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Nomenclature 
 
c diffusivity [m2/s] 
e void ratio 
e0 initial void ratio 
g gravitational acceleration [m2/s] 
h head [m] 
k permeability [m2] 
k k-value, ratio of mean horizontal stress to vertical stress 
kf hydraulic conductivity [m/s] 
mf fluid mass content per unit volume [kg/m3] 
p mean stress [Pa] 
p0 initial mean stress [Pa] 

el
tp  elastic tensile limit [Pa] 

q fluid volume per unit area and time [m/s] 
r distance [m] 
t time [s] 
ua average pressure stress in other fluid [Pa] 
uw average pressure stress in wetting liquid [Pa] 
xi rectangular coordinates 
 
B Skempton’s coefficient 
C cohesion [Pa] 
E Young’s modulus [Pa] 
G shear modulus [Pa] 
H reciprocal of poroelastic expansion coefficient [Pa] 
I unit matrix 
Jel elastic volume change 
K permeability [m3s/kg] 
Kd drained bulk modulus [Pa] 
Kf fluid bulk modulus [Pa] 
Kg grain bulk modulus [Pa] 
Ku undrained bulk modulus [Pa] 
P pore pressure [Pa] 
Q external source, fluid volume per time [1/s] 
R reciprocal of specific storage coefficient at constant stress [Pa] 
Vfl injection rate, fluid volume per time [m3/s] 
 
α Biot-Willis coefficient 
δ angle of internal friction 
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δij Kronecker delta 
∆ Change in a variable, used as prefix 
ε strain 

el
tε  logarithmic measure of elastic volume change 

ζ increment of fluid content 
η viscosity [Pa·s] 
ϑ angle around wellbore wall with respect to σH; orientation of a potential fracture 

plane with respect to the minimum principal stress direction σ3

κ logarithmic bulk modulus 
λ first Lamé parameter [Pa] 
λu undrained first Lamé parameter [Pa] 
µ second Lamé parameter [Pa] 
µ* coefficient of internal friction 
ν Poisson’s ratio 
ρf fluid mass density [kg/m3] 

0fρ  fluid mass density, reference state [kg/m3] 
ρS solid mass density [kg/m3] 
σ1 maximum principal stress [Pa] 
σ2 intermediate principal stress [Pa] 
σ3 minimum principal stress [Pa] 
σh minimum horizontal stress [Pa] 
σH maximum horizontal stress [Pa] 
σV vertical stress [Pa] 
σh,eff effective minimum horizontal stress [Pa] 
σH,eff effective maximum horizontal stress [Pa] 
σV,eff effective vertical stress [Pa] 
σn normal stress [Pa] 
τ shear stress [Pa] 
τcrit critical shear stress [Pa] 
τmax maximum shear stress [Pa] 
ϕ porosity 
Φ fluid mass per time [kg/s] 
χ saturation 
Ψ poroelastic stress coefficient 
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Abstract 
Optimized reservoir management is a challenge for today’s and future energy supply.   
Key parameters for reservoir characterization are the pore pressure and stress states and 
their spatial and temporal changes. However, the changes observed in depleting 
reservoirs cannot be explained by standard models that are based on a decoupling of 
stress and pore pressure changes such as Terzaghi´s effective stress principle. In the 
standard models the minimum horizontal stress can be measured by current borehole 
logging technology, the maximum horizontal stress cannot be measured and the vertical 
stress is assumed to be given by the weight of the overburden and not to change. This is 
in contradiction to the modern interpretation of 4D time lapse seismics, which indicates 
that during reservoir depletion the vertical stress changes. These changes however, are 
not included in quantitative description of the reservoir stress state  so far. 

Key objective of this thesis is to investigate a process called pore pressure stress 
coupling which is expressed by the ratio of stress change and pore pressure change. This 
is important for wellbore stability and production from the reservoir. In order to 
quantify the 4D changes I use analytical and numerical solutions for the coupled 
poroelastic theory. The analytical approach is used for the principal understanding of 
the coupling between pore pressure and individual components of the stress tensor. The 
numerical approach has to be used to study the pore pressure stress coupling in more 
realistic reservoir setting, as the ultimate goal of this study is to provide means to 
predict the geomechanics of a depleting reservoir throughout its lifetime. 

Here I combined for the first time the 3D analytical solution of the fully coupled 
poroelastic equations for pore pressure and stress changes in terms of pore pressure 
stress coupling ratios. The results show that pore pressure stress coupling affects the 
minimum horizontal stress, the maximum horizontal stress and vertical stress 
differently. The key consequence of this system behaviour is that the shear stresses in 
the reservoir change in space and time. This is impacting wellbore stability, the 
reactivation of reservoir bounding faults, fluid flow within the reservoir and can even 
cause failure of the reservoir cap rock. The changes of the shear stress can range – 
depending on elastic reservoir parameters – between 33% to 66% of the pore pressure 
change and are thus not negligible. 

Furthermore, 3D analytical investigation of the pore pressure stress coupling shows that 
along the maximum principal orientation the shear stress has the maximum increase 
during fluid injection and maximum decrease during fluid depletion. Vice versa, along 
the minimum principal stress orientation, the behaviour is reverse.  

To investigate the effect of pore pressure stress coupling in inhomogeneous settings I 
employ for the numerical solution the Finite Element method. To verify the used 
commercial code Abaqus against the analytical solution I first studied a 3D numerical 
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homogeneous model and showed the agreement of analytical and numerical results as 
well as the limitations in terms of boundary effects versus model time. Second I 
investigated the effect in an inhomogeneous model of a simple reservoir representation. 
The results show that the permeability contrast between the reservoir and the 
surroundings is the key parameter for the pore pressure stress coupling. 

To test the new approach in a realistic reservoir setting I applied it to a real structure of 
an oil reservoir. The model consists of eleven layers that have an anticline structure with 
increasing flexure from top to bottom. One of the layers is the productive zone of the 
reservoir. The permeability of this layer is by a factor of 1000 higher than the 
permeability of the surroundings. The reservoir is depleted at nine points within the 
productive layer for 15 years. Due to the permeability contrast pore pressure changes 
occur basically inside the productive layer. Maximal negative maximum shear stress 
changes occur above and below the production point, maximal positive changes 
horizontally. 

In previous approaches the shear stress changes are either absent or would be of 
different magnitude because they do not consider the differences in pore pressure stress 
coupling on the individual stress components as in this thesis. These differences can be 
of key importance in reservoir management such as the drilling of new wells or 
reservoir stimulation procedures. 
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1 Introduction 
1.1 Poroelastic coupling between pore pressure and stress 
Production and injection of fluids and gases into reservoirs, e.g. hydrocarbon 
production, stimulation of hydrocarbon and geothermal reservoirs, or CO2 
sequestration, causes spatial and temporal pore pressure changes throughout the 
reservoir and its surroundings. In the case of hydrocarbon production, pore pressure 
decreases with time, in case of reservoir stimulation and CO2 sequestration, pore 
pressure increases with time. The highest pore pressure changes occur near the 
production or injection wells, and decline with distance to the wells. With duration of 
production and injection, the pore fluid diffuses with time and thus, the pore pressure 
change migrates. 

1.1.1 Effective stress 

Pore pressure counteracts the total stress which is acting on the rock frame. Because 
fluid is not able to transfer any shear stresses, pore pressure influences the normal 
stresses, but not the shear stresses. The pore pressure is carrying the normal stresses 
with the amount of the pore pressure, i.e. the pore pressure reduces the total normal 
stresses by the amount of pore pressure. This concept of effective stresses was first 
introduced by Terzaghi (1943), who defined the effective normal stresses as difference 
between total normal stresses and pore pressure. Now, a pore pressure change and its 
influence on the state of stress can be considered. If the pore pressure decreases, e.g. for 
hydrocarbon production, the effective normal stresses increase by the amount of pore 
pressure change, for pore pressure increase, e.g. geothermal stimulation, vice versa. 

Because the pore pressure acts equally on all three normal stresses, and not at all on the 
shear stresses, the difference of maximum and minimum principal stress, known as 
differential stress, is constant; only the mean effective stress, known as sum of 
maximum and minimum principal stress divided by two, changes by the amount of pore 
pressure. This behaviour is illustrated by means of a Mohr diagram (Figure 1-1). In this 
plot of shear stress against normal stress, a Mohr circle describes one state of stress for 
all possible combinations of shear stress and normal stress arbitrary planes 
perpendicular to the σ1-σ3-plane. For fluid injection, and thus pore pressure increase, 
the Mohr circle shifts to the left in the Mohr diagram, for production (pore pressure 
decrease) to the right. As the shear stress is not affected by the pore pressure, the 
circle’s diameter or the differential stress is constant. 

With the concept of the effective stresses it is possible to explain rock failure during 
fluid injection, what is observed with stimulation in geothermal wells (Cuenot et al., 
2006) or CO2 sequestration and successfully interpreted to be related to pore pressure 
diffusion (Shapiro et al., 1998; 2003) or stress transfer (Rozhko 2010; Schoenball et al., 
2010). However, production induced seismicity as observed world-wide in oil and gas 
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fields (Grasso 1992; Davis et al., 1995; Suckale, 2010), can not be explained by the 
concept of effective stresses. 

 

 
Figure 1-1. Mohr diagram, illustrating the effect of pore pressure change on the effective state of 
stress. σmax and σmin are equally influenced by the pore pressure, therefore the diameter of the 
Mohr circle is does not change. The dashed Mohr circle describes an initial state of stress, the red 
Mohr circle the effective state of stress after fluid injection, the blue Mohr circle the effective state 
of stress after depletion. During injection of fluid the Mohr circle shifts towards the failure 
envelope, thus failure becomes more likely. During fluid depletion, failure becomes more unlikely. 

 

1.1.2 Pore pressure stress coupling 

Addis (1997), Hillis (2000) or Goulty (2003) developed the concept of effective stresses 
of Terzaghi (1943) further, and state that pore pressure and total stress are coupled. 
More precisely, they consider the coupling between pore pressure P and minimum 
horizontal stress σh. Addis (1997) analyses the coupling between P and σh during 
depletion of reservoirs in different tectonic stress regimes, and calls the coupling stress-
depletion response of reservoirs. He derives coupling coefficients ∆σh/∆P depending on 
the tectonic regime. Based on Engelder and Fischer (1994), who derived a coupling 
coefficient between P and σh, Hillis (2000) compares ∆σh/∆P, what he calls pore 
pressure stress coupling, for measurements done in reservoirs world-wide. Besides 
normal faulting and normal compaction, Goulty (2003) considers poroelasticity as one 
possible coupling effect between P and σh. He calls the interaction of P and σh reservoir 
stress path. To consider the coupling between P and σh is most common for comparing 
it to data measured in the field. In hydrocarbon industry mainly σh is considered, 
because it can be determined by methods like hydraulic fracturing or leak off tests 
(Haimson, 1975). Using the approach of Addis (1997), Hillis (2000) or Goulty (2003), it 
is possible to explain rock failure due to fluid extraction. Due to the coupling between P 
and σh, the effective minimum horizontal stress increases less than the effective vertical 
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stress. This leads to an increase in differential stress and an enlargement of the Mohr 
circle. 

Addis (1997), Hillis (2000) and Goulty (2003) have in common that they consider only 
pore pressure induced variations in minimum horizontal stress. They assume that the 
vertical stress given by the weight of the overburden is not affected by fluid injection or 
depletion. They also do not consider any changes in the strength of the coupling 
depending on the location in the reservoir. Part of this work is to investigate the 
coupling between pore pressure and all stress components depending on distance to an 
injection or depletion point, and along different directions with respect to the point 
source. 

In this thesis, I will use the term of Hillis (2000), and call the poroelastic coupling 
between pore pressure and stress. Different from Hillis (2000), I will use it not to only 
describe the coupling between P and σh, but for the coupling between P and stress in 
general. 

1.1.3 Coupling between pore pressure and all stress components 

More recent publications show that the influence of pore pressure on total stress is not 
limited to σh. Vertical stress changes observed by time-lapse investigations (Sayers, 
2004; 2006) in combination with geomechanical modelling (Herwanger and Horne, 
2005; Settari and Sen, 2007; Schutjens et al., 2010) indicate that not only σh, but the 
entire stress tensor is affected by pore pressure changes. This means that the situation of 
pore pressure stress coupling becomes more complex. When all stress components are 
coupled to pore pressure changes, the influence of pore pressure on the effective 
stresses depends on the strength of the coupling which can be anisotropic. The change 
in maximum shear stress, ∆τmax = 0.5 ⋅ (σmax - σmin), between an initial state of stress and 
a stress state resulted after injection or production is one possibility to evaluate the 
strength of the effect of anisotropic coupling. Without any anisotropic coupling, ∆τmax is 
zero. 

In general, changes in the effective stress affect fluid low in reservoirs and can lead to a 
number of problematic effects like subsidence, wellbore stability problems, reactivation 
of reservoir bounding sealing faults and microseismicity (Ruistuen et al., 1999; Hettema 
et al., 2002; Schutjens et al., 2004). Therefore, it is important to estimate the influence 
of poroelastic coupling between pore pressure and total stress components, and its 
consequences. 

1.1.4 Summary, relevance for the thesis 

Taking coupling between pore pressure and total stress into account, the influence of 
fluid injection or reservoir depletion, i.e. pore pressure variation, on the state of stress, 
and thus on rock stability, has been investigated by various authors. Some of the authors 
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also consider different tectonic regimes and the influence of it on pore pressure stress 
coupling. Chen and Nur (1992) calculate the effect of pore pressure change on the 
effective shear stress. They find that in a normal faulting regime the increase of pore 
pressure leads to stabilization of the rock, and reduction in pore pressure to 
destabilization, vice versa for a thrust faulting regime. Addis (1997) derives coupling 
coefficients for different tectonic regimes, and compares his results with measured field 
data. Hillis (2000; 2001; 2003) has shown that pore pressure increase leads to rock 
stabilization in a normal faulting, taking coupling between P and σh, and no coupling 
between P and σV into account. Goutly (2003) considers poroelasticity as one of three 
mechanisms that show a coupling between pore pressure and minimum horizontal 
stress. Soltanzadeh et al. (2009) have published modelling results that show the effect of 
pore pressure increase or decrease on the state of stress and the rock stability, for 
different locations. Depending on the location pore pressure increase as well as 
reduction can lead to both, stabilization and destabilization of the rock. 

The influence of pore pressure variation on the state of stress depending on both, the 
tectonic regime and the location with respect to an injection source are not investigated 
by any of these authors. Therefore, in this work pore pressure stress coupling is 
considered in dependence on the location with respect to an injection or depletion point. 
This allows to investigate the anisotropy of the coupling for all stress components. The 
change in maximum shear stress is used as parameter to determine the difference of the 
pore pressure stress coupling depending on stress component and direction with respect 
to an injection/depletion source. Furthermore, so far the pore pressure stress coupling 
was considered as temporal constant. Changes of pore pressure stress coupling with 
time was not investigated. Therefore, a new aspect is the inclusion of the temporal 
development of fluid flow induced stress changes with duration of injection or 
depletion, which are realised in this work. In the end, this leads to a 4D model, fluid 
flow induced pore pressure and stress changes can be investigated in space and time. 
 

1.2 Goals of the thesis 
The poroelastic coupling between pore pressure and stress during fluid injection and 
extraction from reservoirs, and its consequences on the spatial and temporal evolution 
of the state of stress lead to a couple of questions which are addressed to this work. 

a) How strong is the coupling between pore pressure and stress components, and does 
this coupling develop with duration of injection/production and distance from the 
injection/production source? 

b) Is there a difference in the coupling between pore pressure and individual stress 
tensor components? If yes, how is the temporal and spatial evolution of the coupling 
between pore pressure and different stress components? 
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c) How does the tectonic stress regime influence the coupling between pore pressure 
and stress? 

Concluding, this work should lead to a better understanding of the poroelastic coupling 
between pore pressure and all stress components as well as its consequences. Local 
changes in maximum shear stress, the influence of the tectonic stress regime and the 
reorientation of the stress directions have influence on the rock stability, and therefore 
can cause problems such as wellbore instabilities, opening and closures of fractures and 
thus also have impact on the fluid flow in reservoirs. 
 

1.3 Methods 
To answer the questions above, two different approaches are used. First an analytical 
modelling to better understand the spatio-temporal evolution of pore pressure and stress 
changes in poroelastic media caused by fluid injection/depletion. The analytical 
equations are also used to investigate qualitatively the spatio-temporal evolution of the 
anisotropic pore pressure stress coupling. Furthermore, with the finite element 
modelling a numerical method is used to calculate the influence of pore pressure 
changes on the state of stress by means of different numerical models. In general, 
reservoirs are complex underground storage volumes, what it makes necessary to use 
numerical methods to calculate spatio-temporal pore pressure and stress distributions. 

1.3.1 Analytical Modelling 

For the analytical modelling, two equations of Rudnicki (1986) are used, which describe 
the spatial and temporal evolution of pore pressure and stress due to fluid 
injection/depletion into a poroelastic full space. Using these equations, a pore pressure 
stress coupling ratio is derived for the entire stress tensor. For different stress 
components the coupling is calculated and compared to measured field data. The 
analytical modelling is used also to analyse the anisotropic coupling varying with time 
for different tectonic stress regimes, what leads to answer the parts of the questions a) to 
c). 

1.3.2 Numerical Modelling 

If a mathematical problem is too complex to solve it analytically, numerical methods 
such as the finite element method are used. With the finite element method, the model 
continuum is subdivided into small parts, the so-called finite elements. Each of the 
elements consists of nodes at the element corners and integration points inside the 
elements. The finite element solver is solving the partial differential equations for each 
element. The solution is an iterative process, and the solver finishes the calculation 
when the solution is within a certain limit. Accuracy of the solution depends on the 
resolution of the finite element model, i.e. the elements’ size. The smaller the elements, 
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the better the solution. Counteracting is the calculation time which increases with higher 
resolution. After all, one has to find a compromise of accuracy and computation time. 
To solve the partial differential equations I have used the commercial software Abaqus. 
The big advantage of Abaqus is that it provides a fully coupled fluid flow stress analysis 
solver. 

First I have built two models with a more simple geometry. A 2D axis-symmetric 
model, and a 3D block model. Both are described by poroelastic material properties, 
and continuous fluid injection at one point was used to generate spatio-temporal pore 
pressure and stress changes. On the one hand, I have used those models to compare the 
modelling results with the analytical solutions given by Rudnicki (1986). On the other 
hand to analyse the anisotropic coupling in space and time, and also the influence of 
different stress regimes on the coupling. 

Then, I have set up a 3D model of a real oil reservoir to investigate the poroelastic 
coupling effects for a more realistic case. This modelling consists of two main parts. At 
first the geomechanical model was calibrated against stress orientations measured from 
borehole breakouts to find an initial state of stress. This was done with elastic material 
parameters describing the model volume. After, poroelastic material properties were 
used to compute pore pressure and stress changes due to production at several points. 
Beside pore pressure distribution and evolution, also the anisotropic coupling in terms 
of change in maximum shear stress was calculated. 
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2 Theory 
Stress plays a major role in this work. Therefore, this chapter gives an brief overview 
about stress and quantities deduced from stress components. Some of the quantities, 
such as the maximum shear stress or the orientation of the maximum horizontal stress 
are later used to quantify the effect of pore pressure changes on the state of stress. The 
overview given here is based on relevant textbooks like Engelder (1993), Parry (1995), 
Eisbacher (1996), Turcotte and Schubert (2002) and Jaeger et al. (2007). 
 

2.1 Stress, stress tensor 
A force acting on a solid part of the earth, in general generates no acceleration of this 
part, but causes a counteraction of mechanical resistances. Theses resistances, resulting 
from the granular structure of the solid, inhibit an acceleration and are called stress. In 
general, two kind of forces can act on a body, body forces and surface forces. Body 
forces act on the entire volume of a body and depend on the body mass. In geophysics, 
the most important body force is the weight, generated by the acceleration of gravity 
acting on the mass of the earth. The stress vector T

r
, representing a surface force 0F

r
 that 

is acting on a surface A in any arbitrary direction to the surface, is defined as 

A
FT

A ∆
∆

=
→∆

0

0
lim

r
r

      (2.1) 

0F
r

 can be divided up into a component nF
r

 normal to the surface and a component sF
r

 
parallel to the surface (Figure 2-1). nF

r
 and sF

r
 acting on a surface A, generate two stress 

components, normal stress σn and shear stress τ, which are defined as 

A
Fn

A
n ∆

∆
=

→∆

r

lim
0

σ , 
A
Fs

A ∆
∆

=
→∆

r

lim
0

τ .          (2.2) 

All normal stresses and shear stresses that act on an infinitesimal volume element 
( ) describe the state of stress at this infinitesimal volume element. The state of 
stress can be mathematically expressed as stress tensor σ

0→∆A
ij for a three-dimensional 

coordinate system with the axes x, y, z: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

zzzyzx

yzyyyx

xzxyxx

ij

σσσ
σσσ
σσσ

σ             (2.3) 

The stress is a normal stress for i = j, and a shear stress for i ≠ j. The first index i stands 
for the surface normal parallel to one of the coordinate axis, thus defines the surface a 
stress component is acting on. The second index j stands for the direction a stress 
component is acting. 
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As the volume element is in equilibrium and experiences no rotation, one concludes that 
counteracting shear stresses as the pairs (σxy, σyx), (σxz, σzx), (σyz, σzy) has to be equal. 
The consequence is that the stress tensor is symmetric. 

 

 

Figure 2-1. Stress vector 0F
r

, normal component nF
r

 and shear component sF
r

 acting on surface A. 

 

2.2 Principal stresses 
Performing a principal axis transformation, a coordinate system can be found where all 
shear stresses vanish and the three normal stresses are parallel to the coordinate axes of 
the transformed system, called principal axes. Then normal stresses are called principal 
stresses and the stress tensor is defined by the maximum principal stress σ1, the 
intermediate principal stress σ2 and the minimum principal stress σ3. σ1, σ2 and σ3 are 
entries on the diagonal of the stress tensor. Therefore, in a principal axis system σij 
represents a diagonal matrix. 
 

2.3 Tectonic stress regimes 
In general, the vertical stress σV can be considered to be a principal stress. Then, in a 
principal axis system besides σV there are two horizontal principal stresses, the 
maximum horizontal stress σH and the minimum horizontal stress σh. Anderson (1905) 
found that the three tectonic stress regimes, normal, strike-slip and thrust faulting can be 
characterized by the magnitudes of the principal stresses σV, σH and σh. (Figure 2-2). 
For the three different tectonic stress regimes, the principal stresses are arranged as 
follows: 
- Normal faulting regime:  σ1 = σV > σ2 = σH > σ3 = σh

- Strike-slip regime:   σ1 = σH > σ2 = σV > σ3 = σh

- Thrust faulting regime:  σ1 = σH > σ2 = σh > σ3 = σV
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Figure 2-2. Principal stresses in normal faulting (left), strike-slip (middle) and thrust faulting 
(right) regimes. Figure from Eisbacher (1996). 

 

2.4 Mohr circle 
Mohr (1882) developed a graphical tool to illustrate shear and normal stresses on 
arbitrary oriented shear fracture planes in a rock sample, the principle stresses σ1 and σ3 
are acting at. All possible combinations of shear and normal stresses on potential failure 
planes oriented between 0° ≤ ϑ ≤ 90° describe a semicircle, called Mohr circle, in a τ-
σn-diagram, called Mohr diagram (Figure 2-3). 

 
Figure 2-3. Principal of a Mohr circle. A point on the Mohr circle describes one state of stress in 
terms of normal and shear stress acting on a plane that is inclined by the angle 2ϑ with respect to 
the direction of the principal axis σ3. The Mohr circle describes all possible combinations of normal 
and shear stresses for one state of stress, depending on the orientation (2ϑ) with respect to the 
principal axes. 

The centre of the Mohr circle is determined by ( ) 231 σσ + , the radius and thus also the 
maximum shear stress τmax given by ( ) 231 σσ − , where σ1 - σ3 is called differential 
stress σd. The maximum shear stress occurs for 2ϑ = 90°, i.e. for an angle between a 
possible fracture plane and the principal stresses of 45°. 
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2.5 Mohr-Coulomb failure criterion 
A Mohr circle in combination with a failure criterion allows to analyse a state of stress 
on a plane with respect to its stability. Most common is the Mohr-Coulomb failure 
criterion, a brief overview of is given here. The Mohr-Coulomb failure criterion 
describes the relationship between shear stress τ and normal stress σn generated by the 
principal stresses σ1 and σ3, and acting on a potential failure plane inclined by an angle 
ϑ (Figure 2-4). 

 
Figure 2-4. Shear stress τ and normal stress σn on a potential fracture plane in a rock sample the 
stresses σ1 and σ3 are acting on. 

First Coulomb (1776) wrote down an equation for the shear stress that is necessary to 
cause shear failure on a potential failure plane: 

ncrit C σµτ *+=          (2.4) 
where C is a material property, called cohesion, and µ* is the coefficient of internal 
friction. Eq. 2.4 is a linear equation with the gradient µ* of the straight line. µ* can be 
expressed by the angle δ between the abscissa and the straight line that is given by Eq. 
2.4: 

δµ tan* =               (2.5) 
with the angle of internal friction δ. µ* should not be mixed up with the coefficient of 
sliding friction that describes the sliding on planes in broken material. µ* cannot be 
measured directly and should be considered to only be the gradient of Eq. 2.4, 

( ) ncrit C στµ −=*  (Handin, 1969). 

The Mohr diagram together with Eq. 2.4 gives the Mohr-Coulomb failure criterion 
(Figure 2-5). The straight line given by Eq. 2.4 is called failure envelope, as it 
determines the onset of failure. All stress states described by Mohr circles that lie under 
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the failure envelope are in a stable state and no failure would occur. If a Mohr circle is 
tangent to the failure envelope or is cutting it, failure would occur for those stress states 
on those planes lying over the failure envelope (red part of the left Mohr circle in Figure 
2-5). 

 
Figure 2-5. The Mohr-Coulomb failure criterion describes the critical shear stress τcrit, that is 
necessary for failure to occur. τcrit depends on the cohesion C, the angle of internal friction µ* and 
the normal stress σn, and can be described mathematically by a straight line (failure envelope) (Eq. 
2.4). If the shear stress τ, generated by the stress field of σ1 and σ3, acting on an arbitrary failure 
plane exceeds τcrit, failure occurs. Then, stable and unstable stress states can be displayed in a Mohr 
diagram together with the Mohr-Coulomb failure criterion. If there is no osculation point between 
Mohr circle and failure envelope, the stress state is stable. If the failure envelope is tangent to the 
Mohr circle or even cuts it, then the stress state is unstable (red part of the left Mohr circle). 

If σ1 and σ3 change not at the same amount, the size of the Mohr circle will change. 
Therefore, considering a change in maximum shear stress ∆τmax between two stress 
states, is a parameter for a not equal change of σ1 and σ3. As a major point in this work 
is the evaluation of induced anisotropic stress changes, ∆τmax is used as parameter for it. 
 

2.6 Sign convention 
Handling with stresses means to decide which sign do compressive and tensile stresses 
have. There exist two different views: In engineering sciences compressive stress is 
defined as negative, tensile stress as positive, in geo-science it is vive versa. In the 
course of this thesis I came in contact with both of these definitions. In order not to 
switch between those sign conventions, I decided to use the geo-science sign convention 
for the entire thesis, i.e. in the following compressive stresses are positive, tensile 
stresses negative. 
 

2.7 Finite element method 
A major part of this work is done by numerical modelling using the finite element 
method. Therefore, I will give a brief summary about the very basic idea of the finite 
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element method. Because the theory of the finite element method is quite complex, 
more than a short overview cannot be provided here. For more detailed information 
about the finite element method, see Zienkiewicz and Taylor (1994). If a partial 
differential equation cannot be solved analytically anymore, numerical methods such as 
the finite element method are used. Applying the finite element approach, a continuum 
is discretized into small parts, called finite element. These element have simple shapes, 
in the case of three-dimensional elements, in general they are tetrahedra or hexahedra. 
The elements consist of element nodes at the corner of the element and integration 
points inside the elements. At element nodes scalar and vectorial parameters such as 
temperature and displacement are calculated, at integration point tensorial parameters 
such as stress and strain. Tetrahedra elements consist of four nodes and one integration 
point, hexahedra elements of eight nodes and eight integration points. With tetrahedra 
elements more complex structures can be built than with hexahedra elements that give a 
more exact solution at a higher computing time. Because coupled fluid flow stress 
simulations requires more than one integration point, I have used tetrahedra elements in 
my work. 

The finite element solver calculates a function as approximation to the exact solution of 
the partial differential equations in each element. In model areas a strong change in the 
solution of the function is expected, the resolution of the dicretization has to be higher. 
Higher resolution and thus more elements increase the number of equations to be 
solved, and thus computation time. Therefore, one also has to weigh up precision of the 
result and computation time. Especially for a transient fluid flow stress analysis with 
hexahedra elements, the computation time can increase quickly. For example, one time 
iteration of the geomechanical model of chapter 6 (~260,000 hexahedra elements) takes 
about 45 minutes. For a transient analysis with 65 time increments and in average two 
iterations per increment, the entire computation time is more than four days. 

As numerical solver I have used the commercial software Abaqus. This software 
provides a fully coupled fluid flow stress analysis solver. In general, the main advantage 
of the finite element method is, that it can handle complex geometries. These can be 
discretized by a variety of different elements which can vary both in size and shape. 
This enables to discretize models in such way that parts of interest and strong variations 
in the field variable can be resolved highly, and parts of less interest and small 
variations in the field variable are performed with a coarse element mesh. 
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3 Interaction of pore pressure and stress 
Pore pressure and stress changes in the underground can lead to spectacular and 
hazardous phenomena, such as blowouts in wells that unexpectedly drill into 
overpressured sequences, induced seismicity or mass movements such as landslides. 
This chapter describes the interaction of pore pressure and stress, mathematically by 
means of basic equations, by demonstrating field measurements of coupled pore 
pressure and stress changes, and by comparison of the effect of pore pressure stress 
coupling for different tectonic stress regimes. 
 

3.1 Effective stresses 
Changes in pore pressure affect the state of stress. Terzaghi (1943) developed a concept 
of how pore pressure is affecting the state of stress, and introduced effective stresses. In 
the case of principal stresses, the effective principal stresses σV,eff, σH,eff, σh,eff are 
defined as subtraction of pore pressure P from the total principal stresses σV, σH, σh, 
thus are determined by: 

PVeffV −= σσ , , PHeffH −= σσ , , Pheffh −= σσ ,  (3.1 a,b,c) 

So, the effective state of stress describes the state of stress under consideration of a pore 
pressure, which is reducing the normal stresses by the amount of the pore pressure. 

Assuming the total stresses don’t change, a greater pore pressure is generating lower 
effective stresses, and vice versa. As the pore pressure is describing a fluid’s pressure, 
no shear stresses can be transferred by the pore pressure. Thus, the pore pressure affects 
only the effective normal or effective principal stresses, but not the shear stresses. How 
this behaviour is affecting the effective state of stress can be illustrated by means of a 
Mohr diagram (Figure 1-1). 

Summarizing Terzaghi’s (1943) concept of effective stresses, the pore pressure reduces 
(P > 0) or increases (P < 0) the effective normal and effective principal stresses, 
respectively. In this concept the total stresses are independent of P, and the pore 
pressure itself has no influence on the shear stresses, Mohr circles don’t change their 
diameter, only their horizontal position in a Mohr diagram (Figure 1-1), if P is 
changing. Assuming an increasing pore pressure the effective state of stress becomes 
more instable, for a decreasing P on the other hand more stable. Because the effective 
principal stresses increase or reduce all by the amount of P, they are independent of the 
tectonic regime. Therefore Figure 1-1 is valid for every tectonic regime. 

Enhanced geothermal systems are increasing the pore pressure by pumping water into 
the rock, because they want to enlarge joints to generate aquifers. The result of cracking 
the rock and generating seismicity can be explained by the concept of effective stresses. 
For an increasing pore pressure the Mohr circle is moving to the left towards the failure 
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envelope, so the rock is becoming more instable. On the other hand, extraction of fluid 
increases the effective normal stresses, what leads to a stabilization of the rock. 
 

3.2 Observations and concept of pore pressure stress 
coupling 

Observations show an increased occurrence of seismicity in areas of hydrocarbon 
production. This contradicts the idea of rock stabilisation due to reduction of pore 
pressure, according to the concept of effective stresses (Terzaghi, 1943). Numerous 
authors have questioned and investigated the relationship between fluid or gas 
extraction from subsurface reservoirs and the occurrence of seismicity and the 
triggering of earthquakes, respectively. Induced earthquakes and microseismicity are 
studied for different oil and gas fields in the USA and Canada (Segall, 1989; Doser et 
al., 1992; Nicholson and Wesson, 1992; Rutledge et al., 1998; Simpson, 1986), the 
Netherlands (van Eck et al., 2006; van Eijs et al., 2006), the Lacq gas-field in France 
(Feignier and Grasso, 1990; Grasso and Wittlinger, 1990; Bardainne et al., 2008; Segall 
et al., 1994) or an oil and gas field in the Fahud Salt Basin in Oman (Sze et al., 2005). A 
triggering of three ms = 7.0 earthquakes at Gazli, Uzbekistan, near a major gas field, is 
hypothesized by Simpson and Leith (1985). 

Together with the observation of seismicity in the vicinity of producing hydrocarbon 
reservoirs, minimum horizontal stresses σh and pore pressures P are measured in oil and 
gas fields. Teufel (1996) provides data for different fields in the North Sea and the 
USA. Hillis (2000) gives an overview of σh- and P-measurements done worldwide 
(Table 1). Hillis (2000) distinguish between field-scale data and basin-scale data, 
measured in depleting and in over-pressured reservoirs. Those measurements give 
strong evidence that σh and P are coupled, what is called pore pressure stress coupling, 
pore pressure/σh coupling (Hillis, 2000), also known as stress-depletion response 
(Addis, 1997). The strength of the coupling is expressed by the ratio ∆σh/∆P, what 
brings pore pressure change in relation to change in σh, i.e. the larger ∆σh for a given 
∆P, the stronger the coupling. 

∆σh/∆P-values calculated from σh- and P-measurements at different reservoirs in the 
North Sea and the USA (Teufel, 1996) show values between 0.48 for the McAllen 
Ranch field, Texas, and 0.86 for the Eldfisk field, North Sea. In the overview of Hillis 
(2000) ∆σh/∆P is ranging between 0.34 and 1.18, with an average of 0.64 (Table 1). 

3.2.1 Pore pressure stress coupling in a normal faulting regime 

How pore pressure stress coupling is affecting the state of stress and the rock stability, 
is illustrated in a Mohr diagram (Figure 3-1). It shows a Mohr circle representing an 
initial state of stress (dashed line) for a normal faulting regime, i.e. σmax = σV and σmin = 
σh, what is a typical regime for sedimentary basins (Hillis, 2000). Hillis (2000) assumes 
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that σV is not affected by changes in P, therefore, for increasing P, σV,eff is reducing by 
the amount of pore pressure increase. Under consideration of coupling between P and 
σh, an increase in pore pressure leads to an increase in σh. The consequence is that σh,eff 
decreases not by P, but by a reduced amount determined by the strength of the coupling, 
∆σh/∆P. 

Therefore, for increasing pore pressure the effective differential stress is decreasing, a 
smaller Mohr circle (red line) compared to the initial one (dashed line) is the 
consequence. Hence, an increase of pore pressure can lead to stabilization of the rock. 
On the contrary, a decreasing pore pressure leads to a reduction in σh and thus σh,eff is 
increasing less, whereas σV is unaffected by P and therefore σV,eff is increasing by the 
amount of pore pressure decrease. The consequence is an increasing effective 
differential stress, what leads to a larger Mohr circle (blue line) approaching the failure 
envelope. 

 
Figure 3-1. Mohr diagram under consideration of pore pressure stress coupling. For a given initial 
state of stress (dashed line) the effective differential stress is reduced for increasing pore pressure 
(red line). Decreasing P has the contrary effect (blue line). 

The resulting effective stresses, under consideration of pore pressure stress coupling, are 
expressed by 

PeffVeffV ′∆−=′ ,, σσ ,  PP
P

h
effheffh ′∆−′∆⋅

∆
∆

+=′ σ
σσ ,, .      (3.2 a,b)

σV,eff and σh,eff represent the initial effective state of stress given by σV,eff = σV - P and 
σh,eff = σh - P. Then the effective state of stress after a pore pressure change P′∆ , effV ,σ ′  
and effh,σ ′ , are given by Eqs. 3.2. ∆σh/∆P  is the pore pressure stress coupling ratio and 
describes the strength of the coupling. Without coupling, ∆σh/∆P = 0, Eqs. 3.2 are 
identical with Terzaghi’s (1943) effective stresses (Eqs. 3.1). 
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Hence, the concept of pore pressure stress coupling, as described by various authors 
(Engelder and Fischer (1994), Hillis (2000; 2003), Tingay et al. (2003)) allows 
explaining the occurrence of seismicity in the context of production, i.e. pore pressure 
decrease. 

 
Table 1. Pore pressure stress coupling ratios obtained from measurements at different reservoir 
sites. Table is modified after Hillis (2000). Data are based on Addis (1997), Bell (1990), Breckels and 
van Eekelen (1982), Hillis (2000), Salz (1977), Teufel et al. (1991), Tingay (pers. communication), 
Whitehead et al. (1987), Woodland and Bell (1989). 

Area Scale ∆σh/∆P

Scotian shelf, Canada Over-pressured basin 0.76 

North West shelf, Australia Over-pressured basin 0.75 

Gannet and Guillemot fields, North Sea Over-pressured basin 0.60 

Vicksburg formation, South Texas Depletion in field 0.48 

Travis Peak formation, East Texas Depletion in field 0.57 

Alberta basin, Western Canada Depletion in field 0.34 

Ekofisk field, North Sea Depletion in field ~0.8 

US Gulf Coast Depletion in field and 
over-pressured basin 

0.46 

Lake Maracaibo, Venezuela Depletion in field 0.56 

Baram Delta Province, Brunei Depletion in field and 
over-pressured basin 

0.59 

Magnus field, North Sea Depletion in field 0.68 

West Sole field, North Sea Depletion in field 1.18 

Wytch Farm field, UK Depletion in field 0.65 

Venture field, Canada Over-pressured basin 0.56 

Nile Delta, Egypt Over-pressured basin 0.65 
 

3.2.2 Pore pressure stress coupling in a thrust faulting regime 

The above described approach considers only stress states in a normal faulting regime, 
and is based on the assumption that the vertical stress is not affected by pore pressure 
changes. In the following, the effect of pore pressure stress coupling is extended to the 
consideration of a thrust faulting regime (σmax = σH, σmin = σV) and again under the 
assumption that the total vertical stress is not affected by changes in P. According to 
Segall (1989) both normal faulting and thrust faulting is developing during the depletion 
of a reservoir. Normal faulting occurs on the flanks of the reservoir; thrust faulting 
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above and below the reservoir (Figure 3-2). How fluid depletion, under the assumption 
of constant vertical stress, is affecting the effective state of stress in a thrust faulting 
regime, and hence the rock stability, is shown in Figure 3-3. 

 

 
Figure 3-2. Stress regimes developing around a depleting reservoir. On the flanks of the reservoir 
normal faulting is occurring, above and below the reservoir thrust faulting. Open arrows indicate 
horizontal strain at the surface. Figure from Segall (1989). 

Depletion or pore pressure decrease in a thrust faulting regime has the opposite effect as 
in a normal faulting regime. Due to the coupling of P and σH, σH is decreasing with P, 
and thus σH,eff is increasing less than σV,eff, which increases by P because of the non-
coupling between P and σV. The consequence is a reduction in effective differential 
stress, what leads to a smaller Mohr circle (blue line), which moves to the right, away 
from the failure envelope, due to pore pressure decrease. This means, under the aspect 
of pore pressure stress coupling, depletion in a thrust faulting regime intensifies rock 
stabilization, because both stabilization-effects, a movement to the right, away from the 
failure envelope, and a decreasing circle diameter are superposing. 

 

 
Figure 3-3. Mohr diagram, showing the effect of pore pressure increase (red line) and decrease 
(blue line) on an initial effective state of stress (dashed line) under consideration of a thrust faulting 
regime, and the assumption that the vertical stress is not affected by pore pressure change. 
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On the other hand, fluid injection, i.e. increase of pore pressure, has the opposite effect. 
Due to pore pressure stress coupling the effective differential stress increases (larger 
Mohr circle), and the Mohr circle moves to the left towards the failure envelope (red 
line) because of the increasing pore pressure. Those two effects superpose, and thus 
amplify the effect of rock destabilization. 

Summarizing, under consideration of pore pressure stress coupling, the influence of 
pore pressure increase and decrease, respectively, on the state of stress, and thus on the 
rock stability is strongly dependent on the stress regime. In a normal faulting regime 
pore pressure reduction brings rock closer to failure, in a thrust faulting regime 
stabilization of the rock is the consequence. On the other hand, an increase in pore 
pressure results in rock stabilization in a normal faulting regime, and in destabilization 
in a thrust faulting regime. Hence, the tectonic regime leads to opposite effects 
concerning the influence of pore pressure change on the rock stability. 

As mentioned above, the concept of pore pressure stress coupling is based on the 
assumption that the pore pressure is affecting the total horizontal stresses, but not σV 
(Engelder and Fischer, 1994; Hillis, 2000). However, time-lapse investigations (Sayers, 
2004; 2006) and results of geomechanical modelling (Herwanger and Horne, 2005; 
Settari and Sen, 2007; Schutjens et al., 2010) show that σV is not a constant. This 
indicate that not only σh, but the entire stress tensor is affected by pore pressure 
changes. To investigate the coupling between P and σV , an analytical model (chapter 4) 
as well as a numerical model (chapter 5) are used. Hereby the effect of fluid injection, 
i.e. pore pressure increase, on the state of stress is investigated. 

3.2.3 Pore pressure stress coupling in a strike-slip regime 

Considering a strike-slip regime, i.e. σmax = σH and σmin = σh, both maximum and 
minimum horizontal stresses are equally affected by pore pressure stress coupling. This 
means that the pore pressure stress coupling does not have any effect on the differential 
stress, and thus on the size of the Mohr circle. Thus, in a strike-slip regime the Mohr 
circle is only horizontally shifted in the Mohr diagram during fluid injection or 
depletion. 

However, the coupling between pore pressure and total horizontal stresses leads to an 
increase of both maximum and minimum horizontal stress during fluid injection, and to 
a bigger effective stresses than without coupling. The reverse effect applies for 
depletion. In chapter 4.2 this effect is analysed in more detail. 
 

3.3 Mathematical expression of pore pressure stress coupling 
Changes in σh depending on P are described by the theory of poroelasticity (Biot, 1943), 
which in general describes the effect of adding or removing fluid from the soil on the 
mechanical behaviour of the rock. Using the theory of poroelasticity and under uniaxial 
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strain conditions, i.e. no lateral expansion or a horizontally infinite reservoir, Engelder 
and Fischer (1994) derive a space-and time-independent relationship between σh, σV 
and P: 

PVh ν
νασ

ν
νσ

−
−

+
−

=
1

21
1

          (3.3) 

with the Biot-Willis coefficient α, defined as 

g

d

K
K

−= 1α            (3.4) 

where Kd is the drained bulk modulus and Kg the bulk modulus of the grains. The 
vertical stress σV is given by the weight of the overburden. Engelder and Fischer (1994) 
assume that σV doesn’t change during fluid injection or depletion. Under this 
assumption and considering a pore pressure change, Eq. 3.3 reduces to 
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h .             (3.5) 

Eq. 3.5 allows to calculate a value for the coupling between σh and P. Using typical 
values for α and ν, e.g. α = 0.8, ν = 0.25, coupling ratio results in ∆σh/∆P = 0.53. This 
is in agreement with the values obtained from σh- and P-measurements (Table 1). 
However, Eq. 3.5 is not able to explain the variability of the measured values, which 
range between 0.34 and 1.18. The variations in the coupling coefficient could result 
from changes in the Biot-Willis coefficient with depletion or within the reservoir as was 
investigated by Addis (1997). He calculates pore pressure stress coupling ratios and 
compares them to field measurement data. Also the use of non-unity values for the Biot-
Willis coefficient depending on the porosity shows no satisfying match for the West 
Sole and Wytch Farm fields. Another reason for the variability of the measured data 
could be the fact that ∆σh/∆P is not a constant value within a reservoir, but depends on 
the time of measurement, i.e. time after start of injection or production, and on the 
location of measurement. Teufel et al. (1991) and Zoback and Zinke (2002) analysed 
σh- and P-data measured at oil reservoirs in the North Sea, and obtain ∆σh/∆P-values 
depending on the measurement location: on the crest, the flank or the outer flank of the 
reservoir. ∆σh/∆P, measured at the Tor formation of the Valhall field, varies between 
0.70 at the crest and 0.88 at the flank of the reservoir. 
 

3.4 Coupling during reservoir depletion 
Addis (1997) and Goulty (2003) investigate the coupling between pore pressure and σh 
due to depletion of different oilfields. Besides pore pressure stress coupling, this 
coupling is also called stress-depletion response of reservoirs (Addis, 1997) or reservoir 
stress path (Goulty, 2003). Addis (1997) uses the passive basin response to explain most 
of the field data. The passive basin response assumes a passively and elastically reacting 
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reservoir during production and pressure decline. The passive basin response equation is 
given by 

⎟
⎠
⎞

⎜
⎝
⎛

−
−=
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νασ

1
1

dP
d h .           (3.6)  

The passive basin response depends on the Biot-Willis coefficient and the Poisson’s 
ratio. Besides Biot-Willis coefficients equal one, Addis (1997) considers Biot-Willis 
coefficients depending on the porosity. In addition he differentiates between the tectonic 
stress regimes depletion is occurring in, and defines mathematical equations of the 
stress-depletion responses for the three tectonic regimes. 

Goulty (2003) specifies three mechanisms that govern the reservoir stress path, normal 
compaction, normal faulting and poroelasticity, and provides equations for ∆σh/∆P for 
each mechanism. Normal compaction is a mechanical compaction caused by 
irreversible reduction in porosity of sediments due to increasing the mean effective 
stress. Reservoir depletion resulting in pore pressure reduction causes the mean 
effective stress to increase. Then, the sediments undergo normal compaction during 
production with irreversible loss of porosity. Normal faulting describes the active 
faulting in rocks due to reservoir depletion. Goutly (2003) links the reservoir stress path 
with the Mohr-Coulomb failure criterion, and derives and expression for it depending 
on the coefficient of friction. The poroelastic mechanism is based on the theory of 
poroelasticity of Biot (1941), and analogous to Engelder and Fischer (1994) Goulty 
(2003) derives the equation of pore pressure stress coupling (Eq. 3.5). 

In this work I concentrate only on the poroelastic effect between coupled pore pressure 
and stress changes. To further investigate the space- and time-dependence of the pore 
pressure stress coupling ratio, I use two different approaches, an analytical (chapter 4) 
and a numerical (chapter 5) one. The first is based on the spatio-temporal solutions for 
pore pressure and stress in an infinite homogeneous poroelastic medium after 
continuous fluid injection at one point (Rudnicki, 1986). With these equations a space- 
and time-dependent pore pressure stress coupling ratio can be calculated, which, for 
time tending towards infinity, results in Eq. 3.5. The second approach considers a 
numerical modelling of the fluid injection induced spatio-temporal pore pressure and 
stress distribution inside and around an ellipsoidal reservoir. 
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4 Analytical investigation of pore pressure stress 
coupling 

As shown previously, the pore pressure stress coupling ratio is neither a constant 
considering different reservoirs nor constant inside one single reservoir, but depends on 
location and time of measurement. Therefore, the spatio-temporal character of ∆σh/∆P 
is analytically and numerically investigated in the following. The analytical part is 
based on the solutions for spatio-temporal pore pressure and stress changes due to 
continuous fluid injection in an infinite homogeneous poroelastic medium, which were 
derived by Rudnicki (1986). These equations enable to calculate a space- and time-
dependent pore pressure stress coupling ratio, which again results in Eq. 3.5 for time 
tending towards infinity, what is briefly shown in chapter 4.1.2 and in detail in 
Appendix A. 

As the analytical approach after Rudnicki (1986) is limited to an infinite homogeneous 
space, which is not a suitable description of a reservoir embedded in surroundings, 
numerical modelling is used in a next step. There, the influence of inhomogeneous 
material properties as well as the reservoir shape on the spatial and temporal stress and 
pore pressure distribution can be investigated. 
 

4.1 Poroelastic equations 
In the following a diffusion equation is derived, which Rudnicki (1986) solved in order 
to obtain the solutions for spatio-temporal pore pressure and stress changes due to 
continuous fluid injection at a point source in infinite homogenous poroelastic full 
space. The diffusion equation is based on the poroelastic theory of Biot (1941) for 
isotropic fluid-saturated porous media, and later derived by Rice and Cleary (1976) in a 
more direct formulation (Rudnicki, 1986). Wang (2000), whose approach I follow here, 
describes the derivation in detail. 

The fluid mass content mf, defined by Rice and Cleary (1976), is the fluid mass per unit 
reference volume. Then, the change in fluid mass content is given by δm = mf - m0, with 
the fluid mass content in the reference state, m0. The increment of fluid content ζ is 
defined as 

0f

fm
ρ

δ
ζ =         (4.1) 

with the fluid density in the reference state, 
0f

ρ . As δmf is mass content per unit 
volume, ζ is a dimensionless variable standing for the fluid volume transported into or 
out of storage. 

In principal coordinates the constitutive equations which relates strain ε and increment 
of fluid content ζ with stress σ and pore pressure P are given by four equations for four 
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dependent variables (ε1, ε2, ε3, ζ) each depending on four independent variables (σ1, σ2, 
σ3, P): 

P
HEEE 3
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3211 +−−= σνσνσε     (4.2) 

P
HEEE 3
11

3212 +−+−= σνσσνε     (4.3) 

P
HEEE 3
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3213 ++−−= σσνσνε     (4.4) 
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321 +++= σσσζ              (4.5) 

Neglecting the pore pressure added in Eqs. 4.2-4.5, they represent the equations of 
linear elasticity (Turcotte and Schubert, 2002). Eqs. 4.2-4.5 contain in total four 
poroelastic moduli: E and ν are known from standard elasticity theory as Young’s 
modulus and Poisson’s ratio, 1/H is called poroelastic expansion coefficient, is defined 
by 

0

1

=

≡
σδ

δε
PH

       (4.6) 

and describes the change in bulk volume due to a change in pore pressure under 
constant stress conditions. The poroelastic modulus 1/R is defined by 

0

1
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≡
σδ

δζ
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.      (4.7) 

1/R is the specific storage coefficient at constant stress, also called unconstrained 
specific storage coefficient, and describes the change in increment of fluid content, i.e. 
the change in fluid volume added or remove from storage, due to pore pressure change 
under constant stress. 
Adding Eqs. 4.2-4.4 and using the mean normal stress ( ) 3321 σσσσ ++= , Eqs. 4.2-
4.5 result in 

P
KK dd

ασε +=
1          (4.8) 

P
BKK dd

ασαζ +=           (4.9) 

where the relationships 

H
RB = ,  

H
K d=α ,  ( )ν213 −

=
EK d   (4.10) 

are used. α is the Biot-Willis coefficient (Eq. 3.4) and B is the Skempton’s coefficient 
which is defined as ratio of pore pressure change due to a change in applied stress under 
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undrained conditions, i.e. no fluid exchange is allowed taking place, what is formally 
expressed by setting the increment of fluid content ζ equal to zero: 

0=

≡
ζδσ

δPB                (4.11) 

After undertaking a series of experiments (Figure 4-1), measuring the amount of fluid 
flowing out of a water saturated sand column due to gravity forces, Darcy (1856) found 
an empirical relationship describing fluid flow through a porous medium. Darcy’s law is 
given by 

dz
dhkq fz −=                 (4.12) 

with the volume of fluid per unit area and time, qz, the head h and the constant of 
proportionality kf. kf is the hydraulic conductivity in [m/s] and depends on the 
gravitational acceleration g, the permeability k [m2], and on the fluid properties 
viscosity η [Pa⋅s] and fluid density ρf: 

η
ρ gk

k f
f =                (4.13) 

The head h is made up of an elevation head z and a pressure head p/ρfg: 

g
pzh
fρ

+=                (4.14) 

Combining Eqs. 4.12-4.14, Darcy’s law can be rewritten in a three-dimensional form as: 

Pkq ∇−=
rr

η
               (4.15) 

The continuity equation including an external source Q is given by 

Qq
t

=⋅∇+
∂
∂ rrζ      (4.16) 

Under the assumption that k and h do not vary spatially, then Darcy’s law (Eq. 4.15) 
substituted into the continuity equation (Eq. 4.16) results in a partial differential 
equation governing fluid flow: 

QPk
t

=∇−
∂
∂ 2

η
ζ       (4.17) 

Substituting now Eq. 4.9 into Eq. 4.17 leads to an inhomogeneous diffusion equation for 
the pore pressure: 

QPk
t
P

t
B

BK
kk

d

=∇−⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂

∂ 2

3 η
σα       (4.18) 
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Figure 4-1. Sketch showing the configuration of Darcy’s (1856) experiment. Darcy set up a steady 
state flow through a sand column and measured the pressure difference with manometers and the 
fluid discharge. Figure after Freeze (1994). 

To finally obtain a diffusion equation for the increment of fluid content ζ, Eq. 4.9 is 
solved for the mean stress 3kkσσ =  and then substituted into Eqs. 4.18 and 

[ ] FPkk

rr
⋅∇

−
+

−=+∇
ν
νψσ

1
142      (4.19) 

with the poroelastic stress coefficient ψ, a dimensionless variable defined by Detournay 
and Cheng (1993): 

( )α
ν
νψ

−
−

=
12

21       (4.20) 

The two resulting equations are added, what leads to the diffusion equation for ζ: 

( ) kk
u

u FkQ
S
k

t ,
2

2µλα
λλ

η
ζ

η
ζ

+
−

++∇=
∂
∂          (4.21) 

The ratio k/ηS is defined as hydraulic diffusivity c, where S is the uniaxial specific 
storage. Fk,k represents body forces and is defined by kkkk xFF ∂∂≡, . λ and µ are the 
first and second Lamé parameter under drained conditions. µ is equivalent to the shear 
modulus G; λ can be expressed by µ and the drained bulk modulus Kd: 
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3
2µλ −= dK       (4.22) 

λu is the first Lamé parameter under undrained conditions and can be expressed by µ 
and the undrained bulk modulus Ku as: 

3
2µλ −= uu K       (4.23) 

According to Gassmann (1951) Ku is defined by: 

f
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⎛
−−+

=
1

1

     (4.24) 

where Kg is the bulk modulus of the grains, Kf the bulk modulus of the wetting liquid 
and ϕ the porosity. The diffusion equation (Eq. 4.21) is uncoupled from displacement, 
strain and stress field, and without body forces F

r
 or fluid sources Q acting, ζ satisfies a 

homogeneous diffusion equation. Eq. 4.21 can be solved for various problems. In the 
following the solutions for pore pressure and stress obtained by Rudnicki (1986) are 
considered. 

4.1.1 Continuous point injection into homogeneous full space 

Rudnicki (1986) solved the diffusion equation (Eq. 4.21) for the case of continuous 
fluid injection at one point into infinite homogeneous poroelastic medium, and obtained 
solutions for the spatio-temporal pore pressure and stress changes: 
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where the ratio Φ/ρf is the injected fluid volume Vfl per time [m3/s], ( )kk xxr = , and ξ: 

ct
r

=ξ                (4.27) 

with the diffusivity c [m2/s] which is given by 
( )( )

( )µλα
µλλλ

2
2

2 +
+−

=
u

uK
c .            (4.28) 

K [m3s/kg] is a permeability defined by Rudnicki (1986) as the ratio of permeability k 
[m2] divided by the fluid viscosity η [Pa·s]: 

η
kK =              (4.29) 
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Solving Eq. 4.13 for k and substituting into Eq. 4.29, K can also expressed by the 
hydraulic conductivity kf, the fluid density ρf and g: 

g
k

K
f

f

ρ
=               (4.30) 

The function ( )ξg  in Eq. 4.26 is given by 
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The error function erf(z) and the complementary error function erfc(z) (Abramowitz and 

Stegun, 1965), respectively, used in Eqs. 4.25, 4.26 and 4.31 are ( ) ∫ −−=
z

t dtezerf
0

21 2

2π  

and . As Rudnicki (1986) uses the engineering sign convention 
(compressive stress < 0, tensional stress > 0), he gives Eq. 4.26 with a negative sign. 

( ) ( )zerfzerfc −= 1

By dividing Eq. 4.26 by Eq. 4.25 a spatio-temporal pore pressure stress coupling ratio 
for the entire stress tensor can be calculated. In chapter 4.1.2 it is shown that for time 
tending towards infinity this space- and time-dependent ratio is equal to Eq. 3.5, the 
expression Engelder and Fischer (1994) derived for the pore pressure stress coupling 
ratio. 

4.1.2 Pore pressure stress coupling – Derivation of the long-term 
limits 

a) For radial stresses 
The strength of the coupling between pore pressure and stress can be expressed by the 
ratio of pore pressure change divided by stress change. By substituting Rudnicki’s 
(1986) solutions (Eqs. 4.25 and 4.26) into this ratio, it is shown that, for time tending 
towards infinity, this ratio results in Eq. 3.5, the time-and space-independent ratio 
Engelder and Fischer (1994) derived. This can be achieved by substituting Eqs. 4.25, 
4.26 into Pij ∆∆σ  gives 
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In the following the coupling between P and the normal stresses σii along the i-axes of a 
Cartesian coordinate system with origin at the injection point is considered. Those 
stresses represent the radial stress σr. Then for any radial stress σr (i = j), Eq. 4.32 
simplifies to: 
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Only the second summand of Eq. 4.33 has a time- and space-dependent component. 
Therefore, to determine the so-called long-term limit, the limes for time tending towards 
infinity, what is equal to ξ  0 (Eq. 4.27), only the second summand has to be 
considered. In Appendix A it is shown that 
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According to Jaeger et al. (2007): 

ν
ν

µλ
µ

−
−

=
+ 1

21
2

2         (4.35) 

Applying Eqs. 4.34 and 4.35 to 4.33, then 
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As the right hand side of Eq. 4.36 is space- and time-independent, it is called long-term 
limit. It is identical to the solution of Engelder and Fischer (1994) for the minimum 
horizontal sress (Eq. 3.5). This minimum horizontal stress is a radial stress if the 
direction along the orientation of the minimum horizontal stress is considered. 
 

b) For tangential stresses 
Tangential stress is called a normal stress σii, which is observed along the j-axis. This 
taken into account, Eq. 4.32 leads to the spatio-temporal pore pressure stress coupling 
ratio for tangential stresses: 
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The second summand of Eq. 4.37 which has to be taken into consideration for t  ∞ is 
the same as for the radial pore pressure stress coupling ratio (Eq. 4.33). Therefore, Eq. 
4.34 applies, what is shown in Appendix A. Thus, the limit for t  ∞ is given by: 
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The long-term limit for tangential stresses is half the long-term limit for radial stresses. 
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4.2 Analytical investigations 
Based on Eqs. 4.25 and 4.26 the spatio-temporal pore pressure and stress changes 
caused by continuous fluid injection are investigated. Then, with Eq. 4.32 the space- 
and time-dependent pore pressure stress coupling ratio is calculated for different stress 
components and compared to each other. In this section a Cartesian coordinate system 
with the origin at the injection point, the x- and y-axis pointing in horizontal direction 
and the z-axis in vertical direction, is used (Figure 4-2). The calculated stresses and pore 
pressure stress coupling ratios are related to this coordinate system. 

 

 
Figure 4-2. Cartesian coordinate system, calculated stresses and pore pressure stress coupling 
ratios are related to. The origin of the coordinate system is at the injection point. 

 

4.2.1 Spatio-temporal pore pressure, stress and pore pressure stress 
coupling 

In the following the spatial and temporal distribution of fluid injection induced pore 
pressure variations and changes of all principal stresses are investigated. Furthermore, 
the coupling between pore pressure and all principal stresses is analysed. Listed in 
Table 2 are the material parameters used for the pore pressure (Eq. 4.25) and stress 
calculations (Eq. 4.26), and thus also for the determination of the pore pressure stress 
coupling ratio. 

To show both the spatial as well as the temporal evolution of pore pressure, stress and 
pore pressure stress coupling ratio, those three variables are plotted a) in dependence of 
the observation location with respect to the injection point for a fixed injection time t, 
and b) in dependence of injection time for a fixed observation point r (last two columns 
of Table 2). 
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Table 2. Material parameters used for the calculation of pore pressure and stress changes 
according to Eqs. 4.25 and 4.26. q/ρ0 is the injected volume per time, c the diffusivity, λu the 
undrained first Lamé parameter, λ and µ the drained Lamé parameters, and α the Biot-Willis 
coefficient. t and r give the fixed injection time and location, respectively, for which the spatial and 
temporal evolution of pore pressure, stress and pore pressure stress coupling ratio is analysed. 

Φ/ρf [m3/s] C [m2/s] λu [GPa] λ [GPa] µ [GPa] α t [d] r [m] 

0.05 0.005926 11.2 8.4 8.4 0.65 1000 200 
 
 
a) P, σ and pore pressure stress coupling ratio depending on location (t = 1000 d) 
The spatial distributions of pore pressure, stresses and pore pressure stress coupling 
ratios are calculated along the x-axis. As no shear stresses are developing along the 
coordinate axes, normal stresses considered along the coordinate axes are principal 
stresses. The pore pressure distribution is given by Eq. 4.25. The solution for the stress 
distribution (Eq. 4.26) depends on whether a radial stress, e.g. σxx along x-axis, or a 
tangential stress, e.g. σyy along x-axis, is calculated. For radial stresses, Eq. 4.26 gives 
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and for tangential stresses: 
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For a given time since the beginning of injection, pore pressure and stress changes 
decrease with increasing distance from the injection point. For the chosen parameters, 
∆P is higher than ∆σxx up to a distance of ~1500m For distances larger than 1500 m 
∆σxx is higher than ∆P. Hence, ∆P decreases faster with distance than ∆σxx (Figure 4-3). 
This can be explained by the different propagation mechanisms of pore pressure and 
stress. While a change in pore pressure is diffusing through the pores of a rock matrix, 
whereas the speed of the diffusion process is strongly dependent on the rock’s 
permeability, a stress change however is transferred immediately via the granular 
structure of the rock. It can be shown that the intersection radius is depending on the 
chosen permeability and that it is getting larger for higher permeability. 

The change in tangential stress ∆σyy = ∆σzz is less than the change in radial stress, and 
becomes negative before converging zero with increasing distance from the injection 
source, what is shown in Figure 4-4. This means, close to the injection source tangential 
stresses are compressive, before they become slightly tensile at larger distances from the 
injection point. 
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Figure 4-3. Pore pressure and stress changes developed after 1000 days of injection. ∆σyy and ∆σzz, 
representing tangential stresses, are equal for observation points along the x-axis. The part of the 
diagram the orange box is enclosing is displayed in more detail in Figure 4-4. 

 

 
Figure 4-4. Zoom of Figure 4-3 (orange box). Tangential stresses become negative before they 
converge zero with distance. 

Using the results of pore pressure and stress changes shown in Figures 4-3 and 4-4, pore 
pressure stress coupling ratios ∆σxx/∆P and ∆σzz/∆P are calculated, and the resulting 
graphs shown in Figure 4-5. Close to the injection point both pore pressure stress 

 
 
30



coupling ratios are approaching the constant long-term limits which, according to 
Engelder and Fischer (1994), are calculated with Eq. 3.5, and plotted as dashed lines. 
For larger distances both ratios diverge from their long-term limits, ∆σxx/∆P increases, 
whereas ∆σzz/∆P decreases. This is the consequence of the faster than ∆σii towards zero 
converging pore pressure change (Figure 4-3). Thus, the modulus of the resulting pore 
pressure stress coupling ratios has to increase with distance, ∆σxx/∆P towards +∞ and 
∆σzz/∆P towards -∞, as ∆σzz becomes negative. 

 

 
Figure 4-5. Spatial distribution of pore pressure stress coupling for radial stresses (green) and 
tangential stresses (blue). Dashed lines show the long-term limits for radial and tangential stresses, 
calculated by Eqs. 4.36 and 4.38 with ν = 0.25 and α = 0.65. 

The results for ∆σxx and ∆σyy = ∆σzz, as well as for ∆σxx/∆P and ∆σyy/∆P = ∆σzz/∆P are 
exchangeable, depending on the location of the observation point. Considering a point 
on the z-axis instead of the x-axis, ∆σzz would be the larger radial stress change, and 
∆σxx and ∆σyy the smaller tangential stress changes. 
 

b) P, σ and pore pressure stress coupling ratio depending on time (r = 200 m) 
After considering pore pressure and stress depending on distance from the injection 
point, now the temporal evolution of pore pressure, stresses and pore pressure stress 
coupling ratios is investigated. Figure 4-6 shows the temporal character of pore pressure 
and stress changes at a distance of r = x = 200 m. Immediately after start of injection σxx 
and σyy = σzz begin to change at the observation point, whereas for P it takes a few days 
until ∆P arrives. Again, this is due to the different propagation mechanisms of pore 
pressure and stress. The stress is spreading out via the granular structure of the rock 
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matrix; P is diffusing through the pore spaces. So, for short injection times, stress 
changes are higher than ∆P, that increases stronger than ∆σxx and ∆σyy. Thus, after 11 
days of injection ∆P is higher than the stress changes. The time axis in Figure 4-6 has a 
logarithmic scale. This is to better display ∆P and the stress changes, as the major part 
of the changes occur directly after the start of injection. After 1% (100 days) of the 
considered injection time, about 70% of the total pore pressure and stress changes have 
occurred. 
 

 
Figure 4-6. Temporal evolution of pore pressure, radial and tangential stress at a distance of x = 
200 m from the injection point. Note the logarithmic scale of the time axis, in order to stretch the 
pore pressure and stress changes, as they mainly have occurred after 100 days of injection. 

Because the pore pressure change takes more time than the stress changes to arrive at 
the observation point, the pore pressure stress coupling ratios ∆σxx/∆P and ∆σyy/∆P = 
∆σzz/∆P approach ±∞ for injection time going towards zero. With increasing injection 
time and thus increasing ∆P, the pore pressure stress coupling ratios become smaller 
and converge towards their long-term limits (dashed horizontal lines) for injection times 
longer than 1000 days (Figure 4-7). 

Considering pore pressure and stress changes depending on time (Figure 4-6) together 
with pore pressure and stress changes depending on distance (Figure 4-3), it is clear that 
a) the larger the distance from the injection point the longer the injection time after 
which pore pressure is starting to change, b) the longer the injection time the larger the 
distance at which ∆P is smaller than ∆σxx, c) the longer the injection time the larger the 
distance at which the tangential stress change is becoming negative, d) the longer the 
injection time the smaller the maximal negative change of the tangential stress. 
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Figure 4-7. Temporal evolution of pore pressure stress coupling for radial stresses (green) and 
tangential stresses (blue). Dashed lines show the long-term limits of both stresses, calculated 
according to Eqs. 4.36 and 4.38 with ν = 0.25. 

 

4.2.2 Influence of tectonic regime on rock stability during fluid 
injection 

Taking coupling between pore pressure P and total stress into account, the influence of 
fluid injection or reservoir depletion, i.e. pore pressure variation, on the state of stress, 
and thus on rock stability, under consideration of the tectonic regime, has been 
investigated by various authors. Chen and Nur (1992) calculate the effect of pore 
pressure change on the effective shear stress. They find that in a normal faulting regime 
the increase of pore pressure leads to stabilization of the rock, and reduction in pore 
pressure to destabilization. In the case of a thrust faulting regime, the results for pore 
pressure build-up and decline exchange. On the contrary, Hillis (2000; 2001; 2003) has 
shown that pore pressure increase leads to rock stabilization in a normal faulting, taking 
coupling between P and σh, and no coupling between P and σV into account. Recently, 
Soltanzadeh et al. (2009) have published modelling results, showing the effect of pore 
pressure increase or drawdown in a reservoir on the state of stress and the rock stability, 
at different locations. Depending on the location pore pressure increase and decrease 
can lead to both, stabilization and destabilization of the rock. 

None of these authors has considered the influence of pore pressure variation on the 
state of stress depending on both, the tectonic regime as well as the location with 
respect to the injection/depletion point. Furthermore, a new point is the inclusion of the 
temporal development of the state of stress with duration of injection. Under these two 
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aspects, the effect of fluid injection on the state of stress and rock stability is discussed 
in the following. 

According to Eqs. 4.25 and 4.26, fluid injection into poroelastic medium influences the 
spatio-temporal evolution of both pore pressure and stress, as shown previously. As 
stresses as well as pore pressure are changing during fluid injection, also the rock 
stability may be affected by this process. Furthermore, to what extent different tectonic 
regimes and the location, pore pressure and stress changes are observed at, with respect 
to the injection point influences the effective stress state is investigated. In the following 
a Mohr-Coulomb failure criterion (Coulomb, 1776; Engelder, 1993; Mohr, 1882; Parry, 
1995) will be used to illustrate the influence of fluid injection on the effective state of 
stress and thus, how a changing effective stress state is affecting the rock stability. 

According to Eqs. 4.25 and 4.26 pore pressure and stress changes with the material 
parameters provided in Table 2 are calculated at a distance of 200 m to the injection 
point, which is assumed to be in a depth of z = 3000 m, for three different injection 
times (14 days, 60 days, 2 years). As the influence of the tectonic regime is investigated, 
first a fictional effective initial stress state, i.e. σ1,eff and σ3,eff, is generated. It is 
calculated by the difference of lithostatic and hydrostatic pressure, ( )gzfSeffV ρρσ −=, , 
where ρS and ρf are the mass densities of the solid rock and the fluid, g is the 
gravitational acceleration, z is the depth. σV,eff is dependent on depth, so the location of 
the observation point (on the σH or the σh-axis (z = 3000 m), or on the σV-axis above the 
injection point (z = 2800 m)) will influence the value of σV,eff. In order to calculate 
reasonable states of stress for these two depths, those variables are chosen to be: ρS = 
2500 kg/m3; ρf = 1000 kg/m3; g = 10 m/s2; z1 = 3000 m for observation points on the 
σH-axis and the σh-axis; z2 = 2800 m if the observation point is on the σV-axis. Then, 
σV,eff is determined by: 
σV,eff,1 = 1500 kg/m3 · 10 m/s2 · 3000 m = 45 MPa (observation point on σH- or σh-axis), 
σV,eff,2 = 1500 kg/m3 · 10 m/s2 · 2800 m = 42 MPa (observation point on σV-axis). 
In case of a normal faulting regime, where σ1 = σV and σ3 = σh, additionally the 
effective minimum horizontal stress σh,eff has to be determined. For this purpose, σh was 
set to 2σV/3: σh,1 = 2ρSgz1/3 = 50 MPa and σh,2 = 2ρSgz2/3 = 46.7 MPa Then, σh,eff is 
results as: 
σh,eff,1 = σh,1 - ρfgz1 = 50 MPa - 30 MPa = 20 MPa (observation point on σh-axis), 
σh,eff,2 = σh,2 - ρfgz2 = 46.7 MPa - 28 MPa = 18.7 MPa (observation point on σV-axis). 

In case of a thrust faulting regime, σ1 = σH and σ3 = σV, the effective maximum 
horizontal stress σH,eff has to be determined in addition to σV,eff. To do this, σH was 
assumed to be 1.3σV: Therefore, σH,1 = 1.3ρSgz1 = 97.5 MPa and σH,2 = 1.3ρSgz2 = 91 
MPa. Then, σH,eff arises as: 
σH,eff,1 = σH,1 - ρfgz1 = 97.5 MPa – 30 MPa = 67.5 MPa (observation point on σH-axis), 
σH,eff,2 = σH,2 - ρfgz2 = 91 MPa – 28 MPa = 63.5 MPa (observation point on σV-axis). 
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In case of a strike slip regime, σ1 = σH and σ3 = σh, the maximum horizontal stress σH,eff 
is assumed to be 1.2σV, hence σH = 1.2ρSgz1 = 90 MPa Then, for the effective maximum 
horizontal stress follows: 
σH,eff = σH - ρfgz1 = 90 MPa - 30 MPa = 60 MPa. 
Similarly, σh is assumed to be 0.8σV, i.e. σh = 0.8ρSgz1 = 60 MPa. Thus, the effective 
minimum horizontal stress is given by: 
σh,eff = σh - ρfgz1 = 60 MPa - 30 MPa = 30 MPa. 

Based on those effective initial stress fields, pore pressure and stress changes are 
calculated due to fluid injection, and the effect on rock stability is investigated. For this 
purpose, a Mohr-Coulomb failure criterion is defined with a cohesion C = 5 MPa, and 
an angle of internal friction of δ = 25°. In total six scenarios, taking the tectonic regime 
and the observation location with respect to the injection source into account, are 
considered. 

a) Normal faulting regime, observation point on σV-axis 
A normal faulting regime is characterized by σV > σH > σh, i.e. σ1 = σV and σ3 = σh. The 
observation point located on the σV-axis means that σV is a radial stress, and therefore 
changes in σV are calculated by Eq. 4.39. With the observation point on the σV-axis, σh 
then is a tangential stress and thus, a change in σh is calculated by Eq. 4.40. The 
resulting stress and pore pressure changes for injection times of 14 days, 60 days and 2 
years, are listed in Table 3. The temporal evolution of the effective state of stress, 
caused by fluid injection, in a normal faulting regime with the observation point on the 
σV-axis is shown in Figure 4-8. 
 
Table 3. Pore pressure and stress changes according to Eqs. 4.25, 4.39 and 4.40, with an observation 
point at r = 200 m on the σV-axis in a normal faulting regime, for three injection times. 

Injection time ∆P [MPa] ∆σr = ∆σV = ∆σ1 [MPa] ∆σt = ∆σh = ∆σ3 [MPa] 

14 days 1.89 2.59 -0.48 

60 days 8.35 5.15 1.05 

2 years 16.26 7.57 3.26 
 

Fluid injection influences the effective state of stress in two ways. On the one hand, 
fluid injection increases the pore pressure, what leads to smaller effective stresses and 
causes the Mohr circle to move to the left. On the other hand, under consideration of 
pore pressures stress coupling, fluid injection increases also the total stresses. As the 
observation point is on the σV-axis, σV is the radial stress and is increased more than the 
tangential stress σh. Together with the uniform pore pressure increase follows that σV,eff 
is decreasing less than σh,eff, or even increases for short injection times, what leads to an 
increasing effective differential stress σV,eff - σh,eff and to an increase in the Mohr circle’s 
diameter, respectively. Hence, for this constellation fluid injection brings rock closer to 
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failure, and this process is amplified by the mechanism of pore pressure stress coupling 
which is affecting different stress components differently strong. Compared with the 
classical concept of uncoupled stresses (Terzaghi, 1943) (dashed lines in Figure 4-8), it 
will take less time to cause failure. 
 

 
Figure 4-8. Temporal evolution of the effective state of stress in a normal faulting regime with the 
observation point on the σV-axis. Pore pressure stress coupling causes increasing Mohr circles (solid 
lines) compared to those without coupling (dashed lines). With duration of injection Mohr circles 
move to the left towards the failure envelope. 

 
b) Normal faulting regime, observation point on σh-axis 
Now the observation point is considered to be on the σh-axis. Thus, σh is the radial 
stress and σV the tangential one. Accordingly, the changes in pore pressure and stresses 
are provided in Table 4. Determining the failure linear line with C = 5 MPa and ϕ = 25°, 
the temporal evolution of the effective state of stress for an observation point on the σh-
axis in a normal faulting regime is shown in Figure 4-9. 
 
Table 4. Pore pressure and stress changes according to Eqs. 4.25, 4.39 and 4.40, with an observation 
point at r = 200 m on the σh-axis in a normal faulting regime, for three injection times. 

Injection time ∆P [MPa] ∆σr = ∆σh = ∆σ3 [MPa] ∆σt = ∆σV = ∆σ1 [MPa] 

14 days 1.89 2.59 -0.48 

60 days 8.35 5.15 1.05 

2 years 16.26 7.57 3.26 
 

Considering an observation point on the σh-axis instead of on the σV-axis in a normal 
faulting regime, fluid injection influences the effective state of stress in a different way. 
σh is the radial stress, σV the tangential stress, i.e. according to Eqs. 4.39 and 4.40, σh 
increases more than σV. Therefore, σV,eff decreases stronger than σh,eff, that even can 
increase for short injection times, i.e. the effective differential stress and thus the Mohr 
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circle’s diameter decreases. As pore pressure is increasing more than the total stresses 
with duration of injection, the smaller becoming Mohr circles are moving to the left 
towards the failure envelope (Figure 4-9). Summarizing, with an observation point on 
the σh-axis in a normal faulting regime, fluid injection brings rock closer to failure, but 
this effect is weakened by the different strong coupling mechanisms between pore 
pressure and radial and tangential stress. This is slowing down the process of rock 
destabilization compared to the situation of uncoupled total stresses (dashed lines). 
 

 
Figure 4-9. Temporal evolution of the effective state of stress in a normal faulting regime with the 
observation point on the σh-axis. Fluid injection causes Mohr circles to move towards the failure 
envelope. Pore pressure stress coupling is slowing down the process that rock comes closer to 
failure (solid lines) compared with the case of uncoupled total stresses (dashed lines). 

 
c) Thrust faulting regime, observation point on σH-axis 
Considering now a thrust faulting regime, i.e. σH > σh > σV, and an observation point on 
the σH-axis. This means that σH is the radial stress and σV the tangential stress. The 
calculated pore pressure and stress changes are provided in Table 5, the results showing 
the temporal evolution of the effective state of stress during fluid injection are shown in 
Figure 4-10. 
 
Table 5. Pore pressure and stress changes according to Eqs. 4.25, 4.39 and 4.40, with an observation 
point at r = 200 m on the σH-axis in a thrust faulting regime, for three injection times. 

Injection time ∆P [MPa] ∆σr = ∆σH = ∆σ1 [MPa] ∆σt = ∆σV = ∆σ3 [MPa] 

14 days 1.89 2.59 -0.48 

60 days 8.35 5.15 1.05 

2 years 16.26 7.57 3.26 
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With the observation point on the σH-axis, σH is the radial stress and increases more 
than the tangential stress σV. Therefore, σV,eff is decreasing more than σH,eff, that even 
can increase for short injection times. The consequence is an increase in effective 
differential stress σH,eff - σV,eff, and thus larger Mohr circles. Due to the fact that pore 
pressure increases stronger than the total stresses with duration of injection, leads to 
decreasing effective stresses and thus to Mohr circles shifting to the left towards the 
failure envelope (Figure 4-10). Considering points along the σH-axis in a thrust faulting 
regime, this process of bringing rock closer to failure is amplified by pore pressure 
stress coupling affecting the total stresses differently strong that diameter of the Mohr 
circle increases. 
 

 
Figure 4-10. Temporal evolution of the effective state of stress in a thrust faulting regime with the 
observation point on the σH-axis. Under consideration of pore pressure stress coupling Mohr 
circles’ diameter increase (solid lines) with duration of injection compared to the uncoupled case 
with constant Mohr circle diameters (dashed lines). 

 
d) Thrust faulting regime, observation point on σV-axis 
Considering observation points along the σV-axis, stress states are calculated at, then in 
a thrust faulting regime σV represents a radial stress and σH a tangential stress. Under 
these conditions, the resulting pore pressure and stress changes caused by fluid injection 
are listed in Table 6, and the temporal variation of the effective state of stress is 
illustrated in Figure 4-11. 

If the observation point is located on the σV-axis in a thrust faulting regime, the radial 
stress σV increases more than the tangential stress σH. This leads to less decreasing σV,eff 
compared to σH,eff, what results in reduction of effective differential stress σH,eff - σV,eff 
and to smaller Mohr circles, respectively (Figure 4-11). Hence, the different strong 
coupling between P and the radial and tangential stresses σV and σH weakens the effect 
that rock is brought closer to failure with duration of injection. 
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Table 6. Pore pressure and stress changes according to Eqs. 4.25, 4.39 and 4.40, with an observation 
point at r = 200 m on the σV-axis in a thrust faulting regime, for three injection times. 

Injection time ∆P [MPa] ∆σr = ∆σV = ∆σ3 [MPa] ∆σt = ∆σH = ∆σ1 [MPa] 

14 days 1.89 2.59 -0.48 

60 days 8.35 5.15 1.05 

2 years 16.26 7.57 3.26 

 

 
Figure 4-11. Temporal evolution of effective stress state in a thrust faulting regime, with the 
observation point on the σV-axis. Pore pressure stress coupling leads to decreasing differential 
stress (solid lines), whereas in the uncoupled case the differential stress is constant (dashed lines). 

 
e) Strike-slip regime, observation point on σH-axis 
A strike-slip regime is defined by σH > σV > σh, and considering an observation point on 
the σH-axis means that σH is the radial stress and σh the tangential one. Therefore, the 
pore pressure and stress changes at a point on the σH-axis with a distance of 200 m from 
the injection point are given in Table 7. The temporal evolution of the effective state of 
stress, and thus the effect on rock stability is shown by means of a Mohr diagram 
(Figure 4-12). 

Fluid injection and thus increasing pore pressure leads to a reduction of the effective 
stresses, and causes the Mohr circle moving to the left. With an observation point on the 
σH-axis, the radial stress σH is stronger affected by the fluid injection than the tangential 
stress σh, and increases more than σh. Therefore σH,eff is decreasing less than σh,eff, what 
leads to an increase of the effective differential stress, and thus of the diameter of the 
Mohr circle. Hence, the effect of destabilisation during fluid injection in a strike-slip 
regime is amplified by the effect of increasing effective differential stress caused by 
pore pressure stress coupling, if a point on the σH-axis is considered. In this case rock is 
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brought faster to failure than in the case without considering coupling between pore 
pressure and stress. 
 
Table 7. Pore pressure and stress changes according to Eqs. 4.25, 4.39 and 4.40, with an observation 
point at r = 200 m on the σH-axis in a strike-slip regime, for three injection times. 

Injection time ∆P [MPa] ∆σr = ∆σH = ∆σ1 [MPa] ∆σt = ∆σh = ∆σ3 [MPa] 

14 days 1.89 2.59 -0.48 

60 days 8.35 5.15 1.05 

2 years 16.26 7.57 3.26 
 

 
Figure 4-12. Temporal evolution of effective stress state in a strike-slip regime, with the observation 
point on the σH-axis. Fluid injection leads Mohr circles to move to the left towards the failure 
envelope with increasing differential stress (solid lines) in the case of coupling, and with constant 
differential stress (dashed lines) without coupling. 

 
f) Strike-slip regime, observation point on σh-axis 
If the observation point is located on the σh-axis, σh is the radial and σH the tangential 
stress. Table 8 provides pore pressure and stress changes for this setting. Figure 4-13 
illustrates the temporal development of the effective state of stress induced by fluid 
injection. 
 
Table 8. Pore pressure and stress changes according to Eqs. 4.25, 4.39 and 4.40, with an observation 
point at r = 200 m on the σh-axis in a strike-slip regime, for three injection times. 

Injection time ∆P [MPa] ∆σr = ∆σh = ∆σ3 [MPa] ∆σt = ∆σH = ∆σ1 [MPa] 

14 days 1.89 2.59 -0.48 

60 days 8.35 5.15 1.05 

2 years 16.26 7.57 3.26 
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As σh is the radial stress, it is affected stronger by fluid injection than the tangential 
stress σH. Therefore, during fluid injection σh increases more than σH. This leads to a 
less decreasing σh,eff compared to σH,eff. The consequence is a decrease in the effective 
differential stress, what is equivalent with a decreasing size of the Mohr circle. This 
stabilisation effect caused by the different coupling between P–σH and P–σh superposes 
the destabilisation effect of the increasing pore pressure caused by fluid injection, what 
is shifting the Mohr circle to the left towards the failure envelope. Thus, in total it takes 
more time to bring the rock to failure than for pore pressure stress coupling not taken 
into account. 
 

 
Figure 4-13. Temporal evolution of effective stress state in a strike-slip regime, with the observation 
point on the σh-axis. With duration of injection, pore pressure stress coupling leads to smaller 
Mohr circles (solid lines) compared to Mohr circles no coupling is considered (dashed lines). 

 

4.2.3 Influence of tectonic regime on rock stability during fluid 
depletion 

The examples above show the influence of fluid injection on the state of stress under 
consideration of pore pressure stress coupling. Also during fluid depletion the coupling 
between pore pressure and stresses can be analysed. Fluid depletion influences the 
stresses in the same way as fluid injection does, but with an opposite sign. Therefore, 
only a short summary about fluid flow induced stress changes during fluid depletion in 
combination with the presence of different tectonic stress regimes is provided here. 
 
a) Normal faulting regime 
In direction of the maximum principal stress σV, σV is radial stress and therefore will 
decrease more than the minimum principal stress σh during fluid depletion. Then the 
differential stress decreases what leads to smaller Mohr circles. For points along the σh-
axis, σV and σh are affected in the opposite way. σh is decreasing more than σV, what 
leads to an increase in differential stress and thus to larger Mohr circles. 
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b) Thrust faulting regime 
Fluid depletion induced stress changes in direction of the maximum principal stress σH 
affects σH more then the tangential stress σV. Therefore σH decreases more than σV does, 
what leads to a decrease in differential stress and smaller Mohr circles. Considering the 
effects of fluid depletion on the minimum principal stress axis σV, σV is radial stress and 
therefore affected more then the tangential stress σH. σV decreases more than σH, 
leading to higher differential stresses and larger Mohr circles. 
 
c) Strike-slip regime 
In a strike-slip regime maximum and minimum principal stresses are given by σH and 
σh. Along the σH-axis, σH is radial stress and σh tangential stress. Therefore, the 
coupling between pore pressure and σH is stronger than between pore pressure and σh. 
Under depletion and pore pressure reduction σH decreases more than σh. The 
consequence is a decreasing differential stress and smaller Mohr circles. In σh-direction, 
σh (now radial stress) is affected stronger by pore pressure stress coupling than σH (now 
tangential stress), what leads to an increase in differential stress and larger Mohr circles. 

4.2.4 Interpretation and discussion 

The effects of both fluid injection and depletion on the state of stress in different 
tectonic regimes show that due to different coupling between pore pressure and the 
radial stress or the tangential stress the temporal evolution of the effective state of stress 
during fluid injection or depletion depends on the location, the stresses are calculated at, 
with respect to the injection point as well as on the tectonic regime. The process, that 
rock comes closer to failure, caused by fluid injection and pore pressure increase 
(without process of different coupling mechanisms) is 

• amplified in a normal faulting regime at observation points along the σV-axis, in 
a thrust faulting regime at observation points along the σH-axis, and in a strike-
slip regime at observation point along the σH-axis due to an increase in 
differential stress. 

• weakened in a normal faulting regime at observation points along the σh-axis, in 
a thrust faulting regime at observation points along the σV-axis, and in a strike-
slip regime at observation point along the σh-axis due to a decrease in 
differential stress. 

This occurs due to different coupling mechanisms between pore pressure and radial or 
tangential stress. For fluid depletion the same results can be found. Without coupling, 
fluid depletion and pore pressure reduction causes the effective stresses to increase, and 
thus the Mohr circle to move to the right away from the failure envelope. This effect is 
again 
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• amplified in a normal faulting regime along the σV-axis, in a thrust faulting 
regime along the σH-axis, in a strike-slip regime along the σH-axis due an 
increase in differential stress. 

• weakened in a normal faulting regime the σh-axis, in a thrust faulting regime 
along the σV-axis, in a strike-slip regime along the σh-axis due to a decrease in 
differential stress. 

In summary, independent of the present regime, along the maximum principal stress 
axis an amplification is taking place. This means, along the σ1-axis rock comes faster to 
failure than without coupling due to fluid injection induced increase of differential 
stress. Fluid depletion increases the effective stresses and rock becomes more stable, 
what is amplified by decreasing differential stresses. However, along the σ3-axis, pore 
pressure stress coupling counteracts the effects of decreasing (increasing) effective 
stresses during fluid injection (depletion), and thus destabilization (stabilization) of the 
rock. Depending on the initial state of stress and the initial vicinity of the failure 
envelope, along the σ3-axis it is most likely to observe depletion induced failure due to 
poroelastic coupling. 

In the examples of the previous chapter my intention was to highlight the effect of the 
different strong coupling between pore pressure and different stress components along 
the same direction. For this reason, I only have considered stress changes along the 
maximum and minimum principal stress axes. Along the medium principal stress axis 
both maximum and minimum principal stresses are tangential stresses and therefore 
would experience the same strength of coupling. In consequence, the differential stress 
and thus the size of the Mohr circle would be constant. Anyway, pore pressure and 
stresses are coupled, so that the effective stresses change differently from effective 
stresses considered without any coupling (Figure 4-14). 
 

 
Figure 4-14. Comparison of coupled (solid Mohr circles) and uncoupled (dashed Mohr circles) 
effective stress changes due to fluid injection. The results are calculated along the σV-axis of a 
strike-slip regime. 
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During fluid injection pore pressure stress coupling increases the total stresses. 
Therefore, the effective stresses following from coupled stresses are larger then the 
effective stresses calculated without pore pressure stress coupling. Considering the 
poroelastic coupling between pore pressure and effective stress changes, one has to keep 
in mind the difference between coupled and uncoupled effective stress changes, even if 
the differential stress is constant. 

Especially in the case, where the observation point is on the σ3-axis and thus the 
differential stress is reduced by pore pressure stress coupling, is the difference between 
the effective stress states with coupling (solid Mohr circles) and without coupling 
(dashed Mohr circles) quite considerable and increases with duration of injection 
(Figures 4-9, 4-11, 4-13). Is the observation point on the σ1-axis and pore pressure 
stress coupling leads to increasing differential stress and Mohr circles during fluid 
injection, the effect of pore pressure stress coupling regarding the rock stability is 
strongest for short injection times (Figures 4-8, 4-10, 4-12). If rock is in a critical state 
of stress before start of injection, i.e. close to failure, pore pressure stress coupling leads 
after start of injection to failure if the observation point is on the σ1-axis, or prevents 
failure if the observation point is on the σ3-axis, both compared to the uncoupled case 
(Figure 4-15). Hence, if rock is critically stressed, pore pressure stress coupling 
influences considerably the rock stability already for short injection times, when a 
significant stress change reached the observation point, but not yet the slower diffusing 
pore pressure. 
 

 
Figure 4-15. Effect of pore pressure stress coupling on the effective stress states for a point on the 
σ1-axis (red Mohr circle) and a point on the σ3-axis (blue Mohr circle) after a short injection time of 
14 days, compared to the effective state of stress without pore pressure stress coupling (dashed 
Mohr circle). 

Considering only 14 days of injection, the results Chen and Nur (1992) and Hillis 
(2000; 2001; 2003) found, can be validated. In Chen and Nur (1992) pore pressure 
increase leads to rock stabilization in a thrust faulting regime. Figure 4-11 (red Mohr 
circle) shows the same effect. Similarly, pore pressure increase leads to rock 
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destabilization in a normal faulting regime (Figure 4-8, red Mohr circle). In both cases 
the location of the observation point is on the σV-axis. Rock stabilization in a normal 
faulting regime due to pore pressure increase (Hillis, 2000; 2001; 2003) can be observed 
if the observation point is on the σh-axis (Figure 4-9, red Mohr circle). 

Therefore, it is essential to consider both, the tectonic regime and the location at which 
the stresses are calculated, as those two effects are acting contrary. Not less important is 
the inclusion of the temporal aspect. An effect of stabilization during fluid injection 
(Hillis, 2000; 2001; 2003) is taking place if the observation point is on the σ3-axis, 
independent of the tectonic regime (Figures 4-9, 4-11, 4-13). With duration of injection 
the effect of reduction of effective stress due to pore pressure increase exceeds the effect 
of stress increase due to pore pressure stress coupling. Therefore, for longer injection 
times fluid injection will always cause failure, but this is delayed in time by pore 
pressure stress coupling. 

Another characteristic concerning the change of the Mohr circles’ diameter with 
duration of injection can be seen in Figures 4-8 – 4-13 independent of the tectonic 
regime and the observation location. Due to different strong coupling between P and the 
radial and tangential stress, the effective differential stress or the size of the Mohr circle 
changes after start of injection, not anymore after longer injection times. This behaviour 
can be made clear by looking at the gradients of pore pressure and stress changes, 
d∆P/dt, d∆σr/dt, d∆σt/dt, this means how pore pressure and stress changes vary with 
time, what is shown in Figure 4-16 and in more detail in Figure 4-17. 
 

 
Figure 4-16. Gradients of pore pressure and stress changes. After start of injection stresses change 
maximal, whereas the gradient of pore pressure change is maximal after 10 days of injection due to 
diffusion process pore pressure is propagating with. Detail of orange box is shown in Figure 4-17. 
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As expected, directly after start of injection the stress changes, spreading out 
immediately via the solid rock structure, are maximal, the pore pressure change, 
diffusing through the pore spaces, is zero. With duration of injection the stresses change 
less, the gradient of pore pressure change reaches a maximum after 10 days before it 
declines again. Please note that both stress components (radial and tangential) change at 
the same rate after a few hundred days of injection. This means necessarily that also the 
maximum and the minimum effective stress is changing at the same amount, and 
therefore, the effective differential stress doesn’t change and the size of the Mohr circle 
is constant, what can be seen in Figures 4-8 – 4-13 for long injection times. 
 

 
Figure 4-17. Radial (∆σxx) as well as tangential stresses (∆σyy, ∆σzz) are changing at the same rate 
after a few hundred days of injection. The consequence is a constant effective differential stress or a 
constant Mohr circle size, respectively (Figures 4-8 – 4-13). 

Even if the effective differential stress is constant after certain injection time, and thus 
with duration of injection the Mohr circle is moving to the left with a constant diameter, 
this does not mean that it behaves like in the case of Terzaghi’s (1943) concept of 
effective stresses (Figure 1-1). Due to the coupling between pore pressure and stress, the 
total stresses increase (decrease) during injection (depletion), and therefore the effective 
stresses decrease (increase) less than in the case of uncoupled stresses. 

Rudnicki’s (1986) solutions (Eqs. 4.25 and 4.26) can be used to investigate the spatio-
temporal character of pore pressure and stress due to fluid injection in poroelastic 
medium. Also the influence on the rock stability in dependence on the tectonic regime 
and on the location, pore pressure and stress is calculated at, with respect to the 
injection point, can be analysed with duration of injection. 
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The next step is to extend the calculation of pore pressure and stress to a medium which 
represents the setting of a reservoir embedded in surrounding of different material 
properties. As Eqs. 4.25 and 4.26 are limited to a homogeneous infinite poroelastic full 
space, and also no other analytical solution exists which describes the effect of fluid 
injection on the spatio-temporal distribution of pore pressure and stress in an 
inhomogeneous poroelastic medium, numerical modelling is used to calculate the 
spatio-temporal pore pressure and stress distribution. 
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5 Numerical Approach 
The approach of numerical modelling enables to calculate pore pressure and stress 
distributions inside a poroelastic volume containing inhomogeneities and complex 
geometries that cannot be described by analytical solutions. Such numerical models 
simulate the stress and pore pressure distributions in realistic geometries better than the 
analytical solution for an infinite homogeneous poroelastic full space (Rudnicki, 1986), 
and can be used to model the pore pressure and stress distribution inside and around a 
reservoir. Using the approach of numerical modelling, and thus the possibility to create 
models containing inhomogeneities, the influence of inhomogeneous material on the 
pore pressure and stress distribution can be investigated. In this thesis the finite element 
method is used to solve the resulting coupled partial differential equations within the 
model volume. 
 

5.1 Effective stress in Abaqus 
ABAQUS uses a generalised form of Terzaghi’s (1943) principle to calculate the 
effective state of stress. According to ABAQUS Documentation (2008) the effective 
state of stress is given by 

( )( )Iuu aweff χχσσ −++= 1      (5.1) 

where χ stands for the saturation of the system, uw is the average pressure stress in the 
wetting liquid, ua the average pressure stress in the other fluid (in unsaturated cases), 
and I is the unit matrix. In fully saturated systems, which are considered here, χ = 1, and 
Equation  5.1 simplifies to 

Iuweff += σσ       (5.2) 

which is identical with the effective state of stress described by Terzaghi (1943) (Eq. 
3.1). The different signs result from different sign conventions. ABAQUS uses the 
engineering sign convention with compressive stresses to be negative. 
 

5.2 Input-parameters for poroelastic modelling 
Using the commercial software package ABAQUS as solver for the resulting partial 
differential equations, a set of input-parameters is required to be specified by the user. 
For the modelling of pore pressure and stress induced by fluid flow in poroelastic 
medium the parameter set is given by: 

• Mass density ρS [kg/m3] 
• Bulk modulus of solid grains Kg [Pa] 
• Bulk modulus of fluid Kf [Pa] 
• Specific weight of the wetting liquid ρfg [kg/m2s2] 
• Hydraulic conductivity kf [m/s] 
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• Void ratio e [1] 
• Logarithmic bulk modulus κ [1] 
• Poisson’s ratio ν [1] 
• Injection rate Vfl [m3/s] 

Most of the above parameters are well-known. Only the logarithmic bulk modulus κ 
should be explained in more detail, as it is a special ABAQUS variable. According to 
ABAQUS Documentation (2008), the elastic part of the volume ratio between the 
current and a reference state, Jel, is defined as 
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The derivation of Eq. 5.4 as well as the transformation of the above given parameter set 
into the parameter set (µ, λ, λu, α, c) used by Rudnicki (1986) and in Eqs. 4.25 and 4.26 
is shown in Appendix B. 
 

5.3 Homogeneous axis-symmetric model 
At first a finite element model with homogeneous poroelastic rheology was set up in 
order to compare the model results with the results achieved from Rudnicki’s (1986) 
analytical solutions (Eqs. 4.25 and 4.26). This comparison also enables to check 
whether the transformation (Appendix B) between ABAQUS-variables and variables 
used in Eqs. 4.25 and 4.26 is correct, what is not possible if inhomogeneous material is 
used, where no analytical solutions are available. 

For axis-symmetric problems ABAQUS gives the possibility to use axis-symmetric 
elements. The major advantage of these elements compared to 3D elements is that an 
axis-symmetric model is handled as a 2D model, what is much less computational time 
consuming than a 3D model. As a consequence, this gives the opportunity to choose a 
higher resolution, especially near the injection point where the largest pore pressure and 
stress changes will occur. A higher resolution will improve the precision of the results. 

5.3.1 Model setup, boundary conditions, material properties 

The homogeneous axis-symmetric model has vertical and horizontal extensions of each 
25 km, representing a model with a diameter of 50 km. The dimension of the model is 
chosen that large to avoid boundary effects, as the analytical solution is valid for an 
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infinite medium. The model has a resolution of 8 m near the injection source, and the 
element size increases to ~300 m at the surface boundary, and up to 1100 m at the 
vertical and the bottom boundary. The model consists of 46477 four node axis-
symmetric continuum elements which are able to handle pore pressure. Figure 5-1 
shows a sketch of the model setup and the applied boundary conditions. 
 

 
Figure 5-1. Setup, mesh and boundary conditions of axis-symmetric model. 

The bottom and the side of the model are fixed in normal direction. To the surface no 
constraints are applied. Undrained boundary conditions are applied to the model, i.e. 
fluid cannot flow out of the model. The injection point is located on the vertical 
symmetry axis in a depth of 5 km. Gravity is not applied to the model. Only changes in 
pore pressure and stress induced by continuous fluid injection are considered. For this, 
the initial state of stress is unimportant, because only stress changes with respect to an 
initial stress state are of interest.  

This model setup is used to simulate continuous fluid injection at a point source into 
homogeneous poroelastic space, and to model the fluid induced pore pressure and stress 
changes. The material properties defining a poroelastic rheology are given in Table 9. It 
is separated in parameters required as ABAQUS input, parameters needed for the 
transformation from ABAQUS-parameters into Rudnicki-parameters (Appendix B), and 
the Rudnicki-parameters themselves. 

 
 

51



Initial conditions for pore pressure, stress, saturation and void ratio have to be assigned 
to the model. Pore pressure and stress state are initially set to zero, what means that the 
∆P and ∆σ distributions generated by fluid injection represent also the pore pressure 
and stress state in the model. Furthermore, the saturation is initially set to χ = 1 (fully 
saturated medium), and the initial void ratio is e0 = 0.1. 
 
Table 9. Material properties of homogeneous axis-symmetric model. 

ABAQUS-parameters 

Kg [GPa]    Kf [GPa]    κ          ν         [MPa]     e         kel
tp f [m/s]      ρf [kg/m3]     Vfl [m3/s] 

40               2                0.01     0.3      200               0.1      1.0E-7       1000              0.02 

Parameters for transformation 

                  Kd [GPa]                 ϕ                            Ku [GPa]                     K [m3s/kg] 

                  22                            0.091                     25.7                             1.0E-11 

Rudnicki-parameters 

α                  λ [GPa]               µ [GPa]              λu [GPa]             c [m2/s]               Φ/ρf [m3/s]

0.45             15.2                     10.2                    18.9                    0.166                   0.02 
 

5.3.2 Investigation 

The point injection induced pore pressure and stress distributions in a homogeneous 
poroelastic medium, which is defined by the material parameters of Table 9, are 
modelled and compared to the analytical solutions of Rudnicki (1986) (Eqs. 4.25 and 
4.26). Those modelling results enable to calculate the pore pressure stress coupling 
ratios for both, the radial stress and the tangential stress, which are compared to the 
ratios derived from the analytical solutions. 

5.3.3 Results 

a) Spatial distribution of pore pressure and stress (t = 34 days) 
Figure 5-2 shows the spatial distributions of modelled pore pressure and stress changes, 
and those derived from the analytical solutions. As the results are plotted against the 
distance to the injection point along the x-axis, σxx is the radial stress and σzz the 
tangential stress. There is a reasonable good fit between numerical (dots) and analytical 
(solid lines) results for both, short distances (left subfigure) and large distances (right 
subfigure) to the injection point. Close to the source, the pore pressure change is larger 
than the stress changes, but decreases faster then the stress changes with distance to the 
injection point. 
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Figure 5-2. Spatial pore pressure and stress distribution after continuous fluid injection of 34 days 
along the horizontal x-axis. Right subfigure shows the section between 1000 and 5000 m of the left 
subfigure. 

 
b) Spatial distribution of pore pressure stress coupling ratios (t = 34 days) 
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Figure 5-3.Comparison between modelled (dots) pore pressure stress coupling ratios and those 
derived from analytical solutions (solid lines), in dependence of the distance to the injection point 
along the horizontal x-axis. 

The pore pressure stress coupling ratios are calculated by dividing the radial and the 
tangential stress change, respectively, by the pore pressure change. Both ratios are 
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plotted in Figure 5-3, which are derived from numerical simulation (dots) and from 
analytical calculation (solid lines). The pore pressure stress coupling ratios for the radial 
stress as well as for the tangential stress show quite a good fit between numerical and 
analytical results. Close to the injection point (x < 200 m) both values converge to their 
long-term limits, which are calculated after Eqs. 4.36 and 4.38, and plotted as grey 
horizontal solid (radial stress) and dashed (tangential stress) lines. The pore pressure 
stress coupling ratios diverge from their long-term limits with increasing distance to the 
point source. The reason for this deviation is the fact that it takes more time for the pore 
pressure change to diffuse than for the stress change to spread out. With distance to the 
injection point pore pressure change becomes smaller compared to the stress change, 
and thus pore pressure stress coupling ratio increases. 
 
c) Temporal evolution of pore pressure and stress (x = 206 m) 
In Figure 5-4 the temporal evolution of modelled (dots) and analytically derived (solid 
lines) pore pressure and stress changes at a distance of x = 206 m to the injection point 
are compared to each other. The graphs show a good match between numerical and 
analytical results. Here again, the different diffusion character of pore pressure and 
stress can be seen. For short injection times the radial stress change is larger than the 
pore pressure change. With duration of injection this behaviour flips. 
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Figure 5-4. Comparison between numerical (dots) and analytical (solid lines) pore pressure, radial 
and tangential stress changes depending on injection time. 
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d) Temporal evolution of pore pressure stress coupling ratios (x = 206 m) 
Using the previously modelled pore pressure and stress changes in dependence of time, 
the temporal evolution of the pore pressure stress coupling ratios is calculated and 
compared to ratios derived from analytical solutions. This is shown in Figure 5-5, where 
numerical (dots) and analytical (solid lines) pore pressure stress coupling ratios are 
plotted versus time and show quite a good fit. The long-term limits for the radial and the 
tangential stress, calculated by Eqs. 4.36 and 4.38, are illustrated as grey horizontal 
lines. With increasing injection time, the modelled and analytically derived radial and 
tangential pore pressure stress coupling ratios converge to their long-term limits. 
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Figure 5-5. Temporal evolution of pore pressure stress coupling ratios derived from modelled data 
(dots) and from analytical solutions (solid coloured lines). The grey horizontal lines denote the long-
term limits of the radial (solid) and the tangential (dashed) pore pressure stress coupling ratio. 

 

5.3.4 Summary 

Spatial as well as temporal distributions of pore pressure, stresses and pore pressure 
stress coupling ratios show quite a good match between numerical and analytical 
results. Also the modelled long-term limits of both pore pressure stress coupling ratios 
are in agreement with the observed field measurements for long injection times (t > 
5·106 s) or short distances to the injection point (d < 300 m). There are small deviations 
between numerical and analytical results in pore pressure, stress and pore pressure stress 
coupling ratios. These deviations mainly occur for after long injection times and at 
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bigger distances to the point source. The analytical solutions are valid for an infinite full 
space. On the contrary, the numerical model represents not an infinite space, but has 
boundaries. Tough the boundaries are far from the injection point, after long injection 
time, the pore pressure had time to diffuse and has reached the boundaries. As 
undrained boundary conditions are applied to the model, the fluid cannot escape or 
diffuse further at the model boundaries. This lead to an accumulation of fluid at the 
boundaries, and the pore pressure increases more than predicted by the analytical 
solutions. Due to pore pressure stress coupling also the stresses are affected by this 
effect. The longer the injection time, the stronger the effect of the undrained boundaries, 
and the more time that areas more far from the model boundaries are affected. Figure 
5-3 shows the boundary effect at larger distance to the injection point, Figure 5-4 with 
duration of injection. 

Nevertheless, the match between numerical and analytical results is satisfying. The 
results also show that the formulae for the transformation between ABAQUS 
parameters and Rudnicki parameters, provided in Appendix B, are correct, and 
ABAQUS was used in a proper way to model coupled fluid flow stress simulations with 
poroelastic material behaviour. Thus, in a next step, inhomogeneous poroelastic 
rheology will be applied in numerical simulations, where analytical solutions are not 
available anymore. 
 

5.4 Inhomogeneous axis-symmetric model 
In the following section fluid injection induced pore pressure and stress distributions 
inside an inhomogeneous poroelastic medium are modelled. For this purpose the 
homogeneous axis-symmetric model of the previous section is modified by including an 
ellipsoid, representing a reservoir, with material properties different from the 
surrounding. 

5.4.1 Model setup, boundary conditions, material properties 

The model dimensions and boundary conditions are shown in Figure 5-6. Compared to 
the homogeneous model (Figure 5-1) an ellipsoid is included, representing a reservoir. 
In the centre point of the reservoir fluid is injected at constant rate. The material 
properties of reservoir and surroundings are provided in Table 10. The material 
properties of the surroundings are equal to those of the homogeneous model (Table 9). 
The injection rate is now increased to Vfl = 50 l/s at the centre of the ellipsoidal 
reservoir. The reservoir is characterized by higher permeability, higher void ratio, 
higher Poisson’s ratio and higher logarithmic bulk modulus compared to the 
background material. 

No gravity was applied to the model, because only pore pressure and stress changes 
with respect to an initial state are investigated. Then, for pore pressure and stress states 
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any arbitrary initial states can be defined. The initial pore pressure and stress state was 
chosen to be zero. Thus, fluid injection induced pore pressure and stress change 
distributions are identical with the pore pressure and stress distributions. The poroelastic 
medium is considered to be fully saturated, therefore the saturation is initially set to χ = 
1. Another initial condition applied to the model is the void ratio, which is set to e0 = 0.3 
in the ellipsoidal reservoir and e0 = 0.1 in the surroundings. 

5.4.2 Investigation 
Table 10. Injection rate (values indented) and material properties of the inhomogeneous poroelastic 
axis-symmetric model. 

 Parameter Value, Ellipsoidal Inclusion Value, Surroundings 

Kg [GPa] 40 40 

Kf [GPa] 2 2 

κ 0.03 0.01 

ν 0.4 0.3 
el
tp  [MPa] 200 200 

e 0.3 0.1 

kf [m/s] 1.0E-5 1.0E-7 

ρf [kg/m3] 1000 1000 
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Vfl [m3/s]                                         0.05  

Kd [GPa] 8.67 22 

ϕ 0.23 0.09 

Ku [GPa] 13.41 25.72 
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K [m3s/kg] 1.0E-9 1.0E-11 

α 0.78 0.45 

λ [GPa] 7.43 15.23 

µ [GPa] 1.86 10.15 

λu [GPa] 12.17 18.95 

C [m2/s] 5.5 0.1 
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Φ/ρf [m3/s]                                         0.05  
 

With the model setup shown in Figure 5-6 and the material properties given in Table 10, 
continuous fluid injection induced pore pressure and stress changes in an 
inhomogeneous poroelastic medium are modelled. The main focus of this investigation 
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is on the influence of the higher permeable reservoir on the resulting pore pressure and 
stress distribution inside and outside the reservoir. 
 

 
Figure 5-6. Inhomogeneous axis-symmetric model setup. The bottom and the model sides are fixed 
in normal direction. The injection point is located in the centre of the ellipsoid that has different 
material properties than the surroundings (Table 10). The same mesh was used as for the 
homogeneous model (Figure 5-1). 

 

5.4.3 Results 

Figures 5-7 and 5-8 show the pore pressure and total stress changes ∆P, ∆σxx, ∆σzz 
along the x-axis and the z-axis, respectively, after 34 days and 255 days of fluid 
injection. As the permeability in the surroundings is by a factor of 100 lower than in the 
reservoir, pore pressure diffusion in the surroundings is slowed down, and therefore ∆P 
declines rapidly at the transition zone inside the surroundings. Once the pore pressure 
front reaches the reservoir-surroundings boundary, and P cannot diffuse as fast as in the 
reservoir anymore, fluid is accumulated inside the reservoir what leads ∆P to raise. 

The tangential stress change ∆σt is more affected by the inhomogeneity than the radial 
stress change ∆σr. After declining with distance from the injection point, ∆σt increases 
inside the reservoir before reaching the reservoir-surroundings boundary. This effect is 
lager along the vertical axis, where ∆σt = ∆σxx, (Figure 5-8) than along the horizontal 
axis, where ∆σt = ∆σzz, (Figure 5-7). At the reservoir-surroundings boundary, ∆σt 
declines in a step. Along the horizontal axis, ∆σr = ∆σxx declines within a short distance 
in the vicinity of the reservoir-surrounding boundary (Figure 5-7), whereas along the 
vertical axis, ∆σr = ∆σzz seems to be unaffected by the material contrast between 
reservoir and surroundings (Figure 5-8) and decreases continuously with distance from 
the injection source. 
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Figure 5-7. Pore pressure and stress changes along the horizontal x-axis for two injection times. 
The radial stress change is given by ∆σxx, the tangential one by ∆σzz. Right subfigure shows the area 
of the reservoir-surroundings transition zone in more detail compared to left subfigure. ∆σt 
becomes negative in the surroundings. 

Figures 5-9 –5-13 show the pore pressure, total and effective σxx, σzz distributions on a 
vertical cross section after 34 and 255 days of continuous fluid injection. The absolute 
values of pore pressure and stresses are increasing and spreading out with time. The 
different material properties of reservoir and surroundings lead to strong pore pressure 
and stress changes at the reservoir-surroundings boundary. The apex of the reservoir is 
acting as stress concentrator, and leads to a large stress change at the boundary. The 
vertical stresses ∆σzz and ∆σzz,eff, tangential stresses concerning the apex of the ellipsoid, 
are stronger affected (Figures 5-11, 5-13) by the stress concentration at the apex of the 
ellipsoid than the horizontal stresses ∆σxx and ∆σxx,eff (Figures 5-10, 5-12), which are 
radial stresses in this case. 

Figure 5-9 shows that fluid injection leads to a positive ∆P inside the entire model, and 
thus to an increases in P. As the pore pressure initial condition was set to zero for the 
entire model, ∆P is equal to the resulting P-distribution. At a constant time, the largest 
amount of ∆P occurs close around the injection source, and then it decreases with 
distance. Inside the reservoir, ∆P declines continuously with distance. The higher 
permeability inside the horizontally elongated reservoir gives P a preferred diffusion 
direction, which causes pore pressure to diffuse faster inside the reservoir than in the 
surroundings. Thus, for distances larger than 400 m (distance between injection point 
and reservoir boundary along z-axis), ∆P reduces less in horizontal than in vertical 
direction, what leads to higher ∆P in horizontal than in vertical direction at the same 
distance from the injection point. At the reservoir boundary ∆P declines strongly due to 
the reduced diffusion capability inside the less permeable surroundings. With duration 
of injection, pore pressure increases within the model volume along any arbitrary 
direction. 
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Figure 5-8. Pore pressure and stress changes along the vertical z-axis for two injection times. The 
radial stress change is given by ∆σzz, the tangential one by ∆σxx. ∆σr does not see the reservoir-
surrounding boundary, whereas ∆σt shows a negative step at there. 

 

 
Figure 5-9. Pore pressure distribution after 34 days (left) and 255 days (right) of continuous fluid 
injection. The black solid line displays the reservoir boundary. 

After longer duration of injection (Figure 5-9, right subfigure), when ∆P had time to 
diffuse into the surroundings, ∆P has diffused farer from the reservoir boundary into the 
surroundings above and below the injection point (ca. 2.6 km after 255 days of 
injection) than from the lateral boundary (ca. 1.2 km after 255 days of injection). 
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Another consequence is that at the same distance from the reservoir boundary ∆P is 
larger above and below the injection point (53 kPa at 500 m from the boundary) than 
laterally of the reservoir (26 kPa at 500 m from the boundary). Because of the 
ellipsoidal reservoir shape ∆P reaches the closer top and bottom boundaries before the 
farer horizontal boundary, and thus has above and below the injection point already 
diffused into the surroundings before the ∆P front reaches the horizontal boundary. 

Like the pore pressure increases due to fluid injection, also the total normal stress 
changes ∆σxx and ∆σzz in horizontal and vertical direction, respectively, increase 
(Figures 5-10, 5-11). Similar to ∆P, ∆σxx and ∆σzz are largest at the injection point and 
decrease continuously with distance. At the reservoir boundary ∆σxx shows a stepwise 
decrease, which is largest at the apex of the ellipsoidal reservoir, where ∆σxx drops 
within a few tens of meters almost to zero, to increase after slightly again (Figure 5-10). 
Going from the top and bottom boundary of the reservoir in vertical direction outwards, 
∆σxx declines and even becomes negative. With duration of injection this area expands 
and the minimum value becomes smaller. Like the pore pressure, the ∆σxx distribution is 
influenced by the permeability contrast between reservoir and surroundings. After 
longer duration of injection (255 days, right subfigure), ∆σxx is larger at any point inside 
the reservoir (> 20 kPa) than in the surroundings (< 17 kPa). This means that the largest 
stress changes occur inside the reservoir, and thus the ∆σxx distribution reflects the 
shape of the reservoir. The material properties of reservoir and surroundings differ not 
only in permeability, but also in logarithmic bulk modulus, Poisson’s ratio and void 
ratio (Table 10). The diffusion process is mainly dependent on the permeability, thus the 
∆P distribution is most influenced by the permeability contrast. In contrast, σxx is 
transferred by the solid parts of the rock, and therefore also logarithmic bulk modulus 
and Poisson’s ratio (solid rock properties) will influence the stress distribution. 
 

 
Figure 5-10. ∆σxx distribution after 34 days (left) and 255 days (right) of continuous fluid injection. 
The black solid line displays the reservoir boundary. 
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Considering the change in the total normal stress ∆σzz (Figure 5-11), the situation is a 
different one. Inside the reservoir at the same distance to the injection point, ∆σzz is 
larger in vertical than in horizontal direction. As the distance between point source and 
reservoir boundary is small above and below the injection point (400 m) compared to 
the distance to the lateral reservoir boundary (4000 m), the effect that the vertical is the 
preferred propagation direction of ∆σzz is marginal and can slightly be seen after short 
injection times (Figure 5-11, left). For longer injection times and areas not close to the 
apex of the ellipsoid, ∆σzz seems to spread out isotropic (Figure 5-11, right). Going in 
vertical direction from the injection point, the permeability contrast between reservoir 
and surrounding doesn’t influence ∆σzz. No strong decrease like in the case of ∆P or 
stepwise reduction (∆σxx) can be seen; ∆σzz decreases continuously in vertical direction 
with distance from the injection point, what also is shown in Figure 5-8. At the apex of 
the reservoir ∆σzz decreases largely in the surroundings close the reservoir boundary, 
and even becomes negative. This means that at this point, despite of fluid injection and 
pore pressure increase, the total normal stress σzz is reducing. After the same injection 
time, the maximum changes of ∆σxx and ∆σzz, which occur at the injection point, are 
equal. With increasing distance to the injection point, in x-direction ∆σxx is larger than 
∆σzz, in z-direction vice versa. ∆σxx in x-direction is larger than ∆σzz in vertical 
direction, i.e. a larger difference between ∆σxx and ∆σzz in x- than in z-direction. 
 

  
Figure 5-11. ∆σzz distribution after 34 days (left) and 255 days (right) of continuous fluid injection. 
The black solid line displays the reservoir boundary. 

The distribution of the effective stress changes ∆σxx,eff and ∆σzz,eff on a vertical cross 
section are shown in Figures 5-12 and 5-13. Both effective stress changes are negative, 
i.e. the effective stress magnitudes are reduced by fluid injection. This is clear, because 
fluid injection, and thus pore pressure increase, lead to a decreasing effective stress state 
(Terzaghi, 1943). ∆σxx,eff and ∆σzz,eff are strongly influenced by the permeability contrast 
between reservoir and surroundings. Both values spread out faster inside the higher 
permeable reservoir before than in the surroundings. This can be seen best after short 
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injection times (left subfigures of Figures 5-12, 5-13). ∆σxx,eff and ∆σzz,eff show the 
largest changes at the injection point, which decrease with increasing distance. ∆σxx,eff 
shows also a strong reduction in a thin band around the reservoir. There, the change is 
even larger than in the reservoir itself, except close to the injection point, (Figure 5-12). 
Going from the reservoir boundary outwards, the magnitude of ∆σxx,eff declines in x-
direction faster than in z-direction. Thus, at the same distance from the reservoir 
boundary, the magnitude of ∆σxx,eff is larger above and below (-30 kPa at 1 km from the 
reservoir boundary after 255 days of injection) than laterally of the reservoir (-12 kPa at 
1 km from the reservoir boundary after 255 days of injection). 
 

  
Figure 5-12. ∆σxx,eff distribution after 34 days (left) and 255 days (right) of continuous fluid 
injection. The black solid line displays the reservoir boundary. 

 

 
Figure 5-13. ∆σzz,eff distribution after 34 days (left) and 255 days (right) of continuous fluid 
injection. The black solid line displays the reservoir boundary. 

However, ∆σzz,eff shows a strong spot-change inside the surroundings close to the apex 
of the reservoir (Figure 5-13). This is the same location, where ∆σzz is negative (Figure 
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5-11). With exception of this narrow localized negative value, the absolute value of 
∆σzz,eff decreases isotropically with increasing distance from the reservoir boundary. The 
magnitudes of ∆σxx,eff and ∆σzz,eff behave vice versa than in the case of the total stress 
changes. In x-direction is ∆σzz,eff larger than ∆σxx,eff, in z-direction is ∆σxx,eff larger than 
∆σzz,eff. 

In Figures 5-14, 5-15 the spatial distribution of the pore pressure stress coupling ratios, 
∆σxx/∆P (Figure 5-14) and ∆σzz/∆P (Figure 5-15), after 34 and 255 days of continuous 
fluid injection is illustrated. [Note: After short duration of injection (left subfigures) ∆P 
hasn’t diffused that far. In areas, the ∆P diffusion front has not reached, ∆P should be 
zero. However, due to numerical wiggling, marginal pore pressure changes, which can 
either be positive or negative, are generated in areas the ∆P diffusion front has not 
reached. This leads to large positive or negative pore pressure stress coupling ratios, 
displayed as dark red and dark blue areas. These regions have to be neglected in the 
analysis of pore pressure stress coupling ratios.] 

Despite ∆P and ∆σxx are changing inside the reservoir (Figures 5-9, 5-10), ∆σxx/∆P is 
constant there with a value of ∆σxx/∆P = 0.4 for both injection times (Figure 5-14). At 
the reservoir boundary, ∆σxx/∆P decreases stepwise to a value of about 0.25 inside the 
surroundings. Above and below the reservoir, ∆σxx/∆P declines with increasing distance 
to the reservoir boundary, becomes zero and even negative. This is caused by the 
negative stress changes ∆σxx in this area (Figure 5-10). Laterally of the reservoir, 
∆σxx/∆P increases with distance to the reservoir boundary. Those areas of pore pressure 
stress coupling decrease and increase are spreading out with duration of injection. 
 

 
Figure 5-14. Pore pressure stress coupling ratio ∆σxx/∆P on vertical cross section after 34 days (left) 
and 255 (right) days of continuous fluid injection. The black solid line displays the reservoir 
boundary. 

∆σzz/∆P is about 0.2 inside the reservoir, what is half of the value of ∆σxx/∆P. This is in 
agreement with the theoretical values for the long-term limits of the pore pressure stress 
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coupling ratios, which determines ∆σzz/∆P to be half the value of ∆σxx/∆P (Eqs. 4.36, 
4.38). Due to the horizontally extended shape of the reservoir, ∆σxx can be assumed as 
radial stress change, ∆σzz as tangential stress change. In contrary to ∆σxx/∆P, ∆σzz/∆P 
changes continuously at the top and bottom reservoir boundary. With increasing 
distance to the reservoir boundary ∆σzz/∆P increases. In lateral direction, ∆σzz/∆P 
declines within short distance from the reservoir boundary, and changes the sign from 
positive to negative. This is caused by the negative stress change in this area (Figure 
5-11). With increasing lateral distance to the reservoir boundary, ∆σzz/∆P further 
declines, leading to larger negative values. The positive ∆σzz/∆P region above and 
below the reservoir, and the negative ∆σzz/∆P region laterally of the reservoir are 
spreading out with duration of injection. 
 

 
Figure 5-15. Pore pressure stress coupling ratio ∆σzz/∆P on vertical cross section after 34 days (left) 
and 255 days (right) of continuous fluid injection. The black solid line displays the reservoir 
boundary. 

 

5.4.4 Summary and interpretation 

Summarizing, the results of fluid injection induced pore pressure and stress changes 
inside an inhomogeneous poroelastic medium, that is described by an ellipsoidal 
reservoir embedded in surroundings (Figure 5-6), which have different poroelastic 
material properties (Table 10), show the following features: 

∆P, ∆σxx and ∆σzz are all affected by the material properties contrast between reservoir 
and surrounding. The permeability contrast causes the main effect on the pore pressure 
distribution, because it is a fluid material parameter, and therefore will affect ∆P, which 
is generated by the fluid distribution. In contrary, the difference of logarithmic bulk 
modulus and Poisson’s ratio, parameters of the solid rock, between reservoir and 
surroundings, shouldn’t have any effect on ∆P at all. The void ratio contrast with a 
factor of 3 between reservoir and surroundings is much weaker than the permeability 
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contrast with a factor of 100 between reservoir and surroundings. Hence, the 
permeability contrast plays the major role with respect to the pore pressure distribution. 
To verify this, ∆P is calculated inside the axis-symmetric model, with the permeability 
the only parameter varying between reservoir and surroundings. The result is shown in 
Figure 5-16. No obvious difference can be seen between this ∆P distribution and Figure 
5-9, that displays the ∆P distribution of the axis-symmetric model with material 
properties as given in Table 10. Therefore, the influence of the other material property 
contrast is marginal compared to the effect of the permeability contrast or not present. 
 

 
Figure 5-16. ∆P distribution after 255 days of fluid injection into axis-symmetric model. 
Inhomogeneity is given only by different permeabilities of reservoir (kf = 1.0E-5 m/s) and 
surroundings (kf = 1.0E-7 m/s). The black solid line displays the reservoir boundary. 

For the sake of completeness, Figures 5-17 – 5-19 illustrate the pore pressure 
distributions of the axis-symmetric model, in which only one single material property 
varies between reservoir and surroundings. Neither the logarithmic bulk modulus 
(Figure 5-17), nor the Poisson’s ratio (Figure 5-18), nor the void ratio (Figure 5-19) 
show any influence on the pore pressure distribution. In all three cases, ∆P is spreading 
out isotropically, and the distribution is radial symmetric. Hence, only the difference in 
permeability is affecting the distribution of pore pressure. 

The higher permeability of the reservoir leads the pore pressure to diffuse faster inside 
the reservoir than in the surroundings. At the reservoir boundary diffusion is retarded 
due to the lower permeability in the surroundings, what leads to a) a fast decreases of 
∆P with distance from the reservoir boundary, b) increasing pore pressure inside the 
reservoir (Figures 5-7 – 5-9), once the pore pressure has reached the reservoir boundary. 
Therefore, the ∆P distribution reflects the shape of the reservoir, and thus P is strongest 
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influenced close to the injection source and inside the reservoir. Outside the reservoir, P 
is stronger and more widely affected above and below the reservoir than lateral of it, 
because the top and bottom reservoir boundaries are closer than the lateral boundary, 
and thus P had more time to diffuse into the surroundings above and below the injection 
point. 

 
Figure 5-17. ∆P distribution of the axis-symmetric model with only a logarithmic bulk modulus 
contrast between reservoir (κ = 0.03) and surroundings (κ = 0.01), after 267 days of fluid injection. 
The black solid line displays the reservoir boundary. 

 
Figure 5-18. ∆P distribution of the axis-symmetric model with only the Poisson’s ratio varying 
between reservoir (ν = 0.4) and surroundings (ν = 0.3), after 267 days of fluid injection. The black 
solid line displays the reservoir boundary. 
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Figure 5-19. ∆P distribution of the axis-symmetric model, where the inhomogeneity is given by only 
the void ratio between reservoir (e = 0.3) and surroundings (e = 0.1), after 257 days of fluid 
injection. 

∆σxx shows a similar distribution like ∆P, with the difference that the decrease at the 
reservoir boundary occurs in a shorter distance, and the apex of the ellipsoid creates an 
anomaly of lower ∆σxx values. This anomaly is not present in the ∆P distribution, which 
is only affected by the permeability contrast, as shown before. Thus, the permeability 
contrast can’t be in charge of the anomaly in the σxx distribution. Figure 5-20 shows the 
σxx distribution calculated in a model, where permeability is the only material property 
that differs between reservoir and surroundings. In this case, the anomaly of low ∆σxx 
values in the surroundings close to the apex of the reservoir is not existent. This means, 
it is not generated by the permeability contrast, but by the material property difference 
of either the logarithmic bulk modulus or the Poisson’s ratio or the void ratio or any 
combination out of these three. To investigate this feature, ∆σxx is calculated in models 
characterized by the contrast of one single of those three material properties between 
reservoir and surroundings. Only the ∆σxx distribution of the model the logarithmic bulk 
modulus is varying between reservoir and surroundings shows the spot of low ∆σxx near 
the apex of the reservoir (Figure 5-21), similar to Figure 5-10. The other two material 
properties (Poisson’s ratio and void ratio) don’t lead to this discrete minimum in the 
change of σxx. 

Nevertheless, ∆σxx is affected by the permeability contrast, as shown in Figure 5-20. As 
the permeability is a fluid material property, one should assume that ∆σxx is not 
influenced by it. The reason why ∆σxx depends on the permeability distribution is pore 
pressure stress coupling. σxx is radial stress along the x-axis, and the ellipsoidal 
reservoir is elongated in that direction. Therefore, σxx approximately is radial stress 
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inside the reservoir. As known from theory (Eq. 4.36), the coupling between pore 
pressure and the radial stress is strongest. ∆P is large inside the reservoir due to the 
permeability contrast, then, due to pore pressure stress coupling, also the radial stress 
change is large in this area, what can be seen in Figure 5-20. Hence, the permeability 
contrast between reservoir and surroundings is indirectly influencing the ∆σxx 
distribution, what pore pressure stress coupling is responsible for. 
 

 
Figure 5-20. σxx distribution of the axis-symmetric model, where the inhomogeneity is given only by 
a different permeability of reservoir (kf = 1.0E-5 m/s) and surroundings (kf = 1.0E-7 m/s), after 255 
days of fluid injection. 

Like ∆σxx, also ∆σzz is affected by the permeability distribution of the model, what can 
be explained by pore pressure stress coupling, analogue to the coupling between ∆P and 
∆σxx. In Figure 5-22 the ∆σzz distribution generated in an axis-symmetric model, with 
the only parameter that changes between reservoir and surroundings is the permeability, 
is displayed. Note the similarity between Figures 5-22 and 5-11, and thus the strong 
influence of the permeability on ∆σzz in comparison to the influence of other 
parameters. 

As the effective stress changes ∆σxx,eff and ∆σzz,eff are calculated from ∆P and the stress 
changes, also ∆σxx,eff and ∆σzz,eff has to depend on the permeability contrast between 
reservoir and surroundings, like ∆P, ∆σxx and ∆σzz do. Therefore, the effective stress 
changes are calculated in a model, where the permeability is the only material property 
differing between reservoir and surroundings, in order to investigate the effect of the 
permeability contrast on ∆σxx,eff and ∆σzz,eff. Figure 5-23 shows that, as expected, ∆σxx,eff 
as well as ∆σzz,eff depend on the permeability distribution of the model. 
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Figure 5-21. σxx distribution of the axis-symmetric model with the logarithmic bulk modulus as the 
only parameter differing between reservoir (κ = 0.03) and surroundings (κ = 0.01), after 267 days of 
fluid injection. 

 
 

 
Figure 5-22. ∆σzz distribution of a axis-symmetric model characterized by different permeability 
between reservoir (kf = 1.0E-5 m/s) and surroundings (kf = 1.0E-7 m/s), after 255 days of fluid 
injection. 
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Figure 5-23. ∆σxx,eff (left) and ∆σzz,eff (right) depending only on the permeability contrast between 
reservoir (kf = 1.0E-5 m/s) and surroundings (kf = 1.0E-7 m/s), after 255 days of fluid injection. 

In summary, permeability is the only parameter influencing the pore pressure 
distribution. It is my intention to analyse the poroelastic coupling effect of 
inhomogeneously distributed pore pressure on stress. To avoid any effect on the stress 
induced by inhomogeneous distributed rock parameters such as bulk moduli that do not 
affect the pore pressure, I have decided that in the following inhomogeneity is given by 
only the permeability. 
 

5.5 Inhomogeneous 3D model 
With the axis-symmetric model pore pressure and stress distribution can be calculated 
like in full space, but it is limited to two directions. In order to model pore pressure and 
stress distribution in real full space, a 3D model is used next. Then, the dependency of 
the stress components, and thus of pore pressure stress coupling, on all space directions 
can be investigated. Furthermore, a 3D model enables to apply an initial 3D stress state 
in order to define a tectonic stress regime. Therefore, also the influence of different 
tectonic stress regimes on the state of stress is investigated here. 

5.5.1 Model setup, boundary conditions, material properties 

The 3D poroelastic model is represented by a cube with an edge length of 10 km. This 
cube consists of two parts, an inner cuboid and its surroundings. Figure 5-24 shows the 
entire model (left) and a vertical cut through the model (right) to see structure and size 
of the inner and outer parts. The yellow part indicates the inner cuboid, which is 
representing a reservoir, and the outer part or surroundings are mapped in blue. The 
bottom and the sides of the model are fixed in normal direction, undrained boundary 
conditions are applied to the model boundaries, i.e. no fluid flow is allowed through the 
model boundaries. Fluid flow is generated by continuous fluid injection at one point. 
The injection point is located inside the reservoir at 5 km depth. 
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Figure 5-24. Setup of the inhomogeneous poroelastic 3D model. The permeability of the inner block 
(yellow), representing a reservoir with the dimensions of 3.4 x 4.3 x 2.7 km3, is by a factor of 10 
higher than in the outer region (blue). The injection point is located at x = 5 km, y = 4 km, z = 5 km, 
and with respect to the reservoir central in x- and z-direction, and at distances of 1.7 km and 2.7 km 
from the smaller and the larger, respectively, reservoir boundary in y-direction. The element size is 
100 m inside the reservoir and increases up to 370 m at the model boundaries. The entire model 
consists of 146048 nodes and of 142443 hexahedral elements. 

As demonstrated in the previous section, a permeability contrast between reservoir and 
surroundings has a much higher impact on the pore pressure and stress distribution than 
other material properties. Therefore, the same poroelastic rheology was chosen for both 
the cuboid and the surroundings, with exception of the permeability or diffusivity, 
respectively, which in the reservoir is 10 times higher than in the surroundings. By 
initial conditions, the saturation is set to χ = 1, what means that the medium is fully 
saturated. The initial void ratio is e0 = 0.4. For the full poroelastic material description, 
see Table 11. 

To investigate the influence of the tectonic stress regime on fluid flow induced stress 
changes, gravity as well as an initial state of stress is applied to the model. The vertical 
stress is given by the weight of the overburden, the horizontal stresses are initially set to 
a certain ratio of the vertical stress. To realize a normal faulting regime, I have set the 
maximum horizontal stress to 0.9 · σV in x-direction, the minimum horizontal stress to 
0.6 · σV in y-direction. To apply a strike-slip regime to the model, the factor of the 
maximum horizontal stress was increased to 1.1 · σV in x-direction. Therefore, for the 
normal faulting regime principal stresses are orientated: 
x-direction: σ2 = σH, y-direction: σ3 = σh, z-direction: σ1 = σV

Analogous, for the strike-slip regime, the principal stresses are orientated: 
x-direction: σ1 = σH, y-direction: σ3 = σh, z-direction: σ2 = σV
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Table 11. Injection rate (values indented) and material properties of the 3D inhomogeneous 
poroelastic model. The inhomogeneity is generated by only the permeability; related properties are 
printed bold. 

 Parameter Reservoir Surroundings 

Kg [GPa] 40 40 

Kf [GPa] 2 2 

κ 0.025 0.025 

ν 0.25 0.25 
el
tp  [MPa] 250 250 

e 0.4 0.4 

kf [m/s] 2.0E-7 2.0E-8 

ρf [kg/m3] 1000 1000 

ρS [kg/m3] 2500 2500 
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A

Q
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Vfl [m3/s]                                              0.1  

Kd [GPa] 14 14 

ϕ 0.29 0.29 

Ku [GPa] 16.8 16.8 

Tr
an

sf
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m
at

io
n-

pa
ra

m
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s 

K [m3s/kg] 2.0E-11 2.0E-12 

α 0.65 0.65 

λ [GPa] 8.4 8.4 

µ [GPa] 8.4 8.4 

λu [GPa] 11.2 11.2 

C [m2/s] 0.12 0.012 

   
R

ud
ni

ck
i-p

ar
am

et
er

s 

Φ/ρf [m3/s]                                              0.1  
 

5.5.2 Investigation 

The model setup allows calculating spatio-temporal pore pressure and stress changes 
inside the reservoir and the surroundings, which are induced by continuous fluid 
injection at a point source. Furthermore, the modelled stress changes are used to 
calculate spatio-temporal changes in maximum shear stress ∆τmax. Here, ∆τmax is used as 
a parameter to investigate the effect of inhomogeneous pore pressure stress coupling. In 
addition ∆τmax gives information whether rock is brought closer to failure or is stabilized 
due to pore pressure stress coupling affecting stress components differently. The main 
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objectives are a) to investigate how the permeability contrast influences the temporal 
and spatial distributions of pore pressure and stress. Due to inhomogeneous pore 
pressure stress coupling this effect on the stress components is investigated for different 
spatial directions; b) to analyse the poroelastic part of the effect of fluid injection on the 
rock stability in terms of change in maximum shear stress ∆τmax; c) to investigate the 
influence of the tectonic regime on the distribution of ∆τmax, and thus on rock stability. 

5.5.3 Results 

Pore pressure and stress 
Pore pressure distributions after 3, 23 and 259 days of continuous fluid injection are 
shown in Figure 5-25 as vertical cross sections through the injection point. In Figures 
5-26 – 5-28 the distributions in stress change of the three normal stresses σii are plotted, 
induced by continuous fluid injection of 23 and 259 days. The results are mapped on 
three planes, rectangularly orientated along the axes of the rectangular coordinate 
system of Figure 5-24. The cutting point of the three planes is the injection source. The 
pore pressure and stress results shown here are calculated for a normal faulting regime. 

The stress distributions ∆σxx (Figure 5-26), ∆σyy (Figure 5-27) and ∆σzz (Figure 5-28) 
show all a similar pattern, which differs only with the orientation of the stress 
component. In all cases, ∆σii is largest at the injection point and then decreases with 
distance to the point source. The distributions of the normal stresses are elongated in the 
direction of their stress components, e.g. σxx in x-direction. These are also the directions, 
in which normal stresses are radial stresses. 
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Figure 5-25. ∆P distribution after 3 (top, left), 23 (top, right) and 259 days (bottom) of continuous 
fluid injection. White rectangles show the boundary between the inner reservoir and the 
surroundings. 
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Figure 5-26. ∆σxx distribution after 23 days (left) and 259 days (right) of continuous fluid injection. 
At the same distance to the injection point, ∆σxx is larger in x-direction than in y- and z-directions. 

 

 

 

  
Figure 5-27. ∆σyy distribution after 23 days (left) and 259 days (right) of continuous fluid injection. 
At the same distance to the injection point, ∆σyy is larger in y-direction than in x- and z-directions. 
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Figure 5-28. ∆σzz distribution after 23 (left) days and 259 days (right) of continuous fluid injection. 
At the same distance to the injection point, ∆σzz is larger in z-direction than in x- and y-directions. 

 
Change in maximum shear stress 
To analyse the anisotropic pore pressure stress coupling, the change in maximum shear 
stress ∆τmax is investigated. ∆τmax is also a measure whether rock is brought closer to 
failure (∆τmax > 0) or is stabilized (∆τmax > 0). Figure 5-29 shows the spatial ∆τmax 
distribution in a normal faulting regime after 23 days of continuous fluid injection on 
three cross-sections, each through the injection point. 

Along the z-direction, the direction of σV, ∆τmax is positive, what is equal to an increased 
differential stress and a larger Mohr circle. In those areas the poroelastic coupling 
would have brought rock closer to failure. Along the y-direction or the σh-direction 
∆τmax is negative. This means, smaller differential stresses and smaller Mohr circles in 
this direction. In x-direction or σH-direction no change in maximum shear stress can be 
observed. 
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Figure 5-29. Spatial distribution of maximum shear stress in a normal faulting regime after 23 days 
of continuous fluid injection plotted on three different cross-sections. Note the different orientations 
of the cross-sections. 

The temporal evolution of ∆τmax in a normal faulting regime is shown in three plots after 
3, 23 and 259 days of continuous fluid injection (Figure 5-30). The results are plotted on 
a cross-section through the injection point. The second subfigure in Figure 5-30 is 
equivalent with the third subfigure of Figure 5-29. 
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Figure 5-30. Temporal evolution of maximum shear stress in a normal faulting regime displayed on 
vertical cross-sections through the injection point after 3, 23 and 259 days of continuous fluid 
injection. 

Looking at the maximal magnitude of ∆τmax, one will notice that already after 3 days of 
injection, ∆τmax has reached almost its maximum values. With increasing injection time, 
∆τmax is spreading out, without increasing its magnitude. 
 
Influence of tectonic stress regime on maximum shear stress change 
To investigate the effect of different tectonic stress regimes on the poroelastic coupling 
and therefore on the change in maximum shear stress, continuous fluid injection in a 
strike-slip regime is modelled and the results are shown here. These results can be 
compared to those of the previous section, where poroelastic coupling was investigated 
in a normal faulting regime. The results of ∆τmax in a strike-slip regime, induced by 
continuous fluid injection are illustrated in Figure 5-31. The plots show three different 
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cross-sections, each through the injection point, of ∆τmax distributions after 23 days of 
fluid injection. 
 

   

    
Figure 5-31. Spatial distribution of maximum shear stress in a strike-slip regime on three different 
cross-sections trough the injection point after 23 days of continuous fluid injection. Note the 
different orientations of the cross-sections. 

The distributions are similar to those of the normal faulting regime (Figure 5-29). There 
is no difference in the maximal magnitude of ∆τmax. Different are the directions, in 
which positive maximum shear stress changes occur. ∆τmax is positive in x-direction or 
σH-direction, negative in y-direction or σh-direction, and zero in z-direction or σV-
direction. In comparison with the normal faulting regime results, the directions of 
positive and zero maximum shear stress change have exchanged. Again, this means that 
the spatial occurrence of induced seismicity is a function of the tectonic stress regime. 
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5.5.4 Interpretation 

Pore pressure and stress 
∆P (Figure 5-25) shows a spherical distribution inside the reservoir as long as the 
boundary is not reached, while ∆P is decreasing with distance from the injection point. 
The shape of the reservoir has only small impact on the ∆P distribution compared to the 
inhomogeneous axis-symmetric model (Figure 5-6). The reason is that the cuboidal 
shape of the reservoir is less striking and more similar to a sphere than the ellipsoidal 
reservoir of the axis-symmetric model. Because ∆P is diffusing spherically in 
homogeneous media, the ∆P distribution is weakly influenced by the cuboidal sphere-
similar shape. Nevertheless, the permeability contrast between reservoir and 
surroundings affects the ∆P distribution locally. The larger permeability of the reservoir 
leads P to diffuse faster inside the reservoir, the lower permeability of the surroundings 
slows down the pore pressure diffusion process into and in the surroundings, leading ∆P 
to decrease strongly within short distance around the reservoir boundary. This can be 
seen at the boundaries in vertical direction of the injection point. These boundaries are 
closer than the other ones, so that pore pressure perturbation arrives these boundaries 
first, and pore pressure change there is larger than at the other boundaries after the same 
injection time. As pore pressure diffusion is slowed down in the surroundings, fluid is 
accumulating inside the reservoir, what leads to a pore pressure build-up inside the 
reservoir with duration of injection. The higher permeability of the reservoir causes pore 
pressure changes to spread out faster inside the reservoir than inside the surroundings. 
After 259 days of fluid injection, pore pressure is diffused wider in y-direction than in z-
direction. 

At the injection point stress changes are maximal and decline with increasing distance 
to the point source, for constant time. With duration of injection stress changes spread 
out and increase at constant location. The normal stress changes show a preferential 
direction of propagation depending on the direction of the normal stress component, e.g. 
∆σxx in x-direction. These are also the directions, in which normal stresses are radial 
stresses. σxx is radial stress in x-direction and tangential stress in y- and z-directions. 
Therefore, this propagation behaviour can be explained by pore pressure stress 
coupling. As the coupling is strongest in radial direction and weakest in tangential 
direction, the radial stress changes, e.g. ∆σzz in z-direction with respect to the injection 
point, are larger than the tangential stress changes, e.g. ∆σzz in x- or in y-direction with 
respect to the injection point. Therefore, at the same distance to the injection point, 
radial stress changes are higher than tangential stress changes. This can be seen clearly 
after longer injection times, when the stress changes have spread out wider. The 
influence of the reservoir shape, i.e. of the permeability contrast between reservoir and 
surroundings, can still be observed, but it is superposed by the effect that the stress 
components are affected differently strong in different directions. 
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Change in maximum shear stress ∆τmax

Fluid injection induced maximum shear stress changes in a normal faulting regime 
show that ∆τmax has its positive maximum in the direction of the maximum principal 
stress σV. In the direction of σH (x-direction) no ∆τmax changes occur. In σh-direction (y-
direction) ∆τmax shows its negative maximum. This is consistent with the results of the 
analytical investigation (chapter 4.2). They show that fluid injection induced stress 
changes lead to increasing differential stresses in direction of the maximum principal 
stress (σV in a normal faulting regime), to zero differential stress changes in direction of 
the intermediate principal stress (σH in a normal faulting regime), and to negative 
differential stresses in direction of the minimum principal stress (σh in a normal faulting 
regime). 

The temporal evolution of the ∆τmax distribution shows that already after short injection 
time ∆τmax is almost maximal. With duration of injection ∆τmax spreads out from the 
injection point, increasing its maximal magnitude only slightly. This also is in 
agreement with the analytical results (chapter 4.2), where it is shown that for short 
injection times the differential stress changes are strongest. On the contrary, pore 
pressure change is smallest for short injection times. Therefore, shortly after start of 
injection, the difference in the coupling between P and the stress components have the 
biggest influence on the rock stability. After 3 days of injection ∆τmax and ∆P are in the 
same order of magnitude in the area of maximal ∆τmax. For longer injection times ∆P 
increases much more than ∆τmax , thus the inhomogeneous pore pressure stress coupling 
effect becomes less important compared to the effect of ∆P on the effective stresses. 
 
Influence of tectonic regime on ∆τmax

Fluid injection into a strike-slip regime shows that the direction, in which maximal and 
minimal ∆τmax occur, exchanges. ∆τmax now is maximal in x- or σH-direction and zero 
maximum shear stress change is observed in z- or σV-direction. This exchange happens 
due to the change in tectonic regime. According to the theory, ∆τmax is maximal in 
maximum principal stress direction, and zero in intermediate principal stress direction. 
Therefore, the directions has to exchange with a change from normal faulting regime to 
strike-slip regime. Thus, the modelling results validate the theory. 

Summing up, pore pressure stress coupling generates fluid injection induced stress 
changes, which lead to areas of increased and decreased differential stress changes and 
therefore maximum shear stress changes. The orientation, maximal and minimal shear 
stress changes occur, depends on the tectonic stress regime. In a normal faulting regime, 
the area, where poroelastic coupling has the biggest influence on the rock stability is 
above and below the injection point (σV-direction), in strike-slip or thrust faulting 
regimes horizontally of the injection point in σH-direction. 
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6 Application to real reservoir geometry 
So far, the analytical and numerical investigations of pore pressure stress coupling show 
that numerical results match the analytical solutions, and numerical and analytical 
results are consistent. Therefore, in the next step poroelasticity is applied to a model 
with more complex geometry representing the structure of an reservoir. Under fluid 
extraction the poroelastic coupling between pore pressure and stress changes is 
modelled and analysed. Observed borehole breakout orientations derived from logging 
data along nine boreholes within the model volume are used to calibrate the numerical 
model. This is done by comparison of modelled and measured borehole breakout 
orientations at the locations the borehole breakouts were observed in the field. 
 

6.1 Borehole breakouts 

6.1.1 Definition 

Drilling of a borehole means removing material from the subsurface which cannot 
support the surrounding rock anymore longer. In a consequence the state of stress is 
changing in the surroundings of the wellbore and concentrating at the borehole wall. 
When the circumferential stress around the wellbore wall exceeds the compressive 
strength of the rock, shear failure occurs on conjugate failure planes, which causes 
pieces of the borehole wall to spall off (Zoback et al., 1985; Bell, 1990). These stress-
induced enlargements of the wellbore cross section are called borehole breakouts (Bell 
and Gough, 1979; Tingay et al., 2005). Figure 6-1 shows the result of a lab experiment 
simulating borehole breakouts around a hollow cylinder. The stress concentration 
around the cylinder wall leads to breakouts and an elongation in σh-direction. 
 

 
Figure 6-1. Borehole breakouts around a hollow cylinder, performed by CSIRO, Division of 
Geomechanics, in a lab test. Breakouts occur in σh-direction, perpendicular to σH. 

Kirsch (1898) derived equations in polar coordinates for the stresses around a circular 
hole with radius a (Figure 6-2), depending on the principal stresses, σH, σh, that act 
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orthogonal to the axis of the hole, the azimuth ϑ with respect to the direction of σH, the 
distance r from the centre of the hole (r ≥ a), and the fluid pressure p in the hole (Zheng 
et al., 1989). According to Jaeger et al. (2007), the circumferential stress around the 
wellbore σϑϑ, which is responsible for the possible occurrence of borehole breakouts 
(Tingay et al., 2005), is given by 
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σϑϑ is varying with the azimuth ϑ around the hole according to cos2ϑ. As the cosine is a 
function of 2ϑ, σϑϑ is π-periodic, i.e. σϑϑ has two maxima and two minima between 0 ≤ 
ϑ ≤ 2π. The minimum value of σϑϑ is given by σϑϑ,min = 3σh - σH - p for ϑ = 0 and ϑ = 
2π. The maximum value of σϑϑ is given by σϑϑ,max = 3σH - σh - p for ϑ = p/2 and ϑ = 
3π/2 (Zheng et al., 1989). 

 
Figure 6-2. Circumferential stress σϑϑ at the wall of a circular hole with the radius a, induced by 
the horizontal principle stresses σH and σh acting orthogonal to the wall of the hole. The angle ϑ 
gives the direction of σϑϑ at the wall of the hole with respect to the direction of σH. 

A borehole breakout will occur if σϑϑ exceeds the compressive strength of the rock. 
According to the equations of σϑϑ,max and σϑϑ,min above, σϑϑ is maximal in σh-direction 
and minimal in σH-direction. Therefore, borehole breakouts will occur in σh-direction, if 
σϑϑ exceeds the compressive strength of the rock. 

Figure 6-3 illustrates the variation of σϑϑ with the azimuth ϑ around a circular hole, and 
thus the angular range in which borehole breakouts would occur, under the assumption 
of principal stresses Hσ̂  and hσ̂  normalized to σh, with Hσ̂  = 1.6 and hσ̂  = 1.0. Then, 
for zero fluid pressure p, the variation of σϑϑ with ϑ is calculated by Eq. 6.1. Under this 
constellation, σϑϑ,max = 3.8 for ϑ = ±90°, i.e. in direction of σh, and σϑϑ,min = 1.4 for ϑ = 
0°, i.e. in σH-direction. To define a criterion for the occurrence of borehole breakouts, 
the compressive strength of the rock, normalized to σh, is set to 3.4. Then, σϑϑ exceeds 
the compressive rock strength in σh-direction ±25°. 
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This example points out the stress concentration at the wall of a circular hole. For the 
considered case, σϑϑ,min is by a factor of 1.4 larger than σh, and σϑϑ,max even is by a 
factor of 2.375 larger than σH. The ratio σH/σh is the key parameter for the stress 
concentration around a circular hole. For an isotropic stress state, i.e. σH/σh = 1, σϑϑ is 
constant around the hole and has twice the magnitude of the far field stress. The larger 
σH/σh the larger the difference between σϑϑ,max and σϑϑ,min and the larger the magnitude 
of the maximum circumferential stress, and therefore the likelihood for borehole 
breakouts to occur. 
 

 
Figure 6-3. σϑϑ at the wall of a circular hole, depending on azimuth ϑ. Principal stresses σH and σh 
are acting at the wall of the hole. In this example, stresses normalized to σh were chosen with σH/σh 
= 1.6 and σh/σh = 1.0. Then, σϑϑ,min = 1.4 and σϑϑ,max = 3.8, according to Eq. 6.1. Figure is modified 
after Hillis and Reynolds (2000). 

 

6.1.2 Application to reservoir model 

A stress field, represented by the principal stresses σH and σh, generates a 
circumferential stress at the wall of a circular hole with a wide range of variation 
depending on the ratio σH/σh. (Figure 6-3). Theory (Kirsch, 1898) shows that borehole 
breakouts occur in the direction of σh. This means, that the direction in which borehole 
breakouts occur, and the direction of the horizontal principal stresses are connected to 
each other. Therefore, measuring stress-induced borehole breakouts are an important 
indicator for the direction of the principal stresses (Bell and Gough, 1979; Hickman et 
al., 1985; Plumb and Cox, 1987; Barton et al., 1988). Zoback and Zoback (1988) show 
that breakout orientations observed in the upper crust and independent stress 
measurements correlate to each other, and conclude that borehole breakouts give 
reliable stress orientations (Barton et al., 1988). 
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Hence, borehole breakouts and the determination of the directions of the maximum and 
minimum horizontal stresses can be used as a parameter to calibrate the state of stress of 
a geomechanical model. The state of stress in a geomechanical model, which is a 
superposition of gravitational stress and tectonic stress, can be calculated at locations in 
the model, where borehole breakouts are observed in reality. Using the modelled state 
of stress, the orientation of the horizontal principal stresses can be calculated and 
compared to the directions of observed borehole breakouts. 

In this case here, the geometries themselves of the boreholes are not included in the 
geomechanical reservoir model. This means that the local influence of the borehole on 
the surrounding stress field cannot be determined. Element nodes nearest to the 
wellbore trajectories were projected onto those paths. Hence, virtual wellbore 
trajectories exist in the model, with distinct points (element nodes) describing the paths 
of the trajectories. At those element nodes the state of stress is analysed in order to 
calculate the directions of the minimum horizontal stress. Because the magnitudes of the 
circumferential stresses are not compared to the compressive rock strength, the 
directions of the minimum horizontal stresses give the orientation of potential borehole 
breakouts. This means, if the circumferential stress would exceed the compressive rock 
strength at the analysis points, then the direction of a borehole breakout would be given 
by the calculated direction of the minimum horizontal stress. 

In the end, by modification of boundary conditions applied to the geomechanical 
reservoir model, the state of stress changes and the modelled stress orientations can be 
adjusted to the observed breakout orientations. This procedure is used to calibrate the 
given geomechanical reservoir model. 

6.1.3 Borehole breakouts along inclined wellbores 

So far, a planar circular hole was considered, so that Kirsch’s (1898) equation to 
calculate the stress concentration around it could be applied. But the equation of Kirsch 
(1898) is also valid for a vertical hollow cylinder, what is nothing else than a circular 
hole extended in vertical direction, which can represent a vertical borehole. Therefore, 
Kirsch’s equation can be used to calculate the stress concentration and thus the potential 
breakout orientation around a vertical borehole. 

In general, boreholes are not always drilled vertically, but more or less deviated from 
the vertical and with changing directions, in order to drill around obstructions to reach 
oil and gas reservoirs. Hydrocarbon industry uses directional drilling, because it is more 
efficient and more economic (Cooper, 1994). In deviated wells with complex 
trajectories, the principal stresses are not aligned with the wellbore axis. Thus, it is 
necessary to have techniques to determine the stresses along such wellbores (Zoback et 
al., 2003). 
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Peska and Zoback (1995) have investigated breakout directions in inclined wellbores for 
different tectonic regimes, i.e. under different stress states. They show that the breakout 
orientation is strongly dependent on the current state of stress and the inclination and 
orientation of the wellbore. In consequence, Peska and Zoback (1995) and Zoback et al. 
(2003) derived a mathematical description to transform the state of stress given from a 
global geographical coordinate system  into a local coordinate system orientated along 
the however changing wellbore trajectory. Figure 6-4 shows the local wellbore 
coordinate system, xb, yb, zb, which is aligned along the wellbore and rotated by the 
angles α an ϕ from the global geographical coordinate system, X (north), Y (east), Z 
(down). 

 
Figure 6-4. Local rectangular borehole coordinate system, xb, yb, zb, for an inclined wellbore with 
respect to a global geographical coordinate system, X, Y, Z. The position of a point P at the borehole 
wall can be expressed in terms of the local wellbore coordinate system, rotated by δ and ϕ with 
respect to the global coordinate system. Figure modified after Peska and Zoback (1995). 

Peska and Zoback (1995) describe the transformation of a principal stress tensor (σ1, σ2, 
σ3) from a geographical coordinate system (X, Y, Z) into a local wellbore coordinate 
system (xb, yb, zb). The transformation is done by multiplication of the principal stress 
tensor with rotation matrices: 

T
bSS

T
Sb RRRR σσ =           (6.2) 

σ is the stress tensor in the wellbore coordinate system, σS is the principal stress tensor, 
Rb and RS are rotation matrices, the superscript T indicates the transpose of a matrix. 
According to Peska and Zoback (1995) Rb and RS are given as: 
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δ is the azimuth of the horizontal projection of the wellbore measured clockwise from 
geographic north (X) and ϕ is the angle between the borehole axis and the vertical 
(Figure 6-4). α, β, γ are rotation angles to transform the geographic coordinate system 
(X, Y, Z) via the systems (X’, Y’, Z’) and (X”, Y”, Z”) into a system aligned to the 
principal stresses σ1, σ2, σ3. In particular, α describes a positive rotation about the Z-
axis, β a positive rotation about the Y’-axis and γ a positive rotation about the X”-axis. 

Based on this transformation (Eq. 6.2), the stresses around an arbitrarily inclined and 
orientated wellbore can be calculated by Kirsch’s (1898) equations. Knowing the 
circumferential stress σϑϑ along the wellbore trajectory, the direction of potential 
borehole breakouts, which is equal to the direction of maximum circumferential stress, 
can be determined and compared to observed breakout orientations. This procedure is 
used in this thesis to calibrate the geomechanical model. 

For this purpose, a matlab program was written, transforming the stress tensor given in 
a geographic coordinate system into a local wellbore coordinate system. This program 
uses a transformation based on Eq. 6.2, determines the circumferential stress σϑϑ in the 
local wellbore coordinate system, the direction of maximum σϑϑ, and compares this 
direction with the orientation of observed borehole breakouts. For a more detailed 
description of the structure of the matlab program, see Appendix C. 
 

6.2 FE model 
A 3D finite element reservoir model was set up, and two different rheologies applied to 
the model in two steps. At first, a linear elastic rheology was used to model the static 
state of stress in the model area, and calculate potential borehole breakout orientations 
caused along wellbores inside the model volume by the acting stress state. These 
modelled potential borehole breakout orientations are used to calibrate the model by 
comparison with observed borehole breakout orientations. In a second step, poroelastic 
rheology was applied to the model to simulate reservoir depletion induced coupled pore 
pressure and stress changes and their influence a reorientation of the stress field. For 
both rheologies the same model geometry and same mesh was used. 
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6.2.1 Model generation 

To set up a finite element model, a few step are required. Here, I give a brief description 
of the softwares I have used during the model generation process, and for what kind of 
purpose they were used. 

The model was built up by the use of different software packages. The stratigraphic 
layers, and therefore the structure of the reservoir was given in Gocad. This software 
was used to define the model volume and to generate the final geometry of the model. 
The geometry was exported as surfaces and imported into HyperMesh. With this tool 
the model volume was discretised by finite elements. Also nodes and elements were 
defined, boundary conditions later are applied on. Finally, the finite element model was 
exported as a text file, the so-called Abaqus input file, with all information about the 
geometry of the model. Then, this text file was edited in order to assign the correct 
element type to the elements, to define material properties, to apply boundary 
conditions and initial conditions to the model, and to generate the calculation step. Then 
Abaqus was used as solver for the numerical problem. 

6.2.2 Model setup 

The reservoir model consists of ten anticlinal layers with decreasing flexure from the 
bottom to the top (Figure 6-5). Eleven wellbores are located in the model area (Figure 
6-6). The wellbores themselves are not included as part of the model. Only the wellbore 
trajectories are imported into the model, to project element nodes onto the trajectories in 
order to calculate results at exact wellbore path locations. This is necessary, as the only 
parameter to calibrate the model, are orientations of borehole breakouts, which occurred 
along those wellbores paths. 
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Figure 6-5. Setup of the 3D finite element model of an oil reservoir, consisting of ten layers, which 
are named from the top to the bottom by the numbers 1 to 10. The productive series are located in 
layer 6, in depths between of ca. 2.4 and 3.8 km. This model setup is used for both, elastic and 
poroelastic rheology with changing material parameters between the layers. The entire model 
volume is meshed by 263088 hexahedral elements with an average resolution of 120 m in vertical 
direction and of 200 m in horizontal direction. 

 

 

 
Figure 6-6. Wellbore trajectories inside the model area. The wellbores themselves are not included 
in the model geometry. Element nodes are projected onto the wellbore trajectories, and thus are 
describing the wellpaths of the eleven wellbores in the model volume. Results are then calculated at 
those wellpaths element nodes. 
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6.3 Elastic material properties 
At first, a linear elastic material properties were used to model the static elastic field of 
stress, and to calculate potential borehole breakout orientations along the wellbore 
trajectories generated by the stress field. The modelled borehole breakout orientations 
are compared to observed ones, in order to calibrate the numerical model. 

6.3.1 Material parameters 

The linear elastic rheology is fully described by a set of two material parameters. Most 
common, the pairs Young’s modulus E and Poisson’s ratio ν, or first and second Lamé 
parameters λ and µ, respectively, are used. The Lamé parameters can be calculated from 
the wave velocities and the mass density. According to Mavko et al. (2009), the P-wave 
and S-wave velocities can be expressed by: 

ρ
µ

=Sv   
ρ

µλ 2+
=Pv            (6.5) 

Knowing the wave velocities and the density, the Lamé parameters are determined. 
Velocity logs and density logs of eleven wellbores inside the model volume are 
provided (Figure 6-7). Then the two Lamé parameters can be determined by Eqs. 6.5. E 
and ν, which are required as Abaqus input for the numerical modelling, can be 
expressed by λ and µ (Birch, 1961): 

µλ
µλµ

+
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λν
+

=
2

     (6.6) 

 

 
Figure 6-7. Velocity and density logs of the eleven boreholes inside the model volume are were 
provided to calculate Young’s moduli and Poisson’s ratios. 

No well-log data are available for the uppermost Layer 1, and well-log data of only one 
wellbore for Layer 2. All eleven wellbores end in layer 6, this means that only for Layer 
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2 to Layer 6 E and ν values can be derived from the velocity and density logs. The 
elastic material parameters of the four deepest layers are estimated by extrapolating the 
values of the upper layers. E and ν are calculated from the velocity and density logs by 
combining Eqs. 6.5 and 6.6. Figure 6-8 shows the variation of E and ν with depth along 
one of the eleven wellbores. E increases and ν decreases with depth. Therefore, both 
values are not constant within the each layers, but increase or decrease, respectively, 
more or less strongly. 

On the one hand it is helpful to have detailed information of material parameters and 
their spatial variation inside the model area; on the other hand one has to decide how 
this information can be included into a numerical model. Three facts have led to the 
decision to include E and ν as constants of each layer: 

1) Young’s modulus as well as Poisson’s ratio vary not with constant gradient with 
depth, but show a zigzag curve with extending range in deeper layers. E, for example, is 
oscillating by ± 1 MPa in Layer 2, and by ± 3 MPa in Layer 6, i.e. ± 25%, around the 
average. 

2) E and ν vary differently with depth along different wellbores. Figure 6-9 shows the 
variation of E and ν with depth of another wellbore, where the layers are deeper than in 
the case of Figure 6-8. Then, for the same layer E is larger and ν is smaller in the case 
of Figure 6-9. This means that the depth is influencing the E and ν distribution strongly. 

3) Information about E and ν distribution inside the model volume is available only 
along the wellbores, i.e. in a very distinct area. For the rest of the model volume, no 
information about the E and ν distribution is available. 

Due to the lack of information about Young’s modulus and Poisson’s ratio in a large 
part of the model volume, and the fact that both parameters change differently along 
different wellbores, the decision was made to use constant values for E and ν for each 
layer, which increase and decrease with depth, respectively, and represent an average of 
all values of the same layer. 
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Figure 6-8. Young’s modulus (left) and Poisson’s ratio (right) versus depth, derived from velocity- 
and density-log data of one of the eleven wellbores inside the model area. Both parameters vary 
with depth and within each layer. To find proper E and ν values for each layer, straight lines (green 
solid lines) are drawn and the average values of these lines (green dashed lines) are taken as 
representative values of these layers. 

Table 12 shows an overview of the density, the Young’s modulus and the Poisson’s 
ratio calculated from the density and velocity logs along the eleven wellbores inside the 
model volume. In the last column the values used for the numerical model are listed. 
The density and the Young’s modulus increase continuously with depth, whereas the 
Poisson’s ratio decreases. The values of the densities and the elastic properties are 
typical for mud and shales which are most present in the reservoir area. Schmitt et al. 
(1989) measure Young’s moduli and Poisson’s ratios of oil shales with a density 
between 2240 kg/m3 and 2310 kg/m3 in both laboratory tests and field experiments, and 
determine E ≈ 17 GPa, 0.25 < ν < 0.35 in the laboratory, and 27 GPa < E < 34 GPa in 
the field. Eseme et al. (2007) give values for the Young’s modulus and the Poisson’s 
ratio of oil shale as E ≈ 16 GPa and 0.2 < ν < 0.35. Lonardelli et al. (2007) consider for 
the investigation of anisotropy in shales soft shale and hard shale with densities of 2210 
kg/m3 and 2510 kg/m3, respectively. Ahmadov et al. (2009) analyse kerogen as part of 
shales with a density between 2320 and 2570 kg/m3, and determine 10 GPa < E < 15 
GPa. 

As the wellbores of the model area penetrate only the upper six layers, where density 
and velocity logs were recorded for layers 2 to 6, ρ, E and ν are unknown for layer 1 
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and layers 7-10. Therefore, the densities, Young’s moduli and Poisson’s ratios of layers 
1 and 7-10 are extrapolated based on the measurements in layers 2-6 (Table 12). Table 
13 gives the densities and elastic properties of those five layers. 
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Figure 6-9. Distribution of Young’s modulus (left) and Poisson’s ratio (right) with depth along 
another wellbore. E is increasing, ν decreasing with depth, similar to Figure 6-8. Note the higher 
Young’s modulus values here, which result from the greater depth of the layers along the wellbore 
here. 
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Table 12. Elastic material properties (E and ν) of Layers 2 to 6 calculated from velocity and density 
logs along eleven boreholes (BH). The last column contains the values of each layer used in the 
numerical model. 

  BH1 BH2 BH3 BH4 BH5 BH6 BH7 BH8 BH9 BH10 BH11 Model 

ρ [kg/m3]         2250   2250 

E [GPa]         4.0   4.0 

La
ye

r 2
 

ν         0.43   0.43 

ρ [kg/m3] 2280 2270   2300 2280   2310   2290 

E [GPa] 4.5 5.5   7.0 8.0   6.5   6.36 

La
ye

r 3
 

ν 0.41 0.40   0.38 0.38   0.40   0.40 

ρ [kg/m3] 2320 2310 2330 2310 2350 2330 2380 2340 2400 2300  2340 

E [GPa] 6.0 10.0 14.0 5.0 9.5 11.0 16.0 7.5 9.0 10.0  9.78 

La
ye

r 4
 

ν 0.39 0.35 0.23 0.41 0.36 0.36 0.33 0.40 0.37 0.40  0.36 

ρ [kg/m3] 2350 2370 2380 2330 2370 2340 2390 2380 2400 2350 2320 2360 

E [GPa] 8.0 14.5 16.0 10.0 14.0 15.5 19.0 11.0 15.0 15.0 14.0 13.58 

La
ye

r 5
 

ν 0.38 0.28 0.24 0.38 0.32 0.30 0.32 0.36 0.32 0.36 0.35 0.32 

ρ [kg/m3] 2370 2380 2400 2350 2390 2360 2410 2410 2420 2370 2350 2370 

E [GPa] 11.5 21.0 18.0 14.0 18.0 19.0 22.5 20.0 18.0 16.0 18.0 17.93 

La
ye

r 6
 

ν 0.31 0.23 0.27 0.32 0.24 0.28 0.31 0.28 0.27 0.33 0.33 0.28 

 
 
Table 13. Elastic material properties of Layer 1 and 7-10. The values are extrapolated from Layers 
2-6 (Table 12). 

Layer ρ [kg/m3] E [GPa] ν 

1 2200 2.0 0.45

7 2400 21.0 0.26

8 2450 28.0 0.24

9 2480 35.0 0.24

10 2550 50.0 0.24
 

6.3.2 Initial state of stress 

Applying the elastic material properties (Tables 12 and 13) to the numerical model, the  
first modelling step has the goal to receive an initial state of stress. In the following, I 
describe the procedures and boundary conditions, which were used to obtain the initial 
state of stress. 

The initial state of stress is obtained by applying gravity to the entire model volume. At 
the beginning no other constraints are applied to the model surface. The other model 
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boundaries are constrained in normal direction by zero displacement; no constraints are 
applied to the other degree of freedoms. The gravity leads to a compaction of the model 
volume in vertical direction due to the weight of the overburden. To avoid this 
compaction in the order of hundreds of meters, the model is pre-stressed with the state 
of stress the gravity generates. For this purpose, two calculations are required. In the 
first model run, the state of stress of the model volume is calculated after applying 
gravity and generating compaction. Then, this state of stress is exported in a file, and 
when starting the second model run, it is read in before gravity is applied. Thus, the 
model is pre-stressed by the state of stress the gravity is generating. In an idealized case, 
the pre-stressing would lead to zero compaction after the second model run. In reality, 
the compaction is not zero, because a numerical method includes approximations to 
obtain a state of equilibrium. Secondly, the state of stress is calculated at the integration 
points of the model elements, but then for the process of pre-stressing extrapolated to 
the element nodes. Anyway, in my case the pre-stressing reduced the compaction to the 
order of ~1 cm, what is sufficiently exact if compared to the model size of 7.4 km in 
vertical direction. 

This is the procedure used to obtain the initial state of stress. With only gravity acting, 
the vertical stress σV represents the load given by the weight of the overburden. As the 
model sides are fixed in normal direction, the horizontal stresses σH and σh can be 
calculated under uniaxial strain conditions by (Turcotte and Schubert, 2002) 

VhH σ
ν

νσσ
−

==
1

.           (6.7) 

With a Poisson’s ratio of 0.25, σH and σh result in 1/3 · σV for a representative number 
of a crustal rock (Turcotte and Schubert, 2002). Even for Poisson’s ratios higher than 
0.25, the horizontal stresses are smaller than the vertical stress. This means, the 
modelled initial state of stress will always represent an normal faulting regime (σV > σH 
> σh), what is not consistent with world-wide observed crustal stress regimes as 
displayed in the World Stress Map (Heidbach et al., 2008). Calculating the ratio of 
mean horizontal stress to vertical stress expressed by the k-value 
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,        (6.8) 

k results in 1/3 for ν = 0.25. Measurements at the drilling sites KTB (Brudy et al., 1997) 
and SAFOD (Hickman and Zoback, 2004) show that the k-value is much larger than 
1/3, approximately 1.0 at a depth of ~ 8 km and increases towards shallower depths. 
This means that the magnitudes of the horizontal stresses are not only made by the 
Poisson’s ratio effect, but must also be made by an additional effect. 

Sheorey (1994) presents an one-dimensional elasto-static thermal earth model to 
estimate stresses in the earth’s crust. In his earth model, Sheorey (1994) considers the 
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crust, the upper and lower mantle, which he subdivides in several slices. He 
parameterised his earth model’s structure in terms of thermal gradient, thermal 
expansion coefficient varying with temperature and depth, gravity and elastic constants 
varying with depth. Sheorey (1994) considers the effects of thermal expansion and 
gravitational compaction, and empirically derives an expression for the k-value for the 
uppermost kilometres of the crust 

 ⎟
⎠
⎞

⎜
⎝
⎛ ++=

H
Ek 1001.0725.0      (6.9) 

where E is the Young’s modulus [GPa] and H depth [m]. This leads to higher k-values, 
and thus to higher horizontal stresses close to the surface, as observed (Brudy et al., 
1997; Hickman and Zoback et al., 2004; Heidbach et al., 2008). Sheorey (1994) 
concludes that the curvature of the earth plays the main role for creating higher 
horizontal crustal stresses close to the surface. 

The results of Sheorey’s model and the outcome that the curvature of the earth is not 
negligible concerning horizontal surface-near stresses, can be applied in geomechanical 
modelling to simulate an initial state of stress. For this purpose, a modelling method 
was developed at the Geophysical Institute of the University of Karlsruhe, which 
generates higher horizontal stresses during the calculation of the initial state of stress. 
The main contributors of this work are Thies Buchmann, Andreas Eckert, Tobias 
Hergert and Oliver Heidbach. As I did not take part in the development of the method, 
but only did use it for my modelling applications here, I will briefly describe the method 
according to Eckert (2007) and Hergert (2009), where a more detailed description can 
be found. The idea of the method is that a geomechanical model which is the uppermost 
part of the earth’s crust is part of a circle’s segment, where the entire circle represents 
the earth. In general, a geomechanical model has vertical model boundaries, though the 
borders of such a circle’s segments are inclined. To apply the inclined borders to the 
geomechanical model, a load frame is built around the model and a compaction layer as 
vertical ending (Figure 6-10). Load frame and compaction layer are a simplification of 
Sheorey’s (1994) spherical layered spherical earth model, in which the equilibrium of 
thermal expansion and compaction is taking place. 

The procedure to find an initial state of stress is to vary the Young’s modulus E of the 
compaction layer, and thus fit the k-value depending on depth with the empirical 
relation of Sheorey (1994) (Eq. 6.9). For the best-fit model, the state of stress is 
exported and then imported again as initial stress state of the geomechanical model, 
now without load frame and compaction layer. Starting with this initial stress state, 
additional modelling steps can be applied to the model volume. 
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Figure 6-10. Modelling procedure. a) The geomechanical model is the uppermost part of a spherical 
earth model according to Sheorey (1994). b) Load frame LF and compaction layer around the 
geomechanical model volume to realize a simplified layered model after Sheorey (1994). By 
variation of Young’s modulus E of the compaction layer and Poissons’s ratio ν of the load frame 
the k-value can be fitted to the empirical trend (Eq. 6.9). Then the initial state of stress is modelled 
and exported. c) The initial state of stress can now be imported into the geomechanical model 
without load frame and compaction layer for further modelling steps. Figure from Eckert (2007). 

 

6.3.3 Model calibration, initial state of stress 

Figure 6-11 shows k-values of the initial state of stress on a vertical profile of the model 
volume. Dark grey crosses show the modelling result calculated by taking into account 
Sheorey’s concept, light grey diamonds show the k-values of the initial state of stress of 
the same model volume calculated conventionally without load frame and compaction 
layer. The black solid line gives the theoretical k-value trend according to Eq. 6.9. The 
inclusion of a so-called Sheorey-Box (load frame plus compaction layer) to model the 
initial stress state leads the k-values to increase from 0.35 to 0.75 between 3 km and 7 
km depth. Furthermore, the k-value increases strongly close to the surface, and thus 
follows the theoretical trend. Therefore, the modelling of the initial state of stress with 
Sheorey-Box has two advantages concerning the k-value, a) it is shifted to the right 
towards higher values in the diagram and b) it strongly increases approaching the 
surface. 
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Figure 6-11. Comparison of theoretical (empirical) and modelled k-values. The solid line shows the 
trend of Sheorey’s empirical k-values (Eq. 6.9) for E = 50 GPa, the dark grey crosses show the 
results received by the new modelling approach of a load frame and a compaction layer around the 
model volume, the light grey diamonds represent k-values modelled conventionally without load 
frame and compaction layer. 

 

6.3.4 Model calibration, boundary conditions 

In addition to the initial state of stress, displacement boundary conditions, which 
represent the existence of tectonic stresses, are applied to the geomechanical model. 
Those boundary conditions modify the state of stress of the model volume, and thus the 
model can be calibrated by variation of magnitude and direction of the displacement 
boundary condition, and by comparison of modelled potential breakout orientations and 
measured borehole breakout orientations. Different magnitudes of displacements acting 
on different model sides were tested. Figure 6-12 shows the boundary condition which 
leads to the best analysed match of modelled potential and measured borehole breakout 
orientations. 
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Figure 6-12. On one model side a uniform displacement of 10 m is applied in 2-direction in addition 
to gravity. The other three model sides and the bottom are fixed in normal direction, no constraints 
are applied to the surface. The green dots on the surface show the locations of the top end of the 
wellbore trajectories. 

 

6.3.5 Results 

Along two (boreholes 7 and 10) out of eleven boreholes that are implemented in the 
model as virtual borehole trajectories no borehole breakouts are observed. Measured 
borehole breakout orientations along borehole 5 show such strong variations, that this 
borehole is excluded from the comparison of modelling results with measured data. 

To define a criterion for the quality of the fit of modelled with measured orientations, at 
first the mean azimuths and the standard deviations of the measured orientations are 
calculated. With the number of observed borehole breakouts and the combined length of 
the breakouts along a single borehole, qualities ranging from A (best) to E (worst) are 
assigned to the measured orientations, according to the World Stress Map quality 
ranking system (Heidbach et al., 2008). Depending on the quality, this ranking system 
gives ranges for the σH-orientation or the breakout orientation, in which the σH-
orientation is believed to be within. The ranges are for quality A: ± 15°, B: ± 15-20°, C: 
± 20-25°, D: ± 25-40°, E: > ± 40°. In the following, these ranges are used as criterion 
for the quality of the match between modelled and measured borehole breakout 
orientations. 

The best match results of modelled and measured borehole breakout orientations are 
shown in Fig. 6-13. The modelling results along wellbores 1, 6 and 7 fit the measured 
data quite good. A reasonable match can be found along trajectory 3 for the deeper 
breakouts and along trajectory 5 for the shallow breakouts. The modelled breakout 
orientation of trajectory 8 is only a few degrees out of the window given by the WSM 
criterion. Along trajectories 2 and 4 the modelled potential breakout orientations do not 
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fit the observed borehole breakout orientations at all. The modelling results differ 
between 55° and 70° from the measurements. 
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Figure 6-13. Results of the best match of modelled and measured breakout orientations obtained by 
model setup and boundary conditions as shown in Fig. 6-12. Modelled and measured data are 
compared for eight wellbores. The solid vertical lines display the mean azimuths of the measured 
orientations. The grey shaded are shows the range of breakout or σh-orientations according to the 
World Stress Map quality ranking system (Heidbach et al., 2008). 

One reason that modelling results and measured data on the one hand along some 
wellbores show a good match, on the other hand along other wellbores differ 
enormously, could be the fact that the model exists only of stratigraphic layers. In 
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reality, the reservoir is also interspersed with fault zones. Faults change the stress 
orientation, what leads to a different result. The lack of information about the elastic 
material parameters of several the layers, which had to be extrapolated from other 
layers, can have an influence on the results. If a layer, for example has a higher Young’s 
modulus than assumed, the applied displacement of 10 m would lead to higher stresses 
inside this layer and may affect the potential breakout orientation. As under the given 
circumstances, this is the best result that could be achieved, in the following the stress 
field of the best fit model is used as initial state of stress in a poroelastic approach. 
 

6.4 Poroelastic rheology 
To investigate the influence of reservoir depletion on pore pressure distribution and 
coupled stress changes, poroelastic material properties are applied to the reservoir 
model. 

6.4.1 Material parameters 

As I was not provided any information about poroelastic material parameters for the 
reservoir model, I have chosen values found in literature. The only value of the 
logarithmic bulk modulus κ was derived by the Young’s moduli and Poisson’s ratios 
that are chosen already for the elastic modelling. Because κ is reciprocal proportional to 
the drained bulk modulus Kd, that can be calculated by ( )ν213 −= EKd , κ was 
determined under the assumption of an initial void ratio e0. According to Eq. 5.4, κ also 
depends on P and the elastic tensile limit . To avoid changes of κ during the 
modelling process, where pore pressure will change, the elastic tensile limit was chosen 
very high, so that is much larger than the pore pressure.  itself does not have any 
influence on the results. So, an arbitrary value can be chosen for it. 

el
tp

el
tp

For the grain bulk modulus an average value was chosen. The standard value of the 
fluid bulk modulus of water is 2.2 GPa. This value increases with salinity of water. Kf 
for oil ranges around 1.5 GPa. Therefore, I have assumed a fluid bulk modulus of 2 
GPa. Stoll (1995), Li (2009) or Mavko et al. (2009) provide some information about the 
bulk moduli of grains and fluid. 

Permeability is a parameter that can vary over a wide range depending on the kind of 
rock or stone. In granite or shales, for example, the permeability can be as low as tens of 
micro Darcy, in sand or sandstone as high as one Darcy. Information about permeability 
values can be found in Bear (1972), or in Buryakovsky et al. (1995) and Bagirov et al. 
(1999) who provide permeability and porosity data of onshore and offshore oilfields in 
the South Caspian basin. Additional information about porosity of reservoir rock is 
given in D’Heur (1984), Santoso et al. (1995), Lucia (1999), Moore (2001), or 
Ehrenberg and Nadeau (2005). For the porosity I have chosen a constant value for all 
layers, which ranges at the upper limit of porosities of reservoirs in the South Caspian 
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basin (Bagirov et a., 1999). Besides the aspect to chose realistic values for the 
permeability in the model, also the permeability contrast between the layer which is 
produced of and the surrounding layers is important. Because no faults are included in 
the model, which could border the producing layer, I have chosen the permeability as 
parameter to seal the producing layer. Therefore, I have chosen a permeability contrast 
between producing layer and surrounding layers of ~1000. According to Buryakovsky 
et al. (1995) and Bagirov et al. (1999), I set the permeability of the producing layer to 
110 mD, whereby for the other layers follows a permeability of ~0.1 mD. 

Table 14 lists all material properties applied to the reservoir model, as defined in the 
Abaqus input file. Note, the permeability is given by the hydraulic conductivity [m/s]. 
The conversion factor between hydraulic conductivity and permeability [m2] is 10-7. 1 
mD is equal to 10-15 m2. 
 
Table 14. Material property values for all ten layers of the poroelastic model. The change in ρ, κ 
and ν result from the density and velocity logs. The conversion factor between hydraulic 
conductivity [m/s] and permeability [m2] is 10-7. 1 mD is equal to 10-15 m2. 

Layer ρ [kg/m3] Kg [GPa] Kf [GPa] κ ν el
tp  [GPa] e kf [10-9 m/s] ρf [kg/m3] 

1 2200 40 2 0.252 0.45 1.2 0.4 4.0 1000 

2 2250 40 2 0.235 0.43 1.6 0.4 1.9 1000 

3 2290 40 2 0.239 0.40 1.8 0.4 1.3 1000 

4 2340 40 2 0.228 0.36 1.9 0.4 1.0 1000 

5 2360 40 2 0.211 0.32 1.9 0.4 0.97 1000 

6 2370 40 2 0.206 0.28 2.0 0.4 1100 1000 

7 2400 40 2 0.192 0.26 2.0 0.4 1.4 1000 

8 2450 40 2 0.156 0.24 2.0 0.4 2.7 1000 

9 2480 40 2 0.136 0.24 2.2 0.4 8.0 1000 

10 2550 40 2 0.110 0.24 2.5 0.4 4.0 1000 

 

6.4.2 Boundary conditions and model scenario 

The model scenario consists of three main parts. First gravity to the model that is pre-
stressed with the initial state of stress of the elastic modelling. For this, the model sides 
and bottom are fixed in normal direction, and undrained boundary conditions, i.e. no 
fluid exchange over these boundaries, are applied. The free surface is not constraint and 
pore pressure is set to zero there. This means, no pore pressure changes can occur at the 
surface, what is equal to a drained boundary. Then in the next modelling step, at one 
model side the boundary condition is changed. Instead of fixed in normal direction a 
displacement of 10 m is applied to it, according to the elastic modelling. In the final 
modelling step, a production scenario is simulated to model fluid depletion induced pore 
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pressure and stress changes. For this, production boundary conditions (volume per time) 
are applied to one point of the wellpaths 1-8 and 11, which is located in the producing 
layer 6. The entire production scenario lasts 15 years 323 days and is subdivided into 
three steps: 

a) Production at wells 5-8, with 50 l/s each for 325 days 

b) Increase of production rate at wells 5-8 to 110 l/s each, and start of production at 
wells 1-4 with 60 l/s each. Production for 313 days. 

c) Increase of production rates at well 5-8 to 125 l/s each and at wells 1-4 to 90 l/s. Start 
of production at well 11 with 55 l/s. Production for 14 years and 50 days. 

Due to the anticlinal structure of the stratigraphic layers, the productive layer 6 varies 
with depth. At the crest, layer 6 in a depth between ~2250 m and ~2800 m, which 
increases at the flanks to maximal between ~3000 m and ~4000 m. Because the 
production points are spread out over the entire reservoir area, they also vary in depth. 
The production points range between 2300 m depth (well 6) at the crest to 3550 m (well 
4 and 8) at the flank of the reservoir. 

6.4.3 Results 

Pore pressure 
Pore pressure changes of the entire model are shown in Figure 6-14. After 2 years 168 
days of production (a) the pore pressure change is spread out inside the productive layer 
6, and declines to zero at the boundaries to the surrounding layers. After 15 years 323 
days of production (b), pore pressure change has further increased inside the productive 
layer 6, but also in the neighbouring layers, because of the longer production time. 
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Figure 6-14. Pore pressure change after production of 2 years 168 days (a) and 15 years 323 days 
(b). Note the different colour scales. 

 
Maximum shear stress 
The change in maximum shear stress for different depths after 348 days of production is 
shown in Figure 6-15. Depending on depth, one can see different pattern of increased 
and decreased maximum shear stress changes. Because close to the production points 
the highest pore pressure and stress changes occur, those patterns develop around these 
areas. Negative as well as maximum shear stress changes occur and the magnitudes and 
distribution changes with depth. 
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Figure 6-15. Change in maximum shear stress after production of 348 days in depths of 1500 m (a), 
2200 m (b), 2700 m (c), 3200 m (d). 

After a longer production times of 2 years 168 days (Figure 6-16) and 15 years 323 days 
(Figure 6-17) the distribution in maximum shear stress change is spreading out, in 
horizontal direction as well as in vertical direction. All subfigures (b) of the different 
production times show ∆τmax distributions in a depth of 2200 m. It clearly can be seen, 
how the maximal change, first a spot (Figure 6-15), widens along the crest with 
increasing magnitude (Figures 6-16 and 6-17). 
 

  
Figure 6-16. Change in maximum shear stress after production of 2 year 168 days in depths of 1300 
m (a) and 2200 m (b). 

For the negative blue spot in Figure 6-15 the same characteristics with duration of 
production is observed. After 348 days of production the maximum value is located in a 
depth of 1500 m (Figure 6-15a), after 2 years 168 days of production the maximum 
value is in a depth of 1300 m with increased magnitude and spread out wider (Figure 
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6-16). This development continuous for production time of 15 years 323 days (Figure 
6-17). 
 

  
Figure 6-17. Change in maximum shear stress after production of 15 years 323 days in depths of 
900 m (a) and 2200 m (b). 

 

6.4.4 Interpretation 

Pore pressure 
After short production time, pore pressure changes are in the productive layer 6 (Figure 
6-14a). With duration of production, maximum pore pressure change increases and 
diffuses inside layer 6 (Figure 6-14b). The adjacent layers are affected little by the pore 
pressure change. This is due to the permeability contrast of ~1000 between productive 
layer 6 and its neighbouring layers above and below. This inhibits the pore pressure to 
diffuse also into the surrounding layers. Anyway, after 15 years 323 days of production, 
pore pressure also has diffused into the surrounding layers of layer 6. Pore pressure 
change decreases strongly within short distance at the reservoir-surrounding boundary 
from over 16 MPa to 10 MPa. 
 
Maximum shear stress 
The maximum shear stress changes maximal close to the production points, where the 
pore pressure and stress changes are largest. Negative ∆τmax occurs above and below the 
production points, positive ∆τmax horizontally of the production points (Figure 6-15). 
The shallowest production point is at the crest of the reservoir in a depth of 2300 m. 
Figure 6-15a shows the ∆τmax distribution in a depth of 1500 m, i.e. above the 
production point, where ∆τmax is negative. In 2200 m depth (Figure 6-15b), 
approximately the depth of the production point at the crest, ∆τmax is positive. In the 
same plot two spots of negative ∆τmax can be observed, one above and the other below 
the red maximum, more in the flanks of the reservoir. These blue spots indicate 
production points in greater depth. In 2700 m depth the blue spots turned into red ones, 
and at the location of the red spot in 2200 m depth at the crest, there is a small blue spot 
(Figure 6-15c). With distance to the crest, production points are deeper. The blue spots 
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detected in 2200 m depth are above production points, which are in a depth of ~2700 m. 
This depth is below the production point depth at the crest. Therefore, ∆τmax is turning 
negative again at that location. These characteristics can be continued for greater depths. 
At 3200 m depth, ∆τmax becomes more negative at the location of the production point 
at the crest (Figure 6-15d). Also at the lower location of the two positive ∆τmax areas at 
2700 m depth has turned to negative maximum shear stress changes. The other one 
shows still a positive ∆τmax, indicating that there are further production points in this 
depth. With duration of production the maximum shear stress changes spread out, and 
then superpose with changes generated around other production points (Figures 6-16 
and 6-17). 

According to the analytical investigations (chapter 4), positive and negative maximum 
shear stress changes occur in certain directions depending on the tectonic stress regime. 
During fluid depletion, maximal positive shear stress changes occur in σ3-direction, 
maximal negative shear stress changes in σ1-direction, considering local rectangular 
coordinate systems with their origins at the production point. Measuring the maximal 
shear stress changes, one could conclude to the tectonic stress regime. For the case here, 
maximal negative maximum shear stress changes occur above and below the production 
points, thus in σV-direction. Therefore, σV has to be equal to σ1. Then, the tectonic 
regime would be a normal faulting regime. In a normal faulting regime, the maximal 
positive shear stress changes occur in σh-direction. This is in agreement with the applied 
boundary condition of 10 m displacement at the lower boundary. This leads to higher 
horizontal stresses parallel to the applied displacement than perpendicular to it. 
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7 Summary and concluding discussion 
This thesis investigates the changes of key parameters of reservoir geomechanics, 
namely fluid pressure in reservoir rocks and stress. Both are significant for the 
assessment of wellbore stability or failure of reservoir bounding faults or faults in the 
caprock of a reservoir. Furthermore, the orientation of the stress field determines the 
underground fluid flow orientations. In this chapter, I summarize how stress and pore 
pressure changes during injection into reservoirs or depletion from reservoirs. 

The main questions addressed in this thesis consider the spatial and temporal evolution 
of pore pressure and stress, and are: 

a) How strong is the coupling between pore pressure and stress components, and does 
this coupling develop with duration of injection/production and distance from the 
injection/production source? 

b) Is there a difference in the coupling between pore pressure and individual stress 
tensor components? If yes, how is the temporal and spatial evolution of the coupling 
between pore pressure and different stress components? 

c) How does the tectonic stress regime influence the coupling between pore pressure 
and stress? 
 

7.1 Interaction of pore pressure and stress 
The effective stress concept of Terzaghi (1943) allows to consider the influence of pore 
pressure changes on the stress state. In this concept, effective stresses result from the 
total stresses by subtraction of the pore pressure – and pore pressure and stress are 
uncoupled. Therefore, a modification of pore pressure does not lead to a modification of 
shear stress. However, this is in contrast to the observation of production indueced 
seismicity in numerous oil and gas fields world-wide (Simpson, 1986; Segall, 1989; Sze 
et al., 2005; van Eck et al., 2006; Bardainne et al., 2008). 

Previous investigations (Engelder and Fischer, 1994; Addis, 1997; Hillis, 2000; Goulty, 
2003) derived mathematical expressions to relate pore pressure change to change in 
minimum horizontal stress, under the assumption that the vertical stress is not affected 
by the pore pressure. Due to coupling between P and σh and no coupling between P and 
σV, in a normal faulting regime the differential stress increases for fluid depletion or 
pore pressure decrease. Therefore, considering coupling between P and σh, it is possible 
to explain production induced seismicity. However, time-lapse investigations (Sayers, 
2004; 2006) and geomechanical modelling (Herwanger and Horne, 2005; Settari and 
Sen, 2007; Schutjens et al., 2010) shows that not only σh, but the entire stress tensor is 
affected by pore pressure changes. 
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Chen and Nur (1992) or Hillis (2000) find that in a normal faulting regime increase of 
pore pressure leads to stabilization and reduction in pore pressure to destabilizations of 
rock. For a thrust faulting regime, Chen and Nur (1992) state that pore pressure increase 
leads to destabilization and reduction in pore pressure to destabilization of rock. 
Soltanzadeh et al. (2009) show that stabilization and destabilization of rock depends on 
the stress direction occurring at an observation point. There is however no previous 3D 
investigation and analysis how poroelastic coupling develops in space and time. 
 

7.2 Discussion of results 
Based on the pore pressure and stress solutions for continuous fluid injection at one 
point into homogeneous full space (Rudnicki, 1986), I have derived the coupling ratios 
between pore pressure and the full stress tensor depending on both space and time, and 
found that the coupling differs for radial and tangential stress components. For time 
tending towards infinity, the coupling ratio equations provide static equations. The 
equation for the radial stress coupling results in Eq. (3.5). This coincides with the 
coupling coefficient between pore pressure and σh, which was derived by Engelder and 
Fischer (1994) under the assumption that the vertical stress is not affected by pore 
pressure changes. The equation of the tangential stress results in exact ½ of the result of 
the radial stress coupling equation. The equation for the long-term limit is only correct 
for long injection times or short distances to the injection source. 

The spatio-temporal change of pore pressure stress coupling equations show that pore 
pressure stress coupling is not a constant and varies with distance to the injection point 
as well as with injection time. This could explain the range of some of the field data, 
which could not be interpreted previously; Addis (1997), Hillis (2000) or Goulty (2003) 
have problems to explain those field data by their static equations. This thesis and 
Altmann et al. (2010a) show that using the spatio-temporal pore pressure stress 
coupling, variations in the observed field data can be explained due to different 
distances between measurement locations and fluid injection/depletion locations, and 
due to different injection/depletion durations between begin of injection/production and 
measurement time. 

Furthermore, I investigated pore  pressure stress coupling along the principal stress axes 
and under consideration of different tectonic stress regimes, both for fluid injection as 
well as for fluid depletion. The results are discussed in terms of maximum shear stress 
change, which means half of the difference between maximum and minimum principal 
stress. For great changes in shear stress, either positive or negative, the coupling effect 
is maximal, for zero shear stress changes, the coupling effect diminishes. 

Along the σ1-axis the change in shear stress is maximal, negative for depletion and 
positive for injection. Along the σ3-axis the shear stress change is also maximal but 
reverse of the change along the σ1-axis, namely positive for depletion and negative for 
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injection. There is no shear stress change along the σ2-axis. This means that for 
locations along the σ1-axis the poroelastic coupling effect amplifies the direct effect of 
effective stress reduction (destabilization of rock) by pore pressure increase, or of 
effective stress increase (stabilization of rock) by pore pressure reduction. 

Analogous, along the σ3-axis the poroelastic effect is weakening the direct effect of pore 
pressure on the effective stress. Pore pressure increase leads to smaller effective stresses 
(destabilization of rock), but due to the coupling the shear stress change is reduced 
(stabilization of rock). Pore pressure reduction increases the effective stresses 
(stabilization of rock), but due to coupling leads to increased shear stress 
(destabilization of rock). For locations along the σ2-axis, the coupling between pore 
pressure and maximum and minimum principal stress is the same, leading to effective 
stresses different from Terzaghi but the shear stress remains constant. 

On locations along the σ1-direction failure is most likely to occur during fluid injection, 
and least likely during fluid depletion. On the contrary, locations along the σ3-axis are 
most stable under fluid injection, most unstable for fluid depletion. Hillis (2000) 
explains also fluid injection induced stabilization and fluid depletion induced 
destabilization of rock along the σ3-axis in a normal faulting regime, with σ3 = σh. As 
Hillis (2000) assumes coupling only between pore pressure and σh, differential stress 
decreases during fluid injection (pore pressure and σh increase), and increases during 
fluid depletion (pore pressure and σh reduction). Thus, my results are in agreement with 
those of Hillis (2000). However, my approach enables to study the process as a function 
of position within the reservoir and time. Because in my approach σV is also coupled to 
the pore pressure, I achieve a smaller coupling effect than Hillis (2000). 

The time dependence of the coupling is of key importance especially for reservoir 
geomechanic cases where short scale loading variations occur such as during CO2 
sequestration of stimulation of geothermal reservoirs. To my knowledge this has not 
been addressed before. My results show that maximum shear stress changes have the 
strongest impact shortly after start of injection or production, because pore pressure 
changes are small in comparison to ∆τmax. With duration of injection/depletion, ∆P is 
increasing faster than ∆τmax, and the coupling effect becomes less important. During 
fluid injection the strong poroelastic coupling at the beginning of the injection can lead 
to stabilization instead of destabilization as in the classical Terzaghi approach. After 
longer injection time, the direct effect of ∆P is increasing and the coupling effect loses 
importance. This can have consequences on the onset of seismicity. Figure 7-1 shows 
the shortest distance between Mohr circle and failure envelope depending on depletion 
and injection time for a point on the σ3-axis with a distance of 200 m to the depletion 
(injection) point. The original state of stress was assumed for a depth of 3000 m, namely 
σ1 = 80 MPa and σ3 = 50 MPa, or for a hydrostatic pore pressure profile σ1,eff = 50 MPa 
and σ3,eff = 20 MPa, and the injection (depletion) rate 50 l/s. The Mohr-Coulomb failure 

 
 

111



criterion was defined with a cohesion of 4 MPa and a coefficient of friction of 0.36, 
what is equivalent to an angle of internal friction of 20°. Due to the effect of poroelastic 
coupling minima (maxima) occur during the first ten days of depletion (injection). 
During this time, depletion induced failure could occur (left) as well as stabilization 
during fluid injection (right). Afterwards, the direct effect of ∆P on the effective stress 
is primary, what leads to stabilization for fluid depletion (left), and to destabilization for 
fluid injection. In other words for the case of fluid injection the occurrence of seismic 
events along the minimum principal stress orientation should only start after ca. 10 days 
of injection for the given material parameters. 
 

  
Figure 7-1. Shortest distance between failure envelope and Mohr circle for arbitrary failure planes, 
depending on depletion time (left) or injection time (right). Considered is a point on the σ3-axis in 
distance of 200 m from the depletion (injection) point. Positive distance between failure envelope 
and Mohr circle means that the Mohr circle is below the failure envelope, i.e. there is no osculation 
point. Zero distance between failure envelope and Mohr circle means that the failure envelope is 
tangent to the Mohr circle. Negative distance between failure envelope and Mohr circle means that 
the failure envelope is cutting the Mohr circle. After start of depletion (left), distance becomes 
negative, the stress state becomes more unstable and failure will occur. After crossing a minimal 
distance at 10 days, distance increases with duration of depletion and the stress states stabilizes. 
Short injection times lead to a stabilization (increasing distance between failure envelope and Mohr 
circle) of the state of stress on a point on the σ3-axis. With further duration of injection, the stress 
state becomes more unstable until failure occurs (negative distance between failure envelope and 
Mohr circle). 

For comparison, Figure 7-2 shows shortest distance between Mohr circle and failure 
envelope depending on depletion and injection time for locations on the σ1-axis. Along 
the orientation of the maximum principal stress, the poroelastic effect of the pore 
pressure change amplifies the effective stress change according to Terzaghi. In a normal 
faulting regime, this could be interpreted such that the reactivation of fractures during 
injection could occur mostly in vertical planes perpendicular to the minimum horizontal 
stress. 
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Figure 7-2. Shortest distance between failure envelope and Mohr circle for arbitrary failure planes, 
depending on depletion time (left) or injection time (right). Considered is a point on the σ1-axis (in 
comparison to Figure 7-1, where a point on the σ3-axis is considered) in distance of 200 m from the 
depletion (injection) point. Positive distance between failure envelope and Mohr circle means that 
the Mohr circle is below the failure envelope, i.e. there is no osculation point. Zero distance between 
failure envelope and Mohr circle means that the failure envelope is tangent to the Mohr circle. 
Negative distance between failure envelope and Mohr circle means that the failure envelope is 
cutting the Mohr circle. Depletion (left) leads to a stabilization, injection (right) to a destabilization 
of the stress state. 

In realistic reservoir geometries, the numerically calculated ∆τmax varies throughout the 
reservoir horizon and changes with time. After a short production time, when the 
maximum shear stress changes have not spread out too far and have superposed with 
∆τmax generated at other production points, clear patterns of ∆τmax can be observed 
around the production points. Analysing the ∆τmax depending on direction, one detects 
that ∆τmax has its negative maximum vertically above and beneath the production points, 
and its positive maximum horizontally around the production points. 
 

7.3 Conclusion 
In this thesis, the effect of pore pressure stress coupling was investigated under different 
aspects. With an analytical approach I have shown that pore pressure is coupled with all 
stress components, and that the location with respect to the injection (depletion) source 
as well as the tectonic regime influence the poroelastic coupling. Investigating 
numerically the temporal evolution of the coupling effect, it has the most influence 
directly after start of injection (production), and especially then is not negligible. The 
observation of maximal shear stress change patterns can be used to determine the 
tectonic stress regime. In summary, this thesis gives an overview of poroelastic 
coupling effects on the state of stress in space and time. Numerical modelling is a 
proper tool to calculate and analyse fluid flow induced stress changes, and to estimate 
their impact on rock stability, and important aspect in reservoir management. 

 
 

113



7.4 Outlook 
The future aspects of investigation can be analytical as well as numerical, especially if 
the loading scenario of a reservoir varies with time. The aspect of tectonic regime 
changes and stress orientation changes can be studied analytically to quantify the most 
important parameters. Altmann et al. (2010b) have investigated possible changes in the 
tectonic regime that may occur during fluid injection or depletion, and defined criteria, 
when a stress regime change can happen. For realistic geometries and realistic loading 
scenarios (fluid injection or depletion varying with time) numerical methods have to be 
used. One aspect is to analyse numerically the influence of pore pressure changes on the 
stress orientation, especially in the vicinity of faults or structures like diapers which 
affects the fluid flow in the reservoir and surroundings as well as the reservoir stability. 
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Appendix A 
To derive the limiting value of the spatio-temporal pore pressure stress coupling ratio 
(Eq. 4.33) for infinite time, following limes has to be considered: 
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what, according to Eq. 4.27 is equal to: 
( )

⎟
⎠
⎞

⎜
⎝
⎛→

ξξ

ξ
ξ

2
1

2lim
20
erfc

g         (A.2) 

The function g(ξ) is given by 
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where the error function erf(z) and the complementary error function erfc(z) are 
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Eqs. and substituted into Eq. A.2 leads to 
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As erf(ξ = 0) = 0, Eq. gives 
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Though to determine the result of Eq. A.6, the rule of L’Hospitales is applied: If 
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Accordingly, in order to evaluate 

( )
( )ξ

ξ
ξ h

g2lim
0→

             (A.10) 

where 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛= 2

4
1exp

2
1 ξ

π
ξξξ erfg ,        (A.11) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛= ξξξξξξ

2
1

2
1 222 erferfch ,      (A.12) 

the derivatives of g(x) and h(x) are built: 
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Applying the rule of L’Hospitales (Eq. A.9) gives: 
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Again, the result if zero divided by zero. Thus, the second derivatives of g(x) and h(x) 
are built, and then on these the rule of L’Hospitales applied. 
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Appendix B 
The parameters required as input for numerical modelling with ABAQUS (parameter 
set A) and the parameters used in Eqs. 4.25 and 4.26 (Rudnicki, 1986) (parameter set B) 
are related to each other by the following transformations. Parameter set A consists of 

• Mass density ρS 
• Bulk modulus of solid grains Kg 
• Bulk modulus of fluid Kf 
• Specific weight of the wetting liquid ρfg 
• Hydraulic conductivity kf 
• Void ratio e 
• Initial void ratio e0 
• Logarithmic bulk modulus κ 
• Elastic tensile limit  el

tp
• Poisson’s ratio ν 
• Injection rate Vfl 

Parameter set B is given by: 
• Injected fluid mass per time Φ 
• Fluid density ρf 
• Biot-Willis coefficient α 
• First Lamé parameter λ 
• Second Lamé parameter µ 
• Undrained first Lamé parameter λu 
• Diffusivity c 

Parameter set B can be expressed in dependence of parameters of set A by: 
fflV ρ=Φ                (B.1) 

The fluid density ρf is indirectly given by the ABAQUS input variable of the specific 
weight of the wetting liquid ρfg. The Biot-Willis coefficient α can be expressed in 
dependence of Kd and Kg (Eq. 3.4). Kg is an ABAQUS input parameter, Kd can be 
expressed by means of the logarithmic bulk modulus κ which appears in Eq. 5.3 for the 
elastic part of the volume ratio between the current and a reference state Jel. According 
to ABAQUS Documentation (2008), the shear modulus G is defined as 
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with Poisson’s ratio ν, initial void ratio e0, and logarithmic measure of the elastic 
volume change . Using this expression in Eq. B.2 and then substituting Eq. 
5.3 into Eq. B.2, the drained bulk modulus K

elel
vol Jln=ε

d can be expressed by κ as 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+
++

+
= el

t

el
tel

td pp
pp

e
pp

e
K 0

0

0 ln
1

1
1 κ

κ
      (B.3) 

 
 

119



with the mean stress p, the initial mean stress p0, and the elastic tensile limit , and 
where 

el
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was used. Under the assumption that  >> pel
tp 0 and  >> p, Eq. B.3 simplifies to el
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The first Lamé parameter λ is given by Eq. 4.22, where the second Lamé parameter µ 
can be replaced by Eq. 4.35 in terms of λ and ν. The undrained first Lamé parameter λu 
is given by Eq. 4.23, where the undrained bulk modulus Ku is defined by Eq. 4.24 
(Gassmann, 1951). The bulk moduli Kf and Kg in Eq. 4.24 are ABAQUS input 
parameters, Kd is determined by Eq. B.5. The porosity ϕ in Eq. 4.24 can be expressed in 
terms of void ratio e: 

e
e
+

=
1

ϕ                (B.6) 

The diffusivity c is given by Eq. 4.28, where the permeability K can be expressed in 
terms of hydraulic conductivity kf (Eq. 4.30), which is part of parameter set A. 
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Appendix C 
In order to calculate the circumferential stress σϑϑ around arbitrarily inclined and 
orientated wellbores of the geomechanical model, and to compare the direction of 
maximum σϑϑ with observed borehole breakouts, a matlab program was written. It is 
based on the transformation of a stress tenor in a geographic coordinate system into a 
local wellbore coordinate system, done by a simplified transformation of Equation 6.2. 
As the stress tensor is used as Abaqus output variable and not the principal stresses, the 
part of the transformation which is rotating the geographical coordinate system in such 
way that the axes of the system are aligned with the directions of the principal stresses, 
can be omitted. The program consists of five parts: 

1) Read in of data 
To transform the modelled stress tensors into local wellbore coordinate systems, to 
calculate the orientations of maximum circumferential stress σϑϑ,max and to compare 
these directions with observed borehole breakout orientations, first the program is fed 
with data. The trajectories (Figure C-1, small dots) of all wellbores inside the model 
volume, along borehole breakouts are observed, are imported. Furthermore, the 
locations and orientations of the observed borehole breakouts (Figure C-1, elongated 
rectangles) are read in, as well as the coordinates of points in the model, which are 
located on the wellbore trajectories, and the stress tensors calculated at those points 
(Figure C-1, black circles). 

2) Transformation of stress tensor into local wellbore coordinate system 
Before starting with the transformation of the stress tensor from the geographic into the 
local wellbore coordinate system, some preparations are done. As for stresses in Abaqus 
the engineering sign convention (compression is negative) is used, the stresses 
calculated along the wellbore trajectories are multiplied by -1 to bring the stresses into 
geo sign convention (compression is positive). Afterwards, these stresses and their 
coordinates are sorted with increasing depth. To use the coordinate transformation 
according to Peska and Zoback (1995), the stresses given in the coordinate system X = 
east, Y = north, Z = up are transformed into a coordinate system X’ = north, Y’ = east, Z’ 
= down by two rotations; one rotation about the z-axis by π/2, and another one about the 
x-axis by π with the rotations matrices 
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Figure C-1. Illustration of the input for the matlab program. Small dots represent an inclined 
wellbore trajectory, black circles element nodes of the model volume, which are located on the 
trajectory and at which the states of stress are calculated. Coordinates and modelled stresses are 
read in the program. The black elongated rectangles stand for the locations and orientations of 
observed borehole breakouts, both imported into the program. 

To implement the actual transformation, the two rotation angles δ, azimuth of the 
horizontal projection of the borehole clockwise from geographic north to geographic 
east, and ϕ, deviation of the borehole axis from the vertical (Figure 6-4), has to be 
known. For all points along the wellbore trajectories, where the state of stress is 
modelled at, δ is calculated by ( )xy ∆∆= arctanδ . ∆x and ∆y, respectively, are 
differences in x-direction and y-direction of the two trajectory points (Figure C-1, small 
dots) which are closest to the point the state of stress is calculated at (Figure C-1, black 
circle). One of the two trajectory points is the closest above, and the other the closest 
below the point at which the state of stress is calculated at. The angle ϕ is calculated by 
determining the tangents at the distinct points, the stress states are calculated at, and by 
calculating the angle between this tangent and the vertical. 

3) Calculation of σϑϑ and the direction of σϑϑ,max
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After the two rotation angles δ and ϕ are known, the modelled stress tensors at the 
distinct points inside the model volume (black circles, Figure C-1) are rotated into local 
wellbore coordinate systems by , with the rotated stress tensor σT

bbb RR ⋅⋅= σσ b, the 
stress tensor to be rotated σ, and the rotation matrix 
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According to Peska and Zoback (1995) the circumferential stress σϑϑ is calculated using 
the rotated stresses by 

( ) P∆−+−−+= ϑσϑσσσσσ ϑϑ 2sin42cos2 1222112211             (C.3) 

where ∆P is the difference between the borehole fluid pressure and the pore pressure in 
the rock. For elastic rheology the term ∆P disappears, and total stresses are considered. 
For poroelastic rheology, the normal stresses σii are replaced by the effective normal 
stresses σii,eff and ∆P is assumed to be zero. 
In order to compare modelled potential breakout orientations and observed breakout 
orientations, the direction of maximum σϑϑ, which coincides with the direction of 
potential borehole breakouts, is calculated by building the derivative of σϑϑ with respect 
to ϑ and setting the result equal to zero: 
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With forming the arctan, one has to perform a case differentiation. The tangent of an 
angle is π-periodic, but the factor 1/2 in Equation C.5 leads the tangent to be π/2-
periodic. Thus, one has to consider the direction, in which ϑ is maximal, also as ϑmax ± 
π/2. Then, σϑϑ is calculated for both ϑmax and ϑmax ± π/2, and compared to each other. 
The larger of these two stresses is the maximum circumferential stress and the direction 
to this stress gives the direction of potential borehole breakout. 

4) Comparison to observed borehole breakout orientations 
In order to correctly compare modelled and observed breakout orientations, two facts 
has to be taken into consideration. 
a) The calculated potential borehole breakout orientations using the modelled stress 
states are compared to the observed borehole breakout orientations. As the locations of 
observed borehole breakout orientations do not coincide with element nodes along the 
wellbore trajectories, at which the output of the modelled stresses is generated, a 
maximum distance between one of the element nodes and the locations of the observed 
borehole breakouts was defined. For vertical distances less than 60 m, what is 
equivalent to half of the average element size in vertical direction, the observed 
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borehole breakout orientation is compared to the closest point of modelled potential 
breakout orientation. If the vertical distance between the location of an observed 
borehole breakout and the closest model element node is more than 60 m, the 
comparison with this breakout orientation is discarded. 
b) The angle ϑ describes the orientation of a potential breakout orientation with respect 
to the low side of the wellbore and not with respect to geographic north direction. To 
compare modelled potential breakout orientation with observed breakout orientations 
which are given with respect to geographic north direction, the modelled breakout 
orientations has to be transformed into angles with respect to geographic north. As the 
angle δ between geographic north and the low side of the wellbore is given by the 
orientation of the wellbore, one has to add the two angles δ and ϑ. The summation of 
those two angles is correct only in case of vertical wellbores. For inclined wellbores, δ 
and ϑ can not be added as simple as mentioned before, because the two angles are in 
different planes which coincide only for vertical wellbores. δ is in a horizontal plane, ϑ 
in a plane perpendicular to the inclination of the wellbore. Thus, before adding those 
two angles, ϑ has to be projected into a horizontal plane, what is done by 
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ϕ
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cos
tanarctanhori                                              (C.6) 

where ϕ describes the deviation of the wellbore axis from the vertical direction. Then, δ 
can be added to ϑhori to receive the modelled potential breakout orientation. 

5) In the final program step modelled and observed breakout orientations are 
graphically compared in rosette plots. Modelled data as well as plots are saved as files. 
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