eter Hutter and Markus Ullmann, editors,
Proc. 2nd International Conference on Se-
curity in Pervasive Computing, volume
3450 of LNCS, pages 193–209. Springer,
2005.

[13] Rob DeLine and K. Rustan M. Leino. Boo-
giePL: A typed procedural language for
checking object-oriented programs. Tech-
nical Report MSR-TR-2005-70, Microsoft
Research, 2005.

[14] William Enck, Peter Gilbert, Byung-Gon
Chun, Landon Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol Sheth. Taintdroid:
An information-flow tracking system for re-
altime privacy monitoring on smartphones.
In Proc. 9th USENIX Symposium on Oper-
ating Systems Design and Implementation,
2010. To appear.

22

[15] Jean-Christophe Filliâtre and Claude
Marché. Multi-prover verification of C
programs. In Formal Methods and Software
Engineering, LNCS 3308, pages 15–29.
Springer, 2004.

[16] Flavio Garcia and Bart Jacobs. Privacy-
friendly Energy-metering via Homomor-
phic Encryption. In 6th Workshop on Se-
curity and Trust Management (STM 2010),
2010.

[17] Mauro Gargano, Mark A. Hillebrand, Dirk
Leinenbach, and Wolfgang J. Paul. On
the correctness of operating system ker-
nels. In Joe Hurd and Thomas F. Mel-
ham, editors, Theorem Proving in Higher
Order Logics, 18th International Confer-
ence, TPHOLs 2005, Oxford, UK, August
22-25, 2005, Proceedings, volume 3603 of
LNCS, pages 1–16. Springer, 2005.

[18] Craig Gentry. Fully homomorphic encryp-
tion using ideal lattices. In Proceedings
of the 41st Annual ACM Symposium on
Theory of Computing (STOC 2009), pages
169–178, 2009.

[19] Christian Haack, Erik Poll, and Aleksy
Schubert. Explicit information flow prop-
erties in JML. In 3rd Benelux Workshop
on Information and System Security (WIS-
Sec), November 2008.

[20] Christian Hammer. Information Flow Con-
trol for Java - A Comprehensive Approach
based on Path Conditions in Dependence
Graphs. PhD thesis, Universität Karlsruhe
(TH), Fak. f. Informatik, July 2009. ISBN
978-3-86644-398-3.

[21] Christian Hammer. Experiences with pdg-
based ifc. In Proc. International Sympo-
sium on Engineering Secure Software and
Systems (ESSoS’10), February 2010.

[22] Christian Hammer and Gregor Snelt-
ing. Flow-sensitive, context-sensitive, and
object-sensitive information flow control
based on program dependence graphs. Int.
J. Inf. Sec., 8(6):399–422, 2009.

[23] Manuel Hilty, Alexander Pretschner, David
Basin, Christian Schaefer, and Thomas
Walter. A policy language for usage con-
trol. In 12th European Symposium on Re-
search in Computer Security, pages 531–
546, 2007.

[24] Manuel Hilty, Alexander Pretschner,
Thomas Walter, and Christian Schaefer. A
system model and an obligation lanugage
for distributed usage control. Technical
Report I-ST-20, DoCoMo Euro-Labs,
2006.

[25] C. A. R. Hoare. The verifying compiler:
A grand challenge for computing research.
Journal of the ACM, 50(1):63–69, 2003.

[26] M. Karg. Datenschutzrechtliche Rah-
menbedingungen beim Einsatz intelligenter
Zähler. Datenschutz und Datensicherheit,
34(6):365–372, 2010.

[27] Gerwin Klein, June Andronick, Kevin El-
phinstone, Gernot Heiser, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Si-
mon Winwood. sel4: formal verification
of an operating-system kernel. Commun.
ACM, 53(6):107–115, 2010.

[28] K. Rustan M. Leino and Peter Müller. Ob-
ject invariants in dynamic contexts. In
Proc. ECOOP 2008, LNCS 3086. Springer,
2004.

[29] Martin Leucker and Christian Schallhart.
A brief account of runtime verification.
Journal of Logic and Algebraic Program-
ming, 78(5):293–303, may/june 2009.

[30] Alexander Lux and Heiko Mantel. Declas-
sification with explicit reference points. In
ESORICS, pages 69–85, 2009.

[31] K. Müller. Gewinnung von Verhaltenspro-
filen am intelligenten Stromzähler. Daten-
schutz und Datensicherheit, 34(6):359–364,
2010.

[32] Pascal Paillier. Public-key cryptosys-
tems based on composite degree residuosity
classes. In Advances in Cryptology (EURO-
CRYPT 1999), pages 223–238, 1999.

[33] Amir Pnueli. The temporal semantics of
concurrent programs. In Proc. Interna-
tional Sympoisum on Semantics of Concur-
rent Computation, pages 1–20, 1979.

[34] Wolfram Schulte, Xia Songtao, Jan Smans,
and Frank Piessens. A glimpse of a veri-
fying C compiler. In Proceedings, C/C++
Verification Workshop, 2007.

23

[35] Omer Tripp, Marco Pistoia, Stephen J.
Fink, Manu Sridharan, and Omri Weisman.
TAJ: effective taint analysis of web appli-
cations. In PLDI ’09: Proceedings of the
2009 ACM SIGPLAN conference on Pro-
gramming language design and implemen-
tation, pages 87–97. ACM, 2009.

[36] Alexandra Tsyban. Formal Verification of a
Framework for Microkernel Programmers.
PhD thesis, Dept. Computer Science, Saar-
land Univ., 2009. http://www-wjp.cs.
uni-sb.de/publikationen/Tsy09.pdf.

[37] Martijn Warnier. Language Based Secu-
rity for Java and JML. PhD thesis, Rad-
boud University, Nijmegen, The Nether-
lands, 2006.

[38] Daniel Wasserrab. Backing up slicing:
Verifying the interprocedural two-phase
horwitz-reps-binkley slicer. In Gerwin
Klein, Tobias Nipkow, and Lawrence
Paulson, editors, The Archive of Formal
Proofs. http://afp.sf.net/entries/
HRB-Slicing.shtml, November 2009.
Formal proof development.

24

	2010,20_Titelbl.pdf
	Infrastructures
	The Smart Meter Example

	Report 2010-20 Software Security-1.pdf

