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ABSTRACT: 
 
Multi-scale representation and analysis of topology is playing a growing role in Photogrammetric Image Analysis. However, the 
standardisation of multi-scale topological data models is still at its beginning. Furthermore, the multi-representation of geo-objects 
poses new challenges, resulting in the development of Multi-Representation Databases. In this article the realisation of a general 
model based on oriented hierarchical d-Generalised Maps to represent and analyse topology in MRDB is described in detail. The 
model can be used as a data integration platform for 2D, 3D, and 4D topology. Examples of elementary and complex topological 
operations for multiple representations are presented. An application example with 2D cartographic datasets from Hannover 
University shows the feasibility of the new approach. Finally, an outlook on future research is given. 
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1. INTRODUCTION 

Multi-scale representation and analysis of topology is 
important for GIS and will also play a growing role in 
Photogrammetric Image Analysis. However, to our knowledge, 
the database representation of topology in different levels of 
detail (LOD) has not been investigated in detail.  

Multi-representation of topology poses new challenges  
resulting in the development of Multi Representation 
Databases (MRDB), that manage discretely and continuously 
changing LOD. Although generalisation operations affect the 
topology of a spatial model, research about the representation 
and management of topology in MRDB is still at its beginning. 
In (Thomsen and Breunig, 2007), we propose some elementary 
and complex topological operations for a topological database 
toolbox based on oriented Generalized Maps (G-Maps). 

In this paper, we investigate how oriented hierarchical G-Maps 
can be used to handle the topology of a digital spatial model at 
different levels of detail in a MRDB based on the object-
relational model, providing a generic, application-independent 
approach. The method is general enough to support 2- and 3-
dimensional models, as well as 2D-manifolds in 3D space. 

 

2. RELATED WORK 

Approaches for representing topology in 3D modelling have 
been examined by different authors (Mäntylä, 1988). For the 
representation of 3D-objects in GIS by 2D-manifolds, (Gröger 
and Plümer, 2005) propose “2.8-D maps”, that avoid the 
topological complexity of true 3D-Models. Cellular complexes, 
and in particular cellular partitions of d-dimensional manifolds 
(d-CPM) have been described to represent the topology of an 

extensive class of spatial objects by (Mallet, 2002). The 
topology of d-CPM can be represented by d-dimensional Cell-
Tuple Structures (Brisson, 1993), respectively d-dimensional 
Generalized Maps (d-G-Maps) (Lienhardt, 1994). (Lévy, 1999) 
has shown that 3D-G-Maps have comparable space and time 
behaviour as the well-known DCEL and radial edge structures, 
but can be used for a much wider range of applications, 
allowing for a more concise code. Lévy also introduces 
hierarchical G-Maps (HG-Maps) for the representation of 
nested structures. 3-G-Maps are also applied e.g. in the 
geoscientific 3D-Modelling software GOCAD (Mallet, 1992, 
2005). (Fradin et al., 2002) use 3-G-Maps to model and 
visualize architectural complexes in a hierarchy of multi-
partitions. Finally, an interactive graphical G-Map-based 3D-
modeller MOKA has been made available by the group of 
graphical informatics at Poitiers University (MOKA, 2006). 
(Meine & Köthe (2005)) have introduced the GeoMap, a 
related but less general concept based on half-edges, that 
integrates planar topology and geometry for raster image 
segmentation. 
 

3. MULTI-SCALE REPRESENTATION AND 
ANALYSIS OF TOPOLOGY 

Aggregation, simplification, elimination, displacement and 
typification are well-known generalisation transformations. 
Aggregation and elimination directly affect the topology of a 
map. Simplification may affect the interior structure of an 
object, whereas displacement may be employed in order to 
maintain topological consistency under a geometrical 
generalisation operation - e.g. if smoothing a river bend would 
leave a building on the wrong side. In a first step, we 
concentrate on the aggregation of contiguous cells by the 
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application of sequences of Euler transformations, being aware 
that this approach covers only a selection of generalisation 
operations. In a second step, we will try to model the 
aggregation of disjoint cells using transformations of 
classifications/colourings of cellular complexes. Whereas the 
choice of the generalisation method is taken by the 
geoscientist, supported by specialised software (cf. Haunert & 
Sester, 2005), we focus on the representation of the given 
transformations and of the resulting relationships between 
LOD in the MRDB. Relationships between cells at different 
levels can be defined by explicit links, or by indicating the 
sequence of elementary operations that transform a cellular 
complex at scale A into a cellular complex at scale B. It is the 
task of the database software, to keep track of the incurred 
changes, and if possible to support transitions with commit and 
rollback operations.  

 
3.1 Representation 

3.1.1 Hierarchies of maps: For the representation of multi-
scale topology, Lévy (1999) proposes Hierarchical G-Maps 
(HG-Maps): The Aggregation of neighbouring cells results in a 
classification of cells on the more detailed level A, each class 
being associated with one cell on the less detailed level B.  It 
can be represented by an n:1-mapping from one level A to level 
B. As cells are merged, and interior boundaries disappear, the 
number of cell-tuples is reduced. The cell-tuples on level B can 
be associated with a selection of cell-tuples on the lower level 
A, or be identified with a subset of the latter. If the geometry of 
the remaining cell boundaries is not changed after the 
aggregation step, higher level cell-tuples may delegate their 
geometrical embedding (co-ordinates, lengths, angles etc.) to 
their counterparts on the lower level (fig. 1), so that a higher-
level edge is geometrically represented by a sequence of lower-
level arcs and vertices. Otherwise, links with a new higher-
level geometrical embedding must be established.   

Figure 1.  Generalisation by aggregation in a hierarchical 2-G-
Map. Cell-tuples (darts) are symbolised by small pins. 
 
3.1.2    Progressive Variation of LOD: Due to the necessity 
of keeping all levels of detail consistent with each other, any 
changes in an MRDB are first introduced at the greatest scale, 
and then propagated upwards using appropriate generalisation 
methods (Haunert & Sester, 2005). Carrying this “dynamic” 
approach a step further, we investigate the applicability of 
progressive meshes. The progressive triangulation method 
(Hoppe, 1996) uses two localised elementary operations, 
namely the “edge collapse” and its inverse, the “vertex split”, 
to coarsen or to refine a triangle network incrementally in both 
directions, by successively applying a sequence of stored 

“delta” operations. This method is well suited for progressive 
transmission, as it can reduce the amount of data exchanged 
between a geo-database server and a local client (cf. Shumilov 
et al., 2002).  

 

Generalized maps are abstract simplicial complexes, but 
Hoppe's method cannot be adapted: Although a d-cell-tuple is 
an abstract d-simplex, its d+1 components belong each to a 
different class defined by dimension, and therefore cannot be 
merged, like in an "edge collapse" operation on a triangle 
network. An analogous argument holds for the inverse "vertex 
split" operation. Instead, we investigate the possibility to use 
combinations of the Euler elementary split and merge 
operations on cells to model the transformation of topology 
induced by generalisation. Different from Hoppe’s method, the 
progressive mesh transformation is controlled by the external 
generalisation method, and not by a given optimisation 
criterion. Note that the merge operations are applicable only in 
certain configurations and hence require supervision.  

 
3.2 Analysis  

The relational representation of d-G-Maps has been made 
persistent using an Object-Relational Database Management 
System (ORDBMS). Implementing a topological component for 
multi-representation databases (Thomsen and Breunig, 2007) 
we used 2D- and 3D-G-Maps with the ORDBMS PostgreSQL 
(PostgreSQL.org, 2006) in combination with the open source 
PostGIS (PostGIS.org, 2006).   

Figure 2.  2-G-Map with darts and involutions, and cell-tuple 
representation of  the orbits around node n1, edge e1 and face f. 

 
3.2.1 Oriented Generalized Maps:  An oriented Generali-
zed Map of dimension d (d-G-Map) (Lienhardt, 1994) 
represents a cellular complex that is used as a discrete model 
of the topology of an orientable manifold of dimension d. It 
consists of a set of darts, d+1 transformations of the set of 
darts, αi, i = 0 …, d, that are involutions verifying 
αi (αi (x)) = x (fig. 2). The involutions must further verify the 
condition that αi (αi+2+k ()) is an involution for k >= 0. Subsets 
of darts that can be reached from a starting dart x0 by any 
combination of involutions αi … αi are called orbits. We note 
them orbitd(i,…,j, x0) or orbitd

i…j(x0), where d is the dimension 
of the G-Map, the indexes i, …, j are a subset of {0,…,d}, and 
x0 is the starting dart. Certain orbits, namely those of the form 
orbitd(…~k…), that use all involutions except αk, determine 
the k-dimensional cells of the cellular complex, i.e. nodes, 
edges, faces, and solids for dimension d=3 (fig. 2). In a d-G-
Map, orbit0…d(x0) returns the connected component containing 
x0. Orbits orbiti(), and by Lienhardt’s condition, orbits of the 
form  orbiti,i+2+k() have a fixed length. Other orbits can be 
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implemented by single or nested programming loops, a small 
number of orbits however, are more complicated – they can be 
implemented recursively, returning the subset of cell-tuples as 
a collection of connected sequences possibly interrupted by 
discontinuities. For some topological operations, especially the 
solid split operation, we need continuous loops that generally 
are defined by the user, and not produced by an orbit. Different 
from linear iterators, orbits and loops are examples of 
circulators (Fabri et al., 1998) that can begin at any object in 
the circular sequence, and advance until the starting point is 
again encountered. 

 
3.2.2 Realisation by means of an ORDBMS: Whereas G-
Maps can be implemented focusing on the involution 
transitions represented e.g. as references between anonymous 
darts, we prefer the relational realisation to focus on the darts, 
which are represented by signed d-cell-tuples (c0, …, cd, +/-
, …) (fig. 2), cf. (Brisson, 1993), collected in the tables of an 
ORDBMS. The ci are identifiers of cells of dimension i, i.e. 
nodes, edges, faces, solids.  The identifiers of the neighbour 
cells c_invj, 0 ≤ j ≤ d, are also attached to the cell-tuples. The 
involutions αj are implemented as “switch” operations that 
transform the cell-tuple key (c0, …, cj, …, cd) into 
(c0, …,  c_invj, …, cd), exchanging cj and c_invj and then 
retrieve the corresponding cell-tuple record from the database.  
 
Orbits and loops.  By definition, an orbit orbiti..j..(ct0) consists 
of the subset of cell-tuples that can be reached from ct0 using 
any combination of αi,…,αj,… The components of dimension k 
where k is not contained in the set of indices i,…,j remain 
fixed, e.g. if ct0=(n,e,f,s), then orbit012(ct0) leaves solid s fixed, 
and returns all cell-tuples of the form (*,*,*,s).   
The implementation of the darts of a G-Map as cell-tuples in a 
relational DBMS is straightforward, the involutions can be 
implemented using queries or joins, supported by foreign keys 
and indexes, and iterators can be realised as database cursors, 
but a normal relational DBMS does not provide the equivalent 
of circulators, i.e. closed loops of undetermined, albeit finite, 
length. The representation of orbits therefore needs additional 
code controlling repeated database queries. As such 
implementations are not very efficient, we try to replace orbits 
by subset queries, wherever the circular arrangement is 
dispensable.  
The trivial orbits of the form orbiti() can be treated like the 
corresponding involutions, and by Lienhardt’s condition, orbits 
of the form orbiti,i+2+k() have a constant length of four and can 
be modelled by a limited number of queries or join operations. 
Whereas RDBMS do not support cyclic cursors that would 
correspond to circulators, result sets of queries can be ordered, 
e.g. the query:  
 
������������������������
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returns the retrieved cell-tuples ordered according to faces, in 
ordered pairs corresponding to the edges of the face boundary, 
although not in a cyclic arrangement. In some application 
cases, this may be sufficient. Whenever the orbit arrangement 
must be reproduced exactly, however, a true orbit can be 
implemented by stepwise executing the involution operations: 
 
 

Start with  
    node n0, edge e0, face f0, sign sg0, n_inv0, e_inv0, f_inv0; 
i=0; 
repeat {  
   ++i; 
   update j; /* j: selector of the next involution αj */ 
   case j { 
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  } until ni= n0 and ei=e0 and fi= f0; 
 
We use a selector variable to determine the next transition 
step. This procedure can be modified to implement any closed 
loops in the G-Map, by attaching to the cell-tuples a selector 
variable the current value of which controls the choice of the 
next αi transition.  

 
 Figure 3. Merging two edges e0, e1 that separate faces f0, f1, 
by deletion of a node n. 
 
3.2.3 Realisation of simple generalisation operations: At 
the present stage, we concentrate on basic split and merge 
operations, which serve to build more complex aggregation 
operations in 2D and 3D.    
 
Merging two edges. The merging of two edges, i.e. 1-cells, by 
removal of an intermediate node is straightforward: consider a 
sequence n1 e1 n e2 n2 consisting of nodes ni and edges ej. We 
wish to replace e1 n e2 by a new edge e, hence we delete all 
cell-tuples (n,…) having n as node component, and in all cell-
tuples containing e1 or e2 as edge component, we replace e1 and 
e2 by e. Then, we update all cell-tuples related to (n1,e1,...) or 
(n2,e2,...) by α1 involutions. If node n and edges e1, e2 are not 
used elsewhere, we delete them as well (fig. 3).  A necessary 
condition for the edge merge operation to be applicable is that 
there are only two edges incident with node n. This can be 
checked counting the length of an orbit12((n,e1,f1)), or by 
counting the number of darts returned by a corresponding SQL 
query. In the following, we tacitly assume that whenever a 
sequence of edges without branches that separates two faces is 
to be submitted to a merge operation, it is first transformed 
into a single edge by a succession of edge merges. 
 
Merging two faces. Let us consider the following situation: 
Two faces f1 and f2 are separated by one edge e between nodes 
n1 and n2. By removing e, f1 and f2 are merged into one face f 
(fig. 4). Again, we first remove all cell-tuples containing edge 
e. Then in all cell-tuples containing f1 or f2, we replace these by 
f. Next, we replace f1, f2 by f in all cell-tuples relating f1, f2 by 
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α2 involutions, and “repair” the involutions at nodes n1 and n2 
replacing sequences of the form   
(ni,ex,f) 

α
1 (ni,e,f) α2 (ni,e,f) α1 (ni,ey,f)   

by  (ni,ex,f) 
α

1 (ni,ey,f) (fig. 4). 
 
The face merge operation can be applied if none of the faces 
separated by e belongs to the outside (“universe”) of the G-
Map. Otherwise, it has to be verified that the operation doesn’t 
produce a “bridge” configuration – a single edge incident on 
both sides to the outside, linking two connected parts of the G-
Map. Though bridge configurations could be modelled in 2D 
using the orientation of the cell-tuples, we exclude them 
because they do not fit well with our definition of an involution 
as exchange of two distinct k-cells. 

Figure 4. Merging two faces f1, f2 by removing edge e. 
 
Splitting a solid. The inverse operations are decomposed 
analogously, exchanging the roles of insert and delete 
operations. Let us discuss the splitting of a solid s by the 
insertion of a separating face f, into two solids s1, s2 (fig. 5).  
Besides set operations, splitting a 3d-cell requires the use of an 
orbit012(). We start with the definition of a closed connected 
sequence of nodes and edges that define the contact – the seam 
– between the circumference of the face and the meshing of the 
inner surface of the solid. This can be done using a sequence of 
cell-tuples connected by α0- α1-, and α2-involutions forming a 
closed loop. This seam location has to be defined by the user or 
by a client program, and the number of its nodes and edges 
must coincide with that of the boundary of f.  The operation 
then consists of the following steps: 
First, insert face f, and solids s1 and s2. Next, for each pair of 
cell-tuples situated on either side of the seam location, replace  
(ni,ej,fk,s,+) α2 (ni,ej,f,s,-)  
by a sequence   
(ni,ej,fk,s1,+) α2 (ni,ej,f,s1,-) α3 (ni,ej,f,s2,+) α2 (ni,ej,fl,s2,-). 
Finally, starting from a cell-tuple ct0(ni,ej,f,s1,+), use an 
orbit012(ct0) to replace s by s1 on every cell-tuple encountered, 
and all cell-tuples related by α3-involutions. By the use of an 
orbit012(), we assure that all cell-tuples ct(.,.,.,s) selected for 
update are situated on the boundary of solid s and on one side 
of face f, independent of the value of the solid component.  
Next we repeat the same procedure starting with (ni,ej,f,s2,-), 
replacing s by s2 on the other side of face f.  
Obviously, such sequences can be implemented using the 
insert, delete and update operations of a relational database 
within a transaction.  For the solid merge to be applicable, we 
have to check that there is no other contact between s1 and s2, 
and that none of the solids s1 and s2 is part of the outside of the 

G-Map. Otherwise, we have to check that no 3D-bridge 
configurations result, i.e. a single face incident on both sides 
with the same solid, or with the outside. The latter 
configurations can be avoided by first ensuring that none of the 
other neighbouring cells are part of the outside. 

 Figure 5. splitting a 3D solid s by the insertion of a 2D face f. 
The location of the seam is defined by the loop c. 
 
A non-Euler operation. Geo-data from external sources 
cannot be expected to carry an explicit representation for their 
topology ready for representation as a G-Map. Rather, one of 
the first steps of the import of geo-data consists in extracting 
topological relationships that are implicit within the data.  As 
an example, consider a land use map encoded as a shapefile: 
each parcel is defined by one or several polygons, that are not 
linked to each other, so that topologically each parcel is an 
island disconnected from the rest. In this particular case the 
vertex co-ordinates, however, of neighbouring polygons match 
exactly, so that it is possible to reconstruct the neighbourhood 
relationships between parcel boundaries by matching vertex 
co-ordinates. In the general case, we have to modify the 
geometrical matching criterion such as to accommodate small 
numerical fluctuations, e.g. resulting from digitisation.  
We introduce the newly gained information into the G-Map by 
sewing corresponding cell-tuples, i.e. by establishing the αi 

involution links. This operation starts with the merging of a 
pair of nodes from two neighbouring polygons. It is not an 
Euler operation, as the number of nodes is reduced by one, 
whereas edges and faces remain unchanged. The resulting 
configuration of two polygons having one point in common is 
theoretically admissible, but it poses practical problems, 
therefore we require it to be immediately followed by the 
merging of a second pair of nodes, and of the two edges joining 
the nodes to be merged. This second sewing operation, and any 
others following without interruption on the same boundaries, 
do not affect the Euler-Poincaré characteristic.  
 
Integrity constraints. Whereas basic split operations do not 
affect the consistency of the G-Map, merging of cells may lead 
to singular and inconsistent configurations. As an example, 
consider a map of land use, comprising a number of parcels of 
identical land use A that surround one or more parcels of land 
use B (fig. 6). A complex merge operation that aggregates all 
cells of type A eventually results in a ring, which is multiply 
connected and hence is not consistent with the definition of a 
cell in a cellular complex. Another consequence is that the 
cells of type B could never be reached by an orbit starting from 
the outer boundary of a type A cell. We must therefore detect 
these configurations and stop the merging process such as to 
conserve two cells of type A separated by two bridging edges 
(fig. 6). The occurrence of a bridge configuration during a face 
merge operation is not detected by a change in the Euler 
characteristic of the G-Map subset defined by the class A. 
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Figure 6. (a) A face b of class B is completely surrounded  by 
faces ai of a different class A. (b) Stepwise merging all cells of 
class A results in a bridge configuration (c) and finally in a 
ring-shaped cell (d). 
 
 It can be detected before the merge operation by verifying that 
the boundary between the cells to be merged is simply 
connected, or after the operation by searching for α2-transitions 
that link two cell-tuples having the same face: 
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Any result different from 0 indicates an error. If the bridge 
configuration is detected after a merge operation, it can be 
corrected either using DBMS transition rollback, or by 
performing the inverse edge split operation. 
The transition to a ring configuration (fig. 6d) can be detected 
by a change of the Euler characteristic N-E+F, where N, E, F 
are the numbers of nodes, edges and faces respectively. In fact, 
deleting the last bridging edge doesn’t change N or F, but 
reduces E by one. Though irregular configurations can be 
avoided during a merge after classification, it is an 
inconvenience that in some cases contiguous cells of the same 
class nevertheless must be kept separate. To handle the 
connected components of a partition, (Fradin et al. 2002) use 
boolean flags to distinguish those αi transitions that join cells 
of the same class, from αi transitions that link different classes. 
Moreover, they implement multiple partitions using an array of 
flag bits associated with the αi transitions, supporting several 
different classifications on the cells of the same basic G-Map.  
Since their G-Map implementation is based on αi transitions of  
darts, rather than on explicitly modelled cell-tuples, we cannot 
use this approach without modification.  
 
It is possible, however, to adapt this feature to our cell-tuple-
based representation by associating the flag array with the cell-
tuple variables node_inv, edge_inv, etc. that define the αi 

transitions, or simply use queries like the following one: 
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Then, iterators can be derived from the αi orbits that yield all 
cell-tuples associated with a given class A, its associated flag 
values indicating a position at a class boundary or in the 
interior. Using a nested query or a join, the corresponding 
relational query can directly return all cell-tuples belonging to 
a given class A, together with the associated flag for further 
processing (e.g. for skipping interior cell-tuples).  
 
3.2.4 Realisation of complex generalisation operations: A 
Multi-Resolution Database (MRDB) of land use (Haunert & 
Sester, 2005) consists of a stack of maps at different scale and 
LOD, and a hierarchy of partitions of the map of highest LOD. 
In this example, the maps are encoded as shapefiles, and the 
aggregation hierarchy is represented by n : 1-relations between 
successive LODs that are stored in a table.   
To establish the topological properties of the MRDB, at each 
LOD first the isolated polygons are sewed to form a partition of 
part of the map plane. Then, the classification induced by the 
lower LOD B and the aggregation table is used to “paint” the 
faces of the map at higher LOD A. The resulting partition of A 
can be used to introduce flags distinguishing inter-class αi 
transitions from intra-class transitions.   
In a next step, in order to reduce the amount of data and to 
establish a more detailed relationship between successive 
LODs, neighbouring faces of A that belong to the same class 
are merged wherever this is possible without violating the 
integrity of the G-Map. The result of this operation is an 
aggregated G-Map A’ of A that, with a number of exceptions, 
corresponds to the G-Map B. At this stage, the user may 
intervene and modify the aggregation table in order to reduce 
the number of problematic configurations.  
Let us now extend the hierarchical relationship between faces 
of A and B, and to establish relationships between nodes, edges 
and faces of A’ and B respectively. As generalisation may have 
involved displacements, a simple comparison of co-ordinates is 
not a sufficient matching criterion. Instead we use the G-Map 
to find corresponding nodes in A’ and B by comparing the 
configuration of their neighbourhoods. E.g. if a connected set 
of class C in the G-Map of A’ corresponds to a face f in B, we 
can search for nodes on the boundaries of C and f that have 
similar neighbours. As A’ has been developed from A by 
aggregation of cells, the nodes, and cell-tuples of A’ correspond 
to a subset of those of A. Thus a finer correspondence between 
the topologies of A and B is established, than the initial 
aggregation hierarchy.  
 

4. AN APPLICATION EXAMPLE 

The Hannover Institute of Cartography (IKG) is investigating 
methods that generalise land use maps by an automatic 
aggregation of parcels using thematic and/or geometric criteria 
(Haunert & Sester, 2005). The resulting hierarchies of maps at 
different LOD are stored in a MRDB (Anders & Bobrich, 
2004). The n:1 relationships between polygonal faces between 
different scales are represented in tabular form (fig. 7). 

From a set of separate maps at different scales imported into 
PostGIS/PostgreSQL, we derive corresponding G-Maps. 
Topological consistency is checked and the Euler characteristic 
and some basic statistics are established. The n:1 relationship 
between maps at different LOD induces a classification of the 
cells of greater scale. Using the elementary merge operations 
described above, groups of cells of the same class are 
aggregated either until a 1:1 correspondence is established, or 
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until inconsistent configurations are detected. Thereafter, 
unnecessary nodes on the boundaries of the aggregated cells 
are eliminated while edges are merged. If no premature stop 
has been encountered, the 1:1 relationship between faces and 
aggregated cells is used to determine the relationships between 
edges, nodes, and in consequence cell-tuples. The resulting 
hierarchical G-Map represents the interrelations between the 
topologies at different LOD. 

 
Figure 7. Application example by courtesy of J. Haunert, IKG 
Hannover University: a section of ca. 2 % of a digital map on 
land-use at three different scales.  
 
 

5. CONCLUSION AND OUTLOOK 

In this article the realisation of a general model based on 
oriented hierarchical d-Generalized Maps to represent and 
analyse topology in MRDB has been described in detail. The 
model can be used as a data integration platform for 2D, 3D, 
and 4D topology. Typical examples for elementary and 
complex topological operations for multiple representations 
have been presented and illustrated. An application example 
with 2D cartographic datasets from Hannover University 
showed the feasibility of the new approach. It can also be used 
to combine 2D maps and 3D models, the last-mentioned being 
the specialisation of the 2D map. The advantage of this 
approach is to have a single representation for describing 2D 
and 3D topology. In our future work we intend to focus on this 
aspect, e.g. in the context of 3D urban planning. 
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