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Abstract 

Several efforts are undertaken in seismology to turn ambient seismic noise into signal. A 
key motivation for this approach is to overcome obstacles hampering established methods 
of active source and passive earthquake seismology. Techniques based on seismic noise 
are independent from earthquake activity or active seismic sources. This is a significant 
advantage in areas where the natural seismicity is low and/or where active seismic 
sources (explosions, large vibrators) can‟t be used. Passive seismic noise measurements 
can be conducted also in sensitive areas such as city centres and nature reserves due to 
their low environmental impact. Seismic noise is a low-cost and easy-to-measure signal 
which is available everywhere and at every time. 

At the same time the social and economical importance of seismic hazard assessment 
and mitigation in (mega)cities is rapidly increasing due to the exploding urbanisation, 
especially close to major fault systems. Site effect analyses, wave propagation scenarios 
and early warning concepts are high-priority issues for such urban regions. Therefore, the 
number of passive seismic measurements in urban environments is permanently 
increasing to provide the required information about the underground by utilising seismic 
noise. Urban seismic noise is evolving to one of the most important signals of modern 
seismology. 

This thesis aims at a better determination and understanding of the spatial and temporal 
variations of the amplitudes as well as the statistical properties of the (urban) seismic 
noise wave field. A good knowledge of these spatial and temporal variations of the 
seismic noise is crucial to identify noise sources on the one hand and to be able to 
consider the actual noise conditions by the utilisation of seismic noise on the other hand.  

A new statistical time series classification is presented which is capable to distinguish 
between corrupt and non-corrupt time series as well as to classify non-corrupt time series 
in six meaningful noise classes. The time series classification is used to conduct a 
comprehensive analysis of the spatial and temporal variations of the seismic noise 
between 8 mHz and 45 Hz in the metropolitan area of Bucharest, Romania. This analysis 
improves the understanding of the statistical properties of the urban seismic noise due to 
temporally and spatially varying noise sources. The combination of the time series 
classification with an unsupervised neural network technique, the Self-Organizing Map 
method, is demonstrated to be a promising approach to enhance the analysis of complex 
urban seismic noise data sets. 

The time series classification is furthermore used to realise a data selection approach for 
the estimation of Green‟s functions from seismic noise cross-correlation functions. The 
implementation of this data selection approach involves a comprehensive evaluation of 
the common seismic noise cross-correlation processing. Based on this evaluation a more 
flexible processing scheme is realised and critical parameters of the processing such as 
the time window length are identified. Furthermore, a wave form preserving time domain 
normalisation and a second data selection approach are presented and evaluated in this 
context to improve the calculation of seismic noise cross-correlation functions. 

Concluding, an effective time series classification for seismic noise time series is 
proposed in this thesis. It is demonstrated that the time series classification can be used 
to obtain new insights into the temporal and spatial variations of (urban) seismic noise. 
The time series classification provides furthermore valuable data selection capabilities for 
all methods utilising seismic noise. 
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1 Introduction 

Several efforts are undertaken in seismology to turn ambient seismic noise into signal. 
Since the 1950s several techniques based on array measurements as well as single 
station measurements of seismic noise are developed and applied to derive information 
about the subsurface. In the last decade the estimation of Green‟s functions of the 
underground based on seismic noise cross-correlation functions, called seismic 
interferometry, evolved to an important and widely used technique in seismology (Weaver, 
2005; Curtis et al., 2006). Seismic interferometry enables seismology nowadays to 
provide high-resolution tomography studies from local to continental scale from seismic 
noise. 

A key motivation to turn seismic noise into signal is to overcome obstacles hampering 
established methods of active source and passive earthquake seismology. Techniques 
based on seismic noise are independent from earthquake activity or active seismic 
sources. This is a significant advantage in areas where the natural seismicity is low and/or 
where active seismic sources (explosions, large vibrators) can‟t be used. Passive seismic 
noise measurements can be conducted also in sensitive areas such as city centres and 
nature reserves due to their low environmental impact. The comparably low financial effort 
necessary for the passive seismic noise measurements in comparison to active source 
seismology is a further advantage. Concluding, seismic noise is a low-cost and easy-to-
measure signal which is available everywhere and at every time. 

At the same time the social and economical importance of seismic hazard assessment 
and mitigation in (mega)cities is rapidly increasing due to the exploding urbanisation, 
especially close to major fault systems (United Nations, 2006; Montgomery, 2008). Site 
effect analyses, wave propagation scenarios and early warning concepts are high-priority 
issues for such urban regions which require reliable information about the underground. 
Therefore, the number of passive seismic measurements in urban environments is 
permanently increasing to provide the required information about the underground by 
utilising seismic noise (e.g. Milana et al., 1996; Scherbaum et al., 2003; Ritter et al., 2005; 
Fäh et al., 2008). Concluding, urban seismic noise is evolving to one of the most important 
signals of modern seismology. 

Seismic noise in cities is driven by numerous processes such as our cultural life, individual 
and public commuter traffic and the production as well as transportation of all kinds of 
goods. Time-dependent and reoccurring seismic signals are generated and emitted by the 
man-made physical processes. These emissions, or man-made ground motions, are 
superimposed with natural ground motions (wind-, ocean wave- or earthquake-induced 
tremor) to make up the temporal and spatial highly variable urban seismic noise (Groos & 
Ritter, 2009). The high variability of the seismic noise wave field is a fact which must be 
addressed by all methods utilising seismic noise. Bonnefoy-Claudet et al. (2006a) criticise 
that the authors of most studies, utilising seismic noise, assume that the underlying 
assumptions about the seismic noise wave field are fulfilled without further discussion. 
They state also, that the majority (~95%) of publications about seismic noise deals with 
the utilisation of seismic noise and not with the nature of the seismic noise wave field. 
Concluding, seismological research must significantly improve the understanding of 
seismic noise to successfully and reliably utilise seismic noise in general and especially in 
urban environments (Bonnefoy-Claudet et al., 2006a; Campillo, 2006).  

This thesis aims at a better determination and understanding of the spatial and temporal 
variations of the amplitudes as well as the statistical properties of the (urban) seismic 
noise wave field. A good knowledge of these spatial and temporal variations of the 
seismic noise is crucial to identify noise sources on the one hand and to be able to 
consider the actual noise conditions by the utilisation of seismic noise on the other hand. 
This thesis suggests a statistical time series classification for the determination of these 
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seismic noise conditions. The proposed time series classification is used for a 
comprehensive analysis of the statistical properties of the seismic noise between 8 mHz 
and 45 Hz in the metropolitan area of Bucharest, Romania, to improve the understanding 
of urban seismic noise. Furthermore, the time series classification is used to realise and 
evaluate a data selection approach based on the noise conditions for seismic 
interferometry. 

Chapter 2 provides a review of the fundamentals of and the current knowledge about 
seismic noise. The ambiguous definition of the term „seismic noise‟ is discussed prior to 
the state of knowledge about the sources and the composition of the seismic noise wave 
field. The most important methods utilising seismic noise including single station and array 
techniques are discussed in the third section of chapter 2 with a focus on seismic 
interferometry. 

The two different data sets of ground motion recordings which are used for this thesis are 
introduced in chapter 3. The data set of the URban Seismology (URS) project 
(Ritter et al., 2005) was measured with 31 stations of the mobile KArlsruhe Broad Band 
Array (KABBA) in the metropolitan area of Bucharest between October 2003 and August 
2004. This data set is used for a comprehensive analysis of the urban seismic noise in 
chapter 5. The second data set consists of one year (2004) time series of several Global 
Seismographic Network (GSN) stations in the USA and is used to evaluate and improve 
the data processing for seismic interferometry in chapter 6. While working with the GSN 
data set several inconsistencies in the instrument response metadata distributed together 
with the waveform data became apparent to the author. It turned out, that the metadata of 
dozens of seismic stations world-wide were (and partly still are) affected by these 
inconsistencies. The observed inconsistencies in the SEED metadata and their practical 
relevance are discussed in the third section of chapter 3. 

Chapter 4 introduces the time series classification which is used to determine the spatial 
and temporal variations of the amplitudes as well as the statistical properties of the 
(urban) seismic noise. The classification combines amplitude information with few distinct 
noise classes (Gaussian distribution, presence of large transient or periodic signals) 
characterising the seismic noise. The time series classification is also capable to identify 
common technical artefacts occurring during (mobile) passive seismic measurements 
(e.g. data gaps, direct mechanical impacts to the sensor). The classification allows next to 
the analysis of the seismic noise conditions also an automated data selection from large 
data sets for a consecutive seismic noise processing by identifying corrupt and/or 
inappropriate (e.g. dominating periodic or transient signals) time windows of seismic 
noise. The classification is based on time series percentiles and their ratios. The time 
series properties used for the classification are introduced in the first section of chapter 4. 
In the second section the classification scheme based on the time series properties is 
discussed prior to the evaluation of the classification with a synthetic data set in the third 
section of chapter 4. The last section summarises chapter 4. 

Chapter 5 provides the detailed discussion of the broad-band Urban Seismic Noise (USN) 
in the metropolitan area of Bucharest. The data set of the URS project is a rare 
opportunity to analyse the urban seismic noise continuously in a broad frequency range 
(0.008-45 Hz) and over a long time (9 months). The temporal variability and the typical 
sources of the USN in Bucharest are discussed in the first section with the help of a time-
frequency analysis. Purpose of the time-frequency analysis is the identification of suitable 
frequency bands and time windows for the consecutive analysis with the time series 
classification. The frequency bands and time windows as well as the selection of 11 
working days for the further analysis are discussed in the second section of chapter 5. 
The temporal and spatial variability of the vertical-component urban seismic noise in 
Bucharest is discussed in detail with the help of the selected 11 working days in the third 
section. The purpose of the selection is to analyse predominantly the USN caused by 
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sources inside the metropolitan area with a focus on man-made sources. Therefore 
working days are selected which are not affected by strong natural sources outside the 
city area such as earthquakes and ocean-generated microseism. The analysis of the 
complete URS data set with the time series classification including the horizontal 
component USN is discussed afterwards in the fourth section. The analysis of such a 
large and complex noise classification data set by an analyst involves a considerable 
effort. The next following step is therefore the analysis of an obtained seismic noise 
classification data set with machine learning and pattern recognition techniques to support 
the human analyst. A feasibility study with the Self-Organizing Map (SOM) technique, 
which is a neural network technique, is presented for the URS data set in the fifth section 
of this chapter. The chapter is concluded with a short summary in the last section. 

Several methods of automated data selection and normalisation to improve the calculation 
of seismic noise cross-correlation functions (CCFs) for seismic interferometry are 
proposed and evaluated in chapter 6. A detailed overview about the applied data 
processing and the specific aspects of the data processing addressed by this thesis is 
given in the first section of chapter 6. The significant influence of the time window length 
on the important frequency domain normalisation is discussed in the second section of 
chapter 6 prior to the introduction of the two fully automated data selection approaches in 
the third section. The first approach is based on the time series classification introduced in 
chapter 4. The second approach uses properties of cross-correlation functions for data 
selection. A new waveform preserving normalisation to improve the cross-correlation 
functions is proposed in the fourth section. The considered normalisation schemes are 
evaluated without data selection in the fifth section and with data selection in the sixth 
section. The chapter is completed by a short summary of the most important conclusions 
in the last section. 

The seventh and last chapter summarises the main results and conclusions of this thesis. 
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2 Seismic noise 

The purpose of this chapter is to give a review of the fundamentals and the current 
knowledge about seismic noise. The first problem one encounters with seismic noise is 
the term „seismic noise‟ itself. Therefore, the definition of seismic noise is discussed in the 
first section of this chapter. The second section gives a summary of the state of 
knowledge about the sources and the composition of the seismic noise wave field. The 
chapter is completed by a third section with a brief review of the most important methods 
utilising seismic noise. A main focus is laid on a technique called „seismic interferometry‟ 
which is directly addressed by this thesis later on. 

2.1  ‘Seismic noise’, an ambiguous term 

The term „noise‟ is widely and naturally used in science. This is especially the case for 
scientists working with measured data such as seismologists. Consequently, „seismic 
noise‟ is a common term in seismology. Even though the term „noise‟ is commonly used, 
its meaning is quite ambiguous. This led Scales & Snieder (1998) to ask the interesting 
questing: „What is noise?’ Commonly, noise is regarded to be somehow „random‟ and is 
supposed to bias the „deterministic signal‟. This is also a common point of view in 
seismology looking at earthquakes or seismic waves excited by active sources as 
deterministic signals. Nevertheless, as stated by Scales & Snieder (1998), it is hardly 
possible to give a precise (mathematical) definition of randomness which satisfies 
everyone. Furthermore, many signals appear random to us only because we do not know 
all underlying (deterministic) processes. It is obvious that there are conceptual problems 
with the term „noise‟, especially if we remind the old dictum ‘One man’s noise is another 
man’s signal’. Scales & Snieder (1998) consider the transcription ‘noise is that part of the 
data that we choose not to explain’ as the best way to describe what most scientists really 
mean, if they talk about „noise‟. Therefore, the task of this section is to clarify what is and 
was meant by the term „seismic noise‟ and how this term is used in this thesis. 

The beginning of seismology was the interest to understand earthquakes. Quite early, 
seismologists were able to use the observed earthquakes to learn about the inner 
structure of the Earth (e.g. Rebeur-Paschwitz, 1889). The seismic waves excited by an 
earthquake are the traditional signals of seismology. The exploration of the inner structure 
of the Earth using earthquake waves is still a key task and competence of seismology. It is 
therefore not surprising, that the permanent movements of the Earth‟s surface which could 
not be related to earthquakes were identified as „seismic noise‟. The first comprehensive 
treatise of this subject was published by Beno Gutenberg (1911) in his dissertation at the 
University of Göttingen. It is interesting to mention, that his dissertation written in German 
is entitled with ‘Die seismische Bodenunruhe’ which is in fact not well translated by 
‘seismic noise’. A better translation would be something like ‘The seismic restlessness of 
the ground’. Like the original German title this translation carries no implications about the 
character or origin of the permanent movements causing the „restlessness‟ of the ground. 
In contrast, the term „seismic noise‟ implies randomness and unpredictability. In fact, the 
main general sources of seismic waves next to earthquakes such as industry, traffic, 
ocean-generated microseism and meteorological causes are known to seismologists for a 
long time and far from the beginning (Bertelli, 1872; Gutenberg, 1911; Gutenberg, 1924). 
The unpredictability of the permanent movements of the Earth is caused mainly by the 
fact that we do not know all individual sources and that our knowledge of the Earth‟s 
structure is also not sufficient. The term „seismic noise‟ evolved basically as an 
abbreviation of the transcription „the permanent movement of the Earth‟s surface with 
exception of earthquakes‟. 

Nowadays, the usage of the term „seismic noise‟ is getting more and more complicated. 
Several sources of seismic waves such as the ocean-generated microseism are well 
understood and often used as signals themselves (e.g. Grevemeyer, 2000; 
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Zhang et al., 2010). Furthermore, several techniques to utilise „seismic noise‟ to learn 
about the structure of the underground are developed since the 1950s (see section 2.3). 
All of these techniques make extensive assumptions about the character and sometimes 
the sources of that part of the seismic noise wave field that is actually used. Therefore, the 
meaning of the term „seismic noise‟ lies nowadays in the eye of the beholder. The sole 
commonality is that earthquake waves are in general not considered to be noise. 
Nevertheless, the exclusion of one well-known type of source such as earthquakes from 
the definition is in fact purely arbitrary and provokes misunderstandings as earthquake 
waves are not the exclusively used signals in seismology anymore. Therefore, the term 
„seismic noise‟ is used in this thesis simply as an abbreviation to describe the „permanent 
movements of the Earth‟s surface‟. 

2.2 The seismic noise wave field 

A comprehensive and complete literature review of the current knowledge about the 
seismic noise wave field is given by Bonnefoy-Claudet et al. (2006a). They state also, that 
the majority (~95%) of publications about seismic noise deals with the utilisation of 
seismic noise and not with the nature of the seismic noise wave field. This is still the case 
today. The most significant progress since 2006 is achieved concerning the utilisation of 
seismic noise by estimating the Green‟s function of the Earth with seismic noise cross-
correlations (see also chapter 6 of this thesis). This new and very fast evolving method is 
introduced with other applications in section 2.3 about the utilisation of seismic noise. 
Here a brief summary is given about our current knowledge about the seismic noise wave 
field. 

2.2.1 The sources of the seismic noise wave field 

In general, the seismic noise wave field is a superposition of a large amount of 
(deterministic) seismic signals excited by numerous natural and man-made physical 
processes. The seismic noise wave field altogether is unpredictable for us as we don‟t 
know all individual sources and the structure of the underground. Natural sources of 
seismic signals in general are tides, water-waves striking the coast, standing water waves 
in the open seas due to storm systems, air pressure changes, turbulent wind or wind-
induced vibrations of trees or tall buildings. Just to name a few and the most important. 
The man-made sources are also numerous such as car and train traffic, industrial 
machines, explosions or the exploitation of underground reservoirs (e.g. hydrocarbons, 
hot water). The most important natural and man-made sources were already identified by 
Gutenberg at the beginning of the 20th century (Gutenberg, 1911; Gutenberg, 1924). The 
typically occurring sources of the seismic noise wave field are discussed in detail in 
chapter 5 for the Bucharest metropolitan area in Romania. 

As a rule of thumb, the seismic noise wave field is dominated by natural sources at low 
frequencies (<0.5 Hz), by man-made sources at high frequencies (>5 Hz) and by both in 
between (Bonnefoy-Claudet et al., 2006a). An exact separation of both parts of the wave 
field by a „border frequency‟ is not possible and strongly site dependent as it is 
significantly influenced by the dominant noise sources and the local geological conditions. 
It is known that man-made sources can dominate the seismic noise wave field down to 
0.5-1 Hz in a setting with soft subsoil such as the deep sedimentary basin of the 
Bucharest area (Groos & Ritter, 2009). The dominance of man-made signals ends around 
1 Hz or at even higher frequencies in a hard rook setting (Bonnefoy-Claudet et al., 2006a). 

Following these observations about the sources of seismic noise, two terms evolved in 
literature. The low frequency part of the seismic noise wave field dominated by natural 
sources is often called „microseism‟. The high frequency part with dominating man-made 
sources is called „microtremor‟. Unfortunately, the usage and separation of both terms in 
literature is not consequent which causes discrepancies (Bonnefoy-Claudet et al., 2006a). 
The term microseism is furthermore often used as an abbreviation of the term „ocean-
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generated microseism‟ which specifies only one of the numerous natural sources. 
Therefore, both terms are avoided as far as possible in this thesis. 

2.2.2 The composition of the seismic noise wave field 

The extensive review of Bonnefoy-Claudet et al. (2006a) demonstrates very impressive 
that a somehow „traditional‟ assumption about the composition of the seismic noise wave 
field is not supported by the available data. The seismic noise wave field was and 
sometimes still is commonly assumed to consist mainly of fundamental mode Rayleigh 
waves. The assumption of dominating fundamental mode Rayleigh waves holds in far 
most cases for the double-frequency ocean-generated microseism in the period band 
5-20 s (Brooks et al., 2009). The double-frequency ocean-generated microseism is a long 
known (Gutenberg, 1911) and relative well understood (Longuet-Higgins, 1950) source of 
seismic energy contributing to the seismic noise wave field. It seems so, that the 
observation of dominant fundamental mode Rayleigh waves for this dominant and 
important source was simply adopted for the remaining sources of the seismic noise wave 
field for a long time.  

In fact, the presence of body waves (P, SV, SH) as well as surface waves (Rayleigh and 
Love waves, fundamental and higher modes) in the seismic noise wave field is observed 
for a long time. This is recalled by the careful literature review of Bonnefoy-
Claudet et al. (2006a) and confirmed by new analyses. The presence of these wave types 
in the seismic noise wave field is not a matter of course. The seismic noise wave field 
observed in the direct vicinity of local sources cannot be split up in these wave types 
observed in the layered earth and in the far-field of a seismic source. The same is true for 
a wave field which consists of signals with wave lengths of the same order of magnitude 
as the spatial heterogeneities of the medium. The current state of knowledge about the 
seismic waves excited by distant sources typically present in the seismic noise wave field 
is summarised in the following. 

Nowadays, the presence of body and surface waves in the seismic wave field can be 
observed in a broad frequency range due to the capability and large amount of modern 3-
component seismometers and modern computers. Kurrle & Widmer-Schnidrig (2008) 
demonstrate the existence of Rayleigh and Love waves in the Earth‟s hum at very low 
frequencies (<7 mHz). Lacoss et al. (1969) already observed fundamental mode Rayleigh 
and Love waves to be the dominant components of the seismic wave field in the 
frequency band 0.04-0.15 Hz. In general, the ocean-generated microseism is observed to 
consist not only of narrow-band fundamental mode Rayleigh waves but also higher mode 
Rayleigh waves (Brooks et al., 2009; Koper et al., 2010), Love waves (Saito, 2010) as well 
as P, PP and PKP body waves (Gerstoft et al., 2009; Zhang et al., 2009; Koper et 
al., 2010) in a broad frequency band (0.05-2 Hz). Koper et al. (2010) observe the 
fundamental mode Rayleigh wave to be in fact the least significant component of the 
vertical wave field in the frequency range 0.4-4 Hz. The knowledge about the composition 
of the seismic noise wave field at higher frequencies larger than 1 Hz is improved by the 
increasing amount of three-component array measurements especially in urban areas and 
accompanying synthetic seismic wave field simulations (e.g. Bonnefoy-Claudet et al., 
2006b; Bonnefoy-Claudet et al., 2008). The three-component array measurements for the 
frequency-wavenumber, or FK, technique (e.g. Fäh et al., 2008) as well as the SPatial 
AutoCorrelation (SPAC) technique (e.g. Köhler et al., 2007; Endrun et al., 2010) are 
actually conducted to provide S wave velocity profiles mainly for geotechnical engineering 
and seismic hazard assessment purposes (see also 2.3.2). The composition of the 
seismic noise wave field is determined as some kind of „by-product‟ in these cases. The 
array measurements demonstrate us, that the proportion of the different wave types in the 
seismic noise wave field above 1 Hz is strongly site dependent. This affects the proportion 
between body and surface waves, Rayleigh and Love waves as well as fundamental and 
higher modes (Bonnefoy-Claudet et al., 2006a). The coexistence of fundamental and 
higher mode Rayleigh and Love waves is commonly observed at frequencies above 1 Hz 
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(e.g. Köhler et al., 2007; Fäh et al., 2008; Endrun et al., 2010). The proportion of Rayleigh 
waves in comparison to Love waves is observed to be highly variable between 10% and 
90% (Bonnefoy-Claudet et al., 2006a) but a dominance of Love waves is observed in far 
most cases (Bonnefoy-Claudet et al., 2006a; Köhler et al., 2007; Endrun et al., 2010). 
Quantifications of the proportion between body and surface waves are rare in literature 
and allow up to now no clear conclusions (Bonnefoy-Claudet et al., 2006a). 

The wave field composition is observed to depend massively on the type and orientation 
of the sources (vertical, horizontal), the location of the sources (near, far; at the surface, 
below the surface) and the underground structure (hard, soft; strong, weak impedance 
contrasts). These observations are supported by wave field simulations (e.g. Bonnefoy-
Claudet et al., 2006b; Bonnefoy-Claudet et al., 2008). Consequently, there is no general 
and simple assumption about the composition of the seismic noise wave field at the 
moment! And it seems hardly possible that a general assumption can be found. The 
composition of the seismic noise wave field is highly variable with space, time and 
frequency as most of the affecting boundary conditions and noise sources exhibit a 
distinct spatial and temporal variability. 

The high variability of the seismic noise wave field is a fact which must be addressed by 
all methods utilising seismic noise described in the following section 2.3 and is therefore a 
key motivation of this thesis. A good knowledge of the utilised seismic noise wave field is 
necessary in every individual case. Bonnefoy-Claudet et al. (2006a) criticise that the 
authors of most studies, utilising seismic noise, assume that the underlying assumptions 
about the seismic noise wave field are fulfilled without further discussion. This is 
especially the case if methods based on one station (e.g. H/V, section 2.3.1) or two 
stations (e.g. seismic interferometry, section 2.3.3) are applied. The missing discussions 
can be easily explained by the difficulties to determine the composition of the seismic 
noise wave field without suitable array measurements. 

This is the crucial point where this thesis contributes to the current research effort. The 
automated time series classification introduced in chapter 4 improves the knowledge 
about the spatial and temporal variations of the amplitudes as well as the statistical 
properties of the seismic noise wave field with a seismic network only. In chapter 6 new 
normalisation and data selection approaches are introduced and evaluated to improve the 
applicability of seismic interferometry (section 2.3.3) under inappropriate noise conditions. 

2.3 Utilisation of seismic noise 

The most important methods and applications in seismology based on seismic noise are 
summarised in this section. Most methods are introduced very briefly and for 
completeness only, as they are not directly addressed by this thesis. The estimation of the 
Green‟s function by seismic noise cross-correlations, also called seismic interferometry, is 
introduced in more detail as the seismic noise cross-correlation processing is treated 
comprehensively and improved in chapter 6. 

2.3.1 Spectral H/V ratio 

The spectral H/V ratio is calculated as the ratio of the Fourier amplitude spectra of the 
horizontal component and the vertical component of the seismic wave field and is mainly 
used as a tool for the microzonation of urban areas for seismic hazard assessment 
(Bonnefoy-Claudet et al., 2006a). Nogoshi & Igarashi (1971) introduced this measure and 
observed a correlation between the peak frequencies of the so called „H/V spectra‟ and 
the resonance frequencies of sites in sedimentary settings. The technique was not 
widespread in the first decades as the original work of Nogoshi & Igarashi (1971) was 
published in Japanese. This changed dramatically with the promotion of the then called 
„Nakamura‟s technique‟ by Nakamura (1989, 1996, 2000). Experiments (e.g. Fäh, 1997) 
and 1-D simulations (e.g. Lachet & Bard, 1994) showed that the H/V ratio technique was 
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capable to identify the resonance frequency of a soft sedimentary deposit separated by a 
sharp impedance contrast from the underlying stiffer basement. Since then the H/V-ratio 
technique evolved to a widespread standard technique in urban microzonation. As 
proposed by Nakamura (1989, 2000) the H/V spectrum is commonly used to estimate the 
fundamental frequency by the H/V peak frequency and the site amplification factor by the 
H/V peak amplitude for sites located on sedimentary deposits. The technique is commonly 
applied although the theoretical basis of the method is still unclear (Bonnefoy-
Claudet et al., 2006a; Bonnefoy-Claudet et al., 2006b; van der Baan, 2010). 

Nakamura (1989, 2000) assumes that the H/V spectrum is shaped by the resonance of 
vertically incident SH waves in the sediments which lead to increased amplitudes on the 
horizontal components. In this case the amplitude of the H/V peak should be directly 
related to the amplification factor of the site. Other authors (e.g. Lachet & Bard, 1994) 
assume that the H/V spectrum is shaped by the ellipticity of the fundamental mode 
Rayleigh waves. The peak in the H/V spectrum would be caused then by the vanishing of 
the vertical component of the Rayleigh waves and therefore no relation of the peak 
amplitude to the site amplification factor would be given. Based on wave field simulations 
Bonnefoy-Claudet et al. (2008) argue that the origin of the H/V peak can be explained by 
the Rayleigh wave ellipticity, the Airy phase of Love waves and the S wave resonance. A 
combination of several of these causes may also occur. They assume that the H/V peak 
frequency can be used anyway to estimate the sediment resonance frequency 
independent of the actual cause. Nevertheless, the amplitude of the H/V peak is 
significantly influenced by the wave field composition, especially by the proportion of Love 
waves (Bonnefoy-Claudet et al., 2008; van der Baan, 2010). Based on their simulations 
Bonnefoy-Claudet et al. (2008) and van der Baan (2010) argue that the fundamental 
frequency can be reliably estimated from the H/V spectrum but that an in-depth 
knowledge of the seismic noise wave field composition is required for a reliable 
interpretation of the H/V peak amplitude to estimate the site amplification factor. 
Unfortunately, the knowledge about the wave field composition is not available for most 
H/V studies as the measurements are rarely accompanied by suitable array 
measurements due to the high personal and organisational effort. 

The seismic noise recorded in the metropolitan area of Bucharest (see chapter 3.1) was 
analysed also with the H/V technique by Ziehm (2006). Her results regarding the 
resonance frequency of the sediments in the Bucharest area are compared at some 
points with the results obtained by the time series classification in chapter 5. 

2.3.2 Array methods 

In the late 1950s seismologists began to develop and adapt array techniques to derive 1D 
shear wave velocity profiles of the underground from seismic noise. The array 
measurements are used to obtain the dispersion curve of surface waves (Rayleigh or 
Love waves) as first step. The 1D shear wave velocity profile is derived then by inversion 
of the obtained dispersion curve as second step. This array approach utilising seismic 
noise and first proposed by Aki (1957) is nowadays widespread to estimate shear wave 
velocity profiles especially in urban areas (Bonnefoy-Claudet et al., 2006a). The shear 
wave velocity profiles are crucial background information for seismic hazard assessment. 
The passive seismic noise array measurements can be conducted with low costs as well 
as low impact on structures and environment. The approach can be applied in general 
with all array techniques capable to provide at least Rayleigh wave dispersion curves. The 
most important and widespread techniques are the spatial autocorrelation technique 
(SPAC) introduced by Aki in 1957 and the frequency-wavenumber technique (FK) 
introduced by Capon et al. in 1967. The current standard is the deployment of three-
component seismometers to be able to conduct a combined inversion of Rayleigh and 
Love wave dispersion curves. The dispersion curves are commonly obtained with 
advanced versions of the SPAC (e.g. Köhler et al., 2007) or FK (e.g. Fäh et al., 2008) 
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technique. Also the joint inversion of dispersion curves with H/V spectra is applied 
(Bonnefoy-Claudet et al., 2006a). 

The SPAC method was already introduced by Aki (1957) as a three-component technique 
capable to provide the dispersion curves of Rayleigh and Love waves from seismic noise 
without prior knowledge of the source locations or directions of wave propagation. A 
disadvantage of the original SPAC technique is the need of an array with circular 
geometry and a centre station. It is very often difficult to realise such a specific array 
layout in an urban area. A result of the consequent improvement of the SPAC technique in 
the last decades is the modified three-component SPAC method (3c-MSPAC) which is 
capable to provide Rayleigh and Love wave dispersion curves also with arbitrary array 
geometries (Köhler et al., 2007). The SPAC method is based on the assumption of a 
stochastic wave field stationary in space and time. The cross-correlation of recordings of 
this stationary stochastic wave field at different locations in space is considered by Aki 
(1957) as a spatial auto-correlation of the wave field. Tsai & Moschetti (2010) 
demonstrated recently, that the SPAC theory is equivalent to the theory of seismic 
interferometry (section 2.3.3). 

The FK technique was introduced by Capon et al. (1967) to improve the capability to 
monitor nuclear weapon tests and small earthquakes with the Large Aperture Seismic 
Array (LASA). The FK method was used early by Lacoss et al. (1969) also for a detailed 
general analysis of the composition of the seismic noise wave field at the LASA array. The 
seismic noise wave field is assumed to be a homogeneous random field. In this case a 
spectral representation exists which consists of a superposition of propagating waves 
(Capon, 1969). The homogeneous random field can then be characterised by a 
frequency-wavenumber spectral density function which allows the determination of the 
direction and apparent velocity of propagating waves. The main advantage of the FK 
technique is the compatibility with arbitrary array geometries. A disadvantage is the 
necessary rotation of the horizontal components North and East in radial and transversal 
for all azimuths to be able to distinguish between Love and Rayleigh waves (e.g. Lacoss 
et al., 1969; Fäh et al., 2008). Many FK studies were therefore limited to the determination 
of Rayleigh wave dispersion curves with the vertical seismic noise wave field due to the 
simpler interpretation and the deployment of cheaper vertical one-component 
seismometers (Fäh et al., 2008). The application of the FK technique to the vertical 
seismic wave field in the Bucharest area is discussed in chapter 5. The FK technique was 
used in this case to reveal ocean-generated microseism from the Black Sea and the 
Mediterranean Sea consisting of fundamental mode Rayleigh waves propagating across 
the Bucharest area. 

2.3.3 Seismic interferometry 

The term seismic interferometry is referred by Wapenaar & Fokkema (2006) to the 
„principle of generating new seismic responses by crosscorrelating seismic observations 
at different receiver locations‟. First, the representation of the response of the Earth by the 
elastodynamic Green‟s function is introduced in this section. Afterwards a summary is 
given about the estimation of the Green‟s function between two points a and b (specified 
in space by the vectors a and b) on the Earth‟s surface from seismic noise cross-
correlation functions. The section ends with an overview about the most important and 
forward-looking applications of seismic interferometry. 

2.3.3.1 The Green’s function 
The elastodynamic Green‟s function is a special solution of the equation of motion for an 
anisotropic inhomogeneous linearly elastic medium (Aki & Richards, 2002). The equation 
of motion connects displacements of a particle in a continuum to forces acting within the 
continuum and on its surface. Therefore the equation of motion is fundamental for 
seismology as the displacements of particles at the Earth‟s surface can be measured by 
seismometers. 
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The displacement vector u(x, t) denotes the vector distance of such a particle at time t 
from the position x in Cartesian coordinates x1, x2, and x3 that the particle occupied at 
some reference time t0. Position x is regarded as a position of equilibrium and x and t0 are 
assumed to equal zero in the following. 

The distortion of the medium is described for infinitesimal small deformations with relative 
length scales in the order of 10-6 by the strain tensor (Aki & Richards, 2002) 

 eij 
1

2
 
 ui

 xj
  

 uj

 xi
  . 

(2.1) 

The contact forces acting on an internal surface S of the continuum are described by the 
traction vector T(n) and the stress tensor σij (Aki & Richards, 2002). The traction vector 
T(n) describes the force per unit area and quantifies the contact force at the surface. The 
vector n is the normal unit vector at a considered point on S. The traction vector and the 
stress tensor are connected by the relation 

 Ti=σjinj. (2.2) 

The stress tensor is symmetric due to the conservation of angular momentum and the 
relation between the strain tensor eij and the stress tensor σij is given by Hook’s law for the 
considered linear elastic medium (Aki & Richards, 2002) as 

 σij=cijklekl. (2.3) 

The fourth-order tensor cijkl is called the stiffness tensor and contains 81 elastic moduli. 
Only 21 of the elastic moduli are independent in the considered case of an anisotropic 
medium (Aki & Richards, 2002). 

Finally, a particle originally at position x at time t0 is furthermore subject of noncontact 
body forces f(x,t) acting per unit volume. Due to the conservation of momentum within the 
considered medium with volume V and surface S the equation of motion is now found to 
provide the relation between accelerations, body forces and surface tractions (Aki & 
Richards, 2002). With the assumption that volume V and mass density ρ are constant with 
time the equation of motion can be given in its differential form as 

 ρ
 
 
ui

 t
 =fi 

 σij

 xj
, (2.4) 

where ui is the i-th component of the three dimensional displacement vector u. 

The concept of the elastodynamic Green‟s function is now introduced to develop 
„representations for the displacements that typically occur in seismology‟ (Aki & Richards, 
2002). Basic idea is to construct the displacement at point b caused by a complicated 
(realistic) seismic source at point a from the displacement produced by a very simple 
source. The simplest source which is well defined in space and time is the unidirectional 
unit impulse. The elastodynamic Green‟s function is therefore defined as the displacement 
at point b caused by a unit impulse at point a. The i-th component of displacement u at 

point b and time t caused by a unit impulse at point a and time τ in the n-th direction is 

described by Gin(b, t; a, τ). The complete Green‟s function is a second-order tensor with 
nine components and depends on both receiver and source coordinates. 
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The Green‟s function in a volume V satisfies 

  
 
 

 t
  in= in   -     -τ  

 

 xj
 cijkl

 

 xl

   kn . (2.5) 

It is define that Gin(b, t; a, τ) and  Gin(b, t; a, τ)/ t are zero for t ≤ τ and that a ≠ b as the 

initial conditions. If it is assumed that the boundary conditions are independent of time and 
homogeneous on surface S the space-time reciprocity Gnm(b, t; a, τ) = Gmn(b, -τ; a, -t) of 

the Green‟s function can be derived as shown by Aki & Richards (2002). The Green‟s 
function is specified uniquely by the specification of the boundary conditions on S. 
Boundary conditions for different applications as well as the computation of Green‟s 
functions for different settings are discussed also by Aki & Richards (2002). 

2.3.3.2 Estimation of the Green’s function 
In the last decade many authors showed theoretically (e.g. Campillo, 2006; Wapenaar et 
al., 2006; Gouédard et al., 2008a) and experimentally (e.g. Weaver & Lobkis, 2001) that 
the time domain Green‟s function of a medium between two points a and b can be derived 
by the cross-correlation of recordings of a coherent random wave field at those points. 
The convergence of the cross-correlation function to the Green‟s function is based on the 
equipartition of the wave field (Gouédard et al., 2008a). A suitable wave field can be 
caused by a random uniform distribution of uncorrelated noise sources, reverberations in 
an enclosure with an irregular bounding surface, multiple scattering between 
heterogeneities in a disordered medium or a combination of all of these causes 
(Wapenaar & Fokkema, 2006). 

Recently, Tsai & Moschetti (2010) approved the assumption that the SPAC theory of Aki 
(1957) to retrieve the dispersion properties of surface waves from seismic noise is just 
another formulation of the interferometry approach discussed here. The first application of 
the interferometry approach is nevertheless commonly related to helioseismology 
notwithstanding the long assumed physical accordance between the seismic 
interferometry and the SPAC theory. The interferometry approach was used in 
helioseismology to retrieve time-distance information on the solar surface from recordings 
of the random motions of the Sun‟s surface (Duvall et al., 1993; Gilles et al., 1997). Later, 
the interferometry approach was used successfully on a laboratory scale to retrieve the 
Green‟s function of an aluminium sample by the cross-correlation of the thermal noise 
recorded at the sample‟s surface (Weaver & Lobkis, 2001). The breakthrough of seismic 
interferometry was the successful application of the interferometry approach to recordings 
of scattered coda waves (Campillo & Paul, 2003) as well as ambient seismic noise 
(Shapiro & Campillo, 2004) to retrieve the Rayleigh wave part of the Green‟s function. The 
estimation of Green‟s functions based on seismic noise cross-correlation functions (CCFs) 
evolved quickly to an important and widely used technique in seismology (e.g. 
Weaver, 2005; Curtis et al., 2006). It enables seismology to provide high-resolution 
tomography studies from local (e.g. Bussat & Kugler, 2009) to continental (e.g. 
Shapiro et al., 2005) scale and independent from earthquake seismicity or active seismic 
sources. This application of seismic interferometry is commonly called ambient noise 
tomography. The fundamentals and main difficulties of the Green‟s function estimation 
from seismic noise for ambient noise tomography and other applications are discussed in 
the following. 
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First step to estimate the time domain Green‟s function of Earth between two points a and 
b on the Earth‟s surface from seismic noise is the calculation of the cross-correlation 
function Cij. The CCF Cij is calculated from the recorded displacements ui(a,t) at time t and 
location a in direction i and uj(b,t) at time t and location b in direction j by integration over 
the whole observation period T with 

  ij  , ,t = ui  ,τ uj  ,t τ dτ.
T

 

 (2.6) 

The relationship between the cross-correlation function C and the time domain Green‟s 
function G is given by 

 
  ij( , ,t)

 t
 - ij  , ,t   ij  , ,-t , (2.7) 

as discussed by Gerstoft et al. (2006). Signals propagating from a to b yield a positive 
delay time t and signals propagating from b to a yield a negative delay time. In the case of 
a coherent random wave field with a uniform spatial distribution of seismic sources the 
CCF will be a symmetric function with respect to the delay time. The causal part 
represents the Green‟s function and the acausal part the time-reversed Green‟s function 
(Gerstoft et al., 2006). In general, long time series have to be considered to ensure a 
random spatial distribution of the sources and therefore sufficient averaging of signals 
propagating from a to b and vice versa (Gouédard et al., 2008a). All nine elements of the 
Green‟s function tensor can be estimated by the cross-correlation of all combinations of 
the components of motion (vertical, transversal, radial) recorded at both sites. 

Practical experience with seismic noise shows, that one has to use not only long time 
series (months to years) but also to apply extensive normalisation and/or data selection to 
obtain CCFs which are suitable to reliably estimate Green‟s functions (Roux, 2009; 
Yao & van der Hilst, 2009). This is caused on the one hand by the dominance of single 
transient and coherent signals with comparably large amplitudes in the seismic noise 
wave field which disturb the averaging process. Most prominent examples of such 
transient signals are earthquake waves which are recorded coherently over long 
distances. On the other hand, a non-uniform distribution of noise sources also disturbs the 
averaging process and causes „one-sided‟ CCFs (Gerstoft et al., 2006; Stehly et al., 
2006). This effect is commonly observed due to ocean-generated microseism (e.g. 
Roux, 2009) which dominates the seismic noise wave field in a broad frequency range 
(see 2.2.2) and is often excited in a limited source area (e.g. at the near coast line). A 
detailed discussion of the sophisticated seismic noise cross-correlation processing which 
intends to reduce the impact of these problems by normalisation and/or data selection is 
given in chapter 6. Two new normalisation methods as well as two new fully automated 
approaches of data selection are introduced also in chapter 6. 

Additional to the problems with dominating transient signals and non-uniform source 
distributions far most applications of ambient noise tomography are limited to the cross-
correlation of the vertical component of the seismic noise wave field. This limitation is 
caused by the high effort necessary to cross-correlate all components of motion and to 
rotate the horizontal components for every station pair on the one hand as well as the 
properties of the seismic noise wave field itself on the other hand. The coherence of the 
horizontal component wave field is in far most cases significantly lower than that of the 
vertical component wave field (Gerstoft et al., 2006). This causes a lower signal to noise 
ratio of these components of the Green‟s function tensor which contain horizontal 
components of motion. This mainly explains the fact that far most applications of ambient 
noise tomography are based on the Rayleigh wave part of the Green‟s function. 
Nevertheless, reconstructions and applications of the Love wave part of the Green‟s 
function also exist (e.g. Lin et al., 2008; Roux, 2009). 
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An ongoing challenge is the reconstruction of the body wave part of the Green‟s function 
from seismic noise. The presence of P waves in the vertical component part of the 
Green‟s function was demonstrated by Roux et al. (2005) for the very dense and small 
(11x11 km2) Parkfield array at the San Andreas fault in California. The reconstruction of 
the complete Green‟s function including direct and reflected body waves was also 
demonstrated on a seismic-prospecting scale of less than 1000 meters (e.g. Gouédard et 
al., 2008c). Nevertheless, the reconstruction of the body wave part of the Green‟s function 
over distances larger than several kilometres is difficult due to the very small part of 
coherent body waves in the seismic noise wave field in this case. This explains the 
dominance of the slowly-attenuated surface (Rayleigh) waves in the estimated (vertical 
component) Green‟s functions on regional, continental and global scales (Gouédard et al., 
2008a). 

2.3.3.3 Applications of seismic interferometry 
The ambient noise tomography discussed above is the most widespread application of 
seismic interferometry which is used from laboratory to continental scales as well as on 
land and on the ocean bottom (e.g. Bussat & Kugler, 2009). Nowadays, ambient noise 
tomography can be denoted as a standard tool of seismology. An out-standing example is 
the three-dimensional S wave velocity model of the Piton de la Fournaise volcano which 
was derived from seismic noise cross-correlation functions (Brenguier et al., 2007). 

Another important application of seismic interferometry is the monitoring of temporal 
changes of the seismic velocities in the subsurface. Velocity variations of 0.1% or even 
less are derived from the temporal changes of the estimated Green‟s functions with a 
temporal resolution between one and a few days (Sens-Schönfelder & Wegler, 2006; 
Brenguier et al., 2008a). This application, sometimes called „passive image interferometry‟ 
(Sens-Schönfelder & Wegler, 2006), is based on the analysis of coherent phases in the 
Green‟s functions caused by multiple scattered or reflected waves. This approach was 
successfully used to observe changes in seismic velocities at volcanoes (Sens-
Schönfelder & Wegler, 2006; Brenguier et al., 2008a), fault zones (Wegler & Sens-
Schönfelder, 2007; Brenguier et al., 2008b) and sedimentary basins (Meier et al., 2010). 
Some of these velocity variations can be explained by changes of the ground water table 
(Sens-Schönfelder & Wegler, 2006; Meier et al., 2010). Nevertheless, also changes of the 
structure inside volcanoes or on fault planes as well as changes of the stress state can be 
observed by such velocity variations. Therefore, seismic interferometry is a promising tool 
to improve the capabilities to forecast eruptions of volcanoes (Brenguier et al., 2008a) or 
even earthquakes. The same technique can be used furthermore to identify unwanted 
instrumental time shifts between the clocks of seismic stations (Stehly et al., 2007; Sens-
Schönfelder, 2008). 

Less widespread but anyhow noteworthy is the application of seismic noise cross-
correlation functions to locate „diffuse‟ sources of seismic energy such as ocean-
generated microseism (e.g. Shapiro et al., 2006).  

2.3.4 Other applications using seismic noise 

A variety of other, less widespread, applications using seismic noise exist next to the well 
established and predominantly used array techniques and seismic interferometry. Most of 
these applications are based on the analysis of the spectral properties of seismic noise 
and how seismic noise varies with time and/or space. The new statistical time domain 
classification of seismic noise introduced in chapter 4 is capable to provide not only such 
amplitude information but also statistical information about the seismic noise dependent 
on time, space and frequency. All applications based on a spectral time-frequency 
analysis of seismic noise are therefore also prospective applications for the new time 
domain classification and may potentially take profit from the additional statistical 
information. Therefore, some of the applications based on temporal and/or spatial 
variations of the seismic noise wave field are introduced in this section. 
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Important is the application of seismic noise for environmental monitoring. One example is 
the approach to analyse temporal variations of the global climate with changing seismic 
noise (e.g. Grevemeyer, 2000; Aster et al., 2008). This approach is based on the 
observation of ocean-generated microseism and the assumption that variations of the 
global climate induce variations of the wave climate of the oceans. Duration, amplitude 
and frequency of events of ocean-generated microseism are analysed to infer information 
about the large-storm intensity. This is a promising approach to study the highly discussed 
changes of the global climate in the last century as continuous seismic recordings over 
decades are available at some seismic observatories. 

Similar is the approach to obtain information about local or regional meteorological 
conditions from seismic noise. Several meteorological phenomena are known to induce 
seismic signals such as air pressure changes (Zürn et al., 2007) or wind (Withers et al., 
1996; Groos & Ritter, 2009). An experiment with contemporaneous seismic and 
meteorological measurements, called METSEIS, was conducted by the Karlsruhe Institute 
of Technology in the last years (Ritter et al., 2009). The comprehensive data set is now 
analysed to retrieve site-dependent relationships between the observed meteorological 
parameters (e.g. air pressure, wind speed) and the seismic noise. The analysis of the 
METSEIS data set combines a spectral time-frequency analysis with the new statistical 
time domain classification. 

Another interesting application of seismic noise for environmental monitoring was 
proposed by Burtin et al. (2008). They demonstrated that a spectral analysis of seismic 
noise can be used to monitor spatiotemporal changes in stream hydrodynamics. They 
recorded seismic noise in vicinity of the river Trisuli in the Himalaya and were able to 
explain a significant part of the observed seismic noise to be caused by ground vibrations 
generated by the bed load transport in the river. 

The exploration of hydrocarbon reservoirs is a highly debated further application of 
seismic noise (e.g. Mohammed et al., 2007; Walker, 2008). This application, often 
denoted as the „direct hydrocarbon indicator (DHI) method‟, is based on spatial variations 
of the spectral amplitudes and the H/V ratio of the seismic noise wave field in the 
frequency range between 1 Hz and 4 Hz. It is assumed, that the spectral amplitudes and 
the H/V ratio of the seismic noise wave field are changed significantly by a hydrocarbon 
reservoir in the subsurface. This assumption originates from few observations of seismic 
noise above or in the vicinity of known and producing hydrocarbon reservoirs. The DHI 
method is promoted to be able to explore reservoirs with low-cost passive seismic 
measurements. Several theories to explain the assumed effect are proposed and 
discussed but neither is proven so far. The debate about the approach is dominated by 
the question if the observed signal is actually caused by the natural seismic noise wave 
field and the reservoir alone. Hanssen & Bussat (2008) analysed the seismic noise 
recorded above and around a reservoir in the Sahara desert to test the DHI approach. 
They observe that regarded variations of the seismic noise wave field over the reservoir 
are caused by anthropogenic signals (technical processes related to oil production, 
building activity) and influenced by the topography. Several companies in hydrocarbon 
exploration and production industry are working on the DHI approach with significant 
expense although the underlying physics are debated and unclear. Therefore further 
developments and new insights regarding the DHI method can be expected in the future. 
With an improved understanding of the underlying physics the DHI approach may be a 
potential application for the statistical time domain classification. 
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3 Data 

Two different data sets of ground motion recordings are used for this thesis and 
introduced in this chapter. The first data set (URS Bucharest, see 3.1) was measured in 
the metropolitan area of Bucharest during the URban Seismology (URS) experiment and 
is used to analyse the urban seismic noise wave field (chapter 5). The second data set 
(GSN data, see 3.2) consists of one year of recordings of several stations of the Global 
Seismographic Network (GSN) in the USA and is used for the analysis of the seismic 
noise cross-correlation processing (chapter 6). The specific data processing of the two 
data sets with the Karlsruhe Processing Toolbox for MATLAB (see Appendix A) is 
discussed in the respective chapters. The detailed metadata of both data sets are 
provided in Appendix B. 

It is crucial for both applications to work with the „true‟ ground motion without distortions of 
the phase or the amplitude of the signal due to the seismological measuring system. It is 
therefore necessary to remove carefully the corresponding instrument responses from the 
digital recordings of both data sets. While working with the GSN data set several 
inconsistencies in the instrument response metadata distributed together with the 
waveform data became apparent to the author (see 3.3). It turned out, that the metadata 
of dozens of seismic stations world-wide were (and partly still are) affected by these 
inconsistencies (see 3.3.7). 

3.1 URS Bucharest 

The URS project (Ritter et al., 2005) was conducted in Bucharest (Figure 3.1), the capital 
of Romania, whose 2.5 million inhabitants are endangered by devastating earthquakes 
from the nearby Vrancea subduction zone (for a comprehensive review see 
Wenzel et al., 1999). The measurements within the URS project were conducted with the 
KArlsruhe BroadBand Array (KABBA) owned by the Karlsruhe Institute of Technology. 
The URS data set was recorded with 32 24-bit data-loggers (EarthData) and 22 
Streckeisen STS-2 (fundamental period T0=120 s), five Geotech KS-2000 (T0=100 s), two 
Güralp CMG40T (T0=30 s), one Güralp CMG3ESP (T0=30 s) and two Lennartz LE-3D5s 
(T0=5 s) seismometers. These stations were deployed at 34 different sites within the 
metropolitan area of Bucharest from October 2003 until August 2004. Detailed information 
about the station locations and further metadata such as the instrument responses are 
given in Appendix B. The instruments were located mainly in cellars of public and private 
buildings. The network recorded continuously the ground motion velocity with a sampling 
rate of 100 Hz during 10 months. This data set provides an opportunity to analyse Urban 
Seismic Noise (USN) in a wide frequency range of 0.008-45 Hz with a spatial resolution of 
a few kilometres. 

A careful removal of the instrument response is necessary to obtain comparable 
amplitudes of the seismic noise wave field from the different instruments in the frequency 
range above 1 Hz and below 90% of the Nyquist frequency. Above 1 Hz the frequency 
responses of the different used sensor types differ and are not perfectly flat. The 
amplitude response deviations from unity increase with frequency up to ±3 dB at 50 Hz. 
For the results of the time domain analysis at frequencies above 1 Hz amplitude 
deviations from the true ground motion velocity of ±0.6 dB (1-25 Hz) and ±3 dB (25-45 Hz) 
would occur without the removal of the instrument responses from the data. 
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Figure 3.1: Station network of the URS project. 
The map shows Bucharest and its surroundings with land usage. Different symbols indicate different sensor types, □: 
22 Streckeisen STS-2, ◊: 5 Geotech KS2000, ○: 3 Güralp CMG40T/CMG3ESP and ∆: Lennartz LE3D/5s. The land 
usage is shown by colours, green: parks and woods, blue: lakes, rivers and waterways, black: heavy industry areas, 
light grey: residential areas, dark grey: commercial areas. The inset displays the regional context. The diameter of the 
characteristic ring road is about 20 km. 
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3.2 GSN data 

The data set used for the study of the seismic noise cross-correlation processing consists 
of vertical component ground motion velocity recordings of the year 2004 with a sampling 
rate of 1 Hz (LHZ channel) of the Global Seismographic Network (GSN) stations ANMO 
(KS-54000; T0=333 s), CCM (STS-1/VBB: T0=360 s), DWPF (KS-54000; T0=333 s), HRV 
(STS-1/VBB; T0=360 s) and PFO (STS-1/VBB; T0=360 s) in the United States of America 
(Figure 3.2). The waveforms and instrument responses were obtained as SEED (Standard 
for the Exchange of Earthquake Data) volumes from the Incorporated Research 
Institutions for Seismology (IRIS) Data Management Centre (DMC). Detailed station 
metadata and the instrument responses are also given in Appendix B. 

 
Figure 3.2: Map with used GSN stations in the USA. 
The map shows the used GSN stations ANMO (Albuquerque, New Mexico), CCM (Cathedral Cave, 
Missouri), DWPF (Disney Wilderness Preserve, Florida), HRV (Harvard, Massachusetts) and PFO (Pinon 
Flat Observatory, California). The IRIS DMC Data Management System was used for access to waveform- 
and metadata of these stations. Six of the ten station pairs are highlighted in the discussion (chapter 6) and 
are therefore indicated by the connection lines. 

 
The Cross-Correlation Functions (CCFs) are calculated and analysed for all ten station 
pairs (chapter 6). The six station pairs ANMO-DWPF, ANMO-CCM, PFO-ANMO, DWPF-
HRV, CCM-DWPF and PFO-HRV indicated by the connection lines in Figure 3.2 are 
highlighted in the discussion in chapter 6. They represent all available azimuths as well as 
small, intermediate and large distances. The CCFs of some of these station pairs were 
also discussed by Bensen et al. (2007) in the context of seismic noise cross-correlation 
processing which was the motive for the selection of this data set. The fragmented raw 
time series obtained from the SEED volumes are merged to obtain complete 12-months 
time series of the ground motion velocity for each station. Missing data is zero padded. 
The alternative to the zero padding is the cutting of individual time windows with differing 
lengths and for every station pair with the exclusion of every time window for which only 
data of one station is available. This approach causes high organisational and 
computational effort due to the individual time window selection for every station pair as 
well as the resulting varying time window length. It is therefore usual to use a fixed time 
window length and accept zero padding (e.g. Bensen et al., 2007). Working with the GSN 
data set the author observed also no negative influence of the zero padding on the 
obtained CCFs in comparison to the strict exclusion of time windows for which only data at 
one station is available. Time windows which consist mainly of padded zeros are reliably 
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identified by the time series classification. The single time window CCFs obtained from 
such time windows are excluded from the stacking. It is necessary to remove the 
instrument responses from the data to cross-correlate the ground motion recordings 
without phase distortions due to the different sensor types. It was recognised during the 
preparation of the GSN data set that the instrument response metadata of station HRV 
deviate from the conventions of the SEED format. The recognised metadata 
inconsistencies were observed to affect several stations world-wide and are therefore 
discussed in detail in the following section. 

3.3 Inconsistencies in SEED instrument response metadata 

All main seismological data centres such as the IRIS DMC (www.iris.edu) distribute 
seismological data in the SEED format (see 3.3.1). The SEED format provides the 
possibility to distribute comprehensive metadata about the instrument responses together 
with the corresponding seismic recordings. All components of the seismological 
measuring system such as the sensor, the analogue-to-digital converter (ADC) or a digital 
anti-alias filter (DAA) can be described in the SEED format by their transfer functions. All 
of the observed inconsistencies discussed in this section concern the description of the 
DAA filters, which are digital low-pass decimation filters, used by modern data acquisition 
systems. 

In the first subsection the SEED format is introduced together with the software which is 
provided by IRIS to work with SEED data. Section 3.3.2 introduces the seismological 
measuring system. A short summary about the general description of an instrument by its 
transfer function is given exemplary for the analogue part of the system, the seismometer, 
in section 3.3.3. In section 3.3.4 the description of the digital low-pass decimation filters of 
the measuring system is introduced in relation to the SEED format and the observed data 
format inconsistencies. The discussion of the measuring system and its description with 
transfer functions is strictly limited to the fundamentals necessary for the discussion of the 
observed data format inconsistencies in section 3.3.5. A comprehensive treatment of the 
fundamentals of digital seismology can be found in Scherbaum (2001). The impact of the 
observed inconsistencies on frequency response functions calculated with the wide-
spread software evalresp is discussed in section 3.3.6. In the last section an overview is 
given about the occurrence of the data format inconsistencies in distributed SEED 
metadata. 

The software written by the author to conduct the SEED metadata analysis and to 
calculate frequency response functions from SEED metadata is part of the Karlsruhe 
Seismology Toolbox (Appendix A). 

3.3.1 The SEED format 

The SEED format was developed mainly in the 1980s to provide a Standard for the 
Exchange of Earthquake Data especially between institutions of earthquake research 
(SEED Reference Manual, 2010). Main task of such a standard is to provide digital 
seismic recordings together with all necessary metadata (e.g. station coordinates, 
instrument responses, data quality reports, etc.). The development was promoted by the 
International Federation of Digital Seismograph Networks (FDSN, www.fdsn.org) which 
took over the responsibility to develop such a standard exchange format right after its 
foundation in 1985 (SEED Reference Manual, 2010). The FDSN holds commission status 
within the International Association for Seismology and Physics of the Earth‟s Interior 
(IASPEI) today. The first officially released version of the SEED format was version 2.0 in 
1988 by Halbert, Buland and Hutt. The SEED manual, in recent version from May 2010, is 
maintained and provided by the FDSN. All important international seismological data 
centres such as IRIS or ORFEUS (Observatories and Research Facilities for European 
Seismology) use the SEED format to exchange data between each other and to distribute 
data to the seismological research community. 
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Naturally, a comprehensive data exchange format such as SEED is felt to be rather 
complicated by far most „end-users‟, here seismologists. It is therefore common to obtain 
the desired data from a data centre as a SEED volume and to convert the data to a less 
comprehensive data format for further work. The most popular software for this conversion 
is called rdseed and is provided by IRIS (www.iris.edu/manuals/rdseed.html). The 
software rdseed is capable to convert the seismic recordings in a SEED volume to less 
comprehensive data formats such as SACbinary, gse, miniSEED or others which can be 
directly processed with wide-spread seismic analysis programs such as the Seismic 
Analysis Code (SAC) or Seismic Handler (SH). The instrument response information 
contained in SEED volumes, which is not supported by far most of the other data formats, 
is written by rdseed to a human readable ASCII file, often denoted as the „SEED RESP 
file‟. 

These SEED RESP files can be used furthermore as input for the software evalresp 
(http://www.iris.edu/manuals/evalresp.htm). This software is also provided by IRIS and 
calculates the discrete frequency response function (see 3.3.2) of a seismic channel from 
the instrument response information in the SEED RESP file. The wide-spread software 
packages SAC and gsac use frequency response functions calculated with evalresp to 
remove the instrument response from a seismic time series if a corresponding SEED 
RESP file is available. 

Concluding, the process to obtain data from a data centre and afterwards to obtain the 
ground motion from these raw recordings is standardised and simplified for the end-user 
by wide-spread software. Drawback of this standardisation is the fact that inconsistencies 
in the metadata of the SEED data can affect the obtained ground motion time series 
without becoming apparent to the user. 

3.3.2 The seismological measuring system 

All time series used for this thesis were recorded with seismometers which consist of one 
(vertical component) or three (vertical and horizontal components) pendulums each with 
an electro-dynamic feedback system. Such instruments measure the ground motion 
velocity and correspond to the state-of-the art for modern broadband seismometers (Aki & 
Richards, 2002; Scherbaum, 2001). The output signal of this type of instrument is a 
voltage (one for each component of motion) which is digitised and stored as a discrete 
time series by a data acquisition system („data-logger‟). The analogue signal coming from 
the seismometer is often digitised with several sampling rates for different seismological 
applications. The different discrete data streams obtained from a single analogue sensor 
(e.g. components Z, N, E; several sampling rates) are denoted as „channels‟. The 
complete measuring system (sensor and data-logger) is considered to be a linear, time 
invariant (LTI) system which transfers the input signal g(t) to the output signal r[t]. The 
different components of the measuring system are denoted as the „stages‟ of the system. 
In the case of digital seismology the ground motion (displacement/ velocity/ acceleration) 
is the analogue input signal g(t) and the stored recording of the ground motion 
(displacement/ velocity/ acceleration) is the discrete output signal r[t]. A typical measuring 
system is visualised in Figure 3.3 with the help of the BHZ (BH: seismic data sampled with 
20 vertical component) channel of GSN station HRV. 

The ADC of the data-logger provides the important conversion of the analogue signal x(t) 
in volt coming from the seismometer to a discrete time series x[t]. This conversion 
introduces unavoidable quantisation noise to the signal (Scherbaum, 2001). An important 
technique to reduce the influence of quantisation noise and to improve the amplitude 
resolution is oversampling. The sampling of the analogue data stream by the ADC is 
conducted with a sampling rate several times higher than the finally desired sampling rate. 
The original discrete data stream x[t] is then low-pass filtered and decimated 
(downsampled) to obtain finally the discrete time series r[t] with the desired sampling rate. 
As a further advantage, no analogue anti-alias filter is necessary with this technique. A 
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comprehensive treatment of the oversampling technique can be found in Scherbaum 
(2001). 

 
Figure 3.3: Block diagram of the BHZ channel (vertical component, 20 Hz) of GSN station HRV. 
The block diagram includes the sensor, the ADC and the low-pass decimation filter stages which are denoted 
also as Digital Anti-Alias (DAA) filter stages. The decimation factor of the DAA stages is given in the 
corresponding blocks. The input sampling rate is given above the corresponding DAA box. The original 
sampling rate of the ADC is 2000 Hz which is reduced by four DAA stages to the desired 20 Hz. 

 
Important for this discussion is that common modern data acquisition systems contain 
such digital low-pass decimation or Digital Anti-Alias (DAA) filters (Scherbaum, 2001). In 
general, the downsampling from the original to the desired sampling rate is not obtained 
by one step but obtained by a cascade of several decimators with DAA filters as in the 
example presented in Figure 3.3. 

It is obvious that the removal of the instrument response from the output signal r[t] is 
capable to recover only g[t] but not g(t). Nevertheless, the concept of the transfer function 
is introduced in the next section by a discussion of the seismometer in the „analogue 
domain‟ ignoring the analogue-to-digital conversion for now. In practice all operations are 
applied to discrete time series which is possible by replacing the analogue transforms by 
their discrete counterparts (Scherbaum, 2001). The digital DAA filters discussed in section 
3.3.4 are developed and defined already in the „discrete domain‟. 

At this point it is necessary to clarify that only the instrument responses of the 
seismometers are removed from the time series of the URS and the GSN data set used 
for this thesis. The data-logger parts of the measuring systems are ignored! 

This is justified as the digital stages of a seismological measuring system are not relevant 
for most seismological applications. Modern data-loggers are designed to avoid influences 
on the measured data as far as possible. The remaining influence on the signal is 
illustrated in Figure 3.4 again with the help of the frequency response function of the 
discussed BHZ channel of station HRV. The complete amplitude response (top) and 
phase response (bottom) spectra of the BHZ channel are plotted in black. The 
corresponding spectra of the seismometer frequency response are plotted in light blue. 
Most important and dominating part of the channel frequency response function is in fact 
the seismometer frequency response. A significant influence of the data-logger can be 
observed only near the Nyquist frequency of the channel (here 10 Hz) and only in the 
amplitude response spectrum. It is a rule of thumb, that the influence of a well-designed 
modern data-logger can be ignored if the upper boundary of the analysed signal‟s 
frequency content is below 90% of the Nyquist frequency. It is therefore justifiable in far 
most cases as well as for the URS and the GSN data set to remove only the influence of 
the seismometers from the digital recordings to reconstruct the „true‟ ground motion 
velocity in the analysed frequency range. 

Nevertheless, the SEED format is capable to provide the instrument response information 
of all analogue and digital stages and most of the station operators include also the 
transfer functions of the DAA filter stages. The evalresp software of IRIS uses by default 
all instrument response information given in the SEED metadata. Therefore, 
inconsistencies in the SEED metadata of the DAA filter stages are relevant, especially as 
they are causing serious but hardly recognisable distortions of the obtained ground motion 
time series as is demonstrated in the following. 
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Figure 3.4: Frequency responses of the complete BHZ channel and the seismometer of GSN station HRV. 
The complete amplitude response (top) and phase response (bottom) spectra of the BHZ channel are plotted 
in black. The corresponding spectra of the seismometer frequency response are plotted in light blue. The 
channel frequency response function is dominated by the seismometer frequency response. An influence of 
the data-logger below the Nyquist frequency of the BHZ channel (here 10 Hz) can be observed only in the 
amplitude response spectrum. 

3.3.3 The transfer function: Description of the seismometer 

A LTI system such as a seismometer can be described in the frequency domain with the 
frequency response function T(iω) of the measuring system by 

    iω =T iω  (iω), (3.1) 

with G(iω) the Fourier transform of the input signal g(t) and X(iω) the Fourier transform of 
the output signal x(t) (Scherbaum, 2001). The transfer can be described also with the 
transfer function T(s) using the more general Laplace transform as 

  (s)=T(s) (s), (3.2) 

with the complex variable s=σ+iω. The frequency response function T(iω) can be obtained 
by evaluating the transfer function along the imaginary ω axis of the s-plane as the 
Laplace transform equals the Fourier transform if s=iω (σ=0). In practice, the discrete 
frequency response function is evaluated from the transfer function and the Discrete 
Fourier Transform (DFT) is used to remove the instrument response from the discrete 
time series. 

All LTI systems can be described by a differential equation with constant coefficients 
(Scherbaum, 2001) which can be Laplace transformed to 
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The transfer function T(s) is then given in its numerator-denominator representation by 

 T(s)=
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which can be factorised and written in the pole-zero-gain representation 

 T(s)=
  s)

  s)
= ain

(s-q )(s-q ) (s-qm)

(s-p )(s-p ) (s-pn)
, (3.5) 

with the poles p and the zeros q of the transfer function. 

Both representations (amongst others) are used in practice to define transfer functions of 
LTI systems. The pole-zero representation is very common as the positions of the zeros 
and poles in the s-plane give easy accessible information about important characteristics 
of the system such as causality or stability (Scherbaum, 2001). Another possibility to 
describe a LTI system is its impulse response function which can be denoted as the „time 
domain representation‟ of the frequency response function. The frequency response 
function T(iω) is the Fourier transform and the transfer function is the Laplace transform of 
the impulse response function (Scherbaum, 2001). 

As discussed above, the typical seismological measuring system consists of at least two 
parts, the seismometer and the data-logger. All components of the LTI system 
„seismological measuring system‟ are, by definition, also LTI systems. Therefore, the 
transfer from g(t) to r[t] can be described also by the multiplication of several frequency 
response functions. To stay in the analogue domain it is assumed that an amplifier with 
frequency response function TA(iω) is installed at the output of the seismometer with 
frequency response function TS(iω) and x(t) is now the output signal of the amplifier. The 
transfer from g(t) to x(t) can be described now by 

  (iω)=T (iω)T (iω) (iω). (3.6) 

In terms of the SEED format the two parts Ts(iω) and TA(iω) are denoted as „stages‟ of the 
complete frequency response function T(iω) (SEED Reference Manual, 2009). As already 
visualised in Figure 3.3 the complete frequency response function T(iω) of a seismological 
measuring system is subdivided in more than two stages with own frequency response 
functions for the different components. This segmentation of the complete frequency 
response function of the system in stages allows the description of every component of 
the complete system in the most suitable domain (analogue/discrete) and representation 
(poles-zeros/numerator-denominator). In practice, the complete frequency response 
function of a channel is then finally obtained by multiplying the discrete frequency 
response functions of all stages. Analogue components such as the sensor or an optional 
amplifier are commonly described by the poles and zeros of their transfer functions in the 
s-plane. The poles and zeros of the seismometers relevant for this thesis are given in 
Appendix B. 

Digital components which are applied to the already digitised data stream are commonly 
described by the numerator and denominator coefficients of the discrete transfer function 
T(z) in the „digital‟ z-plane (Scherbaum, 2001; SEED Reference Manual, 2009). The 
discrete transfer function T(z) is discussed together with the low-pass decimation filters of 
the data-logger in the next section. 
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3.3.4 The digital low-pass decimation filter 

The digital low-pass decimation, or Digital Anti-Alias (DAA), filter is also a LTI system and 
the definition of the filter with a frequency response function, transfer function and impulse 
response function is in principal the same as for the analogue seismometer. The 
difference is the usage of the discrete instead of the analogue transforms. The Laplace-
transform is replaced by the z-transform and the Fourier transform is replaced by the 
discrete Fourier transform (DFT). The DFT equals the z-transform evaluated on the unit 
circle in the z-plane (Scherbaum, 2001). 

The bilateral z-transform of a discrete sequence x[t] (t denotes now the sample index) is 
defined as 

   ( )= x t   t
 

t=  

 (3.7) 

with the complex variable z=es∆t (Scherbaum, 2001). The complex variable s is already 
known from the Laplace-transform and variable ∆t is the time interval between two 
samples of x[t]. 

The output r[t] is related to the input x[t] by the linear difference equation 

  akr t k 

 

k= 

=  lx t l 

 

l= 

  (3.8) 

which leads to the rational transfer function T(z) as 

  T   =
  l 

 l 
l= 

 ak 
 k 

k= 

. (3.9) 

The digital filters discussed in the following are defined by their numerator coefficients bl 
and their denominator coefficients ak which is a commonly used representation of digital 
filters. This form of representation is also recommended by the SEED format for the 
description of DAA filters. 

In filter theory two important classes of digital filters are distinguished. It can be derived 
from equation (3.8) that the output signal r[t] depends not only on the input signal x[t] but 
also on earlier samples r[t-k] of the output signal if the number of denominator coefficients 
ak is larger than one. These filters are denoted as recursive, or Infinite Impulse 
Response (IIR), filters. Filters with only one denominator coefficient a0=1 are denoted as 
non-recursive, or Finite Impulse Response (FIR), filters. A discussion of the differences 
between IIR and FIR filters is far beyond the scope of this text. Important is the fact that 
DAA filters in modern data acquisition systems are realised as FIR filters due to some 
significant advantages (Scherbaum, 2001). Amongst other advantages a FIR filter is 
always stable and it is easy to design a FIR filter which fulfils desired characteristics. 

The FIR filters can be further subdivided into several classes of which two are important 
for the discussion of seismological data acquisition systems. FIR filters can be designed 
as minimum-phase and linear-phase filters in respect to their phase response spectrum. 
Loosely-speaking, the minimum-phase filters are designed to meet the desired amplitude 
characteristics by introducing as less phase distortions to the signal as possible. The 
linear-phase filters are designed with a linear phase response which means that they 
cause no phase distortions of the signal and produce only a constant time shift of the 
signal. A linear-phase filter is denoted as zero-phase filter if the time shift is removed from 
the signal after the filtering. Linear-phase filters are often denoted also as acausal filters 
and minimum-phase filters are often denoted also as causal filters which will become 



 

26 
 

apparent from the following discussion. The underlying difference causes some significant 
advantages and disadvantages of both FIR filter types if they are used as DAA filters in a 
seismological data acquisition system. The most important differences are discussed 
below. A comprehensive treatment of FIR filters can be found in Scherbaum (2001). 

The difference is discussed with the help of the first (stage 3) and the last (stage 6) DAA 
filter of the BHZ channel of station HRV (Figure 3.3). The coefficients bl and the phase 
response spectra of both DAA filters are presented in Figure 3.5. The filter of stage 3 
(decimation from 2000 Hz to 400 Hz) is shown on the left side of the figure in comparison 
to the filter of stage 6 (decimation from 100 Hz to 20 Hz) on the right side. All linear-phase 
filters such as the DAA of stage 6 (right side of the figure) have symmetric coefficients bl 
and are therefore denoted as two-sided or acausal filters. It is a consequence of this 
symmetry, that onsets of very impulsive signals (such as a P wave onset) may be 
obscured by precursory („acausal‟) oscillations (Scherbaum, 2001). Such oscillations may 
be identified by mistake as a seismic signal and cause misleading seismological 
interpretations. Furthermore, the exact picking of first onset times is biased by such 
precursory signals. A comprehensive treatment of this subject is given by Scherbaum 
& Bouin (1997). 

 
 
Figure 3.5: Filter coefficients bl and phase response spectra of two DAA stages of HRV.BHZ. 
On the left side the first (minimum-phase) DAA filter (stage 3) and on the right side the last (linear-phase) DAA 
filter (stage 6) of the BHZ channel are shown. 

 
The advantage of such a symmetric filter is the linear response spectrum below the 
Nyquist frequency of 10 Hz of the obtained time series after the decimation from 100 Hz to 
20 Hz. This linear-phase spectrum corresponds to a constant time shift, or delay, of the 
entire time series of 0.795 seconds which is automatically removed by the data-logger. 
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The delay D in seconds of a symmetric linear-phase FIR filter with M coefficients applied 
to a time series with a sampling interval of ∆t in seconds can be easily calculated by 

 D=
( -1)

2
∆t. (3.10) 

The advantage of the asymmetric FIR filter of stage 3 on the left side of Figure 3.5 is that 
this type of FIR filter causes no spurious „acausal‟ signals before impulsive signals. The 
disadvantage of this filter type is the non-linear phase response spectrum below the 
Nyquist frequency of 200 Hz of the decimated time series. Nevertheless, the low 
frequency part of the phase response spectrum is linear below the Nyquist frequency of 
the finally desired time series (10 Hz). This linear part of the phase response corresponds 
to a delay of 0.0058 s of the signals below 10 Hz which is also removed automatically by 
the data-logger. It is common practice to use asymmetric FIR filters for the first DAA filter 
stages at high sampling frequencies to avoid problems with artificial „acausal‟ signals. This 
is done as long as the phase response spectrum is linear below the finally desired Nyquist 
frequency of the channel. That means that at least the last DAA filter stage is in general 
realised as a symmetric zero-phase filter to avoid phase distortions below the Nyquist 
frequency of the channel. This is the most common DAA filter configuration for seismic 
data-loggers. For some specific applications also the last DAA filter stage can be realised 
as an asymmetric FIR filter. This is done for example for data channels with very high 
sampling rates above 80 Hz which are used only for the picking of onset times with very 
high precision. 

Concluding, the definition of a DAA filter stage consists of the filter coefficients bl and the 
delay D which is corrected automatically by the data-logger. It is well defined in the SEED 
manual how the coefficients (page 73, SEED blockette 54) and the corrected delay (page 
77, SEED blockette 57, field 8) of a DAA filter stage have to be given in the instrument 
response metadata. 

3.3.5 The inconsistencies 

The usual way to define DAA FIR filters in the SEED metadata is to give the numerator 
coefficients of the transfer function in the z-plane using SEED blockette 54. The SEED 
convention of blockette 54 regarding the filter coefficients is to give them in forward order, 
which means from b0 to bM. 

Information about the input sampling rate, the decimation factor and the delay of the DAA 
filter stage is given with SEED blockette 57. Regarding the time delay of the filter stage 
two fields are provided by blockette 57. Field 7 provides the „Estimated delay (seconds)‟ 
and field 8 provides the „Correction applied (seconds)‟ of the filter stage. Relevant for the 
calculation of the frequency response is only field 8. It is mandatory for the correct 
calculation of the frequency response function of the channel that the time shift which was 
automatically corrected by the data-logger is given in field 8. It is furthermore crucial that 
the correct sign in terms of the SEED definition is used. All FIR filters delay the signal, 
which means that the signal is shifted towards later times by the filtering. This „estimated 
delay‟ of the filter can be given in field 7, although this information is not necessary to 
calculate the frequency response. After the filtering the data-logger corrects the time 
series and shifts the time series back towards earlier times. This time shift to correct the 
time series has to be given correctly in field 8 „correction applied (seconds)‟. The SEED 
manual defines both time shifts, as they are described above, to be positive. 

Concluding, both delay values in the fields 7 and 8 have to be positive and larger than 
zero if they represent a real FIR filter in a well-designed data-logger and follow the SEED 
definitions. The „correction applied‟ value in field 8 is mandatory to calculate the correct 
frequency response. Without the correct delay value in field 8 the corresponding FIR filter 
described by blockette 54 acts as an linear-phase filter when the frequency response 
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function is calculated and not as a zero-phase filter as it is actually realised in the data-
logger. The FIR filter coefficients have to be given necessarily in forward order with 
blockette 54. 

The inconsistencies: Blockette 57 Field 8 ‘correction applied (seconds)’ 

As discussed above the value of the „correction applied (seconds)‟ information in the 
SEED metadata has to be positive and larger than zero. Two common errors regarding 
this field can be found in SEED metadata. 

The first common error is a different sign convention to describe the time shifts which 
means that a negative value is given instead of a positive in field 8. It is not unusual that a 
positive delay value is given in field 7 and a negative delay value in field 8. The time delay 
of the DAA filter stage is not corrected but doubled if the frequency response function is 
calculated in accordance to the SEED definitions in this case. The entire time series is 
shifted towards earlier times by the removal of such an incorrect frequency response. The 
time shift depends on the DAA filter configuration of the data-logger and can be expected 
between 1 s and 2 s. 

Another common error is a „correction applied‟ value of zero. This error is most often 
found with symmetric FIR filter stages and may be caused by the fact that these filters are 
commonly denoted as „zero-phase‟ filters. Nevertheless, if the correction is given as zero 
in field 8 the frequency response function of a linear-phase filter is calculated and the time 
series is shifted also towards earlier times if the incorrect frequency response is removed 
from the data. The time shift can be expected between 0.5 s and 1 s. 

The inconsistencies: Order of the filter coefficients 

While working on the GSN data set it became apparent to the author that the filter 
coefficients of the DAA filter stages of all channels of station HRV are given in reverse 
order, which means from bM to b0. It is obvious, that the coefficient order is only relevant 
for the asymmetric FIR filters. A „reversed‟ asymmetric filter has the same amplitude 
response spectrum as the original filter but a significantly different phase response 
spectrum. This is demonstrated for the stages 3 and 5 of the channel HRV.BHZ in Figure 
3.6. The filter coefficients (top), amplitude response (middle) and phase response 
(bottom) of the correct FIR filter (forward order, black) as well as of the incorrect FIR filter 
(reverse order, red) are presented for stage 3 on the left side and for stage 5 on the right 
side. The amplitude response spectra don‟t change due to the coefficient order in contrast 
to the phase spectrum. The delay of the reversed filters below the finally desired Nyquist 
frequency of 10 Hz increases significantly from 0.0058 s to 0.0737 s and from 0.0218 s to 
0.4532 s. The reversed order of the first DAA stage is not a problem as the increased time 
delay of the filter is smaller than 2 samples of the resulting BHZ channel. The reversed 
order of the last DAA stage instead causes a serious problem. The introduced time shift of 
~0.4 s is larger than the time differences between modelled and observed arrival times 
which are commonly analysed in seismology. 

A summary of all relevant delay times of channel IU.HRV.BHZ is given in Table 3.1. The 
delay times of the correct FIR filters with the coefficients in forward order equal the delay 
times which are given in the SEED metadata for the „corrected delay‟ in field 8. The delay 
times of the filters actually defined incorrectly in the SEED metadata are significantly 
larger due to the reversed coefficient order. 
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Channel IU.HRV.BHZ (1999-06-09 20:00 – 2007-11-11 00:00) 

Delay in s of Stage 3 Stage 4 Stage 5 Stage 6 SUM 

1 Filter with forward order 0.0058 0.0105 0.0218 0.795 0.8331 
2 SEED info „corrected delay‟ 0.0058 0.0105 0.0211 0.795 0.8324 
3 Filter defined in metadata 0.0737 0.2269 0.4532 0.795 1.5488 
      
Difference (3-2) 0.0679 0.2164 0.4321 0 0.7164 
      
Table 3.1: Summary of the delay times of channel IU.HRV.BHZ. 
The delay times in lines „1‟ and „3‟ are calculated from the phase response spectra of the correct filter in 
forward order (1) and the filter given in the SEED metadata in incorrect reverse order (3). The delay times 
given in field 8 „corrected delay‟ of the SEED metadata are given in line (2) for completeness and equal the 
delay times of the correct filters in line 1. The difference between the added delays of the correct filters (1) and 
the added delays of the reversed filters (3) causes a time shift of the time series of 0.7164 s towards earlier 
times. 
 

If the ground motion is recovered from the recordings with the incorrect frequency 
response function a time shift is introduced which shifts the entire time series 0.7164 s 
towards earlier times (Table 3.1). In other words: Onset arrival times are picked 
significantly earlier than they really are. The largest time shift occurs if the order of the 
filter coefficients is reversed and the „correction applied‟ value in field 8 is given with a 
negative sign. In this case a time shift towards earlier times of more than 2 s may be 
introduced to the time series. 

 
 
Figure 3.6: Filter coefficients bl with amplitude and phase response spectra of stages 3 and 5 of HRV.BHZ. 
On the left side the first DAA filter (stage 3) and on the right side the third DAA filter (stage 5) of channel 
HRV.BHZ are shown with correct forward (black) and false reverse (red) coefficient order. Presented from top 
to bottom are the filter coefficients, the amplitude response spectra and the phase response spectra. 
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3.3.6 Some remarks about evalresp 

The above calculated and estimated time shifts due to the described data inconsistencies 
imply a calculation of the frequency response in accordance to the SEED definitions. The 
situation is getting more complicated if the frequency response functions are calculated 
with the wide-spread software evalresp, especially with versions prior to 3.3.0. Version 
3.3.0 of evalresp was released in July 2009 due to a correction of the frequency response 
function calculation of FIR filter stages. Versions prior to 3.3.0 ignored the „correction 
applied‟ information in field 8 of blockette 57. The delay of all FIR filter stages was 
estimated by the simple way presented in equation (3.10) for symmetric linear-phase 
filters. Consequently, the frequency response functions of asymmetric FIR filters were 
incorrect due to a significantly overestimated time delay. In the case of the example 
IU.HRV.BHZ (with correct coefficient order!) a time shift towards later times of about 
0.36 s is introduced to the time series by the application of the incorrect frequency 
response function. Consequently, evalresp versions prior to 3.3.0 are by definition not 
suitable to calculate frequency response functions of channels with asymmetric FIR filter 
stages defined in the SEED metadata. This affects several of the seismic networks 
distributed over IRIS such as the Caltech Regional Seismic Network (CI). The behaviour 
of evalresp in previous versions regarding the asymmetric FIR filter stages was 
documented in the manual but without a clear remark about the introduced time shift. 
Furthermore, no warning was or is echoed by evalresp if a channel response contains one 
or more asymmetric FIR filter stage(s). It can be assumed that the problem is and was not 
apparent for many users. 

As mentioned above, the calculation of the frequency response of the FIR stages was 
corrected with version 3.3.0. Version 3.3.0 and the recent version 3.3.3 (March 2010) use 
the „correction applied‟ information in blockette 57 field 8 (B57.F8) to calculate the correct 
frequency response of asymmetric FIR filters. The delay of symmetric FIR filters is still 
estimated by the number of coefficients and the sampling rate which effectively avoids 
problems with „correction applied‟ values set incorrectly to zero (see also the next 
section). The recent version 3.3.3 is now furthermore echoing warnings if the „correction 
applied‟ value is negative as it was suggested also by the author in September 2009. 

Concluding, the observed metadata inconsistencies and the different evalresp versions 
cause a complex and difficult situation. Corrections and changes of the software as well 
as the metadata over the years lead to a phenomenon known as „data aging‟. This term 
describes the situation that the same fundamental data (the raw seismic recordings) yield 
different results regarding only to the point in time when the software and the (meta)data 
were obtained by the user. Data aging is a serious problem in seismology. 

3.3.7 Occurrence of the inconsistencies 

Large data centres such as the IRIS DMC provide „dataless SEED volumes‟ which contain 
no time series but the complete instrument response history of entire seismic networks. 
The dataless SEED volumes of several networks were obtained in September 2009 from 
the ftp-archive of the IRIS DMC (http://ftp.iris.washington.edu/pub/RESPONSES/ 
DATALESS_SEEDS/) for a simple spot check evaluation of the frequency of occurrence 
of the identified SEED metadata inconsistencies. 

The evaluation is limited to the responses of the BHZ channels valid at the reference date 
2004-June-01 12:00 UTC of selected seismic networks due to the large amount of 
available stations and channels. In total 26 networks are selected containing the most 
important large networks such as major parts of the GSN (IU, II, IC, ...), USArray (US), 
Geofon (GE) and Geoscope (G) as well as regional networks such as the Berkeley Digital 
Seismic Network (BK), Caltech Regional Seismic Network (CI) and several national 
networks (e.g. DK, CH, CZ, TW, JP). The selection is neither comprehensive nor 
representative and is therefore only capable to provide a first impression about the 
situation for some of the most important networks which is given in Table 3.2. 
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In total the responses of 559 BHZ channels were obtained from IRIS for the reference 
date. The table is limited to the most important and/or affected networks of the 26 
analysed networks. All networks which are found to contain channel responses with 
incorrect FIR coefficient order and/or a negative „correction applied‟ value in field 8 of 
blockette 57 are included in Table 3.2. This analysis demonstrates that inconsistencies in 
the SEED instrument response metadata are not uncommon. Significant differences 
between the networks are noticeable and can be explained by the fact that they are 
maintained by different operators. The responsibility for the correctness of the metadata 
lies solely with the network operators (personal communication with IRIS DMC staff). The 
inconsistencies identified by this analysis were reported to the IRIS DMC and several 
network operators. 

One example of a common systematic discrepancy from the SEED conventions is the 
definition of the „correction applied‟ value (B57.F8) to zero. This is especially the case for 
symmetric FIR filter stages (see networks II and US). This is not in accordance with the 
SEED conventions but fortunately of less practical relevance as the time delay of a 
symmetric FIR filter can be easily determined from the number of coefficients and the 
corresponding input sampling rate for the calculation of the correct frequency response 
function. All versions of evalresp are doing this by default. The corrected time delays of 
the asymmetric FIR filter stages are in far most cases smaller than the sampling interval of 
the finally obtained channel as they are used only for the first DAA filter stages at high 
sampling rates. 

More critical is the consequent definition of negative „correction applied‟ values as it was 
observed for the networks BK and CI. The impact of this inconsistency can be assumed to 
be significantly moderated in practice as the wide-spread software evalresp ignores the 
delay values of symmetric FIR filters. Nevertheless, other software packages calculating 
frequency response functions from SEED RESP files may be affected. Negative delay 
values defined for asymmetric FIR filter stages lead also the recent evalresp version to 
calculate incorrect frequency response functions. Fortunately, a negative delay value 
causes evalresp now to echo a warning in the recent version 3.3.3 from March 2010. 
Version 3.3.0 calculates the incorrect frequency response function without warnings. 
Older versions are by default not suitable to calculate frequency response functions of 
asymmetric FIR filters as discussed above. The total time shift introduced by a cascade of 
asymmetric FIR filters with negative delay values is around two or three times the 
sampling interval. This time shift may be neglected for most applications in seismology. 
The negative delay values in the metadata of network BK were already corrected in 2010 
and the metadata of network CI is under revision. 

The inconsistency with the most significant practical relevance (incorrect coefficient order, 
time shifts ~0.5-1 s for BHZ channels) is observed for several networks (CI, GE, US, CZ, 

2004-June-01 12:00 
Download September 2009 

Number of channels affected by inconsistencies  

Network 
[total number of analysed channels] 

IU 
[118] 

II 
[67] 

CZ 
[5] 

GE 
[53] 

G  
[27] 

US 
[32] 

CI 
[156] 

BK 
[24] 

OE 
[6] 

False coefficient order 1  1 13  10 126  1 
B57.F8: negative     6  153 24  
B57.F8 zero (asym. FIR)    13    8 1 
B57.F8 zero (sym. FIR)  67  24 5 32   2 

 

Table 3.2: Summary of the instrument response metadata analysis. 
The numbers of the affected channel responses (valid at 2004-June-01 12:00) are given for the different 
inconsistencies and nine of the 26 analysed networks. All networks which contain channel responses with 
FIR filter coefficients in reverse order and/or negative „correction applied‟ values in field 8 of blockette 57 
(B57.F8) are included in this table. This analysis is not representative as it is only a spot check of the 
metadata available at the IRIS DMC. 
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IU, OE). Nearly all stations of the very homogeneous network CI are affected as they have 
an identical hardware configuration. A detailed analysis of all channels found with 
reversed filter coefficients revealed a common systematic cause for this type of metadata 
inconsistency. All affected stations were equipped at the reference date with data-loggers 
of the manufacturer Quanterra. The stations were (and partly still are) equipped with data-
loggers of the models Q4120 (CI, GE, OE, CZ, IU) and Q730N (US). Both data-logger 
models use the same FIR filters for the DAA stages. The manuals of these data-loggers 
are not freely available but their FIR filters can be obtained as ASCII files from the ftp-
archive of the Quanterra User Group (ftp://quake.geo.berkeley.edu/pub/quanterra/). The 
provided ASCII files contain the FIR filter coefficients in reverse order. It can be 
speculated that in some cases these ASCII files were used for the compilation of SEED 
metadata without checking of the coefficient order. 

The SEED metadata of network GE was already corrected in 2010 and the metadata of 
network CI is under revision. The problem with the reversed FIR filter coefficients was 
reported to the IRIS DMC. 

3.3.8 Summary 

The SEED format is the common standard for the distribution of digital seismological time 
series. It provides the time series together with the complete metadata of the seismic 
measuring system. While working on the GSN data set (see section 3.2) the author 
became aware of data format inconsistencies in the SEED metadata of the GSN station 
HRV. All inconsistencies affect the description of FIR filters which are commonly used for 
the decimation stages of digitisers. 

The filter coefficients of asymmetric FIR filters are given sometimes in reverse order 
instead in forward order. This is an inconsistency with practical relevance as the filter 
coefficients in reverse order bias the phase response spectrum of the channel. The time 
series is shifted towards earlier times by the removal of the biased frequency response 
function. The amount of the time shift depends on the FIR configuration of the channel 
and can be up to 1 s. The FIR filter stages of 559 BHZ channels distributed by the IRIS 
DMC were analysed in September 2009 and 152 BHZ channels were found to contain FIR 
filter stages with reversed filter coefficients. 

Another common inconsistency affects the value for the corrected filter delay time of a FIR 
filter stage. The corrected filter delay time has to be positive in every case following the 
SEED definition but is often found as a negative value (183/559 analysed BHZ channels) 
or to be zero (153/559 analysed BHZ channels). This inconsistency is fortunately of less 
practical relevance as the wide-spread program evalresp, which calculates frequency 
response functions from the SEED metadata, is not using the given delay time to correct 
symmetric FIR filter stages. If the false values of symmetric FIR filters are used to 
calculate the frequency response function a time shift up to 2 s is introduced to the time 
series. The time shift due to asymmetric FIR filter stages with false time delay values is in 
general very small (2 to 3 times the sampling interval) and can be neglected in far most 
cases. 

The problems with the reversed FIR filter coefficients and the time delay values were 
reported to the IRIS DMC and several network operators. The SEED metadata of several 
affected networks is already corrected. 
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4 Time series classification 

In this chapter a time series classification approach is introduced to analyse large seismic 
noise data sets such as the URS data set (section 3.1; Groos & Ritter, 2009) by 
classifying and quantifying seismic noise time series in the time domain. This approach 
combines amplitude information with few distinct noise classes (Gaussian distribution, 
presence of large transient or periodic signals) characterising the seismic noise. The 
purpose of this approach is manifold. 

First of all, the combination of quantification and classification enables one to display the 
spatial and temporal noise conditions in any frequency band of interest. This information 
in combination with a common spectral time-frequency analysis can improve the 
identification of noise sources and their temporal and spatial varying influence. This 
application of the proposed time series classification is demonstrated by the analysis of 
the URS data set which is discussed in chapter 5. 

Furthermore, the approach is capable to identify some common technical artefacts 
occurring during (mobile) passive seismic measurements (e.g. data gaps, direct 
mechanical impacts to the sensor). The classification allows next to the analysis of the 
seismic noise conditions also an automatic data selection from large data sets for a 
consecutive seismic noise processing (e.g. H/V, seismic interferometry) by identifying 
corrupt and/or inappropriate (e.g. dominating periodic or transient signals) time windows 
of seismic noise. This application of the time series classification is demonstrated by the 
realisation of a data selection approach for seismic interferometry (see chapter 6). 

As highlighted in chapter 2, seismic noise has to be described as superposition of signals 
emitted by numerous independent, time-varying and spatially distributed sources. Many of 
the signals themselves are deterministic, but the underlying physics are mostly unknown 
(source parameters, wave propagation,  ). Therefore, seismic noise should be 
considered as a temporal and spatial non-stationary random process. In the ideal case of 
an infinite large number of contributing independent signals, seismic noise in total would 
be Gaussian distributed according to the Central Limit Theorem (CLT, Bendat & Piersol, 
1994). Nevertheless, in reality one has to analyse a finite time series of seismic noise with 
a finite number of contributing signals. The number and the amplitude distribution of the 
contributing signals finally control the convergence of the time series towards the 
Gaussian distribution. Non-Gaussian time series of seismic noise are not an exception 
due to the occurrence of single dominating signals (e.g. earthquakes, man-made signals) 
with very large amplitudes in comparison to the remaining background signals. To quantify 
such seismic noise recordings in the time domain, the character (Gaussian, presence of 
large transients,  ) of the analysed sample of seismic noise is important additional 
information. 

The classification for seismic noise time series introduced in this chapter provides this 
additional information about the statistical properties of the seismic noise. The deviations 
from the Gaussian distribution for the sample value distributions (histograms) from finite 
digital time series are used for the classification. The time series parameters utilised for 
the classification are introduced in section 4.1 prior to the time series preparation (section 
4.2). The typically observed deviations from the Gaussian distribution in the case of 
broadband seismic data are discussed in section 4.3. Afterwards the classification 
scheme is introduced in section 4.4. A test of the noise classification with synthetic data is 
discussed in section 4.5. 

4.1 Time series properties used for quantification and classification 

The proposed statistical classification method is based on ratios of amplitude intervals (I), 
or alternatively percentiles (P), to classify a given time series. The application of statistical 
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higher order moments like kurtosis and skewness proved to be problematic to reliably 
determine small deviations from the Gaussian distribution for broadband seismic time 
series. Main problem in this case is the decreased performance of the common higher 
moment estimators for time series with sample numbers as large as 1.44 million samples 
(Hyvärinen et al., 2001). Therefore, specific ratios between percentiles of amplitudes are 
exploited to classify the seismic noise time series. In the case of a zero mean Gaussian 
distribution, 68% of the measurements lie within an interval of one standard deviation 
away from zero (I68). 95.45 % are within two times the standard deviation (I95) and 
99.73 % are within three times the standard deviation (I99) (Figure 4.1). This is also 
known as the 2-σ and 3-σ, or the “empirical”, rule. The ratios between these intervals, or 
the corresponding percentiles, of the time series are used to identify and quantify 
deviations from the Gaussian distribution. First, the ratios σ2 (I95/I68), σ3 (I99/I68) and the 
peak factor pf (I99/I95) are introduced for the time domain classification (Table 4.1). Basic 
idea is that these ratios increase in the case of a positive kurtosis and decrease in the 
case of a negative kurtosis of the histogram in comparison to the values 2 (σ2), 3 (σ3) and 
1.5 (pf) expected for a Gaussian distributed time series. Furthermore, the ratio P84STD 
between the upper boundary of I68, the 84-percentile (P84), and the standard deviation σ 
of the time series is utilised to ensure the reliable identification of Gaussian distributed 
time series. The standard deviation of the time series is calculated with the common 
statistical estimator for σ (Bendat & Piersol, 1994). 

 
 
Figure 4.1: Standard Gaussian distributed stochastic process with histogram. 
Solid lines indicate the margins of the 68% (cyan), 95.45% (red) and 99.73% (yellow) intervals. The dashed 
black line indicates the standard deviation of the stochastic process. In the case of a symmetric distribution the 
upper and lower interval margins are symmetric around the mean. In the case of a Gaussian distribution, the 
standard deviation equals the spread of the 68% interval around the mean. The ratios of the ranges for the 
68%, 95.45% and 99.73% intervals are 2, 3 and 1.5 in the case of a Gaussian distribution (empirical rule, see 
section 4.1). 
 

The ratios σ2, σ3 and P84STD are used to identify the most probably Gaussian distributed 
time series. In the case of deviations from the Gaussian distribution the peak factor is 
used as a single measure to quantify the positive kurtosis (pf > 1.5) or the negative 
kurtosis (pf < 1.5) of the time series. Similarly, ratios of time series percentiles are used to 
assess the symmetry of the time series histograms. The ratios of the lower and upper 
boundaries of the amplitude intervals (e.g. the 16-percentile and the 84-percentile for the 
68%-interval) reveal a possible skewness of the histogram and can be used as a 
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symmetry measure. The ratios SI68 and SI95 are introduced to identify asymmetric time 
series (Table 4.1). The quantification of the seismic noise time series is realised by the 
amplitude intervals. In the following the range of the 68%-interval is used for quantification 
and called „noise amplitude‟. 

Parameter Description Gaussian 

σ2 I95.45/I68 
ratio between the range of the 95.45% and 

the 68%-interval 
2 

σ3 I99.73 /I68 
ratio between the range of the 99.73% and 

the 68%-interval 
3 

peak factor (pf) I99.73/I95.45 
ratio between the range of the 99.73% and 

the 95.45%-interval 
1.5 

P84STD P84/σ 
ratio between the 84-percentile and the 

standard deviation of the time series 
1 

symmetry of I68 
(SI68) 

|P84/P16| 
ratio between the upper and lower boundary 

of the 68%-interval 
1 

symmetry of I95 
(SI95) 

|P97.725/P2.275| 
ratio between the upper and lower boundary 

of the 95.45%-interval 
1 

Table 4.1: The time series parameters used for the classification (with abbreviations). 
The theoretical values of the parameters in the case of a Gaussian distribution are given in the right column. 

 

By this simple approach, the final classification scheme based on the ratios of percentiles 
can be easily adjusted to the actual classification problem or noise environment. Typical 
data problems like data gaps or single extreme transients can be identified by unusual 
absolute percentiles or percentile ratios. Therefore, this classification approach exhibits 
also important data quality control abilities for automated processing. 

4.2 Preparation of the time series prior to the classification 

The time series classification requires a preparation of the seismic noise time series. In 
accordance to the actual task (analysis or data selection, frequency range of interest, ...) 
suitable frequency ranges and a time window length have to be selected. As an example, 
a time window length of 4 hours and 8 frequency ranges are selected based on a spectral 
time-frequency analysis for the classification analysis of the URS data set. The selection 
of the time window length and the 8 frequency ranges (see Table 5.2) is discussed in 
detail in section 5.2. Examples obtained from the URS data set as well as the chosen time 
window length and frequency ranges are used in the following for the introduction and 
evaluation of the time series classification. 

Prior to the classification means, linear trends and instrument responses are removed 
from originally five hours long raw broadband time series of seismic noise. A 20-percent 
cosine window is used to taper the time series during the processing. The broadband time 
series are filtered forward and reverse in the time domain with a second order Butterworth 
band pass filter to obtain the seismic noise in the frequency bands of interest. After the 
band pass filtering the first and last half hour of the time series are cut to obtain 4 hours of 
seismic noise for the classification without unwanted disturbances of the preprocessing. 

4.3 Observed deviations from the Gaussian distribution 

The typically observed deviations of seismic noise time series histograms from the 
Gaussian distribution are illustrated with the help of the URS data set. Figure 4.2 displays 
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several examples of seismic noise time series (4 hours) measured in the metropolitan 
area of Bucharest. Together with the time series, the corresponding histograms are 
shown. For comparison, Gaussian distributions are displayed together with the histograms 
(green lines). These Gaussian distributions are estimated from the mean and the upper 
boundary of the 68%-interval (equals the standard deviation in the case of a Gaussian 
distribution) of the time series. Most of the analysed time series (see chapter 5 for the 
detailed discussion) exhibit a bell-shaped distribution (Figure 4.2a-c) like the Gaussian 
distribution (Figure 4.2a).  

 
 
Figure 4.2: Time series of vertical component urban seismic noise with their histograms. 
The urban seismic noise was recorded in the Bucharest area during the URS project. The time series (left) and 
their histograms (distribution of sample values) (right) are plotted together with the best-fitting Gaussian 
distributions (green lines) estimated from the mean and the upper boundary of the 68%-interval of the 
corresponding time series. The 95.45- (red) and 99.73- (yellow) amplitude intervals are indicated, 
corresponding to the 2-σ and 3-σ range for a Gaussian distributed time series. The noise classification (noise 
classes 1-6) of the time series is given in the histograms with the corresponding noise class symbols used in 
following figures (e.g. map of seismic noise amplitudes in Figure 5.3). (a) Gaussian distributed time series 
(NC1, circle) of the USN(0.25-0.6 Hz) at site URS02 with a peak factor of 1.47 (b) Nearly Gaussian distributed 

time series (NC2, square) of the USN(0.04-0.09 Hz) at site URS06 with a peak factor of 1.47. The minor 
deviations from the Gaussian distribution are small and caused by short transient events with double-
amplitudes larger than the range of the 99.73%-interval (left panel). (c) Time series of the USN(0.18-0.25 Hz) at 

site URS04 dominated by short transient noise signals (NC3, diamond) resulting in a peak factor of 1.85. The 
histogram is slightly deformed at the tails in comparison to the estimated Gaussian distribution. (d) Time series 

of the USN(1-25 Hz) at site URS01 dominated by short transient noise signals (NC4, filled diamond) resulting in 
a peak factor of 3.1. The histogram is heavily deformed at the tails in comparison to the estimated Gaussian 
distribution. (e) Time series of the USN(1-25 Hz) at site URS20 with a peak factor of 1.3 (NC5, triangle) and a 
non bell shaped multi-modal distribution. The displayed time series is dominated by sinusoidal signals. (f) Time 

series of the USN(0.04-0.09 Hz) at site URS26 with an asymmetric distribution (NC6, filled triangle) due to the 
dominance of asymmetric signals. 

 
Nevertheless, most time series exhibit a positive kurtosis (Figure 4.2c and d) due to the 
presence of short (in comparison to 4 hours) transient signals with large amplitudes (in 
comparison to the background signal). With an increasing amplitude difference between 
the 95.45%-interval and the 99.73%-interval the positive kurtosis of the histogram 
increases. Next to bell-shaped distributions, also multi-modal distributions can be 
observed (Figure 4.2e). Time series with such multi-modal distributions are most 
commonly dominated by large-amplitude periodic signals, which sometimes are even 
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sinusoidal. As a result, the time series histograms are also dominated by the distribution 
of the dominating signal. Furthermore time series with asymmetric distributions are 
observed due to the dominance of signals which themselves exhibit asymmetric 
distributions (Figure 4.2f). The variability of the observed waveforms and histograms 
highlights the difficulty to quantify (urban) seismic noise in the time domain with one 
simple amplitude measure like the standard deviation. The major task of the proposed 
time series classification is to provide additional information to complement the amplitude 
information. To do so, the classification should be able to differ between Gaussian, 
symmetric and asymmetric distributed time series. For the most common symmetrically 
distributed time series the sign and extent of the kurtosis is of interest for describing noise 
characteristics. 

4.4 Noise classification scheme 

In total 10 noise classes are introduced based on the identified time series properties. 
These noise classes (NCs) account for corrupt (NC10-NC13) and non-corrupt (NC1-NC6) 
time series. All time series with a high probable Gaussian distribution are classified as 
NC1. If small deviations from the Gaussian distribution occur, the corresponding time 
series are classified as NC2. Noise classes 3 and 4 account for time series which exhibit 
distributions with a minor (NC3) or distinct (NC4) positive kurtosis. All time series with a 
negative kurtosis are classified as NC5. The noise classes 1-5 account for time series with 
symmetric distributions around their mean. Asymmetric time series are classified as NC6. 
The classification process itself is a decision tree with several consecutive decision steps 
(Table 4.2). If the criteria of a decision step are fulfilled, the classification of the analysed 
time series is finished and no further steps are applied. 

4.4.1 Corrupt time series 

First, the time series are checked for several criteria of exclusion to identify time series 
with a high probability for corrupt data. The noise classes 10 and 11 account for time 
series consisting mainly of zeros. This artefact can occur if missing data is zero padded or 
if raw time series containing large offsets or offset differences due to technical problems of 
the sensor are filtered. For the broadband ground motion velocity data of the URS data 
set a threshold of 3 nm/s for the range of the 68%-interval was chosen which proved to be 
suitable for all data sets measured with the KArlsruhe BroadBand Array (KABBA). This 
threshold has to be chosen carefully to stay below the 68%-interval of non-corrupt 
measurements of seismic noise in all analysed frequency bands. Time series with 
negative interval ratios are classified as noise class 13. Such negative ratios can also 
arise if large offset differences due to technical problems (sensor, data acquisition, 
filtering) occur in the time series. Time series with extreme large amplitudes (>10^6 nm/s) 
due to direct mechanical impacts on the sensor or other technical problems are classified 
as NC12. Also time series with a range just below the „clipping amplitude‟ of 10^6 nm/s 
but extreme large interval ratios are classified as noise class 12 due to the presence of 
extreme transients. The criteria for noise class 12 are chosen very conservatively to 
exclude only extreme and obviously biased time series. This selection is not critical as 
time series with extreme transients, passing these criteria, are classified reliably as noise 
class 4 or noise class 6 in the consecutive classification. Furthermore, short but extreme 
large transients are not critical for quantification, if the 68%-interval range is used. All time 
series passing the first eight decision steps are treated as non-corrupt time series of 
seismic noise. 

4.4.2 Non-corrupt time series 

The first decision step for non-corrupt time series classifies time series which are highly 
probable Gaussian distributed as NC1 (step 9 in Table 4.2). To do so, the interval ratios 
σ2, and σ3, the percentile ratios SI68 and SI95 and the ratio P84STD are applied. To 
derive the criteria for these parameters 1586 5 hours long time series (4+1 hours, see 
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section 4.2) of synthetic Gaussian random noise (Marsaglia & Tsang, 2000) are 
processed to obtain in total 12688 4 hours long time series in all 8 frequency ranges. 
Afterwards, the resulting 12688 time series are tested with a chi-square goodness of fit 
test (χ2-test) for the null hypothesis that the time series are Gaussian distributed 
(Bendat & Piersol, 1994). The criteria chosen for NC1 are selected to cover 99% of all 
synthetic time series identified as Gaussian distributed by the χ2-test with a significance 
level α of 0.05. 

 

Identification of corrupt time series 

Step NC Comment σ2 σ3 pf 
/nm/s 

I68 

/nm/s 

I100 
 

1 10 zero trace    <10^-5   

2 11 recorder noise    <3   

3 13 tech. artefacts ≤0      

4 13 tech. artefacts  ≤0     

5 13 tech. artefacts   ≤0    

6 12 extreme values >40      

7 12 extreme values  >60     

8 12 clipping     >10^6  

         

  

Classification of symmetric time series 

Step NC Comment σ2 σ3 pf P84STD SI68 SI95 

9 1 Gaussian 2±0.05 3±0.15  1±0.01 1±0.015 1±0.015 

10 2 nearly Gauss.   1.5±0.1 1±0.06 1±0.03 1±0.047 

11 3 pos. kurtosis   1.5<pf≤2  1±0.03 1±0.047 

12 4 pos. kurtosis   2<pf  1±0.03 1±0.047 

13 5 neg. kurtosis   pf<1.4  1±0.03 1±0.047 

         

  

Identification of asymmetric time series 

Step NC      |1-SI68| |1-SI95| 

14 6      >0.03  

15 6       >0.047 

         

Table 4.2: The classification scheme used to classify time series of seismic noise. 
The scheme consists of 15 consecutive decision steps. Details about the used parameters are shown in 
Table 4.1. The classification is finished if a time series matches all criteria of a decision step. 
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From the same test the criteria for the symmetry measures SI68 and SI95 are derived to 
distinguish between symmetric (NC2-NC5) and asymmetric (NC6) time series. The criteria 
for symmetric time series (SI68: 1±0.03; SI95:1±0.047) are chosen to contain 97% of the 
12688 synthetic band pass filtered time series. All asymmetric time series are classified as 
noise class 6. The same synthetic data set was used to verify the noise classification (see 
section 4.5). 

Time series that do not agree with the strict criteria for NC1, but showing only small 
deviations from the Gaussian distribution in terms of the peak factor and the ratio between 
the 84-percentile and the standard deviation, are classified as NC2 (Table 4.2). Time 
series classified as NC2 exhibit no clear positive or negative kurtosis, as stated by the 
small allowed deviations (±0.1) of the peak factor from 1.5. In the consecutive 
classification steps the peak factor is used exclusively to distinguish between symmetric 
time series with positive (NC3 and NC4) and negative (NC5) curved distributions. To 
display the extent of the positive kurtosis, time series are separated for moderate positive 
kurtosis (1.5≤pf≤2) and distinct (2<pf) positive kurtosis. The differentiation between time 
series with moderate and distinct positive kurtosis at a peak factor of 2 is arbitrary and 
may be adjusted regarding to the noise conditions or the requirements of the following 
noise analysis. Time series with a peak factor between 1.5 and 2 are observed to exhibit 
in general no distinct transient signals emerging clearly above the background signal. 
Therefore time series which are obviously not Gaussian distributed but however not 
clearly dominated by single transient signals are separated as NC3. Time series with 
clearly visible transient signals are observed to exhibit in general a peak factor larger than 
2 and are classified as NC4. 

4.5 Classification of synthetic data 

The 12688 4 hours long synthetic time series (1586 Gaussian time series filtered in 8 
frequency ranges) are now classified to test the proposed time series classification. The 
noise class distributions for the synthetic data set in the 8 frequency ranges are given in 
percent in Table 4.3. Furthermore, the amount of time series accepted (0) and rejected (1) 
by the chi-square goodness of fit test (χ2-test) with the null hypothesis, that the time series 
are Gaussian distributed, are given in Table 4.3. 

In the frequency ranges above 1 Hz all time series (100%) are classified as NC1. 
Furthermore more than 94% of the time series filtered in the frequency ranges 1-25 Hz 
and 25-45 Hz are identified as Gaussian distributed (0) by the χ2-test. Minor deviations 
from the Gaussian distribution occur increasingly in the frequency ranges below 0.25 Hz. 
This effect is indicated by the decreasing amount of time series classified as NC1 from 
100% (1-25 Hz) to 5% (0.008-0.04 Hz). Concurrently, the amount of time series identified 
as Gaussian distributed (0) by the χ2-test decreases from 95% to 0%. The difference 
between the numbers of time series classified as NC1 and identified as Gaussian 
distributed by the χ2-test is significant, especially in the frequency ranges below 0.25 Hz. 
This demonstrates that the proposed classification is not as strict as the χ2-test by 
identifying time series as Gaussian distributed. This is not critical as the χ2-test is known 
to increasingly reject the null hypothesis for in fact acceptable distributions at large sample 
sizes (Bull et al., 1992). This disadvantageous high sensitivity occurs for time series with 
1.44 million samples. Nevertheless, the increasing occurrence of small deviations from the 
Gaussian distribution towards lower frequencies is present and resolved by the increasing 
amount of time series classified as NC2. In the frequency range between 0.04 Hz and 
1 Hz more than 98% of the time series are classified as NC1 or NC2. This indicates that 
the deviations from the Gaussian distribution are rather small. Nevertheless, the power to 
resolve originally Gaussian distributed seismic noise reliably as NC1 after the filtering is 
decreased in the frequency ranges below 0.25 Hz. Furthermore, the classification test 
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reveals significant deviations from the Gaussian distribution in the lowest frequency range 
0.008-0.04 Hz. Only 70.9% of the time series are classified as NC1 or NC2, leaving 29.1% 
with larger deviations from the Gaussian distribution. Most of the time series with larger 
deviations from the Gaussian distribution are classified as NC6 (24%). This is observed to 
be due to differences between the absolute upper and lower boundaries of the 95%-
interval that are larger than 4.7% (see SI95 in Table 4.2). 

Frequency 

band in Hz 

Noise class distribution in % 

Hypothesis of 

statistical test in 

% 

NC1 NC2 NC1+NC2 NC3 NC5 NC6 0 1 

0.008-0.04 4.9 66 70.9 3.7 1.4 24 0 100 

0.04-0.09 35.8 63.1 98.9 0.8  0.3 0 100 

0.09-0.18 73 27 100    7.3 92.7 

0.18-0.25 77.7 22 99.7 0.3   31 69 

0.25-0.6 98.2 1.8 100    72.4 27.6 

0.6-1 99.7 0.3 100    85.7 14.3 

1-25 100 0 100    94.3 5.7 

25-45 100 0 100    95.4 4.6 

Table 4.3: Results of the classification test with synthetic Gaussian noise. 
The 1586 time series generated with a random number generator were filtered in the 8 used frequency 
ranges and afterwards classified by the time domain classification. The amount of time series classified as 
NC1 decreases towards lower frequencies. On the right side of the table the results of a chi-square 
goodness of fit test (χ

2
-test) are shown. Due to the minor but increasing deviations from the Gaussian 

distribution the amount of time series rejected by the test is significantly increasing towards lower 
frequencies. The χ

2
-test is very sensitive to smallest deviations from the theoretical distribution due to the 

large sample size of the time series with more than 1 million samples. 

 

A second classification test with longer Gaussian distributed time series of 16 hours 
duration was conducted by the author to investigate this effect. This second synthetic test 
reveals that more than 99% of the longer time series are classified as NC1 or NC2 in all 
frequency ranges. This result indicates that the occurrence of larger deviations in the 
frequency range 0.008-0.04 Hz is most probably related to the shorter time series length 
of 4 hours. Nevertheless, an increasing occurrence of small deviations from the Gaussian 
distribution (NC2) towards lower frequencies is also observed with the longer time series. 

Concluding, the noise class distributions for time series of 4 hours are biased in the lowest 
frequency range 0.008-0.04 Hz. The increased occurrence of larger deviations from the 
Gaussian distribution is related to the length of the time series and may be furthermore 
influenced by the filtering. In the frequency range between 0.04 Hz and 0.25 Hz 
differences between time series classified as NC1 and NC2 are less significant than for 
the higher frequency ranges and should not be used for an interpretation. Therefore, the 
amount of time series classified as NC1 or NC2 is additionally given in the noise class 
distributions in Table 4.3 (synthetic data) and the tables for measured data in chapter 5. 
Nevertheless, the rather small deviations from the Gaussian distribution of time series 
classified as NC2 are acceptable in terms of the quantification and can be assumed to be 
acceptable for most applications of seismic noise like H/V or seismic interferometry. 
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4.6 Summary of chapter 4 

The time series classification introduced in this chapter uses ratios between time series 
amplitude intervals as well as time series percentiles to identify deviations of a time series 
distribution from the Gaussian distribution with high sensitivity. The ratio between the 
99.73% amplitude interval and the 95.45% amplitude interval is introduced as the quantity 
peakfactor. The peakfactor (pf) equals 1.5 in the case of a Gaussian distributed time 
series and increases/decreases with increasing/decreasing kurtosis of the time series. 

The time series classification is capable to identify different types of corrupt time series 
(e.g. technical problems with the sensor). Regarding the non-corrupt time series six noise 
classes are introduced to classify the typically observed deviations of seismic noise time 
series from the Gaussian distribution. Gaussian distributed time series are classified as 
noise class 1 (NC1). Non-Gaussian but symmetric time series are classified as NC2-NC5. 
Time series which exhibit determinable but rather small and unspecific deviations from the 
Gaussian distribution (pf 1.5±0.1) are classified as noise class 2 (NC2). Time series with a 
gentle peaked histogram in comparison to the Gaussian distribution (1.6<pf≤2) due to few 
transient signals are classified as noise class 3 (NC3). A more pronounced peakedness of 
the histogram (pf>2) results in a classification of the time series as noise class 4 (NC4). 
Symmetric time series with a flattened histogram in comparison to the Gaussian 
distribution (pf<1.4) are classified as noise class 5 (NC5). All time series which are not 
identified as symmetric time series are classified as noise class 6. 

The influence of the applied band pass filters and the time window length on the time 
series classification is evaluated with a data set of synthetic time series. A time window 
length of at least 200 times the longest contained period is recommended to ensure an 
unbiased statistical time domain analysis. 

The time series classification is applied in the next chapter to analyse the statistical 
properties of the urban seismic noise in Bucharest. In chapter 6 the time series 
classification is used to introduce an automated data selection to the calculation of 
seismic noise cross-correlation functions for the estimation of Green‟s functions. 
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5 Analysis of urban seismic noise 

The efforts which are undertaken concurrently in seismology to turn ambient seismic noise 
into signal help to overcome obstacles hampering established methods of active source 
and passive earthquake seismology (see chapter 2). At the same time the social and 
economical importance of seismic hazard assessment and mitigation in (mega)cities is 
rapidly increasing due to the exploding urbanisation, especially close to major fault 
systems (United Nations, 2006; Montgomery, 2008). Site effect analysis, wave 
propagation scenarios and early warning concepts are high-priority issues for such urban 
regions. Therefore, the number of passive seismic measurements, such as the URS 
project in the metropolitan area of Bucharest (section 3.1), increases with the aim to 
record ambient seismic noise in urban environments (e.g. Milana et al., 1996; Scherbaum 
et al., 2003; Fäh et al., 2008). These recordings can provide the required information for 
seismic hazard assessment. Another important task affected by urban seismic noise is the 
seismological monitoring of geothermal power plants which are increasingly installed in 
densely populated areas to be economically successful (Giardini, 2009; Groos & Ritter, 
2010). 

Seismic noise in cities is a complex superposition of seismic signals emitted by man-made 
(e.g. traffic, industry) and natural (wind-, ocean wave- or earthquake-induced tremor) 
seismic sources (Groos & Ritter, 2009). The high temporal and spatial variability of the 
urban seismic noise (USN) is a fact which must be addressed by all methods utilising 
seismic noise (see section 2.3) or hampered by seismic noise (e.g. monitoring of induced 
micro-earthquakes). A good knowledge of the utilised seismic noise wave field is 
necessary in every individual case as recalled and demanded also by Bonnefoy-
Claudet et al. (2006a). 

In this chapter a detailed discussion of the broad-band USN in the metropolitan area of 
Bucharest is provided which improves also the understanding of the urban seismic noise 
in general. The data set of the URS project is a rare opportunity to analyse the urban 
seismic noise continuously in a broad frequency range (0.008-45 Hz) and over a long time 
(9 months). Typical seismic measurements in large cities are short campaigns (hours to 
days) with short-period sensors (> 1Hz) to obtain information about the underground close 
to the surface using seismic noise array techniques (section 2.3.2) or the H/V technique 
(2.3.1). 

The temporal variability and the typical sources of the USN in Bucharest are discussed in 
section 5.1 of this chapter with the help of a time-frequency analysis. Purpose of the time-
frequency analysis is the identification of suitable frequency bands and time windows for 
the consecutive analysis with the time series classification introduced in chapter 4. The 
frequency bands and time windows as well as the selection of 11 working days for the 
further analysis are discussed in section 5.2. The temporal and spatial variability of the 
vertical-component USN in Bucharest is discussed in detail with the help of the selected 
11 working days in section 5.3. The purpose of the selection is to analyse predominantly 
the USN caused by sources in the metropolitan area with a focus on man-made sources. 
Therefore working days are selected which are not affected by global seismicity and as far 
as possible not by storm-induced ocean-generated microseism originating from the 
Mediterranean and Black Sea. The analysis of the complete URS data set with the time 
series classification including the horizontal component USN is discussed afterwards in 
section 5.4. The analysis of such a large and complex noise classification data set by an 
analyst involves a considerable effort. The next following step is therefore the analysis of 
an obtained seismic noise classification data set with machine learning and pattern 
recognition techniques to support the human analyst. A first feasibility study with the Self-
Organizing Map (SOM) technique, which is a neural network technique, is presented in 
section 5.5. The chapter is concluded with a short summary in section 5.6. 
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5.1 Time-Frequency analysis 

To identify the frequency-dependent behaviour of the time-variable sources of the seismic 
noise long-term spectrograms are calculated for time-series of up to 28 days duration 
(Figure 5.1a and b). The spectrograms are used for the preceding frequency-time analysis 
to determine reasonable frequency bands and time windows for the time domain 
classification and quantification. The long-term spectrograms are calculated from 
continuous seismic time series sampled at 100 Hz. Before filtering means and linear 
trends are removed. All data are filtered with a 4th order Butterworth band pass filter in the 
time domain between the fundamental frequency of the seismometer (0.008, 0.01, 0.03 
and 0.2 Hz respectively, see section 3.1) and the Nyquist frequency (50 Hz) of the 
recorder system. Actually, the spectrograms are limited to an upper frequency of 45 Hz 
due to the steep cut-off around 45 Hz caused by the decimation filter of the data-logger. 

After filtering power spectral density (psd) spectra for consecutive time windows with a 
length of 480 s are computed using the adaptive multiple taper method (Percival & 
Walden, 1998) with a time-bandwidth product (NW) of 3. The effective frequency 
resolution of the obtained spectra is 0.0065 Hz. To furthermore reduce the noise of the 
psd estimates and to reduce the amount of data points 4 consecutive psd spectra are 
averaged for the 28 days long-term spectrograms resulting in a temporal resolution of 32 
minutes for the spectrograms. For the shorter spectrogram of 7 days (Figure 5.1c) 2 
consecutive psd spectra are averaged to obtain a temporal resolution of 16 minutes. 
Every averaged psd spectrum is normalized with the maximum power spectral density of 
all psd spectra belonging to the complete spectrogram. 

To avoid confusion between seismic waves induced by earthquakes and signals induced 
by other noise sources, expected P-wave onset times for maybe detectable earthquake 
waves are calculated using iasp91 (Kennett & Engdahl, 1991) and marked in the 
spectrograms as stars. To identify all earthquakes potentially observable at the URS 
network, the NEIC (USGS, http://neic.usgs.gov) and ROMPLUS (Oncescu et al., 1999) 
catalogues are analysed for distant (distance Δ>30°), regional (30°≥Δ>5°) and local (5°≥Δ, 
Vrancea subduction zone) earthquakes, respectively. All catalogued regional and local 
earthquakes are considered. The selection of potential time windows with teleseismic 
earthquake waves is done by conservatively estimated distance-magnitude relations 
based on the experience from previous experiments and a cross-check with the actual 
URS recordings (Table 5.1). In total 972 local, regional and distant earthquakes have to 
be considered, and their onset times are marked by red (local) and green (regional and 
distant) stars on the time axes of the spectrograms. 

Δ /° Catalogue Magnitude Mw Events # 

 Δ ≤ 5 Romplus all 59 

5 < Δ ≤ 30 NEIC all 38 

30 < Δ ≤ 100 NEIC > 4.9 680 

100 < Δ  NEIC > 5.4 195 

Table 5.1: Selection criteria for earthquakes which may be observed at the URS network. 
These criteria are applied to the catalogues ROMPLUS (Oncescu et al., 1999 and NIEP (http://www.infp.ro/ 
eqsinfo.php)) for local earthquakes in the Vrancea subduction zone and NEIC (http://neic.usgs.gov) for 
regional and teleseismic earthquakes between 2003-Oct-01 and 2004-Sep-01. Δ is distance in degree. 
 

The frequency-time analysis for the „microtremor‟ (>1 Hz, see section 2.2) is discussed 
with Figure 5.1a in section 5.1.1. The lower frequencies are discussed with Figure 5.1b 
and c in the sections 5.1.2 (transitional range, 0.6-1 Hz) and 5.1.3 („microseism‟, <0.6 Hz). 
In Figure 5.1c the discussed influences of the dominating natural sources on the seismic 
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noise below 2 Hz are marked with numbers. Based on the frequency-time analysis several 
frequency bands and time windows per day are selected for the statistical time domain 
analysis which are discussed in section 5.2. 

5.1.1 Urban seismic noise above 1 Hz (‘microtremor’) 

The long-term spectrogram of the vertical ground motion velocity in Figure 5.1a reveals a 
regular pattern of high (red to yellow) psd at daytimes and low (green to blue) psd at 
nighttimes in the city centre at site URS12. The psd difference between day and night in 
the frequency range 1-25 Hz varies from 2-25 dB at the station sites in the metropolitan 
area and is 11 dB in spatial average. The nightly psd lows of ~5 hours are much shorter 
than the daily highs of 19 hours. This distinct daily pattern demonstrates the dominant 
influence of human activity on the urban seismic noise in the frequency range 1-25 Hz. 
Besides this daily pattern, the USN also contains a weekly pattern at most locations in the 
metropolitan area. Working days with high psd can be distinguished from weekends with 
reduced USN. The weekends are marked with bars at the top in Figure 5.1a. In the 
frequency range above 1 Hz traffic-induced seismic waves are excited by road traffic 
(Hao & Ang, 1998; Coward et al., 2003) and trains (Fiala et al., 2007; Chen et al., 2004) or 
can be generated by traffic induced bridge oscillations (Chen et al., 2007). 

These contribute significantly to USN in a broad frequency range from ~1 Hz to more than 
45 Hz with maximum amplitudes between 1-10 Hz. Long lasting and very narrow-band 
signals above 1 Hz, recognised as horizontal lines of increased psd in the spectrograms 
(e.g. 16.7 Hz) are sinusoidal-type seismic waves most probably excited by rotating 
machinery at sharp frequencies. Examples are electrical motors and gear boxes of 
industrial machinery (Plesinger & Wielandt, 1974; Bokelmann & Baisch, 1999; Kar & 
Mohanty, 2006), power generators and building services machinery (Coward et al., 2005). 
Due to gear boxes and frequency converters such sinusoidal signals can be observed in 
the whole frequency range from 1 Hz up to the power frequency (50 Hz) but 
predominantly around 12.5 Hz (8 poles engines), 16.67 Hz (6 poles), 25 Hz (4 poles) and 
50 Hz (2 poles). A significant drop of psd by up to 20 dB can be observed above 25 Hz 
towards higher frequencies at most sites in the Bucharest area. Therefore, two frequency 
ranges (1-25 Hz and 25-45 Hz) are chosen for the statistical analysis to get a deeper 
insight into the temporal and spatial changes of amplitude and statistical properties of the 
high-frequency USN. 

5.1.2 Urban seismic noise 0.6-1 Hz (natural and man-made sources) 

In contrast to the dominating man-made USN above 1 Hz, USN becomes more 
complicated towards frequencies below 1 Hz due to overlapping man-made and natural 
signals. In the frequency range 0.6-1 Hz both man-made and natural sources contribute 
significantly to the USN in Bucharest. One of the most powerful noise sources observed in 
the frequency range 0.6-1 Hz are seismic waves generated by local wind 
(Withers et al., 1996; Ritter & Groos, 2007) and wind-induced oscillations of buildings and 
structures (Ward & Crawford, 1966). In Figure 5.1c the correlation between the noise psd 
at station site URS21 in the outskirts of Bucharest and the wind velocity is displayed. For 
wind velocities exceeding 3-4 m/s increased noise amplitudes are observed between 
0.6 Hz and 1.2 Hz. The same increase of noise amplitudes can be observed in the inner 
city area (compare Figure 5.1c with the last week in Figure 5.1b). At the same time, the 
influence of man-made seismic noise can still be observed due to the regular pattern of 
higher psd at daytimes and lower psd at nighttimes down to 0.6 Hz. Therefore the 
frequency range 0.6-1 Hz is chosen for the time domain analysis to cover the transition 
between microtremor and microseism and the frequency band dominantly influenced by 
wind-induced microseism. 
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Figure 5.1: Spectrograms of the vertical-component USN in Bucharest during March 2004. 
(a) The spectrogram displays the psd in decibel of the USN (2-45 Hz) at station site URS12 in the city centre 

of Bucharest in the first 4 weeks of March 2004. The observed USN at this site is typical for the inner city 
area of Bucharest. Stars at the bottom indicate onset times of world-wide (green stars) and local (red stars) 
earthquakes that potentially could be observed in Bucharest. Weekends are marked with bars on the top. 
Periodic signals excited by electrical machines with discrete frequencies can be recognised as horizontal 
lines at distinct frequencies (e.g. 16.7 Hz and 30 Hz). The effective frequency resolution of the spectrogram is 
0.0065 Hz and the temporal resolution is 32 minutes. (b) Same Spectrogram as in (a), but the lower 
frequency range 0.008-2 Hz is displayed. (c) Correlation of wind with the vertical-component urban seismic 

noise. The spectrogram displays the USN (0.008-2 Hz) at station site URS21 in the southern outskirts of 
Bucharest in the last week of March shown also in (a) and (b). The hourly averaged wind velocity in the 
metropolitan area of Bucharest is shown as overlay. Selected events are outlined 1: primary ocean-
generated microseism originating in the North Atlantic Ocean 2: secondary ocean-generated microseism 
originating in the North Atlantic Ocean 3: ocean-generated microseism originating in the Mediterranean and 
the Black Sea 4: seismic waves excited by earthquakes 5: wind induced seismic noise. 
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5.1.3 Urban seismic noise below 0.6 Hz (‘microseism’) 

The daily pattern vanishes in the frequency band 0.09-0.6 Hz due to the dominance of the 
ocean-generated microseism (Figure 5.1b and c). Temporal changes of the psd reaching 
about 20 dB in the frequency range 0.09-0.6 Hz are not unusual. Numerous of such 
events with complex frequency-dependence were observed during the URS experiment. 
These events persist from several hours up to several days and are observed 
concurrently at all sites in the metropolitan area. Such dynamic microseismic events in the 
frequency range 0.09-0.6 Hz, independent from daytime and observed in near-coastal 
regions, are well known to be secondary (double-frequency) ocean-generated microseism 
(Bromirski & Duennebier, 2002; Bonnefoy-Claudet et al., 2006a; Bromirski et al., 1999). 
To confirm this explanation array processing (FK analysis, see section 2.3.2) is applied at 
the URS stations for several of the observed microseism events. In the frequency band 
0.18-0.6 Hz Rayleigh waves are observed which approach from several recurring 
backazimuth (BAZ) ranges corresponding to the nearby Black Sea (minimum distance 
200 km, BAZ 60°-150°), Marmara Sea (minimum distance 450 km, BAZ 150°-170°) and 
Mediterranean Sea (minimum distance 450 km, BAZ 170°-280°). The FK analysis for the 
microseismic event on March 23rd (marked with 3 in Figure 5.1c) is shown in Figure 5.2b. 
The waves approach from a BAZ of ~200° and with a slowness of ~73 s/° typically for 
short-period Rayleigh waves in sediments. Further narrowband microseism events (0.09-
0.18 Hz, marked with 2) can be observed at lower frequencies next to the microseismic 
events above 0.18 Hz, originating from the Mediterranean and Black Sea. The FK 
analysis reveals these microseismic events as intermediate-period (slowness ~30 s/°) 
Rayleigh waves approaching from north-western and northern directions with BAZ 
between 270-50° (Figure 5.2a). Very often narrowband microseismic events with half the 
frequency (0.04-0.09 Hz, marked with 1) but the same BAZ can be observed, too. The 
most probable source of these microseism events are primary and secondary (double-
frequency) ocean-generated microseism generated by the swell of distant but very strong 
storms (Bromirski & Duennebier, 2002) over the North Atlantic Ocean (NAO) and the 
northern seas. 

 
Figure 5.2: Frequency-wave number (FK) analysis of vertical-component USN in Bucharest. 
The FK analysis is applied to 15 minutes of seismic noise in the frequency ranges (a) 0.09-0.18 Hz and (b) 

0.18-0.3 Hz. In the frequency range 0.09-0.18 Hz Rayleigh waves approaching from NNW directions (BAZ 
~330°) with a slowness of ~30 s/° are observed. These Rayleigh waves are most probably secondary ocean-
generated microseism originating from the northern seas. In the frequency range 0.18-0.3 Hz Rayleigh waves 
approaching from SSW directions (BAZ ~200°) with a slowness of ~73 s/° are observed. These Rayleigh 
waves are most probably secondary ocean-generated microseism originating from the Mediterranean seas. 
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Earthquake waves contribute to the USN in Bucharest in the observable frequency range 
from 8 mHz to ~25 Hz. Below 0.09 Hz they are the most powerful seismic energy in 
Bucharest (marked with 4). Surprisingly, also large variations with daytime can be 
observed at frequencies below 0.04 Hz at several inner city sites in Bucharest as shown 
for site URS12 in Figure 5.1b. The USN in Bucharest below 0.09 Hz is a dynamic 
superposition of seismic waves generated by the oceans, wind, earthquakes and man-
made signals. 

5.2 Analysed frequency bands and time windows 

Based on the analysis of the long-term spectrograms finally 8 different frequency ranges 
are chosen and summarised with their specific dominating noise sources in Table 5.2. The 
different frequency ranges between 0.04 Hz and 0.6 Hz are selected to reflect the 
frequency bands of the distant primary (0.04-0.09 Hz) and secondary (0.09-0.18 Hz) as 
well as the regional (0.18-0.6 Hz) ocean-generated microseism. The frequency band of 
the regional ocean-generated microseism originating from the Mediterranean and Black 
Sea is divided into the two frequency ranges 0.18-0.25 Hz and 0.25-0.6 Hz to distinguish 
between the permanent and the storm-induced ocean-generated microseism. 

Frequency /Hz seismometer types Dominating noise sources 

0.008 - 0.04 STS-2 wind, human activity, earthquakes 

0.04 - 0.09 STS-2, G40T/3ESP 
ocean-generated microseism (Atlantic 
Ocean), human activity, wind, earthquakes 

0.09 - 0.18 STS-2, KS-2000, G40T/3ESP 
ocean-generated microseism (Atlantic 
Ocean) (Mediterranean and Black Sea) 

0.18 - 0.25 STS-2, KS-2000, G40T/3ESP 
ocean-generated microseism (Atlantic 
Ocean) (Mediterranean and Black Sea)  

0.25 - 0.6 all 
ocean-generated microseism 
(Mediterranean, Marmara and Black Sea) 

0.6 - 1 all wind, human activity 
1 - 25 all human activity (traffic, industry,  ) 

25 - 45 all human activity (traffic, industry,  ) 
Table 5.2: Frequency ranges for the statistical time-series analysis of urban seismic noise. 
Depending on the frequency range, recordings from different seismometers are used and different noise 
sources dominate the urban seismic noise in Bucharest. 
 

A time window length of 4 hours is selected to cover the time window with the lowest 
constant noise conditions at nighttime which is observable from the time-frequency 
analysis between 0-4 local time (EET). Furthermore, every day can be divided into six 
consecutive 4 hours time windows covering night (0-4 EET), morning (4-8 EET), the 
working hours (8-12, 12-16, 16-20 EET) and the evening (20-24 EET) for the analysis of 
the complete data set (see sections 5.4 and 5.5). For the analysis of the selected working 
days (see below and section 5.3) only three daily 4 hours time windows are selected 
between 0-4, 8-12 and 13-17 EET. This is a trade-off to be able to compare the USN at 
nighttime and in the working hours, to analyse the consistency of the USN during the 
working hours and to find several working days which are not affected by earthquake 
waves, strong storm-induced ocean-generated microseism as well as strong wind in all of 
the three daily time windows. 

The influence of the applied band pass filters on the statistical properties of the seismic 
noise time series increases with decreasing lower corner frequency and decreasing time 
window length (see details in section 4.5). At a time window length of 4 hours the 
classification of the time series in the lowest frequency band 0.008-0.04 Hz is already 
biased by the filtering. A time window length of at least 200 times the longest contained 
period is recommendable to ensure an unbiased statistical time domain analysis. A 
considerable and reasonable shortening of the time window length is possible, if the 
lowest frequency band 0.008-0.04 Hz would be dismissed. Nevertheless, the time window 
length of 4 hours is selected to cover the whole span of time with the lowest constant 
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noise conditions at night and the frequency band 0.008-0.04 Hz is included in the 
discussion of the selected working days in section 5.3. 

As a first step the vertical-component USN is analysed at 11 working days distributed over 
the time span (~285 days) of the URS data set (Table 5.3). Earthquakes and ocean-
generated microseism are well known sources of seismic energy (see chapter 2) whose 
influence on the USN is illustrated very well by the time-frequency analysis (Figure 5.1). 
The task of the first noise classification analysis is to reveal the temporal and spatial 
variability of the USN due to local sources in the metropolitan area and with a focus on 
man-made sources. Therefore working days are selected which are not affected by 
seismic waves excited by local, regional or teleseismic earthquakes (see Table 5.1) as 
well as storm-induced ocean-generated microseism originating from the Mediterranean 
Sea and the Black Sea. Nine of these working days exhibit average wind velocities below 
3 m/s in all three daily time windows. Two more working days are selected for comparison 
with moderately increased wind velocities in the forenoon hours (8-12 EET) and very large 
wind velocities in the afternoon hours (13-17 EET). These days are included to analyse 
the influence of the wind induced seismic noise. 

In total 1709 consecutive four hour time windows between 27th October 2003 00:00 EET 
and 7th August 2004 00:00 EET are processed for the analysis of the complete URS data 
set in sections 5.4 and 5.5. The time window 28th March 2004 00-04 EET is excluded from 
the analysis due to the change from winter to summer time in this time window. 

 Wind velocities (min/max/mean) in m/s 

Date Weekday Night Morning Afternoon 

  00-04 EET 08-12 EET 13-17 EET 

Working days, average to low wind velocities 

2003-12-02 Tuesday 2/3/2.8 2/2/2 1/2/1.2 

2003-12-15 Monday 2/4/3 2/3/2.5 1/2/1.5 

2004-02-02 Monday 2/2/2 0/2/1.5 1/3/2 

2004-02-03 Tuesday 2/4/2.5 1/2/1.2 1/2/1.5 

2004-02-19 Thursday 1/1/1 0/1/0.5 2/2/2 

2004-04-01 Thursday 0/1/0.5 0/2/1 1/2/1.5 

2004-06-23 Wednesday 1/3/1.5 1/2/1.5 1/1/1 

2004-06-24 Thursday 1/1/1 1/1/1 1/2/1.8 

2004-07-23 Friday 0/0/0 0/0/0 0/1/1.5 

Working days, high wind velocities 

2004-03-25 Wednesday 2/2/2 2/5/3.8 5/9/6.8 

2004-05-07 Friday 1/2/1.8 0/5/2.8 7/8/7.8 

Table 5.3: All working days selected for the first noise classification analysis. 
Additionally, the daily time windows (Eastern European Time, EET) selected for the noise classification 
are given with the corresponding minimum, maximum and mean wind velocities (Institutul National de 
Meteorologie, Hidrologie INMH, Romania www.inmh.ro). The wind velocities are given in m/s. 
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5.3 Analysis of selected working days 

The results of the time series classification of the vertical-component USN at the 11 
selected working days with low and increased wind velocities are presented in the 
following including a detailed discussion of the spatial variability of the USN in Bucharest. 
The noise class distributions in the 8 selected frequency bands (Table 5.2) for the 9 
working days with low wind conditions (in total 5656 time series) are shown in Table 5.4 
and discussed in detail in the sections 5.3.1 to 5.3.3. 

Noise class distribution in % 

Freq. 

band /Hz 

Time 

(EET) 
# NC1 NC2 

NC1 

NC2 
NC3 NC4 NC5 NC6 NC11-13 

0.008-0.04 0-4 162 0.62 5.56 6.17 20.37 16.05 1.23 52.47 3.70 

0.008-0.04 8-12 161 0 8.07 8.07 13.66 10.56 0.62 55.90 11.18 

0.008-0.04 13-17 162 0 6.17 6.17 8.02 6.79 0.62 70.99 7.41 

           
0.04-0.09 0-4 186 11.29 39.78 51.08 20.43 24.73 0 1.61 2.15 

0.04-0.09 8-12 185 4.32 20.00 24.32 23.24 37.84 0 6.49 8.11 

0.04-0.09 13-17 186 2.69 19.89 22.58 25.27 43.01 0 4.84 4.30 

           
0.09-0.18 0-4 249 52.61 32.93 85.54 7.63 4.82 0 0.80 1.20 

0.09-0.18 8-12 247 31.58 21.05 52.63 16.19 23.08 0 0.81 7.29 

0.09-0.18 13-17 248 32.26 25.81 58.06 14.52 22.98 0 0 4.44 

           
0.18-0.25 0-4 249 71.89 23.69 95.58 2.01 1.20 0 0 1.20 

0.18-0.25 8-12 247 51.82 21.86 73.68 12.55 6.48 0 0.40 6.88 

0.18-0.25 13-17 248 57.26 21.37 78.63 9.68 7.26 0 0 4.44 

           
0.25-0.6 0-4 261 80.08 14.94 95.02 1.92 1.92 0 0 1.15 

0.25-0.6 8-12 259 66.80 5.41 72.20 11.58 10.42 0 0.39 5.41 

0.25-0.6 13-17 260 65.00 14.23 79.23 11.15 5.77 0 0 3.85 

           
0.6-1 0-4 261 16.09 20.31 36.40 54.79 7.66 0 0 1.15 

0.6-1 8-12 259 38.22 22.78 61.00 27.80 6.18 0 0 5.02 

0.6-1 13-17 260 35.00 26.54 61.54 27.31 7.69 0 0 3.46 

           
1-25 0-4 261 0 0.77 0.77 11.88 83.14 1.15 1.92 1.15 

1-25 8-12 259 0 0.39 0.39 38.22 54.44 0.39 0.39 6.18 

1-25 13-17 260 0 0 0 35.00 60.77 0.00 0.00 4.23 

           
25-45 0-4 261 1.53 6.90 8.43 18.01 65.52 3.83 1.92 2.30 

25-45 8-12 259 0 0.39 0.39 10.42 81.47 0.77 3.09 3.86 

25-45 13-17 260 0 0 0 10.77 82.69 0.77 2.69 3.08 

Table 5.4: The noise class distributions for the vertical-comp. USN in Bucharest (selected working days) 

The table displays the NC distributions in the 8 frequency ranges (Table 5.2) in the night (0-4 EET), 
forenoon (8-12 EET) and afternoon (13-17 EET) hours of the 9 working days with low to moderate wind 
velocities (Table 5.3). The noise class distributions are given in percent related to the absolute number 
(third column, #) of analysed time series in the corresponding time window and frequency range. 

 

The approach to classify the seismic noise time series with 6 noise classes proved to be 
reasonable. Around 42% of the analysed time series are classified as NC1 or NC2 and 
can supposed to be Gaussian or nearly Gaussian distributed (Table 5.4). The most 
common larger deviations from the Gaussian distribution are a minor (NC3) or distinct 
(NC4) positive kurtosis due to transient signals accounting for 47% of the analysed time 
series. Less than 7% are classified as NC5 or NC6 due to a negative kurtosis and 
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asymmetric amplitude intervals respectively. In total 4% of the time series are classified as 
corrupt. The amount of time series classified as corrupt (NC11-NC13) differs in the 
different frequency ranges due to the frequency dependent influence of single extreme 
transients. 

In all frequency bands above 0.04 Hz systematic differences between the noise class 
distributions of day- and nighttime are observed and discussed below. The results 
obtained from the morning (08-12 EET) and afternoon (13-17 EET) hours are quite similar 
and summarised as „daytime‟ results in the following. Most Gaussian distributed time 
series (NC1 and NC2) are observed in the frequency bands dominated by ocean-
generated microseism between 0.09-0.6 Hz. The amount of time series with larger 
deviations from the Gaussian distribution increases towards lower and higher frequencies. 

5.3.1 Microtremor (1-45 Hz) 

In Figure 5.3 the classification and noise amplitudes (ranges of the 68%-intervals) of the 
USN (1-25 Hz) (top) and USN (25-45 Hz) (bottom) are displayed for daytime (left) and 
nighttime (right). Discrete transients (NC3 and NC4, diamonds in Figure 5.3) dominate the 
USN above 1 Hz at day- and nighttime (Table 5.4). Due to these most probably man-
made transient noise signals the Central Limit Theorem (CLT) is not applicable to the 
USN (1-45 Hz) at the inner city sites. Furthermore, a small amount of time series (<4%) 
with a negative kurtosis (NC5) can be observed for the USN (1-45 Hz) especially at 
nighttime due to dominating periodic signals. This observation can be explained with 2- to 
8-pole electrical motors operating at frequencies above 10 Hz which are widely used in 
industry and housing. But also distinct differences between the noise class distributions 
for the USN (1-25 Hz) and USN (25-45 Hz) can be observed. The total amount of time 
series with a distinct positive kurtosis (NC4) reduces from nighttime to daytime at 1-25 Hz. 
This behaviour indicates that the convergence to the Gaussian distribution is enhanced at 
daytime due to the numerous overlapping noise signals and their amplitude distribution. 
The decreased number of transients at nighttime results in lower noise amplitudes but a 
more distinct positive kurtosis of most time series. The inverse effect is observed at 25-
45 Hz. The influence of transient signals increases from night- to daytime in contrast to 
USN(1-25 Hz). This is indicated by a higher amount of time series classified as NC4 at 
daytime and the observation of a few time series (~7%) with only small deviations from the 
Gaussian distribution (NC2) at nighttime. Also the amount of asymmetric time series 
(NC6) increases from night- to daytime for the USN(25-45 Hz), indicating that few time 
series are dominated by asymmetric signals. 

The noise amplitudes in the frequency ranges 1-25 Hz and 25-45 Hz increase towards the 
city centre at day- and nighttime (Figure 5.3). The difference between the rural areas 
outside the city (URS06) and the city centre (URS12) reaches up to 16 dB at daytime and 
30 dB at nighttime. Inside the inner city area a heterogeneous spatial distribution of the 
highest noise amplitudes at day- and nighttime is observed. The amplitude increase 
corresponds in principle very well with the increasing population density towards the lively 
city centre (Figure 3.1) with increased car, bus and tram traffic. However, at some sites 
distinct higher amplitudes are observed. Except the city centre sites (URS09, URS12, 
URS29) all sites with high amplitudes (URS32, URS25, URS13, URS02, URS04) are in 
vicinity (<500 m) of busy heavy industry areas. At station sites in vicinity of industrial areas 
the concentration of higher amplitudes seems more pronounced for the USN (25-45 Hz) 
than for the USN(1-25 Hz). This observation might be biased due to the higher attenuation 
in the frequency range 25-45 Hz compared to lower frequencies. Therefore, it can be 
expected that preferably high-frequency signals excited nearby the instruments are 
observed in the frequency range 25-45 Hz. Especially the time series of USN (25-45 Hz) 
classified as NC5 or NC6 may be dominated by man-made signals excited inside the 
buildings where the instruments were located (e.g. air conditioner, heating systems, water 
pumps, footsteps,  ). 
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Figure 5.3: Maps with seismic noise amplitudes (colour) and classes (symbols) at the URS station sites. 
Displayed are the noise amplitudes (range of the 68%-interval) of the ground motion velocity in nm/s in the 
frequency range 1-25 Hz (top) on 2004-Feb-03. (a) daytime (13-17 EET, 1-25 Hz). (b) nighttime (00-04 EET, 
1-25 Hz) and in the frequency range 25-45 Hz (bottom) on 2004-Feb-03. (c) daytime (13-17 EET, 25-45 Hz). 
(d) nighttime (00-04 EET, 25-45 Hz). Stations URS06, URS17 and URS19 (outside the city area, see Figure 

3.1) are displayed in separate boxes at the edges. Surface gridding was done by GMT 
(www.gmt.soest.hawaii.edu) with the continuous curvature surface gridding algorithm (Smith & Wessel, 1990) 
under a tension of 0.1. This interpolation preserves measured amplitude values at the station sites. The lower 
limit of the interpolation output is 90 percent of the smallest measured noise amplitude. The upper limit is the 
largest measured noise amplitude. Between station sites interpolation effects may occur due to partly large 
inter-station differences in amplitude. Real noise amplitudes cannot be derived between station sites. These 
maps are mainly visualisation tools to analyse large amounts of output data and search for temporal and 
spatial variations. 

5.3.2 Transitional range (0.6-1 Hz) 

The USN (0.6-1 Hz) exhibits distinct day/night differences (average 5-8 dB, Figure 5.4 and 
Figure 5.5) and workday/weekend differences (average 3-4 dB, Figure 5.1b) on the 
vertical-component in the city centre. During daytime most time series are classified as 
NC1 or NC2 (~60%), indicating that the Central Limit Theorem (CLT) is applicable for 
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these time series due to numerous overlapping noise signals (Table 5.4). All time series 
with larger deviations from the Gaussian distribution exhibit a minor (NC3) or distinct 
(NC4) positive kurtosis. The amount of time series classified as NC1 or NC2 decreases 
significantly from ~60% at daytime to ~36% at nighttime. At the same time the amount of 
time series classified as NC3 increases from day- to nighttime. As for higher frequencies 
above 1 Hz, there are fewer signals contributing to USN at night. The superposition of a 
lower amount of different signals at night exhibits lower average noise amplitudes and is 
predominantly non-Gaussian distributed due to few strong transient signals emerging from 
the in general lower noise amplitudes in the metropolitan area. 

 
Figure 5.4: Maps with seismic noise amplitudes and classes at the URS station sites (0.6-1 Hz). 
Displayed are the noise amplitudes (range of the 68%-interval) of the ground motion velocity in nm/s in the 
frequency range 0.6-1 Hz on 2004-Feb-03. (a) daytime (13-17 EET). (b) nighttime (00-04 EET). 

 
During working days with low wind conditions (wind velocity <3m/s, e.g. 2004-Feb-03) the 
USN (0.6-1 Hz) amplitudes predominantly increase towards the inner city area. The 
amplitude behaviour displayed in Figure 5.4 demonstrates the higher level of man-made 
USN during the day in the inner city area (mean noise amplitudes of about 150-240 nm/s) 
versus the quieter period at night (about 80-100 nm/s). Excepted for this overall trend, the 
strongest man-made signals are often recorded in the vicinity of a busy industrial area 
south-east of the city centre at station site URS23. 

At all stations of the URS network (e.g. URS12 and URS21 in Figure 5.5) unusually large 
USN( 0.6-1 Hz) amplitudes are observed during the afternoon (13-17 EET) hours on 
March 25th and May 7th. This observation correlates well with the increased wind velocities 
larger than 5 m/s. 
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Figure 5.5: Seismic noise amplitudes and classes in the frequency range 0.6-1 Hz. 
Displayed are the noise amplitudes (range of 68%-interval) of the vertical ground motion velocity in nm/s for 
the 11 analysed days at nighttime (00-04 EET) (left) and daytime (13-17 EET) (right) for the two stations sites 
URS12 (top) and URS21 (bottom). The x-coordinate is in days after 2003-Oct-01, the start of the URS 
experiment. The noise classes are indicated by symbols (NC1 (circle), NC2 (square), NC3 (white diamond), 
NC4 (black diamond), NC5 (white triangle), NC6 (black triangle)). 

5.3.3 Microseism (0.04-0.6 Hz) 

Most of the analysed time series in the frequency ranges between 0.04 Hz and 0.6 Hz are 
dominated by ocean-generated microseism and classified as NC1 or NC2 showing only 
small deviations from the Gaussian distribution. Nevertheless, significant variations of the 
noise class distributions with daytime and frequency occur. Regarding the noise 
classification two major trends are observed in the frequency ranges between 0.04 Hz and 
0.6 Hz. First, the total amount of time series classified as NC1 or NC2 decreases from 
night- to daytime (Table 5.4). Second, the occurrence of larger deviations from the 
Gaussian distribution increases towards lower frequencies. 

Regarding the noise amplitudes no systematic amplitude differences between day- and 
nighttime are observed in the frequency range 0.09-0.6 Hz. As an example the noise 
amplitudes at the inner city site URS12 are given in Figure 5.6. At low frequencies 
(0.04-0.09 Hz) larger amplitude differences with daytime occur in the metropolitan area 
compared to the higher frequency ranges between 0.09 Hz and 0.6 Hz. Furthermore a 
trend towards a seasonal decrease of noise amplitudes is observed from winter to the 
summer months. This effect is possibly caused by the calmer weather conditions at the 
surrounding seas during summer. 
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Figure 5.6: Seismic noise amplitudes and classes for the vertical-component USN (0.04-0.6 Hz). 
Displayed are the noise amplitudes (range of 68%-interval) in several frequency ranges at station site URS12 
in the city centre at nighttime (00-04 EET) (left) and daytime (13-17 EET) (right). (a) USN(0.04-0.09 Hz). (b) 
USN(0.09-0.18 Hz). (c) USN(0.18-0.25 Hz). (d) USN(0.25-0.6 Hz). 

5.3.3.1 Frequency range 0.25-0.6 Hz 
The low human influence on USN (0.25-0.6 Hz) is shown by slight day/night differences of 
less than 3 dB at the URS sites on average (Figure 5.6d and Figure 5.7). The USN 
(0.25-0.6 Hz) noise amplitudes at nighttime vary between 600 nm/s and 100 nm/s from 
winter to summer in the inner city area. These dominant long-term temporal variations of 
noise amplitude are observed concurrently at all sites in the metropolitan area. The long-
period (several days) changes of noise amplitude without pronounced variations with 
daytime indicate the dominance of large scale (e.g. meteorological) processes on the 
USN(0.25-0.6 Hz) as observed from the frequency-time analysis. Spatial amplitude 
variations of the USN(0.25-0.6 Hz) within the metropolitan area are observed but less 
systematic and pronounced as for the higher frequencies above 0.6 Hz. Time series with 
deviations from the Gaussian distribution are predominantly observed at sites in the inner 
city area of Bucharest at daytime indicating a man-made influence on the USN 
(0.25-0.6 Hz). Larger deviations from the Gaussian distribution (NC3) are also observed in 
time windows with wind velocities larger than 5 m/s (Figure 5.7). Concurrently, the spatial 
variations of noise amplitudes in the metropolitan area increase significantly. Both 
observations indicate a spatially varying influence of wind on the USN (0.25-0.6 Hz) in the 
metropolitan area which deserves further analysis. 

5.3.3.2 Frequency range 0.09-0.25 Hz 
The temporal variations of noise amplitudes and statistical properties of the USN are very 
similar in the frequency ranges 0.09-0.18 Hz and 0.18-0.25 Hz. At nighttime 85-95% of the 
analysed time series are classified as NC1 or NC2 at working days with low wind 
conditions (Table 5.4). Towards daytime the amount of time series with larger deviations 
from the Gaussian distribution due to transient signals (NC3 and NC4) increases 
significantly, especially in both frequency bands. At daytime the amount of time series 
classified as NC3 or NC4 equals ~37% and ~17%, respectively. The long term variations 
of noise amplitudes are similar at all sites in the metropolitan area. Generally no 
significant changes of noise amplitude with daytime are observed at most sites in the 
metropolitan area (Figure 5.8a and b). Nevertheless, distinct variations of noise amplitude 
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with daytime are observed erratically at sites predominantly in the inner city area. As for 
the higher frequency range 0.6-1 Hz the occurrence of unusual large noise amplitudes 
and larger deviations from the Gaussian distribution are often observed simultaneously. 

 
Figure 5.7: South-North profiles of the seismic noise amplitudes and classes (0.25-0.6 Hz). 
The seismic noise amplitudes (range of 68%-interval) and noise classification (symbols) in the frequency 
range 0.25-0.6 Hz at day and night are displayed for two days with different wind conditions. (a) 2004-Feb-03 
at nighttime (00-04 EET) with a low average wind velocity of 2.5 m/s. (b) 2004-Feb-03 at daytime (13-17 EET) 
with a low average wind velocity of 1.5 m/s. (c) 2004-Mar-25 at nighttime (00-04 EET) with a low average wind 
velocity of 2 m/s. (d) 2004-Mar-25 at daytime (13-17 EET) with a high average wind velocity of 6.8 m/s. 

 

Regarding the noise amplitudes a trend of decreasing noise amplitudes from the North 
towards the South is observed at day- and nighttime and all analysed days in the 
frequency ranges between 0.09-0.25 Hz (Figure 5.8a+b). An amplitude and site effect 
study by Sudhaus and Ritter (2009), using waveforms of the URS data set, found the 
same effect of latitude-dependent ground motion amplification across the Bucharest area. 
Sudhaus and Ritter (2009) relate this effect to resonance effects in the unconsolidated 
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sediments above the distinct dipping Neogene-Cretaceous boundary from 800 m depth in 
the South to 2000 m depth in the North (Mandrescu et al., 2004; Sèbe et al., 2009). Also 
for the URS data set Ziehm (2006) applied a comprehensive spectral H/V analysis for the 
Bucharest area. She observed a distinct and stable peak in the H/V ratio in the frequency 
range 0.09-0.25 Hz. This peak frequency changes smoothly from 0.25 Hz in the South of 
Bucharest to 0.09 Hz in the North. A more detailed comparison of the spectral H/V ratio 
observed by Ziehm (2006) with the time domain H/V ratio obtained from the noise 
classification is discussed in section 5.4.6. 

 
Figure 5.8: South-North profiles of the seismic noise amplitudes and classes (0.008-0.25 Hz). 
The seismic noise amplitudes (range of 68%-interval) and noise classification (symbols) on 2004-Feb-03 at 
nighttime (00-04 EET) (left) and daytime (13-17 EET) (right) are displayed for several frequency ranges.  
(a) 0.18-0.25 Hz. (b) 0.09-0.18 Hz. (c) 0.04-0.09 Hz. (d) 0.008-0.04 Hz. 

5.3.3.3 Frequency range 0.04-0.09 Hz 
The long-term temporal pattern of noise amplitudes of the USN (0.04-0.09 Hz) at 
nighttime is similar to the noise amplitudes of the USN (0.09-0.18 Hz) indicating a similar 
composition of contributing sources at nighttime (Figure 5.6). Around 50% of the analysed 
time series at nighttime are classified as NC1 or NC2 (Table 5.4). Most common 
deviations from the Gaussian distribution are a minor (NC3) or distinct (NC4) positive 
kurtosis due to transient signals. The occurrence of time series with larger deviations from 
the Gaussian distribution increases from ~45% at nighttime to more than 60% at daytime. 
Also an increasing amount (up to 6%) of time series classified as NC6 occurs especially at 
daytime. This effect cannot be explained with filtering effects occurring for non-corrupt 
time series (see section 4.5). A manual analysis of the waveforms revealed that time 
series classified as NC6 in the frequency range 0.04-0.09 Hz exhibit short transients with 
large amplitudes and asymmetric distributions by far most cases as the example shown in 
Figure 4.2f. 

Variations of noise amplitude with daytime are observed sporadically at several stations in 
the metropolitan area (Figure 5.6 and Figure 5.8c). Noise amplitudes and their temporal 
variations are less systematic than at higher frequencies and differ strongly between the 
station sites. Nevertheless, large noise amplitudes, noise amplitude variations with 
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daytime and deviations from the Gaussian distribution are observed predominantly in the 
inner city area. These observations indicate a spatially strongly varying human influence 
on the USN (0.04-0.09 Hz). In the analysed time windows at the 9 working days chosen 
for this first analysis no significant global or local seismicity is observed. Nevertheless, 
earthquake induced seismic waves are a significant source of seismic energy in the 
frequency range 0.04-0.09 Hz (see 5.1.3). The influence of the global seismicity on the 
USN conditions is also discussed in sections 5.4.2 and 5.5.3. 

5.3.4 Frequency range 0.008-0.04 Hz 

The noise class distributions of the USN (0.008-0.04 Hz) at daytime (morning and 
afternoon hours) are less stable than for the higher frequency bands (Table 5.4). 
Furthermore, no systematic differences in the noise class distributions between day- and 
nighttime are observed. Less than 10% of the analysed time series are classified as NC1 
or NC2. More than 50% of the time series are classified as NC6. The remaining time 
series exhibit predominantly a positive kurtosis and are classified as NC3 or NC4. The 
extent of time series classified as NC6 is not explainable by the filter effects alone. As for 
the higher frequency band 0.04-0.09 Hz most time series classified as NC6 are dominated 
by transients with large amplitudes and exhibit distinct asymmetric distributions. 

Furthermore the noise amplitudes and their variations with daytime differ tremendously in 
the metropolitan area of Bucharest, especially in the inner city area (Figure 5.8d). These 
strong spatial variations are pointing towards local sources in the vicinity of the affected 
sites. In fact, the spatial distribution of large noise amplitudes is well correlated with zones 
of heavy industry connected to the railway network (compare Figure 5.9 and Figure 3.1). 
Next to various production sites of heavy industries, accelerating and decelerating trains 
(Karlström, 2006) can be assumed to induce such very low frequency vibrations. 
Furthermore, slow movements of heavy masses and their induced ground tilt 
(Forbriger, 2007) are probable sources of this very located low-frequency USN. Also 
possible is tilting of high-rise buildings under wind load or tilting due to decoupled 
basement floors acting as a membrane under air pressure load (Beauduin et al., 1996). 
To reliably identify such sources of USN a further analysis involving the horizontal 
components of USN (0.008-0.04 Hz) and correlations with corresponding parameters like 
wind velocity and air pressure directly at the station sites are necessary. Unfortunately, 
these parameters are not available for the URS project. 
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Figure 5.9: Map of seismic noise amplitudes and classes in Bucharest (0.008-0.04 Hz). 
Displayed are the noise amplitudes (range of the 68%-interval) of the ground motion velocity 
in nm/s in the frequency range 0.008-0.04 Hz at day 2004-Feb-03 during daytime (13-
17 EET) at the URS station sites. 
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5.4 Analysis of the complete URS data set 

The results of the complete analysis of the URS data set with consecutive 4 hour time 
windows (0-4, 4-8, 12-16, 16-20 and 20-24 EET, see section 5.2) are discussed in 
comparison and as extension of the detailed discussion of the selected working days 
above. The seismic noise amplitudes represented again by the ranges of the 68% 
amplitude intervals are discussed exemplary with the help of the USN (0.6-1 Hz) in 
section 5.4.1. The results obtained from all working days with low wind conditions but 
without the exclusion of the seismic waves excited by earthquakes or the ocean-
generated microseism are discussed in comparison to the selected working days in 
section 5.4.2. Based on the results of the complete data set also a comparison of the USN 
statistical properties at working days and Sundays (with low wind conditions) can be 
provided (section 5.4.3) as well as a comparison of working days with low and high wind 
conditions (section 5.4.4). The discussions in sections 5.4.1 to 5.4.4 are limited without 
disadvantage to the results obtained for the vertical component USN. The differences 
between the statistical properties of the vertical and horizontal USN are discussed in 
section 5.4.5. The amplitude ratio between the vertical and horizontal USN (H/V ratio) is 
discussed and compared with the results of Ziehm (2006) in section 5.4.6. 

5.4.1 General discussion of the seismic noise amplitudes 

The analysis of the complete URS data set also confirms the observations of the time-
frequency analysis in section 5.1. Regarding the man-made contributions to the USN the 
seismic noise amplitudes at nighttimes (0-4 EET) on Sundays are the lower boundary and 
the amplitudes at daytimes (8-16 EET) on working days are the upper boundary of the 
typically observed seismic noise amplitudes as discussed in detail in section 5.3. The 
seismic noise amplitudes in the time windows 4-8, 16-20, 20-24 EET are in general 
between these lower and upper amplitude boundaries with similar amplitudes in the 
morning (4-8) and evening (20-24) hours. The seismic noise amplitudes at the late 
afternoon/early evening (16-20) are in general higher than in the later evening and 
morning hours and slightly lower than in the main working hours (8-16 EET). These 
observations are especially true for the frequency range above 0.6 Hz. 

Variations of the seismic noise outside of this man-made temporal pattern are in general 
caused by the natural sources of seismic noise. As discussed above, local wind is 
observed as the dominating natural source of seismic noise in the frequency range of 
0.6-1 Hz. In the frequency bands below 0.6 Hz the ocean-generated microseism as well 
as seismic waves excited by earthquakes cause the largest seismic noise amplitudes as 
discussed in section 5.1. The same temporal and frequency dependent behaviour of the 
noise amplitudes is observed for the horizontal components. The H/V amplitude ratio is 
discussed in section 5.4.6. 

5.4.2 Comparison of all / selected working days (low wind velocities) 

In this section the results obtained from the nine selected working days (Table 5.3) with 
low wind conditions, low regional ocean-generated microseism and without seismic waves 
excited by earthquakes (see sections 5.2 and 5.3) are compared with the results obtained 
from all 156 working days with low wind conditions (average wind velocity < 3 m/s). Main 
differences between both data sets are therefore the influence of the global seismicity and 
the storm induced regional ocean-generated microseism on the USN in the Bucharest 
area. The noise class distributions obtained from both data sets are presented in Table 
5.5 for the time windows 0-4 EET and 8-12 EET. The noise classes 1 and 2 as well as 3 
and 4 are summarised and noise classes 5 and 6 (together less than 10%) are excluded 
to improve the readability of the table. The complete results are given in Appendix C. 
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Table 5.5: Comparison of the noise class distributions for selected / all working days (low wind conditions) 
The table displays the NC distributions in percent for the frequency bands between 0.04 Hz and 45 Hz for the 
vertical-component USN in the time windows 0-4 EET and 8-12 EET obtained from the nine selected working 
days (Table 5.3) and all 156 working days with low wind conditions (average wind velocity < 3 m/s). No 
significant differences are observed in the frequency bands above 0.6 Hz. Below 0.6 Hz an increased 
occurrence of transient signals is observed which is caused mainly by the global seismicity. 

 
No significant differences between the 9-days and the 156-days data set are observed for 
the frequency bands above 0.6 Hz which are dominated by the man-made sources of 
seismic noise. The discussion of the nine selected working days in section 5.3 is therefore 
verified to be representative for the typical man-made contributions to the USN in 
Bucharest. 

In the frequency bands 0.18-0.25 Hz and 0.25-0.6 Hz no distinct differences between the 
statistical properties of the USN at night- and daytime are observed in contrast to the 
analysis of the nine selected working days. The amount of time windows classified as 
NC1 or 2 decreases at nighttimes and increases at daytimes to ~83% for the complete 
data set. This effect is most probably caused by the influence of storm induced ocean-
generated microseism from the Mediterranean and Black Sea which was excluded by the 
selection of the nine working days analysed in section 5.3. These storm induced events 
with large amplitudes depend not on the daytime and mask man-made transient signals 
with lower amplitudes. In the lower frequency bands 0.04-0.09 Hz and 0.09-0.18 Hz 
another effect is observed with the increased amount of time windows classified as NC3 
and NC4 in the data set with all working days. Time windows containing several and/or 
strong transient seismic waves excited by earthquakes (see Figure 5.1 and Table 5.1) are 
classified to a significant amount as NC3 and NC4. 

Working days, low wind conditions, vertical component

selected days (9) all days (156)

Freq. band /Hz EET NC1+2 NC3+4 NC1+2 NC3+4

% % % %

0.04-0.09 0-4 51.08 45.16 24.22 73.33

0.04-0.09 8-12 24.32 61.08 10.75 83.87

0.09-0.18 0-4 85.54 12.45 74.85 24.52

0.09-0.18 8-12 52.63 39.27 57.57 42.15

0.18-0.25 0-4 95.58 3.21 88.46 11.50

0.18-0.25 8-12 73.68 19.03 82.39 17.59

0.25-0.6 0-4 95.02 3.84 84.21 15.77

0.25-0.6 8-12 72.20 22.00 82.24 17.69

0.6-1 0-4 36.40 62.45 34.70 65.24

0.6-1 8-12 61.00 33.98 70.31 29.69

1-25 0-4 0.77 95.02 1.17 96.69

1-25 8-12 0.39 92.66 0.71 98.56

25-45 0-4 8.43 84.53 6.96 88.07

25-45 8-12 0.39 91.89 0.45 95.54
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5.4.3 Comparison of working days / Sundays (low wind velocities) 

In this section the classification results obtained from all time windows with low wind 
conditions (average wind velocity < 3 m/s) are discussed with focus on the USN above 0.6 
Hz dominated by man-made sources. The discussion includes the time windows 4-8, 16-
20 and 20-24 EET which are not analysed for the selected working days in section 5.3. 
The results are presented separately for the working days and the Sundays in Table 5.6. 
The noise classes 1 and 2 as well as 5 and 6 are summarised in Table 5.6 to improve the 
readability. Furthermore the table is limited to the frequency bands above 0.6 Hz as the 
following discussion focuses on this frequency range. Detailed results for all frequency 
bands are provided in Appendix C. 

The differences of the USN conditions (statistical properties) in the time windows 4-8, 
16-20 and 20-24 EET in comparison to nighttimes (0-4 EET) and the main working hours 
(8-16 EET) as well as working days and Sundays are strongly frequency dependent. 
Below 0.6 Hz the differences are rather small and unspecific as the dominating natural 
sources such as ocean-generated microseism and earthquakes depend not on daytime or 
weekday (see detailed tables in Appendix C). In general the observed (small) differences 
are largest between the nighttimes (0-4 EET) and the other daily time windows due to the 
remaining influence of the human activity. 

 
Table 5.6: Comparison of the noise class distributions for working days / Sundays (low wind conditions) 
The table displays the NC distributions in percent for the frequency bands between 0.6-45 Hz for the vertical-
component USN obtained from all working days and all Sundays with low wind conditions (average wind 
velocity < 3 m/s). No significant differences are observed in the frequency band above 25 Hz. Below 25 Hz an 
increased occurrence of transient signals is observed at Sundays. The most significant differences between 
working days and Sundays are marked by red coloured values in the noise class distributions of the Sundays. 
 

Above 25 Hz the statistical properties of the USN differ also less in the time windows 
between 4-24 EET due to numerous transient signals (large amount of time series 
classified as NC4) in this time range. Only during the night hours (0-4 EET) the amount of 
transient signals is significantly reduced leading to lower noise amplitudes and to less time 
windows classified as NC4. The statistical properties of the USN (25-45 Hz) differ 
furthermore less between working days and Sundays. This demonstrates that transient 
signals occur frequently above 25 Hz any time but that they are too few to superimpose to 
a Gaussian distributed time series in general. 

Working days Sundays

Comp. Freq. band /Hz EET # NC1+2 NC3 NC4 NC5+6 # NC1+2 NC3 NC4 NC5+6

% % % % % % % %

Z 0.6-1 0-4 5006 34.70 48.64 16.60 0.06 915 34.86 37.92 27.10 0.11

Z 0.6-1 4-8 4842 10.90 78.87 10.22 0.00 1032 30.62 51.26 18.12 0.00

Z 0.6-1 8-12 4237 70.31 23.27 6.42 0.00 880 53.30 26.48 20.23 0.00

Z 0.6-1 12-16 3231 64.90 22.75 12.35 0.00 712 60.81 18.96 20.22 0.00

Z 0.6-1 16-20 3754 75.52 19.42 5.06 0.00 674 61.28 22.70 16.02 0.00

Z 0.6-1 20-24 4807 55.29 35.59 9.09 0.02 1004 61.85 28.69 9.36 0.10

Z 1-25 0-4 5041 1.17 10.47 86.21 2.14 915 2.84 15.52 79.13 2.51

Z 1-25 4-8 4847 0.72 19.25 79.88 0.14 1033 0.77 11.62 87.03 0.58

Z 1-25 8-12 4230 0.71 39.24 59.31 0.73 880 0.80 22.73 75.91 0.57

Z 1-25 12-16 3247 1.02 36.86 61.66 0.46 719 1.39 28.93 69.54 0.14

Z 1-25 16-20 3752 0.75 35.10 63.83 0.32 712 1.40 29.07 69.52 0.00

Z 1-25 20-24 4807 0.96 23.40 75.43 0.21 1003 1.00 23.23 75.37 0.40

Z 25-45 0-4 4955 6.96 18.79 69.28 4.96 886 7.00 21.11 67.27 4.63

Z 25-45 4-8 4785 0.71 9.68 86.81 2.80 1033 1.16 12.78 83.35 2.71

Z 25-45 8-12 4211 0.45 12.51 83.02 4.01 879 0.34 8.76 89.19 1.71

Z 25-45 12-16 3234 0.40 11.13 84.76 3.71 718 0.00 11.28 88.02 0.70

Z 25-45 16-20 3745 0.67 16.29 80.61 2.43 713 0.56 13.60 84.29 1.54

Z 25-45 20-24 4801 1.87 15.46 80.63 2.04 1001 1.90 14.79 81.32 2.00
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The temporal variations of the USN with daytime and weekday are most pronounced in the frequency bands 
0.6-1 Hz and 1-25 Hz. Significant differences between the classification results of working days and Sundays 
are indicated by red values in Table 5.6 and discussed below. The median 68%-interval ranges (noise 
amplitudes) are given for the six daily time windows in the frequency bands 0.6-1 Hz and 1-25 Hz in  

Table 5.7. 

The statistical properties of the USN in the time window 16-20 EET are very similar (0.6-1 Hz) or identical 
(1-25 Hz) to the conditions in the main working hours (8-16 EET) (Table 5.6). The USN (16-20 EET) 
amplitudes are in general slightly lower than in the working hours and higher than in the evening and morning 
hours ( 
Table 5.7). The statistical properties in the morning (4-8 EET) and evening (20-24 EET) hours differ both from 
the night (0-4 EET) and the working hours and reflect the change of the human activity from night to day and 
vice versa in these time windows. In both frequency bands more transient signals are observed in the morning 
hours than in the other time windows at daytime which is illustrated by the higher amount of time windows 
classified as NC4 in the morning hours. The noise amplitudes in the morning and evening hours are in general 
very similar ( 

Table 5.7). 

Vertical Component 
Median noise amplitudes in nm/s 

(median 68% interval range) 

Freq. band /Hz EET Working days Sundays 

0.6-1 Hz 0-4 63 56 
0.6-1 Hz 4-8 103 77 
0.6-1 Hz 8-12 160 102 
0.6-1 Hz 12-16 157 105 
0.6-1 Hz 16-20 135 98 
0.6-1 Hz 20-24 96 81 

    
1-25 0-4 1070 1040 
1-25 4-8 2473 1524 
1-25 8-12 5135 2485 
1-25 12-16 4952 2531 
1-25 16-20 3891 2266 
1-25 20-24 2270 1822 

 
Table 5.7: Median noise amplitudes on working days and Sundays. 
The table displays the median ranges of the 68% amplitude intervals for all 
working days and Sundays with low wind conditions (average wind velocity 
< 3 m/s). The lowest noise amplitudes are observed in the night hours. The 
amplitudes in the evening and morning hours are similar and smaller than the 
amplitudes during the working hours (8-20 EET). 

 
The USN on working days and Sundays differs in its statistical properties as well as noise amplitudes in the 
frequency bands 0.6-1 Hz and 1-25 Hz. In general lower noise amplitudes but more transient signals are 
observed between 8-16 EET on Sundays than on working days. Due to the decreased human activity less 
transient signals are excited in total on Sundays which causes the lower noise amplitudes. The remaining 
transient signals lead in general to a higher kurtosis of the seismic noise time series indicated by the higher 
amount of time windows classified as NC4. The USN conditions (statistical properties and amplitudes) in the 
Sunday morning hours equal the conditions at nighttimes of working days in both frequency ranges (Table 5.6 
and  

Table 5.7). The statistical properties of the USN in the Sunday evening hours differ less 
(0.6-1 Hz) or not (1-25 Hz) from the evening hours at working days (Table 5.6). This 
observation corresponds well with the typical weekend behaviour of most people with 
less/no activity at Sunday mornings and increased (social/weekend commuter) activity at 
Sunday evenings. 

Concluding, the daily and weekly rhythms of human live affect significantly the seismic 
noise amplitudes and statistical properties especially in the frequency range 0.6-25 Hz. In 
general, the seismic noise amplitudes are lower and the frequency of transient signals is 
higher on Sundays and at nighttime than on working days and at daytime. 
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5.4.4 Comparison of working days with high / low wind velocities 

In this section the classification results of all working days with low wind conditions 
(average wind velocity < 3 m/s) are compared with the results of all working days with high 
wind conditions (average wind velocity > 6 m/s). Differences of the USN statistical 
properties due to the wind conditions are observed especially in the frequency ranges 
0.04-0.18 Hz and 0.6-25 Hz which are therefore presented in Table 5.8 and discussed 
below. The statistical properties of the USN in the frequency ranges 0.25-0.6 Hz and 
25-45 Hz are observed to be hardly influenced by the wind conditions (Appendix C). 

 
Table 5.8: Comparison of the noise class distributions for working days with low / high wind velocities 
The table displays the NC distributions in percent for the frequency bands between 0.04-0.18 Hz and 0.6-0.25 
Hz for the vertical-component USN obtained from all working days with low and high wind conditions. In 
general the influence of strong transient signals typically present in the USN on the time series distributions is 
reduced by the superposition with the wind induced seismic noise (e.g. 1-25 Hz). At the same time the 
superposition of typically Gaussian distributed USN with wind induced seismic noise produces time series 
which are not Gaussian distributed (e.g. 0.09-0.18 Hz). 

 
The differences between the statistical properties of the vertical and the horizontal USN 
(see the next section) are the same also for high and low wind conditions. The discussion 
is therefore limited to the vertical component USN. 

In the frequency band 0.04-0.09 Hz the USN is a complex superposition of man-made 
seismic noise as well as ocean-generated microseism and seismic waves excited by 
earthquakes (see section 5.3.3.3). The amount of time series classified as NC1 and 2 is 
significantly decreased due to wind induced seismic noise from 10-24% (low wind) to 
0-4% (high wind). At the same time the influence of single transient signals (earthquakes, 
man-made signals) is reduced by the wind induced noise which is illustrated by the lower 
amount of time windows classified as NC4 in several of the daily time windows. The same 

Working Days

Average wind vel. < 3 m/s Average wind vel. > 6 m/s

Comp. Freq. band /Hz EET # NC1+2 NC3 NC4 NC5+6 # NC1+2 NC3 NC4 NC5+6

% % % % % % % %

Z 0.04-0.09 0-4 3596 24.22 22.41 50.92 2.45 44 0.00 43.18 54.55 2.27

Z 0.04-0.09 4-8 3355 14.43 30.01 50.73 4.83 43 2.33 79.07 16.28 2.33

Z 0.04-0.09 8-12 2976 10.75 26.61 57.26 5.38 65 1.54 67.69 29.23 1.54

Z 0.04-0.09 12-16 2262 14.28 26.66 54.33 4.73 177 1.13 45.76 49.72 3.39

Z 0.04-0.09 16-20 2672 17.10 32.63 45.17 5.09 109 3.67 41.28 50.46 4.59

Z 0.04-0.09 20-24 3408 17.31 32.10 45.63 4.96 21 0.00 95.24 4.76 0.00

Z 0.09-0.18 0-4 4804 74.85 13.36 11.16 0.62 58 13.79 75.86 10.34 0.00

Z 0.09-0.18 4-8 4575 66.30 14.73 18.14 0.83 57 22.81 73.68 3.51 0.00

Z 0.09-0.18 8-12 4028 57.57 18.77 23.39 0.27 86 20.93 61.63 17.44 0.00

Z 0.09-0.18 12-16 3059 57.57 18.76 23.34 0.33 233 25.75 49.79 24.03 0.43

Z 0.09-0.18 16-20 3541 65.55 16.38 17.74 0.34 144 18.06 51.39 30.56 0.00

Z 0.09-0.18 20-24 4591 69.57 15.16 14.62 0.65 28 25.00 64.29 10.71 0.00

Z 0.6-1 0-4 5006 34.70 48.64 16.60 0.06 59 55.93 38.98 5.08 0.00

Z 0.6-1 4-8 4842 10.90 78.87 10.22 0.00 59 57.63 35.59 6.78 0.00

Z 0.6-1 8-12 4237 70.31 23.27 6.42 0.00 89 69.66 26.97 3.37 0.00

Z 0.6-1 12-16 3231 64.90 22.75 12.35 0.00 240 52.08 41.67 6.25 0.00

Z 0.6-1 16-20 3754 75.52 19.42 5.06 0.00 148 42.57 45.95 11.49 0.00

Z 0.6-1 20-24 4807 55.29 35.59 9.09 0.02 29 68.97 24.14 6.90 0.00

Z 1-25 0-4 5041 1.17 10.47 86.21 2.14 59 1.69 38.98 59.32 0.00

Z 1-25 4-8 4847 0.72 19.25 79.88 0.14 59 1.69 45.76 49.15 3.39

Z 1-25 8-12 4230 0.71 39.24 59.31 0.73 89 1.12 48.31 49.44 1.12

Z 1-25 12-16 3247 1.02 36.86 61.66 0.46 240 1.67 38.75 59.58 0.00

Z 1-25 16-20 3752 0.75 35.10 63.83 0.32 147 2.04 42.18 55.10 0.68

Z 1-25 20-24 4807 0.96 23.40 75.43 0.21 29 6.90 55.17 37.93 0.00
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effect is observed in the frequency band 0.09-0.18 Hz although the amount of (nearly) 
Gaussian distributed time series (NC1 and NC2) is in general higher in this frequency 
band. 

The situation is more complicated in the frequency band 0.6-1 Hz due to the larger human 
influence on the USN. In the frequency band 0.6-1 Hz the same situation as for the two 
lower frequency bands is observed in the daytime hours 8-20 EET. The amount of time 
windows classified as NC1 and 2 (Gaussian distributed) as well as NC4 (strong influence 
of transients) is reduced at daytimes due to the superposition of the man-made seismic 
noise with the wind induced seismic noise. In the time windows with less human influence 
(night, morning and evening) the superposition of the wind induced noise with the lower 
man-made seismic noise is less deviated from the Gaussian distribution than the USN 
(0.6-1 Hz) on working days with low wind conditions. 

In the frequency band 1-25 Hz the influence of man-made transient signals on the 
statistical properties of the USN is reduced by the wind induced seismic at all daytimes. 
The amount of time windows classified as NC4 is lower with high wind conditions. 
Furthermore, the typically observed differences between the USN statistical properties at 
night (0-4 EET), morning (4-8 EET) and working hours (8-16 EET) are not observed for 
the time windows with high wind conditions. Again, the influence of dominant man-made 
transient signals on the USN is reduced by the wind induced seismic noise. 

Concluding, wind induced seismic noise due to average wind velocities larger than 6 m/s 
can be expected to cause deviations of the USN from the Gaussian distribution. Most time 
series during high wind conditions are classified as NC3. At the same time, the amount of 
time series classified as NC4 due to strong (man-made) transient signals is reduced as 
these transients are superimposed with the wind-induced seismic noise. 

5.4.5 Comparison of the vertical and horizontal components 

The classification results for all time windows classified as NC1-6 of the vertical, North-
South and East-West components of the USN are presented in Table 5.9. The statistical 
properties of the North-South and East-West components of the USN in Bucharest are in 
general identical (Table 5.9). The differences between the statistical properties of the 
vertical component and the horizontal component USN are discussed for the complete 
data set as the differences between the components are not observed to be influenced by 
the weekday or the wind conditions. 

In Table 5.9 the noise classes 1 and 2, 3 and 4 as well as 5 and 6 are summarised to 
improve the readability of the table. The detailed results are provided in Appendix C. The 
largest differences between the vertical and horizontal components of the USN are 
observed in the frequency range below 0.18 Hz. In the frequency range 0.18-0.6 Hz the 
statistical properties of the vertical and horizontal components are nearly identical (Table 
5.9). Minor differences are observed in the frequency range above 0.6 Hz. (Table 5.9). 

In the frequency bands below 0.18 Hz more time windows classified as NC3 and 4 instead 
of NC1 and 2 are observed for the horizontal components of the USN. This indicates the 
presence of a larger amount of transient signals on the horizontal components than on the 
vertical components. This effect may be caused by the properties of the contributing noise 
sources inside as well as outside the Bucharest area. 
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Table 5.9: Comparison of the noise class distributions for the components Z, N and E. 
The table displays the NC distributions in percent for the frequency bands between 0.04-45 Hz obtained from 
all time windows classified as NC1-6 for the vertical, North-South and East-West components of the USN. No 
significant differences are observed between the North-South and East-West components in general. Minor 
differences between the horizontal components N and E exist in the frequency range 25-45 Hz due to man-
made sources of periodic signals with a dominant direction of vibration. The statistical properties of the vertical 
and horizontal components are identical in the frequency range 0.18-0.6 Hz. In the frequency bands below 
0.18 Hz less time series of the horizontal component USN are classified as NC1 and NC2 than of the vertical 
component USN. 

Z N E

Freq. band /Hz EET NC1+2 NC3+4 NC5+6 NC1+2 NC3+4 NC5+6 NC1+2 NC3+4 NC5+6

% % % % % % % % %

0.04-0.09 0-4 23.82 71.68 2.48 5.42 84.24 6.93 5.99 84.94 6.35

0.04-0.09 4-8 15.13 76.60 4.66 3.20 78.52 10.62 3.26 81.07 10.42

0.04-0.09 8-12 10.26 81.94 5.11 1.13 80.84 11.17 0.86 81.17 11.35

0.04-0.09 12-16 11.80 81.05 4.82 1.16 82.56 9.38 1.08 83.16 9.44

0.04-0.09 16-20 14.20 78.88 5.01 1.88 81.26 11.71 2.06 82.59 10.65

0.04-0.09 20-24 18.17 75.77 4.45 4.04 80.97 11.84 4.21 82.54 10.70

0.09-0.18 0-4 73.15 25.72 0.59 67.65 31.53 0.20 67.00 32.42 0.12

0.09-0.18 4-8 66.11 32.26 0.73 58.10 40.39 0.29 59.14 39.99 0.08

0.09-0.18 8-12 56.34 42.13 0.47 43.82 54.16 0.16 44.91 53.47 0.17

0.09-0.18 12-16 58.03 40.48 0.34 44.53 53.10 0.21 46.00 52.18 0.19

0.09-0.18 16-20 62.87 35.12 0.52 50.05 47.56 0.33 51.28 46.43 0.25

0.09-0.18 20-24 70.40 28.71 0.74 63.45 35.84 0.08 63.74 35.79 0.14

0.18-0.25 0-4 88.50 11.38 0.04 87.33 12.22 0.03 86.75 13.10 0.03

0.18-0.25 4-8 84.64 14.80 0.04 84.21 14.95 0.11 85.08 14.39 0.07

0.18-0.25 8-12 82.66 16.36 0.05 78.96 19.79 0.13 80.62 18.67 0.04

0.18-0.25 12-16 82.71 16.40 0.05 77.84 20.90 0.04 79.05 19.65 0.07

0.18-0.25 16-20 84.79 14.48 0.03 81.35 17.39 0.03 81.98 16.66 0.03

0.18-0.25 20-24 88.17 11.70 0.09 88.57 11.03 0.05 88.37 11.50 0.07

0.25-0.6 0-4 83.14 16.10 0.01 83.79 15.32 0.01 84.20 15.13 0.01

0.25-0.6 4-8 82.29 17.12 0.06 79.33 19.89 0.03 81.29 18.19 0.01

0.25-0.6 8-12 79.37 19.58 0.06 77.66 21.20 0.09 79.42 19.89 0.03

0.25-0.6 12-16 80.76 18.07 0.03 77.61 20.86 0.04 78.79 19.90 0.00

0.25-0.6 16-20 83.96 15.16 0.01 80.47 18.36 0.00 81.78 17.28 0.01

0.25-0.6 20-24 86.07 13.85 0.06 86.62 13.06 0.00 87.83 12.12 0.00

0.6-1 0-4 34.87 64.51 0.05 40.21 58.98 0.06 40.53 58.95 0.00

0.6-1 4-8 16.60 83.24 0.00 13.56 85.99 0.00 12.60 87.27 0.00

0.6-1 8-12 65.84 33.49 0.00 67.45 31.67 0.01 71.64 27.82 0.00

0.6-1 12-16 63.27 35.86 0.00 66.55 32.34 0.00 70.01 29.10 0.00

0.6-1 16-20 68.46 30.83 0.00 63.96 35.20 0.01 66.42 32.94 0.00

0.6-1 20-24 56.99 42.95 0.02 47.54 52.12 0.02 43.30 56.56 0.09

1-25 0-4 1.47 96.19 2.21 3.79 91.90 3.77 5.84 88.31 5.43

1-25 4-8 0.76 98.80 0.34 1.72 96.22 1.54 1.94 96.02 1.84

1-25 8-12 0.64 97.81 0.68 7.16 91.06 0.74 7.24 91.22 0.82

1-25 12-16 0.97 97.96 0.42 7.17 91.29 0.62 6.75 91.94 0.79

1-25 16-20 0.91 98.48 0.34 5.23 93.81 0.55 5.78 93.18 0.91

1-25 20-24 1.06 98.55 0.33 2.44 95.91 1.34 3.04 94.34 2.57

25-45 0-4 6.83 86.64 4.63 7.21 89.09 2.67 5.73 85.95 7.05

25-45 4-8 0.84 95.52 2.67 1.51 95.99 1.32 2.73 91.30 4.96

25-45 8-12 0.40 95.04 3.39 0.51 95.82 2.33 1.10 90.48 7.48

25-45 12-16 0.31 95.55 2.96 0.29 96.70 1.85 1.36 91.12 6.61

25-45 16-20 0.62 97.02 1.99 1.00 97.40 0.95 2.81 91.82 5.00

25-45 20-24 1.76 95.94 2.15 3.07 95.11 1.31 4.61 90.43 4.80
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A first idea is that the effect might be caused by the surface waves excited by 
earthquakes. Nevertheless, this question needs further research and remains open at the 
moment. 

In the frequency bands above 0.6 Hz only small differences between the vertical and 
horizontal components are observed. In the frequency band 1-25 Hz the amount of time 
series classified as NC1 and 2 is slightly increased on the horizontal components. This 
indicates that the amount of signals or the amplitude distribution of the signals is slightly 
different between the vertical and the horizontal components. This point needs also further 
research which should include a careful analysis of individual signals contributing to the 
USN in the frequency range 1-25 Hz. 

In the frequency range 25-45 Hz the statistical properties of the vertical and the North-
South component of the USN are nearly identical. Eye-catching is the slightly larger 
amount of time series classified as NC5 and 6 on the East-West component. It turned out 
that over 70% of the USN (25-45 Hz) East-West component time series classified as NC5 
and 6 are measured by the stations URS19 and URS20. At both station sites periodic 
signals such as the example presented in Figure 4.2f are recorded with significantly larger 
amplitudes on the East-West component than on the North-South component. Electrical 
engines which have a dominant direction of vibration are the most probable source of 
such a signal. 

Concluding, the differences between the statistical properties of the spatial components of 
the USN are rather small. The largest differences are observed below 0.18 Hz with a 
larger amount of transient signals on the horizontal components. Minor differences are 
observed between 1-25 Hz with a slightly increased amount of time windows classified as 
NC1 and NC2 on the horizontal components. Periodic signals with a dominating direction 
of vibration occur above 25 Hz. The observed differences have to be assumed to be 
related to the sources of the seismic noise such as surface waves excited by earthquakes 
(below 0.18 Hz) or rotating machinery (especially above 25 Hz). This topic needs further 
research. 

5.4.6 Time-domain H/V ratio 

Similar to the spectral H/V ratio (see 2.3.1) the ratio between the ranges of the 68% 
amplitude intervals of the horizontal components and the vertical component are used to 
discuss the results of the time domain classification of the URS data set. 

Figure 5.10 shows the results of a simplified H/V analysis using the noise classification 
results in comparison to the spectral H/V analysis for the Bucharest area of Ziehm (2006). 
For this analysis the complete URS data set is analysed in the frequency bands 0.09-0.18 
Hz, 0.18-0.25 Hz, 0.25-0.6 Hz, 0.6-1.2 Hz, 1.2-2.4 Hz, 2.4-4.8 Hz and 4.8-9.6 Hz. Above 
the frequency bands of the ocean-generated microseism (see section 5.1.3) four 
frequency bands of one octave each are used up to 9.6 Hz to obtain H/V results which 
can be roughly compared with the existing spectral H/V analysis of Ziehm (2006) in the 
frequency range 0.1-10 Hz. 

The H/V ratios of the 68% intervals obtained from all time windows classified as NC1-6 
and averaged over all URS stations are presented in Figure 5.10a. The H/V ratios are 
plotted at the centre frequency of the corresponding frequency band and the standard 
deviation of the H/V ratios in the corresponding frequency bands is indicated by the error 
bars. The largest average H/V ratio of ~2.9 with also the largest standard deviation is 
observed in the frequency band 0.09-0.18 Hz. The H/V ratio decreases below 1 at 
frequencies above 2 Hz with a local minimum in the frequency band 0.25-0.6 Hz and a 
local maximum in the frequency band 0.6-1.2 Hz. The spectral H/V ratio for the time 
window 0-3 EET on 3rd January 2004 at station URS21 is shown in Figure 5.10b which is 
taken from the diploma thesis of Julia Ziehm (Ziehm, 2006). 
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a) 

 

b) 

 

c) 

 
Figure 5.10: Time-domain and spectral H/V ratios observed in the Bucharest area. 
In a) the average ratios of the vertical and horizontal 68% amplitude intervals of all 

time windows classified as NC1-6 are presented together with the corresponding 
standard deviation in the frequency bands 0.09-0.18 Hz, 0.18-0.25 Hz, 0.25-0.6 Hz, 
0.6-1.2 Hz, 1.2-2.4 Hz, 2.4-4.8 Hz and 4.8-9.6 Hz. The frequency bands are 
selected for the comparison with the spectral H/V ratio in b) of Ziehm (2006). In b) 

the spectral H/V ratio for the time window 0-3 EET (2004-01-03) at station URS21 is 
shown. This figure is taken from page 29 of the diploma thesis of Julia Ziehm 
(Ziehm, 2006). In c) the average time-domain H/V ratios obtained from all time 

windows at night (0-4 EET) with low wind velocities are shown for stations URS09 
and URS21. The spectral and time-domain H/V ratios correspond quite well. 
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The coloured lines in Figure 5.10b illustrate the spectral H/V ratios of shorter time 
windows in the analysed time range from 0-3 EET at station URS21. The solid black line 
is the average spectral H/V ratio and the dashed black lines indicate its standard 
deviation. In Figure 5.10c the average time-domain H/V ratios for the stations URS09 and 
URS21 obtained from the time windows at night (0-4 EET) and with low wind conditions 
are presented. The time windows with moderate and high wind conditions are excluded as 
the H/V ratio of the USN is significantly influenced by wind induced seismic noise for wind 
velocities larger than 4 m/s (Ziehm, 2006). 

Although the fairly simple time-domain H/V ratio presented here has a worse frequency 
resolution in comparison to the spectral H/V ratio it is in principle capable to resolve the 
most important features of the H/V ratio such as the peak around 0.2 Hz (URS21 in Figure 
5.10c, see also section 5.3.3.3) and the local maximum observed for the frequency band 
0.6-1.2 Hz (Figure 5.10a and URS09 in Figure 5.10c) which were observed and discussed 
by Ziehm (2006). 

The peak around 0.2 Hz is not present in the average time-domain H/V ratio of all time 
windows (Figure 5.10a) and in the presented average H/V ratio of station URS09 in Figure 
5.10c. This is most probably related to the worse frequency resolution of the presented 
simple time-domain H/V ratio (frequency bands 0.09-0.18 Hz and 0.18-0.25 Hz) on the 
one hand and the missing data selection on the other hand. The calculation of the spectral 
H/V ratio includes some criteria of data selection (Ziehm, 2006) which are not realised for 
the here presented time-domain H/V ratios. The results presented by Ziehm (2006) 
illustrate furthermore an increasing temporal variability of the spectral H/V ratio towards 
lower frequencies. This corresponds with the increasing standard deviation towards lower 
frequencies of the time-domain H/V ratios (Figure 5.10a and c). The frequency of the peak 
around 0.2 Hz is observed by Ziehm (2006) to change slightly with latitude in the 
Bucharest area. Ziehm (2006) assumes that the peak is related to the already discussed 
dipping Neogene-Cretaceous boundary which is located at 800 m depth in the South and 
at 2000 m depth in the North (see also section 5.3.3.2). 

The local maximum observed for the frequency band 0.6-1.2 Hz (Figure 5.10a and URS09 
in Figure 5.10c) corresponds to a stable maximum in the spectral H/V ratio around 0.7 Hz 
which was observed by Ziehm (2006) in the whole Bucharest area. Ziehm (2006) points 
out, that it was not possible to relate this very stable peak around 0.7 Hz to a geological 
discontinuity in the upper most 100 meters of the subsurface. 

Concluding, the noise classification is in general capable to provide the same H/V 
information as the spectral H/V ratio. The important next step is to identify suitable 
frequency bands which should be as wide as necessary and as narrow as possible to 
enhance the frequency resolution of this „time-domain H/V ratio‟. Furthermore, a suitable 
time window length may allow an improvement of the obtained H/V ratio by an automated 
data selection based on the noise classification similar to the data selection implemented 
in the calculation of the spectral H/V ratio. 
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5.5 Analysis with Self-Organizing Maps (SOMs) 

The detailed analysis of the classification results for the URS data set in the previous 
sections of this chapter demonstrates that the time series classification introduced in 
chapter 4 is capable to provide valuable information about the (urban) seismic noise 
conditions. Nevertheless, such a manual analysis of the classification data set in order to 
identify this information requires reasonable time and effort. Therefore, the next step is to 
improve and enhance this analysis process. Most promising for this task is the application 
of machine learning and pattern recognition techniques to support the seismologist 
analysing the data set. Suitable for the first exploration of an unknown data set are 
unsupervised pattern recognition techniques which are capable to provide a classification 
of a data set without a priori domain knowledge. 

In this section a first feasibility study with a widespread unsupervised pattern recognition 
technique is presented to demonstrate the future potential of this approach. It has to be 
clarified at this point that the implementation of a comprehensive seismic noise analysis 
with pattern recognition techniques based on the seismic noise classification needs further 
research and especially evaluation. The author selected the Self-Organizing Map (SOM) 
method (Kohonen, 2001) for this feasibility study. This unsupervised neural network 
technique is widespread in science (see Kohonen, 2001) and was already applied 
successfully for seismological analyses (e.g. Tarvainen, 1999; Köhler et al., 2010). The 
SOM method is a powerful tool especially for the low-dimensional visualisation and 
automated clustering of high dimensional data. With the SOM toolbox for MATLAB 
(Vesanto et al., 2000) a widespread and powerful implementation of the SOM technique 
exists which is also used for this study. 

5.5.1 The Self-Organizing Map 

The SOM method is used to provide a two-dimensional representation (the „map‟) of a 
high dimensional data set with d dimensions. Every neuron is represented by a d-
dimensional prototype vector and corresponds to a so called SOM unit on a two-
dimensional regular grid. Usually a rectangular grid with hexagonal SOM units is used to 
build the SOM (e.g. Köhler et al., 2010). This means that every neuron (SOM unit) has six 
adjacent neurons on the map. Every neuron is connected with the other neurons by a 
neighbourhood function which determines how strongly the neurons are connected. 
Initially, the prototype vectors of the SOM units are distributed in any order in the d-
dimensional data space. Now the SOM is trained with an algorithm similar to vector 
quantization (Gray, 1984) using the d-dimensional data vectors of the (training) data set. 
For the training of the SOM the distances between data vectors and prototype vectors are 
calculated with a distance measure which is capable to handle missing values (see 
Vesanto et al., 2000 and below). The prototype vector closest to a data vector presented 
to the SOM is called the Best-Matching Unit (BMU). During training the BMU is stretched 
together with the prototype vectors of its neighbouring neurons (SOM units) towards the 
presented training data vector. The stretching of the neighbouring prototype vectors is 
controlled by the neighbourhood function. The training process organizes the prototype 
vectors in the data space preserving the topology of the map (neighbouring units on the 
SOM are neighbouring prototype vectors in the data space) and every prototype vector 
represents afterwards a group of close data vectors. New data vectors presented to the 
trained SOM can be classified by simply determining the BMU (closest prototype vector). 
For this study the commonly used Gaussian neighbouring function and the batch training 
algorithm are used to build and train the SOM (Köhler et al., 2010; Vesanto et al., 2000). 

A trained SOM is commonly visualised by the so called unified distance matrix (U-matrix, 
see Figure 5.11a). The U-matrix visualises the distances between the SOM units 
(prototype vectors) by colour. Large distances (low data density) are indicated by red 
colours and low distances (high data density) are indicated by blue colours. For the U-
matrix every SOM unit (except the units at the border of the map) is divided into seven 
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hexagonal subunits. The centre subunit shows the average distance of the SOM unit to all 
neighbouring SOM units by colour. The six surrounding subunits show the distance of the 
SOM unit to its corresponding adjacent SOM units. Therefore, the U-matrix visualises the 
cluster structure of the SOM. High values (red colours) in the U-matrix indicate the 
borders between clusters and low values (blue colours) indicate the clusters themselves. 
The clustering of the SOM prototype vectors can be done with a variety of well-
established clustering algorithms. Following Köhler et al. (2010) an average linkage 
hierarchical clustering algorithm (Vesanto & Alhoniemi, 2000) is used for this study. 

5.5.2 Application to the URS data set 

For this study a data set of 1709 data vectors is built. The data vectors represent the 1709 
analysed 4 hour time windows of the vertical component USN in Bucharest between 
October 2003 and August 2004. The frequency band 0.6-1 Hz is selected for this study as 
the USN in this frequency band is influenced significantly by man-made as well as natural 
seismic sources. 

Nearly all URS stations are used for this study excluding only stations URS33, 34 and 35 
from the data set. These stations were installed for only 2-3 months at the end of the URS 
project and station URS35 was installed at the top floor of a tall building (Appendix B). 

The components of each data vector, also called the „features‟ of the data, are the ranges 
of the 68% amplitude intervals of the 31 used URS stations as well as the corresponding 
peakfactors. The peakfactor is used instead of the noise class as it is the underlying 
measure and resolves the deviations from the Gaussian distribution with a higher 
resolution. Concluding, every data vector summarises 62 data features (31 interval ranges 
and 31 peakfactors) characterising the vertical component USN (0.6-1 Hz) in the 
Bucharest area in every 4 hour time window. The application of a statistical feature such 
as the peakfactor to characterise the seismic noise is a new approach. Typically, features 
obtained from array analyses, spectral analyses or polarisation analyses are used to 
characterise seismic noise for pattern recognition (Köhler et al., 2009). These features are 
in general not capable to capture the temporal and spatial variations of the statistical 
properties of the seismic noise caused by the superposition of signals emitted by varying 
noise sources. 

Only the noise amplitudes and peakfactors of time series classified as NC1-6 are used to 
build up the data vectors in order to exclude corrupt time series which do not represent 
the USN. The components of a data vector are filled with NaNs (Not a Number) if the 
corresponding amplitude and peakfactor values of a station are missing (e.g. classified as 
NC12 in the corresponding time window or if the station was temporary not operational). 
The used distance measure allows the replacement of missing values by NaNs what 
significantly reduce the influence of missing values on the training of the SOM (Vesanto et 
al., 2000). The 31 amplitude components of the 1709 data vectors are visualised in Figure 
5.12. The gaps in the plot indicate the missing values. 

Finally, the data vectors are normalized prior to the training of the SOM. This 
normalisation is necessary as the variances of the 31 amplitude components of the data 
vectors are significantly larger than the variances of the 31 peakfactor components. 
Without normalisation the amplitude components would dominate the organisation of the 
map. The components are normalised with a so-called „logistic‟ normalisation (Vesanto et 
al., 2000) in that way that all values between -∞ and ∞ are within the range of [0,1]. 
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The original values x of a given component are first scaled by a variance normalisation, 
using the mean value x  and the standard deviation σx, which leads to 

 x =(x-x ) σx. (5.1) 

 

The normalised values xn of the original values x of a given component are then obtained 
by 

 xn=1/(1 e
-x ). (5.2) 

This normalisation is more or less linear around the mean value x  and has a smooth 
nonlinearity at both ends of the range of the component. Furthermore, this normalisation 
ensures that values normalised in the future (new data vectors analysed with the trained 
SOM) are within [0,1] after the normalisation. 

5.5.3 Results of the SOM analysis 

The U-matrix of the SOM after the training with all 1709 data vectors of the vertical 
component USN (0.6-1 Hz) is shown in Figure 5.11a with a possible clustering with five 
clusters in Figure 5.11b. The determined clusters are numbered from 1 to 5 in Figure 
5.11b and indicated by colours in this and the following figures. These clusters are used in 
the following to classify the time windows. The clustering of the SOM units is a critical 
point of the analysis. The clustering is affected by the chosen clustering algorithm as well 
as the number of assumed clusters. In general the analyst should not expect or accept 
one clustering of the SOM as the best solution (Köhler et al., 2010). In fact, the clustering 
of the SOM is that point where the human analyst with his domain knowledge enters the 
data exploration process. The further analysis includes the evaluation of the different 
possible clusters and the identification of meaningful clusters for the classification. 

For this analysis the clustering with five clusters, as shown in Figure 5.11b, is 
comprehensive with the displayed U-matrix. A classification of the seismic noise time 
windows is introduced based on this clustering of the prototype vectors. Corresponding to 
the five clusters found in the SOM, five so-called SOM classes are defined. The cluster 
membership of the BMU of a given data vector is used to allocate a SOM class to the 
corresponding time window of seismic noise. The meaningful classification of the URS 
data set by the five SOM classes obtained from the presented clustering is demonstrated 
in the following. 

In Figure 5.12 the amplitude components of the data vectors are plotted with the same 
colours of the clustering result in Figure 5.11b. This visualisation illustrates already the 
meaningful classification based on the five clusters of prototype vectors. Time windows 
with unusual high noise amplitudes (ranges of the 68% interval) at all URS stations are 
classified as SOM class 1 (2.57% of the 1709 time windows; magenta). The time windows 
with the lowest amplitudes are classified as SOM class 4 (55.47%; orange) and higher 
amplitudes are classified as SOM class 2 (38.15%; light green). With the domain 
knowledge from the previous manual analysis it can be expected that SOM class 1 
discriminates time windows with high wind conditions and that SOM classes 2 and 4 
discriminate at least daytime and nighttime. The time period around time window 400 in 
Figure 5.12 with comparable low amplitudes and classified continuously as SOM class 4 
corresponds to the Romanian Christmas vacation. Time windows classified as SOM 
classes 3 (1.4%; yellow) and 5 (2.4%; dark blue) are rare and hardly identifiable in Figure 
5.12. They are discussed together with the other SOM classes in more detail below. 
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Figure 5.11: The U-matrix with a possible clustering of the SOM for the vert.-comp. USN (0.6-1Hz). 
In a) the U-matrix of the SOM trained with the 1709 data vectors (31 amplitude components, 31 peakfactor 
components) of the vertical component USN (0.6-1 Hz) is shown. The clustering of the U-matrix in a) with 5 
clusters is shown in b). 

 
In Figure 5.13 the relation between the average wind velocity in the analysed time 
windows and the SOM class affiliation of the time windows is demonstrated with the help 
of histograms. For each of the five SOM classes a histogram over the average wind 
velocity is plotted. The bars of the histograms show the number of the time windows (in 
percent) in the corresponding SOM class for a given average wind velocity. 

 
Figure 5.12: Amplitude components of the USN (0.6-1 Hz) data vectors after the SOM classification. 
The 68% amplitude interval ranges of the vertical-component USN (0.6-1 Hz) determined in the 1709 time 
windows are plotted for the 31 URS stations. The SOM classification of the time windows is indicated by the 
colouring in correspondence to the clustering shown in Figure 5.11a. 
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Figure 5.13: Relation between the average wind velocity and the SOM classification. 
The bars of the five histograms (one for each SOM class) show the number of time windows (in percent) for 
given average wind velocities. Example: 100% of the time windows with an average wind velocity larger than 7 
m/s are classified as SOM class 1. 

 
As an example: 100% of the time windows with an average wind velocity of ~8 m/s are 
classified as SOM class 1. The classification of a time window as SOM class 1 indicates 
reliably wind velocities which are significantly larger than the overall average wind velocity 
of ~2 m/s between October 2003 and August 2004. Time windows with average wind 
velocities smaller than the long term average of 2 m/s are increasingly classified as SOM 
class 4 whereas time windows with larger average wind velocities are classified 
increasingly as SOM class 2 (3-5 m/s) and then SOM class 1 (> 5 m/s). This corresponds 
well with the observation that the influence of wind induced seismic noise increases 
significantly for wind velocities larger than 4 m/s (see Figure 5.1c). 

The relation between the weekday and daytime of the time windows with the SOM 
classification is also demonstrated with a histogram analysis which is shown in Figure 
5.14. The occurrence (in percent) of the 42 time windows of a week (Monday to Friday, six 
daily time windows between 0 and 24 EET) is plotted for each of the five SOM classes. 
The SOM classes 2 and 4 with most members (93% of the 1709 time windows) image the 
daily human activity. The 38.15% percent of all time windows classified as SOM class 2 
are mainly working hour time windows between 8-20 EET at working days. The most time 
windows classified as SOM class 4 are night, morning and evening hours at working days 
and time windows at Sundays. It is furthermore demonstrated by the classification that 
Saturdays appear as something between a working day and a Sunday. The time windows 
between 8-16 EET are found mainly in SOM class 2 together with the working day time 
windows. But the time window 16-20 EET is in general not classified as SOM class 2 as 
on working days but as SOM class 4 as on Sundays. This reflects very well the typical 
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weekend activity of most people in Christian dominated societies. The Saturday is a 
shopping and (home) working day for most people causing an increased traffic in the inner 
city area, whereas the Sunday is a day of rest with the family and therefore few „seismic 
emissions‟. 

The time windows classified as SOM classes 3 and 5 discriminate the weekly time 
windows similar as SOM classes 2 and 4. In SOM class 3 mainly time windows in the 
working hours of working days are found in contrast to the time windows in class 5 which 
cover mainly night, evening, morning and the Sunday time windows. An analysis of the 
time series of the time windows of SOM classes 3 and 5 revealed that the USN (0.6-1 Hz) 
is classified as NC3 or NC4 at all station sites in these time windows. This is an unusual 
situation in the frequency band 0.6-1 Hz especially as the ranges of the 68% amplitude 
intervals are not unusual for the affected time windows (Figure 5.12). Systematically 
increased peakfactors in combination with only small changes of the 68% amplitude 
intervals at all station sites can be caused by short (in comparison to 4 hours) and large 
(in comparison to the 68% amplitude interval) transient signals. As all station sites are 
affected at the same time single strong sources such as earthquakes or explosions have 
to be considered as possible causes. 

The body waves excited by regional and teleseismic earthquakes can be observed in the 
frequency range below 1 Hz depending on distance and magnitude (green stars in Figure 
5.1b and c). The seismic waves excited by the earthquakes in the nearby (~150 km 
distance) Vrancea subduction zone with magnitudes typically smaller than 4 during the 
URS experiment are observed in the frequency range above 0.6 Hz (see red stars in 
Figure 5.1b and c). The 15 largest earthquakes and the 15 regional earthquakes closest 
to Bucharest which can be found in the NEIC catalogue for the period of the analysed time 
windows are summarised in Table 5.10 and Table 5.11. The five local earthquakes with 
magnitudes larger than four which occurred in the Vrancea subduction zone during the 
URS project are summarised in Table 5.12. The SOM classification of the corresponding 
time windows is given together with the estimated P-onset times, magnitudes, depths and 
distances of the earthquakes. The 35 earthquakes affect 34 time windows of which 28 are 
classified as SOM class 3 or 5. The SOM analysis based on the 68% amplitude intervals 
and the peakfactors has enough sensitivity to discriminate earthquake waves arriving in 
Bucharest during working hours at working days from earthquake waves arriving in time 
windows with less human activity. The remaining 37 time windows classified as SOM 
class 3 or 5 commonly cover arrival times of earthquakes with magnitudes above six in a 
distance range between 10° and 100° (not listed in the tables). 
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Figure 5.14: Relation between weekday and daytime of the time windows with the SOM classification. 
The occurrence (in percent) of the 42 time windows of a week (Monday to Friday, six daily time windows) is 
plotted for each of the five classes. The SOM classes 2 (38.15%) and 4 (55.47%) with most members reflect 
the daily human activity. SOM classes 3 and 5 discriminate time windows affected by earthquake waves 
during working hours at working days (class 3) and the remaining weekly time windows (class 5). 

 
No relation is found between the P-onset times of local Vrancea earthquakes with 
magnitudes smaller than four and time windows classified as SOM class 3 and 5. The 
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seismic waves of these smaller local earthquakes are hardly observed in the frequency 
range below 1 Hz (see red stars in Figure 5.1b and c). For several of the time windows 
classified as class 3 or 5 no corresponding earthquakes can be found in the catalogues. 
Nevertheless, the NEIC catalogue is not complete for regional earthquakes in the 
magnitude range between four and five. The next step would be a careful analysis of the 
time series in the identified time windows to derive a magnitude-distance relationship for 
the detection threshold of the URS network. The detection of earthquake waves with this 
approach may be further improved by the selection of optimized frequency bands for the 
local, regional and teleseismic seismicity. 

Concluding, the SOM analysis provides meaningful classes of time windows which are 
additional valuable information for the further manual analysis. Nevertheless, more work 
has to be done to establish SOMs as a standard tool for the analysis of a noise 
classification data set such as the URS data set. Especially the reliable and optimal 
clustering of the obtained SOM prototype vectors for this application of the SOM method 
needs further evaluation. It is assumed that more meaningful „subclasses‟ of the SOM 
classes 2 and 4 can be found as these two classes comprise more than 93% of the 1709 
time windows. 

 

The 15 largest earthquakes (NEIC catalogue) 

Estimated P-onset 
EET 

weekday 
Time 

window 
EET 

Mw 
Depth 

/km 
Distance 

/° 
class 

2003-11-17 08:55 Monday 8-12 7.8 33 82 3 
2004-02-07 05:56 Saturday 4-8 7.5 10 106 5 
2004-07-25 17:35 Sunday 16-20 7.3 582 83 5 
2003-12-27 18:20 Saturday 16-20 7.3 10 143 4 
2004-02-06 00:19 Friday 0-4 7.1 16 106 4 
2004-01-03 18:43 Saturday 16-20 7.1 22 142 5 
2004-07-15 07:47 Thursday 4-8 7.1 565 146 5 
2003-10-31 03:18 Friday 0-4 7.0 10 80 5 
2004-06-10 18:31 Thursday 16-20 6.9 188 73 3 
2004-02-08 11:13 Sunday 8-12 6.9 25 106 4 
2003-12-26 04:03 Friday 4-8 6.8 10 30 5 
2003-12-10 06:50 Wednesday 4-8 6.8 10 78 5 
2004-06-28 13:02 Monday 12-16 6.8 20 79 3 
2003-12-26 23:45 Friday 20-24 6.8 10 143 4 
2003-12-05 23:37 Friday 20-24 6.7 10 74 5 

       
Table 5.10: The 15 largest earthquakes which occurred during the URS experiment. 
The table summarises the 15 largest earthquakes found in the NEIC catalogue. The estimated P-
onset times are given together with the weekday, the affected time window, the magnitude and depth 
of the earthquakes as well as the distances of the epicentres to the city centre of Bucharest. The 
SOM classification of the affected time windows is given in the last column. Eleven of the 15 time 
windows affected by the largest earthquakes are classified as SOM class 3 and 5. 
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The 15 closest regional earthquakes (NEIC catalogue) 

Estimated P-onset 
EET 

weekday 
Time 

window 
EET 

Mw 
Depth 

/km 
Distance 

/° 
class 

2004-06-15 15:03 Tuesday 12-16 5.2 12 4 3 
2004-04-07 04:34 Wednesday 4-8 5.0 68 5.7 5 
2004-05-23 18:21 Sunday 16-20 5.1 10 6.3 5 
2004-08-03 16:13 Tuesday 16-20 5.2 2 7.5 3 
2003-11-16 09:25 Sunday 8-12 5.2 8 7.5 5 
2004-08-04 07:22 Wednesday 4-8 5.2 10 7.7 3 
2004-08-04 06:03 Wednesday 4-8 5.6 10 7.7 3 
2004-08-04 17:20 Wednesday 16-20 5.3 10 7.7 3 
2004-03-01 02:38 Monday 0-4 5.6 9 7.9 5 
2004-02-07 23:19 Saturday 20-24 5.2 25 8.4 5 
2004-07-12 16:06 Monday 16-20 5.7 7 9 3 
2004-03-17 07:23 Wednesday 4-8 6.1 24 10,1 5 
2004-05-05 16:42 Wednesday 16-20 5.5 228 10,3 3 
2004-03-25 21:33 Thursday 20-24 5.6 10 11,8 2 
2004-03-28 06:53 Sunday 4-8 5.6 5 11,9 4 

       
Table 5.11: The 15 closest regional earthquakes which occurred during the URS experiment. 
The table summarises the 15 closest regional earthquakes found in the NEIC catalogue. The table 
does not contain the local earthquakes in the nearby (~150 km distance) Vrancea subduction zone. 
The estimated P-onset times are given together with the weekday, the affected time window, the 
magnitude and depth of the earthquakes as well as the distances of the epicentres to the city centre 
of Bucharest. The SOM classification of the affected time windows is given in the last column. 
Thirteen of the 15 time windows affected by the 15 closest regional earthquakes are classified as 
SOM class 3 and 5. 

 

Local earthquakes in the Vrancea zone with M > 4 (ROMPLUS catalogue) 

Estimated P-onset 
EET 

weekday 
Time 

window 
EET 

Mw 
Depth 

/km 
Distance 

/° 
class 

2004-02-07 13:59 Saturday 12-16 4.4 143 1.28 5 
2004-07-10 03:36 Saturday 00-04 4.3 150 1.29 5 
2004-04-04 09:42 Sunday 08-12 4.3 150 1.23 5 
2004-01-21 07:50 Wednesday 04-08 4.1 118 1.11 5 
2004-03-18 01:43 Thursday 00-04 4.1 157 1.28 5 

       
Table 5.12: The five largest local earthquakes which occurred in the Vrancea subduction zone. 
The table summarises the five local earthquakes with a magnitude larger than 4 which occurred in the 
near Vrancea subduction zone (ROMPLUS catalogue). The estimated P-onset times are given 
together with the weekday, the affected time window, the magnitude and depth of the earthquakes as 
well as the distances of the epicentres to the city centre of Bucharest. The SOM classification of the 
affected time windows is given in the last column. All of the five time windows affected by the largest 
local earthquakes are classified as SOM class 5. No correlation is found between the P-onset times of 
the Vrancea earthquakes with magnitudes smaller than four and the time windows classified as SOM 
classes 3 and 5. 

5.6 Summary of chapter 5 

A time-frequency analysis is used to determine 8 frequency ranges which represent the 
frequency-dependent influence of dominant natural and man-made sources on the urban 
seismic noise (USN). Below 0.6 Hz the USN is dominated by distant (0.04-0.18 Hz) and 
regional (0.18-0.6 Hz) ocean-generated microseism as well as seismic waves excited by 
earthquakes. In the frequency band 0.6-1 Hz the USN is dominated by man-made 
sources as well as wind induced seismic noise. The influence of the wind induced seismic 
noise is significantly increased for average wind velocities larger than 4-5 m/s. Above 1 Hz 
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the human activity is the dominating source of the USN. A human influence on the USN is 
observed also at very low frequencies especially below 0.09 Hz. 

The time series classification introduced in chapter 4 proofed to be capable to resolve the 
temporal and spatial variations of the USN and to provide additional information about the 
noise conditions in Bucharest. All typical noise sources identified by the time-frequency 
analysis are observed to cause typical variations of the statistical properties of the USN in 
the corresponding frequency bands. The deviations of the USN from the Gaussian 
distribution are typically larger at daytimes than at nighttimes due to man-made transient 
signals. This is not the case in the frequency band 0.6-1 Hz. The numerous man-made 
transient signals at daytime superimpose to a mainly Gaussian distributed USN in this 
frequency range especially during the working hours between 8-20 EET. Wind induced 
seismic noise causes higher noise amplitudes and reduces the influence of man-made 
transient signals on the statistical properties of the USN. Nevertheless, considering all 
frequency bands the deviations of the USN from the Gaussian distribution are increasing 
due to wind induced seismic noise. 

The statistical properties of the horizontal components North-South and East-West are in 
general identical. Minor differences are observed at two station sites (URS19 and URS20) 
in the frequency range above 25 Hz due to periodic signals with a dominant direction of 
vibration. Most probable sources of these signals are electrical engines in direct vicinity of 
the sensors. The statistical properties of the vertical and the horizontal components show 
minor differences in the frequency range below 0.18 Hz and in the frequency range 1-25 
Hz. In general a larger amount of transient signals is observed on the horizontal 
components than on the vertical component below 0.18 Hz. In the frequency band 1-25 
Hz the amount of time windows classified as NC1 and NC2 is slightly increased on the 
horizontal components. The observed differences have to be assumed to be related to the 
sources of the seismic noise such as surface waves excited by earthquakes (below 0.18 
Hz) or rotating machinery (especially above 25 Hz). This topic needs further research. 

The average amplitude ratios between the vertical and the horizontal components (H/V 
ratio) obtained from the noise classification correspond in general well with the results of 
the spectral H/V ratio analysis of Ziehm (2006). The spectral H/V ratio is around or slightly 
below 1 for frequencies larger than 2 Hz and exhibits two peaks with average H/V ratios 
between 2 and 4 in the frequency ranges 0.18-0.25 Hz and 0.6-0.9 Hz. The frequency 
resolution of the presented time-domain H/V ratios is worse than the resolution of the 
spectral H/V ratio but can be improved by the selection of more suitable frequency bands. 

The analysis of the vertical-component USN in the frequency band 0.6-1 Hz with the Self-
Organizing Map (SOM) method provides five meaningful classes of time windows. The 
SOM classification discriminates reliably the working hours 8-20 EET on working days 
(SOM class 2, 38.1% of the 1709 analysed time windows) from the time windows at night, 
morning and evening as well as on Sundays (SOM class 4, 55,5%). The remaining 6.4% 
of the time windows are classified as SOM class 1 (2.6%), SOM class 3 (1.4%) and SOM 
class 5 (2.4%). The classification of a time window as SOM class 1 indicates reliably 
higher-than-average wind velocities. The time windows classified as SOM class 3 or 5 are 
found to be affected by seismic waves excited by local, regional and teleseismic 
earthquakes. The SOM classes 3 and 5 discriminate time windows affected by the global 
seismicity with high (SOM class 3) and low (SOM class 5) human activity identical to the 
SOM classes 2 and 4. In general, the feasibility study to analyse an urban seismic noise 
classification data set with the SOM method was very successful. Nevertheless, the 
clustering needs further evaluation as it is assumed to find more meaningful „subclasses‟ 
of the SOM classes 2 and 4 which summarise more than 93% of the 1709 analysed time 
windows. 
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6 Improved calculation of seismic noise cross-correlation functions 

The estimation of Green‟s functions based on seismic noise cross-correlation functions 
(CCFs) evolved to an important and widely used technique in seismology (see chapter 2). 
It enables seismology to provide high-resolution tomography studies from local (e.g. 
Bussat & Kugler, 2009) to continental (e.g. Shapiro et al., 2005) scale and independent 
from earthquake seismicity or active seismic sources. Nevertheless, practical experience 
shows, that one has to use long time series (months to years) and to apply extensive 
normalisation to the seismic noise time series to obtain CCFs which are suitable to 
estimate Green‟s functions (see section 2.3.3.2). The cross-correlation of non-normalised 
„raw‟ seismic noise time series produces CCFs which are in general not suitable to 
estimate Green‟s functions due to disturbing dominant signals (e.g. earthquake waves, 
ocean-generated microseism) or instrumental irregularities. The important task of the 
processing is to provide an „artificial equipartitioning‟ of the seismic noise wave field. An 
equalisation of the signals contributing to the seismic noise in the time and frequency 
domain is necessary to be able to estimate the Green‟s function from the finally obtained 
seismic noise cross-correlation function. 

Concluding, the data processing applied to obtain suitable seismic noise CCFs is critical 
and underwent an evolution in the last years. A current status of ambient seismic noise 
data processing (see section 6.1) with a discussion of several proposed time and 
frequency domain normalisations to enhance the seismic noise was published by Bensen 
et al. in 2007 and is referenced in more than 40 follow-up publications. Thus, the 
recommendations by Bensen et al. (2007) are established as a processing standard. 
Another considered possibility to enhance seismic noise CCFs next to normalisation is the 
selection of appropriate input data and the exclusion of problematic data pieces like 
(teleseismic) earthquakes and instrumental irregularities. Pedersen et al. (2007) applied 
successfully a data selection approach based on global earthquake catalogues to exclude 
worldwide seismic events with magnitudes larger than 5 and a CCF amplitude threshold to 
exclude remaining small seismic events. The data selection approach in general is also 
discussed by Bensen et al. (2007) but not further considered due to the difficulties by 
removing all time windows containing earthquake waves automatically based on 
earthquake catalogues or threshold-based methods. 

The thesis suggests and evaluates methods of automated data selection to improve the 
calculation of seismic noise cross-correlation functions. The time series classification 
introduced in chapter 4 is capable to provide an automatic exclusion of time windows 
containing transient signals or corrupt data due to instrument regularities. Based on the 
time series classification the author developed a fully automated data selection approach 
independent of earthquake catalogues (see also Groos et al., 2010). The applied time 
window length is a critical parameter for the efficient automatic exclusion of transient 
signals such as teleseismic earthquake waves. The implementation of the new data 
selection approach required therefore a comprehensive investigation of the performance 
of the different established normalisation methods in dependence of the time window 
length which is discussed in this chapter. The author developed furthermore a second 
automated data selection approach based on the waveform symmetry of the CCFs as well 
as a waveform preserving time domain normalisation of the CCFs in the context of this 
study. 

A detailed overview about the applied data processing and the specific aspects of the data 
processing addressed by this thesis is given in the first section of this chapter. The 
significant influence of the time window length on the important frequency domain 
normalisation is discussed in section 6.2 prior to the introduction of the two fully 
automated data selection approaches in section 6.3. The developed method for the 
waveform preserving normalisation of the CCFs in the time domain is presented in section 
6.4. The considered normalisation schemes are evaluated without data selection in 
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section 6.5 and with data selection in section 6.6. The chapter is completed by a short 
summary of the most important conclusions in section 6.7. 

6.1 Data processing 

In this section the data processing for the calculation of seismic noise cross-correlation 
functions is introduced with a discussion of the state-of-the-art as proposed by Bensen et 
al. (2007) after a brief discussion of the time series preprocessing. All aspects of the data 
processing which are addressed by this thesis are identified and illustrated by a schematic 
overview in section 6.1.2. All mainly technical but nevertheless important aspects of the 
data processing such as the digital cross-correlation, the calculation of describing data 
parameters as well as the influence of the time window length on stacked CCFs are briefly 
discussed in the following subsections. 

6.1.1 Time series preprocessing 

For every station of the GSN data set (see section 3.2) a 12-months time series of the 
ground motion velocity is processed from the raw data provided by the IRIS DMC. The 
data of 2004 are obtained from the SEED volumes as fragmented time series in fragments 
of different length (minutes to weeks). The mean value and the linear trend are removed 
from all time series fragments before a cosine taper (4 percent) and a zero-phase 0.003 
Hz fourth order high-pass filter are applied prior to the removal of the instrument 
response. Afterwards, all fragments are merged to a 12-months time series from 01-
January 2004 to 31-December-2004. Missing data is zero padded to obtain complete time 
series. The alternative to the zero padding is the cutting of individual time windows with 
differing lengths and for every station pair with the exclusion of every time window for 
which only data of one station is available. This approach causes high organisational and 
computational effort due to the individual time window selection for every station pair as 
well as the resulting varying time window length. It is therefore usual to use a fixed time 
window length and accept zero padding (e.g. Bensen et al., 2007). Working with the GSN 
data set the author observed also no negative influence of the zero padding on the 
obtained CCFs in comparison to the strict exclusion of time windows for which only data at 
one station is available. Time windows which consist mainly of padded zeros are reliably 
identified by the time series classification. The single time window CCFs obtained from 
such time windows are excluded automatically from the stacking. The 12-months time 
series are filtered again with the 0.003 Hz HP filter to remove remaining low frequency 
artefacts due to the instrument response deconvolution. With this preparation the ground 
motion velocity is obtained with a broad frequency range from the raw data. Prior to the 
cross-correlation the 12-months time series of both stations are finally band-pass filtered 
with a fourth order zero-phase filter in the period band of interest (here 7-150 s). These 
12-months time series are produced to simplify the application of sliding time windows 
with different lengths for the following evaluation of the cross-correlation processing.  

6.1.2 Data processing scheme 

The data processing proposed by Bensen et al. (2007) is illustrated by the schematic 
processing flow in Figure 6.1. The time series preprocessing corresponds to the 
preprocessing discussed in the previous subsection. The cross-correlation of very long 
(months to years) time series of seismic noise at once is in general not reasonable for 
practical reasons. The length of the time series which can be processed at once is limited 
by the working memory of the used computer system. The cross-correlation processing is 
therefore applied to several shorter time windows (e.g. 24 hours) covering the total 
amount of data (here 12 months). The CCFs of the single time windows are afterwards 
stacked to obtain the complete CCF. This procedure is possible due to the linearity of the 
cross-correlation (Bensen et al., 2007). To apply the cross-correlation processing to daily 
time series (24 hr time window, Figure 6.1) is the widely used standard for the calculation 
of continental scale CCFs (e.g. Bensen et al., 2007; Yang & Ritzwoller, 2008). This time 
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window length is motivated by purely practical considerations as continuous seismic data 
is often stored in so called „dayfiles‟, one for each Julian day of a year, containing each 24 
hours of data. 

After the time series preprocessing Bensen et al. (2007) propose to normalise every 24 
hour time series first in the time and afterwards in the frequency domain. The established 
and wide spread non-linear time domain normalisations are the one-bit (1B) normalisation 
(e.g. Shapiro et al., 2005) and the running absolute mean (ram) normalisation (Bensen et 
al., 2007). The one-bit normalisation heavily distorts the original waveform by leaving only 
values of +1 for all positive and -1 for all negative amplitude values of the seismic noise 
time series. It is the extreme case of the running absolute mean normalisation with a time 
window length of one sample. The one-bit normalisation is known to negatively influence 
the frequency content of broadband time series (Pedersen et al., 2007; Sabra et al., 
2005). Nevertheless, it is very effective by improving the emergence of signals in the 
seismic noise CCFs and is therefore still widely used. Bensen et al. (2007) state, that the 
running absolute mean normalisation with a time window length of half of the largest 
analysed period is smoother and produces better results in terms of a slightly higher 
signal-to-noise ratio. Bensen et al. (2007) evaluated also several other time domain 
normalisations which were not further considered as they were observed to be less 
effective and/or efficient as the running absolute mean or the one bit normalisation. A 
crucial point is that all established time domain normalisation methods significantly distort 
the waveforms of the original signals. A further discussion of the time domain 
normalisations can be found in section 6.4. 

In the frequency domain, the spectral whitening is the established normalisation method. 
The implementations of this method differ slightly between different authors (e.g. Bensen 
et al., 2007; Brenguier et al., 2008a). Spectral whitening is applied to the time series (Time 
Series Spectral Whitening, TSSW) with the intention to improve the finally obtained CCFs 
in terms of being broad-band Green‟s function estimates (Bensen et al., 2007). The 
spectral whitening is discussed in detail in section 6.2. 

 
Figure 6.1: Processing scheme for the cross-correlation processing after Bensen et al. (2007). 
The whole data processing is applied to 24 hour long time series. The obtained CCFs are stacked afterwards 
to obtain a CCF which represents a longer time series (months to years). The time and the frequency domain 
normalisation are applied to the time series prior to the cross-correlation. 
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The processing scheme actually used for this thesis differs in some aspects from the 
scheme proposed by Bensen et al. (2007) and is illustrated in Figure 6.2. For the 
systematic evaluation of the data selection approaches and newly developed waveform 
preserving time domain normalisations several normalisation schemes were realised 
indicated by the optional fields in Figure 6.2. The 1B and ram time domain normalisations 
as well as the spectral whitening are considered as the established normalisation methods 
and compared with the new ones. The spectral whitening is not applied to the time series 
(TSSW) but to the CCFs (SW) for practical reasons as discussed in section 6.2. The data 
selection is realised by the exclusion of CCFs from the stacking as the CCFs are 
calculated for all single time windows at first. 

The time window length of the sliding time window is varied between 1 hour and 1 year for 
this analysis to evaluate the performance of the different data selection and normalisation 
methods. A time window length of one hour is found to be the shortest reasonable time 
window length for continental scale CCFs as discussed in section 6.1.5. Time window 
lengths between one hour (Li et al., 2010) and more often the already discussed 24 hours 
were applied in published studies. Therefore, the analysis is focused on 47 different time 
window lengths between one hour and 24 hours by increasing the time window length 
step-wise by about 0.5 hr. 

 
Figure 6.2: Processing scheme for the cross-correlation processing realised for this thesis. 
For the analysis presented in this thesis 12-months time series are preprocessed to simplify the application of 
sliding time windows with different lengths. Only the time domain normalisations of the time series are applied 
prior to the cross-correlation. The spectral whitening is applied without limitations after the cross-correlation for 
practical reasons as discussed in section 6.2. The data selection is realised by the exclusion of rejected CCFs 
(see the data selection approaches in section 6.3) from the stacking. The new developed waveform preserving 
time domain normalisation of the CCFs (wpcf normalisation) is introduced in section 6.4. 

 
Furthermore eight very long time windows of 2 days (d), 4 d (96 hr), 8 d (192 hr), 16 d 
(384 hr), 32 d (768 hr), 64 d (1536 hr), 182 d (4368 hr) and 1 yr (8760 hr) are used to 
analyse the influence of the stacking on the obtained 12-months CCFs. In general the 
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stacked CCFs obtained with a 24 hour time window are used as the „reference CCFs‟ in 
reference to the standard data processing proposed by Bensen at al. (2007). 

All normalisation schemes realised for this thesis with the data processing scheme 
illustrated in Figure 6.2 are summarised in Table 6.1. The waveform preserving 
normalisations of the time series (wpts) and the CCFs (wpcf) are introduced in section 6.4. 
The numerical differences between the spectral whitening of the time series (TSSW) and 
the CCFs (SW) are discussed in section 6.2 together with the strategy to apply the one-bit 
normalisation after the spectral whitening of the time series (TSSW-1B). The digital cross-
correlation (XC) is discussed in the following subsection. 

 

Name TSSW 1B ram wpts TSSW XC SW wpcf STACK 
Relevant 

figures (6.x) 

raw      X   X 7a, 8a 

1B  X    X   X 7c, 9, 10 

ram   X   X   X 
5a, 7b, 8b, 

9-16 

wpts    X  X   X  

wpcf      X  X X 8c, 9-16 

TSSW-1B X X    X   X 4 

1B-TSSW  X   X X   X 4 

ram-TSSW   X  X X   X 4 

1B-SW  X    X X  X 1a, 4, 9, 10 

ram-SW   X   X X  X 
1a, 4, 5, 6, 9, 

10, 12-15 

SW      X X  X 9, 10, 12-15 

Table 6.1: Overview about the applied normalisation schemes and the relevant figures. 

First column gives the abbreviation used in the text for the individual applied processing (processing flow from 
left to right). The abbreviations stand for: time series spectral whitening (TSSW; section 6.2), one-bit 
normalisation (1B; Shapiro et al., 2005), running absolute mean normalisation (ram; Bensen et al., 2007), 
waveform preserving time series normalisation (wpts; section 6.4), unbiased linear digital cross-correlation (XC; 
following subsection), spectral whitening of cross-correlation function (SW; section 6.2) and waveform 
preserving normalisation of cross-correlation function (wpcf; section 6.4). 
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6.1.3 The digital cross-correlation 

The CCF is calculated as linear unbiased digital cross-correlation in the frequency domain 
(Bendat & Piersol, 1994). The more intuitive time domain representation of the linear 
unbiased CCF Rxy(r) at lag r of the two random time series x and y with N samples is 
given as 
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n
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 . (6.1) 

By this definition signal x is shifted against signal y. The samples of time series x which 
are shifted beyond the beginning or end of time series y are excluded from the 
summation. To calculate the linear digital CCF in the frequency domain both time series 
have to be zero padded to a length of 2N-1 samples prior to the DFT 
(Bendat & Piersol, 1994). Without this zero padding a „wrap-around‟, or „circular‟, effect 
occurs and the end of time series x is effectively cross-correlated with the beginning of 
time series y and vice versa. Bendat & Piersol (1994) state, that this circular effect is no 
serious problem for maximum lag times up to 10% of the total signal length. By calculating 
the circular digital CCFs the minimum time window length would be limited to around 
20,000 s (~6 hours) for the maximum lag times around 2000 s usually necessary for 
continental scale CCFs. The normalisation term 1/(N-|r|) is applied to account for the 
decreasing number of sample multiplications contributing to Rxy(r) with increasing lag r. 
This normalisation avoids effectively an amplitude decrease (sometimes observed as 
ramp-like artefact) in the linear digital CCFs with increasing lag r. 

The stacked linear cross-correlations are calculated with a sliding overlapping time 
window. The benefit of the stacked CCF calculation with overlapping time windows is 
discussed in section 6.1.5. The sliding time window overlap equals the maximum 
analysed lag time of the calculated CCFs (here 2000 s) to include all possible sample 
combinations for every lag time between 0 s and 2000 s. A standard maximum lag time of 
2000 s is selected to include the signal time windows of all station pairs and to simplify 
data handling. 

Concluding, the „Total Number of Sample Multiplications‟ (TNSM) is introduced for the 
qualitative evaluation of the computational costs for stacked CCFs obtained with different 
time window lengths. The TNSM of a stacked CCF is calculated by summing up the 
number of sample multiplications (in fact the normalisation term described above) from the 
negative to the positive maximum analysed lag time for a single time window CCF and 
multiplying this sum with the number of stacked CCFs. The TNSM is not equal to the true 
number of arithmetic operations needed to calculate the stacked CCF! It is used only as a 
more intuitive measure to compare the computational costs caused by the different time 
window lengths in section 6.1.5. 

6.1.4 Data parameters 

Several parameters of the input time series and the obtained CCFs are determined to 
allow an automated selection of cross-correlations for the stacking and to evaluate the 
obtained CCFs. The determined parameters of the time series are the amplitude 
percentiles representing the 68%-, 95.45%- and 99.73%- amplitude intervals which are 
used for the noise classification introduced in chapter 4. For the obtained CCFs the 
causal, acausal and symmetric-component (stack of causal and acausal part of the CCF) 
signal-to-noise ratios (SNR) are determined (Figure 6.3). The SNR is calculated as the 
ratio between the peak signal in a signal time window and the rms-value of a noise time 
window (e.g. Bensen et al., 2007). The signal time window is selected individually for 
every station pair to contain Rayleigh waves with a propagation speed of 2.4 km/s to 4.8 
km/s. Furthermore, the „precursory‟ noise in a time window between lag time zero and the 
signal time window is used instead of the „trailing‟ noise in a time window behind the 
signal time window (e.g. Bensen et al., 2007). The SNR calculated with the precursory 
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noise time window depends more on the earthquake-generated noise in the CCFs 
between lag time zero and the signal time window. For this reason, Bensen et al. (2007) 
suggest that the precursory noise SNR may be better to predict the quality of dispersion 
measurements from CCFs than the trailing noise SNR. Furthermore, the potential artificial 
amplitude decrease towards larger lag times due to the linear digital cross-correlation may 
bias the calculation of the trailing noise SNR, although the CCFs are normalised as 
described above. Therefore the precursory noise SNR is used, because it is more suitable 
to evaluate the effectiveness of the different analysed normalisation methods by 
suppressing the negative influence of teleseismic earthquakes on continental scale 
seismic noise CCFs. The noise time window contains 60 % of the CCF and neglects the 
first and the last 20 % between lag time zero and the signal time window. The signal and 
noise time windows selected for the analysed station pairs are given in Table 6.2. 

In addition to the SNR, the linear Pearson‟s correlation coefficient (Bendat & Piersol, 
1994) between the causal and acausal signal time window is calculated to evaluate the 
waveform symmetry of the cross correlation (parameter WSC in Figure 6.3). The 
symmetry of a CCF around lag time zero is the simplest criteria to evaluate the suitability 
of a CCF to estimate the Green‟s function. From the theoretical point of view one expects 
symmetric, in terms of waveform and amplitude, CCFs which are identical in their causal 
and acausal parts (Sabra et al., 2005; see section 2.3.3). Cross-correlations with high 
waveform symmetry but amplitude asymmetry may be interpreted to represent the 
different amount of seismic energy propagating in the two different directions of a station 
pair (Campillo, 2006). Cross-correlations with significant waveform and amplitude 
asymmetry may be unsuitable to estimate the Green‟s function at all (Yang & Ritzwoller, 
2008; Roux, 2009). Therefore, an increase of waveform symmetry (or parameter WSC) 
may be a suitable criterion to evaluate the performance of a distinct processing scheme. 
The SNR and waveform symmetry measure WSC will be used in sections 6.5 and 6.6 to 
evaluate the CCFs obtained with the different processing schemes. 

Station pair Dist. /km Signal time window /s Noise time window /s 

PFO HRV 4013 836 - 1672 167 - 669 

PFO ANMO 932 194  388 39  155 

CCM DWPF 1432 298 - 597 60 - 238 

ANMO DWPF 2487 518 - 1036 104 - 414 

ANMO CCM 1404 293 - 585 59 - 234 

DWPF HRV 1829 381 - 762 76 - 305 

Table 6.2: Interstation distances with corresponding signal and noise time windows of several 
station pairs. 

The signal and noise time windows are used to calculate the SNR of the causal, acausal and 
symmetric-component CCF. Furthermore, the linear correlation coefficient between the causal 
and the acausal signal time window is calculated to evaluate the waveform symmetry of the 
CCF. The signal time windows are selected to contain the Rayleigh waves with propagation 
speeds between 2.4 km/s and 4.8 km/s. The noise time window covers 60% of the CCF 
between lag time zero and the signal time window. The six station pairs shown here are 
highlighted in the analyses in sections 6.5 and 6.6 and are especially indicated in Figure 3.2. 

 

In Figure 6.3 two 12-months stacked CCFs of the station pair PFO-HRV are shown which 
were obtained with two different time domain normalisations and consecutive spectral 
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whitening. The comparison of the SNR and WSC of the CCF obtained with the one-bit 
normalisation (Figure 6.3a) and the CCF obtained with the running absolute mean (ram) 
normalisation (Figure 6.3b) reveals measurable differences (Figure 6.3c) between both 
processing schemes. The higher waveform symmetry of the running absolute mean CCF 
is illustrated by the larger WSC of 0.35 in comparison to 0.22 of the one-bit CCF (Figure 
6.3). This is caused mainly by differences in the low frequency content of the CCFs which 
can be observed directly from the waveforms especially at the beginning of the signal time 
window. The low frequency signals with low spectral amplitudes in the original time series 
are not adequately represented in the one-bit normalised time series. This was also 
observed by Pedersen et al. (2007). One solution proposed by Pedersen et al. (2007) is 
the narrow-band pre-filtering prior to the cross-correlation and to cross-correlate the 
seismic noise time series in all frequency bands of interest. However, it is common 
practice for dispersion analyses to calculate broad-band CCFs and to apply narrow-band 
filters on the CCFs afterwards (e.g. Bensen et al., 2007; Pedersen et al. 2007) to reduce 
the computational costs and therefore processing time. Another solution to at least partly 
solve this problem is the application of the one-bit normalisation after the spectral 
whitening of the time series as done by Brenguier et al. (2008a). This less common 
approach is discussed together with other spectral whitening strategies in section 6.2. 
Nevertheless, it is not uncommon to calculate broad-band CCFs with one-bit normalised 
time series without precursory spectral whitening. Therefore, the one-bit normalisation of 
the original broad-band time series is included in this study none the less the known 
shortcomings. 

 
Figure 6.3: A comparison of CCFs obtained from the same data with different normalisation schemes. 
Two stacked 12-months CCFs for the station pair PFO-HRV obtained with (a) one-bit (1B) and (b) running 
absolute mean (ram) normalisation. In both cases the spectral whitening (sw) normalisation is applied after the 
cross-correlation prior to the stacking. The difference time series between both stacked CCFs is shown with a 
larger scale in (c). The time windows used to calculate the SNR and the waveform symmetry coefficient 
(WSC) are displayed by solid (signal time windows) and dashed (noise time windows) boxes (a) and bars (b + 
c). The SNR is given for the corresponding causal or acausal signal time window of the CCF. The WSC of the 
CCF is given at lag time zero. 
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6.1.5 Time window length 

This subsection provides the discussion of an important numerical aspect of cross-
correlation data processing. The time window length used to calculate stacked CCFs of 
very long time series. The time window length influences the result of the linear digital 
cross-correlation as well as the different normalisation methods and it should be chosen 
carefully. Furthermore, the number of time series samples which do not contribute to the 
stacked CCF increases with decreasing time window length if a non-overlapping sliding 
time window is used. It is demonstrated below that overlapping time windows avoid 
negative influences on the stacked CCFs especially for short time window lengths 
effectively. 

One-bit normalised time series are used to analyse only the influence of the time window 
length. The one-bit normalisation is fully independent of the sliding time window and 
ensures the occurrence of clearly visible signals in the CCFs which can be compared to 
evaluate the influence of the time window length. The linear CCFs are calculated in sliding 
time windows with lengths between 40 minutes and 24 hours with and without an overlap 
of 2000 s (33 min 20 s) which corresponds to the largest analysed lag time. The single 
time window CCFs for each time window length are stacked to obtain the 12-months CCF. 
These stacked 12-months CCFs are compared against the „unstacked‟ 12-months CCF 
calculated directly from the complete time series (1 yr time window). Only the signal time 
window of the symmetric-component CCF is considered. In this way, only variations of 
these signals are evaluated which are commonly derived from seismic noise cross-
correlation functions for dispersion analyses (e.g. Bensen et al., 2007). The results for 
overlapping and non-overlapping time windows are shown in Figure 6.4. The linear 
correlation coefficient between the symmetric-component signal time windows of the 
stacked and the reference (time window length of one year) CCFs is larger than 0.998 for 
all used overlapping time window lengths between 40 minutes and 24 hours (Figure 6.4a). 
With non-overlapping time windows such high values (>0.998) are only obtained for time 
window lengths larger than 4 hours (Figure 6.4a). Towards shorter time window lengths, 
the values decrease rapidly to 0.985 at a time window length of 40 minutes. This effect is 
related to the decreasing amount of sample multiplications contributing to the linear digital 
cross-correlation with shorter non-overlapping time windows. This effect is illustrated also 
by the total number of multiplications in Figure 6.4b. Overlapping time windows can be 
used to avoid this artefact by the calculation of stacked CCFs with short time windows. 
Nevertheless, the computational costs properly explode for overlapping time windows 
shorter than one hour compared to the calculation of the unstacked reference CCF 
(Figure 6.4b). 

Concluding, a minimum time window length in the range of four to six times the maximum 
analysed lag time is recommendable to obtain reliable results with non-overlapping time 
windows. The usage of overlapping time windows improves the stacked CCF as 
approximation of the complete unstacked reference CCF but increases the computational 
costs. With overlapping time windows even short time windows barely longer than the 
maximum analysed lag time can be used. The author decided to apply overlapping sliding 
time windows of one hour and longer to obtain reliably stacked CCFs and to evaluate the 
influences of the different normalisation methods in combination with different time 
window lengths with still acceptable computational costs. 
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Figure 6.4: Comparison of overlapping and non-overlapping time windows and their computational costs. 
(a) Linear correlation-coefficients for the symmetric-component signal time windows of the stacked 12-months 
CCFs with a reference CCF. The reference CCF is the „unstacked‟ CCF obtained without stacking by the 
cross-correlation of the complete 12-months one-bit normalised time series. (b) Normalised total number of 
multiplications (see section 6.1.3) necessary to derive the stacked CCFs against time window length. A value 
of one corresponds to the number of multiplications to derive the unstacked 12-months reference CCF. 

 

6.1.6 Further processing of the CCFs 

The single broad-band (7-150 s) CCFs are stacked in the time domain to obtain the 12-
months CCF. Prior to the stacking the mean value of the single CCFs is removed. To 
analyse the broad-band CCF in a narrower frequency band a corresponding fourth-order 
zero-phase Butterworth band-pass filter is applied to the stacked 12-months CCF. The 
broad-band stacked CCFs are analysed also in the narrower frequency bands 7-14 s, 
20-50 s and 70-150 s to evaluate the frequency-dependent influence of the different 
processing schemes (see sections 6.2.1and 6.5). 
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6.2 Spectral whitening 

The spectral whitening of the single time window time series or CCFs is a massive non-
linear intervention into the signal averaging with the intention to improve the finally 
obtained CCFs in terms of being broad-band Green‟s function estimates (Bensen et al., 
2007). In this section several common strategies are discussed how to include spectral 
whitening into the seismic noise cross-correlation processing. Furthermore the immense 
influence of the time window length on the CCFs obtained with spectral whitening is 
demonstrated and discussed. 

Independent from the strategy the spectral whitening itself is applied as proposed by 
Brenguier et al. (2008a). The spectral whitening is done by normalising the complex 
spectrum of a time series or CCF to an absolute value of one in the period range of 
interest (here 7-150 s) and to zero outside this period range. 

6.2.1 Strategies 

The typically applied strategy is the spectral whitening of both input time series prior to the 
cross correlation after a precursory time domain normalisation of the input time series 
(Bensen et al., 2007). A less widespread second strategy is the spectral whitening of both 
input time series followed by a one-bit normalisation in the time domain 
(Brenguier et al., 2008a; Meier et al., 2010). A third strategy, also mentioned by Bensen et 
al. (2007), is the spectral whitening of the single CCFs after cross-correlation prior to the 
stacking. 

The most important advantage of the third strategy is the preservation of the single CCFs 
without spectral whitening. It leaves the spectral whitening as an option and allows one to 
analyse the single CCFs and the stacked CCF with and without spectral whitening 
efficiently with low computational costs. Furthermore, it is not uncommon to shorten the 
CCFs directly after the cross-correlation to the largest necessary lag time range (here: -
2000 s to +2000 s) to save disk space and to simplify data handling (e.g. Bensen et 
al., 2007). This shortening of the CCFs can be advantageous also in terms of 
computational costs of the spectral whitening depending on the length of the input time 
series. Nevertheless, the spectral whitening of the shortened CCFs is numerical not the 
same as the spectral whitening of the longer input time series or the original CCFs due to 
the different frequency resolutions. The different strategies are compared in the following. 

The stacked 12-months CCF (2004) are calculated for the station pair PFO-HRV with time 
window lengths between one hour and one year and overlapping time windows. Thereby 
the one-bit (1B) as well as the running absolute mean (ram) time domain normalisations 
are used followed by a consecutive spectral whitening of the time series (1B/ram-TSSW) 
or the CCFs (1B/ram-SW). Furthermore, the stacked 12-months CCF are calculated by 
spectral whitening of the time series and consecutive one-bit normalisation (TSSW-1B). 
Again, the linear correlation coefficient CC of the symmetric-component signal time 
windows is used to compare the CCFs obtained from the same data but with different 
normalisation schemes with each other. 

The first analysis shown in Figure 6.5a compares the CCFs obtained with the different 
time window lengths with their 24 hr reference CCF for every normalisation 
scheme/spectral whitening strategy. This analysis reveals in general a measurable and 
systematic influence of the time window length on the CCFs obtained with spectral 
whitening independent of the normalisation scheme. The variations are largest with the 
TSSW-1B approach and smallest with the ram-SW approach. With all approaches the 
differences increase towards time window lengths larger than 48 hr and shorter than 
12 hr. Between 12 hr and 48 hr the largest CC values are observed around 0.96 
(TSSW-1B), 0.97 (1B-TSSW), 0.98 (ram-TSSW, 1B-SW) and 0.99 (ram-SW). 
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Figure 6.5: Influence of the time window length on CCFs obtained with different spectral whitening strategies. 
Comparison of CCFs (PFO-HRV, 7-150 s) obtained with different spectral whitening strategies and different 
lengths of overlapping time windows. Correlation coefficients (CC) between signal time windows of symmetric-
component CCFs are shown against time window length. The CCFs are obtained with spectral whitening of 
the time series (TSSW) or the CCFs (SW) and with one-bit (1B) or running absolute mean (ram) time domain 
normalisation. The 1B-normalisation is applied before (1B-TSSW) or after (TSSW-1B) the spectral whitening. 
(a) Comparison of CCFs (7-150 s) with their identical normalised 24 hr reference CCF over time window 
length for different normalisation schemes. (b) Direct comparison of CCFs (7-150 s) obtained with different 
normalisation schemes over time window length. (c) Comparison of CCFs (ram-SW) with their 24 hr reference 
CCF over time window lengths for different frequency ranges. The dashed line in (c) equals the dashed line in 
(a). 

 
In general, smaller variations are observed with the SW strategy which may be due to the 
unchanged frequency resolution of the spectral whitening with different time window 
lengths. Furthermore, the differences between the CCFs increasing with time window 
length are larger if the one-bit normalisation is applied after the spectral normalisation 
(TSSW-1B). 

Figure 6.5b shows direct comparisons of CCFs obtained with different normalisation 
schemes. The differences between the CCFs obtained with spectral whitening of the time 
series (ram-TSSW; 1B-TSSW) and the CCFs obtained with spectral whitening of the 
CCFs (ram-SW; 1B-SW) decrease systematically with decreasing time window length 
(black lines). This effect is most probably caused by the converging frequency resolutions 
of both methods. The comparison of the TSSW-1B strategy with the ram-TSSW strategy 
(red line with asterisks) reveals decreasing differences with shorter time window lengths 
also between these two strategies. The large differences between the TSSW-1B and the 
1B-TSSW strategy (blue line in Figure 6.5b) are caused mainly by the insufficient 
representation of the low frequency signals in the CCF if the one-bit normalisation is 
applied to the original broad-band time series prior to the spectral whitening. Therefore the 
TSSW-1B approach is more suitable than the 1B-TSSW/SW strategies to produce broad-
band Green‟s function estimates. 
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6.2.2 Amplification of persistent monochromatic signals 

The variations of the CCFs with decreasing time window lengths shorter than 12 hr 
observed with all normalisation schemes (Figure 6.5a) are a frequency dependent effect. 
A comparison of ram-SW CCFs with the 24 hr ram-SW CCF is shown for several 
frequency bands in Figure 6.5c. For this comparison the ram instead of the 1B 
normalisation is applied to the time series of stations PFO and HRV to minimise unwanted 
changes to the frequency content of the broad-band CCFs by the time domain 
normalisation. Furthermore the spectral whitening is applied to the CCFs (SW) to exclude 
a changing frequency resolution of the spectral whitening due to the different time window 
lengths as a cause. 

The comparison with the broad-band CCFs (7-150 s) is shown in Figure 6.5c as in Figure 
6.5a by the dashed line. The solid lines with markers (Figure 6.5c) show the results for the 
short period (7-14 s; asterisk), intermediate period (20-50 s; circle) and long period 
(150-70 s; square) CCFs. Increasing waveform differences towards shorter time windows 
are not evident at short and long periods but pronounced in the frequency band 20-50 s. 
This effect is caused by a persistent narrow-band microseism signal at 26 s which is 
discussed in detail below. In contrast, the increasing differences between time window 
lengths larger and shorter than 48 hr are observed in all frequency bands. Exactly the 
same behaviour is observed with all other analysed station pairs. 

In Figure 6.6a the 12-months CCFs for station pair ANMO-CCM are shown which were 
obtained with a time window length of 24 hr (black solid line) as well as 2 hr (red dashed 
line) and running absolute mean normalisation. The same CCFs obtained with additional 
spectral whitening are shown in Figure 6.6b. The waveform differences between the 2 hr-
CCFs and the 24 hr-CCFs are given in Figure 6.6c and Figure 6.6d, respectively. The 
amplitude spectra of the CCFs are shown in Figure 6.6e and Figure 6.6f. 

No significant differences between the 2 hr-CCF and the 24 hr-CCF are observed in the 
waveforms or the amplitude spectra of the CCFs if spectral whitening is not applied (left 
side of Figure 6.6). With spectral whitening a strong monochromatic signal with a period of 
approx. 26.33 s emerges in the causal part of the 2 hr-CCF (right side of Figure 6.6). A 
signal at the same frequency is also present in the other CCFs but with significantly 
smaller relative amplitudes (compare the amplitude spectra in Figure 6.6e and Figure 
6.6f). 

As aspired, the spectral whitening influences massively the signal averaging effect of the 
cross-correlation and produces a more broad-band Green‟s function estimate. Undesired 
is the amplification of a monochromatic signal not related to the Green‟s function. 
Furthermore, the results obtained with spectral whitening are significantly influenced by 
the time window length. Thus, the time window length is an important parameter of the 
seismic noise cross-correlation processing. 
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Figure 6.6: Influence of the time window length on CCFs obtained with spectral whitening. 
Comparison of 12-months CCFs (ANMO-CCM, 7-150 s) obtained with different normalisation schemes and 
time window lengths. (a) ram-CCFs obtained with a time window length of 24 hours (black line) and 2 hours 
(red dashed line). (b) the same as in (a) for the ram-SW-CCFs. (c) and (d) waveform differences between the 
2 hr-CCF and the 24 hr-CCF in (a) and (b), respectively. (e) and (f) corresponding amplitude spectra of the 
CCFs in (a) and (b), respectively. 

 
The observed 26 s signal is in fact well known to emerge in continental scale CCFs 
especially in North America, Europe and Africa (Shapiro et al., 2006; Bensen et al., 2007). 
Shapiro et al. (2006) identify a monochromatic source of microseism located in the Gulf of 
Guinea to most probably cause the 26 s signal in the CCFs. They observe the 26 s signal 
to be very persistent in time with a seasonal amplitude variation with larger amplitudes in 
the northern hemisphere summer months. Nevertheless, the amplitude information is 
discarded by the spectral whitening and only the phase information is retained. This leads 
to an amplification of temporally stable persistent signals even with small relative 
amplitudes if CCFs are stacked after spectral whitening. Although the amplitude spectra of 
the single CCFs are flat after spectral whitening, the amplitude spectrum of the stacked 
12-months CCF is not. The amplitude spectrum of the stacked CCF is related to the 
coherence of the single CCFs and is shaped by the stacking process. 

A histogram based analysis of the phase information at the discrete frequencies of the 
complex spectra of the single CCFs is suitable to further investigate the emergence of the 
26 s signal with decreasing time window length. For this analysis the single time window 
CCFs of the year 2004 and station pair ANMO-CCM are used. The complex values at a 
given discrete frequency obtained from all single CCFs are located on the unit circle and 
should group in a limited angular range of the unit circle if a stable signal is present in the 
single CCFs. Therefore, the unit circle is divided in 12 angular bins of equal size between 
–π and π to calculate histograms of the phase angles of the single CCFs at every discrete 
frequency (Figure 6.7). If the single CCFs contain no dominant signal the complex values 
can be expected to be uniformly distributed over the unit circle with 8.3 % of the complex 
values in every of the 12 bins. 
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In Figure 6.7a, the histogram of phase angles at the peak period 26.33 s is shown for the 
24 hr CCFs. The phase angles are not uniformly distributed and group at angles between 
–π/2 and –π. In general, the same is observed for the 2 hr-CCFs (Figure 6.7b). These 
histograms are obtained for all discrete frequencies to determine the standard deviation of 
the occurrence. The standard deviations are plotted over frequency in Figure 6.7c for the 
24 hr-CCFs and in Figure 6.7d for the 2 hr-CCFs. The standard deviation peaks also at 
the period of 26.33 s indicating the stability of the 26 s signal also in the shorter 2 hr- 
CCFs. In general, the shape of the standard deviation over frequency equals the shape of 
the amplitude spectra of the stacked CCFs obtained with 24 hr and 2 hr time windows, 
respectively. The standard deviation of the 2 hr-CCFs (Figure 6.7d) is considerably 
smaller than for the 24 hr-CCFs (Figure 6.7c) indicating that the phase angles are more 
uniformly distributed at all frequencies. With the 2 hr time window the standard deviation 
at 26.33 s is smaller in absolute value but more pronounced in comparison to the other 
frequencies than with the 24 hr time window. This is also observed with a smaller sub-
sample of 374 randomly selected 2 hr-CCFs. 

 
Figure 6.7: Histogram-based spectral analysis of single time window CCFs. 
The analysis illustrates the phase information in the complex spectra of single 24 hr and 2 hr time window 
CCFs of the station pair ANMO-CCM. In (a) the histogram of the phase angles at the period of the 26 s 
microseism signal for all 24 hr time window CCFs (overlapping time windows) of the year 2004 is shown. In (b) 
the corresponding histogram for the 2 hr time window CCFs is shown. The mean of the histograms are shown 
by the dashed lines in the histograms. The solid lines in (a) and (b) indicate the range of the standard 
deviation around the mean. The standard deviations of the phase angle histograms of all discrete frequencies 
are plotted in (c) for the 24 hr CCFs and in (d) for the 2 hr time window. 

6.2.3 Discussion 

The influence of time window length on the results obtained with spectral whitening needs 
further research. Therefore, only a first interpretation of the observations is given below. 

Regarding the increasing dominance of the 26 s signal with decreasing time window 
length the author assumes two underlying aspects. On the one hand, the temporally very 
persistent signal surely takes profit from the higher summation order with the shorter time 
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window length. On the other hand, this is only possible because the signal emerges 
reliably in the single CCFs, even if a short time window length of 2 hr is used. As the 26 s 
signal is excited continuously by a localised source, a short time window is sufficient to 
obtain a CCF containing the corresponding signal. In contrast, the emergence of signals 
representing the Green‟s function can be expected to be less effective in the same short 
time window due to the insufficient signal averaging. If two long time series are cross-
correlated at once, the averaging of all contributing signals is obtained by the cross-
correlation itself. By dividing the long time series in shorter time windows, the averaging is 
increasingly transferred from the cross-correlation to the stacking process and therefore 
increasingly affected by the spectral whitening. This would amplify especially temporally 
persistent signals in the CCFs like the 26 s microseism which efficiently produce signals in 
the single CCFs. Therefore, the time window length should be carefully selected. 

The time window length should be as long as possible to enhance the emergence of the 
Green‟s function in the single CCFs independent of the stacking. Nevertheless, a stacking 
of CCFs after spectral whitening is recommendable. The stacking ensures the 
cancellation of incoherent noise in the single CCFs with flat amplitude spectra which is 
also amplified by the spectral whitening. This effect is illustrated by the shaping of the 
amplitude spectrum during the stacking as shown in Figure 6.7. 

Following these implications and observations, the time window lengths shorter than 
10 hours (see also Figure 6.5a and c) are increasingly not suitable to apply spectral 
whitening to the data used for this study. Furthermore, the very long time windows of 
several days to weeks seem to be too long to ensure an effective cancellation of the noise 
introduced by the spectral whitening with one year of data. Nevertheless, the results 
obtained with the different normalisation schemes with and without spectral whitening are 
discussed in the following sections including the short time windows to evaluate the 
performance of the data selection approaches and the waveform preserving time domain 
normalisations. 

A possible solution which would allow us to use short time windows (e.g. to introduce an 
automated data selection) and to avoid the amplification of monochromatic persistent 
signals by the spectral whitening of the short time windows may be a stacking process 
with two stages. In the first stage several CCFs obtained from short time windows can be 
stacked without spectral whitening to obtain a „pre-stacked‟ CCF representing a longer 
time window to enhance the emergence of the Green‟s function. These pre-stacked CCFs 
could be spectral whitened and stacked afterwards to obtain the final stacked CCF to 
estimate the broad-band Green‟s function. 

Concluding, the author recommends and applies the spectral whitening of the CCFs after 
the cross-correlation and prior to the stacking. This strategy has two advantages. First, the 
obtained CCFs can be analysed with and without spectral whitening at low computational 
costs. Second, this strategy would allow a stacking process with two stages which may be 
suitable to combine very short time windows reasonably with spectral whitening. This topic 
needs further research and is not covered by this thesis. The strategy TSSW-1B which is 
proposed by Brenguier et al. (2008a) is not further considered for two reasons. On the one 
hand different time domain normalisations are combined with spectral whitening and on 
the other hand the spectral whitening is applied after the cross-correlation for the 
discussed practical reasons. 

6.3 Data selection 

The improvement of the stacked CCFs by an automated data selection is tested with two 
approaches. The first approach considers the characteristics of the two broad-band time 
series which are cross-correlated and is based on the noise classification introduced in 
chapter 4. This approach is called time series approach (TSA) in the following. The 



 

 97 
 

second approach considers the waveform symmetry of the single CCFs and uses a 
criterion based on the waveform symmetry measure WSC discussed in 6.1.4. This 
approach is called waveform symmetry approach (WSA) in the following. 

Time windows with contemporary transient signals at the two recording sites are 
problematic to obtain suitable seismic noise CCFs due to their amplitude dominance. This 
is also true, if both transient signals do not originate from the same source. Therefore, the 
CCFs obtained from such time windows may be better excluded from the waveform 
stacking. With the time series approach time windows are excluded if at least one of the 
two time series is classified as corrupt (no data, extreme transients, step in the time 
series; classified as NC10-NC13) or if both time series are dominated by transient signals 
(like contemporaneously arriving surface waves; classified as NC3 or NC4). 

The aim of the waveform symmetry approach is to exclude strongly asymmetric CCFs 
before stacking the CCFs of the single time windows to obtain the complete CCF. 
Therefore, the intention is to reject all CCFs with a negative linear correlation between the 
causal and acausal signal time window which is represented by a negative WSC value. In 
Figure 6.8 the histogram of the WSC values is shown for the 24 hr CCFs of the year 2004 
obtained with the running absolute mean normalisation for all 10 station pairs. The fraction 
of non-significant WSC values is shown in red, the fraction of significant WSC values is 
shown in blue. A linear correlation coefficient is considered to be significant, if the 
probability to observe a value as large as the observed one for two uncorrelated random 
time series by chance is smaller than 5 percent. The significance test is done as proposed 
by Bendat & Piersol (1994). WSC values with a value between -0.07 and 0.07 are 
observed to be in general not significant in the case of the analysed CCFs. Therefore, a 
minimum WSC value of 0.07 is defined for the waveform symmetry approach to exclude 
CCFs with a negative correlation from the stacking. 

 
Figure 6.8: Significance of the calculated waveform symmetry coefficient (WSC) values 
Histogram of the WSC values of the 24 hr CCFs (7-150 s) of the year 2004 obtained with the running absolute 
mean normalisation for all 10 station pairs. The fraction of the non-significant WSC values is shown by the red 
colour. A WSC value is significant (blue) if the probability is smaller than 5 percent to observe a WSC value as 
large as the observed one for an uncorrelated random time series by chance. 

 
To obtain a band-pass filtered stacked CCF with the waveform symmetry approach, the 
single CCFs should be filtered in the desired frequency band prior to the determination of 
the WSC value and the stacking. This is a drawback of the waveform symmetry approach 
in terms of computational costs. Furthermore, the waveform symmetry approach is 
observed to be less effective if the spectral whitening was already applied. The single time 
window CCFs are significantly biased by incoherent noise which is also amplified by the 
spectral whitening. This effect leads in general to decreased WSC values of the single 
time window CCFs. Therefore, the selection of the CCFs by their WSC values is done 
prior to the spectral whitening. The performance of both data selection approaches is 
discussed in detail in section 6.6. 
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6.4 Waveform preserving time domain normalisation 

As mentioned above, all established normalisation methods intend to equalise the signals 
contributing to seismic noise in order to enhance the emergence of the Green‟s function 
and accept a distortion of the original seismic noise waveforms. The emergence of the 
Green‟s function from seismic noise CCFs is disturbed due to the impacts of dominating 
seismic signals such as transient earthquakes or monochromatic signals of ocean-
generated microseism, even if very long time series are used. 

The two most widespread time domain normalisations (1B and ram) are briefly discussed 
prior to the introduction of the two new waveform preserving normalisation methods wpts 
and wpcf. In Figure 6.9 stacked 12-months CCFs are shown in the broad period band 
7-150 s obtained with an overlapping sliding time window (6 hours) of the station pair 
PFO-HRV without any normalisation („raw‟, Figure 6.9a) and with the running absolute 
mean (Figure 6.9b) as well as the one-bit (Figure 6.9c) time domain normalisations. No 
spectral whitening is applied to the shown time series and no time windows with data gaps 
or spurious signals were excluded. In Figure 6.9a the raw stacked CCF is shown with the 
largest amplitudes near lag time zero within the „noise time window‟. The SNRs of the 
causal and acausal parts are therefore very small (< 2). The CCF is strongly asymmetric 
as represented by the negative WSC value. In Figure 6.9b and Figure 6.9c the CCFs 
obtained with the running absolute mean normalisation and the one-bit normalisation, 
respectively, are shown. The waveform difference between the CCFs obtained with the 
two non-linear time domain normalisations is displayed in Figure 6.9d. Both 
normalisations work well by improving the emergence of a signal in the stacked CCFs and 
to improve the symmetry also with the complete data including gaps and instrument 
irregularities. Unfortunately, the obtained CCFs are still asymmetric in waveform and 
amplitude and it is therefore arguable if these CCFs should be used to estimate broad-
band Green‟s functions at all. Nevertheless, no obvious differences of the broad-band 
CCFs obtained with the one-bit and the running absolute mean normalisation can be 
observed from the waveforms without spectral whitening (compare with Figure 6.3) due to 
the very small relative amplitudes of the low frequency signal content (Figure 6.9e). 

The approaches to improve the CCFs with a waveform preserving normalisation benefit 
from the calculation of stacked CCFs with a sliding time window. The idea is to equalise 
the amplitude differences between the single CCFs prior to the stacking to improve the 
emergence of the Green‟s function. To do so, two methods are tested. The first one is to 
normalise both time series before the cross-correlation and the second one is to normalise 
the single CCFs after the cross-correlation prior to the stacking. Both normalisations are 
done by dividing the waveforms (CCFs or time series, respectively) by an amplitude value 
and are discussed in detail below. 
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Figure 6.9: Comparison of 12-months CCFs obtained with different time domain normalisations (ram+one bit). 
The stacked 12-months CCFs (PFO-HRV, 7-150 s) are obtained with (a) none, (b) running absolute mean and 
(c) one-bit normalisation. No spectral whitening is applied prior to the stacking. The waveform difference 
between the CCFs obtained with the one-bit (c) and the running absolute mean (b) normalisation is shown in 
(d) at a larger scale. 

 

6.4.1 Normalisation of the time series before cross-correlation 

The waveform preserving normalisation of the two time series (wpts-normalisation) before 
the cross-correlation is a simple linear normalisation with an amplitude value. The time 
series are divided by the value of their 68% amplitude interval range which is also used for 
the time domain classification necessary for the TSA data selection. By this approach long 
term amplitude differences between the single time window CCFs (e.g. seasonal 
variations due to ocean-generated microseism) are balanced. Also the influence of single 
time windows with very large amplitudes is reduced. Nevertheless, single CCFs 
originating from time windows with strong transient signals at both sites, such as 
earthquake waves, dominate still the stacked CCF due to their in general larger 
amplitudes. 

6.4.2 Normalisation of the CCFs after cross-correlation 

The waveform preserving normalisation of the single CCFs (wpcf-normalisation) after 
cross-correlation and before the stacking is similar to the method used by 
Campillo & Paul (2003) who normalise the amplitudes of each CCF with their absolute 
maximum. This normalisation method is extended with an additional simple procedure to 
weight the single CCFs prior to the stacking. The root mean square (rms) value of the 
entire waveform is used to normalise a CCF. To introduce a weighting to the CCF 
normalisation it is assumed that single CCFs with large transient signals, especially 
outside the defined signal time window, are most likely dominated by strong transients 
such as teleseismic earthquakes or waveform irregularities (e.g. calibration pulses). With 
this assumption CCFs with an overall SNR (absolute maximum value divided by the rms 
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value of the CCF) larger than 13 and/or a symmetric-component SNR smaller than 2 are 
normalised with their maximum instead of their rms value. By doing so, a weighting is 
introduced by reducing the contribution of CCFs to the stack which are dominated by 
transient signals. The upper SNR boundary of 13 is selected based on the observations 
with the analysed station pairs. No single CCFs with a SNR larger than 13 are observed 
which are not originating from time series with obvious transient signals. The lower 
boundary of two for the symmetric-component SNR is chosen to identify CCFs with larger 
amplitudes near the lag time zero than within the signal time window. The SNR of a 
symmetric-component CCF without any emerging signal is statistically expected between 
three and four with the assumption of a normal distribution. 

6.4.3 Discussion 

A detailed discussion of the performance of both waveform preserving normalisations is 
given in sections 6.5 and 6.6. Only a first discussion of some general characteristics of 
both normalisations is given here. 

It is foreseeable that both normalisations are influenced by the time window length and 
that the best results may be expected with a time window length in the same order of 
magnitude as the duration of the dominating signals (e.g. teleseismic surface waves). The 
performance of both normalisations in respect to the time window length is therefore 
discussed in detail in sections 6.5 and 6.6. 

The wpcf-normalisation with weighting proved to be more robust and powerful than the 
wpts-normalisation. In Figure 6.10 the stacked 12-months CCFs obtained without 
normalisation (a) as well as obtained with the ram normalisation (b) and the wpcf-
normalisation (c) are shown. The waveform difference between the CCFs in (b) and (c) is 
shown in (d). The wpcf-normalisation (Figure 6.10c) works well by improving the 
emergence of a signal (SNR >50) in the stacked CCF even without the exclusion of 
problematic data. The obtained CCF exhibits minor waveform differences (Figure 6.10d) 
especially in the middle part of the acausal signal time window in comparison to the ram-
CCF. At the same time the WSC value of 0.1 is slightly higher than the WSC value of the 
ram-CCF (0.03) but still very low. This first example shows that the waveform preserving 
time domain normalisation is in principal capable to determine CCFs which are suitable to 
estimate Green‟s functions and which are of the same quality as the CCFs obtained with 
the running absolute mean or the one-bit normalisation. A further advantage of the wpcf-
normalisation is that the normalisation is applied to the CCFs after cross-correlation. That 
means that no changes to the original data occur prior to the cross-correlation. 

In contrast, the wpts-normalisation is observed to fail without data selection due to the 
dominance of few spurious transient signals with comparably large amplitudes. Most of 
these spurious signals can be assumed to be „non seismic‟ signals such as calibration 
pulses, instrument irregularities or signals exited in the direct vicinity of the sensor. 
Therefore, the wpts-normalisation is excluded from the first detailed evaluation in section 
6.5 (without data selection) and discussed only in section 6.6 (with data selection). 

The last significant aspect of both waveform preserving normalisations is their interaction 
with the spectral whitening. The wpts-normalisation prior to the spectral whitening is 
without any effect on the finally obtained stacked CCF. This is also the case for the wpcf-
normalisation, if the CCFs are normalised before the spectral whitening. Nevertheless, the 
wpcf-normalisation could be applied after the spectral whitening as the last processing 
step prior to the stacking. In this case, the wpcf-normalisation could have an effect on the 
CCFs obtained with spectral whitening. However, the application of the wpcf-normalisation 
after the spectral whitening is observed to produce altogether the same results as the 
spectral whitening without any time domain normalisation. The spectral whitening is 
already very effective by suppressing extreme transient signals in CCFs and by 
compensating the overall amplitude differences between the CCFs prior to the stacking. 
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That means that the waveform preserving time domain normalisations are both neither 
necessary nor effective if spectral whitening is used. Consequential, the waveform 
preserving time domain normalisations are not combined with the spectral whitening for 
the comparison of the normalisation schemes in sections 6.5 and 6.6. Instead, the 
normalisation of the CCFs only with spectral whitening is included as normalisation 
scheme. Nevertheless, the waveform preserving time domain normalisations can be 
included without any difficulty to the cross-correlation processing although if an optional 
spectral whitening of the CCFs may be applied later on. Furthermore, a reasonable 
combination of the wpcf normalisation with the spectral whitening can be realised by a 
stacking process with two stages. 

 
Figure 6.10: Comparison of 12-months CCFs obtained with different time domain normalisations (ram+wpcf). 
The stacked CCFs (PFO-HRV, 7-150 s) are obtained with (a) none, (b) running absolute mean and (c) 
waveform preserving CCF normalisation. No spectral whitening is applied prior to the stacking. The waveform 
difference between the CCFs obtained with the wpcf (c) and the ram (b) normalisation is shown in (d) at a 
larger scale. 

6.5 Evaluation of the different normalisation schemes 

The evaluation of the different normalisation schemes is conducted by a comparison of 
the obtained symmetric-component CCFs with a reference CCF (parameter CC), the 
waveform symmetry (parameter WSC) and the SNR of the symmetric-component CCFs 
(parameter SNR). The running absolute mean normalisation is used as the reference time 
domain normalisation and a 24 hr time window is used as the reference time window 
length following the recommendations of Bensen et al. (2007). The CCFs obtained with 
running absolute mean (ram), one-bit (1B) as well as the waveform preserving 
normalisation of the CCFs (wpcf) are compared with each other. The ram- and the 1B-
normalisation are evaluated with and without spectral whitening of the CCFs (ram-SW/1B-
SW). Also the stand-alone application of spectral whitening (SW) is analysed. All applied 
normalisation schemes are summarised in Table 6.1. The complete data set of the year 
2004 is used for this first evaluation. Only time windows containing no data at all at one or 
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both of the stations are excluded. The observations are first described and discussed 
afterwards. 

6.5.1 Observations 

The observations are illustrated in the following with the help of the six station pairs 
indicated by the connection lines in Figure 3.2. The comparisons of the broad-band 
symmetric-component CCFs (parameter CC) in the period band 7-150s obtained by the 
different normalisation schemes with the corresponding reference CCFs (ram and ram-
SW, 24 hr) are shown for the station pairs PFO-HRV (Figure 6.11a), PFO-ANMO (Figure 
6.11b), ANMO-DWPF (Figure 6.11c), DWPF-HR (Figure 6.11d), ANMO-CCM (Figure 
6.12a) and DWPF-HRV (Figure 6.12b). The comparisons are shown for the CCFs 
obtained without (solid lines) and with (dashed lines) spectral whitening. The comparisons 
for the different station pairs with distances between 932 km and 4013 km and with four 
different azimuths (Figure 3.2) show similar results. 

 
Figure 6.11: Influence of the time window length on the CCFs obtained with different normalisation schemes. 
A comparison of broad-band (period band 7-150 s) symmetric-component CCFs with a reference CCF 
(parameter CC) is shown for different normalisation schemes and several station pairs. Only time windows 
containing no data are excluded from the stacking. The running absolute mean (ram) normalisation is used as 
reference time domain normalisation and a reference time window length of 24 hours. The comparison is 
shown for the station pairs PFO-HRV (a), PFO-ANMO (b), ANMO-DWPF (c) and DWPF-HRV (d). 

 
The CCFs obtained with the ram (solid black line with asterisk) or 1B (solid red line) time 
domain normalisation do not vary with time window length (Figure 6.11). Small waveform 
differences between the ram- and the 1B-CCFs are observed systematically independent 
from time window length and for all station pairs (e.g. Figure 6.9). The comparison of both 
time domain normalisations in combination with spectral whitening (corresponding dashed 
lines) shows the already discussed time window length dependency of the spectral 
whitening as well as the already discussed significant waveform differences between the 
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ram-SW and the 1B-SW CCFs due to the variations of the frequency content caused by 
the one-bit normalisation (Figure 6.11). 

The differences between the wpcf-CCFs and the reference CCF (solid blue line with 
squares) decrease rapidly with decreasing time window length. The comparison of the 
SW-CCFs (blue dashed line with circles) as well as the ram-SW-CCFs (black dashed line) 
with the reference CCF indicates also decreasing waveform differences between these 
two normalisation schemes with decreasing time window length (Figure 6.11). This is 
confirmed by a direct comparison of the ram-SW with the SW-CCFs for all time window 
lengths between one hour and one year (not shown here). In general, no significant 
waveform differences (correlation coefficients larger than 0.99) between the signal time 
windows of the SW- and the ram-SW-CCFs can be observed for time window lengths 
between 1 hour and 6 hours. 

In the following the influence of the different normalisation schemes and time window 
lengths on the waveform symmetry (Figure 6.12c and d) and signal-to-noise ratio (Figure 
6.12e and f) of the CCFs is demonstrated. Different absolute WSC and SNR values are 
observed for the different station pairs but the variations with time window length and the 
differences of these variations between the normalisation schemes are highly systematic 
and similar for the different station pairs. Therefore the discussion is constrained to the 
two representative stations pairs ANMO-CCM and CCM-DWPF with nearly perpendicular 
azimuths shown in Figure 6.12. 

 
Figure 6.12: Influence of normalisation and time window length on the obtained CCFs (without data selection). 
A detailed comparison of broad-band CCFs (7-150 s) obtained with different normalisation schemes and time 
window lengths is shown for the station pairs ANMO-CCM (left side) and CCM-DWPF (right side) by the 
parameters CC (a+b) , WSC (c+d) and SNR (e+f). Only time windows containing no data are excluded from 
the stacking. 
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In general higher waveform symmetries, and therefore higher WSC values, are observed 
for CCFs obtained with spectral whitening. This is mainly due to the better representation 
of the low frequency signals in the CCFs after spectral whitening and the observation that 
the CCFs are very symmetric (WSC values > 0.7) in the long period band 70-150 s (see 
also the example in Figure 6.3). The WSC values of the broad-band ram-SW- and SW-
CCFs (7-150 s) are in general very similar for time window lengths shorter than 24 hr and 
decrease towards shorter time window lengths. This decrease is directly related to the 
emergence of the asymmetric 26 s signal in these CCFs. The emergence of the 26 s 
signal with decreasing time window length is also observed in the 1B-SW-CCFs but less 
pronounced and with lower relative amplitudes. This effect leads to smaller variations of 
the in general also lower WSC values of the 1B-SW-CCFs. Without spectral whitening 
comparable WSC values are observed for the ram- and the wpcf-CCFs which are typically 
slightly larger than the WSC values of the 1B-CCFs. 

The SNR values are also significantly influenced by the spectral whitening (Figure 6.12e 
and f). Without spectral whitening significantly larger SNR values are observed. 
Nevertheless, these higher SNRs indicate not mandatory a higher signal quality. The very 
high SNR values obtained without spectral whitening are caused by very high amplitudes 
of signals in a narrow frequency band. These large amplitude differences over frequency 
are intentionally balanced by the spectral whitening as can be seen by a direct 
comparison of Figure 6.3b and Figure 6.9b. The increasing SNR of the wpcf-CCFs with 
decreasing time window length is observed to be caused more by decreasing amplitudes 
in the noise time window than by waveform variations in the signal time window. 

6.5.2 Discussion 

The differences between the 1B- and the ram-CCFs are rather small. Nevertheless and as 
already discussed above, the one-bit normalisation is observed to be not adequate to 
obtain CCFs to estimate broad-band Green‟s functions due to disadvantageous variations 
of the signal‟s frequency content. This is especially true and obvious if spectral whitening 
is introduced to the normalisation scheme. Two possible solutions to reduce the impact of 
this problem are a narrowband pre-filtering of the seismic noise time series prior to the 
cross-correlation (Pedersen et al., 2007) or the application of the one-bit normalisation 
after the spectral whitening of the seismic noise time series (Brenguier et al., 2008a) as 
discussed in section 6.2.1. 

The waveform preserving time domain normalisation of the CCFs (wpcf) is as capable as 
the non-linear running absolute mean normalisation to suppress transient signals if a 
suitable time window length (shorter than 6 hr in this case) is chosen. This is shown by the 
decreasing waveform differences in comparison to the reference CCF with decreasing 
time window length (Figure 6.11). This decrease can be explained by the better 
correlation of the time window length with the length of the typically occurring transient 
signals such as teleseismic earthquake waves. Loosely speaking, the aiming accuracy of 
the wpcf-normalisation increases and the typically occurring transient signals are more 
effectively suppressed. 

The spectral whitening is capable and important to improve the CCFs in terms of being 
broad-band Green‟s function estimates notwithstanding the decreased SNR. Spectral 
whitening is in principal also capable to efficiently suppress the influence of transient 
signals like earthquakes if a suitable time window length is chosen. This is shown by the 
small differences between the ram-SW- and the SW-CCFs for time window lengths 
shorter than 6 hours (Figure 6.11). Unfortunately, the application of spectral whitening with 
such a short time window leads to the problematic amplification of persistent 
monochromatic periodic signals like the observed 26 s signal (see section 6.2.2). 
Therefore, a combination of spectral whitening with a time domain normalisation like the 
running absolute mean normalisation is necessary, if comparably short transient signals 
should be suppressed. Another possibility would be the combination of the wpcf-
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normalisation with spectral whitening in a stacking process with two stages, as discussed 
above. 

6.6 Evaluation of the data selection approaches 

The evaluation of the two data selection approaches is realised like the evaluation without 
data selection in the previous section. The CCFs obtained with data selection are also 
compared with the identical reference CCFs used above. The evaluation of the broad-
band CCFs obtained with one-bit-normalisation is excluded from the following evaluation 
to improve the clarity of the figures. First, the amount of data selected by the two 
approaches is discussed in dependency of the time window length. Afterwards, the data 
selection with the time series approach (TSA) is evaluated in section 6.6.1 and with the 
waveform symmetry approach (WSA) in section 6.6.2. 

The total amount of used data in percent is shown over time window length for the 
different data selection approaches in Figure 6.13. With the TSA data selection (time 
windows without contemporaneous transients at both stations) the amount of used data 
increases with decreasing time window length (red line in Figure 6.13). This is caused by 
the better concurrence of a short time window length (< 4 hr) with the length of the 
occurring transient signals (teleseismic surface waves).  

 
Figure 6.13: Number of time windows in percent selected by the WSA and TSA data selection approaches. 
The number of time windows in percent of the year 2004 (ANMO-CCM, 7-150 s) is shown for the different data 
selection approaches over time window length. Time windows with contemporaneous transients at both 
stations are excluded (red line). The waveform symmetry approach (WSA) excludes CCFs with a WSC value 
smaller than 0.07. The WSA data selection is influenced by the normalisation scheme. Therefore, the number 
of time windows selected by the WSA data selection is shown for the wpcf-normalisation (blue line with 
asterisks) as well as the ram-normalisation (blue line with circles). 

 
With a time window length considerably longer than the transient signals a significant 
amount of data is lost due to the exclusion of the unnecessary long time windows 
containing a strong but short transient signal. This is illustrated by the exclusion of all time 
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windows longer than 48 hr. Due to the continuous global seismicity such long time 
windows are correctly identified to contain strong transient signals. The total amount of 
used data increases to approx. 68 % with a time window length of 1.5 hr. 

The amount of used data with the WSA data selection based on the waveform symmetry 
of the CCFs depends on the applied normalisation. With the running absolute mean 
normalisation (blue line with circles in Figure 6.13) the amount of used data decreases 
with decreasing time window length to a level of ~35%. This illustrates, that the waveform 
symmetry of the single time window CCFs decreases with decreasing time window length 
in general. With the wpcf-normalisation (blue line with asterisks in Figure 6.13) the amount 
of used data increases towards the same level of ~35 % for a time window length shorter 
than 48 hr. With longer time windows (> 48 hr) the wpcf-normalisation fails because it is 
not capable to suppress the negative influence of problematic signals significantly shorter 
than 48 hr on the obtained CCFs. 

6.6.1 Time series approach (TSA) 

The comparison of the CCFs (7-150 s) with the reference CCFs is shown for the station 
pairs ANMO-CCM and CCM-DWPF in Figure 6.14. 

 
Figure 6.14: Influence of the TSA data selection approach on the obtained CCFs. 
A detailed comparison of broad-band CCFs (7-150 s) obtained with different normalisation schemes and time 
window lengths is shown for the station pairs ANMO-CCM (left side) and CCM-DWPF (right side) with the 
parameters CC (top; a+b), WSC (middle; c+d) and SNR (bottom; e+f). Time windows containing no data or 
with transient signals observed contemporaneous at both sites (TSA data selection) are excluded from the 
stacking. All time windows longer than 48 hours contain dominant transient signals due to the continuous 
global seismicity. Therefore, no results are obtained with such long time windows in combination with the TSA 
data selection. The axis of the time window length is reduced in this figure to the range 1-100 hr to improve 
readability. 
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With the exclusion of time windows containing contemporaneous transients at both 
stations the simple waveform preserving normalisation of the time series (wpts, green 
lines in Figure 6.14) produce CCFs comparable with the reference CCF. In general, the 
differences to the reference CCF are of the same size as the time domain normalisations 
ram, wpcf and wpts. A direct comparison of the ram- and the wpcf-CCFs shows 
correlation coefficients larger than 0.99 for time window lengths shorter than 20 hours (not 
shown here). Furthermore, no significant differences between the ram-SW- and the SW-
CCFs can be observed. The waveform symmetry and SNR are comparable between the 
different normalisation schemes and mainly influenced by the time window length and 
therefore the total amount of used data (Figure 6.14b and c). 

The differences between the WSC values of the CCFs obtained with data selection and 
the reference CCFs (ram/ram-SW, 24 hr, only excluding data gaps) are shown as function 
of time window length in Figure 6.15. In general slightly lower WSC values are observed 
for the CCFs obtained with data selection. The WSC differences are the same for the ram- 
and wpts-normalisation as well as the ram-SW- and SW-normalisations. The WSC values 
of the wpts-CCFs are in general slightly lower, but comparable for time window lengths 
shorter than 6 hours. 

 
Figure 6.15: Influence of the TSA data selection approach on the CCF waveform symmetry. 
The differences between the WSC values of the CCFs (7-150 s) obtained by the TSA data selection and the 
WSC value of the reference (ram/ram-SW, 24 hr, no data selection) CCFs are shown for different 
normalisation schemes. 

 
The comparable results for the ram-, wpcf- and wpts-normalisation show the effective 
exclusion of transient signals from the data by the selection approach based on the time 
series classification. With this data selection, the non-linear running absolute mean 
normalisation yields no better CCFs in terms of waveform symmetry or SNR. The fully 
automated exclusion of transient signals is operational and effective by replacing a non-
linear time domain normalisation. Nevertheless, the CCFs obtained with this data 
selection approach are not improved in comparison to CCFs obtained without data 
selection but an effective normalisation of transient signals. The author concludes that an 
appropriate normalisation of contemporaneous transient signals should be preferred 
instead of excluding them from the cross-correlation processing. 

6.6.2 Waveform symmetry approach (WSA) 

In this subsection the performance of the WSA data selection is discussed in combination 
with the different normalisation schemes and time window lengths. The results of the data 
selection based on the waveform symmetry of the single CCFs are shown in Figure 6.16. 
The obtained CCFs are comparable with the reference CCFs in terms of the symmetric-
component signal time windows and the SNR, although only ~35 % of the data are used 
(see also Figure 6.18 discussed below). Only the wpts-normalisation fails with this data 
selection approach. The behaviour of the different normalisation schemes regarding the 
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time window length is also the same as without data selection (compare Figure 6.12 a+b 
with Figure 6.16a+b). 

 
Figure 6.16: Influence of the WSA data selection approach on the obtained CCFs. 
A detailed comparison of broad-band CCFs (7-150 s) obtained with different normalisation schemes and time 
window lengths is shown for the station pairs ANMO-CCM (left side) and CCM-DWPF (right side) with the 
parameters CC (top; a+b), WSC (middle; c+d) and SNR (bottom; e+f). Time windows with a WSC value 
smaller than 0.07 are excluded from the stacking (WSA data selection). 

 
Remarkable improvements of the waveform symmetry of CCFs obtained with the ram- 
and wpcf-normalisation but without spectral whitening are observed in several frequency 
bands. The differences of the WSC values in comparison to the reference CCFs 
(ram/ram-SW, no data selection) are shown in Figure 6.17a. The increase of the WSC 
value in comparison to the reference CCF is larger with shorter time windows and larger 
with the ram-normalisation. With spectral whitening no significant improvement of the 
waveform symmetry is observed (Figure 6.17a). A comparison of the WSC values of the 
ram-CCFs is given for different period bands in Figure 6.17b. An improvement of 
waveform symmetry is observed especially for the intermediate period band 20-50 s and 
the short period band 7-14 s. The very high waveform symmetry in the period band 
70-150 s (~0.9) is not improved. A more detailed waveform analysis (not shown here) 
reveals that in general that part (causal or acausal) of the two-sided CCFs with the weaker 
signal is changing in waveform by getting more similar to the stronger signal part. 

This is also illustrated by the waveform sections with the CCFs of all 10 station pairs 
shown in Figure 6.18. The CCFs obtained with the running absolute mean normalisation, 
a 24 hr time window and all data (no data selection) are shown in Figure 6.18a. In Figure 
6.18b the CCFs obtained with the waveform preserving wpcf-normalisation, a 2 hr time 
window and the WSA data selection (~35% data usage) are shown. No significant 
differences in the stronger acausal parts between the CCFs obtained with the different 
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normalisation and data selection approaches are observed. The acausal parts of the 
CCFs correspond to a propagation of the seismic waves from the western station towards 
the eastern station. The variations of the causal parts can actually be seen in the coarsely 
resolved waveform sections (Figure 6.18a and b). As the symmetric-component CCFs are 
dominated by that part of the CCFs with the larger amplitudes the changes to the 
symmetric-component are rather small, although the waveform symmetry of the two-sided 
CCF is improved. 

 
Figure 6.17: Influence of the WSA data selection approach on the CCF waveform symmetry. 
The differences between the WSC values of the CCFs (7-150 s) obtained by the exclusion of CCFs with a 
WSC value smaller than 0.07 (WSA data selection) and the WSC value of the reference (ram/ram-SW, 24 hr, 
no data selection) CCFs are shown for different normalisation schemes in (a). These differences are shown in 
(b) for the ram-CCFs in different period bands. 

 
The failure of the wpts-normalisation indicates that time windows with large transient 
signals remain in the selected data as the symmetry of the signal time windows is the 
controlling parameter. This parameter is not mandatorily influenced by strong transients in 
the CCFs near lag time zero. Therefore, an effective normalisation of the transient signals 
is important in combination with this symmetry based selection approach. The author 
regards this selection approach as successful because CCFs with an improved waveform 
symmetry in comparison to the reference CCF are obtained from only ~35% of the data. 
The improvement of the waveform symmetry is nevertheless based on the improvement in 
some frequency ranges with high relative amplitudes, especially 7-14 s in this case. The 
CCFs obtained with spectral whitening benefit not significantly from the selection 
approach, as the relative amplitudes are balanced. The symmetry of the CCFs obtained 
with spectral whitening is significantly supported by the low frequency signals in the period 
band 70-150 s which play a secondary role in the CCFs obtained without spectral 
whitening due to their small relative amplitudes. The low relative amplitudes and the 
already high waveform symmetry of the low frequency signals explain also that they do 
not benefit from this data selection approach. 
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Figure 6.18: Distance-dependent illustration of the CCFs (7-150 s) of all ten station pairs. 
The signal time windows are indicated by the dashed lines. In (a) the CCFs obtained with running absolute 
mean normalisation, 24 hr time window and one year of data (without data selection) are shown. In (b) the 
CCFs obtained with the waveform preserving wpcf-normalisation, 2 hr time window and with the WSA data 
selection are shown. Only 35% of the data (1 year) are used to obtain the CCFs shown in (b). 
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The observations that the stronger part of the CCFs changes less than the weaker part 
indicates that the stronger parts of asymmetric CCFs are useful to estimate the Green‟s 
function. It furthermore seems questionable if the stacking of the causal and acausal part 
to a common symmetric-component is recommendable in the case of strongly asymmetric 
CCFs to improve the Green‟s function estimation. This topic needs further research. 

6.7 Summary of chapter 6 

The author recommends the application of the unbiased linear digital cross-correlation to 
avoid the unwanted influence of the circular effect. This is especially true if a time window 
length shorter than ten times the maximum analysed lag time is used. Furthermore, it is 
recommended to apply overlapping time windows with a minimum time window length in 
the range of four to six times the maximum analysed lag time to improve the estimation of 
the complete CCF by the stacking of shorter CCFs. 

The proposed waveform-preserving normalisation of the CCFs (wpcf normalisation) prior 
to the stacking is capable to replace a non-linear time domain normalisation. It is 
necessary to select a suitable time window length which is similar to the length of typically 
occurring coherent transient signals such as seismic waves excited by earthquakes. 

The spectral whitening normalisation is observed to be significantly influenced by the time 
window length. The application of spectral whitening on very short time windows of a few 
hours undesirably amplifies temporally persistent coherent signals like the 26 s 
microseism exited in the Gulf of Guinea in continental scale seismic noise CCFs. The time 
window length used with spectral whitening should be as long as possible to assure the 
emergence of signals of the Green‟s function in the CCFs obtained from the single time 
windows. A possibility to apply a time window dependent time domain normalisation like 
the wpcf normalisation in combination with spectral whitening is a stacking process with 
two stages. 

The TSA data selection, which removes time windows with contemporaneous transient 
signals from the data, is capable to replace a non-linear time domain normalisation. But it 
is necessary to select a suitable time window length comparable to the length of the 
transient signals. Nevertheless, no improvement of the obtained CCFs in terms of 
waveform symmetry is observed in comparison to the CCFs obtained without data 
selection. It is the opinion of the author that a suitable normalisation of transient signals is 
preferable in contrast to a strict exclusion. 

The WSA data selection based on the waveform symmetry of the single time window 
CCFs proved to be very effective by producing high-quality CCFs in comparison to the full 
data CCFs using only ~35% of the data. Furthermore, an improvement of the waveform 
symmetry of the stacked CCFs is observed without spectral whitening. The author 
considers data selection approaches based on the characteristics of the single time 
window CCFs instead of the time series as most promising to improve stacked seismic 
noise CCFs. 
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7 Summary and Conclusions 

In this thesis the temporal and spatial variations of the statistical properties of the seismic 
noise have been analysed and classified. A new statistical time series classification was 
developed which is capable to distinguish between corrupt and non-corrupt time series as 
well as to classify non-corrupt time series in six meaningful noise classes (chapter 4). The 
time series classification was used successfully to provide a comprehensive analysis of 
the spatial and temporal variations of the seismic noise in the metropolitan area of 
Bucharest (chapter 5). This analysis improves the understanding of the statistical 
properties of the urban seismic noise due to temporally and spatially varying noise 
sources in general. The combination of the time series classification with an unsupervised 
neural network technique, the Self-Organizing Map method, proved as a promising 
approach to enhance the analysis of complex urban seismic noise data sets. The time 
series classification was furthermore used to realise a data selection approach for the 
calculation of seismic noise cross-correlation functions for seismic interferometry. The 
implementation of this data selection approach involved a comprehensive evaluation of 
the common cross-correlation processing (chapter 6). Based on this evaluation a more 
flexible processing scheme was realised and critical parameters of the processing such as 
the time window length were identified. Furthermore, a wave form preserving time domain 
normalisation and a second data selection approach were developed in this context to 
improve the calculation of seismic noise cross-correlation functions. The main conclusions 
and results of this thesis are summarised in the following with reference to the 
corresponding chapters. 

Chapter 2 provides a brief review of the state of knowledge about seismic noise and 
summarises the most important applications of seismic noise. A focus is laid on seismic 
interferometry as the corresponding data processing is addressed in chapter 6. 

In chapter 3 the data sets used for this thesis are introduced. Furthermore several data 
format inconsistencies which became apparent to the author while working with the SEED 
data from international data centres are discussed together with their practical relevance. 
The SEED format is the common standard for the distribution of digital seismological time 
series. It provides the time series together with the complete metadata of the seismic 
measuring system. An inconsistency found in the metadata of GSN station HRV affects 
the description of FIR filters which are commonly used for the decimation stages of 
digitisers. It turned out, that the metadata of dozens of seismic stations world-wide were 
(and partly still are) affected by one or several inconsistencies in the description of their 
FIR filters. The filter coefficients of asymmetric FIR filters are given sometimes in reverse 
order but should be given in forward order following the SEED definition. Another common 
inconsistency affects the value for the corrected filter delay time of a FIR filter stage. The 
corrected filter delay time has to be positive in every case following the SEED definition 
but is often found as a negative value or to be zero. The amount of the time shift 
introduced by the removal of an incorrect frequency response function depends on the 
FIR configuration of the seismic channel and can be up to 2 s. This time shift is not 
acceptable for many seismological applications such as seismic tomography. 

The time series classification introduced in chapter 4 uses ratios between time series 
percentiles to identify deviations of a time series distribution from the Gaussian distribution 
with high sensitivity on statistical data properties. The ratio between the 99.73% amplitude 
interval and the 95.45% amplitude interval is introduced as the quantity peakfactor. The 
peakfactor (pf) equals 1.5 in the case of a Gaussian distributed time series and 
increases/decreases with increasing/decreasing kurtosis of the time series. 

The time series classification is capable to identify several types of corrupt time series 
(e.g. technical problems with the sensor). Regarding the non-corrupt time series six noise 
classes are introduced to classify the typically observed deviations of seismic noise time 
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series from the Gaussian distribution. Gaussian distributed time series are classified as 
noise class 1 (NC1). Non-Gaussian but symmetric time series are classified as NC2-NC5. 
Time series which exhibit determinable but rather small and unspecific deviations from the 
Gaussian distribution (pf 1.5±0.1) are classified as noise class 2 (NC2). Time series with a 
gentle peaked histogram in comparison to the Gaussian distribution (1.6<pf≤2) due to few 
transient signals are classified as noise class 3 (NC3). A more pronounced peakedness of 
the histogram (pf>2) results in a classification of the time series as noise class 4 (NC4). 
Symmetric time series with a flattened histogram in comparison to the Gaussian 
distribution (pf<1.4) are classified as noise class 5 (NC5). All time series which are not 
identified as symmetric time series are classified as noise class 6 (NC6). The influence of 
the applied band pass filters and the time window length on the time series classification 
was evaluated with a data set of synthetic time series in section 4.5. A time window length 
of at least 200 times the longest contained period is recommended by the author to 
ensure an unbiased statistical time domain analysis. 

In chapter 5 the urban seismic noise in the metropolitan area of Bucharest is analysed 
with a time-frequency analysis and the time series classification introduced in chapter 4. 
The time-frequency analysis discussed in section 5.1 is used to determine 8 frequency 
ranges which represent the frequency-dependent influence of dominant natural and man-
made sources on the urban seismic noise (USN). 

The time series classification provides useful information in addition to the noise 
amplitudes to analyse spatial and temporal variations of the USN conditions. Time series 
of USN with a duration of 4 hours exhibit predominantly (~90%) bell-shaped distributions, 
but are not predominantly Gaussian distributed. Deviations from the Gaussian distribution 
occur due to strong transient or periodic signals. In fact, the influence of human activity 
can be observed across the whole analysed frequency range of 0.008-45 Hz by changing 
statistical properties from day- to nighttime. Especially in the frequency range 1-25 Hz 
transient signals characterise the USN in Bucharest. At higher frequencies between 25 Hz 
and 45 Hz periodic signals contribute to the USN, which are most probably excited by 
rotating machinery. In the frequency range 0.6-1 Hz urban seismic noise in Bucharest is 
dominated by man-made ground motion as long as the wind velocity is below 3 m/s. With 
wind velocities exceeding 3 m/s the USN is increasingly dominated by wind-induced 
ground motion. Both, the influence of human activity and wind, can be observed by 
temporal and spatial changes of noise amplitudes and statistical properties. 

Towards lower frequencies between 8 mHz and 0.6 Hz natural sources of seismic energy, 
like ocean-generated microseism and earthquakes, dominate the USN in Bucharest. Due 
to the larger amplitudes of the naturally induced seismic waves (e.g. ocean-generated 
microseism), the influence of human activity is not as obvious as at higher frequencies 
from the variation of noise amplitudes between day- and nighttime. Nevertheless, the 
influence of human activity can be observed by changes of the statistical properties with 
time. Human influence can cause significant deviations from the Gaussian distribution 
also at frequencies below 0.18 Hz. Concerning the USN amplitudes in the frequency 
range 0.09-0.25 Hz a spatial dependency is observed. The noise amplitudes increase 
from the southern part of the metropolitan area towards the North. The same effect of 
ground motion amplification was observed by an amplitude and site effect study utilising 
earthquake signals and is related to resonance effects in the unconsolidated sediments 
above the dipping Neogene-Cretaceous boundary (Mandrescu et al., 2004; 
Sudhaus & Ritter, 2009). The similar observation for the noise amplitudes demonstrates 
the potential of noise amplitude mapping to complement information for site effect studies. 

The statistical properties of the USN on the horizontal North-South component are in 
general identical to these of the USN on the East-West component. Minor differences are 
observed at two station sites (URS19 and URS20) in the frequency range above 25 Hz 
due to periodic signals with a dominant direction of vibration. Most probable sources of 
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these signals are electrical engines in direct vicinity of the sensors. The statistical 
properties of the vertical and the horizontal components of the USN show minor 
differences in the frequency range below 0.18 Hz and in the frequency range 1-25 Hz. In 
general a larger amount of transient signals is observed on the horizontal components 
than on the vertical component below 0.18 Hz. In the frequency band 1-25 Hz the amount 
of time windows classified as NC1 and NC2 is slightly increased on the horizontal 
components. The observed differences have to be assumed to be related to the sources 
of the seismic noise such as surface waves excited by earthquakes (below 0.18 Hz) or 
rotating machinery (especially above 25 Hz). This topic needs further research including a 
careful analysis of individual signals contributing to the USN. The average amplitude 
ratios between the vertical and the horizontal components (H/V ratio), obtained from the 
noise classification results, correspond well with the results of the spectral H/V ratio 
analysis of Ziehm (2006). The spectral H/V ratio is around or slightly below 1 for 
frequencies larger than 2 Hz and exhibit two peaks with average H/V ratios between 2 and 
4 in the frequency ranges 0.18-0.25 Hz and 0.6-0.9 Hz. The frequency resolution of the 
presented time-domain H/V ratio is worse than the resolution of the spectral H/V ratio but 
can be improved by the selection of more suitable frequency bands and the 
implementation of a data selection procedure similar to the data selection used for the 
calculation of the spectral H/V ratio. 

Concluding, the changes of the statistical properties and noise amplitudes in USN, like the 
ones presented in chapter 5, are linked to the variability of their generating processes and 
(changing) underground conditions. The time series classification proved to be capable to 
derive information about noise amplitudes and statistical properties automatically from a 
large broadband seismological data set. At present this information can be used to select 
time windows of data not influenced by deterministic transient or periodic signals for 
sensitive methods utilising seismic noise like H/V or seismic interferometry. As a future 
step, this information can be used as input for well established techniques of pattern 
recognition and knowledge discovery to resolve up to now unrecognized temporal or 
spatial interrelations. The discovery of unrecognised interrelations is furthermore a starting 
point to identify and finally better understand the different physical processes contributing 
to USN. 

A feasibility study to demonstrate the potential of this approach was the analysis of the 
vertical-component USN in the frequency band 0.6-1 Hz with the Self-Organizing Map 
(SOM) method (section 5.5). The analysis provided five meaningful classes of time 
windows. The SOM classification discriminates reliably the working hours 8-20 EET on 
working days (SOM class 2, 38.1% of 1709 analysed time windows) from the time 
windows at night, morning and evening as well as on Sundays (SOM class 4, 55.5%). The 
classification of a time window as SOM class 1 (2.6%) indicates reliably higher-than-
average wind velocities. The time windows classified as SOM class 3 (1.4%) or 5 (2.4%) 
are found to be affected by seismic waves excited by local, regional and teleseismic 
earthquakes. The SOM classes 3 and 5 discriminate time windows affected by the global 
seismicity with high (SOM class 3) and low (SOM class 5) human activity identical to the 
SOM classes 2 and 4. In general, the feasibility study to analyse a seismic noise 
classification data set with the SOM method was very successful. Nevertheless, the 
clustering of the SOM needs further evaluation as it is assumed to find more meaningful 
„subclasses‟ of the SOM classes 2 and 4 which summarise more than 93% of the 1709 
analysed time windows. 

Chapter 6 provides a discussion of all important aspects of the seismic noise cross-
correlation processing for the estimation of Green‟s functions from seismic noise including 
new data normalisation and selection methods. Several established normalisation 
methods were analysed such as the running absolute mean (Bensen et al., 2007) and the 
one bit normalisation (Shapiro et al., 2005) in the time domain as well as the spectral 
whitening normalisation (Bensen et al., 2007) in the frequency domain. Furthermore two 
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new approaches of waveform preserving time domain normalisation before and after the 
cross-correlation were developed. All normalisation methods were evaluated with one 
year of data (GSN data set, section 3.2) which was fragmented with different time window 
lengths between one hour and one year. As addition to the normalisation of the data two 
fully automated data selection approaches were realised and evaluated. The Time Series 
Approach (TSA) is based on the time series classification and excludes time windows 
containing contemporaneous transient signals at both sites (e.g. teleseismic earthquakes). 
The second data selection approach, the Waveform Symmetry Approach (WSA), is based 
on the waveform symmetry of the single time window Cross-Correlation Functions 
(CCFs). The main conclusions and recommendations of chapter 6 are summarised in the 
following. 

The author recommends the application of the unbiased linear digital cross-correlation 
instead of the circular digital cross-correlation to avoid the unwanted influence of the 
circular effect. This is especially true if a time window length shorter than ten times the 
maximum analysed lag time is used. Furthermore, it is recommended to apply overlapping 
time windows with a minimum time window length in the range of four to six times the 
maximum analysed lag time to improve the estimation of the complete CCF by the 
stacking of shorter CCFs. 

The proposed waveform-preserving normalisation of the CCFs (wpcf normalisation, 
section 6.4.2) prior to the stacking is capable to replace a non-linear time domain 
normalisation such as the running absolute mean or the one-bit normalisation. It is 
necessary to select a suitable time window length which is similar to the length of typically 
occurring coherent transient signals such as seismic waves excited by earthquakes. 

The spectral whitening normalisation is observed to be significantly influenced by the time 
window length (section 6.2). The application of spectral whitening on very short time 
windows of a few hours undesirably amplifies temporally persistent coherent signals such 
as the 26 s microseism excited in the Gulf of Guinea in continental scale seismic noise 
CCFs. The time window length used with spectral whitening should be as long as possible 
to assure the emergence of signals of the Green‟s function in the CCFs obtained from the 
single time windows. A possibility to apply a time window dependent time domain 
normalisation like the wpcf normalisation in combination with spectral whitening is a 
stacking process with two stages. 

The TSA data selection, which removes effectively time windows with contemporaneous 
transient signals at both sites from the data, is capable to replace a non-linear time 
domain normalisation. It is necessary to select a suitable time window length comparable 
to the length of the transient signals. Nevertheless, no improvement of the obtained CCFs 
in terms of waveform symmetry is observed in comparison to the CCFs obtained without 
data selection. It is the opinion of the author that a suitable normalisation of transient 
signals is preferable in contrast to a strict exclusion. 

The WSA data selection based on the waveform symmetry of the single time window 
CCFs proved to be very effective by producing high-quality CCFs in comparison to the full 
data CCFs using only ~35% of the data. Furthermore, an improvement of the waveform 
symmetry of the stacked CCFs is observed without spectral whitening in several 
frequency bands. The author considers data selection approaches based on the 
characteristics of the single time window CCFs instead of the time series as most 
promising to further improve stacked seismic noise CCFs. 

Concluding, an effective time series classification for seismic noise time series is 
proposed in this thesis. It is demonstrated that the time series classification can be used 
to obtain new insights into the temporal and spatial variations of (urban) seismic noise. 
The time series classification provides furthermore valuable data selection capabilities for 
all methods utilising seismic noise. 



 

 117 
 

Appendix A: Karlsruhe Seismology Processing Toolbox 

The Karlsruhe Seismology Processing (KaSP) toolbox for MATLAB provides basic as well 
as specialised functionalities for seismological data processing. The KaSP toolbox is an 
ongoing development in the seismology working group at the Geophysical Institute (GPI) 
of the Karlsruhe Institute of Technology (KIT). The development of the KaSP toolbox was 
initiated by the author in 2009 to improve the collaborative development of seismological 
MATLAB code at the GPI. The KaSP toolbox is a further development of the “SeisNoise 
toolbox” created by the author in 2007. The toolbox is now used and further extended by 
several graduate and undergraduate students for the development and implementation of 
seismological processing techniques at the GPI. Main contributing authors up to now are 
Britta Wawerzinek, Tobias Horstmann, Daniel Armbruster and Tobias Baumann. Detailed 
references to the authors are given in the source code. 

The KaSP toolbox is free software under the GNU license and can be obtained from the 
staff of the seismological working group at the GPI (www.gpi.kit.edu) or directly from the 
author. 

The most important functionalities of the KaSP toolbox are summarised in the following. A 
detailed technical documentation of the toolbox is not reasonable here due to the large 
extent and the ongoing development of the toolbox. 

Data handling functionalities 

The toolbox provides own functions to read seismic data from established data formats 
such as Q files (SeismicHandler data format) and binary SAC files (Seismic Analysis 
Code data format). The reading of seismic data from fullSEED volumes into MATLAB can 
be done automatically if the software rdseed from IRIS is installed. An interface function to 
the C++ library DATREAD++ from Thomas Forbriger (http://www.rz.uni-karlsruhe.de/ 
~bi77/ txt/cxx/libdatreadxx/html/index.html) was written to be able to read data from files 
with the formats miniSEED, Stuttgarter File Format (SFF), GSE and others to MATLAB. 
The KaSP toolbox is based on a MATLAB struct with specified fields (the „time series 
struct‟) which is used by all KaSP processing functions. The toolbox provides the 
possibility to write seismic data in a KaSP time series struct to a SeismicHandler Q file. 

The time series struct provides furthermore a history of all processing steps applied to the 
data. The transfer function of the corresponding instrument and further information on the 
seismic station can be stored with the time series. The toolbox contains furthermore a 
station information file and the possibility to store additional instrument response files. The 
preprocessing of seismic time series including the removal of the instrument response can 
be fully automated with this station metadata inventory. 

The toolbox provides furthermore functions for the import of transfer functions 
(seismometer and FIR filter stages) from SEED response files generated with rdseed from 
fullSEED volumes. The imported transfer functions can be automatically checked for 
common inconsistencies in the SEED metadata (see chapter 3) and used directly for the 
removal of the frequency response function. Several functions for plotting and analysis of 
frequency response functions are implemented in the toolbox. 

Data requests via the e-mail based request tool breq_fast (http://www.iris.washington.edu/ 
manuals/breq_fast.htm) can be generated interactively and sent directly from MATLAB to 
a data centre. 
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Basic processing functionalities 

The toolbox provides all important functionalities of basic seismological (pre-)processing 
such as: 

- Removal of means and linear trends  
- Tapering 
- Filtering with Butterworth filter in the time domain (TD) and frequency domain (FD)  
- Filtering with Gaussian low-pass filter (FD) [Britta Wawerzinek] 
- Removal of the instrument response (TD/FD) 
- Integration of time series (TD/FD) [Britta Wawerzinek] 
- Resampling of time series [Britta Wawerzinek] 
- Rotation of components Z, N, E to L, Q, T as well as Z, R, T [Britta Wawerzinek] 
- Cutting and merging of time series 
- Picking algorithms [Tobias Horstmann, Tobias Baumann] 

Seismic noise classification 

The seismic noise classification (see chapter 4) is fully implemented in the KaSP toolbox. 
Time series can be classified at once or analysed with a sliding time window classification. 
The classification of entire data sets (see chapter 5) can be automated and several tools 
for the further analysis of the classification results exist. 

Spectral analysis 

The spectral time-frequency analysis of time series (see chapter 5) is implemented in two 
ways. On the one hand short time series (less than one week of data, data in the working 
memory) can be analysed with a very high temporal resolution (seconds to minutes). On 
the other hand very long time series (several weeks to months, data saved as a 
fragmented time series in several files) can be analysed with a more coarse temporal 
resolution (minutes to hours). 

Array processing 

A realisation of the FK technique (see chapter 2) is implemented which can be applied 
also with a sliding time window (written by Tobias Baumann). 

Seismic noise cross-correlation processing 

The seismic noise cross-correlation processing scheme as described in chapter 6 is fully 
implemented in the toolbox. Several tools (e.g. distance plots, CCF comparison, 
dispersion curve estimation, ...) for the analysis of seismic noise cross-correlation 
functions exist. Tobias Horstmann implemented a migration analysis for the localisation of 
point sources within a seismic network such as the URS network (see chapter 3) with 
seismic noise cross-correlation functions. 

S wave receiver functions 

The processing scheme to obtain and analyse S wave receiver functions is implemented 
by Britta Wawerzinek. 

KABBA quality control 

The KaSP toolbox provides tools for the evaluation of the KArlsruhe BroadBand Array with 
routine huddle tests between seismological experiments. Next to the spectral time-
frequency analysis and the noise classification also cross-correlation techniques are 
applied to identify technical problems of sensors as well as data loggers. The three-
channel correlation analysis (Sleeman et al., 2006) to measure the instrumental noise of 
data loggers and sensors was implemented by Daniel Armbruster. 
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Appendix B: Metadata of seismic stations 

This appendix provides the relevant station metadata of the URS data set (section 3.1) 
and the GSN data set (section 3.2) used for this thesis. Next to the station coordinates the 
transfer functions of the seismometers (ground motion velocity to ground motion velocity) 
are given by their pole-zero representations in the s-plane (see section 3.3.3). 

The station list of the URS data set providing the station name, location, sensor type as 
well as starting and closing date is given in Table B.1. The transfer functions are given in 
Table B.2. The amplitude and phase frequency response functions are plotted in Figure 
B.1. 

The station list of the GSN data set providing the station name, location, sensor type and 
the transfer functions is given in Table B.3. The amplitude and phase frequency response 
functions are plotted in Figure B.2. 

 

URS data set 

Name Sensor Location Latitude 
degree 

Longitude 
degree 

Starting 
mm.dd.yyyy 

Closing 
mm.dd.yyyy 

URS01 STS-2 Zoological garden 44.51853° N 26.10449° E 03.11.2003 27.07.2004 

URS02 STS-2 Voluntari 44.48668° N 26.16914° E 27.10.2003 05.08.2004 

URS03 STS-2 Acroconstucto 44.44505° N 26.02311° E 29.10.2003 17.06.2004 

URS04 STS-2 Sere Horticola 44.42220° N 25.99993° E 28.10.2003 01.04.2004 

URS05 STS-2 Jimbolia 44.48975° N 26.03197° E 24.10.2003 09.06.2004 

URS06 STS-2 Sulari 44.67768° N 26.25261° E 26.10.2003 02.08.2004 

URS07 STS-2 Jilava 44.32940° N 26.08646° E 27.10.2003 18.05.2004 

URS08 STS-2 Agropole 44.35540° N 26.20337° E 24.10.2003 17.07.2004 

URS09 STS-2 Geotec 44.43712° N 26.10683° E 24.10.2003 27.07.2004 

URS10 STS-2 Otopeni 44.55055° N 26.07512° E 25.10.2003 27.07.2004 

URS11 STS-2 geol. Museum 44.45526° N 26.08514° E 24.10.2003 27.07.2004 

URS12 STS-2 Curtea Veche 44.43004° N 26.10170° E 24.10.2003 27.07.2004 

URS13 STS-2 Scoala Steri 44.41503° N 26.17772° E 29.10.2003 27.07.2004 

URS14 STS-2 Tei 44.46977° N 26.11258° E 29.10.2003 27.07.2004 

URS15 STS-2 Stefanesti 44.53223° N 26.21334° E 25.10.2003 27.07.2004 

URS16 STS-2 Tineretul Park 44.40589° N 26.11897° E 25.10.2003 03.08.2004 

URS17 STS-2 Ciorogarla 44.44885° N 25.87995° E 25.10.2003 04.08.2004 

URS18 STS-2 Herestrau Park 44.47748° N 26.08085° E 24.10.2003 09.08.2004 

URS19 STS-2 Buftea 44.56491° N 25.94173° E 26.10.2003 06.08.2004 

URS20 STS-2 INCERC 44.44091° N 26.16236° E 28.10.2003 03.08.2004 

URS21 STS-2 Magurele 44.34796° N 26.02812° E 22.10.2003 07.08.2004 

URS22 STS-2 Geotec Moreni 44.47040° N 26.15510° E 27.10.2003 27.07.2004 

URS23 LE-3D/5s Berser 44.36515° N 26.12239° E 27.10.2003 03.08.2004 

URS24 G40T Imperatui 44.39434° N 26.10826° E 28.10.2003 03.08.2004 

URS25 G40T Hofigal 44.39791° N 26.15939° E 24.10.2003 16.06.2004 

URS26 G3ESP Cutitul Argint 44.41088° N 26.09424° E 25.10.2003 27.07.2004 

URS27 KS-2000 Centrul Scolar 44.43577° N 26.12380° E 28.10.2003 03.12.2003 

URS28 KS-2000 Scola 128 44.42353° N 26.08211° E 27.10.2003 04.08.2004 

URS29 KS-2000 Academy 44.44655° N 26.08997° E 30.10.2003 03.08.2004 

URS31 KS-2000 C.S./BST 44.44573° N 26.09839° E 25.10.2003 27.07.2004 

URS32 KS-2000 Botanical garden 44.43674° N 26.06561° E 29.10.2003 27.07 2004 

URS33 KS-2000 Avram Iancu 44.43737° N 26.11828° E 06.12.2003 27.07.2004 

URS34 STS-2 
Physics building 

basement 
44.35011° N 26.03121° E 14.05.2004 05.08.2004 

URS35 LE-3D/5s 
Physics building 

11
th

 story 
44.34990° N 26.03118° E 14.05.2004 05.08.2004 

Table B.1: Table of all stations of the URS project in the metropolitan area of Bucharest (see Figure 3.1) 
with locations in decimal degrees, description of the locations as well as the starting and closing dates. 
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Seismometer type 
Gain (A0) 

rad/s 
Poles 
rad/s 

Zeros 
rad/s 

Streckeisen STS-2 3.474∙10
17 

−0.037+i0.037 
−0.037−i0.037 
−1.33∙10

4 

(−1.053+i1.005)∙10
4 

(−1.053−i1.005)∙10
4 

−5.203∙10
2 

−3.748∙10
2 

(−0.973+i4.007)∙10
2 

(−0.973−i4.007)∙10
2 

−15.64 
−2.551∙10

2 

0 
0 

(−4.631+i4.305)∙10
2
 

(−4.631−i4.305)∙10
2 

−1.766∙10
2 

−15.15 

Geotech KS-2000 9.857∙10
4
 

−0.044+i0.044
 

−0.044−i0.044
 

(−2.22+i2.22)∙10
2 

(−2.22−i2.22)∙10
2 

0 
0 

Lennartz LE-3D/5s 1 
−0.888+i0.888 
−0.888−i0.888 

-0.22 

0 
0 
0 

Güralp G40T/G3ESP 5.716∙10
8
 

−0.148+i0.148 
−0.148−i0.148 
−5.026∙10

2 

−1.005∙10
3 

−1.131∙10
3 

0 
0 

Table B.2: Transfer functions of the URS data set seismometer types described by the gain (A0) as well as 
the poles and zeros. The given transfer functions are from velocity to velocity. 

 

 
Figure B.1: Amplitude (top) and phase (bottom) frequency response spectra of the seismometer types of the 
URS data set (see Table B.2) 
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GSN data set (see section 3.2) 

Station / 
Seismometer 

Latitude Longitude 
Gain (A0) 

rad/s 
Poles 
rad/s 

Zeros 
rad/s 

ANMO /  
KS-54000 

34.9460 N -106.4571 E 86083
 

−22.7121+i27.1065 
−22.7121−i27.1065 

−59.4313 
−0.0048 
−0.0731 

0 
0 
 

CCM /  
STS-1 VBB 

38.0557 N -91.2446 E 3948.58 

−0.0123+i0.0123
 

−0.0123−i0.0123
 

−39.18+i49.12
 

−39.18−i49.12
 

0 
0 

DWPF /  
KS-54000 

28.1103 N -81.4327 E 86083 

−22.7121+i27.1065 
−22.7121−i27.1065 

−59.4313 
−0.0048 
−0.0731 

0 
0 
 

HRV /  
STS-1 VBB 

42.5064 N -71.5583 E 3948.58 

−0.0123+i0.0123
 

−0.0123−i0.0123
 

−39.18+i49.12
 

−39.18−i49.12
 

0 
0 

PFO /  
STS-1 VBB 

33.6092 N -116.4553 E 50.316 

−0.0123+i0.0123
 

−0.0123−i0.0123
 

−40.0568+i48.4075
 

−40.0568−i48.4075
 

−0.1566 

0 
0 

−78.5398 
−0.1525 
−0.1525 

Table B.3: Locations and transfer functions of the GSN data set stations described by the gain (A0) as well as 
the poles and zeros. The given transfer functions are from velocity to velocity. 

 
Figure B.2: Amplitude (top) and phase (bottom) frequency response spectra of the seismometer types of the 
GSN data set (see Table B.3) 
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Appendix C: Noise classification of the URS data set 

This appendix provides the results of the complete classification of the URS data set with 
consecutive 4 hour long time windows. Each day between 27th October 2003 and 7th 
August 2004 is covered by six 4 hour time windows starting at 0, 4, 8, 12, 16 and 20 
o‟clock Eastern European Time (EET). The time window 0-4 EET on 28th March 2004 is 
excluded from the analysis due to the change from winter time to summer time in this time 
window. The seismic noise time series (vertical component Z and horizontal components 
N and E) measured by the URS stations (see Appendix B and Figure 3.1) in these time 
windows are classified in the eight frequency ranges discussed in section 5.2. The 
classification results (exactly: the noise class distributions) of all analysed time windows 
are given in Table C2 (vertical component), C3 (North-South component) and C4 (East-
West Component). 

Next to the noise class distributions of all time windows also the distributions for several 
selected data sets are given in Tables C4 to C13. An overview about the selected data 
sets with the corresponding selection criteria is given in Table C1. 

 

Data set name Comp. weekdays 
Mean wind 

velocity 
Noise 

classes 
Table 

All_Days_Z Z all all 1-6; 11-13 C2 
All_Days_N N all all 1-6; 11-13 C3 
All_Days_E E all all 1-6; 11-13 C4 

      
Working_Days_LowWind_Z Z Mo.-Fri. < 3 m/s 1-6 C5 
Working_Days_LowWind_N N Mo.-Fri. < 3 m/s 1-6 C6 
Working_Days_LowWind_E E Mo.-Fri. < 3 m/s 1-6 C7 

      
Working_Days_HighWind_Z Z Mo.-Fri. > 6 m/s 1-6 C8 
Working_Days_HighWind_N N Mo.-Fri. > 6 m/s 1-6 C9 
Working_Days_HighWind_E E Mo.-Fri. > 6 m/s 1-6 C10 

      
Sundays_LowWind_Z Z Sunday < 3 m/s 1-6 C11 
Sundays_LowWind_N N Sunday < 3 m/s 1-6 C12 
Sundays_LowWind_E E Sunday < 3 m/s 1-6 C13 

      
Table C1: Specific noise classification data sets selected from the complete URS data set with selection 
criteria. 
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Table C2: Noise class distributions of the complete URS data set (vertical component). 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all time windows. 

Data set: All_Days_Z

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6 NC11-13

% % % % % % % %

Z 0.008-0.04 0-4 5050 0.06 4.30 4.36 13.98 21.74 0.42 56.44 3.07

Z 0.008-0.04 4-8 5033 0.06 3.72 3.78 24.00 13.97 0.76 55.12 2.38

Z 0.008-0.04 8-12 4995 0.26 8.19 8.45 19.34 17.38 0.46 50.93 3.44

Z 0.008-0.04 12-16 4960 0.24 8.93 9.17 19.92 17.26 0.34 50.52 2.78

Z 0.008-0.04 16-20 5027 0.10 9.53 9.63 19.36 15.99 0.50 51.98 2.55

Z 0.008-0.04 20-24 5052 0.12 4.32 4.43 24.03 15.42 0.69 53.54 1.88

Z 0.04-0.09 0-4 5836 6.44 17.37 23.82 24.01 47.67 0.02 2.47 2.02

Z 0.04-0.09 4-8 5816 3.49 11.64 15.13 30.19 46.41 0.02 4.64 3.61

Z 0.04-0.09 8-12 5771 1.80 8.46 10.26 28.68 53.27 0.00 5.11 2.69

Z 0.04-0.09 12-16 5731 1.76 10.03 11.80 32.26 48.79 0.02 4.80 2.34

Z 0.04-0.09 16-20 5810 2.94 11.26 14.20 34.17 44.72 0.02 4.99 1.91

Z 0.04-0.09 20-24 5839 4.18 13.99 18.17 32.09 43.67 0.03 4.42 1.61

Z 0.09-0.18 0-4 7732 45.65 27.50 73.15 14.34 11.38 0.03 0.57 0.53

Z 0.09-0.18 4-8 7702 41.08 25.03 66.11 14.76 17.50 0.06 0.66 0.90

Z 0.09-0.18 8-12 7643 33.89 22.45 56.34 19.93 22.20 0.07 0.41 1.06

Z 0.09-0.18 12-16 7593 35.11 22.92 58.03 20.15 20.33 0.00 0.34 1.15

Z 0.09-0.18 16-20 7699 38.77 24.09 62.87 16.83 18.29 0.04 0.48 1.49

Z 0.09-0.18 20-24 7733 45.04 25.36 70.40 14.24 14.47 0.05 0.69 0.16

Z 0.18-0.25 0-4 7732 62.67 25.83 88.50 6.39 4.99 0.04 0.00 0.08

Z 0.18-0.25 4-8 7702 59.41 25.23 84.64 8.61 6.19 0.03 0.01 0.52

Z 0.18-0.25 8-12 7642 56.36 26.30 82.66 10.17 6.19 0.04 0.01 0.93

Z 0.18-0.25 12-16 7593 57.21 25.50 82.71 10.13 6.27 0.05 0.00 0.84

Z 0.18-0.25 16-20 7698 58.66 26.12 84.79 7.72 6.77 0.03 0.00 0.70

Z 0.18-0.25 20-24 7733 62.18 25.99 88.17 7.40 4.31 0.09 0.00 0.04

Z 0.25-0.6 0-4 8082 71.13 12.00 83.14 7.52 8.57 0.00 0.01 0.75

Z 0.25-0.6 4-8 8053 68.40 13.90 82.29 8.15 8.98 0.00 0.06 0.52

Z 0.25-0.6 8-12 7988 63.85 15.52 79.37 11.87 7.71 0.00 0.06 0.99

Z 0.25-0.6 12-16 7940 65.28 15.48 80.76 9.56 8.51 0.01 0.01 1.15

Z 0.25-0.6 16-20 8047 70.11 13.84 83.96 7.62 7.54 0.00 0.01 0.87

Z 0.25-0.6 20-24 8082 73.50 12.57 86.07 6.51 7.34 0.00 0.06 0.02

Z 0.6-1 0-4 8082 14.88 19.98 34.87 46.19 18.32 0.05 0.00 0.57

Z 0.6-1 4-8 8053 3.04 13.56 16.60 72.35 10.89 0.00 0.00 0.16

Z 0.6-1 8-12 7988 43.40 22.43 65.84 25.39 8.10 0.00 0.00 0.68

Z 0.6-1 12-16 7940 41.10 22.18 63.27 24.58 11.27 0.00 0.00 0.87

Z 0.6-1 16-20 8047 33.04 35.42 68.46 22.48 8.35 0.00 0.00 0.71

Z 0.6-1 20-24 8082 7.68 49.31 56.99 33.56 9.39 0.01 0.01 0.04

Z 1-25 0-4 8082 0.40 1.08 1.47 12.60 83.59 1.35 0.87 0.12

Z 1-25 4-8 8053 0.06 0.70 0.76 17.53 81.26 0.26 0.07 0.11

Z 1-25 8-12 7988 0.09 0.55 0.64 36.02 61.79 0.29 0.39 0.88

Z 1-25 12-16 7940 0.28 0.69 0.97 35.08 62.88 0.21 0.20 0.65

Z 1-25 16-20 8046 0.31 0.60 0.91 33.22 65.26 0.09 0.25 0.27

Z 1-25 20-24 8082 0.19 0.88 1.06 23.86 74.70 0.19 0.15 0.05

Z 25-45 0-4 8082 1.74 5.09 6.83 19.54 67.10 3.85 0.78 1.91

Z 25-45 4-8 8053 0.10 0.75 0.84 10.74 84.78 1.71 0.96 0.97

Z 25-45 8-12 7988 0.01 0.39 0.40 11.88 83.16 0.98 2.42 1.16

Z 25-45 12-16 7940 0.00 0.31 0.31 11.41 84.14 0.65 2.30 1.17

Z 25-45 16-20 8044 0.07 0.55 0.62 15.17 81.85 0.97 1.02 0.37

Z 25-45 20-24 8082 0.27 1.48 1.76 16.13 79.81 2.03 0.12 0.15
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Table C3: Noise class distributions of the complete URS data set. (North-South component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all time windows. 

Data set: All_Days_N

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6 NC11-13

% % % % % % % %

N 0.008-0.04 0-4 5024 0.02 2.29 2.31 16.26 20.18 0.04 59.08 2.13

N 0.008-0.04 4-8 5000 0.04 1.94 1.98 13.92 20.28 0.24 59.28 4.30

N 0.008-0.04 8-12 4957 0.04 1.25 1.29 14.02 21.53 0.14 58.00 5.02

N 0.008-0.04 12-16 4931 0.00 1.66 1.66 15.57 19.69 0.08 58.20 4.79

N 0.008-0.04 16-20 5000 0.00 1.02 1.02 13.38 20.74 0.10 60.48 4.28

N 0.008-0.04 20-24 5029 0.04 2.13 2.17 14.75 19.21 0.06 61.50 2.31

N 0.04-0.09 0-4 5812 1.14 4.28 5.42 22.51 61.73 0.00 6.93 3.41

N 0.04-0.09 4-8 5782 0.76 2.44 3.20 17.78 60.74 0.00 10.62 7.66

N 0.04-0.09 8-12 5732 0.17 0.96 1.13 19.61 61.24 0.00 11.17 6.86

N 0.04-0.09 12-16 5704 0.16 1.00 1.16 23.81 58.75 0.02 9.36 6.91

N 0.04-0.09 16-20 5783 0.29 1.59 1.88 18.38 62.87 0.02 11.69 5.15

N 0.04-0.09 20-24 5817 0.79 3.25 4.04 18.26 62.71 0.00 11.84 3.15

N 0.09-0.18 0-4 7650 41.37 26.27 67.65 16.50 15.03 0.09 0.10 0.63

N 0.09-0.18 4-8 7614 35.09 23.01 58.10 19.25 21.13 0.04 0.25 1.22

N 0.09-0.18 8-12 7545 25.43 18.38 43.82 22.16 31.99 0.03 0.13 1.87

N 0.09-0.18 12-16 7509 26.37 18.16 44.53 22.89 30.20 0.01 0.20 2.16

N 0.09-0.18 16-20 7613 29.75 20.29 50.05 20.87 26.69 0.04 0.29 2.06

N 0.09-0.18 20-24 7653 38.04 25.41 63.45 18.45 17.39 0.05 0.03 0.63

N 0.18-0.25 0-4 7650 61.02 26.31 87.33 6.78 5.44 0.03 0.00 0.42

N 0.18-0.25 4-8 7614 57.92 26.29 84.21 8.60 6.34 0.08 0.03 0.74

N 0.18-0.25 8-12 7544 53.50 25.46 78.96 11.25 8.54 0.12 0.01 1.11

N 0.18-0.25 12-16 7508 53.18 24.65 77.84 12.28 8.62 0.03 0.01 1.23

N 0.18-0.25 16-20 7613 55.72 25.63 81.35 9.89 7.50 0.03 0.00 1.23

N 0.18-0.25 20-24 7653 62.35 26.21 88.57 6.49 4.53 0.05 0.00 0.35

N 0.25-0.6 0-4 8001 71.73 12.06 83.79 7.21 8.11 0.00 0.01 0.87

N 0.25-0.6 4-8 7965 61.73 17.60 79.33 11.22 8.66 0.00 0.03 0.75

N 0.25-0.6 8-12 7890 61.70 15.96 77.66 13.59 7.62 0.00 0.09 1.05

N 0.25-0.6 12-16 7856 63.25 14.36 77.61 11.24 9.62 0.00 0.04 1.49

N 0.25-0.6 16-20 7961 64.93 15.54 80.47 10.26 8.10 0.00 0.00 1.17

N 0.25-0.6 20-24 8002 72.08 14.53 86.62 6.74 6.32 0.00 0.00 0.32

N 0.6-1 0-4 8001 17.20 23.01 40.21 42.19 16.79 0.05 0.01 0.75

N 0.6-1 4-8 7965 4.12 9.44 13.56 74.63 11.36 0.00 0.00 0.45

N 0.6-1 8-12 7890 44.64 22.81 67.45 24.58 7.10 0.00 0.01 0.86

N 0.6-1 12-16 7854 44.39 22.17 66.55 22.74 9.60 0.00 0.00 1.11

N 0.6-1 16-20 7961 25.55 38.41 63.96 28.06 7.13 0.01 0.00 0.83

N 0.6-1 20-24 8002 7.61 39.93 47.54 45.85 6.27 0.02 0.00 0.31

N 1-25 0-4 8001 1.09 2.70 3.79 26.82 65.08 1.59 2.19 0.54

N 1-25 4-8 7965 0.25 1.47 1.72 33.41 62.81 1.02 0.53 0.51

N 1-25 8-12 7890 0.52 6.64 7.16 42.98 48.09 0.54 0.19 1.04

N 1-25 12-16 7853 0.69 6.48 7.17 42.85 48.44 0.47 0.15 0.92

N 1-25 16-20 7961 0.53 4.70 5.23 43.32 50.48 0.39 0.16 0.41

N 1-25 20-24 8002 0.52 1.91 2.44 38.78 57.14 0.86 0.47 0.31

N 25-45 0-4 8001 1.91 5.30 7.21 15.65 73.44 2.41 0.26 1.02

N 25-45 4-8 7965 0.31 1.19 1.51 7.57 88.42 1.02 0.30 1.18

N 25-45 8-12 7890 0.09 0.42 0.51 12.14 83.68 1.74 0.60 1.34

N 25-45 12-16 7853 0.09 0.20 0.29 10.68 86.02 1.30 0.55 1.16

N 25-45 16-20 7961 0.19 0.82 1.00 12.46 84.94 0.65 0.30 0.64

N 25-45 20-24 8002 0.90 2.17 3.07 12.63 82.48 1.16 0.15 0.50



 

126 
 

 
Table C4: Noise class distributions of the complete URS data set. (East-West component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all time windows. 

Data set: All_Days_E

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6 NC11-13

% % % % % % % %

E 0.008-0.04 0-4 4975 0.10 2.31 2.41 17.13 20.38 0.18 58.83 1.07

E 0.008-0.04 4-8 4955 0.02 1.74 1.76 14.13 20.85 0.34 60.42 2.50

E 0.008-0.04 8-12 4918 0.00 1.24 1.24 15.56 20.07 0.14 58.30 4.70

E 0.008-0.04 12-16 4887 0.00 1.56 1.56 16.55 18.38 0.20 58.48 4.83

E 0.008-0.04 16-20 4954 0.02 1.29 1.31 14.82 20.00 0.28 59.93 3.65

E 0.008-0.04 20-24 4979 0.02 1.83 1.85 15.81 19.50 0.38 61.22 1.25

E 0.04-0.09 0-4 5763 1.06 4.93 5.99 23.56 61.37 0.00 6.35 2.72

E 0.04-0.09 4-8 5737 0.44 2.82 3.26 17.83 63.24 0.02 10.41 5.25

E 0.04-0.09 8-12 5694 0.12 0.74 0.86 20.23 60.94 0.00 11.35 6.62

E 0.04-0.09 12-16 5659 0.14 0.94 1.08 23.18 59.98 0.00 9.44 6.33

E 0.04-0.09 16-20 5737 0.33 1.73 2.06 19.70 62.89 0.00 10.65 4.71

E 0.04-0.09 20-24 5766 0.80 3.42 4.21 19.22 63.32 0.00 10.70 2.55

E 0.09-0.18 0-4 7667 40.13 26.87 67.00 16.55 15.87 0.07 0.05 0.46

E 0.09-0.18 4-8 7636 34.83 24.31 59.14 19.05 20.94 0.03 0.05 0.79

E 0.09-0.18 8-12 7573 25.43 19.48 44.91 21.35 32.11 0.07 0.11 1.45

E 0.09-0.18 12-16 7532 25.86 20.14 46.00 21.57 30.60 0.03 0.16 1.63

E 0.09-0.18 16-20 7635 30.40 20.88 51.28 20.08 26.35 0.07 0.18 2.04

E 0.09-0.18 20-24 7672 39.23 24.50 63.74 17.45 18.34 0.05 0.09 0.33

E 0.18-0.25 0-4 7667 61.13 25.62 86.75 7.50 5.60 0.03 0.00 0.13

E 0.18-0.25 4-8 7636 58.54 26.55 85.08 8.50 5.89 0.04 0.03 0.46

E 0.18-0.25 8-12 7573 54.58 26.04 80.62 10.43 8.24 0.04 0.00 0.67

E 0.18-0.25 12-16 7532 53.49 25.56 79.05 11.70 7.95 0.07 0.00 1.23

E 0.18-0.25 16-20 7635 55.77 26.21 81.98 10.09 6.57 0.03 0.00 1.34

E 0.18-0.25 20-24 7672 60.87 27.50 88.37 7.35 4.14 0.07 0.00 0.07

E 0.25-0.6 0-4 8018 72.71 11.49 84.20 7.65 7.48 0.00 0.01 0.66

E 0.25-0.6 4-8 7987 62.88 18.42 81.29 10.24 7.95 0.00 0.01 0.50

E 0.25-0.6 8-12 7919 63.08 16.34 79.42 13.23 6.65 0.00 0.03 0.67

E 0.25-0.6 12-16 7879 63.74 15.05 78.79 10.57 9.33 0.00 0.00 1.31

E 0.25-0.6 16-20 7982 66.71 15.07 81.78 9.45 7.83 0.01 0.00 0.93

E 0.25-0.6 20-24 8021 72.53 15.30 87.83 6.35 5.77 0.00 0.00 0.05

E 0.6-1 0-4 8018 17.83 22.70 40.53 42.03 16.92 0.00 0.00 0.51

E 0.6-1 4-8 7987 3.66 8.94 12.60 78.24 9.03 0.00 0.00 0.14

E 0.6-1 8-12 7919 43.33 28.31 71.64 22.79 5.03 0.00 0.00 0.54

E 0.6-1 12-16 7879 41.96 28.05 70.01 21.23 7.87 0.00 0.00 0.89

E 0.6-1 16-20 7982 21.94 44.49 66.42 26.95 5.99 0.00 0.00 0.64

E 0.6-1 20-24 8021 7.58 35.72 43.30 50.62 5.95 0.09 0.00 0.05

E 1-25 0-4 8018 1.62 4.22 5.84 27.28 61.04 1.72 3.70 0.42

E 1-25 4-8 7987 0.34 1.60 1.94 32.04 63.98 0.74 1.10 0.20

E 1-25 8-12 7919 0.58 6.65 7.24 40.95 50.27 0.48 0.34 0.72

E 1-25 12-16 7879 0.95 5.80 6.75 41.13 50.81 0.44 0.34 0.52

E 1-25 16-20 7982 0.66 5.11 5.78 41.48 51.70 0.35 0.56 0.13

E 1-25 20-24 8021 0.79 2.26 3.04 39.43 54.91 0.85 1.72 0.05

E 25-45 0-4 8017 3.09 2.63 5.73 16.27 69.69 4.53 2.52 1.27

E 25-45 4-8 7987 1.06 1.67 2.73 8.03 83.27 1.75 3.21 1.01

E 25-45 8-12 7918 0.32 0.78 1.10 9.98 80.50 1.89 5.58 0.95

E 25-45 12-16 7879 0.61 0.75 1.36 9.61 81.51 1.35 5.27 0.91

E 25-45 16-20 7982 1.40 1.40 2.81 11.90 79.92 1.20 3.80 0.38

E 25-45 20-24 8021 2.57 2.04 4.61 10.51 79.92 2.13 2.67 0.16
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Table C5: Noise class distributions of the complete URS data set. (vertical component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all working days with low wind conditions. 

Data set: WorkingDays_LowWind_Z

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

Z 0.008-0.04 0-4 3057 0.00 4.32 4.32 13.25 23.81 0.39 58.23

Z 0.008-0.04 4-8 2937 0.07 3.44 3.51 26.12 14.95 0.95 54.48

Z 0.008-0.04 8-12 2557 0.23 8.49 8.72 18.54 17.83 0.55 54.36

Z 0.008-0.04 12-16 1962 0.20 9.02 9.23 17.38 21.46 0.31 51.63

Z 0.008-0.04 16-20 2276 0.09 10.15 10.24 17.97 16.83 0.44 54.53

Z 0.008-0.04 20-24 2928 0.03 4.23 4.27 23.57 17.96 0.55 53.65

Z 0.04-0.09 0-4 3596 6.37 17.85 24.22 22.41 50.92 0.03 2.42

Z 0.04-0.09 4-8 3355 3.37 11.06 14.43 30.01 50.73 0.03 4.80

Z 0.04-0.09 8-12 2976 1.85 8.90 10.75 26.61 57.26 0.00 5.38

Z 0.04-0.09 12-16 2262 2.30 11.98 14.28 26.66 54.33 0.04 4.69

Z 0.04-0.09 16-20 2672 3.67 13.44 17.10 32.63 45.17 0.04 5.05

Z 0.04-0.09 20-24 3408 4.05 13.26 17.31 32.10 45.63 0.06 4.90

Z 0.09-0.18 0-4 4804 47.50 27.35 74.85 13.36 11.16 0.02 0.60

Z 0.09-0.18 4-8 4575 42.19 24.11 66.30 14.73 18.14 0.09 0.74

Z 0.09-0.18 8-12 4028 35.10 22.47 57.57 18.77 23.39 0.05 0.22

Z 0.09-0.18 12-16 3059 34.32 23.24 57.57 18.76 23.34 0.00 0.33

Z 0.09-0.18 16-20 3541 40.27 25.28 65.55 16.38 17.74 0.00 0.34

Z 0.09-0.18 20-24 4591 44.02 25.55 69.57 15.16 14.62 0.02 0.63

Z 0.18-0.25 0-4 4819 62.67 25.79 88.46 6.41 5.08 0.04 0.00

Z 0.18-0.25 4-8 4600 59.74 25.93 85.67 8.17 6.11 0.02 0.02

Z 0.18-0.25 8-12 4026 57.85 24.54 82.39 10.61 6.98 0.00 0.02

Z 0.18-0.25 12-16 3077 55.80 24.57 80.37 11.41 8.16 0.06 0.00

Z 0.18-0.25 16-20 3577 60.33 26.47 86.80 7.77 5.42 0.00 0.00

Z 0.18-0.25 20-24 4594 63.21 26.27 89.49 7.60 2.90 0.02 0.00

Z 0.25-0.6 0-4 4989 72.56 11.65 84.21 6.69 9.08 0.00 0.02

Z 0.25-0.6 4-8 4812 68.33 13.90 82.23 8.40 9.31 0.00 0.06

Z 0.25-0.6 8-12 4211 66.16 16.08 82.24 10.73 6.96 0.00 0.07

Z 0.25-0.6 12-16 3200 65.19 15.16 80.34 9.16 10.50 0.00 0.00

Z 0.25-0.6 16-20 3747 73.05 14.30 87.35 6.73 5.92 0.00 0.00

Z 0.25-0.6 20-24 4807 74.72 12.04 86.77 6.47 6.70 0.00 0.06

Z 0.6-1 0-4 5006 14.64 20.06 34.70 48.64 16.60 0.06 0.00

Z 0.6-1 4-8 4842 2.15 8.76 10.90 78.87 10.22 0.00 0.00

Z 0.6-1 8-12 4237 48.45 21.86 70.31 23.27 6.42 0.00 0.00

Z 0.6-1 12-16 3231 44.26 20.64 64.90 22.75 12.35 0.00 0.00

Z 0.6-1 16-20 3754 34.07 41.45 75.52 19.42 5.06 0.00 0.00

Z 0.6-1 20-24 4807 6.07 49.22 55.29 35.59 9.09 0.02 0.00

Z 1-25 0-4 5041 0.36 0.81 1.17 10.47 86.21 1.25 0.89

Z 1-25 4-8 4847 0.02 0.70 0.72 19.25 79.88 0.10 0.04

Z 1-25 8-12 4230 0.12 0.59 0.71 39.24 59.31 0.31 0.43

Z 1-25 12-16 3247 0.31 0.71 1.02 36.86 61.66 0.25 0.22

Z 1-25 16-20 3752 0.37 0.37 0.75 35.10 63.83 0.05 0.27

Z 1-25 20-24 4807 0.12 0.83 0.96 23.40 75.43 0.10 0.10

Z 25-45 0-4 4955 1.63 5.33 6.96 18.79 69.28 4.12 0.85

Z 25-45 4-8 4785 0.06 0.65 0.71 9.68 86.81 1.61 1.19

Z 25-45 8-12 4211 0.02 0.43 0.45 12.51 83.02 1.23 2.78

Z 25-45 12-16 3234 0.00 0.40 0.40 11.13 84.76 0.71 3.00

Z 25-45 16-20 3745 0.05 0.61 0.67 16.29 80.61 0.91 1.52

Z 25-45 20-24 4801 0.33 1.54 1.87 15.46 80.63 1.96 0.08
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Table C6: Noise class distributions of the complete URS data set. (North-South component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all working days with low wind conditions. 

Data set: WorkingDays_LowWind_N

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

N 0.008-0.04 0-4 3065 0.03 1.92 1.96 15.60 21.04 0.07 61.34

N 0.008-0.04 4-8 2849 0.00 1.65 1.65 13.16 22.43 0.25 62.51

N 0.008-0.04 8-12 2493 0.04 1.28 1.32 12.56 22.86 0.16 63.10

N 0.008-0.04 12-16 1895 0.00 1.42 1.42 12.93 22.64 0.16 62.85

N 0.008-0.04 16-20 2213 0.00 0.95 0.95 11.88 23.41 0.09 63.67

N 0.008-0.04 20-24 2914 0.03 1.85 1.89 13.66 19.94 0.03 64.48

N 0.04-0.09 0-4 3520 1.31 4.66 5.97 20.17 66.88 0.00 6.99

N 0.04-0.09 4-8 3151 0.95 2.57 3.52 15.65 68.01 0.00 12.82

N 0.04-0.09 8-12 2785 0.29 1.04 1.33 15.80 69.66 0.00 13.21

N 0.04-0.09 12-16 2098 0.33 1.48 1.81 16.30 70.92 0.05 10.92

N 0.04-0.09 16-20 2537 0.35 2.21 2.56 15.06 69.41 0.04 12.93

N 0.04-0.09 20-24 3330 0.78 3.51 4.29 15.56 66.04 0.00 14.11

N 0.09-0.18 0-4 4730 43.42 26.32 69.75 15.58 14.48 0.04 0.15

N 0.09-0.18 4-8 4499 35.19 23.16 58.35 18.20 23.09 0.04 0.31

N 0.09-0.18 8-12 3935 26.58 18.55 45.13 19.24 35.43 0.05 0.15

N 0.09-0.18 12-16 2964 27.02 19.23 46.26 18.66 34.75 0.03 0.30

N 0.09-0.18 16-20 3481 32.00 22.32 54.32 20.51 24.82 0.03 0.32

N 0.09-0.18 20-24 4519 38.75 25.65 64.39 18.72 16.80 0.07 0.02

N 0.18-0.25 0-4 4745 61.73 26.39 88.11 6.01 5.86 0.02 0.00

N 0.18-0.25 4-8 4532 58.98 26.61 85.59 8.12 6.16 0.09 0.04

N 0.18-0.25 8-12 3962 53.66 25.34 79.00 10.55 10.37 0.08 0.00

N 0.18-0.25 12-16 3007 50.55 26.67 77.22 12.11 10.64 0.03 0.00

N 0.18-0.25 16-20 3521 58.68 26.53 85.20 7.67 7.10 0.03 0.00

N 0.18-0.25 20-24 4526 64.76 26.20 90.96 6.16 2.81 0.07 0.00

N 0.25-0.6 0-4 4934 73.25 11.63 84.88 6.34 8.76 0.00 0.02

N 0.25-0.6 4-8 4742 60.19 18.89 79.08 11.77 9.11 0.00 0.04

N 0.25-0.6 8-12 4161 64.31 15.77 80.08 12.02 7.81 0.00 0.10

N 0.25-0.6 12-16 3135 63.76 14.29 78.05 10.49 11.42 0.00 0.03

N 0.25-0.6 16-20 3693 68.37 16.90 85.27 8.39 6.34 0.00 0.00

N 0.25-0.6 20-24 4739 73.33 14.50 87.82 7.13 5.04 0.00 0.00

N 0.6-1 0-4 4947 17.42 22.90 40.33 43.46 16.11 0.08 0.02

N 0.6-1 4-8 4769 3.12 6.14 9.27 79.12 11.62 0.00 0.00

N 0.6-1 8-12 4167 49.60 21.86 71.47 22.94 5.59 0.00 0.00

N 0.6-1 12-16 3167 48.22 19.70 67.92 21.63 10.45 0.00 0.00

N 0.6-1 16-20 3699 25.63 43.44 69.07 26.36 4.54 0.03 0.00

N 0.6-1 20-24 4740 6.48 38.31 44.79 49.58 5.59 0.04 0.00

N 1-25 0-4 4968 0.83 2.03 2.86 25.66 67.75 1.43 2.29

N 1-25 4-8 4760 0.08 1.49 1.58 34.56 62.61 0.88 0.38

N 1-25 8-12 4161 0.58 8.60 9.18 43.84 46.31 0.58 0.10

N 1-25 12-16 3184 1.01 8.20 9.20 42.21 47.99 0.50 0.09

N 1-25 16-20 3697 0.38 5.68 6.06 43.77 49.77 0.38 0.03

N 1-25 20-24 4741 0.42 1.73 2.15 39.13 57.54 0.78 0.40

N 25-45 0-4 4941 2.02 5.18 7.21 15.04 74.88 2.57 0.30

N 25-45 4-8 4717 0.32 1.00 1.31 6.42 90.84 1.06 0.36

N 25-45 8-12 4139 0.07 0.53 0.60 13.63 83.02 2.17 0.58

N 25-45 12-16 3175 0.06 0.22 0.28 11.15 86.24 1.54 0.79

N 25-45 16-20 3683 0.16 0.98 1.14 13.41 84.39 0.62 0.43

N 25-45 20-24 4729 0.89 1.97 2.85 12.77 83.19 1.06 0.13
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Table C7: Noise class distributions of the complete URS data set. (East-West component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all working days with low wind conditions. 

Data set: WorkingDays_LowWind_E

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

E 0.008-0.04 0-4 3073 0.03 2.31 2.34 16.37 21.90 0.07 59.32

E 0.008-0.04 4-8 2885 0.03 1.35 1.39 13.00 21.70 0.14 63.78

E 0.008-0.04 8-12 2480 0.00 1.05 1.05 12.70 22.46 0.00 63.79

E 0.008-0.04 12-16 1878 0.00 1.54 1.54 13.79 21.35 0.21 63.10

E 0.008-0.04 16-20 2212 0.00 1.40 1.40 13.97 21.43 0.27 62.93

E 0.008-0.04 20-24 2917 0.03 1.65 1.68 14.64 20.60 0.34 62.74

E 0.04-0.09 0-4 3513 1.14 5.29 6.43 21.35 65.90 0.00 6.32

E 0.04-0.09 4-8 3231 0.40 3.10 3.50 16.22 68.40 0.00 11.88

E 0.04-0.09 8-12 2772 0.22 0.94 1.15 16.92 68.90 0.00 13.02

E 0.04-0.09 12-16 2115 0.28 1.37 1.65 17.21 70.45 0.00 10.69

E 0.04-0.09 16-20 2522 0.56 2.50 3.05 17.01 68.24 0.00 11.70

E 0.04-0.09 20-24 3324 0.69 3.67 4.36 17.51 66.40 0.00 11.73

E 0.09-0.18 0-4 4751 41.95 26.67 68.62 15.49 15.81 0.06 0.02

E 0.09-0.18 4-8 4538 34.82 24.99 59.81 16.99 23.14 0.02 0.04

E 0.09-0.18 8-12 3987 26.81 19.96 46.78 18.49 34.54 0.08 0.13

E 0.09-0.18 12-16 2998 26.58 20.65 47.23 17.61 34.96 0.07 0.13

E 0.09-0.18 16-20 3501 32.56 22.62 55.18 20.11 24.45 0.11 0.14

E 0.09-0.18 20-24 4550 39.56 24.53 64.09 18.13 17.67 0.07 0.04

E 0.18-0.25 0-4 4774 61.02 26.31 87.33 6.33 6.30 0.04 0.00

E 0.18-0.25 4-8 4562 59.21 26.72 85.93 8.33 5.68 0.02 0.04

E 0.18-0.25 8-12 4007 54.68 25.93 80.61 9.33 10.03 0.02 0.00

E 0.18-0.25 12-16 3016 52.92 25.93 78.85 12.14 8.99 0.03 0.00

E 0.18-0.25 16-20 3545 57.69 27.19 84.88 8.77 6.32 0.03 0.00

E 0.18-0.25 20-24 4554 63.31 27.27 90.58 6.52 2.83 0.07 0.00

E 0.25-0.6 0-4 4959 73.36 11.57 84.94 6.86 8.21 0.00 0.00

E 0.25-0.6 4-8 4771 60.87 20.23 81.09 10.65 8.24 0.00 0.02

E 0.25-0.6 8-12 4202 64.99 16.85 81.84 11.64 6.47 0.00 0.05

E 0.25-0.6 12-16 3155 65.07 16.01 81.08 8.68 10.24 0.00 0.00

E 0.25-0.6 16-20 3714 70.76 15.51 86.27 7.78 5.95 0.00 0.00

E 0.25-0.6 20-24 4768 73.89 14.68 88.57 7.13 4.30 0.00 0.00

E 0.6-1 0-4 4975 17.25 22.79 40.04 43.46 16.50 0.00 0.00

E 0.6-1 4-8 4803 2.58 5.62 8.20 82.55 9.24 0.00 0.00

E 0.6-1 8-12 4207 48.40 27.83 76.23 19.97 3.80 0.00 0.00

E 0.6-1 12-16 3192 46.40 26.07 72.46 18.80 8.74 0.00 0.00

E 0.6-1 16-20 3721 22.60 50.17 72.78 23.62 3.60 0.00 0.00

E 0.6-1 20-24 4768 6.15 34.48 40.63 54.43 4.82 0.13 0.00

E 1-25 0-4 4994 1.30 3.14 4.45 26.47 63.42 1.80 3.86

E 1-25 4-8 4796 0.25 1.31 1.56 32.88 64.12 0.75 0.69

E 1-25 8-12 4200 0.74 7.50 8.24 42.07 48.90 0.60 0.19

E 1-25 12-16 3219 1.21 6.59 7.80 41.22 50.36 0.43 0.19

E 1-25 16-20 3721 0.46 5.59 6.05 42.27 51.25 0.24 0.19

E 1-25 20-24 4768 0.57 1.93 2.50 39.32 56.17 0.82 1.20

E 25-45 0-4 4949 3.33 2.69 6.02 15.24 71.57 4.51 2.67

E 25-45 4-8 4745 0.86 1.58 2.44 7.29 85.58 1.26 3.41

E 25-45 8-12 4185 0.10 0.48 0.57 10.70 80.38 2.32 6.02

E 25-45 12-16 3203 0.25 0.56 0.81 9.55 82.02 1.72 5.90

E 25-45 16-20 3705 1.16 1.00 2.16 13.31 78.95 1.35 4.24

E 25-45 20-24 4762 2.69 2.04 4.72 9.91 80.83 1.83 2.71
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Table C8: Noise class distributions of the complete URS data set. (vertical component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all working days with high wind conditions. 

Data set: WorkingDays_HighWind_Z

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

Z 0.008-0.04 0-4 38 0.00 10.53 10.53 39.47 0.00 0.00 50.00

Z 0.008-0.04 4-8 37 0.00 16.22 16.22 32.43 2.70 0.00 48.65

Z 0.008-0.04 8-12 56 0.00 17.86 17.86 25.00 3.57 0.00 53.57

Z 0.008-0.04 12-16 153 0.00 11.11 11.11 31.37 8.50 0.00 49.02

Z 0.008-0.04 16-20 94 0.00 5.32 5.32 37.23 4.26 3.19 50.00

Z 0.008-0.04 20-24 18 0.00 5.56 5.56 38.89 0.00 0.00 55.56

Z 0.04-0.09 0-4 44 0.00 0.00 0.00 43.18 54.55 0.00 2.27

Z 0.04-0.09 4-8 43 0.00 2.33 2.33 79.07 16.28 0.00 2.33

Z 0.04-0.09 8-12 65 0.00 1.54 1.54 67.69 29.23 0.00 1.54

Z 0.04-0.09 12-16 177 0.00 1.13 1.13 45.76 49.72 0.00 3.39

Z 0.04-0.09 16-20 109 0.92 2.75 3.67 41.28 50.46 0.00 4.59

Z 0.04-0.09 20-24 21 0.00 0.00 0.00 95.24 4.76 0.00 0.00

Z 0.09-0.18 0-4 58 0.00 13.79 13.79 75.86 10.34 0.00 0.00

Z 0.09-0.18 4-8 57 12.28 10.53 22.81 73.68 3.51 0.00 0.00

Z 0.09-0.18 8-12 86 9.30 11.63 20.93 61.63 17.44 0.00 0.00

Z 0.09-0.18 12-16 233 15.45 10.30 25.75 49.79 24.03 0.00 0.43

Z 0.09-0.18 16-20 144 11.11 6.94 18.06 51.39 30.56 0.00 0.00

Z 0.09-0.18 20-24 28 3.57 21.43 25.00 64.29 10.71 0.00 0.00

Z 0.18-0.25 0-4 58 56.90 29.31 86.21 13.79 0.00 0.00 0.00

Z 0.18-0.25 4-8 57 61.40 22.81 84.21 15.79 0.00 0.00 0.00

Z 0.18-0.25 8-12 86 44.19 34.88 79.07 18.60 2.33 0.00 0.00

Z 0.18-0.25 12-16 233 46.35 26.61 72.96 22.75 4.29 0.00 0.00

Z 0.18-0.25 16-20 144 39.58 31.25 70.83 24.31 4.86 0.00 0.00

Z 0.18-0.25 20-24 28 50.00 35.71 85.71 14.29 0.00 0.00 0.00

Z 0.25-0.6 0-4 59 66.10 22.03 88.14 11.86 0.00 0.00 0.00

Z 0.25-0.6 4-8 59 54.24 32.20 86.44 13.56 0.00 0.00 0.00

Z 0.25-0.6 8-12 89 64.04 17.98 82.02 16.85 1.12 0.00 0.00

Z 0.25-0.6 12-16 240 52.92 20.00 72.92 24.58 2.50 0.00 0.00

Z 0.25-0.6 16-20 148 31.08 33.78 64.86 31.08 4.05 0.00 0.00

Z 0.25-0.6 20-24 29 72.41 24.14 96.55 3.45 0.00 0.00 0.00

Z 0.6-1 0-4 59 8.47 47.46 55.93 38.98 5.08 0.00 0.00

Z 0.6-1 4-8 59 28.81 28.81 57.63 35.59 6.78 0.00 0.00

Z 0.6-1 8-12 89 37.08 32.58 69.66 26.97 3.37 0.00 0.00

Z 0.6-1 12-16 240 17.50 34.58 52.08 41.67 6.25 0.00 0.00

Z 0.6-1 16-20 148 6.76 35.81 42.57 45.95 11.49 0.00 0.00

Z 0.6-1 20-24 29 51.72 17.24 68.97 24.14 6.90 0.00 0.00

Z 1-25 0-4 59 0.00 1.69 1.69 38.98 59.32 0.00 0.00

Z 1-25 4-8 59 1.69 0.00 1.69 45.76 49.15 1.69 1.69

Z 1-25 8-12 89 0.00 1.12 1.12 48.31 49.44 0.00 1.12

Z 1-25 12-16 240 0.00 1.67 1.67 38.75 59.58 0.00 0.00

Z 1-25 16-20 147 0.68 1.36 2.04 42.18 55.10 0.00 0.68

Z 1-25 20-24 29 0.00 6.90 6.90 55.17 37.93 0.00 0.00

Z 25-45 0-4 59 0.00 3.39 3.39 30.51 62.71 3.39 0.00

Z 25-45 4-8 59 0.00 0.00 0.00 13.56 83.05 3.39 0.00

Z 25-45 8-12 89 0.00 0.00 0.00 15.73 83.15 0.00 1.12

Z 25-45 12-16 237 0.00 0.00 0.00 12.66 81.01 0.84 5.49

Z 25-45 16-20 148 0.00 0.68 0.68 12.16 85.14 0.68 1.35

Z 25-45 20-24 29 0.00 0.00 0.00 27.59 68.97 3.45 0.00
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Table C9: Noise class distributions of the complete URS data set. (North-South component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all working days with high wind conditions. 

Data set: WorkingDays_HighWind_N

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

N 0.008-0.04 0-4 38 0.00 2.63 2.63 34.21 2.63 0.00 60.53

N 0.008-0.04 4-8 37 0.00 2.70 2.70 32.43 18.92 2.70 43.24

N 0.008-0.04 8-12 55 0.00 3.64 3.64 12.73 21.82 0.00 61.82

N 0.008-0.04 12-16 151 0.00 1.99 1.99 22.52 13.25 0.00 62.25

N 0.008-0.04 16-20 93 0.00 5.38 5.38 16.13 18.28 0.00 60.22

N 0.008-0.04 20-24 18 0.00 22.22 22.22 38.89 5.56 0.00 33.33

N 0.04-0.09 0-4 44 0.00 0.00 0.00 75.00 15.91 0.00 9.09

N 0.04-0.09 4-8 43 0.00 0.00 0.00 76.74 20.93 0.00 2.33

N 0.04-0.09 8-12 64 0.00 0.00 0.00 53.13 45.31 0.00 1.56

N 0.04-0.09 12-16 177 0.00 0.00 0.00 45.76 45.76 0.00 8.47

N 0.04-0.09 16-20 107 0.00 0.00 0.00 39.25 54.21 0.00 6.54

N 0.04-0.09 20-24 21 0.00 0.00 0.00 90.48 4.76 0.00 4.76

N 0.09-0.18 0-4 58 0.00 15.52 15.52 62.07 22.41 0.00 0.00

N 0.09-0.18 4-8 57 8.77 12.28 21.05 59.65 19.30 0.00 0.00

N 0.09-0.18 8-12 86 1.16 9.30 10.47 58.14 31.40 0.00 0.00

N 0.09-0.18 12-16 231 9.52 5.19 14.72 42.42 42.86 0.00 0.00

N 0.09-0.18 16-20 144 4.17 6.25 10.42 39.58 50.00 0.00 0.00

N 0.09-0.18 20-24 28 3.57 17.86 21.43 57.14 21.43 0.00 0.00

N 0.18-0.25 0-4 58 44.83 24.14 68.97 29.31 1.72 0.00 0.00

N 0.18-0.25 4-8 57 50.88 26.32 77.19 22.81 0.00 0.00 0.00

N 0.18-0.25 8-12 86 45.35 25.58 70.93 26.74 2.33 0.00 0.00

N 0.18-0.25 12-16 233 45.06 18.03 63.09 27.47 9.44 0.00 0.00

N 0.18-0.25 16-20 144 38.19 20.14 58.33 29.17 11.81 0.69 0.00

N 0.18-0.25 20-24 28 46.43 28.57 75.00 21.43 3.57 0.00 0.00

N 0.25-0.6 0-4 59 61.02 15.25 76.27 20.34 3.39 0.00 0.00

N 0.25-0.6 4-8 59 49.15 27.12 76.27 23.73 0.00 0.00 0.00

N 0.25-0.6 8-12 89 56.18 12.36 68.54 29.21 2.25 0.00 0.00

N 0.25-0.6 12-16 240 50.00 12.08 62.08 30.00 7.92 0.00 0.00

N 0.25-0.6 16-20 148 28.38 33.11 61.49 27.03 11.49 0.00 0.00

N 0.25-0.6 20-24 29 58.62 31.03 89.66 10.34 0.00 0.00 0.00

N 0.6-1 0-4 59 23.73 35.59 59.32 27.12 13.56 0.00 0.00

N 0.6-1 4-8 59 35.59 32.20 67.80 20.34 11.86 0.00 0.00

N 0.6-1 8-12 89 51.69 14.61 66.29 26.97 6.74 0.00 0.00

N 0.6-1 12-16 240 39.17 24.17 63.33 32.92 3.75 0.00 0.00

N 0.6-1 16-20 148 10.81 46.62 57.43 33.11 9.46 0.00 0.00

N 0.6-1 20-24 29 48.28 24.14 72.41 17.24 10.34 0.00 0.00

N 1-25 0-4 59 1.69 8.47 10.17 44.07 44.07 0.00 1.69

N 1-25 4-8 59 3.39 3.39 6.78 50.85 42.37 0.00 0.00

N 1-25 8-12 89 3.37 12.36 15.73 46.07 38.20 0.00 0.00

N 1-25 12-16 240 0.83 8.33 9.17 47.92 42.92 0.00 0.00

N 1-25 16-20 148 0.68 6.08 6.76 47.97 44.59 0.68 0.00

N 1-25 20-24 29 6.90 13.79 20.69 48.28 31.03 0.00 0.00

N 25-45 0-4 59 0.00 1.69 1.69 20.34 76.27 1.69 0.00

N 25-45 4-8 59 0.00 0.00 0.00 10.17 88.14 1.69 0.00

N 25-45 8-12 88 0.00 1.14 1.14 15.91 80.68 2.27 0.00

N 25-45 12-16 236 0.00 0.00 0.00 14.41 83.90 1.27 0.42

N 25-45 16-20 148 0.00 0.00 0.00 12.84 86.49 0.68 0.00

N 25-45 20-24 29 0.00 0.00 0.00 17.24 75.86 6.90 0.00
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Table C10: Noise class distributions of the complete URS data set. (East-West component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all working days with high wind conditions. 

Data set: WorkingDays_HighWind_E

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

E 0.008-0.04 0-4 38 0.00 0.00 0.00 34.21 2.63 0.00 63.16

E 0.008-0.04 4-8 37 0.00 10.81 10.81 24.32 10.81 0.00 54.05

E 0.008-0.04 8-12 53 0.00 1.89 1.89 20.75 13.21 0.00 64.15

E 0.008-0.04 12-16 151 0.00 2.65 2.65 23.18 17.88 0.00 56.29

E 0.008-0.04 16-20 93 0.00 2.15 2.15 20.43 20.43 0.00 56.99

E 0.008-0.04 20-24 18 0.00 22.22 22.22 27.78 0.00 0.00 50.00

E 0.04-0.09 0-4 44 0.00 0.00 0.00 79.55 20.45 0.00 0.00

E 0.04-0.09 4-8 43 0.00 0.00 0.00 62.79 30.23 0.00 6.98

E 0.04-0.09 8-12 65 0.00 1.54 1.54 46.15 47.69 0.00 4.62

E 0.04-0.09 12-16 175 0.00 0.00 0.00 43.43 47.43 0.00 9.14

E 0.04-0.09 16-20 108 0.00 0.00 0.00 35.19 56.48 0.00 8.33

E 0.04-0.09 20-24 21 0.00 0.00 0.00 85.71 9.52 0.00 4.76

E 0.09-0.18 0-4 57 5.26 14.04 19.30 59.65 21.05 0.00 0.00

E 0.09-0.18 4-8 57 12.28 21.05 33.33 52.63 14.04 0.00 0.00

E 0.09-0.18 8-12 85 5.88 8.24 14.12 57.65 28.24 0.00 0.00

E 0.09-0.18 12-16 229 6.99 10.48 17.47 44.98 37.12 0.00 0.44

E 0.09-0.18 16-20 143 6.29 8.39 14.69 36.36 48.25 0.00 0.70

E 0.09-0.18 20-24 28 10.71 10.71 21.43 60.71 17.86 0.00 0.00

E 0.18-0.25 0-4 57 42.11 33.33 75.44 24.56 0.00 0.00 0.00

E 0.18-0.25 4-8 57 54.39 26.32 80.70 17.54 1.75 0.00 0.00

E 0.18-0.25 8-12 85 49.41 22.35 71.76 22.35 5.88 0.00 0.00

E 0.18-0.25 12-16 229 39.74 25.76 65.50 26.64 7.86 0.00 0.00

E 0.18-0.25 16-20 143 36.36 24.48 60.84 27.97 11.19 0.00 0.00

E 0.18-0.25 20-24 28 57.14 21.43 78.57 21.43 0.00 0.00 0.00

E 0.25-0.6 0-4 58 67.24 13.79 81.03 17.24 1.72 0.00 0.00

E 0.25-0.6 4-8 59 47.46 28.81 76.27 22.03 1.69 0.00 0.00

E 0.25-0.6 8-12 88 59.09 12.50 71.59 22.73 5.68 0.00 0.00

E 0.25-0.6 12-16 236 52.54 13.14 65.68 23.73 10.59 0.00 0.00

E 0.25-0.6 16-20 147 30.61 33.33 63.95 21.77 14.29 0.00 0.00

E 0.25-0.6 20-24 29 41.38 41.38 82.76 17.24 0.00 0.00 0.00

E 0.6-1 0-4 58 29.31 37.93 67.24 24.14 8.62 0.00 0.00

E 0.6-1 4-8 59 28.81 38.98 67.80 22.03 10.17 0.00 0.00

E 0.6-1 8-12 88 55.68 19.32 75.00 18.18 6.82 0.00 0.00

E 0.6-1 12-16 236 38.98 30.08 69.07 25.85 5.08 0.00 0.00

E 0.6-1 16-20 147 17.01 42.18 59.18 33.33 7.48 0.00 0.00

E 0.6-1 20-24 29 62.07 13.79 75.86 17.24 6.90 0.00 0.00

E 1-25 0-4 58 0.00 8.62 8.62 43.10 43.10 1.72 3.45

E 1-25 4-8 59 1.69 5.08 6.78 49.15 44.07 0.00 0.00

E 1-25 8-12 88 3.41 13.64 17.05 42.05 40.91 0.00 0.00

E 1-25 12-16 236 0.85 6.36 7.20 43.64 47.88 0.42 0.85

E 1-25 16-20 147 0.68 6.12 6.80 47.62 43.54 0.68 1.36

E 1-25 20-24 29 3.45 17.24 20.69 51.72 27.59 0.00 0.00

E 25-45 0-4 58 0.00 0.00 0.00 22.41 72.41 3.45 1.72

E 25-45 4-8 58 0.00 1.72 1.72 8.62 86.21 3.45 0.00

E 25-45 8-12 87 0.00 0.00 0.00 12.64 80.46 1.15 5.75

E 25-45 12-16 232 0.00 0.00 0.00 12.50 80.60 0.43 6.47

E 25-45 16-20 147 0.00 0.00 0.00 13.61 82.31 1.36 2.72

E 25-45 20-24 29 0.00 0.00 0.00 24.14 68.97 6.90 0.00
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Table C11: Noise class distributions of the complete URS data set. (vertical component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all Sunday with low wind conditions. 

Data set: Sundays_LowWind_Z

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

Z 0.008-0.04 0-4 554 0.36 4.87 5.23 13.00 21.30 1.08 59.39

Z 0.008-0.04 4-8 639 0.16 3.44 3.60 21.75 15.02 0.31 59.31

Z 0.008-0.04 8-12 535 0.00 7.85 7.85 20.00 21.31 0.19 50.65

Z 0.008-0.04 12-16 443 0.23 9.03 9.26 21.22 17.16 0.00 52.37

Z 0.008-0.04 16-20 434 0.23 8.06 8.29 20.05 18.66 0.46 52.53

Z 0.008-0.04 20-24 617 0.00 4.38 4.38 25.61 13.61 0.81 55.59

Z 0.04-0.09 0-4 632 11.71 22.15 33.86 15.51 48.89 0.00 1.74

Z 0.04-0.09 4-8 742 3.77 16.44 20.22 26.15 48.52 0.00 5.12

Z 0.04-0.09 8-12 610 1.97 9.84 11.80 23.77 59.34 0.00 5.08

Z 0.04-0.09 12-16 514 1.56 8.17 9.73 35.80 49.22 0.00 5.25

Z 0.04-0.09 16-20 508 4.33 10.24 14.57 25.98 52.76 0.00 6.69

Z 0.04-0.09 20-24 701 6.13 18.26 24.39 25.11 46.65 0.00 3.85

Z 0.09-0.18 0-4 872 42.78 27.06 69.84 17.20 12.04 0.00 0.92

Z 0.09-0.18 4-8 984 42.78 29.37 72.15 9.76 17.58 0.00 0.51

Z 0.09-0.18 8-12 828 33.94 20.17 54.11 20.53 24.03 0.12 1.21

Z 0.09-0.18 12-16 683 39.68 18.16 57.83 18.45 23.13 0.00 0.59

Z 0.09-0.18 16-20 653 43.03 23.28 66.31 13.02 19.91 0.00 0.77

Z 0.09-0.18 20-24 958 46.97 25.78 72.76 10.44 15.76 0.00 1.04

Z 0.18-0.25 0-4 872 64.79 25.92 90.71 5.16 4.13 0.00 0.00

Z 0.18-0.25 4-8 985 62.13 23.15 85.28 7.21 7.41 0.10 0.00

Z 0.18-0.25 8-12 836 53.83 29.31 83.13 8.49 8.37 0.00 0.00

Z 0.18-0.25 12-16 684 54.24 26.02 80.26 8.77 10.96 0.00 0.00

Z 0.18-0.25 16-20 654 58.87 25.38 84.25 5.35 10.40 0.00 0.00

Z 0.18-0.25 20-24 958 62.11 26.83 88.94 6.68 4.28 0.10 0.00

Z 0.25-0.6 0-4 915 70.60 10.05 80.66 9.62 9.73 0.00 0.00

Z 0.25-0.6 4-8 1033 66.70 14.91 81.61 7.94 10.45 0.00 0.00

Z 0.25-0.6 8-12 880 64.32 11.59 75.91 10.00 14.09 0.00 0.00

Z 0.25-0.6 12-16 719 64.67 12.80 77.47 7.23 15.30 0.00 0.00

Z 0.25-0.6 16-20 667 71.66 11.39 83.06 8.25 8.55 0.00 0.15

Z 0.25-0.6 20-24 1004 70.42 13.75 84.16 9.26 6.47 0.00 0.10

Z 0.6-1 0-4 915 17.27 17.60 34.86 37.92 27.10 0.11 0.00

Z 0.6-1 4-8 1032 5.81 24.81 30.62 51.26 18.12 0.00 0.00

Z 0.6-1 8-12 880 29.20 24.09 53.30 26.48 20.23 0.00 0.00

Z 0.6-1 12-16 712 39.61 21.21 60.81 18.96 20.22 0.00 0.00

Z 0.6-1 16-20 674 41.54 19.73 61.28 22.70 16.02 0.00 0.00

Z 0.6-1 20-24 1004 11.75 50.10 61.85 28.69 9.36 0.00 0.10

Z 1-25 0-4 915 0.55 2.30 2.84 15.52 79.13 1.64 0.87

Z 1-25 4-8 1033 0.19 0.58 0.77 11.62 87.03 0.58 0.00

Z 1-25 8-12 880 0.11 0.68 0.80 22.73 75.91 0.45 0.11

Z 1-25 12-16 719 0.14 1.25 1.39 28.93 69.54 0.00 0.14

Z 1-25 16-20 712 0.28 1.12 1.40 29.07 69.52 0.00 0.00

Z 1-25 20-24 1003 0.30 0.70 1.00 23.23 75.37 0.20 0.20

Z 25-45 0-4 886 2.14 4.85 7.00 21.11 67.27 3.95 0.68

Z 25-45 4-8 1033 0.19 0.97 1.16 12.78 83.35 2.23 0.48

Z 25-45 8-12 879 0.00 0.34 0.34 8.76 89.19 0.80 0.91

Z 25-45 12-16 718 0.00 0.00 0.00 11.28 88.02 0.42 0.28

Z 25-45 16-20 713 0.14 0.42 0.56 13.60 84.29 1.40 0.14

Z 25-45 20-24 1001 0.30 1.60 1.90 14.79 81.32 2.00 0.00
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Table C12: Noise class distributions of the complete URS data set. (North-South component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all Sunday with low wind conditions. 

Data set: Sundays_LowWind_N

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

N 0.008-0.04 0-4 549 0.00 3.10 3.10 12.93 22.40 0.00 61.57

N 0.008-0.04 4-8 620 0.00 2.42 2.42 15.32 18.55 0.16 63.55

N 0.008-0.04 8-12 522 0.00 1.15 1.15 13.22 24.14 0.00 61.49

N 0.008-0.04 12-16 432 0.00 1.39 1.39 16.67 21.53 0.00 60.42

N 0.008-0.04 16-20 421 0.00 0.71 0.71 13.54 22.57 0.00 63.18

N 0.008-0.04 20-24 602 0.00 2.49 2.49 15.61 21.93 0.17 59.80

N 0.04-0.09 0-4 621 1.61 7.89 9.50 19.32 64.73 0.00 6.44

N 0.04-0.09 4-8 707 0.99 3.54 4.53 15.28 67.75 0.00 12.45

N 0.04-0.09 8-12 596 0.00 1.34 1.34 19.46 66.11 0.00 13.09

N 0.04-0.09 12-16 491 0.20 1.83 2.04 23.01 63.54 0.00 11.41

N 0.04-0.09 16-20 485 0.62 2.27 2.89 14.02 67.01 0.00 16.08

N 0.04-0.09 20-24 688 1.45 4.51 5.96 14.68 68.02 0.00 11.34

N 0.09-0.18 0-4 860 44.65 24.65 69.30 13.84 16.63 0.12 0.12

N 0.09-0.18 4-8 972 39.81 23.77 63.58 20.68 15.53 0.00 0.21

N 0.09-0.18 8-12 808 26.73 18.81 45.54 21.91 32.30 0.00 0.25

N 0.09-0.18 12-16 667 27.59 17.09 44.68 24.59 30.73 0.00 0.00

N 0.09-0.18 16-20 641 34.32 21.37 55.69 16.22 27.46 0.16 0.47

N 0.09-0.18 20-24 940 37.34 26.28 63.62 17.23 19.15 0.00 0.00

N 0.18-0.25 0-4 861 62.25 27.18 89.43 6.74 3.83 0.00 0.00

N 0.18-0.25 4-8 972 59.67 26.44 86.11 6.48 7.41 0.00 0.00

N 0.18-0.25 8-12 820 54.63 28.54 83.17 7.56 9.02 0.24 0.00

N 0.18-0.25 12-16 672 54.76 22.47 77.23 10.12 12.65 0.00 0.00

N 0.18-0.25 16-20 635 56.69 25.35 82.05 11.02 6.93 0.00 0.00

N 0.18-0.25 20-24 943 60.55 28.31 88.87 6.57 4.56 0.00 0.00

N 0.25-0.6 0-4 904 75.33 6.86 82.19 9.07 8.74 0.00 0.00

N 0.25-0.6 4-8 1020 61.86 18.73 80.59 11.27 8.14 0.00 0.00

N 0.25-0.6 8-12 864 60.53 14.93 75.46 13.54 11.00 0.00 0.00

N 0.25-0.6 12-16 708 66.24 12.43 78.67 5.79 15.54 0.00 0.00

N 0.25-0.6 16-20 648 67.90 15.12 83.02 11.27 5.71 0.00 0.00

N 0.25-0.6 20-24 989 73.81 16.68 90.50 4.75 4.75 0.00 0.00

N 0.6-1 0-4 904 15.04 22.01 37.06 40.93 22.01 0.00 0.00

N 0.6-1 4-8 1017 5.90 16.42 22.32 62.44 15.24 0.00 0.00

N 0.6-1 8-12 864 28.13 23.73 51.85 29.28 18.87 0.00 0.00

N 0.6-1 12-16 700 36.86 25.00 61.86 20.71 17.43 0.00 0.00

N 0.6-1 16-20 665 34.44 22.86 57.29 27.37 15.34 0.00 0.00

N 0.6-1 20-24 989 9.61 42.67 52.28 40.65 7.08 0.00 0.00

N 1-25 0-4 905 2.10 4.86 6.96 27.29 61.88 1.77 2.10

N 1-25 4-8 1020 0.49 1.08 1.57 30.29 65.00 1.67 1.47

N 1-25 8-12 864 0.12 1.97 2.08 38.19 58.22 0.93 0.58

N 1-25 12-16 709 0.42 3.10 3.53 40.48 54.72 0.56 0.71

N 1-25 16-20 701 1.00 2.43 3.42 41.23 54.21 0.57 0.57

N 1-25 20-24 989 0.61 1.62 2.22 38.42 57.23 1.31 0.81

N 25-45 0-4 891 2.13 5.72 7.86 18.18 71.83 2.02 0.11

N 25-45 4-8 1020 0.20 2.16 2.35 11.18 85.59 0.78 0.10

N 25-45 8-12 863 0.00 0.23 0.23 5.91 92.82 0.70 0.35

N 25-45 12-16 707 0.00 0.42 0.42 6.22 93.07 0.28 0.00

N 25-45 16-20 701 0.29 0.71 1.00 9.99 88.45 0.57 0.00

N 25-45 20-24 988 0.81 3.04 3.85 11.23 84.01 0.91 0.00
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Table C13: Noise class distributions of the complete URS data set. (East-West component) 
The table displays the NC distributions in percent for the frequency bands between 0.008-45 Hz obtained 
from all Sunday with low wind conditions. 

Data set: Sundays_LowWind_E

Comp. Freq. band /Hz EET # NC1 NC2 NC1+2 NC3 NC4 NC5 NC6

% % % % % % %

E 0.008-0.04 0-4 552 0.18 3.26 3.44 11.23 23.19 0.36 61.78

E 0.008-0.04 4-8 622 0.00 2.25 2.25 14.79 22.19 1.29 59.49

E 0.008-0.04 8-12 518 0.00 0.97 0.97 19.31 20.85 0.77 58.11

E 0.008-0.04 12-16 418 0.00 0.96 0.96 19.14 21.53 0.48 57.89

E 0.008-0.04 16-20 413 0.00 1.21 1.21 11.62 20.34 0.97 65.86

E 0.008-0.04 20-24 606 0.00 2.15 2.15 14.69 19.14 0.66 63.37

E 0.04-0.09 0-4 628 2.07 7.96 10.03 18.15 64.81 0.00 7.01

E 0.04-0.09 4-8 706 0.57 3.26 3.82 15.86 69.69 0.00 10.62

E 0.04-0.09 8-12 587 0.00 1.19 1.19 20.44 67.12 0.00 11.24

E 0.04-0.09 12-16 480 0.21 2.50 2.71 21.88 66.88 0.00 8.54

E 0.04-0.09 16-20 478 0.63 2.93 3.56 13.39 70.08 0.00 12.97

E 0.04-0.09 20-24 684 2.34 3.95 6.29 16.37 65.50 0.00 11.84

E 0.09-0.18 0-4 865 40.81 27.28 68.09 12.02 19.65 0.00 0.23

E 0.09-0.18 4-8 976 37.50 24.39 61.89 21.21 16.80 0.10 0.00

E 0.09-0.18 8-12 806 29.40 16.50 45.91 21.34 32.63 0.00 0.12

E 0.09-0.18 12-16 676 29.29 16.86 46.15 15.53 38.31 0.00 0.00

E 0.09-0.18 16-20 625 37.60 21.60 59.20 16.32 24.00 0.00 0.48

E 0.09-0.18 20-24 948 42.19 20.78 62.97 16.24 20.68 0.00 0.11

E 0.18-0.25 0-4 867 61.94 25.37 87.31 8.65 4.04 0.00 0.00

E 0.18-0.25 4-8 976 59.73 26.74 86.48 6.15 7.38 0.00 0.00

E 0.18-0.25 8-12 828 54.95 27.05 82.00 9.30 8.57 0.12 0.00

E 0.18-0.25 12-16 677 52.29 24.37 76.66 7.98 15.07 0.30 0.00

E 0.18-0.25 16-20 623 58.75 26.48 85.23 10.91 3.69 0.16 0.00

E 0.18-0.25 20-24 948 60.13 28.16 88.29 7.70 3.90 0.11 0.00

E 0.25-0.6 0-4 909 74.59 8.14 82.73 9.79 7.48 0.00 0.00

E 0.25-0.6 4-8 1024 65.63 17.38 83.01 9.08 7.91 0.00 0.00

E 0.25-0.6 8-12 871 60.85 14.58 75.43 15.50 9.07 0.00 0.00

E 0.25-0.6 12-16 713 67.32 11.92 79.24 5.33 15.43 0.00 0.00

E 0.25-0.6 16-20 653 67.84 15.77 83.61 11.49 4.90 0.00 0.00

E 0.25-0.6 20-24 994 74.45 17.81 92.25 3.42 4.33 0.00 0.00

E 0.6-1 0-4 909 15.62 20.24 35.86 42.35 21.78 0.00 0.00

E 0.6-1 4-8 1021 5.97 13.61 19.59 68.07 12.34 0.00 0.00

E 0.6-1 8-12 872 20.87 30.50 51.38 32.91 15.71 0.00 0.00

E 0.6-1 12-16 707 29.70 31.97 61.67 23.20 15.13 0.00 0.00

E 0.6-1 16-20 665 29.02 26.47 55.49 31.28 13.23 0.00 0.00

E 0.6-1 20-24 994 9.36 36.02 45.37 47.99 6.64 0.00 0.00

E 1-25 0-4 909 3.19 6.93 10.12 25.19 59.63 1.87 3.19

E 1-25 4-8 1024 0.59 2.25 2.83 28.42 64.84 1.17 2.73

E 1-25 8-12 871 0.34 3.79 4.13 36.39 57.75 0.57 1.15

E 1-25 12-16 715 0.84 4.20 5.03 38.60 54.41 0.56 1.40

E 1-25 16-20 705 1.28 3.97 5.25 41.13 51.35 0.57 1.70

E 1-25 20-24 994 0.80 2.62 3.42 37.42 54.63 1.01 3.52

E 25-45 0-4 889 3.60 2.25 5.85 19.46 67.49 4.84 2.36

E 25-45 4-8 1024 2.54 1.07 3.61 10.06 80.37 3.42 2.54

E 25-45 8-12 869 1.84 2.19 4.03 5.75 85.73 0.81 3.68

E 25-45 12-16 715 2.52 1.26 3.78 6.99 85.17 0.70 3.36

E 25-45 16-20 705 2.41 1.99 4.40 8.51 83.12 1.42 2.55

E 25-45 20-24 994 2.31 1.81 4.12 10.87 79.88 2.52 2.62
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wpcf waveform preserving normalisation of CCFs (chapter 6) 
wpts waveform preserving normalisation of time series (chapter 6) 
WSA Waveform Symmetry Approach (data selection, chapter 6) 
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Used hard- and software 

This thesis was written on a personal computer with the operating system Microsoft 
Windows Vista using the office processing software Microsoft Office 2007. Some 
schematic figures were constructed with Microsoft Power Point 2007. The format 
conversion of the figures was done with The GNU Image Manipulation Program – GIMP 
on a personal computer with the Linux operating system openSUSE 11. 

The data processing was done on personal computers with the Linux operating systems 
openSUSE 10 and openSUSE 11. The data processing was done with MATLAB for Linux 
(The Mathworks) using the new written Karlsruhe Processing (KaSP) Toolbox for 
MATLAB which is described in Appendix A. The KaSP-Toolbox for MATLAB is available 
as free software under the GNU General Public License. 

The analysis of the noise classification results with Self-Organizing Maps (SOM) was 
done with the SOM Toolbox 2.0 for MATLAB written by Esa Alhoniemi, Johan Himberg, 
Jukka Parviainen and Juha Vesanto. The SOM Toolbox 2.0 is available as free software 
under the GNU General Public License.  

Most figures were created with MATLAB. The maps of the Bucharest area were created 
with the Generic Mapping Tools - GMT by Wessel & Smith (1998). 

The FK-analyses were done with SeismicHandler by Klaus Stammler. 

The facilities of the IRIS Data Management System, and specifically the IRIS Data 
Management Center, were used for access to waveforms and metadata required in this 
study (see section 3.2). The software rdseed of the IRIS DMC was used to obtain the 
waveforms and metadata from the provided SEED volumes. The software evalresp of the 
IRIS DMC was used to cross-check the transfer functions calculated with my MATLAB-
functions in the KaSP-Toolbox as discussed in section 3.3. 

The software package xcut written and maintained by Rainer Plokarz at the Geophysical 
Institute of the Karlsruhe Institute of Technology was used to access the waveforms of the 
Karlsruhe BroadBand Array KABBA (see section 3.1). 
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