
Fakultät füt Physik
Universität Karlsruhe (TH)

Karlsruhe Institute of Technology, KIT
Institut für Theoretische Teilchenphysik

Rare hadronic B decays in the MSSM
and in other models of new physics

Lars Hofer
geboren am 21.08.1981 in Aschaffenburg
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ABSTRACT

In this thesis we study several aspects of new physics in rare hadronic B decays. First we
consider the Minimal Supersymmetric Standard Model (MSSM) with Minimal Flavour Viola-
tion (MFV). Here, interesting effects arise for large values of tanβ due to the enhancement
of down-quark self-energies. These effects are well-studied within the decoupling limit, i.e. in
the limit of supersymmetric masses far above the electroweak scale. In this thesis we address
this topic in a framework that goes beyond this limit: We derive several resummation formu-
lae for arbitrary values of the supersymmetric mass parameters and clarify their dependence on
the renormalisation scheme. Furthermore, we study tanβ-enhanced corrections to couplings in-
volving genuine supersymmetric particles. This cannot be done consistently in the decoupling
limit with these particles being integrated out. We demonstrate that tanβ-enhanced corrections
induce flavour-changing gluino couplings which have a large impact on the Wilson coefficient
C8g of the chromomagnetic operator. To illustrate the phenomenological consequences of the
new gluino contribution to C8g, we discuss its effect on the mixing-induced CP asymmetry in the
decay B0 → φKS. Our resummed tan β-enhanced effects are cast into effective Feynman rules
permitting an easy implementation in automatic calculations.

In the second part of the thesis we investigate the possibilities of probing new physics in the
electroweak penguin sector via rare hadronic B decays. This kind of new physics is suggested
by the measurement of ∆ACP ≡ ACP(B− → K−π0) − ACP(B̄0 → K−π+)

exp.
= (14.8 ± 2.8)%

which approximately vanishes in the Standard Model. After performing an updated analysis of
B → Kπ using the framework of QCD factorisation, we conclude that, in order to clarify the
picture, one should also consider other decay channels which are sensitive to the electroweak
penguin sector. Apart from the analogous B → Kρ,K∗π,K∗ρ decays, we propose to study the
purely isospin-violating decays Bs → φπ, φρ which are dominated by the electroweak penguin
topology. In a model-independent analysis we study a potential enhancement of Bs → φπ, φρ
in light of a χ2-fit of the model parameters to B → Kπ data and with respect to constraints
from other hadronic B decays. We find that in most scenarios an enhancement by an order of
magnitude is possible. Given this situation, we study two concrete scenarios: Models with a
modified flavour-changing Z-coupling and models with a flavour-changing Z ′ coupling. In such
scenarios also constraints from semileptonic B decays and from Bs-B̄s mixing arise.

The results of this thesis are published to some extent in Refs. [1, 2].
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1. INTRODUCTION

The Standard Model of particle physics (SM) describes the electromagnetic, weak and strong
forces among the known elementary particles (quarks, leptons and gauge bosons) with very high
precision. Up to energies currently available at accelerator experiments, no significant discrep-
ancies between theory and experiment have been found yet. Despite this tremendous success,
most physicists regard the SM only as an effective theory which has to be replaced by a more
fundamental one above the TeV scale. Experimental evidence for new physics (NP) beyond the
SM are the by now established, non-vanishing neutrino masses as well as the strong hints for the
existence of non-baryonic dark matter. Moreover, the SM suffers from the so-called hierarchy-
problem: The mass of the Higgs boson which should be of the same order of magnitude as the
electroweak vacuum expectation value (vev) v ≈ 174 GeV is not protected by a symmetry in the
SM. As a consequence it is pushed via quantum corrections to the scale where NP enters, for
example to the Planck scale MPl ∼ 1019 GeV at which gravity has to be incorporated into the
theory. To stabilise the Higgs mass nevertheless at the electroweak scale, one has to fine-tune the
parameters in the Lagrangian to an extent regarded as unnatural.

In the SM, flavour changing neutral currents (FCNCs) are heavily suppressed. Their amplitudes
involve small elements of the quark mixing (CKM) matrix and in addition also a small loop
factor because the SM does not provide a tree-level FCNC coupling. Furthermore, in most cases
their size is even further reduced, for example by destructive interference of the contributing
Feynman diagrams (Glashow-Iliopolus-Maiani (GIM) mechanism) or by the appearance of small
ratios of quark masses (helicity-suppression). The origin of all these suppression effects is the
very special structure of the Yukawa matrices which are in the SM the only source breaking the
global U(3)Q × U(3)u × U(3)d family symmetry of the gauge sector. Being thus an accidental
property of the SM, the suppression of FCNCs is absent in generic NP extensions. For this reason,
FCNC processes are an ideal place to look for NP at the TeV-scale, complementary to the direct
searches at LHC. Nowadays many NP scenarios are already highly constrained by data from
flavour physics and once, new particles are found in high-pT experiments, the flavour physics
experiments will help to determine their properties (e.g. their couplings).

In this thesis we study rare B decays mediated at the quark-level by a b → s transition, with
special focus on non-leptonic decays into two mesons. The b → s transition occurs at the low
scale µ ∼ mb and is described by point-like interaction operators Qi of an effective Hamiltonian
Heff. It is, however, sensitive to high-scale physics at µ & v because the corresponding couplings
Ci are induced by loops of virtual heavy particles, to which, beyond the SM W -boson and top-
quark, also new particles might contribute. From the universal effective Hamiltonian Heff one can
then calculate branching ratios, CP asymmetries and other B-decay observables (left pictogram
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Figure 1.1: Two strategies to explore new physics in FCNCs.

in fig. 1.1). In this context hadronic B decays into two mesons are, on the one hand, very attrac-
tive since they offer lots of decay channels allowing for over-constraining measurements of the
couplings Ci. On the other hand, non-leptonic B decays suffer from large uncertainties caused
by QCD effects which hide the information on the coefficients Ci. Whereas one can take control
of large QCD effects above the scale µ ∼ mb by a renormalisation group improved treatment, the
low-energy QCD effects inducing the confinement of quarks into hadrons at the scale µ ∼ ΛQCD

still pose a problem. Methods developed so far rely on flavour symmetries of QCD or on the
factorisation properties of low-energy QCD dynamics (QCDF) [3–5]. Unfortunately, none of the
two is able to predict the decay amplitudes with the required precision. The former is applicable
only to a handful of decays while the latter, which implies an expansion of the amplitudes in
ΛQCD/mb, receives important contributions from a number of subleading terms which can only
be estimated. Throughout this thesis we will use the QCDF framework. The basic idea and the
main features as well as our conventions are discussed in Chapter 2.

There are two strategies which can be pursued in order to explore NP in FCNCs (see figure
1.1). The first is to choose a specific, well-motivated NP model, calculate the FCNC couplings
Ci in terms of the free model parameters and analyse whether large contributions to certain B
decays are predicted. The confrontation with experimental data will then impose constraints on
the model parameters. In the first part of the thesis, this approach is applied to the Minimal Su-
persymmetric Standard Model (MSSM) with Minimal Flavour Violation (MFV), one of the most
popular and widely studied NP models proposed so far. Even though it is constructed in order
to avoid dangerously large FCNCs, the MFV scenario still permits large effects on some FCNC
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couplings, especially on C7γ and C8g, the coefficients of the magnetic and chromomagnetic op-
erators. We will identify and consistently resum enhanced contributions to these coefficients and
study their impact on rare B decays like B → Xsγ and B → φKs.

In contrast to this ”top-down” approach, the second strategy takes existing tensions in the ex-
perimental data on rare B decays as starting point of the analysis. The universal structure of
the low-energy effective Hamiltonian Heff then allows to perform a model-independent study
with the objective to explore whether additional contributions to certain couplings Ci could ac-
count for these tensions. Taking the resulting modified coefficients Ci as basis, one can then
study their impact on other decays as well as search for a NP model which provides appropri-
ate contributions to these couplings. This ”bottom-up” approach is pursued in the second part
of the thesis. Interpreting tensions in the B → Kπ data (”B → Kπ puzzle”) as hints on NP
in the electroweak-penguin couplings C7, ..., C10, we investigate the consequences on the purely
isospin-violating Bs → φπ and Bs → φρ decays and discuss several viable NP scenarios.

The remainder of this Chapter is dedicated to a more detailed description of the two projects.
The status quo of the corresponding research fields is stated and the new aspects contributed by
this work are pointed out.

1.1. Rare B decays in the MSSM with Minimal Flavour Violation

As already explained in the outset, the hierarchy problem encountered with the SM calls for
a symmetry which protects the mass of the Higgs boson. In supersymmetric theories (SUSY),
bosons and fermions are related to each other and arranged in pairs of superpartners. The sym-
metry ensures that quantum corrections caused by such a pair of partner particles exactly cancel
each other and thus it provides a natural solution to the hierarchy problem. Furthermore, SUSY
offers a candidate for Dark Matter and it helps to unify the electromagnetic, weak and strong in-
teractions at a high scale [6]. Among the supersymmetric extensions of the SM the one with the
fewest number of particles and interactions is called Minimal Supersymmetric Standardmodel
(MSSM).

An exact realisation of SUSY in nature would require the partner particles to have equal masses.
Therefore the fact that no partner of a SM particle has been detected up to the present implies
that SUSY has to be broken. Because of ignorance of the correct mechanism, SUSY breaking
is usually parametrised by writing terms into the Lagrangian which violate SUSY explicitly.
These terms have an a priori arbitrary flavour structure which is however constrained from low-
energy data on quark and lepton flavour transitions. The resulting constraints are quite tight and
suggest that the SUSY breaking terms obey a pattern of Minimal Flavour Violation (MFV) in
the sense that they do not introduce additional sources of flavour violation compared to the SM.
A consistent, symmetry-based definition of MFV has been given in Ref. [7]. For our studies we
adopt a simplified version of MFV which we call naive MFV and which includes the widely
studied CMSSM (see e.g. Refs. [8] for recent studies) and mSUGRA [9] models.

Even though the MSSM with MFV mimics the flavour structure of the SM with its strong sup-
pression of FCNC transitions, there can still arise big effects in some flavour observables. These
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effects are caused by a parametric enhancement originating from the Higgs sector. The MSSM
contains two Higgs doubletsHu andHd coupling to up- and down-type quark fields, respectively.
The neutral components of these Higgs doublets acquire vacuum expectation values (vevs) vu and
vd with the sum v2

u+v
2
d being fixed to v2 ≈ (174 GeV)2 and the ratio tanβ ≡ vu/vd remaining as

a free parameter. Large values of tan β (∼ 50) are theoretically motivated by bottom-top Yukawa
unification, which occurs in SO(10) GUT models with minimal Yukawa sector, and phenomeno-
logically preferred by the anomalous magnetic moment of the muon [10]. Since a large value of
tan β corresponds to vd ≪ vu, it leads to enhanced corrections in Feynman amplitudes where
the tree-level contribution is suppressed by the small vev vd but the loop-correction involves vu
instead. In such cases the ratio of one-loop to tree-level contribution receives an enhancement-
factor tan β which may lift the loop-suppression rendering the ratio of order O(1) [11].

These tan β-enhanced loop-corrections lead to a plethora of phenomenological consequences.
They modify the relation between the down-type Yukawa couplings ydi

and the quark massesmdi

[11] and renormalise the elements of the CKM matrix [12]. These effects modify the neutral [13]
and charged Higgs [14] phenomenology, with large impact onB+ → τ+ν [15] andB+ → Dτ+ν
[16]. Furthermore, tan β-enhanced loop-corrections induce FCNC couplings of the neutral Higgs
bosons to down quarks [17] with most spectacular effects in Bd,s → ℓ+ℓ−. A priori one could
have hoped to find an enhancement by several orders of magnitude compared to the SM value in
this mode, caused by six powers of tan β [18]. The current upper limit on Br(Bs → µ+µ−) from
Tevatron [19] puts severe constraints on the Higgs sector of the large-tan β MSSM and at the
same time renders analogous neutral Higgs effects in Bs-B̄s mixing invisible [20]. A different
type of tanβ-enhanced corrections occurs in Higgs couplings of the right-handed top-quark field,
which are suppressed by a factor of cot β at tree level. Supersymmetric vertex corrections can lift
the cotβ suppression, so that the one-loop correction competes with the tree-level coupling. This,
for example, affects the tRsLH+ coupling entering the charged-Higgs loop in b→ sγ [21, 22].

In order not to spoil the perturbative expansion a special treatment is required for all these tanβ-
enhanced corrections to resum them to all orders. There are two possible ways to deal with them.
The first method is to consider an effective theory with the SUSY particles integrated out keep-
ing only Higgs fields and SM particles. This approach, which has been used in nearly all the
phenomenological studies mentioned above, is valid for MSUSY ≫ v, MA0,H0,H± , i.e. within the
decoupling limit; it can be extended beyond using an iterative method [23, 24] which converges
if the magnitude of the resummed corrections is numerically smaller than the tree-level value.
The second possibility is to perform a diagrammatic, analytic resummation in the full MSSM
without assuming any hierarchy between MSUSY, MA0,H0,H± and v. This method has been de-
veloped in Ref. [14] to determine the modified relation between the quark Yukawa couplings ydi

and mdi
beyond the decoupling limit and it has been applied in Ref. [25] to the lepton sector

in an analysis of the muon anomalous magnetic moment. In this thesis we extent the diagram-
matic resummation method to the case of flavour-changing interactions permitting thereby its
application to the phenomenological effects listed above, like the CKM renormalisation and the
FCNC neutral Higgs couplings. Going beyond the decoupling limit in this way is desirable for
the following reasons: On the one hand, MSUSY ∼ v is natural since an unnatural fine-tuning
in the Higgs potential is needed to achieve MSUSY ≫ MA0 ,MH0,MH+ [26] and since after all



1.1 Rare B decays in the MSSM with Minimal Flavour Violation 5

effect decoupling limit beyond

modified relation
ydi

↔ mdi

Hall,Rattazzi,Sarid [11];

Carena,Olechowski,
Pokorski,Wagner [11]

Carena,Garcia,
Nierste,Wagner [14];

4.3.3

corrections to
CKM matrix Blazek,Raby,Pokorski [12] Buras,Chankowski,

Rosiek,Slawianowska [23];
4.4.4

enhanced FCNCs
di djH

0/A0

Hamzaoui,Pospelov,Toharia [17];

Babu,Kolda [18];

Buras,Chankowski,Rosiek,
Slawianowska [20]

Buras,Chankowski,
Rosiek,Slawianowska [23];

4.4, 4.5

enhanced FCNCs
di d̃j g̃/χ̃

0 not accessible 4.4, 4.5, 5

vertex corrections
ūi,R dj,LH

+

Degrassi,Gambino,Giudice [21];

Carena,Garcia,
Nierste,Wagner [22];

process-dependent
(non-universal)

Table 1.1: Summary of tan β-enhanced effects with references to the literature. The boxes indicate new
aspects which are for the first time discussed in this thesis with the numbers referring to the corresponding
chapters.

the widely-studied scenarios with neutralino LSP involve several SUSY particles with masses
around and below v. On the other hand, tanβ-enhanced effects in couplings involving SUSY
particles like gluinos and neutralinos cannot be studied in an effective theory with these parti-
cles integrated out. In this thesis we fill this gap and derive moreover analytic formulae for all
the other effects where up to now only results valid in the decoupling limit or iterative meth-
ods have been available (see Tab. 1.1). The only exception are proper vertex corrections like in
the ūi,R dj,LH+ coupling which are relevant only for a handful of processes. In such a case a
treatment beyond the decoupling limit requires a full NLO calculation for the particular process.

Our discussion of tanβ-enhanced effects is organised as follows: In Chapter 3 we give a brief
introduction into the MSSM, discuss in detail the hypothesis of MFV and define our simplified
framework of naive MFV. Chapter 4 is then dedicated to the development of our diagrammatic
resummation technique. After a brief review of the effective theory approach in Section 4.1
pointing out its shortcomings, we describe the basic idea of the diagrammatic method in Sec-
tion 4.2. It is applied to the flavour conserving case in Section 4.3, where we extend the results of
Ref. [14] by a discussion of the renormalisation scheme dependence of the resulting resumma-
tion formula. In the flavour changing case tanβ-enhanced corrections are induced by self-energy
insertions into external quark legs. Here we present two different approaches: In Section 4.4 the
corresponding diagrams are treated as one-particle irreducible. The inclusion of tanβ-enhanced
corrections into a LO calculation requires then the identification and calculation of certain NLO
diagrams. This method has already been worked out in the diploma thesis [27] and it has been
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applied there to two particular processes, namely B → Xsγ and Bs-B̄s-mixing. Here we embed
it into the systematic framework set up in Section 4.2. Furthermore, Section 4.4.3 delivers a piece
missing in the derivation presented in [27]. Since the external leg method demands the inclusion
of certain NLO diagrams into a LO calculation, it is not well suited for an implementation into
computer programs like FeynArts [28] which are designed to perform fixed-order calculations.
Therefore we develop an alternative resummation procedure in Section 4.5 based on matrix-
valued wave function renormalisation. Using this approach, we derive effective Feynman rules
in Section 4.5.2 which allow to account for tan β-enhanced effects in LO calculations and can
easily be implemented into computer programs. In Chapter 5 we finally investigate the conse-
quences for rare B decays by studying the impact on the relevant effective Hamiltonian. We
focus on gluino-squark contributions because they constitute novel corrections emerging from
our treatment of tan β-enhanced effects beyond the decoupling limit. We find a large effect in
the Wilson coefficient C8g of the chromomagnetic operator and demonstrate its importance by
an analysis of the mixing-induced CP asymmetry in the decay B → φKs.

1.2. Probing new physics in electroweak penguins via hadronic B decays

Among the hadronic B decays, especially the B → Kπ modes are of great interest for investi-
gating new physics. Not only are they dominated in the SM by FCNC loops and thus vulnerable
to NP contributions. As a consequence of strong isospin symmetry, the dominating QCD penguin
drops out if one considers ratios or differences of branching fractions and CP asymmetries of the
four different decay channels B− → K̄0π−, B− → K−π0, B̄0 → K−π+ and B̄0 → K̄0π0.
Therefore such observables are even sensitive to subleading isospin-violating effects. For exam-
ple the ratios Rc and Rn of the branching fractions of the two charged B− and the two neutral
B̄0 decay modes are expected to satisfy Rc ≈ Rn within the SM [29]. The fact that experimental
data showed for a long time a significant deviation from this pattern led to the formulation of
a “B → Kπ puzzle” pointing to new physics in the electroweak penguin sector [30, 31]. As a
consequence, B → Kπ decays have been studied in various elaborate works considering also
CP violating observables and using different approaches to estimate non-perturbative effects. In
Refs. [30–32] the hadronic B → Kπ parameters are related by SU(3) flavour symmetry to their
B → ππ counterparts which are then taken from experimental data. Other analyses instead rely
on a common fit to the SU(3)-related B → ππ and B → Kπ data [33], some of them take into
account SU(3)-breaking effects, too [34]. Moreover, as the experimental progress gave access
to more and more B → Kπ observables, also a χ2 fit to B → Kπ data alone became a popular
strategy to determine the hadronic parameters [35]. Apart from parameter fits, also calculational
tools like perturbative QCD [36], QCD factorisation [3,37] or soft collinear effective theory [38]
have been applied to B → Kπ decays. Almost all of the studies mentioned so far came to results
in favour of new physics in the electroweak penguin sector.

In the meantime, however, the experimental values for the branching fractions have moved to-
wards the SM predictions relaxing the CP conserving “B → Kπ puzzle” [39, 40]. On the other
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hand, the CP asymmetries still show some tensions which get manifest in the observable

∆ACP ≡ ACP(B− → K−π0) − ACP(B̄0 → K−π+). (1.1)

In the SM this quantity is expected to vanish to a very good approximation [41] whereas the
current experimental value is given by [42]

∆ACP
exp.
= (14.8 ± 2.8)%. (1.2)

Taking this discrepancy serious is very attractive as it may well be explained by new physics
in electroweak penguins and many models predict large contributions in this sector [43, 44].
Examples for new physics scenarios which have been claimed to offer a solution to the “∆ACP

puzzle” are models with a flavour-changing Z ′ coupling [45], fourth generation models [46],
supersymmetry [47] and so on. On the other hand, ∆ACP is sensitive to contributions from colour-
suppressed tree-level diagrams as well. These contributions which come in QCDF with large
hadronic uncertainties could as well lead to large deviations from a non-vanishing ∆ACP and
therefore the situation is not clear yet.

The scope of our work is as follows: Given the situation that tensions in B → Kπ decays nowa-
days essentially reside in one single observable which moreover suffers from large theoretical
uncertainties, it is important to inspect also other hadronic decays which are sensitive to EW
penguin contributions in order to decide whether there is really NP in this sector. Among these
decays there are of course the B → K∗π,Kρ,K∗ρ channels which have the same flavour struc-
ture as the B → Kπ decays and differ only by the spin of the final state mesons. Even though
experimental data on these decays is not as precisely determined as on their B → Kπ counter-
part, they might give valuable constraints since they probe other chirality structures of the EW
penguin operators than B → Kπ due to their different spin quantum numbers. Our main focus,
however, is on the purely isospin-violating Bs → φπ, φρ decays. Being dominated by EW pen-
guin contributions they constitute “golden modes” for probing this kind of NP. Apart from the
suggestion by Fleischer [48] to use Bs → φπ to measure the CKM angle γ, these decay modes
have not drawn a lot of attention so far since they have not been observed yet due to their small
branching fractions. However, an observation of Bs → φρ at LHCb or Bs → φπ at a potential
Super-B factory is realistic, especially in presence of an enhancing NP contribution.

The plan of our analysis is as follows: In Chapter 6 we study the isospin structure of B → Kπ
decays, construct observables which are sensitive to isospin violation and compare our SM results
obtained with QCDF to the current experimental data. The discrepancy in ∆ACP is then used as
motivation to study the purely isospin-violating decays Bs → φπ, φρ whose structure and SM
predictions are presented in Chapter 7. In Chapter 8 we analyse the consequences of NP in
the EW penguin sector in a model-independent way: We add NP contributions to the Wilson
coefficients C(′)

7 , ..., C
(′)
10 , fit them to the B → Kπ data and study with respect to the resulting

fit a potential enhancement of Bs → φπ/ρ. In Chapter 9 we perform an analogous study for
two concrete types of NP models: Models with a modified, flavour-changing Z-boson coupling
and models with a flavour-changing Z ′-boson coupling. Finally, Chapter 10 summarises the most
important results of this thesis.



8 1. Introduction



9

2. GENERAL FRAMEWORK FOR THE ANALYSIS OF

HADRONIC B DECAYS

Rare hadronic B decays are an ideal place to search for new physics (NP) beyond the Standard
Model (SM). This is because they are mediated at the quark level by flavour changing neutral
currents (FCNCs) which are highly suppressed within the SM so that potential NP contributions
have a chance to compete. Unfortunately, hadronic B decays are quite a challenge to theory: Due
to the dominant low-energy QCD effects confining the quarks to hadrons, it is difficult to single
out the high-energy FCNC transition which is responsible for the decay and which might contain
NP effects.

In order to calculate transition amplitudes for hadronic B decays it is essential to make use of
the strong hierarchy v ≫ mb ≫ ΛQCD between the three energy scales involved: the scale of
the FCNC transition and potential NP, established by the electroweak vacuum expectation value
(vev) v ∼ 175 GeV, the scale of the b-quark mass mb ∼ 4.2 GeV and finally the fundamental
scale of QCD ΛQCD ∼ 350 MeV governing the size of non-perturbative effects. In a first step the
hierarchy v ≫ mb is exploited to construct a simplified effective theory valid around the scale
mb. To determine the hadronic matrix elements of the corresponding effective Hamiltonian, one
can then in a second step take advantage of the hierarchy mb ≫ ΛQCD. It allows to separate the
perturbative part of the matrix elements from the non-perturbative one via the QCD factorisation
approach (QCDF) developed by Beneke, Buchalla, Neubert and Sachrajda (BBNS approach) [3].
Non-perturbative interactions are then confined to decay constants and form factors, i.e. to a
minimal number of quantities.

This chapter introduces the reader to the basic concepts of these methods. At the same time it
serves to define the conventions, schemes and notation used throughout the thesis. After setting
up the effective Hamiltonian for ∆B = ∆S = 1 hadronic B decays in section 2.1, the calculation
of its matrix elements via the QCDF approach is discussed in section 2.2.

2.1. The effective ∆B = ∆S = 1 Hamiltonian

2.1.1. Definition and construction

Rare hadronic B decays are induced by a flavour-changing weak transition of the constituent b
quark of the B meson. The released energy E = mB is much too low for the production of the
top quark, the W -, Z- and Higgs-bosons and potential NP particles. For this reason it suffices to
consider a simplified theory which only contains the five light quarks, the gluon and the photon as
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dynamical fields and reproduces the S-matrix elements of the full theory (SM plus NP) in the low-
energy region. The corresponding effective Hamiltonian contains in addition to the usual QED
and QCD terms (reduced to five active flavours) also higher-dimensional operators encoding the
flavour changing weak transitions. In the case of ∆B = ∆S = 1 decays and with the SM as
underlying full theory this higher dimensional part of the Hamiltonian reads

H(1)
eff =

4GF√
2

∑

p=u,c

λ(s)
p

(
C1Q

p
1 + C2Q

p
2 +

10∑

i=3

CiQi + C7γQ7γ + C8gQ8g

)
+ h.c. , (2.1)

where GF is Fermi’s constant and λ(s)
p = VpbV

∗
ps represents a product of elements of the quark

mixing (CKM) matrix. Explicit expressions for the current-current operators Qp
1,2, QCD penguin

operators Q3,...,6, electroweak penguin operators Q7,...,10 and the electromagnetic and chromo-
magnetic operators Q7γ , Q8g are given by

Qp
1 = (s̄αγ

µPLpα) (p̄βγµPLbβ) , Qp
2 = (s̄αγ

µPLpβ) (p̄βγµPLbα) ,

Q3 = (s̄αγ
µPLbα)

∑

q

(q̄βγµPLqβ) , Q4 = (s̄αγ
µPLbβ)

∑

q

(q̄βγµPLqα) ,

Q5 = (s̄αγ
µPLbα)

∑

q

(q̄βγµPRqβ) , Q6 = (s̄αγ
µPLbβ)

∑

q

(q̄βγµPRqα) ,

Q7 = (s̄αγ
µPLbα)

∑

q

3

2
eq(q̄βγµPRqβ) , Q8 = (s̄αγ

µPLbβ)
∑

q

3

2
eq(q̄βγµPRqα) ,

Q9 = (s̄αγ
µPLbα)

∑

q

3

2
eq(q̄βγµPLqβ) , Q10 = (s̄αγ

µPLbβ)
∑

q

3

2
eq(q̄βγµPLqα) ,

Q7γ =
e

16π2
mb(s̄ασ

µνPRbα)Fµν , Q8g =
gs

16π2
mb(s̄ασ

µνT aαβPRbβ)G
a
µν .

(2.2)

with eq denoting the quark charges in units of |e|, α, β being colour indices and the sum extending
over q = u, d, s, c, b.

The Hamiltonian (2.1) describes point-like interactions among the photon, gluons and light
quarks, with the Wilson coefficients Ci being the corresponding coupling constants. Energies
accessible in B decays are too low to resolve the inner structure of these point-like vertices, i.e.
the exchanged heavy virtual particles like the W-boson. From the point of view of the low-energy
theory, the couplings Ci are just free parameters to be determined from experiment. However,
knowing the underlying full theory, one can relate the Ci to the more fundamental parameters
of the full theory by performing a so-called matching calculation, i.e. by calculating S-matrix
elements in both theories and requiring equality of the results.

In writing down the Hamiltonian in (2.1) the SM has implicitly been assumed to be the full
theory behind it. In general one would have to write down all operators obeying the SU(3)C

and U(1)em symmetries of QCD and QED. The restriction to the ones in (2.2) results from the
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specific structure of the Yukawa matrices which are the only sources of flavour violation in the
SM: The hierarchical texture of the diagonalised Yukawa matrices imply that operators generated
only at the expense of a Yukawa coupling other then the one of the top quark can be dropped
from the Hamiltonian. In the first part of this thesis, we study a specific scenario of the Minimal
Supersymmetric Standard Model (MSSM) called Minimal Flavour Violation (MFV). Since this
scenario is defined by requiring that the Yukawa matrices are the only source of flavour violation,
it exhibits the same flavour structure as the SM and so its effective Hamiltonian is spanned by
the same operator basis (2.2)1. In the second part of the thesis, a model-independent analysis is
performed. Also in this case we assume that the flavour structure of NP can still be described in
terms of the SM operators, however possibly with addition of the so-called “mirror” operators
Q′
i, obtained from the Qi by a global exchange of left- and right chiralities of the quark fields.

This hypothesis is fulfilled within many realistic NP models.

2.1.2. Renormalisation group evolution

Since the effective theory has been constructed to reproduce the low-energy limit of the full
theory, both have the same infrared behaviour. However, due to the absence of heavy particles
and their propagators in the effective theory, the ultraviolet structure is different. In the effective
theory additional divergences emerge which have to be absorbed by renormalising the effective
couplingsCi. Exactly as in the case of the strong coupling αs, the renormalisation leads to a scale
dependence of the renormalised couplings which can be cast into a coupled set of differential
equations

µ
d

dµ
Ci(µ) = γTij Cj(µ) , (2.3)

the so-called renormalisation group equations (RGEs). Including next-to-leading order (NLO)
contributions of the form α2

s and αs αe with αe denoting the fine-structure constant, the anoma-
lous dimension matrix γ is of the form

γ =
αs
4π

γ(0)
s +

αe
4π

γ(0)
e +

(αs
4π

)2

γ(1)
s +

αs
4π

αe
4π

γ(1)
se . (2.4)

For explicit expressions of γ(0), γ(0)
e , γ(1)

s and γ(1)
se , we refer to Ref. [50] in case of the four-quark

operators. Since Q7γ and Q8g enter four-quark amplitudes only at NLO, a leading order (LO)
treatment of C7γ and C8g is sufficient for the study of hadronic B decays. The relevant entries of
γ

(0)
s involving C7γ and C8g can be found in Ref. [51]. With respect to the anomalous dimension

1Actually, in the MSSM with MFV there are new scalar operators involving a pair of b quarks. These operators
originate from a possible enhancement of the down-type Yukawa couplings such that the b quark Yukawa coupling
cannot be neglected anymore. However, as studied in Ref. [49], their effects are tightly constrained from Bs →
µ+µ− and B → τν.
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C1 C2 C3 C4 C5 C6

LO 1.118 −0.270 0.012 −0.028 0.008 −0.034

NLO 1.082 −0.192 0.014 −0.036 0.009 −0.042

C7/αe C8/αe C9/αe C10/αe Ceff
7γ Ceff

8g

LO −0.005 0.028 −1.289 0.292 −0.317 −0.151

NLO −0.016 0.059 −1.268 0.229 — —

Table 2.1: Short-distance coefficients at the scale µ = mb. The RGE evolution follows the scheme
described in the text using Λ

(5)
QCD = 0.231GeV, mt(mt) = 161.45GeV, mb(mb) = 4.2GeV, MW =

80.4GeV, MZ = 91.2GeV and αe = 1/129.

(2.4), the solution of the RGEs (2.3) reads

Ci(µ) = U
(1)
ij (µ, µ0)Cj(µ0), U (1)(µ, µ0) = W (µ)U (0)(µ, µ0)W

−1(µ0),

with W (µ) =
(
1 +

αe
4π

K
)(

1 +
αs(µ)

4π
J

)(
1 +

αe
αs(µ)

P

)
,

and U (0)(µ, µ0) =

(
αs(µ0)

αs(µ)

)γ
(0)
s

T

2β0 .

(2.5)

Explicit expressions for J , P and K can easily be determined by solving algebraic equations,
obtained from inserting (2.5) into (2.3) [50]. Given the Wilson coefficients Ci(µ0) at a certain
energy scale µ0, equation (2.5) can then be used to calculate their value at any other scale µ.
Since QCD and QED are invariant under the parity transformation, the coefficients C ′

i of the
mirror operators obey the same RGEs as their unprimed counterparts.

The accuracy of the effective theory is given by the precision with which the Wilson coefficients
Ci are determined in the matching procedure. The result of a perturbative calculation of the Ci
at the scale µ involves logarithms of the form αs ln(µ/MW ). At the scale µ ∼ mb at which the
effective Hamiltonian is applied to the hadronic B decay in question, these logarithms become
large spoiling the perturbative expansion. However, the RGE technique can be used to bypass
this problem: the trick is to calculate the Wilson coefficients Ci at the scale µ0 ∼ MW at which
the dangerous logarithms tend to vanish and then to use the RGE evolution (2.5) to evolve them
down to the scale of interest µ ∼ mb. In this way the large logarithms (αs ln(µ/MW ))n get
resummed to all orders n = 1, 2, ... .

Now, after the general method has been described, we want to specify the modified scheme on
which we rely for our analyses. As we will discuss in the next section, matrix elements of the ef-
fective Hamiltonian are evaluated using the QCDF method developed in Ref. [3]. This evaluation
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amounts to a NLO calculation with some simplifications, e.g. O(αe) corrections to the matrix el-
ements of the operators Q1, ..., Q6 are neglected. For consistency, the same simplifications have
to be applied to the NLO initial conditions and the RGE evolution for the Wilson coefficients
adapting the scheme defined in Ref. [3]: In the initial conditions for C1, ..., C6, corrections of
O(αe) are neglected, O(αs) mixing of C7, ..., C10 into C1, ..., C6 is switched off in γ

(1)
s , and

O(αe) mixing in γ(1)
se is taken into account only for the mixing of C1, ..., C6 into C7, ..., C10.

In the second part of the thesis, it is our goal to investigate effects of new physics in the elec-
troweak penguin sector entering the coefficients C7, . . . , C10 and C ′

7, . . . , C
′
10. In the SM, con-

tributions to C7, . . . , C10 arise only at O(αe), albeit partly enhanced by factors xtW = m2
t/M

2
W

and/or 1/ sin2 θW . Following the approach of Ref. [3] we treat the enhanced parts as LO in the
RGE evolution. To be consistent we neglect at the same time any mixing of C7, . . . , C10 into
C1, ..., C6. Since this treatment improves the RGE evolution for C7, ..., C10 and since it is exactly
these coefficients we are interested in, it is well suited for our analysis. The values for the SM
coefficients obtained in this scheme are given in table 2.1. By contrast, for the NP contributions
we use the standard treatment for the LO RGE.

2.2. QCD factorisation

In the last section, we have constructed an effective Hamiltonian H(1)
eff valid at the scale µ ∼ mb.

This effective Hamiltonian can now be used to calculate amplitudes for hadronic B decays. The
amplitude for the two-body decayB →M1M2 is then given by the corresponding matrix element
of H(1)

eff . Schematically written, it reads

A(B →M1M2) =
4GF√

2

∑

i

λi Ci(µ) 〈M1M2|Qi|B〉(µ) (2.6)

where Qi denote the effective operators contained in H(1)
eff with Ci and λi being the associ-

ated Wilson coefficients and CKM factors. The task is now to determine the matrix elements
〈M1M2|Qi|B〉(µ) which encode the information on how the quarks building the operator Qi

hadronise into the mesons B, M1 and M2. Therefore, to calculate these matrix elements one has
to rely on non-perturbative methods, such as lattice gauge theory or QCD sum rules. However,
before this is done, one can, in the case where the mesons M1,M2 are light compared to the
B-meson, employ the special kinematic of the decay to separate parts of the matrix elements
which can still be treated perturbatively from the non-perturbative parts which thereby factorise
into simpler objects, namely form factors and decay constants2.

2It should be mentioned that factorisation also holds in the case where the meson which picks up the spectator
quark is heavy. However, we will not consider this option here since we are only interested in B decays into two
light mesons.
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B

Fj

T I
ij

ΦM2

M1

M2

+ T II
i

ΦM1

ΦM2

ΦB

B

M1

M2

Figure 2.1: Graphical representation of the factorisation formula. Only one of the two form-factor terms
in (2.7) is shown for simplicity. Picture taken from [3].

2.2.1. The factorisation formula

Physically the factorisation property of B decays into light mesons mentioned above can be
understood as a consequence of colour transparency [52]. The b-quark decays into three light
quarks, one of them forming together with the spectator quark the meson M1, the other two
hadronising into the meson M2. These light quarks are very energetic because mb ≫ ΛQCD

and they originate from a common space-time point since they are generated via a point-like
interaction. Thus to hadronise into M2 the corresponding two quarks have to be highly collinear
constituting a colour neutral system of small transverse extension. Therefore, this two-quark
system is ”invisible” (colour-transparent) to a soft gluon whose energy is too low to resolve its
inner structure. As a consequence, non-perturbative strong interactions are confined to the B-M1

system and to the M2 system separately, so that the corresponding parts of the matrix element
factorise (left pictogram of fig. 2.1). Interactions between these two sub-systems are only due
to hard gluon exchange and can be calculated by usual perturbation theory. On the other hand,
the quark system forming the meson M1 will not generally factorise from the one forming the
original B meson since the spectator quark ending up in M1 is low-energetic. An exception
occurs in the case when the spectator undergoes a hard gluon scattering before hadronising. This
situation in which the matrix element factorises into three form factors is displayed in the right
pictogram of fig. 2.1.

The diagrams of fig. 2.1 can be cast into a factorisation formula [3]

〈M1M2|Qi|B̄〉 =
∑

j

FB→M1
j (m2

2)

∫ 1

0

du2 T
I
ij(u2) ΦM2(u2) + (M1 ↔M2)

+

∫ 1

0

duB du1 du2 T
II
i (uB, u1, u2) ΦB(uB) ΦM1(u1) ΦM2(u2), (2.7)

valid up to corrections of order O(ΛQCD/mb). Here, uB, u1, u2 ∈ (0, 1) stand for the longitudinal
momentum fractions carried by the valence quarks in the mesons B, M1, M2, i.e. labelling the
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momenta of the mesons by pi the longitudinal momenta of the valence quarks are given by uipi
whereas those of the anti-quarks are given by (1 − ui)pi. The hard scattering kernels

T Iij(u2) = 1 + O (αs(µb)) and T IIi (uB, u1, u2) = O (αs(µh)) (2.8)

with µb ∼ mb and µh ∼
√

ΛQCDmb are calculated perturbatively. They are weighted with the
probabilities ΦMi

(ui) for the quarks to carry the corresponding momentum fractions ui inside the
mesons before an integration over all possible momentum configurations is performed. The prob-
abilities ΦMi

(ui) are given by the so-called light-cone distribution amplitudes (LCDAs) which
are in complete analogy to the parton distribution functions in collider physics. In the heavy quark
limit ΛQCD ≪ mb it suffices to consider the LCDAs within the leading twist approximation,
i.e. higher Fock states involving sea-quarks and -gluons can be neglected. Finally, FB→M

j (q2)
are the usual form factors parametrising the matrix element 〈M1|q̄ Γj b|B̄q〉 to be evaluated at
p2 = m2

2 ≈ 0 where Γj parametrises the particular Dirac structure and m2 is the mass of the
meson M2.

From (2.8) we infer that at O(α0
s) the second line in Eq. (2.7) vanishes and the integral in the first

line reduces to the decay constant fM2 of the light meson M2 which is the proper normalisation
constant for the LCDA. So in this case we recover the naive factorisation result for the amplitude
(2.6) with the matrix elements evaluated as

〈M1M2|Qi |B̄q〉(F) = 〈M1| q̄ Γ b |B̄q〉 〈M2| q̄ Γ q′ |0〉 + (M1 ↔M2)

≡ 〈Qi〉(F)
12 + 〈Qi〉(F)

21 . (2.9)

Going beyond LO in αs, the factorisation formula guarantees that the amplitude (2.6) can still be
expressed in terms of the factorised matrix elements, i.e. it is of the form

A(B̄ →M1M2) =
4GF√

2

∑

p=u,c

λ(s)
p

10∑

i=1

(
api (M1M2) 〈Qi〉(F)

12 + api (M2M1) 〈Qi〉(F)
21

)
. (2.10)

However, the coefficients are now not simply given by the Wilson coefficients Ci anymore but
they include perturbative power corrections of order αs(µb,h):

api (M1M2) =

(
Ci +

Ci±1

Nc

)
Ni(M2) +

Ci±1
CF
Nc

[
αs(µb)

4π
Vi(M2) +

4π2

Nc

αs(µh)

4π
Hi(M1M2)

]
+ P p

i (M2),

ac1(M1M2) = ac2(M1M2) = 0, (2.11)

where the upper (lower) sign applies when i is odd (even). The first line in (2.11) is the tree-level
contribution leading to the naive factorisation result. The quantities Vi, Hi and P p

i in the second
line represent the vertex corrections, the hard spectator interactions and the penguin contractions,
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B̄ M1

M2

B̄ M1

M2

B̄ M1

M2

Figure 2.2: Perturbative non-factorisable QCD corrections contributing (from left to right) to Vi, Hi and
P p
i

respectively. Each type of correction is illustrated in Fig. 2.2 by a corresponding Feynman dia-
gram. Explicit formulae for Vi, Hi and P p

i depend on the final state, whether it is a PP , PV ,
V P or V V combination with P denoting pseudoscalar and V denoting vector mesons, and can
be found in Refs. [3, 5]. Note that the operators Q7γ and Q8g do not appear in (2.10) because
their tree level matrix elements vanish for hadronic B decays. However, they contribute to the
penguin coefficients P p

i . It should also be remarked that unlike the Wilson coefficients in effec-
tive theories the coefficients api (M1M2) are not process-independent but depend on the hadrons
in the final state via the LCDAs ΦMi

.

It is useful to combine amplitudes ai whose operators Qi involve the same flavour and colour but
a different chirality structure to flavour amplitudes αk. The chirality structure is responsible for
the fact that the pattern according to which the operators Qi enter the decay amplitudes depends
on the spin of the final-state mesons and is thus different forPP, PV, V P and V V decays. Hiding
the chirality structure in the flavour amplitudes αk therefore allows a universal description of all
these types of decays in terms of the αk. We give here explicitly the expressions for the flavour
amplitudes related to the electroweak penguin operators, namely

αp3EW(M1M2) =





ap9(M1M2) − ap7(M1M2), if M1M2 = PP, V P

ap9(M1M2) + ap7(M1M2), if M1M2 = PV, V V
,

αp4EW(M1M2) =





ap10(M1M2) + rM2
χ ap8(M1M2), if M1M2 = PP, PV

ap10(M1M2) − rM2
χ ap8(M1M2), if M1M2 = V P, V V

(2.12)

since they will play a major role in part II of this work. The corresponding QCD penguin am-
plitudes αp3 and αp4 are obtained from αp3,EW and αp4,EW by the replacements ap9 → ap3, ap7 → ap5,
ap10 → ap4 and ap8 → ap6 whereas the current-current amplitudes are simply given by αu1 = au1
and αu2 = au2 . The ap6- and ap8-terms vanish at leading twist in the LCDAs since the matrix ele-
ments 〈M1M2|Q6,8 |B̄q〉(F) multiplying them involve (pseudo-)scalar vacuum-meson currents3.

3To see this one has to perform a Fierz transformation on Q6,8 bringing them into the form of two colour-neutral
bilinears.
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The twist-3 contribution is formally ΛQCD/mb-suppressed. However, due to a chiral enhance-
ment of the normalisation ratio rM2

χ , e.g. mπ/mu,d for M2 = π, it can gain numerical relevance.
Explicit expressions for the rM2

χ can be found in [3, 5].

As mentioned in Section 2.1.1 we want to study also contributions from the mirror operators
Q′
i. To this end we have to extend Eq. (2.10) by corresponding mirror-terms involving further

amplitudes a′ pi . Since QCD is parity-invariant, the NLO expression for the a′ pi is equivalent to
the one for api in Eq. (2.11), only the short distance coefficients Ck have to be replaced by the C ′

k.
Applying further a parity transformation to the matrix elements

〈M1M2|Qi|B̄〉 = −ηM1M2 〈M1M2|Q′
i|B̄〉 (2.13)

one concludes that [4]

Ap
i (M1M2) ∝ api (M1,M2) − ηM1M2 a

′ p
i (M1,M2), (2.14)

where ηM1M2 = ±1 is the parity of the final state. This observation can be used to translate
Eq. (2.12) to the mirror sector. With ηM1M2 = 1 for PP, V V and ηM1M2 = −1 for PV we
obtain [49]

α′ p
3EW(M1M2) =





−a′ p9 (M1M2) + a′ p7 (M1M2), if M1M2 = PP

a′ p9 (M1M2) + a′ p7 (M1M2), if M1M2 = PV

a′ p9 (M1M2) − a′ p7 (M1M2), if M1M2 = V P

−a′ p9 (M1M2) − a′ p7 (M1M2), if M1M2 = V V

,

α′ p
4EW(M1M2) =





−a′ p10(M1M2) − rM2
χ a′ p8 (M1M2), if M1M2 = PP

a′ p10(M1M2) + rM2
χ a′ p8 (M1M2), if M1M2 = PV

a′ p10(M1M2) − rM2
χ a′ p8 (M1M2), if M1M2 = V P

−a′ p10(M1M2) + rM2
χ a′ p8 (M1M2), if M1M2 = V V

. (2.15)

Furthermore, in order to find the appropriate formula for the primed amplitude of a B → V V
decay, any quantity in the expression for the unprimed amplitude which depends on the helicity
of a vector meson has to be replaced by the one involving the opposite helicity.

Finally, we should briefly comment on contributions to the decay amplitudes arising from di-
agrams in which the two valence quarks of the B meson annihilate. These weak annihilation
contributions are subleading in ΛQCD/mb and therefore they do not appear in the factorisation for-
mula (2.7). In the BBNS approach of QCDF their effects are estimated and promoted to flavour
amplitudes βi which add to the αi. For a detailed discussion and explicit expressions of the βi we
refer to Refs. [3, 5].
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2.2.2. Properties and limitations of QCDF

Having discussed the basic concept of the QCDF framework, we summarise in this section im-
portant properties and limitations of this approach which one should keep in mind when applying
it to phenomenological analyses:

• The overall concept of QCDF is valid in the heavy-quark limit mb → ∞. Thus it is ex-
pected to give correct results only up to order ΛQCD/mb corrections. This expansion pa-
rameter is numerically not much smaller than αs. Therefore predictions for decays where
the LO amplitude is small and which are therefore very sensitive to O(αs)-effects suffer
from large uncertainties.

• One class of such processes are decays with a colour-suppressed LO topology. This means
that the colour-indices α and β of the two quark chains of the dominantly contributing
operator have to be equal in order to form colour-neutral final-state mesons. This leads
to a 1/Nc suppression of the LO amplitude with Nc = 3 being the number of colours
which can be lifted by O(αs) corrections. As discussed in the first point, this implies large
uncertainties for QCDF predictions of such decays.

• Since form factors and decay constants are real, the operator matrix elements are real at LO
in QCDF. As a consequence, strong phases are in QCDF either perturbative and suppressed
by αs or non-perturbative and suppressed by ΛQCD/mb. Hence QCDF predicts rather small
strong phases which are subject to large uncertainties from ΛQCD/mb corrections. The
largest phases are expected in amplitudes with a suppressed LO contribution.

• In B → V V decays the final-state vector mesons can either be both longitudinally or
both positively or both negatively polarised. Because of the left-handed nature of weak
interactions in the SM, helicity-flips of the fast travelling light quarks are needed in order
to form transversely polarised vector mesons, in fact one flip in the case of negative and
two flips in the case of positive helicities [4]. This causes a hierarchy

A0 : A− : A+ = 1 :
ΛQCD

mb
:

(
ΛQCD

mb

)2

(2.16)

of the corresponding amplitudes at LO in QCDF. Being already subleading in ΛQCD/mb the
calculation of negative helicity amplitudes raises conceptual problems resulting in large
uncertainties of the total branching fractions. This can be avoided by considering solely
decays into longitudinal vector mesons which, however, require the measurement of an-
gular distributions. Positively polarised amplitudes can be neglected in QCDF to a good
precision. Further details are discussed in Ref. [5]. Here we remark only that mirror con-
tributions develop of course the reversed hierarchy

A′
0 : A′

− : A′
+ = 1 :

(
ΛQCD

mb

)2

:
ΛQCD

mb

(2.17)

suggesting polarisation measurements as a possible tool for probing right-handed new
physics [4].
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2.2.3. Input parameters

In table 2.2 we display the numerical values which we use for the theoretical input parameters
throughout this work. The values for the QCD and CKM parameters as well as the B meson
lifetimes are taken from [53]. The value mq of the light quark masses is determined in such a
way that rKχ = rπχ for the ratios introduced in Eq. (2.12). The hadronic parameters consist of the
decay constants and form factors into which the factorised operator matrix elements decompose
and the Gegenbauer moments which parametrise the LCDAs. Here we use the most updated
values from Refs. [3, 5, 54]. For our numerical calculations we add errors in quadrature and vary
the scale µb at which the decay amplitudes are calculated between mb/2 and 2mb.

In the BBNS approach of QCDF some ΛQCD/mb suppressed but numerically sizable contribu-
tions in the hard scattering amplitudes as well as the weak annihilation amplitudes are esti-
mated by introducing unknown O(1) parameters XH,A,L. For phenomenological analyses they
are parametrised as

XH,A = (1 + ρH,Ae
iϕH,A) ln

mB

Λh
, XL = (1 + ρLe

iϕL)
mB

Λh
, (2.18)

where the ρi are real, ϕi are arbitrary strong phases, mB denotes the B meson mass and Λh =
0.5 GeV. We will assume ρH,L = 0 by default and consider ρH,L ≤ 1 and arbitrary phases ϕH,L
in the error estimation. Concerning XA we take

ρA =





1.5, if M1M2 = PP, PV, V P,

1, if M1M2 = V V
, ϕA =





−55◦, if M1M2 = PP,

−20◦, if M1M2 = PV,

−70◦, if M1M2 = V P,

−40◦, if M1M2 = V V

(2.19)
as default values. For the error determination we vary ρA ≤ 1.5 in the PP , PV , V P case, ρA ≤ 1
in the V V case and −180◦ < ϕA ≤ 180◦ in all cases. This corresponds to “Scenario S4” defined
in the last paper of [3] apart from one exception: Given the current data, the value for ρA in the
standard “Scenario S4”, namely ρA = 1 for PP , PV , V P and ρA = 0.6 for VV, generates a too
small result for the ratio of theB− → K̄0π− and B− → π−π0 branching fractions. These decays
are dominated by QCD penguin and tree contributions, respectively, and are expected to receive
negligible contributions from NP. In order to have a conservative estimate of the theory error, we
have therefore increased the default value and the error interval for the parameter ρA.
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QCD scale and running quark masses [GeV]

Λ
(5)

MS
mb(mb) mc(mb) ms(2 GeV) mq/ms

0.231 4.2 1.3±0.2 0.090± 0.020 0.0413

CKM parameters

λ |Vcb| |Vub/Vcb| γ sin(2β)

0.225 0.0415 ± 0.0010 0.085+0.025
−0.015 (70 ± 10)◦ 0.673 ± 0.23

B meson parameters

B− B̄0 B̄0
s

Lifetime τ [ps] 1.638 1.525 1.472

Decay constant fB[MeV] 210 ± 20 240 ± 20

λB[MeV] 200+250
−0 200+250

−0

Pseudoscalar-meson decay constants and Gegenbauer moments

π K

f [MeV] 131 160

a1, a1,⊥ 0 0.06 ± 0.06

a2, a2,⊥ 0.20 ± 0.15 0.20 ± 0.15

Vector-meson decay constants and Gegenbauer moments

ρ K∗ φ

f [MeV] 209 ± 1 218 ± 4 221 ± 3

f⊥[MeV] 165 ± 9 185 ± 10 186 ± 9

a1, a1,⊥ 0 0.06 ± 0.06 0

a2, a2,⊥[MeV] 0.1 ± 0.2 0.1 ± 0.2 0 ± 0.3

Pseudoscalar-meson form factor at q2 = 0

B → π B → K Bs → K̄

f+ 0.25 ± 0.05 0.34 ± 0.05 0.31 ± 0.05

Vector-meson form factor at q2 = 0

B → ρ B → K∗ Bs → φ

A0 0.30+0.07
−0.03 0.39 ± 0.06 0.38+0.10

−0.02

f+ 0.00 ± 0.06 0.00 ± 0.06 0.00 ± 0.06

f− 0.55 ± 0.06 0.68 ± 0.07 0.65+0.14
−0.00

Table 2.2: Summary of the theoretical input parameters for non-leptonic B meson decays into two light
mesons. All scale-dependent quantities refer to µ = 2GeV unless otherwise stated.
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Part I

Rare B decays in the MSSM with Minimal
Flavour Violation
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3. THE MINIMALLY FLAVOUR VIOLATING MSSM

In this chapter, we present a brief introduction to the Minimal Supersymmetric Standard Model
(MSSM) with Minimal Flavour Violation (MFV). In section 3.1 the general set-up of the MSSM
is sketched (detailed reviews can e.g. be found in [55]) before we concentrate on the framework
of MFV in section 3.2. Here, we start with a detailed discussion of the symmetry-based definition
of MFV by D’Ambrosio et al. [7]. Subsequently we define the scenario of ”Naive MFV” used
in this thesis and compare it to the symmetry-based definition as well as to the framework of
”Constrained MFV” (CMFV) defined by Buras et al. [56]. Finally, we elaborate on the low-
energy structure of the MSSM with naive MFV pointing out which operators in the effective
∆B = ∆S = 1 Hamiltonian are expected to receive large contributions.

3.1. Construction of the MSSM

To construct the MSSM one extends the SM by the minimal number of particles needed such
that every fermion has a bosonic superpartner and vice versa. The particles are then grouped
into two types of supermultiplets: chiral multiplets containing partners of spin 0 and spin 1/2 and
vector multiplets containing partners of spin 1/2 and spin 1. Since these supermultiplets transform
irreducible under SUSY and the gauge symmetries and since thus the superpartners must have
equal gauge quantum numbers, it is not possible to form a pair of superpartners consisting of
two SM particles1. Therefore one has to add to each SM particle an additional partner particle.
Moreover, as we will see, a second Higgs doublet is needed compared to the SM. Names for the
new particles are created from the names of their SM partners, in case of spin 0 by putting a s- in
front (e.g. top → stop), in case of spin 1/2 by adding the ending -ino (e.g. Higgs → Higgsino).
The complete particle content of the MSSM is shown in tables 3.1 and 3.2.

Now, after the particle content of the MSSM has been identified, we have to specify in a second
step the interactions among the particles. These are completely fixed in SUSY theories by writing
down the superpotential, a holomorphic function of the chiral superfields. The superpotential
has to be gauge invariant and the theory derived from it should be renormalisable. To avoid
interactions which violate lepton or baryon number, an additional symmetry called R-parity has
to be postulated. The most general superpotential fulfilling all these requirements reads

W = yiju ūiQjHu − yijd d̄iQjHd − yije ēiLjHd + µHuHd , (3.1)

1Grouping the SM Higgs doublet and one of the lepton doublets together into a supermultiplet would violate
lepton number.
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superfield spin 0 spin 1
2

SU(3)C × SU(2)L × U(1)Y

Q

(
ũL

d̃L

) (
uL

dL

)
(3, 2,+1

6
)

ū ũ∗R (uR)c (3̄, 1,−2
3
)

d̄ d̃∗R (dR)c (3̄, 1,+1
3
)

L

(
ν̃L

ẽL

) (
νL

eL

)
(1, 2,−1

2
)

ē ẽ∗R (eR)c (1, 1,+1)

Hu

(
H+
u

H0
u

) (
H̃+
u

H̃0
u

)
(1, 2,+1

2
)

Hd

(
H0
d

H−
d

) (
H̃0
d

H̃−
d

)
(1, 2,−1

2
)

Table 3.1: Chiral supermultiplets in the MSSM

where the product of two SU(2)L doublets has to be interpreted asQH ≡ ǫαβQ
αHβ with ǫαβ be-

ing the two-dimensional antisymmetric tensor. Whereas in the SM the charge-conjugated Higgs
field H̃ = ǫH∗ is used to generate masses for the up-type quarks, this is not possible in the
MSSM because otherwise the superpotential would contain Hd and H∗

d at the same time and
would then not be holomorphic anymore. Therefore it is necessary to introduce a second Higgs
doublet Hu.

The Yukawa Lagrangian for the quark fields

−Ly = yiju ū
i
RQjHu − yijd d̄

i
RQjHd + h.c. , (3.2)

which is obtained from the superpotential (3.1) by replacing the (s)quark superfields by their
fermionic and the Higgs superfields by their bosonic part, is that of a two-Higgs-doublet model
(2HDM) of type II. The Yukawa couplings yijq (q = u, d) are arbitrary 3 × 3 matrices in family
space. Allowing different unitary rotations for left-handed up- and down quarks and thus giving
up manifest SU(2)-invariance, it is possible to choose a basis in which the tree-level Yukawa
couplings are flavour-diagonal, i.e. yijq = yqjδij . In this basis of mass-eigenstates the CKM-matrix
enters the couplings of theW -boson to the quark fields. Performing the rotations needed to switch
to the quark mass-eigenstates on the whole superfields in order to maintain supersymmetry, one
arrives at the Super-CKM basis.
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superfield spin 1
2

spin 1 SU(3)C × SU(2)L × U(1)Y

V1 B̃0 B0 (1,1,0)

V2 W̃±, W̃ 0 W±,W 0 (1,3,0)

V3 g̃ g (8,1,0)

Table 3.2: Vector supermultiplets in the MSSM

In the course of electroweak symmetry breaking the neutral components of the two Higgs dou-
blets Hu and Hd acquire vacuum expectation values (vevs) vu and vd with the sum v2

u + v2
d being

fixed to v2 ≈ (174 GeV)2 and the ratio defined as

tanβ ≡ vu/vd (3.3)

remaining as a free parameter. The vevs vu and vd give masses to up- and down-type quarks
according to

mu = yuvu, md = ydvd. (3.4)

Therefore the parameter tanβ determines the ratio of up- and down-type Yukawa couplings
which is given in terms of the measured quark masses as

yd
yu

=
md

mu
tan β. (3.5)

From (3.5) we see that a large value of tanβ (∼ 50) leads to increased down-type Yukawa
couplings with yb of order O(1) permitting bottom-top Yukawa unification. As it is characteristic
for a theory with large dimensionless parameter, various parametric enhancement effects occur
which will be studied in the subsequent chapters.

As explained in the outset, SUSY can only be realised in nature as a broken symmetry. It is
assumed that, like the electroweak symmetry, SUSY is broken spontaneously by the vev of a
scalar field. For phenomenological reasons, this scalar field cannot be one of the MSSM fields
itself but has to be part of a so-called hidden sector consisting of additional fields which couple
only weakly to the MSSM matter. There exist different theoretical proposals on how the SUSY
breaking might be mediated from the hidden sector to the visible MSSM. The most popular ones
are based on gravity, gauge interactions or anomalies. However, since the correct mechanism is
not known, the simplest approach for phenomenological studies is just to put by hand terms into
the Lagrangian which explicitly break SUSY. It is clear that SUSY should be broken in such a
way that its attractive features are kept, especially the hierarchy problem should not be restored.
SUSY breaking terms fulfilling this request are called ”soft” and have been classified for the first
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time in Ref. [57]. For the MSSM they are given by

−LMSSM
soft =

1

2

(
M1B̃B̃ +M2W̃

a

W̃ a +M3g̃
c
g̃c
)

+
(
aiju ũ

∗
i Q̃jHu − aijd d̃

∗
i Q̃jHd − aije ẽ

∗
i L̃jHd + bHuHd + c.c.

)

+
(
(m̃2

Q)ijQ̃∗
i Q̃j + (m̃2

u)
ijũ∗i ũj + (m̃2

d)
ij d̃∗i d̃j + (m̃2

L)ijL̃∗
i L̃j + (m̃2

e)
ij ẽ∗i ẽj

)

+
(
m2
Hu
H∗
uHu +m2

Hd
H∗
dHd

)
, (3.6)

withHu,d denoting only the scalar part of the corresponding supermultiplet here. The Lagrangian
(3.6) provides mass terms for the gauginos, squarks and Higgs bosons as well as trilinear squark-
squark-Higgs couplings and aHu-Hd mixing term. In its most general form it contains more than
100 free parameters.

3.2. Minimal Flavour Violation

Due to the fact that the soft breaking Lagrangian (3.6) has not been derived from an underlying
theory or principle, its parameters are a priori completely arbitrary implying an entirely general
flavour structure. On the other hand, when confronted with data on flavour physics, the SUSY
breaking terms get highly constrained. Therefore, it is quite natural to assume a structure for
these terms which reduces the additional amount of flavour violation to a minimum. Depending
on how the word ”minimum” is interpreted one can end up with different hypotheses of ”Minimal
Flavour Violation” and various realisations have been studied in the literature. The most consis-
tent definition has been given in Ref. [7] using a spurion formalism. It will be denoted as MFV in
the following and is in a sense the ”maximal” version of Minimal Flavour Violation containing
other scenarios as approximations or special cases. In this section we will discuss this realisation
of MFV in some detail before we define our own framework of naive Minimal Flavour Violation
(naive MFV) used in this thesis.

3.2.1. Symmetry-based definition of MFV

To illustrate the idea of the spurion method let us consider for a moment a simple quantum
mechanical system, namely an electron in a uniform magnetic field ~B. Whereas the Hamiltonian
of a free electron is invariant under SO(3) rotations, this symmetry is reduced to SO(2) in
presence of the external magnetic field since now a direction ~B/| ~B| is distinguished from other
directions. On the other hand, when the magnetic field is not treated as external but as part of the
system, it will transform under rotations and SO(3) invariance is restored. This point of view has
the advantage that now SO(3) invariance can be used to construct the Hamiltonian of the system
which is thus dictated to be

H = c ~S ~B, (3.7)
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with c being a constant, ~S the spin of the electron and spatial degrees of freedom ignored2. After
the Hamiltonian has been set up in this way, the magnetic field can be frozen to its constant value
inducing thereby the SO(3) → SO(2) breaking. At this point the two broken generators can be
applied for a last time to choose a convenient coordinate system, e.g. with ~B pointing into the
z-direction [58]. By this procedure the three components of the magnetic field are reduced to
Bz = | ~B|, which is the only physical free parameter of the system.

Let us now transfer this concept to the case of the SM Lagrangian restricting ourselves to the
quark sector. The gauge interactions cannot distinguish among the three families of matter and
therefore they exhibit a global U(3)Q × U(3)u × U(3)d symmetry, where Q denotes the left-
handed quark doublet, u and d the right-handed up- and down-quark singlets. This family sym-
metry is broken by the Yukawa interactions

−LSM
y = ūR YuQH + d̄R YdQH̃ + h.c. (3.8)

which connect left- and right-handed quark fields via the 3 × 3 Yukawa matrices Yu and Yd.
However, in complete analogy to the case of the magnetic field discussed above, we can reinstall
the [U(3)]3 symmetry by promoting the Yukawa couplings to dynamical fields (spurions) which
transform under the family rotations

Q → RQQ, uR → Ru uR, dR → Rd dR (RQ ∈ U(3)Q, ... ) (3.9)

according to
Yu → Ru YuR

†
Q, Yd → Rd YdR

†
Q. (3.10)

In the same way as the SO(3) symmetry in the example from quantum mechanics was used to
construct the most general Hamiltonian, the restored family symmetry of the SM can be exploited
to predict the operators appearing in the effective Hamiltonian (2.1) and to make qualitative
statements about their Wilson coefficients. For example, to lowest order in the Yukawa couplings,
a FCNC (V − A) - current has to be of the form

jµij ∼ Q̄i (Y
†
uYu)ij γ

µQj ≈ y2
t V

∗
ti Vtj

(
Q̄iγ

µQj

)
(no sum over i 6= j) (3.11)

in order to respect the [U(3)]3 symmetry. This is exactly the structure which would result from
an explicit loop calculation. Of course, the spurion method is only a technical trick: In the end
the Yukawa spurions have to be frozen to their constant values inducing thereby the [U(3)]3 →
U(1)B breaking with the remaining U(1) symmetry being baryon number. Analogously to the
example of the magnetic field, we can use the 3 · 9 − 1 = 26 broken generators to choose
a convenient basis in family space [58]. By this procedure the 36 real parameters of the two
complex 3 × 3 Yukawa matrices reduce to 10 physical ones: 6 diagonal couplings in direct
correspondence to the quark masses and 4 parameters constituting the CKM matrix, namely
three mixing angles and one phase.

A generic extension of the SM will typically introduce further [U(3)]3-breaking interactions. To
restore the family symmetry one has therefore in general to promote additional couplings to spu-
rions. This observation suggests the following definition of MFV [7]: An extension of the SM

2Higher powers of ~S ~B do not appear because ( ~B~S)2 = ~
2

4
~B2.
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is called minimally flavour violating, if the Yukawa spurions are the only spurions needed to
re-establish the [U(3)]3 family symmetry and if every interaction term in the Lagrangian can be
expressed in a natural way in terms of the Yukawa spurions. In contrast to most other formula-
tions of Minimal Flavour Violation, this definition can be applied to any new physics extension
of the SM, not only to the MSSM. It ensures that FCNC transitions are still governed by expres-
sions like (3.11), i.e. controlled by the hierarchical structure of the CKM matrix and the Yukawa
couplings so that the same suppression mechanisms as in the SM take effect.

To apply the MFV hypothesis to the MSSM we parametrise the matrices m̃2
Q, m̃2

u, m̃2
d, au and

ad in terms of the Yukawa spurions such that the soft SUSY breaking Lagrangian (3.6) becomes
[U(3)]3-invariant [7]:

m̃2
Q = m2

0

[
a1 + b1 Y

†
uYu + b2 Y

†
d Yd + (b3 Y

†
d YdY

†
uYu + h.c.) + ...

]
,

m̃2
u = m2

0

[
a2 + b5 YuY

†
u + ...

]
,

m̃2
D = m2

0

[
a3 + b6 YdY

†
d + ...

]
,

au = A0 Yu

(
a4 + b7 Y

†
d Yd + ...

)
,

ad = A0 Yd
(
a5 + b8 Y

†
uYu + ...

)
. (3.12)

Adopting vector space language, equation (3.12) displays the projection of the soft SUSY break-
ing matrices onto the subspace spanned by appropriate combinations of the Yukawa spurions.
However, for example in the case of m̃2

Q it can be shown that these combinations form a com-
plete basis for the vector space of hermitian 3 × 3 matrices [59]. Thus from (3.12) alone, no
conclusion can be drawn on the structure of m̃2

Q. On the other hand, due to the hierarchical struc-
ture of the Yukawa matrices, the basis vectors are almost aligned. Therefore, if m̃2

Q would be a
completely generic hermitian matrix, some of its coefficients ai, bi, ... would have to be orders
of magnitudes larger than others in contradiction to the naturality of the Yukawa decomposition
required by the definition of MFV. Demanding in contrast ai, bi, ... = O(1) allows to truncate the
Yukawa decomposition after the first few terms as has been done in (3.12) and results in highly
non generic structures for the soft breaking terms. The free parameters in the SUSY breaking
sector are then reduced to the O(1) coefficients ai, bi, ... on which this definition of MFV makes
no further assumptions.

3.2.2. Naive MFV

Naively one might think that it should be possible to construct an even ”more minimal” real-
isation of MFV by simply setting all the bi in (3.12) to zero. Then the SUSY breaking terms
would be flavour-diagonal in a Super-CKM basis which is constructed by rotating the superfields
in such a way that the up- and down-type Yukawa couplings are simultaneously diagonalised.
As a consequence, all gluino-squark-quark and neutralino-squark-quark couplings in the MSSM
Lagrangian would be flavour-conserving. Further the chargino-squark-quark couplings would
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come with the same CKM elements as the corresponding couplings of W bosons or charged
Higgs bosons to (s)quarks. One would expect such a scenario of naive Minimal Flavour Viola-
tion (naive MFV) to occur if SUSY is broken by a flavour-blind mechanism leading to flavour-
universal squark mass matrices.

However, it turns out that the definition of naive MFV is not renormalisation group invariant:
Eliminated at a certain scale, the bi terms reappear at any other scale, generated by the RGE
running of the soft breaking terms. Therefore, even if one imposes flavour universality at the
SUSY breaking scale, the assumption of naive MFV at the low energy electroweak scale can
be regarded only as an approximation which in the first instance is expected to work well only
if the SUSY breaking scale is not too high. However, in our version of naive MFV we slightly
go beyond flavour universality, as we allow the SUSY-breaking terms of the third generation to
be different from those of the first two3. In this way we account for RGE running involving the
large top and bottom Yukawa couplings and thus include also the cases of the widely-studied
CMSSM (see e.g. Refs. [8] for recent studies) and mSUGRA [9] models, in which the universal
boundary condition is imposed at the GUT scale. Moreover, even though in models with high-
scale flavour universality the RGE induces flavour-violating gluino and neutralino couplings at
the electroweak scale, their impact on FCNC transitions like B−B mixing and b → sγ is
small [60] and so the naive MFV pattern essentially stays intact.

It should be stressed that our scenario of naive MFV differs from the one called ”Constrained
MFV“ (CMFV) defined by Buras et al. [56]. The definition of CMFV requires the structure of
low-energy operators to be the same as in the SM. As we will see in the next section, this is not
the case for the MSSM with naive MFV.

Finally, we emphasise that no variant of the MFV assumption forbids flavour-diagonal CP-
violating phases [24]. Such phases appear in trilinear terms Ai, the higgsino mass parameter
µ, and the gaugino mass terms Mi, i = 1, 2, 3, which are consequently treated as complex quan-
tities throughout this thesis. Only certain phase differences are physical, CP-violating quantities.
We choose a phase convention in which the gluino mass parameter M3 is real and positive, so
that M3 = mg̃.

For MSUSY ∼ v, the Higgs fields Hu and Hd induce sizeable mixing between the left- and right-
handed squarks q̃L and q̃R, which causes the mass eigenstates q̃1,2 to be different from q̃L,R. The
charged winos and higgsinos mix as well, forming chargino mass eigenstates χ̃±

1,2, and so do
the bino, the neutral wino and the neutral higgsinos, forming neutralino mass eigenstates χ̃0

1..4.
Our conventions concerning the mass and mixing matrices can be found in Appendix A.1. We
always work in the Super-CKM basis and use the conventions of the SUSY Les Houches Accord
(SLHA) [61]. The phases entering the left-right mixing of squarks are unspecified by the SLHA
and are defined in Appendix A.1.

3It should be stressed that this is possible for the right-handed bilinear mass terms but not for the left-handed
ones: In the Super-CKM basis one has m2

d̃L

= m̃2
Q and m2

ũL
= V m̃2

QV †. The naive MFV hypothesis of diagonal

m̃2
dL

, m̃2
uL

matrices therefore implies m̃2
uL,dL

∝ 1.
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3.2.3. Low-scale structure of the MSSM with MFV

The spurion method developed in section 3.2.1 can be used to construct the low-energy effective
Hamiltonian of a theory respecting the MFV hypothesis [7]. Neglecting all Yukawa couplings
except for yt, the only relevant non-trivial flavour structure is given by

(Y †
uYu)ij ≈ m2

t

v2
V ∗
tiVtj . (3.13)

If one considers all [U(3)]3-invariant ∆B = ∆S = 1 - operators of dimension 6 and applies
(3.13) to them, one ends up with the effective Hamiltonian (2.1) of the SM. Since the Yukawa
spurions are responsible for the operators appearing in the effective Hamiltonian, one might
expect MFV models to lead to the same low energy structure (2.1) as the SM. However, there is
an additional flavour pattern in the MSSM with MFV originating from the fact, that large values
of tanβ enhance the down-type Yukawa couplings (see (3.5)) rendering

(Yd)ij ∼ mdi

v cosβ
δij (3.14)

non-negligible. The consequences on the operator basis of the ∆B = ∆S = 1 - Hamiltonian are
as follows:

• The magnetic and chromomagnetic operators Q7γ,8g emerge from the flavour structure

Q̄i (Y
†
uYuY

†
d )ij σ

µνdjR → yb y
2
t V

∗
tsVtb (sLσ

µνbR). (3.15)

Since this operator violates SU(2)L invariance, its coefficient has to be proportional to an
electroweak vev. For the SM contribution this vev is generated by attaching the Higgs field
Hd to the external b quark line. In the MSSM, one can instead couple the Higgs field Hu

to a SUSY particle running in the FCNC loop. In this case the corresponding contribution
to C7γ,8g is tanβ-enhanced compared to the SM one because of

Hd → vd, Hu → vu = vd tan β. (3.16)

• The potential enhancement of down-type (and lepton) Yukawa couplings allows to con-
struct also scalar ”penguin” operators
(
Q̄i (Y

†
uYuY

†
d )ij d

j
R

) (
ψ̄mR (Yψ)mn Ψn

)
→ yb yψm

y2
t V

∗
tsVtb (sLbR)(ψmRψ

m
L ), (3.17)

(
Q̄i (Y

†
uYuY

†
d )ij d

j
R

)(
Ψ̄m (Y †

ψ)mn ψ
n
R

)
→ yb yψm

y2
t V

∗
tsVtb (sLbR)(ψmL ψ

m
R ) (3.18)

with Ψm = Qm, Lm, ψmR = dmR , ℓ
m
R and ψmL = dmL , ℓ

m
L . The Wilson coefficient of the oper-

ator (3.17) receives contributions from neutral-Higgs penguin diagrams which can play in
the league of tree-level contributions thanks to a chiral enhancement. This property makes
Bs → µ+µ− the standard candle for the large-tan β region of the MSSM. The corespond-
ing four-quark operators have less significance because the ψ = b operator contributes to
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rare B decays only at NLO in the effective theory or via small RGE evolution effects and
the ψ = s operator suffers from a ms/mb suppression compared to the former one. There-
fore correlation with the ψ = ℓ operator and the present upper limit on Bs → µ+µ− [19]
render effects of the four-quark operators negligible [49]. Note that similar neutral-Higgs
contributions do not occur in the case of the second operator (3.18). This is a result of a
Peccei-Quinn (PQ) symmetry

ψR → eiδψR, uR → uR, Ψ → Ψ,

Hd → eiδHd, Hu → Hu, (3.19)

obeyed by the tree-level Yukawa Lagrangian and the tree-level Higgs potential of the
MSSM. Since the operator (3.18) breaks this symmetry (and in addition SU(2)L invari-
ance), its coefficient is proportional to a small PQ-breaking parameter in the Higgs poten-
tial [62] (and in addition to a factor v2/M2

A0).

• In a similar way, tree-level charged-Higgs exchange generates scalar ”current-current” op-
erators which read

(
Q̄i (Y

†
d )ij d

j
R

)
(ϕ̄mR (Yϕ)mn Φn) → yb yϕm

Vcb (cLbR)(ϕmRφ
m
L ), (3.20)

(
Q̄i (Y

†
d )ij d

j
R

) (
Φ̄m (Y †

ϕ)mn ϕ
n
R

)
→ yb yϕm

Vcb (cLbR)(φmLϕ
m
R ) (3.21)

with Φm = Qm, Lm, ϕmR = dmR , ℓ
m
R and φmL = umL , ν

m
L . As in the neutral-Higgs counter-

part, the operator in the second line is suppressed by a small PQ-breaking parameter. The
first operator with ϕ = τ , on the other hand, is responsible for large effects in the decays
B+ → τ+ν [15] and B+ → Dτ+ν [16]. Measurements of these decays limit correspond-
ing effects in the ϕ = c four-quark operator whose coefficient is moreover suppressed
compared to the ϕ = τ one by ms/mτ .

Focussing on non-leptonic B decays, we note that no additional operators compared to the SM
have to be considered since effects of the scalar operators are numerically small. SUSY contri-
butions to the SM operators decouple with v2/M2

SUSY, can in case of Q7γ and Q8g however be
enhanced by a factor of tanβ.
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4. RESUMMATION OF tan β - ENHANCED LOOP

CORRECTIONS BEYOND THE DECOUPLING LIMIT

Large values ∼ 50 of the dimensionless parameter tanβ, introduced in the last chapter, lead to a
parametric enhancement of certain loop corrections to Feynman amplitudes. These contributions
corrupt a naive expansion of Feynman amplitudes in the loop order. A fixed-order calculation
has to be supported by a resummation of such tan β-enhanced effects to all orders.

In this chapter we derive resummation formulae for tanβ-enhanced loop corrections which are
valid for arbitrary values of the SUSY mass parameters. Several of these formulae were previ-
ously known only in the limit MSUSY ≫ v,MA0,H0,H± which permits application of an effective
theory approach. After a brief discussion of this method in Section 4.1 we oppose to it our dia-
grammatic approach in Section 4.2. This approach is then applied to the flavour-conserving case
in Section 4.3, where we clarify the scheme dependence of the resulting resummation formula,
and for the first time extended to the flavour-changing case, where we present in Sections 4.4
and 4.5 two different procedures for the resummation. In Section 4.5.2 the resummed tanβ-
enhanced effects are finally cast into a set of effective Feynman rules which allow for an easy
implementation into automatic calculations.

4.1. Effective theory approach for MSUSY ≫ v, MA0,H0,H±

According to the Lagrangian (3.2), the right-handed down quarks diR couple at tree level only to
the Higgs field Hd but not to Hu. This is a consequence of the requirement that the superpotential
has to be a holomorphic function of the fields. On the other hand, right-handed down quarks can
couple to Hu via loops of SUSY-particles, e.g. of squarks and gluinos, which we assume for
the moment to be much heavier than the Higgs fields A0, H0, H± and the SM particles. Under
this assumption the SUSY-particles can be integrated out and this procedure leads to an effective
non-holomorphic coupling ỹijd ofHu to diR [63] (Fig. 4.1). In the Super-CKM-basis for the quark
and squark fields, in which yijd = ydi

δij , the Yukawa couplings of the down-type quarks are then
given by the effective Yukawa Lagrangian

−Leff
y,d = −ydi

d̄iRQiHd + ỹijd d̄
i
RQjH

∗
u + h.c. (4.1)

The dominant contribution to the effective coupling ỹijd stems from a gluino-squark-loop and is
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diL diR

Hu

diL diR

Hu

g̃

d̃iL d̃iR

−iỹdi

Figure 4.1: Effective coupling of the down-type quarks to Hu

depicted in Fig. 4.1. In our framework of naive MFV, it is flavour-diagonal with

ỹg̃di
= ydi

ǫg̃i (µ,md̃i
L
, md̃i

R
), (4.2)

and ǫg̃i (µ,md̃i
L
, md̃i

R
) = −2αs

3π
mg̃µ

∗C0(mg̃, md̃i
L
, md̃i

R
). (4.3)

Here m2
d̃i

L

and m2
d̃i

R

are the mass terms for the left- and right-handed down-squarks of the i-th

generation, respectively, mg̃ is the gluino mass and the loop integral C0 is defined in Appendix
A.2. Accounting for similar contributions from loops with charginos (still neglecting flavour
mixing) or neutralinos we write ǫi = ǫg̃i + ǫeχ±

i + ǫeχ0

i .

When replaced by their vevs, both Higgs fieldsHu andHd generate mass termsm(u)
di

andm(d)
di

for
the down-type quarks via the Yukawa couplings in Leff

y,d. The ratio of these mass terms is given
by

∆i ≡
m

(u)
di

m
(d)
di

=
ỹdi
vu

ydi
vd

= ǫi tan β. (4.4)

A large value of tan β can compensate for the loop factor ǫi rendering m(u)
di

and m(d)
di

of the same
order of magnitude. Treating them therefore on an equal footing, we get a modified relation
between the Yukawa coupling ydi

and the physical quark mass mdi
:

mdi
= m

(d)
di

+m
(u)
di

⇒ ydi
=

mdi

vd(1 + ǫi tan β)
. (4.5)

In the effective theory approach, the tan β-enhanced self-energy contributions (e.g. m(u)
di

in the
previous flavour-conserving example) are generated by the operators Qij = d̄iRQjH

∗
u. From this

observation, we can immediately conclude that the resulting contributions have the following
properties:

• They do not decouple for MSUSY → ∞, because the operators Qij have dimension four
and hence the couplings ỹijd are dimensionless.
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diL diR

Hu

g̃

d̃iL d̃iR

+
diL diR

Hu

Hu Hu

g̃

d̃iL d̃iR

d̃iR d̃iL

+
diL diR

HuHu Hu

Hu Hu

g̃

+ ...

Figure 4.2: Series of ’hedgehog diagrams’ contributing to mdi

• They are finite. Otherwise appropriate counterterms δỹijd would be needed to cancel diver-
gences. However, such counterterms are not allowed, because the non-holomorphic cou-
plings ỹijd are absent at tree-level.

• There are no genuine higher loop contributions of the form (ǫ tanβ)n with n ≥ 2. This
can be seen by recognizing that the tanβ - enhancement in the ratio ∆i stems from the
cosβ-suppression of m(d)

di
= ydi

v cosβ. Therefore only one factor of tanβ appears, inde-
pendently of the number of loops and the number of powers of vu = v sin β considered in
m

(u)
di

.

It is illustrative to consider the extension of the effective-field-theory formalism to subleading
powers in v2/M2

SUSY. Apart from the Qij one must then add also operators to Leff
y,d which involve

a higher number k ≥ 3 of Hu fields. Contributions to these higher-dimensional operators are
suppressed for MSUSY ≫ v but have to be summed to all orders in k for MSUSY ∼ v. The gluino
contributions to these new effective couplings are shown in Fig. 4.2. In this simple case one can
sum the contributions of these ‘hedgehog diagrams’ to mdi

to all orders in k. The effect of this
Dyson-like summation can be incorporated into (4.5) by the replacement

ǫi(µ,md̃i
L
, md̃i

R
) → ǫi(µ,md̃i

1
, md̃i

2
), (4.6)

where md̃i
1,2

denote the physical squark masses, i.e. the eigenvalues of the squark mass matrix.
Using this expression in Eqs. (4.4) and (4.5) reproduces the result of the diagrammatic resum-
mation of Ref. [14].

In the next sections we will derive resummation formulae for tanβ-enhanced corrections which
are valid for any value of MSUSY. We will use and extent the diagrammatic method of Ref. [14]
which has the following advantages compared to the effective-field-theory approach:

• Working in the mass-eigenbasis for the squarks, we automatically include contributions
of all orders in v2/M2

SUSY without the need for a summation of a Dyson-like series of
diagrams.
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• Even though it has been determined by a one-loop calculation, Eq. (4.5) contains contri-
butions (ǫi tan β)n to all orders in n = 1, 2, ... according to

mdi

vd(1 + ǫi tan β)
=

mdi

vd

∑

n

(−ǫi tan β)n. (4.7)

The origin of the terms of higher loop-order will become transparent in the diagrammatic
approach where an explicit resummation is performed.

• The diagrammatic method provides full control over the renormalisation scheme for the
SUSY input. This is important because the resulting resummation formulae depend on
the scheme which is used. It turns out that they look different also for schemes which
differ only by terms of order v/MSUSY. Therefore it is difficult to achieve control over the
renormalisation scheme in the effective-field-theory approach, even in cases where one
succeeds in resumming higher orders in v2/M2

SUSY as in (4.6).

• We will study tanβ-enhanced effects in the couplings of SUSY particles like the quark-
squark-gluino vertex. The resulting formulae can be applied to low energy processes in-
volving virtual SUSY particles as well as to high energy processes with external SUSY
particles. Such an analysis cannot be carried out consistently in the effective-field-theory
approach with the SUSY particles integrated out.

4.2. Diagrammatic resummation

Given the interaction Lagrangian L of a quantum field theory, the transition amplitude M for a
scattering process involving k → n particles is calculated according to

iM =
〈0| T

{
φ1(x1)...φk(xk)ψ1(y1)...ψn(yn) exp

(
i
∫
d4xL

)}
|0〉

〈0| T
{
exp

(
i
∫
d4xL

)}
|0〉 . (4.8)

Here T denotes the time-ordered product. The fields φ1, ..., φk, ψ1, ..., ψn representing the incom-
ming and outgoing particles, respectively, are given in the interaction picture. For perturbative
calculations, the exponential is expanded to a fixed order in powers of L corresponding to a fixed
loop-order in the graphical representation of (4.8) in terms of Feynman diagrams. The expansion
parameters of the the perturbative series are small loop factors ǫ ∼ κ2/(16π2) with κ . 1 being
coupling constants of the interaction terms in L. However, as demonstrated in the last section, the
ǫ-suppression of superficially subleading contributions can be lifted in the MSSM by an enhanc-
ing factor of tan β. Therefore, a perturbative calculation to the kth order should rather include
all corrections of the form ǫk(ǫ tanβ)n for n = 1, 2, .... We will now develop a framework which
allows to take into account such effects systematically.

To this end we decompose the Lagrangian in the usual way as

L = Lren + Lct (4.9)
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where Lren is obtained from L by replacing bare quantities by renormalised ones and Lct con-
tains counterterms needed to cancel divergences appearing in loop calculations. The renormalised
parameters are ”pseudo-observables” 1 which can (at least in principle) be determined from ex-
periment. The decision which physical quantities to use as these ”pseudo-observables” defines
a renormalisation scheme and fixes the finite part of the counterterms in Lct. Depending on the
renormalisation scheme, finite loop effects at a certain energy scale are absorbed into Lct. For
this reason, Lct is a further potential source of tanβ-enhanced corrections in addition to loop-
corrections encountered in the calculation of M from Lren. In this section we will identify all
types of tanβ-enhancement effects in M and Lct postponing the discussion of their resumma-
tion to the subsequent sections.

4.2.1. tan β-enhancement in M

In order to identify tan β-enhanced corrections to a given transition matrix element M we
must distinguish two cases, namely whether the leading order contribution MLO does involve
a cosβ-suppression or not. In the case of unsuppressed MLO a loop correction can only be
tan β-enhanced if it involves at least one inverse power of mb ∼ cosβ 2. The presence of such
inverse powers of mb is related to the infrared behaviour of M for mb → 0. The Kinoshita-
Lee-Nauenberg theorem [64] guarantees the absence of power-like divergences for mb → 0 in
genuine multi-loop diagrams. Therefore, tanβ-enhanced loop corrections can only be generated
by insertion of self-energy subdiagrams into quark lines, typically flavour-changing self-energies
into external quark legs. This type of tan β-enhanced corrections will be studied in Section 4.4.

In case of an explicit cosβ-suppression of MLO the situation is different. Any generic loop
correction which does not suffer from the same suppression is tanβ-enhanced with respect to
MLO. Since this type of tan β-enhancement does not replicate itself in higher orders, it can be
taken into account by a NLO calculation and no resummation is needed. Examples are the h0

coupling to down-type quarks and the H+ coupling to left-handed down-type quarks. The tanβ-
enhanced vertex corrections to these couplings have been studied in Refs. [21, 22].

4.2.2. tan β-enhancement in Lct

In Lct the quark mass counterterm δmb (or equivalently the Yukawa counterterm δyb) as well as
the CKM counterterms δVij are sources of tan β-enhancement. Of course, these counterterms
depend on the chosen renormalisation scheme. In order to be able to use numerical values for mb

and Vij determined from low-energy experiments, we use an appropriate decoupling scheme ap-
plying an on-shell subtraction to the tanβ-enhanced SUSY loops. The resulting one-loop coun-
terterms δyb and δVij are of the form ǫ tanβ with ǫ being the respective loop factor. Reinsertion
of these counterterms into tan β-enhanced loop diagrams gives enhanced higher order contribu-
tions to be subtracted by higher order counterterms. These effects can be taken into account by

1couplings are, of course, no direct observables but can be determined from cross section measurements.
2we neglect the d- and s-quark masses
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resumming δyb and δVij to all orders (ǫ tanβ)n (n = 1, 2, ...). The corresponding resummation
is performed in Section 4.3.2 for δyb and in Section 4.4.4 for the δVij .

All tan β-enhanced counterterms are finite and so they are absent if a minimal subtraction scheme
is chosen formb and Vij. However, for example in the case of the bottom mass, the input value m̃b

in such a scheme is obtained from the measured MS massmb by adding the tan β-enhanced self-
energy ΣRL

b, SUSY(m̃b). Therefore, m̃b implicitly contains tan β-enhanced corrections and the issue
of their resummation would have to be addressed in the determination of a conversion formula
between m̃b and mb.

The prescription of an on-shell subtraction for the SUSY loops contributing to mb and Vij de-
fines only one part of the total renormalisation scheme. Two such schemes can for example still
differ by the renormalisation conditions imposed on the SUSY breaking parameters. As we will
see in Section 4.3.3, the resulting resummation formula for δyb depends on the renormalisation
prescriptions applied to the down squark sector.

Finally, we remark that the tanβ-enhanced self-energy insertions into external quark legs which
have been mentioned in the first paragraph of the last section can be absorbed into wave-function
counterterms δZL and δZR of left- and right-handed down-quark fields. These counterterms
δZL,R are 3 × 3 matrices in flavour space and their determination and resummation is discussed
in Section 4.5.1. The consideration of δZL,R

ij -insertions into leading order diagrams supersedes
then an explicit calculation of the corresponding external leg corrections to MLO. In this way,
this type of tanβ-enhanced corrections moves from the category of transition amplitude effects
to the category of counterterm effects.

The tan β-enhanced counterterm effects can easily be incorporated into an automated leading or-
der calculation of Feynman diagrams. To this end one has just to treat enhanced counterterm ver-
tices on an equal footing with tree-level vertices by formulating effective Feynman rules. These
Feynman rules, which can easily be implemented into computer programs like FeynArts [28], are
formulated in Section 4.5.2. On the other hand, in order to include the tanβ - enhanced effects
discussed in the last section, one has to single the enhanced diagrams out of the bulk of NLO
corrections and calculate them explicitly. This procedure is not well suited for an automated im-
plementation into computer programs like FeynArts which are designed to perform fixed-order
calculations. In this context, it is favourable to replace tanβ-enhanced external leg corrections
by matrix-valued wave-function counterterms as proposed in the last paragraph. Then also these
effects can be cast into effective Feynman rules and they are included in the rules given in Sec-
tion 4.5.2. The only tan β-enhanced corrections which can not be incorporated by means of
effective Feynman rules, are then the corrections to cosβ-suppressed amplitudes MLO. How-
ever, such corrections arise only for a few number of amplitudes and to take them into account
a full NLO calculation is required anyway. Therefore, we will not concern ourselves with this
type of tan β-enhancement any further. Instead we will discuss all the other enhanced effects and
their resummation now in detail.
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4.3. The flavour-conserving case

As demonstrated in Section 4.1, effective non-holomorphic couplings of right-handed down-
type quarks to Hu lead to self-energy contributions to their masses which are tanβ-enhanced
with respect to the tree level values. In the diagrammatic approach of Section 4.2 these tanβ-
enhanced self-energies renormalise the masses mdi

and Yukawa couplings ydi
. In this section we

determine the resummed counterterm δydi
and discuss its scheme dependence. For definiteness

we quote the results for the b-quark. Expressions for d- and s-quarks are obtained by obvious
replacements.

4.3.1. Flavour-conserving tan β-enhanced self-energies

A general contribution to a fermion self-energy can be decomposed as

Σb(p) = /p
[
ΣLL
b (p2)PL + ΣRR

b (p2)PR
]

+ ΣRL
b (p2)PL + ΣLR

b (p2)PR

with ΣLR
b (p2) =

(
ΣRL
b (p2)

)∗
,

(4.10)

where p is the external momentum. The scalar part ΣRL
b contains tan β-enhanced pieces from

gluino-squark, chargino-squark and neutralino-squark loops. These contributions are depicted in
Fig. 4.3 and read

ΣRL
b = mb∆b with ∆b = ∆g̃

b + ∆eχ±

b + ∆eχ0

b (4.11)

and

∆g̃
b =

αs
3π

mg̃

mb
sin 2θ̃b e

−iφ̃b ·
[
B0(mg̃, mb̃1

) −B0(mg̃, mb̃2
)
]
, (4.12)

∆eχ±

b = − g2

16π2

1

cos β

2∑

m=1

{
m

eχ±
m

2
√

2MW

yt
g
Ũ∗
m2Ṽ

∗
m2 sin 2θ̃te

iφ̃t

·
[
B0(meχ±

m
, mt̃1) − B0(meχ±

m
, mt̃2)

]

−
m

eχ±
m√

2MW

Ũ∗
m2Ṽ

∗
m1

[
cos2 θ̃tB0(meχ±

m
, mt̃1) + sin2 θ̃tB0(meχ±

m
, mt̃2)

]}
, (4.13)

∆eχ0

b =
g2

16π2

1

cos β

4∑

m=1

meχ0
m

2MW

Ñ∗
m2Ñ

∗
m3

·
[
cos2 θ̃bB0(meχ0

m
, mb̃1

) + sin2 θ̃bB0(meχ0
m
, mb̃2

)
]
. (4.14)

By evaluating ΣRL
b for p2 = 0, we have neglected terms suppressed by m2

b/M
2
SUSY and terms

suppressed by cot β. In the effective theory approach, cot β-suppressed terms are generated by
the Higgs field Hd which can couple either to the sparticle loop or (in contrast to Hu) also to the
external down-quark line. The coupling to the external quark line corresponds in the diagram-
matic language to a chirality flip obtained by application of the Dirac equation /p bL,R = mb bR,L.
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Figure 4.3: tan β-enhanced self-energy diagrams with (from left to right) gluinos, charginos and neu-
tralinos.

Such contributions are omitted if the self-energy is evaluated for vanishing external momentum
and for consistency one should thus neglect also those contributions which arise in the effec-
tive theory approach by coupling Hd to the sparticle loop. In the diagrammatic calculation this
amounts in dropping terms which contain the vev vd from the squark-, chargino- and neutralino
mixing matrices in appendix A.1. Furthermore, in (4.14) we discarded some numerically small
contributions stemming from the bino-component of the neutralinos or involving wino-higgsino
mixing. The former are suppressed by g′2/g2, the latter by g2(v2/M2

SUSY).

Whereas in the effective-theory approach the tan β-enhancement was easily recognisable by the
coupling toHu, in the diagrammatic treatment it is hidden in the elements of the mixing matrices.
Using the analytic expressions for these matrices listed in Appendix A.1, i.e. identities like Eq.
(A.7) and Eq. (A.13), we can derive formulae for the gluino- and chargino-contributions in which
the tanβ-enhancement becomes explicit. Writing

∆K
b = ǫKb tanβ for K = g̃, χ̃±, χ̃0 and ǫb = ǫg̃b + ǫeχ±

b + ǫeχ0

b (4.15)

we find

ǫg̃b = −2αs
3π

mg̃µ
∗C0(mg̃, mb̃1

, mb̃2
),

ǫeχ±

b = − y2
t

16π2
A∗
tµ

∗
(
D2 − |M2|2D0

)
+

g2

16π2
µ∗M∗

2

(
D2 −m2

t̃R
D0

)
, (4.16)

where D0,2 = D0,2(meχ±

1
, m

eχ±

2
, mt̃1 , mt̃2). Eqs. (4.12)-(4.16) generalise the well-known expres-

sions of Ref. [65] to the case of complex MSSM parameters.

4.3.2. Renormalisation of the Yukawa coupling

In the procedure of renormalisation, the fundamental (a priori free) parameters of the Lagrangian
are expressed by measured (or at least measurable) quantities. This is done by calculating cor-
responding observables in terms of the parameters in the Lagrangian, expressing then the La-
grangian in terms of these observables. The form of the final Lagrangian obviously depends on
the chosen observables (renormalisation scheme), predictions obtained from it for further ob-
servables, however, are scheme independent3. To keep things as simple as possible one chooses

3in perturbative calculations the scheme independence holds only up to the considered accuracy.
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observables which are closely related to fundamental parameters in the Lagrangian using then
these parameters directly as “pseudo-observables”.

The Yukawa coupling yb could most directly be assessed using A0, H0 decays into b quarks as
observables. The corresponding amplitudes do not receive any tan β-enhanced corrections to be
subtracted by δyb and so no tan β-enhanced counterterm effects would arise. Having fixed yb
in this way from experiment, we could then predict other observables, among them the b quark
mass mb. Since its tree-level amplitude mb = vyb cosβ is cos β-suppressed, we encounter the
type of tanβ-enhancement discussed in the second paragraph of Section 4.2.1 leading to the
enhanced one-loop self-energy contributions (4.11)-(4.16). However, there are no enhancement
effects beyond one-loop and so no resummation is needed.

Yet, in any phenomenological application we have to face the fact that we have precise data on
mb but not on the Higgs couplings. Therefore we will rather use the measured b quark mass as
observable to renormalise yb = mb/vd to the MS mass mb. To this end we must calculate SUSY
self-energy corrections to mb in terms of yb and subtract them by δyb according to

vdδyb = δmb = −mb

2

[
ΣLL
b (m2

b) + ΣRR
b (m2

b)
]
− ΣRL

b (m2
b). (4.17)

The self-energy ΣRL
b (m2

b) contains tan β-enhanced parts and because of our renormalisation
condition this tan β-enhancement creeps in the Yukawa counterterm δyb.

The self-energy ΣRL
b is a function of the Yukawa coupling yb, which comes in either directly via

the quark-squark-higgsino-vertex or indirectly via the sbottom mixing angle. We make this yb -
dependence explicit in what follows by writing ΣRL

b (yb). Now, let us consider such self-energy
diagrams in which one or more of the couplings yb are replaced by the counterterm δyb. Despite
being formally of a higher loop order, these diagrams are comparable in size with the original
ones because δyb is of the same order of magnitude as yb thanks to its tan β-enhancement. In
order to cancel also the diagrams with counterterm insertion, the Yukawa counterterm δyb must
fulfill

vdδyb = −ΣRL
b (yb + δyb). (4.18)

to all orders in the perturbative expansion and to leading order in tanβ.

Let us adopt the notation from Eqs. (4.11) and (4.15) by writing

ΣRL
b (yb + δyb) = vd(yb + δyb)ǫb tanβ. (4.19)

Whenever ǫb does not depend on y(0)
b ≡ yb + δyb, as it is the case for example for ǫg̃b and ǫeχ±

b in
Eq. (4.16), one can easily solve (4.18) for δyb. The resulting resummation formula

y
(0)
b = yb + δyb =

mb

vd
− mb

vd

ǫb tanβ

1 + ǫb tan β
=

mb

vd(1 + ǫb tan β)
(4.20)

is identical to Eq. (4.5) with the replacement (4.6). Note that in our diagrammatic derivation
we made use only of the hierarchy mb ≪ MSUSY but did not assume any hierarchy between
MSUSY,MA0,H0,H± and v.
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The solution of Eq. (4.18) automatically resums contributions of the form (ǫb tan β)k to all orders
k = 1, 2, ... . This resummation can also be performed explicitly by expanding Eq. (4.18) with
respect to the loop order and then solving it order by order. Denoting the k-th order counterterm
by δy(k)

b and assuming again an yb-independent ǫb, we find

δy
(1)
b = −ybǫb tan β,

δy
(k)
b = −δy(k−1)

b ǫb tan β = yb(−ǫb tanβ)k, (k = 2, 3, ...). (4.21)

This perturbative expansion can immediately be interpreted in terms of Feynman diagrams: The
k-th order counterterm δy

(k)
b has to cancel the insertion of δy(k−1)

b into the one-loop self-energy
diagram. These are the only possible enhanced higher-order diagrams because of the absence
of genuine tan β-enhanced multi-loop contributions. The recursive determination of the δy(k)

b

permits eventually an explicit resummation

δyb =

∞∑

k=1

δy
(k)
b =

∞∑

k=1

yb(−ǫb tan β)k = −mb

vd

ǫb tan β

1 + ǫb tanβ
. (4.22)

yielding the same resummation formula (4.20) for y(0)
b as derived aboved.

4.3.3. Scheme dependence of the resummation formula

It should be stressed that the resulting resummation formula for y(0)
b depends on the renormali-

sation scheme for the input parameters in the sbottom sector. This is because the yb-dependence
of ΣRL

b , and hence the algebraic equation (4.18) for δyb, is modified if we change our parameter
set. As the masses and mixing angles of SUSY particles have not been measured yet, it is most
prominent to take parameters as input which directly appear in the Lagrangian. For the sbottom
sector this means choosingmb̃L,R

, µ and tanβ as input which parametrise the matrix elements of

the sbottom mass matrix M2
b̃

displayed in (A.1). With M2
b̃

as input, the quantities mb̃1,2
, θ̃b and

φ̃b defined in (A.4) and (A.5) are fixed by the diagonalisation procedure, i.e. they are not free pa-
rameters but functions of the elements of M2

b̃
. On the other hand, assuming that some day it will

be possible to measure mb̃1,2
, θ̃b and φ̃b, one can also take these quantities (or other combinations

of parameters) directly as input, i.e. renormalise the Lagrangian to corresponding observables.
Note that it is not possible to distinguish between different schemes for the input parameters in
the limit v/MSUSY → 0 because from (A.6), (A.7) we infer

m2
b̃1,2

= m2
b̃L,R

(
1 + O

(
v2/M2

SUSY

))
, sin 2θ̃b = O (v/MSUSY) . (4.23)

Beyond the decoupling limit, however, different choices for the set of input parameters lead to
different resummation formulae for y(0)

b , as shown in table 4.1 for the numerically dominating
gluino part ∆g̃

b of ∆b. In the following, we will deduce these results and discuss also the inclusion

of the chargino- and the neutralino-contribution ∆eχ±

b and ∆eχ0

b :
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input resummation formula

mb̃1
, mb̃2

, θ̃b, φ̃b y
(0)
b =

mb

vd

(
1 − ∆g̃

b

)

mb̃1
, mb̃2

, µ, tan β y
(0)
b =

mb

vd(1 + ∆g̃
b)

mb̃L
, mb̃R

, µ, tan β
analytic resummation impossible,

use iteration.

Table 4.1: resummation formulae for y
(0)
b for different choices of the input parameters. Only the gluino

contribution ∆g̃
b is considered.

(i) Input: m2
b̃1

, m2
b̃2

; µ, tan β

If we express the sbottom mixing angle θ̃b and phase φ̃b in (4.12) through our input pa-
rameters, using relation (A.7), the bottom mass in ∆g̃

b in (4.12) cancels and we find the
gluino contribution to ΣRL

b to be linear in yb. This case was studied in the previous section
to illustrate the resummation procedure resulting in formula (4.20). Therefore we arrive at

y
(0)
b =

mb

vd(1 + ∆g̃
b)
. (4.24)

If we assume the chargino and neutralino contributions to ΣRL
b to be linear in yb, too, they

can easily be included into (4.24) by the replacement

∆g̃
b → ∆b = ∆g̃

b + ∆eχ±

b + ∆eχ0

b . (4.25)

To this end, ∆eχ±

b and ∆eχ0

b must not depend on yb. The chargino contribution ∆eχ±

b in (4.13)

is indeed independent of yb. The neutralino contribution ∆eχ0

b in (4.14) can be rewritten as

∆eχ0

b =
g2

16π2

1

cosβ

4∑

m=1

meχ0
m

2MW
Ñ∗
m2Ñ

∗
m3 · I

(0)
2 (meχ0

m
, mb̃1

) (4.26)

− g2

16π2

1

cosβ

4∑

m=1

meχ0
m

2MW
Ñ∗
m2Ñ

∗
m3 sin2 θ̃b

(
I

(0)
2 (meχ0

m
, mb̃1

) − I
(0)
2 (meχ0

m
, mb̃2

)
)
,

where the first line is independent of yb, but the second line is found to contain terms of
second order and higher in yb after insertion of (A.7). In the decoupling limit MSUSY ≫ v,
these higher-order terms, which are proportional to sin2 θ̃b ∝ v2/M2

SUSY, vanish, and the
neutralino contribution is correctly included by the replacement rule (4.25). ForMSUSY ∼ v
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on the other hand, the higher order terms spoil the proper resummation because equation
(4.18) cannot be solved analytically anymore. As ∆eχ0

b is small anyway and the second
line of (4.26) suffers in addition from a GIM-like suppression, formula (4.24) with the
replacement (4.25), though not entirely correct in this case, still holds to a very good ap-
proximation.

(ii) Input: m2
b̃1

, m2
b̃2

; θ̃b, φ̃b
Assuming that some day it will be possible to measure θ̃b and φ̃b, we could take these
quantities as our input instead of µ and tanβ. In (4.12) ∆g̃

b is directly given as a function
of θ̃b and φ̃b. Obviously, ΣRL,g̃

b = ybvd∆
g̃
b does not exhibit any explicit yb-dependence in

this case, so that no reinsertion of δyb into ΣRL,g̃
b is possible. The counterterm δyb is thus

an ordinary one-loop counterterm and the modified relation between y(0)
b and mb reads

y
(0)
b =

mb

vd
(1 − ∆g̃

b). (4.27)

On the other hand, the chargino and neutralino contributions ΣRL,eχ±

b = ybvd∆
eχ±

b and

ΣRL,eχ0

b = ybvd∆
eχ0

b in (4.13) and (4.14) seem to be linear in yb suggesting therefore their
inclusion via

y
(0)
b =

mb

vd

1 − ∆g̃
b

1 + ∆eχ±

b + ∆eχ0

b

. (4.28)

However, there is a subtlety: In the large-tan β limit, Eq. (A.7) implies a correlation be-
tween yb and µ:

eiφ̃b sin 2θ̃b = − 2y
(0)∗
b µvu

m2
b̃1
−m2

b̃2

. (4.29)

This equation implicitly defines µ in scheme (ii) and it follows that µ then inherits the large
corrections from y

(0)
b . Since µ enters the chargino and neutralino mass matrices Meχ±,0 in

Eqs. (A.9) and (A.14), expressing it in terms of y(0)
b via Eq. (4.29) leads to a very involved

yb-dependence of ∆eχ±

b and ∆eχ0

b encoded in the massesm
eχ±

1,2
,meχ0

1..4
and mixing matrices Ũ ,

Ṽ and Ñ . This situation renders an analytic resummation of the chargino and neutralino
contributions impossible and calls for the following iterative procedure: One calculates
y

(0)
b from (4.28) in terms of an initial µ value, determines then an updated value for µ from

(4.29) and repeats these steps until Eqs. (4.28) and (4.29) are sufficiently compatible.

(iii) Input: m2
b̃L

, m2
b̃R

; µ, tanβ

As the masses and mixing angles of the SUSY particles are not measured yet, this set is
the most prominent one because its elements directly appear in the Lagrangian. In terms
of these input parameters, the mixing angle can be expressed with help of the relation

tan 2θ̃b = − ybvuµ

(m2
b̃L

−m2
b̃R

)
. (4.30)



4.3 The flavour-conserving case 45

b b b b

Figure 4.4: Self-energy and counterterm insertion into internal b quark line

Since ∆g̃
b is proportional to sin 2θ̃b = tan 2θ̃b/(

√
1 + tan2 2θ̃b), and in addition the squark

masses appearing in the loop functions have to be replaced by m2
b̃L

and m2
b̃R

via (A.6),

the yb-dependence of ∆g̃
b gets so complicated that (4.18) cannot be solved analytically

anymore. This problem can be avoided in the following way: In a first approximation, we
determine m2

b̃1,2
from (A.6) using the tree level value for yb. Now we can calculate ∆b as

a function of the parameter set (i). In a next step, the resulting modified Yukawa coupling
(4.24) can be reinserted into (A.6) to get corrected values for m2

b̃1,2
. This procedure has

to be repeated until the value of ∆b converges. The resummed Yukawa coupling is then
given by (4.24). Alternatively, we could calculate ∆g̃

b and ∆eχ0

b iteratively as a function
of the input parameters (ii), determining sin 2θ̃b from (4.30). In that case, equation (4.28)
provides the resummed Yukawa coupling.

Eq. (4.24) has the same form as the widely-used relation between y(0)
b and mb valid in the de-

coupling limit and quoted in (4.5). Therefore we will take parameter set (i) as the physical input
from now on.

4.3.4. Self-energies in internal quark lines

Before passing on to the flavour-changing case, let us briefly discuss the situation of self-energy
subdiagrams in internal quark lines of Feynman diagrams (left diagram in Fig. 4.4). Such di-
agrams are the only potential source of flavour-conserving tanβ-enhanced loop corrections to
a Feynman amplitude M since, as we argued in Section 4.2.1, genuine diagrams cannot be
enhanced. It is important to notice that the self-energy correction is only tan β-enhanced with
respect to the single propagator diagram if the additional propagator generates an inverse power
of mb = ybv cosβ. Such a 1/mb-behaviour can only arise if the momentum p flowing through
the propagator is of the order mb or lower implying p2 ≪ M2

SUSY. However, we have constructed
the mass counterterm δmb = vdδyb in Section 4.3.2 in such a way that its insertion (right diagram
in Fig. 4.4) subtracts the self-energy correction in this momentum region.

The only exceptional case in which self-energy insertions into internal quark lines become rele-
vant are processes for which higher orders in the ratio mb/MSUSY have to be considered. In this
situation the right-hand side in (4.17) has to be expanded to higher orders in mb/MSUSY in order
to find the appropriate counterterm δmb, whereas only the leading term was kept in Section 4.3.2.
We stress that this expansion does not spoil the resummation of the counterterm. This means δmb
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is obtained by calculating ǫb to the desired order in mb/MSUSY and expanding (4.22) in this ratio.
For example writing ǫb = ǫ

(0)
b + ǫ

(2)
b with ǫ(0)b = O(m0

b/M
0
SUSY) and ǫ(2)b = O(m2

b/M
2
SUSY) we

find

δmb = −mb
ǫ
(0)
b tanβ

1 + ǫ
(0)
b tan β

− mb
ǫ
(2)
b tan β

(
1 + ǫ

(0)
b tan β

)2 . (4.31)

Now let us assume that the internal quark propagator which is subject to the self-energy and
counterterm insertions in Fig. 4.4 carries momentum p2 = 0. Then the self-energy and countert-
erm insertions only partially cancel because δmb is determined at p2 = m2

b while the self-energy
is probed at p2 = 0. Therefore the second term in (4.31) survives and its insertion generates
a tanβ-enhanced correction of higher order in mb/MSUSY. An important physical process for
which this situation occurs is b → sγ where the leading order is O(m2

b/M
2
SUSY). It will be dis-

cussed in Section 4.4.2 in the context of flavour-changing enhanced corrections.

4.4. Flavour mixing I: External leg corrections

In the previous sections we discussed the consequences of tan β-enhanced contributions to the
b-quark self-energy ΣRL

b . Let us now have a look at the corresponding flavour-changing self-
energies ΣRL

ij . We will see that insertions of ΣRL
ij -subdiagrams into external quark legs lead to

enhanced corrections to matrix elements M of FCNC processes and induce enhanced countert-
erms δVij to CKM elements.

4.4.1. Flavour-changing tan β-enhanced self-energies

In the framework of naive MFV the gluino and neutralino couplings to (s)quarks are flavour-
diagonal at tree-level. Therefore only chargino diagrams generate tanβ-enhanced contributions
to ΣRL

ij (see Fig. 4.5). In the case of d-s transitions, the stop contribution is suppressed by the
tiny CKM combination V ∗

tsVtd. If we neglect in addition the small up and charm Yukawa cou-
plings, the chargino couples only to left-handed squarks of the first two generations. Furthermore,
switching off these Yukawa couplings in our naive MFV scenario restores a SU(2) symmetry for
the left-handed ũ- and c̃-squarks causing a GIM cancellation of their contributions to d-s transi-
tions. Therefore with these approximations only self-energies involving a bottom quark survive
and MFV dictates their form:

d̄iR (YdY
†
uYu)ij Qj −→ ΣRL

ij ∼ ydi
y2
t V

∗
tiVtj . (4.32)

The explicit expression for ΣRL
ij reads

ΣRL
ij = V ∗

tiVtj
mi∆FC

1 + ∆i

, for (i, j) = (3, 1), (3, 2), (1, 3), (2, 3). (4.33)

with
∆FC = ∆eχ±

b + ∆eχ±

0 (4.34)
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djL diR

t̃1,2, c̃1,2, ũ1,2

χ̃−
1,2

Figure 4.5: tan β-enhanced flavour-changing self-energy diagram

and

∆eχ±

0 = − g2

16π2

1

cosβ

2∑

m=1

m
eχ±

m√
2MW

Ũ∗
m2Ṽ

∗
m1B0(meχ±

m
, mq̃) . (4.35)

Here mq̃ denotes the common mass of left-handed up- and charm-squarks. The expression for

∆eχ±

b has already been given in (4.13). The factor 1/(1+∆i) in (4.33) accounts for the renormal-
isation of the Yukawa coupling ydi

such that mi is the MS-mass of the quark di. Its appearance
is mandatory in MFV as we have seen in (4.32) and it causes self-energies with right-handed d-
or s-quarks to be suppressed by mi/mb (i = d, s) compared to their chirality-exchanged coun-
terparts. As in the flavour-conserving case, we can make use of Eqs. (A.7) and (A.13) to rewrite
∆FC as

∆FC = ǫFC tanβ (4.36)

with

ǫFC = − y2
t

16π2
A∗
tµ

∗
(
D2 − |M2|2D0

)
+

g2

16π2
M∗

2µ
∗
(
D2 − m2

t̃R
D0 − C0

)
(4.37)

where D0,2 = D0,2(meχ±

1
, m

eχ±

2
, mt̃1 , mt̃2) and C0 = C0(meχ±

1
, m

eχ±

2
, mq̃). Whereas the first term

in (4.37) displays an explicit factor of y2
t and thus apparently obeys the MFV structure of (4.32),

this is less obvious for the second term. Note, however, that this part of ǫFC vanishes due to the
universality of the left-handed squark mass terms in naive MFV if the left-right mixing of the top
squarks is neglected. Therefore it is proportional to y2

t v
2/MSUSY and this implies its absence in

the decoupling limit4.

4.4.2. Flavour-changing self-energies in external quark legs

Let us consider the generic situation of a flavour-changing self-energy subdiagram in an external
quark leg of some Feynman diagram, as displayed in Fig. 4.6. For definiteness we focus on b-s

4In the more general symmetry-based definition of MFV the left-handed stop mass term may differ from those
of the first two generations by a term proportional to y2

t due to the b1-term in (3.12). In such a scenario the g2-part
in (4.37) would be present also in the decoupling limit.
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sL bR bL
ΣRL
bs

(1)

bL bR sL
ΣRL∗
bs

(2)

Figure 4.6: Feynman diagrams with flavour-changing self-energy in an external leg.

transitions, corresponding results for b-d transitions are obtained by obvious replacements. Un-
like insertions of flavour-conserving self-energies into external legs which have to be truncated5,
insertions of flavour-changing self-energies can be treated as one-particle irreducible (1PI) [66].
The only prerequisite for this treatment is that the mass difference mb −ms is much larger than

the self-energy |ΣRL
bs | and it is certainly fulfilled because of the CKM-suppression of ΣRL

bs (even
though the loop-suppression might be lifted by a large factor tanβ).

Setting ms = 0 we find that the amplitudes of the Feynman diagrams in Fig. 4.6 are given by

M1 = Mrest
1 ·

i(/p+mb)

p2 −m2
b

∣∣∣∣
/p=0

(−iΣRL
bs ) = −Mrest

1 · VtsV ∗
tb

ǫFC tanβ

1 + ǫb tanβ
, (4.38)

M2 = Mrest
2 ·

i(/p+ms)

p2 −m2
s

∣∣∣∣
/p=m

pole
b

(−iΣRL∗
bs ) = +Mrest

2 · V ∗
tsVtb

ǫ∗FC tan β

1 + ǫ∗b tanβ
, (4.39)

where Mrest
i stands for the part of the Feynman amplitude corresponding to the truncated dia-

gram. The expressions (4.38) and (4.39) are of order O(ǫFC tan β). Thus, if tanβ is large enough
to compensate for the loop-factor ǫFC, it is possible to get a b → s transition without paying the
price of a loop suppression. In this way one finds tanβ-enhanced corrections to FCNC b → s
processes by sourcing the flavour change out into an external quark leg rendering the underlying
loop-diagram flavour-diagonal. As an example consider the SUSY-contribution to b → sγ: For
large tan β the one-loop amplitude is dominated by the chargino-stop diagram giving a contribu-
tion of the form (loop×tan β). Taking into account the above mentioned external leg corrections
one finds contributions involving gluino-sbottom loops, like the diagrams in Fig. 4.7, which are
of the form (loop × tanβ)2.

Moreover, we encounter in b → sγ the situation discussed in Section 4.3.4: Expanding the
diagrams in mb/MSUSY, the first non-vanishing contribution is found at second order in this ratio.
To this order the two diagrams on the left in Fig. 4.7 do not cancel completely (see discussion in
Section 4.3.4) and the remnant complements the vertex diagram on the upper right to a gauge-
invariant result6.

In this context it is natural to ask whether the generation of tan β-enhanced b→ s transitions via
self-energy insertions also occurs for internal quark lines. In other words, we interested in the

5they instead enter the S-matrix elements through the LSZ factor.
6For completeness, also the insertion of a wave function counterterm is shown in Fig. 4.7 (lower right diagram).

It is needed to cancel some non-tanβ-enhanced contributions.
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Figure 4.7: Some diagrams with self-energies in external lines for the process b → sγ

flavour-changing counterpart of the diagram on the left in Fig. 4.4. In principle it is possible to
construct such diagrams and, furthermore, there is no counterterm to cancel them, in contrast to
the flavour-conserving case. However, as in the flavour-conserving case, the momentum flowing
through the propagator containing the self-energy subdiagram has to be of order mb or smaller.
Since we are not aware of a meaningful physical process developing this situation, we do not
consider this possibility further.

4.4.3. QCD corrections to flavour-changing self-energies

Before investigating the further consequences of the tan β-enhanced flavour transitions, we want
to point out a subtlety of Eq. (4.39). The b-quark mass which enters the propagator via the
equation of motion is the pole mass mpole

b . The b-quark mass appearing in ΣRL
bs , on the other

hand, is the MS-mass mb. However, if QCD-corrections to the diagrams of Fig. 4.6 are taken
into account, additional contributions add to the MS-mass in ΣRL

bs to give the pole mass mpole
b .

Therefore the b-quark mass correctly cancels in (4.39).

To see this we consider an effective theory at µ ∼ O(mb) where the SUSY-particles are integrated
out. The self-energy ΣRL

bs then appears as Wilson coefficient of the (on-shell vanishing) operator
b̄PLs. Comparing QCD corrections to this operator to QCD corrections to the bottom mass mb

(see Fig. 4.8) we find
Σ
RL(1)
bs (p)

ΣRL
bs

=
ΣQCD
b (p)

mb
, (4.40)

where p denotes the external momentum. Therefore the Wilson coefficient ΣRL
bs and the MS-mass

mb renormalise the same way. To make the behaviour under renormalisation explicit we write

ΣRL
bs = mbA (4.41)
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sL bRsL bR

−iΣRL
bs ≡ −iΣRL(1)

bs

bL bL bR bR

−imb ≡ −iΣQCD
b

Figure 4.8: QCD corrections to the self-energy ΣRL
bs (left) and the bottom mass mb (right).

where nowA is renormalisation-scale-independent (note the analogy to the definitions of ∆b and
∆FC in Eqs. (4.11) and (4.33) which are thus renormalisation-scale independent).

Now we calculate QCD corrections to the diagrams in Fig. 4.6. Using the parametrisation (4.41)
for ΣRL

bs and neglecting the s-quark mass, the Feynman amplitudes for the diagrams in Fig. 4.6
read

M(1)
1 = Mrest

1 ·
i(/p+mb)

p2 −m2
b

∣∣∣∣
/p=0

(−iΣRL
bs ) = −Mrest

1 · A, (4.42)

M(2)
2 = Mrest

2 ·
i(/p+ms)

p2 −m2
s

∣∣∣∣
/p=m

pole
b

(−iΣRL∗
bs ) = +Mrest

2 · A∗ mb

mpole
b

. (4.43)

Since we want to perform a calculation up to order αs in the effective theory we have to determine
A from two-loop matching at the SUSY scale and we make this explicit by writing

A = A(0) + A(1) (4.44)

where A(1) contains O(αs) QCD-corrections. The one-loop corrections to M1 and M2 in the
effective theory are given in Figs. 4.9 and 4.10, respectively, with diagrams (1b) and (2b) taking
into account the counterterm to the Wilson coefficient ΣRL

bs = mbA. As a consequence of (4.40),
the contributions of (1a) and (1c) and of (1b) and (1d) cancel pairwise. Therefore the expression
for M1 in (4.42) still holds at one loop, yet with A = A(0) + A(1) instead of A = A(0). For the
contributions of (2a) and (2b) we find with help of (4.40)

M(2a)
2 = Mrest

2 ·
i(/p+ms)

p2 −m2
s

(
−iΣRL(1)∗

bs (p)
)∣∣∣∣

/p=m
pole
b

= Mrest
2 · A(0)∗ ΣQCD

b (p)

mpole
b

∣∣∣∣∣
/p=m

pole
b

(4.45)

M(2b)
2 = Mrest

2 ·
i(/p+ms)

p2 −m2
s

∣∣∣∣
/p=m

pole
b

(−iδmbA
(0)∗) = Mrest

2 ·A(0)∗ δmb

mpole
b

. (4.46)

Adding these corrections to (4.43) one gets

M2 = M(2)
2 + M(2a)

2 + M(2b)
2 = Mrest

2 · A
(0)∗

mpole
b

(
mb +mb

A(1)∗

A(0)∗
+ ΣQCD

b (p)
∣∣∣
/p=m

pole
b

+ δmb

)
.

(4.47)
Plugging in

mpole
b = mb + ΣQCD

b (p)
∣∣∣
/p=m

pole
b

+ δmb (4.48)
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Figure 4.9: QCD corrections to diagram (1) in Fig. 4.6.

and dropping terms of order O(α2
s) we get the final result

M2 = Mrest
2 · (A(0)∗ + A(1)∗) = Mrest

2 · A∗ , (4.49)

which now does not depend on mpole
b anymore.

Applying this result to our case by expressingA in (4.49) through ΣRL
bs via Eqs. (4.41) and (4.33)

we find (4.39). Since (4.33) is linear in mb, the parametrisation of (4.41) is quite natural. When
one considers a more general ΣRL

bs which is no longer linear in mb (for example in the generic
MSSM), the parameter A depends on mb via (4.41) but in any case it does not involve mpole

b .

4.4.4. Renormalisation of the CKM matrix

The external leg corrections discussed in the last two sections affect also the ui-dj-W+ coupling
if it involves an external dj-quark (left diagram in Fig. 4.11). Therefore, to be able to extract
the CKM matrix elements from a low energy measurement of this coupling, one has to subtract
the enhanced corrections by appropriate CKM counterterms δVij. This amounts to the on-shell
renormalisation condition proposed in Ref. [67] and depicted in Fig. 4.117. We find

δVij = −VikΛkj, with

Λkj(V ) =





mdj

m2
dj
−m2

dk

ΣLR
kj +

mdk

m2
dj
−m2

dk

ΣRL
kj , k 6= j

0 , k = j

. (4.50)

7In Ref. [68] it has been argued that the on-shell prescription does not lead to gauge-independent results and one
should rather use the symmetric subtraction point /p = 0. Note that this subtlety does not matter in our case and the
two schemes are equivalent since we neglect external quark momenta in the calculation of the SUSY self-energy
contributions.
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bL bR bR sL sL

(2a)

−imbA
(0)∗

bL bR sL

(2b)

−iδmbA
(0)∗

Figure 4.10: QCD corrections to diagram (2) in Fig. 4.6.

In the following we will neglect contributions to δVij which are CKM suppressed compared to
Vij, i.e. which involve more powers of the Wolfenstein parameter λ than Vij. On the other hand,
δVij never involves less powers of λ than Vij because the MFV framework guarantees that loop
corrections cannot lift the CKM-suppression of the ui-dj-W+ vertex.
Note also that our renormalisation prescription preserves the unitarity of the CKM matrix since

V (0) = V + δV = V (1 − Λ) ≈ V e−Λ. (4.51)

with the anti-hermitian matrix Λ. The last equation in (4.51) holds because each non-vanishing
elements of Λ involves at least one power of λ and we neglect subleading powers in λ.

From Eq. (4.33) we find the counterterms δVtd, δVts, δVub and δVcb to be of order O(ǫFC tanβ) so
that they can be comparable in size to the corresponding tree-level quantities Vij . Furthermore,
the loop corrections are functions of the CKM matrix elements Vij which enter the three vertices
in the left diagram in Fig. 4.11. In Section 4.3.2 we faced an analogous situation in the context
of the renormalisation of the Yukawa coupling yb and all the consequences discussed there apply
also here: Reinsertion of the counterterms δVij into the left diagram of Fig. 4.11 leads to con-
tributions which are formally of higher loop order but also of higher order in tanβ. To subtract
also these higher-order corrections, Eq. (4.50) has to be extended to all orders in the perturbative
expansion. Making the CKM-dependence of the matrix Λ explicit by writing Λ(V ), we arrive at

δVij = −(Vik + δVik) · Λkj(V + δV ), (4.52)

which is in complete analogy to Eq. (4.18) for δyb. The δVij are then determined using one of
the two methods discussed in Section 4.3.2: Either the matrix equation (4.52) is solved directly
for the resummed δVij, or an order-by-order recursion relation is derived for the δV (n)

ij followed
by an explicit resummation. Of course, both methods lead to the same result which is

V (0) = V + δV =




Vud Vus K∗Vub

Vcd Vcs K∗Vcb

KVtd KVts Vtb


 , with K =

1 + ǫb tanβ

1 + (ǫb − ǫFC) tanβ
. (4.53)

Eq. (4.53) generalises the well-known result from Ref. [12] beyond the decoupling limit
MSUSY ≫ v,MA0,H0,H± and provides the analytic expression for the result to which the iter-
ative methods proposed in Refs. [23, 24] converge. The resulting resummation formula has the
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Figure 4.11: On-shell renormalisation of the CKM matrix

same form as the one valid in the decoupling limit but with ǫb and ǫFC now containing decou-
pling contributions, too. Furthermore, our resummation formula is valid also in the presence of
complex SUSY parameters and our analytic derivation permits an explicit resummation.

4.5. Flavour mixing II: Flavour-changing wave-function counterterms

As we have seen, in order to account for tan β-enhanced corrections in flavour-violating pro-
cesses, one has to consider self-energy insertions into external down-quark legs. Alternatively,
since p2 ≪M2

SUSY for a momentum p of an on-shell down-type quark and since thus the external
leg corrections are local, it is possible to promote their effects to effective flavour-changing ver-
tices, even beyond the decoupling limit because no assumption about a hierarchy between MSUSY

and the electroweak scale v is needed. This is illustrated in Fig. 4.12 for the quark-squark-gluino
coupling. In addition to the FCNC couplings of neutral Higgs bosons, which are well-studied
within the decoupling limit [17], also FCNC couplings of the gluino and neutralino arise in this
way. A complete set of Feynman rules for these vertices, including contributions of the form
(loop × tanβ)n to all orders n = 1, 2, ..., is given in Appendix A.3.

Technically, the promotion of the external leg corrections to effective vertices is done by per-
forming a matrix-valued wave-function renormalisation. We discuss the determination and re-
summation of the corresponding wave-function counterterms in Section 4.5.1 before we turn to
the formulation of Feynman rules for the resulting effective couplings in Section 4.5.2.

4.5.1. Flavour-changing wave-function renormalisation

Left- and right-handed up- and down-quark fields are vectors in separate three dimensional fam-
ily spaces. Their description allows for an arbitrary choice of basis and a change of basis affects
the quark fields in form of a matrix-valued wave-function renormalisation. We renormalise the
down-quark fields according to

d
(0)
i,L =

(
δij +

1

2
δZL

ij

)
dj,L, d

(0)
i,R =

(
δij +

1

2
δZR

ij

)
dj,R (4.54)
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g̃
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bs

Figure 4.12: FCNC gluino coupling for an on-shell s-quark induced by the tan β-enhanced self-energy
ΣRL
bs

with the anti-hermitian wave-function counterterms

δZL
ij = −δZL∗

ji , δZR
ij = −δZR∗

ji . (4.55)

Therefore our wave-function renormalisation corresponds to a unitary transformation in flavour
space8. Note that unlike the physical CKM rotation which connects two sets of physical states,
the weak eigenstates and the mass eigenstates, the wave-function renormalisation is unphysical
since it only manipulates the coordinate system used for the description of the physical states.
Any meaningful theory has to be invariant under such a transformation so that no effects on
physical observables can arise. This is realised for the S-matrix elements of a quantum field
theory by the fact that the wave-function renormalisation drops out from the LSZ formula. In
particular, we stress that separate wave-function renormalisation for the quark- and squark-field
does not spoil supersymmetry: Whereas the CKM rotation has to be performed on the whole
superfields in order not to disjoin the superpartners, an individual wave-function rotation of the
quark fields does not rotate them away from their superpartners, it only changes the coordinate
system used for their description leaving the physical states unchanged.

In terms of renormalised fields the down-quark mass terms read

Lm = − m
(0)
dj
d̄

(0)
j,Rd

(0)
j,L + h.c. = −

[
m

(0)
dj
δjk +

1

2
m

(0)
dj
δZL

jk −
1

2
m

(0)
dk
δZR

jk

]
d̄j,Rdk,L + h.c. (4.56)

with m(0)
di

= vdy
(0)
di

containing the tanβ-enhanced corrections determined in Section 4.3. The

counterterms δZL,R
ij can then be chosen in such a way that their insertion into external quark legs

cancels the corresponding self-energy insertion for on-shell momenta of the quark. To this end
δZL,R

ij must fulfill

ΣRL
ij +m

(0)
di

δZL
ij

2
−m

(0)
dj

δZR
ij

2
= 0, i 6= j . (4.57)

8The freedom of normalising the basis vectors corresponds to the ordinary flavour-diagonal wave-function renor-
malisation which we will not need here.
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Figure 4.13: tan β-enhanced higher-order contributions to ΣRL
ij , generated by insertions of the countert-

erms δZRL
ij into enhanced one-loop diagrams.

Note that for a certain pair (i, j) the two equations obtained for i ↔ j fix both δZL
ij and δZR

ij

since δZL,R
ij = −δZL,R∗

ji but the two self-energies ΣRL
ij and ΣRL

ji are not related to each other.

Solving Eq. (4.57) for δZL,R
ij we obtain

δZL
ij

2
=
m

(0)∗
di

ΣRL
ij +m

(0)
dj

ΣLR
ij

|m(0)
dj
|2 − |m(0)

di
|2

,
δZR

ij

2
=
m

(0)
di

ΣLR
ij +m

(0)∗
dj

ΣRL
ij

|m(0)
dj
|2 − |m(0)

di
|2

, i 6= j. (4.58)

The anti-hermiticity of the δZL,R
ij allows us to restrict the determination of the δZL,R

ij to the case

i > j. Neglecting contributions which are subleading in the small quark mass ratio m(0)
dj
/m

(0)
di

,
Eq. (4.58) simplifies to

δZL
ij

2
= −

ΣRL
ij

m
(0)
di

,
δZR

ij

2
= −

ΣLR
ij

m
(0)∗
di

−
m

(0)∗
dj

m
(0)∗
di

ΣRL
ij

m
(0)
di

, i > j. (4.59)

From expression (4.33) for the self-energy ΣRL
ij it becomes obvious that both δZL

ij and δZR
ij are

tan β-enhanced but that δZR
ij is suppressed by one power in m(0)

dj
/m

(0)
di

. With our approximations

δZL,R
ij is non-negligible only for i = 3 or j = 3.

In order to resum tanβ-enhanced contributions to δZL,R
ij to all orders, we proceed in an anal-

ogous way as in the cases of δyb and δVij discussed in Sections 4.3.2 and 4.4.4, respectively:
We consider counterterm insertions of δZL,R

ij into enhanced one-loop diagrams. The δZL,R
ij enter

the chargino-quark-squark, gluino-quark-squark and neutralino-quark-squark couplings thereby
rendering the latter two vertices flavour non-diagonal. Therefore, beyond the one-loop level, not
only chargino-squark loops contribute to ΣRL

ij but all the diagrams shown in Fig. 4.3 for the
flavour-conserving case develop flavour-changing counterparts (see Fig. 4.13). In these diagrams
the flavour-change is sourced out into the wave-function counterterm and so the underlying self-
energy becomes flavour-diagonal9. Including these additional tanβ-enhanced corrections, the

9Diagrams involving a further flavour change due to a second δZL,R insertion or an additional CKM-induced
flavour-changing vertex are suppressed. This is because in ΣRL

ij as well as in δZL,R
ij only 1 → 3 and 2 → 3

transitions are non-negligible and the combination of two such transitions involves more powers of the Wolfenstein
parameter λ than the LO contribution.
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self-energy ΣRL
ij as a function of δZL,R

ij reads

ΣRL
ij (δZL

ij , δZ
R
ij ) = V

(0)∗
ti V

(0)
tj m

(0)
di
ǫFC tan β +

δZL
ij

2
m

(0)
di
ǫi tan β −

δZR
ij

2
m

(0)
dj
ǫj tanβ. (4.60)

By writing V (0) = V + δV we allow for potential tanβ-enhanced corrections to the CKM ele-
ments Vij and we know from our analysis in Section 4.4.4 that such corrections indeed will arise.
Expressing ΣRL

ij and ΣLR
ij in Eq. (4.59) through (4.60) we find a system of equations for δZL,R

ij

which are valid at leading order in tan β but to all orders in the perturbative series. Again, they
can be solved either order-by-order performing an explicit resummation or simply by solving the
coupled equations directly for the resummed counterterms δZL,R

ij . To leading order in mdi
/mb

(i = d, s) the result is given by

δZL
bi

2
= − ǫFC tan β

1 + ǫb tan β
V

(0)∗
tb V

(0)
ti ,

δZR
bi

2
= −mdi

mb

[
ǫFC tan β

1 + ǫb tan β
+

ǫ∗FC tan β

(1 + ǫ∗i tanβ)

]
V

(0)∗
tb V

(0)
ti (4.61)

with all other δZL,R
ij being zero for i > j.

Of course, the wave-function counterterms δZL
kj enter also the ui-dj-W+ coupling. Therefore, to

be able to extract the CKM matrix elements from a low energy measurement of this coupling,
the δZL

kj insertions must be subtracted by appropriate CKM counterterms δVij. In addition one
has to subtract also simultaneous δVik ·δZL

kj insertions in order to account for higher order tanβ-
enhanced effects. This leads to the renormalisation prescription

δVij = −
∑

k

(Vik + δVik)
δZL

kj

2
. (4.62)

Solving this system of equations for the δVij we rediscover the result (4.53) obtained with the
external leg approach. Inserting (4.53) into (4.61) eventually yields our final result for the wave-
function counterterms:

δZL
bi

2
= −V ∗

tbVti
ǫFC tan β

1 + (ǫb − ǫFC) tanβ
,

δZR
bi

2
= −V ∗

tbVti
mdi

mb

[
ǫFC tan β

1 + ǫb tan β
+

ǫ∗FC tan β

(1 + ǫ∗i tanβ)

]
1 + ǫb tan β

1 + (ǫb − ǫFC) tanβ
. (4.63)

4.5.2. Formulation of effective Feynman rules

In Sections 4.3.2, 4.4.4 and 4.5.1 we have determined the tanβ-enhanced counterterms δyb, δVij
and δZL,R

ij to all orders in perturbation theory. Their effects can easily be incorporated into LO
calculations: Instead of treating these counterterms as NLO one counts them as LO and includes
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them into tree-level vertices. The resulting modified Feynman rules are valid beyond the decou-
pling limit and refer to input scheme (i) for the sbottom parameters specified in Section 4.3.3.
They can be used for calculations of low-energy processes involving virtual SUSY particles as
well as for calculations in collider physics with external SUSY particles. The modifications,
which can easily be implemented into computer programs like FeynArts [28], are given as fol-
lows:

(i) Express the Feynman rules in terms of the down-type Yukawa couplings ydi
and replace

them according to relation (4.24) by

ydi
→ y

(0)
di

=
mdi

vd(1 + ǫi tan β)
. (4.64)

It should be stressed that the same replacement has to be performed for the Yukawa cou-
pling appearing in the sbottom mass matrix Mb̃ in (A.1) before determining the mixing
angle via (A.7). In case one wants to rely on input scheme (iii) the sbottom mixing matrix
has to be calculated iteratively as described in Section 4.3.3.

(ii) Replace CKM-elements involving the third quark generation according to

Vti −→ V
(0)
ti =

1 + ǫb tan β

1 + (ǫb − ǫFC) tanβ
Vti (i = d, s),

Vib −→ V
(0)
ib =

1 + ǫ∗b tanβ

1 + (ǫ∗b − ǫ∗FC) tanβ
Vib (i = u, c). (4.65)

All other CKM-elements remain unchanged. The Vij appearing after these replacements
correspond to the physical ones which can be measured from the W+uidj-vertex.

(iii) This last rule concerns vertices involving down-type quarks. Into these vertices one has to
include the flavour-changing wave-function counterterms

δZL
bi

2
= −δZ

L∗
ib

2
= − ǫFC tanβ

1 + ǫb tanβ
V ∗
tbV

(0)
ti ,

δZR
bi

2
= −δZ

R∗
ib

2
= −mi

mb

[
ǫFC tanβ

1 + ǫb tanβ
+

ǫ∗FC tan β

1 + ǫ∗i tan β

]
V ∗
tbV

(0)
ti (4.66)

for i = d, s. This leads to additional flavour-changing vertices.

If one uses our Feynman rules, tan β-enhanced loop corrections of the form (ǫ tan β)n are auto-
matically resumed to all orders. There is one exception: Proper vertex-corrections to the tanβ-
suppressed h0didj- andH+diLu

j
R-vertices and to the corresponding Goldstone-boson vertices can

not be accounted for by this method.

Since we used the appropriate decoupling schemes in determining the counterterms, the SM
vertices do not receive non-decoupling contributions from this replacement rules. The couplings
of quarks to gauge bosons are not affected at all because the counterterms δZL,R

ij cancel from
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Figure 4.14: Contributions of flavour-changing wave-function counterterms in external quark legs to
b → sγ cancel each other

the couplings to neutral gauge bosons due to their anti-hermiticity and they are removed from
the W -boson vertex by the CKM renormalisation. In the couplings of the quarks to the SM-like
Higgs boson h0 and to the Goldstone bosons G0, G± the non-decoupling part of the δZL,R

ij and
δVij insertions cancel with the non-decoupling part of the proper vertex correction which has
been calculated in Ref. [21]. However, vertices which couple down quarks to the neutral Higgs
bosons A0, H0, the charged Higgs boson H+ or to gauginos g̃, χ̃±, χ̃0 receive flavour-changing
modifications. Explicit Feynman rules for these vertices are given in Appendix A.3.

It seems that there is one type of δZL,R
ij -induced corrections which is not accounted for by our

effective Feynman rules: The counterterms δZL,R
ij enter also the down-quark mass term in the

Lagrangian leading to the counterterm vertex

dj di

− i

(
mi

1 + ǫi tan β

δZL
ij

2
− mj

1 + ǫj tanβ

δZR
ij

2

)
PL

− i

(
mi

1 + ǫ∗i tan β

δZR
ij

2
− mj

1 + ǫ∗j tan β

δZL
ij

2

)
PR. (4.67)

The inclusion of its effects into automatic calculations would be more involved since it does not
simply amount to a redefinition of a tree-level vertex. However, we are not aware of a physical
application where this counterterm is needed. The situation encountered here is similar to the one
discussed in Section 4.3.4: The flavour-changing counterparts of the diagrams in Fig. 4.4 cancel
each other in the low momentum region and survive only in the high-momentum region where
the remnant is not tanβ-enhanced. We only have to worry about processes for which higher
orders of the momentum expansion in mb/MSUSY are relevant because the counterterms δZL,R

ij

are determined at /p = 0 and cancel only the zeroth order term in the expansion of the self-energy.
An example for such a process is once again b → sγ. However, we are lucky: The insertions of
wave-function counterterms into the external quark legs (Fig. 4.14) cancel each other in this case
and need not be considered.
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5. PHENOMENOLOGY: RARE NON-LEPTONIC B

DECAYS BEYOND THE DECOUPLING LIMIT

In the previous chapter we have discussed in detail the issue of tan β-enhanced loop corrections
to generic transition amplitudes. We arrived at a set of effective Feynman rules which allow to in-
clude the all-order resummed corrections into practical calculations. In this chapter we use these
Feynman rules to determine gluino contributions to the effective Hamiltonian H(1)

eff in Eq. (2.1)
which is responsible for the description of rare non-leptonic B decays. These effects emerge
from the fact that our treatment of the tan β-enhanced corrections goes beyond the decoupling
limit.

The most fundamental modifications to a naive LO H(1)
eff arise from the additional FCNC cou-

plings which are induced by the tan β-enhanced wave-function counterterms δZL,R
ij in (4.63).

In Section 5.1 we will discuss the properties of these couplings. Due to their presence, flavour-
changing transitions are no longer mediated exclusively by W bosons, charged Higgs particles
and charginos but also by neutral Higgs particles, gluinos and neutralinos. For the case of the
neutral Higgs bosons, the phenomenological effects on rare B decays, especially on the de-
cay Bs → µ+µ−, have widely been studied in the framework of the effective 2HDM valid for
MSUSY ≫ v [17, 18, 20, 49]. With this method it is, however, not possible to assess the FCNC
gluino- and neutralino- couplings and to calculate analytic formulae for their contributions to the
Wilson coefficients Ci. Our effective Feynman rules, on the other hand, enable us to perform
such a calculation. The results for the gluino contributions are collected in Appendix A.4 and
their importance is discussed in Section 5.2. We found that the δZL

ij-induced gluino-squark loops
have a large impact on the Wilson coefficient C8g of the chromomagnetic operator. To illustrate
the phenomenological consequences of this gluino-squark contribution, we discuss its effect on
the mixing induced CP asymmetry in the decay B0 → φKs in Section 5.3.

5.1. Effective FCNC couplings

The FCNC couplings generated by the counterterms δZL
bi and δZR

bi (i = d, s) originate from
tan β-enhanced flavour-changing self-energies. Therefore their numerical importance crucially
depends on the parameter ǫFC tanβ. Since δZR

bi is suppressed by a small ratio of quark masses,
the most important effects come from δZL

bi in (4.63). The resulting FCNC couplings thus have
the form

κbi ∝ κ · V ∗
tbVts, with κ =

ǫFC tan β

1 + (ǫb − ǫFC) tanβ
. (5.1)
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Figure 5.1: Size of the coupling κ as a function of |At/m̄t̃| for a scan over the MSSM parameter space
with positive µ (left) and negative µ (right). The orange points are eliminated by a later application of the
constraints from B → Xsγ.

We see that the effective coupling κbi preserves the CKM structure of MFV and its strength is
given by the parameter combination κ. It is thus useful to have a first estimate of the size of κ.
For this purpose, we neglect the weak contributions to ǫb and ǫFC, focus on the non-decoupling
part of expressions (4.16) and (4.37) for ǫg̃b and ǫFC and set all the SUSY mass parameters as well
as |µ| and |At| equal to a single mass scale MSUSY. In this case, the mass dependence drops out
and we obtain

|ǫFC tan β| =
y2
t

32π2
tan β,

|(ǫb − ǫFC) tanβ| = |ǫg̃b tanβ| =
αs
3π

tan β (5.2)

with yt = yt(MSUSY) and αs = αs(MSUSY). For tan β = 50 and MSUSY = 500 GeV, we find
typical numerical values of

|ǫFC tan β| ∼ 0.12, |(ǫb − ǫFC) tanβ| ∼ 0.5 . (5.3)

Taking µ real here the parameter κ is evaluated as

|κ| ∼ 0.08, if µ > 0, |κ| ∼ 0.24, if µ < 0. (5.4)

Values larger than this for ǫFC and thus for |κ| occur if |At| is significantly larger than the masses
of stops and charginos. If one requires |At| . 3m̄t̃ (where m̄t̃ =

√
m̃Q m̃t is an average stop

mass) to avoid colour-breaking minima [69], ǫFC tanβ gets constrained to |ǫFC tanβ|max ∼ 0.4.

Experimentally, the size of At is further limited by Br(B̄ → Xsγ) via the tanβ-enhanced
chargino contribution to this process. Note however that this bound might significantly be shifted
when the new contributions, e.g. from gluino-squark loops, are taken into account. Therefore the
Br(B̄ → Xsγ) constraint can only be applied after inclusion of the κbs-induced contributions, it
cannot be used to constrain the size of this coupling a priori.
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We stress that complex values of At lead to complex κ and hence to additional CP violation
in the FCNC couplings κbi. Assuming complex values for At has the additional advantage that
the bound from B̄ → Xsγ on |At| is much weaker in this case [70] and one can have a larger
coupling strength |κ|.
In Fig. 5.1 we show the coupling strength |κ| for a scan over the relevant MSSM parameter space
for positive µ (left plot) and negative µ (right plot). To this end we scanned the mass parameters
m̃Q,t,b, |µ|,M1,2 and mg̃ from 200 GeV to 1000 GeV and tan β from 40 to 60. The absolute value
ofAt is varied between 0 and 3m̄t̃ and attributed by an arbitrary phaseϕAt

. Only parameter points
compatible with the following constraints have been accepted:

• All squark masses are larger than 200 GeV.

• The lightest supersymmetric particle (LSP) is charge- and color-neutral.

• The experimental 2σ-bound on the lightest Higgs-boson mass is respected.

The orange points fulfill these conditions. We see that |κ| can a priori reach values up to |κ| . 0.4
for positive µ and values up to |κ| . 1.0 (and even larger) for negative µ. After application of
constraints from B → Xsγ, as discussed in the following section, the allowed region shrinks to
the blue points with the consequence of |κ| being limited for positive µ to |κ| . 0.2.

5.2. Gluino contributions to the effective ∆B = 1 Hamiltonian

Rare non-leptonic B decays are described by the effective Hamiltonian (2.1). In the SM it re-
ceives contributions from penguin and box diagrams with the b → s FCNC being mediated by
a W - top loop. In the MSSM further contributions arise from the same topological diagrams
with the FCNC mediated instead by SUSY particles. Under the assumption of naive MFV, only
chargino and charged Higgs diagrams appear at one loop. However, an improved LO calculation
should include tan β-enhanced higher order corrections and at this point additional contributions
involving gluinos, neutralinos or neutral Higgs bosons enter. These corrections can be accounted
for by performing an ordinary one-loop calculation but using the effective Feynman rules of
Section 4.5.2. This amounts in treating the couplings κbi, discussed in the previous section, as
tree-level.

Neutral Higgs diagrams have previously been studied using the effective theory approach. In
particular the corresponding coefficients CH0

7γ and CH0

8g of the magnetic and chromomagnetic
operators have been presented in Ref. [7]. Analytic results for the gluino and neutralino coef-
ficients, on the other hand, cannot be obtained in this way but they can be calculated with our
diagrammatic method. We will concentrate on the gluino contributions since they are expected
to dominate over the neutralino ones due to the strong coupling. We calculated the whole set of
gluino diagrams including gluon, photon and Z penguins as well as box diagrams. The resulting
Wilson coefficients are given in Appendix A.4.
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In Section 3.2.3 we argued that largest modifications in the MSSM with MFV are expected
for the Wilson coefficients of the magnetic and chromomagnetic operators which allow for a
potential tan β-enhancement with respect to the SM coefficient. This is indeed a property of the
well-known chargino-contribution for which we find

C eχ±

7γ,8g =
1

cosβ(1 + ǫ∗b tanβ)

∑

a=1,2

{
Ũa2Ṽa1

√
2MW

m
eχ±

a

[
K∗g7γ,8g(xq̃ eχ±

a
) − c2t̃ g7γ,8g(xt̃1 eχ±

a
)

−s2
t̃ g7γ,8g(xt̃2 eχ±

a
)
]
+ st̃ ct̃ e

−iφt̃
Ũa2 Ṽa2mt

sin β m
eχ±

a

[
g7γ,8g(xt̃1 eχ±

a
) − g7γ,8g(xt̃2 eχ±

a
)
]
}
.(5.5)

with
st̃ = sin θ̃t, ct̃ = cos θ̃t, xij = mi/mj. (5.6)

Here mq̃ denotes again the common mass of left-handed squarks of the first two generations. All
loop functions are given in Appendix A.2. Our result differs from the one in [21] only by a factor
of K∗ (defined in (4.53)) in the numerically small up and charm squark contribution. The stop
contribution remains unaffected because the corrections from the wave function and the CKM
counterterm cancel each other.

Also the novel gluino contribution develops a tanβ-enhanced part which reads

C g̃
7γ,8g =

√
2

4GF

g2
sµ tanβ

mg̃(m
2
b̃1
−m2

b̃2
)

ǫ∗FC tan β

(1 + ǫ∗b tan β) (1 + (ǫ∗b − ǫ∗FC) tanβ)

×
[
CF
(
fF7γ,8g(xb̃1g̃) − fF7γ,8g(xb̃2g̃)

)
+ CA

(
fA7γ,8g(xb̃1g̃) − fA7γ,8g(xb̃2g̃)

)]
(5.7)

with the colour factors CF = 4/3 and CA = 3. Note that this contribution is of the same order
O(y2

t αs tan2 β × v2/M2
SUSY) (plus resummed higher orders) as the ǫb correction in the chargino

terms (5.5). While the latter is usually included in LO calculations, the former has not been
discussed yet in the literature since the effective theory method commonly used for the resum-
mation gives no handle on it. Of course, the gluino effects are contained in the numerical 2-loop
calculation performed in Ref. [71]. New features of our result are the identification of the tanβ-
enhanced part of the 2-loop contributions, the determination of an analytic expression for it and
the resummation of tanβ-enhanced corrections to all orders beyond the decoupling limit.

To have a rough estimate of the size of C g̃
7γ,8g compared to C eχ±

7γ,8g we again set all SUSY masses
(including |µ| and |At|) to the same value MSUSY. In this case we find

η7γ =

∣∣∣∣∣
C g̃

7γ

C eχ±

7γ

∣∣∣∣∣ =
8

15

g2
s

y2
t

|κ| , η8g =

∣∣∣∣∣
C g̃

8g

C eχ±

8g

∣∣∣∣∣ =
10

3

g2
s

y2
t

|κ| . (5.8)

Using our estimates (5.4) for |κ| we find η7γ ∼ 0.07 and η8g ∼ 0.42 for positive values of µ and
η7γ ∼ 0.2 and η8g ∼ 1.3 for negative values of µ. It follows that the impact of the gluino contri-
bution on C7γ is small (especially for positive µ) whereas the contribution to C8g can be sizeable.
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Figure 5.2: Chargino- and gluino-contributions to the Wilson coefficients C7γ (left) and C8g (right) for
a scan over the MSSM parameter space. Different colours correspond to different ranges of values for µ:
Orange: 200 GeV < µ < 400 GeV, red: 400 GeV < µ < 600 GeV, blue: 600 GeV < µ < 800 GeV,
black: 800 GeV < µ < 1000 GeV.

In the previous section we argued that the value of |κ| can be increased if one chooses large val-
ues for |At|. Of course, the size of C g̃

7γ,8g gets larger for increasing values of |κ|. Note, however,

that C eχ±

7γ,8g is proportional to At and thus the ratio η7γ,8g, i.e. the relative importance of the gluino
contribution, is essentially unaffected. On the other hand, the gluino contribution grows with in-
creasing |µ| whereas the chargino contribution decreases because it decouples with the chargino
mass. Therefore for large values of |µ| the gluino contribution becomes more important.

A more detailed numerical study of the coefficients C eχ±g̃
7γ,8g is shown in Fig. 5.2. There the values

of these coefficients at the scale mt, normalised to the corresponding SM coefficients, are dis-
played for a scan of the MSSM parameter space. We have chosen µ positive and otherwise used
the same range of values and constraints as in Section 5.1. Furthermore with the full C7γ,8g at
hand we are in the position to apply additional constraints from B̄ → Xsγ:

• The inclusive decay B̄ → Xsγ is at tree-level mediated by the magnetic operator Q7γ
1.

Therefore the experimental value [42]

Br(B̄ → Xsγ)
exp.
= (3.55 ± 0.24+0.09

−0.10 ± 0.03) × 10−4 (5.9)

is highly sensitive to the coefficient C7γ . The SM value of the branching fraction has been
calculated at NNLO and reads [72]

Br(B̄ → Xsγ)
SM
= (3.15 ± 0.23) × 10−4. (5.10)

1One-loop contributions of the operators Q1, ..., Q6 which are comparable in size are absorbed into an effective
redefinition of the operator Q7γ
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Adding errors in quadrature we find for the ratio of experimental and theory result

R ≡ Br(B̄ → Xsγ)
exp

Br(B̄ → Xsγ)SM
= 1.13 ± 0.12. (5.11)

For our B̄ → Xsγ constraint we evaluate the quantityR replacing Br(B̄ → Xsγ)
exp by our

MSSM theory value and Br(B̄ → Xsγ)
SM by our less accurate SM value, both calculated

according to Eq. (20) of Ref. [73]. Then equality with the result (5.11) is demanded at the
2 σ level. In the MSSM branching ratio we include also the (small) neutralino- as well as
the (not tanβ-enhanced) charged Higgs contribution.

• The fact that we consider complex At opens up the possibility to fulfill the B̄ → Xsγ
constraint by fine-tuning the phase ϕAt

of At. In order to avoid such an unnatural situation
we impose the additional condition |CSUSY

7γ | ≤ |CSM
7γ |.

The results of the scan in Fig. 5.2 confirm our rough estimate in Eq. (5.8) and the discussion
below this equation: Whereas the gluino contribution does not significantly affect C7γ , its effect
on C8g can be sizable and increases with |µ|.
SUSY contributions to other Wilson coefficients lack the tan β-enhancement and are thus less
important. The novel gluino effects are even much smaller than the chargino ones because they
suffer from GIM-like cancellations. From the results in Appendix A.4 we see that their contribu-
tions to gluon or photon penguins as well as to box diagrams are proportional to the structure

(
f(xb̃1g̃) − f(xq̃g̃)

)
+ R̃b∗

21R̃
b
21

(
f(xb̃2g̃) − f(xb̃1g̃)

)
(5.12)

where f is the respective loop function. This expression exhibits a v2/M2
SUSY suppression since

m2
b̃1

= m2
q̃ +O(v2/M2

SUSY) and R̃b
21 = O(v/MSUSY). Moreover, also the v2/M2

SUSY-terms cancel
for mb̃L

= mb̃R
as it is often assumed or approximately fulfilled like in the popular mSUGRA

scenarios. In combination with the mandatory v2/M2
SUSY factor of a SUSY coefficient to a di-

mension six operator we have a total

v4/M4
SUSY ×

(
v2/M2

SUSY or (m2
b̃L

−m2
b̃R

)/M2
SUSY

)
(5.13)

suppression. Even going beyond the decoupling limit, one has to choose at least mb̃L,R
&

√
2v

in order to avoid that the mass splitting induced by the offdiagonal elements of the mass matrix
drives the lighter sbottom mass below our 200 GeV limit. Origin of the GIM-like suppression is
the U(3)-flavour symmetry, respected by the strong coupling and the left-handed SUSY breaking
mass term. Such a suppression is therefore absent for the chargino contribution because the
chargino coupling breaks this symmetry.

The GIM-like cancellation does not occur in diagrams which require a chirality-flip breaking the
U(3) flavour symmetry. This was the case for the magnetic and chromomagnetic operators and
it also happens in case of the Z penguin. Here the gluino contribution is proportional to

R̃b∗
i1 R̃

b
i2 R̃

b∗
j2 R̃

b
j1 fZ(xb̃ig̃, xb̃2g̃) (5.14)
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au
f 0.02+0.01

−0.01 + 0.005+0.013
−0.002 i bc

f,6 (−30)+65

−6 + 8+44

−52 i

bc
f,1 1.13+0.31

−0.05 + 0.02+0.18
−0.26 i bc

f,7 15+10
−3 + (−0.1)4.3

−8.9 i

bu
f,1 0.02+0.02

−0.01 + 0.0100.024
−0.004 i bc

f,8 20+3

−30 + (−3)+25

−20 i

bc
f,2 (−0.38)+0.07

−0.56 + (−0.05)+0.46
0.34 i bc

f,9 11+26

−4 + 2+15

−23 i

bu
f,2 (−0.008)+0.005

−0.014 + 0.003+0.014
−0.003 i bc

f,10 12+27

−4 + 2+15

−23 i

bc
f,3 (−24)+8

−54 + (−3)+47

−30 i bc
f,7γ (−0.02)+0.01

−0.04 + (−0.003)+0.029
−0.021 i

bc
f,4 (−18)+8

−54 + (−3)+47
−30 i bc

f,8g 0.60+1.45
−0.25 + 0.11+0.86

−1.21 i

bc
f,5 (−28)+6

−19 + 1+17

−8 i

Table 5.1: Numerical values of auf and of the bu,cf,i (i = 1, . . . , 10, 7γ, 8g) parameters at NLO QCDF. For

i = 3, .., 10, 7γ, 8g one has buf,i =
(
λ

(s)
u /λ

s)
c

)
bcf,i.

with two chirality flips encoded in the mixing matrices. Since the b̃1,2 contributions tend to cancel
each other due to the unitarity of R̃b, the structure of the gluino Z penguin contribution is

v2/M2
SUSY ×

(
v2/M2

SUSY or (m2
b̃L

−m2
b̃R

)/M2
SUSY

)2

. (5.15)

This prevents the gluino contribution again from competing with the chargino one and even more
with the SM one which receives a m2

t/M
2
W enhancement.

In summary, gluino diagrams are only relevant for the magnetic and chromomagnetic operators
Q7γ,8g. Whereas the gluino contribution to C7γ is accidentally suppressed, it is enhanced for C8g

and can yield sizable corrections, especially for large values of |µ|.

5.3. The mixing-induced CP asymmetry in B̄0 → φKs

The gluino contribution to C8g affects some important low-energy observables in non-leptonicB
decays. As an example, we study its impact on the mixing-induced CP asymmetry in the decay
B̄0 → φKs. NP contributions to CP asymmetries of hadronic B0 decays have been analysed in
a model-independent way in Ref. [74]. Among other scenarios, also the case of a dominant NP
coefficient CNP

8g has been considered using an improved LO framework of QCDF. In Ref. [75]
the result has been applied to the flavour-blind MSSM with complex At and a large effect in the
mixing-induced CP asymmetry in the decay B̄0 → φKs has been found. Here we improve these
previous analyses using our full NLO QCDF approach and we demonstrate the importance of
the novel gluino contribution.

Mixing induced CP violation in a decay of the B0 meson into a CP eigenstate f can be accessed
through a measurement of the time-dependent CP asymmetry

af (t) =
Br(B̄0(t) → f) − Br(B0(t) → f)

Br(B̄0(t) → f) + Br(B0(t) → f)
= Cf cos(∆MBt) + Sf sin(∆MBt) (5.16)
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Figure 5.3: SφKs
for a scan over the MSSM parameter space: Result without the gluino contribution

S−g̃
φKs

vs. full result Sfull
φKs

.

with ∆MB denoting the mass difference of the two B0 meson mass eigenstates. The mixing
induced CP violation resides in the quantity Sf whose theory value is given in terms of the decay
amplitudes Af = A(B0 → f) and Ā = Af(B̄

0 → f) by

Sf =
2 Im(λf)

1 + |λf |2
with λf = −e−iφB

Āf

Af
. (5.17)

Here φB is the B0-B̄0 mixing phase.

Following Ref. [74] we parametrise the decay amplitude in terms of the NP coefficients CNP
i as2

Āf = Āc
f

[
1 + aufe

−iγ +
∑

i

(
bcf,i + buf,ie

−iγ
)
CNP
i

]
, i = 1, ..., 10, 7γ, 8g (5.18)

with the CKM angle γ = arg [− (VudV
∗
ub) / (VcdV

∗
cb)]. In Ref. [74] the parameters auf , bu,cf,i have

been calculated using naive factorisation except for bu,cf,7γ,8g which vanish in this approximation. In
order to study the impact of a NP contribution CNP

8g , the parameter bc8g has been included at NLO
in QCDF which is consistent if one assumes dominance of CNP

8g over the other NP coefficients.
Note that in the MSSM this condition is fulfilled because the chargino and gluino contributions to
C7γ,8g are tan β-enhanced and effects fromC7γ in hadronicB decays are αe/αs(mb) - suppressed
compared to effects from C8g. For our study we use the full NLO QCDF expression and present

2There is actually a complex conjugation of the Wilson coefficients CNP
i missing in the corresponding equation

in [74].
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Figure 5.4: SφKS
as a function of |At| at the parameter point shown in the table: Full result (solid, blue)

and result without the gluino contribution (dashed, red). The black dotted line is the SM prediction.

our improved values for the coefficients auf , bu,cf,i in Tab. 5.1. In our naive MFV framework we find
effects from CNP

3 ,...,CNP
10 to be negligible while the contribution from C7γ gives corrections up to

10%. Hence the approximate formulae of Ref. [74] gives reasonable results. Note, however, that
our value for the relevant parameter bcf,8g strongly differs from the one given in Ref. [74].

In the diagram in Fig. 5.3 the observable SφKS
is shown for a paramter scan over the MSSM

parameter space covering the same ranges for the parameters and fulfilling the same constraints
as discussed in the previous sections. The parameter µ is again chosen positive and its magnitude
is represented by the same colour code as in Fig. 5.2. We show the result containing only the
chargino- and the charged-Higgs contribution (x-axis) versus the one with the additional gluino
part (y-axis). The distance of the points from the diagonal signals the importance of the gluino
contribution. We see that for positive µ the gluino effect adds always constructively and that the
gluino contribution can modify the result a lot. For a further illustration we have plotted SφKS

in
Fig. 5.4 as a function of |At| fixing the other parameters to certain values. The parameter point
chosen for the plot fulfills all constraints mentioned above over the whole range of |At|. For the
result corresponding to the dashed red line the novel gluino effect has been omitted whereas the
result represented by the solid blue line takes it into account. Also this plot demonstrates that the
gluino-squark contribution can indeed have a large impact on SφKS

for complex At. The current
experimental value is given by [42]

SφKs

exp.
= 0.56+0.16

−0.18 . (5.19)
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Part II

Probing new physics in electroweak
penguins via hadronic B decays
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6. ISOSPIN VIOLATION IN B → Kπ DECAYS

The B → Kπ decays are dominated by the isospin-conserving QCD penguin amplitude. Never-
theless, combined measurements of the four different decay modes B− → K̄0π−, B− → K−π0,
B̄0 → K−π+ and B̄0 → K̄0π0 are sensitive to isospin violation. This is because the ampli-
tudes are related in the limit of exact isospin symmetry via Clebsch-Gordon coefficients and any
deviation from this pattern signals isospin breaking.

In this chapter we perform an isospin decomposition of the B → Kπ amplitudes and relate
the resulting isospin amplitudes then to topological expressions. We then construct observables
which are sensitive to isospin violation, calculate their SM values within our QCDF framework
and draw conclusions on potential new physics.

6.1. Isospin decomposition of the amplitudes

The strong interaction is flavour-blind, for example a gluon cannot distinguish an up-quark from
a down-quark. This means, as long as we neglect quark masses, the QCD Lagrangian is invariant
under simultaneous rotations

qi → Uijqj , q̄i → q̄jU
†
ji = U∗

ij q̄j (6.1)

of quarks and anti-quarks in flavour space. Restricting ourselves to the subspace spanned by
the up- and down quarks, for which the assumption of negligible masses is clearly fulfilled, we
encounter the SU(2) symmetry of strong isospin. Quarks and anti-quarks transform under this
SU(2) as isospin-doublets1

(u, d)1/2 , (d̄,−ū)1/2 . (6.2)

Since strong isospin is conserved in QCD, it serves as a good quantum number to classify mesons
and baryons and it is attributed to them according to their valence quark content. The mesons
participating in B → Kπ decays transform under isospin rotations as

(B̄0,−B−)1/2 , (K̄0,−K−)1/2 , (π+,−π0,−π−)1 . (6.3)

In a similar way we can assign isospin to the operators appearing in the effective Hamilto-
nian (2.1) which mediates the B → Kπ transitions. Containing ūu- and d̄d-pairs, the operators

1Transforming (ū, d̄)T by the conjugate rotation U∗ as in (6.1) is equivalent to transforming (iσ2)(ū, d̄)T =
(d̄,−ū)T by the fundamental rotation U . This can be seen by noting that (iσ2)U

∗(iσ2)
† = U for any U ∈ SU(2).
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Q1,...,Q10 can be distributed among

Heff = H∆I=0
eff + H∆I=1

eff (6.4)

according to the decomposition 1/2⊗ 1/2 = 1⊕ 0. Since the QCD penguin operators Q3, ..., Q6

involve the isosinglet combination (ūu+ d̄d), they contribute solely to H∆I=0
eff whereas the other

operators give contributions to both parts of Heff. TheB → Kπ decays thus exhibit the following
isospin structure:

1/2
∆I=0,1−→ 1/2 ⊗ 1 = 3/2 ⊕ 1/2 (6.5)

Having specified the transformation properties of mesons and operators, we can now exploit the
isospin symmetry to gain information on the decay amplitudes. Acting on the initial I = 1/2
B-meson states, Heff can rise the total isospin quantum number at most by one unit conserving
at the same time the z-component Iz = ±1/2. The non-vanishing matrix elements are correlated
due to the Wigner-Eckart theorem. In the basis of total isospin for the final states they can be
parametrised in terms of reduced matrix elements as

−
√

3

2
A∆I=0

1/2 ≡ 〈 1/2, 1/2 | H∆I=0
eff

∣∣ B̄0
〉

= −〈 1/2,−1/2 | H∆I=0
eff

∣∣B−
〉
,

−
√

3A∆I=1
3/2 ≡ 〈 3/2, 1/2 | H∆I=1

eff

∣∣ B̄0
〉

= −〈 3/2,−1/2 | H∆I=1
eff

∣∣B−
〉
,

√
3

2
A∆I=1

1/2 ≡ 〈 1/2, 1/2 | H∆I=1
eff

∣∣ B̄0
〉

= 〈 1/2,−1/2 | H∆I=1
eff

∣∣B−
〉
. (6.6)

The existence of only three independent matrix elements implies a relation linking the four B →
Kπ amplitudes. To find the decay amplitudes one decomposes the Kπ-final states as 1/2 ⊗ 1 =
3/2 ⊕ 1/2 via Clebsch-Gordon coefficients and evaluates the matrix elements with the help of
(6.6). This results in

A(B− → K̄0π−) = A∆I=0
1/2 − A∆I=1

3/2 + A∆I=1
1/2√

2A(B− → K̄−π0) = A∆I=0
1/2 + 2A∆I=1

3/2 + A∆I=1
1/2

A(B̄0 → K−π+) = A∆I=0
1/2 + A∆I=1

3/2 − A∆I=1
1/2√

2A(B̄0 → K̄0π0) = −A∆I=0
1/2 + 2A∆I=1

3/2 + A∆I=1
1/2 , (6.7)

from where we can immediately read off the well-known isospin-relation [76]

A(B− → K̄0π−) −
√

2A(B− → K̄−π0) = −A(B̄0 → K−π+) −
√

2A(B̄0 → K̄0π0). (6.8)

It turns out that B → Kπ is dominated by the QCD penguin contribution implying |A∆I=0
1/2 | ≫

|A∆I=1
3/2, 1/2|. Therefore in a first approximation all the decay modes can be described by a single

amplitude A∆I=0
1/2 . This dictates the relative size of the branching fractions to be 2 : 1 : 2 : 1

(listed in the same order as the amplitudes in (6.7)) and enforces vanishing direct CP violation.
Brilliant progress of the B factory experiments allow us today to study deviations from this
patterns. In this way we can probe the isospin-violating amplitudes A∆I=1

3/2, 1/2.
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Figure 6.1: Diagrams representing the topological parametrisation in Eq. (6.9) for B− → K−π0. First
line from left to right: QCD penguin (P ), colour-allowed electroweak penguin (rEW), colour-suppressed
electroweak penguin (rC

EW). Second line from left to right: Colour-allowed tree (rT), colour-suppressed
tree (rC), electroweak penguin annihilation (rA

EW).

6.2. Topological parametrisation

In the last section we have used isospin symmetry to parametrise the B → Kπ amplitudes
in terms of the reduced matrix-elements A∆I=0

1/2 , A∆I=1
3/2, 1/2. These isospin invariant amplitudes

receive contributions from various SM quark diagrams. It is only at the level of these diagrams
that the pattern of CP violation can be correctly implemented, i.e. that the amplitudes A∆I=0

1/2 ,

A∆I=1
3/2, 1/2 can be related to their CP conjugated counterparts A∆I=0

1/2 , A∆I=1

3/2, 1/2. This suggests an
alternative parametrisation of the amplitudes in terms of the topologies of the underlying quark-
level transitions [77]:

A(B− → K̄0π−) ≃ P

(
1 − 1

3
rCEW +

2

3
rA
EW

)
,

√
2A(B− → K−π0) ≃ P

(
1 + rEW +

2

3
rCEW +

2

3
rA
EW − (rT + rC)e−iγ

)
,

A(B̄0 → K−π+) ≃ P

(
1 +

2

3
rCEW − 1

3
rA
EW − rTe

−iγ

)
,

√
2A(B̄0 → K̄0π0) ≃ −P

(
1 − rEW − 1

3
rCEW − 1

3
rA
EW + rCe

−iγ

)
. (6.9)

This topological parametrisation is illustrated by the corresponding Feynman diagrams for
B− → K−π0 in Fig. 6.1. In Eq. (6.9) we have factored out the dominant QCD penguin am-
plitude P and neglected penguin amplitudes suppressed by |V ∗

usVub|/|V ∗
csVcb|. The dependence

on the weak CKM phase γ has been made explicit while strong phases are contained in the ratios
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ri which fulfill |ri| < 1. These quantities denote corrections from different types of Feynman di-
agrams: rT and rC stem from colour-allowed and colour-suppressed tree diagrams, rEW and rC

EW

from colour-allowed and colour-suppressed electroweak penguins, respectively. Weak annihila-
tion via QCD penguin diagrams is absorbed into P whereas weak annihilation via electroweak
penguin diagrams is parametrised by rA

EW and colour-suppressed tree annihilation is neglected.
The ri are in direct correspondence to the QCDF amplitudes αi in Eq. (2.12). With our set up of
Section 2.2.3 we obtain

rT = −
∣∣∣∣
λu
λc

∣∣∣∣
α1(π,K)

α̂c4(π,K)
= 0.17+0.07

−0.06 + 0.03+0.03
−0.10 i ,

rC = −
∣∣∣∣
λu
λc

∣∣∣∣
AKπ
AπK

α2(K, π)

αc4(π,K)
= 0.07+0.04

−0.06 + (−0.01)+0.03
−0.05 i ,

rEW =
3

2

AKπ
AπK

αc3,EW(K, π)

α̂c4(π,K)
= 0.13+0.05

−0.05 + 0.02+0.02
−0.07 i ,

rC
EW =

3

2

αc4,EW(π,K)

α̂c4(π,K)
= 0.04+0.02

−0.03 + (−0.01)+0.02
−0.03 i ,

rA
EW =

3

2

βc3,EW(π,K)

α̂c4(π,K)
= 0.007+0.002

−0.010 + (−0.004)+0.011
−0.003 i , (6.10)

where λu,c abbreviate the usual combinations of CKM factors, AKπ and AπK contain form fac-
tors and decay constants, and α̂c4 = αc4 + β3. The results display the typical features of QCDF
predictions as discussed in Section 2.2.2, namely small strong phases and large uncertainties
of colour-suppressed topologies. The smallness of the ri reflects the domination of the isospin-
conserving QCD penguin and justifies the expansion of physical observables in the ri. Among
the isospin-violating contributions the colour-allowed tree gives the largest corrections followed
by the EW penguin which dominates over the colour-suppressed tree. The colour-suppressed
EW penguin ratio rC

EW and especially the EW penguin annihilation ratio rA
EW are quite small and

consequently they have been omitted in most analyses of B → Kπ decays. In particular, the
possibility of having NP in the EW penguin annihilation amplitude rA

EW has to our knowledge
not been considered so far. However, we want to point out that such an approximation is not
valid in the analysis of CP asymmetries within the QCDF framework: CP asymmetries are re-
lated to the imaginary parts of the ri which are in QCDF generated at O(αs). At this order the
colour-suppression of rC

EW is not present anymore and the ΛQCD/mb suppressed rA
EW can compete

as well. Therefore we keep rC
EW and rA

EW in order to allow for the possibility to have a large NP
contribution to these amplitudes.

By comparing Eqs. (6.7) and (6.9) one can express the isospin amplitudes through the topological
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parameters. This results in

A∆I=0
1/2 = P

(
1 +

1

6
rC

EW +
1

6
rA

EW − 1

2
rT e

−iγ

)
,

A∆I=1
3/2 = P

(
1

3
rEW +

1

3
rC

EW −
(

1

3
rT +

1

3
rC

)
e−iγ

)
,

A∆I=1
1/2 = P

(
1

3
rEW − 1

6
rC

EW +
1

2
rA

EW +

(
1

6
rT − 1

3
rC

)
e−iγ

)
. (6.11)

Let us for the moment neglect the small rA
EW and focus on the two ∆I = 1 amplitudes A∆I=1

3/2

and A∆I=1
1/2 . Obviously they can be written as linear combinations of

rEW − rC e
−iγ and rC

EW − rT e
−iγ . (6.12)

This implies that colour-allowed EW penguins and colour-suppressed trees, on the one hand, as
well as colour-suppressed EW penguins and colour-allowed trees, on the other hand, form pairs
of contributions which are inextricably linked to each other as far as purely isospin-violating
observables are concerned. If we moreover allow for arbitrary magnitudes, weak and strong
phases beyond the SM for all the topologies, we find the topological parametrisation to contain
some redundancy: Whereas the isospin amplitudes provide only 8 free parameters, the complex
A∆I=1

3/2,1/2 and A∆I=1

3/2,1/2, the topological parametrisation introduces 12 free parameters, the magni-
tudes, weak and strong phases of the four different topologies. Therefore physical effects found
in any experiment cannot unambiguously be attributed to one or the other partner of the topology
pairs in (6.12). For the pair consisting of rT and rC

EW this ambiguity is resolved by A∆I=0
1/2 but rEW

and rC stay inseparable.

In the next section we will discuss hints on NP in the EW penguin sector. Such contributions can
be included into all formulae given in this section by the replacements

rEW → rEW + r̃EWe
−iδ, rC

EW → rC
EW + r̃C

EWe
−iδ , rA

EW → rA
EW + r̃A

EWe
−iδ , (6.13)

where the r̃iEW are complex parameters containing strong phases and δ is a new weak phase.
Assuming that there is no NP in tree topologies and that the SM amplitudes can be calculated
from theory, the r̃iEW and δ are then accessible from experiment. For example the three parameters
Re(r̃EW), Im(r̃EW) and δ can be determined from the four physical combinations

Re(r̃EW) cos δ − Re(rC) cos γ + Re(rEW) ,

Im(r̃EW) sin δ − Im(rC) sin γ ,

Im(r̃EW) cos δ − Im(rC) cos γ + Im(rEW) ,

Re(r̃EW) sin δ − Re(rC) sin γ . (6.14)

However, one should keep in mind that hadronic uncertainties can mimic (or hide) such a NP
signal and this concerns also hadronic uncertainties from the SM trees since they are linked
to the EW penguins as it has been discussed above and as it is manifest in (6.14). Therefore,
probing a colour-allowed NP contribution r̃EW is challenged by the large hadronic uncertainties
in the QCDF prediction for rC.
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6.3. Current status of isospin violation in B → Kπ

The dominance of the QCD penguin topology in the B → Kπ amplitudes establishes an ap-
proximate isospin symmetry of the amplitudes which manifests itself in a number of sum rules
linking the branching fractions [78] or direct CP asymmetries [79] of the various decay modes.
These sum rules can be exploited to construct measurable quantities which are sensitive to isospin
violation. In this section we will define corresponding observables and derive approximate for-
mulae for them in terms of the topological parameters ri. We will calculate their SM values using
QCDF, compare the results with the current experimental data and discuss the impact of poten-
tial NP in the EW penguin sector. In subsequent chapters we will use these observables then in
a twofold way: On the one hand, we will deduce from them simple 2σ constraints on the free
parameters of various NP scenarios. On the other hand, we use independent subsets of these ob-
servables to perform a χ2 fit which allows to extract the preferred values of the NP parameters. It
should be stressed that the approximate formulae given for the observables in this section serve
only to identify their sensitivity to different topological contributions whereas we use the exact
expressions for our numerical calculations.

6.3.1. Direct CP asymmetries

Non-vanishing direct CP asymmetries are caused by the interference of parts of the decay ampli-
tude which have both, different weak and different strong phases. Therefore direct CP asymme-
tries in B → Kπ cannot be generated by the single QCD penguin amplitude and are automati-
cally sensitive to subleading contributions. Neglecting terms quadratic in the ri we find for the
B → Kπ decay modes

ACP(B− → K̄0π−) ≃ 0,

ACP(B− → K−π0) ≃ −2 Im (rT + rC) sin γ,

ACP(B̄0 → K−π+) ≃ −2 Im(rT) sin γ,

ACP(B̄0 → K̄0π0) ≃ 2 Im (rC) sin γ. (6.15)

If one assumes rT to dominate over rC, the asymmetries ACP(B̄0 → K−π+) and ACP(B− →
K−π0) are expected to have the same sign and to be approximately equal. This expectation would
be reflected in a nearly vanishing

∆ACP ≡ ∆A−
CP ≡ ACP(B

− → K−π0) − ACP(B̄ → K−π+) ≃ −2 Im (rC) sin γ. (6.16)

Current experimental data, however, show different signs for the two asymmetries (see table 6.1)
and yields

∆ACP
exp.
= (14.8 ± 2.8)%. (6.17)

The only possible explanation for a large ∆ACP in the SM would be a large imaginary part of rC.
QCDF predicts only a small Im(rC), even when all the theory errors are included, and we obtain

∆ACP
SM
= 1.9+5.8

−4.8 %. (6.18)
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Adopting a frequentist approach where we give not preference to any theory value within the
error interval (but consider the true value to lie definitely within the error interval), we find a
∼ 2.5 σ discrepancy between theory and experiment.

Now let us see how the situation changes if we include NP in the EW penguin sector according
to (6.13). Provided the phase δ is not zero, the new contributions enters the CP asymmetries as

ACP(B− → K̄0π−) ≃ −2 Im(
1

3
r̃C

EW +
2

3
r̃A

EW) sin δ,

ACP(B− → K−π0) ≃ −2 Im (rT + rC) sin γ + 2 Im

(
r̃EW +

2

3
r̃C

EW +
2

3
r̃A

EW

)
sin δ,

ACP(B̄0 → K−π+) ≃ −2 Im(rT) sin γ + 2 Im(
2

3
r̃C

EW − 1

3
r̃A

EW) sin δ,

ACP(B̄0 → K̄0π0) ≃ 2 Im (rC) sin γ − 2 Im

(
r̃EW +

1

3
r̃C

EW +
1

3
r̃A

EW

)
sin δ (6.19)

and ∆ACP as

∆ACP ≃ −2 Im (rC) sin γ + 2 Im
(
r̃EW + r̃A

EW

)
sin δ. (6.20)

With the additional contributions from r̃EW and r̃A
EW the difference ∆ACP can turn out much larger

than in the SM. We will see that the observed discrepancy in ∆ACP can be solved by r̃EW as well
as by r̃A

EW. To this end one needs NP in the EW penguin sector of the order of the SM Wilson
coefficient CSM

9

Apart from ∆ACP we can construct a second difference

∆A0
CP ≡ ACP(B

− → K̄0π−) − ACP(B̄ → K̄0π0)

≃ −2 Im (rC) sin γ + 2 Im
(
r̃EW + r̃A

EW

)
sin δ , (6.21)

which in principle could also be used to probe r̃EW and r̃A
EW. Moreover, the difference of ∆A−

CP

and ∆A0
CP would even be sensitive to terms quadratic in the ri [79]. Unfortunately, data on

ACP(B− → K̄0π−) and especially on ACP(B̄0 → K̄0π0) are not good enough yet to gain any
information from these observables.

6.3.2. Branching fractions

We already noticed in Section 6.1 that ratios of any two different decay rates measure isospin
violation. A further advantage of considering such ratios is that form factors and decay constants
cancel and this decreases the uncertainties of the QCDF predictions. Using the parametrisation
(6.9) and neglecting terms which are quadratic in the ri as well as the annihilation contribution
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rA
EW which has only a small real part, the six different ratios read [31]

RB
c ≡ 2

Br(B− → K−π0)

Br(B− → K̄0π−)
≃ 1 + 2 Re(rEW + rC

EW) − 2 Re(rT + rC) cos γ ,

RB
n ≡ 1

2

Br(B̄0 → K−π+)

Br(B̄0 → K̄0π0)
≃ 1 + 2 Re(rEW + rC

EW) − 2 Re(rT + rC) cos γ ,

RK
c ≡ 2

τ0
τ−

Br(B− → K−π0)

Br(B̄0 → K−π+)
≃ 1 + 2 Re(rEW) − 2 Re(rC) cos γ ,

RK
n ≡ 1

2

τ0
τ−

Br(B− → K̄0π−)

Br(B̄0 → K̄0π0)
≃ 1 + 2 Re(rEW) − 2 Re(rC) cos γ ,

Rπ
c ≡ τ0

τ−

Br(B− → K̄0π−)

Br(B̄0 → K−π+)
≃ 1 + 2 Re(rT) cos γ − 2 Re(rC

EW),

Rπ
n ≡ τ0

τ−

Br(B− → K−π0)

Br(B̄0 → K̄0π0)
≃ 1 − 2 Re(rT + 2rC) cos γ + 2 Re(2rEW + rC

EW) . (6.22)

Here Br denotes CP-averaged branching ratios, τ0 and τ− are the life times of the neutral and
charged B mesons, respectively. If one finds deviations of these ratios from RB,K,π

c,n = 1 which
cannot be explained by the SM values of the ri, this can be interpreted as a hint on NP in EW
penguins entering the ratios RB,K,π

c,n through

Re(rEW) → Re(rEW) + Re(r̃EW) cos δ,

Re(rC
EW) → Re(rC

EW) + Re(r̃C
EW) cos δ. (6.23)

Indeed a discrepancy in the early data displaying Rc ≡ RB
c > 1 and Rn ≡ RB

n < 1 raised the
formulation of a “B → Kπ puzzle” in the first place and we see from (6.22) that even terms
quadratic in the ri are needed to account for this pattern. In the meantime, the measurements
fluctuated towards the SM values and we find our QCDF results for the RB,K,π

c,n to be in good
agreement with the current experimental data (see table 6.1). However, if there exist NP contri-
butions r̃EW and r̃C

EW, as suggested by ∆ACP, they will be constrained from the RB,K,π
c,n . Note that

the RB,K,π
c,n involve different combinations of r̃EW and r̃C

EW and thus they are sensitive to different

linear combinations of the electroweak penguin coefficients C(′)
7 , ..., C

(′)
10 . Therefore, it depends

on the specific NP scenario in consideration which of the RB,K,π
c,n give the best constraints.

Beyond being responsible for the universality of the QCD penguin contribution, isospin relations
account for the approximate equation

Γ(B− → π−K̄0) − 2 Γ(B− → π0K−) ≈ 2 Γ(B̄0 → π0K̄0) − Γ(B̄0 → π+K−) (6.24)

known as Lipkin sum rule. In the strict isospin limit both sides of this equation vanish identically
and this is reflected in the fact that RB

c,n in Eq. (6.22) is equal to one apart from isospin-violating
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Observable Theory Experiment

Br(B̄0 → K̄0π0) × 106 5.8+5.7
−3.6 9.5+0.5

−0.5

Br(B̄0 → K−π+) × 106 14.0+12.1
−7.8 19.4+0.6

−0.6

Br(B− → K−π0) × 106 9.6+7.3
−4.9 12.9+0.6

−0.6

Br(B− → K̄0π−) × 106 15.7+13.7
−8.9 23.1+1.0

−1.0

RB
c (Kπ) 1.22+0.17

−0.15 1.12+0.07
−0.07

RB
n (Kπ) 1.22+0.18

−0.16 1.02+0.06
−0.06

RK
c (Kπ) 1.27+0.12

−0.11 1.24+0.07
−0.07

RK
n (Kπ) 1.27+0.15

−0.13 1.13+0.08
−0.07

Rπ
c (Kπ) 1.04+0.10

−0.08 1.11+0.06
−0.06

Rπ
n(Kπ) 1.55+0.38

−0.31 1.26+0.09
−0.09

R(Kπ) 1.02+0.02
−0.02 1.05+0.05

−0.05

ACP(B̄0 → K̄0π0) −0.003+0.057
−0.108 −0.01+0.10

−0.10

ACP(B̄0 → K−π+) −0.047+0.187
−0.047 −0.098+0.012

−0.011

ACP(B− → K−π0) −0.028+0.221
−0.059 0.050+0.025

−0.025

ACP(B− → K̄0π−) 0.003+0.012
−0.003 0.009+0.025

−0.025

∆ACP = ∆A−
CP 0.019+0.058

−0.048 0.148+0.027
−0.028

∆A0
CP 0.006+0.118

−0.057 0.019+0.103
−0.103

SCP(B̄0 → K̄0π0) 0.80+0.06
−0.08 0.57+0.17

−0.17

Table 6.1: Theoretical versus experimental results for the B̄ → K̄π decays. The experimental data is
taken from [42].

terms of order O(ri). These terms which are linear in the ri are generated by the interference of
the isospin-violating parts of the amplitude with the QCD penguin part. The special property of
Eq. (6.24) is now that these interference terms on the left- and righthand side of the approximate
equation cancel each other. For this reason Eq. (6.24) can be used to construct a purely isospin-
violating observable, namely

R ≡ 2
τ− Br(B̄0 → π0K̄0) + τ0 Br(B− → π0K−)

τ− Br(B̄0 → π+K−) + τ0 Br(B− → π−K̄0)
= 1 + O(r2

i ) . (6.25)

Also for this observable we find agreement between the experimental value and our QCDF pre-
diction. It can be used as a further constraint on r̃EW and r̃C

EW.
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6.3.3. Mixing-induced CP violation

Since Ksπ
0 is a CP-eigenstate into which both the B0 and the B̄0 meson can decay, we have

mixing-induced CP violation in this decay channel. For details on the mechanism of mixing-
induced CP violation and the definition of the corresponding observable SKπ we refer to Sec-
tion 5.3. Although SKπ is not sensitive to isospin-violation in particular, it will be affected by a
solution of the “∆ACP-puzzle” via a NP contribution r̃EW. The reason is that r̃EW has to come with
a large new weak phase δ in order to have substantial impact on ∆ACP. With our parametrisation
we find for the modified SKπ:

SKπ ≃ sin 2β + 2Re (rC) cos 2β sin γ − 2Re(r̃EW + r̃CEW) cos 2β sin δ. (6.26)

Here we have neglected again terms quadratic in the ri and a term proportional to the small
Re(r̃A

EW). The error bands of experimental and theoretical values for SKπ rarely overlap (see
table 6.1). This allows for some freedom in r̃EW which is needed to explain ∆ACP through this
parameter.

To summarise: We have studied various observables which are sensitive to the EW penguin
contribution rEW which enters always together with rc in one of the four combinations anticipated
in (6.14). The only observable seriously pointing to a new contribution r̃EW so far is ∆ACP. Hence
in order to clarify the situation one should study further decays.

6.4. The decays B → Kρ, K∗π, K∗ρ

The decays B → Kρ,K∗π,K∗ρ are simply the PV, V P, V V counterparts of B → Kπ, with
which they share the flavour structure. Since our analysis of B → Kπ did not give a clear
picture of the EW penguin sector, it could be enlightening to complement it with a study of
the corresponding PV, V P, V V modes. These decay channels are even more sensitive to isospin
violation because the dominating QCD penguin amplitude is smaller resulting in larger ri ratios.
To exemplify this we give here the ri for B → Kρ:

rT(ρK̄) = − 0.34+0.22
−0.49 − 0.28+0.69

−0.22 i ,

rC(ρK̄) = − 0.20+0.17
−0.21 − 0.09+0.36

−0.11 i ,

rEW(ρK̄) = − 0.33+0.21
−0.47 − 0.27+0.68

−0.21 i ,

rCEW(ρK̄) = − 0.11+0.09
−0.11 − 0.05+0.19

−0.06 i . (6.27)

However, experimental data of these decays is not yet precise enough to draw any significant
conclusions. Nevertheless these decays can give constraints which are complementary to those
from B → Kπ: Because of their different spin structure, they probe other linear combinations of
the EW penguin coefficients C(′)

7 , ..., C
(′)
10 (see Eqs. (2.12) and (2.12)). In our analyses we include

them therefore as 2 σ constraints but because of the insufficient precision of data we decided not
to incorporate them in our χ2 fits. Tables containing our QCDF predictions and the experimental
values for the B → Kρ,K∗π,K∗ρ observables can be found in appendix A.5.
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7. THE PURELY ISOSPIN VIOLATING DECAYS

Bs → φπ, φρ

In the previous chapter we suggested that, in order to find out whether the discrepancy in theB →
Kπ observable ∆ACP is provoked by NP in electroweak penguins, one should study also other
decays which are sensitive to this sector. This is not an easy task, since EW penguin contributions
are usually overshadowed by the larger QCD penguins. This problem can be avoided if one
succeeds in probing exclusively the ∆I = 1 part of the Hamiltonian which is orthogonal to the
QCD penguin operators. To achieve this for B → Kπ we had to single out the ∆I = 1 - part
of (6.5) by combining different isospin-related decay modes. Our proposal is now to consider
decays to which QCD penguins do not contribute at all, i.e. pure ∆I = 1 decays, where no such
procedure is needed.

There are no two-body decays of the Bd or B± meson with this property. In these cases the final
state would have to be a pure |3/2,±1/2〉 isospin state which cannot be constructed out of two
mesons. The Bs meson, on the other hand, is an isosinglet and it can decay as

0
∆I=1−→ 0 ⊗ 1 = 1 . (7.1)

The final state must consist of an isospin triplet, i.e. π0 or ρ0, and an isosinglet, i.e. a meson with
the ss̄ flavour structure. In order to avoid complications stemming from η−η′-mixing, we restrict
ourselves to the vector-meson φ which is to a good approximation a pure ss̄ state. This leaves us
with the two ∆I = 1 - channels Bs → φπ0 and Bs → φρ0.

These decays have a very simple topological structure which is depicted in Fig. 7.1. They can be
parametrised as √

2A(B̄s → φπ/ρ) = P
π/ρ
EW

(
1 − r

π/ρ
C e−iγ

)
(7.2)

where we have factored out the EW penguin amplitude P π/ρ
EW anticipating its dominance over the

colour-suppressed tree represented by the tree-to-penguin ratio rπ/ρC . In terms of QCDF ampli-
tudes this ratio reads

r
π/ρ
C = − 2

3

∣∣∣∣∣
λ

(s)
u

λ
(s)
c

∣∣∣∣∣
α2(φ, π/ρ)

α3,EW(φ, π/ρ)
. (7.3)

Its numerical value is given by

rπC = 0.41+0.37
−0.41 − 0.13+0.30

−0.30 i ,

rρ,0C = 0.39+0.35
−0.39 − 0.13+0.28

−0.29 i ,

rρ,−C = 0.21+0.49
−0.46 + 0.15+0.45

−0.45 i , (7.4)
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ū

s

Figure 7.1: EW penguin (rEW) and colour-suppressed tree (rC) contributions to Bs → φπ, φρ

for the isotriplet meson being π0, a longitudinally polarised ρ0 and a negatively polarised ρ0,
respectively. Choosing a phase convention such that P π/ρ

EW is real, we further find

P π
EW = 6.45+1.87

−0.54 · 10−9, P ρ,0
EW = 9.95+2.83

−0.79 · 10−9, P ρ,−
EW = 4.27+1.34

−0.81 · 10−9. (7.5)

The positive helicity amplitude has been neglected according to its Λ2
QCD/m

2
b suppression (see

discussion in Section 2.2.2). Weak annihilation contributions have been omitted from Eq. (7.2).
They are expected to be small, even beyond the usual ΛQCD/mb suppression, because a colour
singlet s̄s pair forming the φ meson must be created from gluons in this case. The corresponding
diagrams are suppressed by the OZI rule [80] and by higher powers of αs since three gluons are
needed to match the quantum numbers of the φ.

The fact that |rπ/ρC | < 1 shows that these decays are indeed dominated by the EW penguin
topology and suggests them as the ideal candidates (golden channels) to test the hypothesis of
NP in this sector. A new contribution to the B → Kπ amplitudes of the form (6.13) would enter
also the Bs → φπ, φρ amplitude (7.2) modifying it as

√
2A(B̄s → φπ/ρ) = P

π/ρ
EW

(
1 − r

π/ρ
C e−iγ + r̃

π/ρ
EW e−iδ

)
(7.6)

where r̃π/ρEW contains a strong phase and δ is the weak phase introduced in (6.13). If we assume
the new contribution to be of the order of the SM EW penguin, as a solution of the “∆ACP-
puzzle” requires, we have |r̃π/ρEW | = O(1) and expect an order of magnitude enhancement of the
Bs → φπ, φρ branching fractions.

Exactly as in the B → Kπ amplitudes the EW penguin contribution r̃π/ρEW is again accompanied
by the colour-suppressed tree rπ/ρC such that uncertainties in the SM prediction of the latter re-
duce the sensitivity to the former. Let us perform a rough estimation of this rπ/ρC pollution: The
branching fractions of Bs → φπ, φρ are dominated by the real parts Re(r

π/ρ
C ) and Re(r̃

π/ρ
EW ) since

the imaginary parts are small and enter only quadratic. Assuming r̃π/ρEW = 1, which means that the
NP contribution is as large as the SM EW penguin and has the same strong phase, and assuming
in addition δ = γ for simplicity, the relative importance of the colour-suppressed tree compared
to the new EW penguin is determined by |Re(r

π/ρ
C )|. From the numerical values

|Re(rπC)| = 0.41+0.37
−0.41,

∣∣Re(rρ,0C )
∣∣ = 0.39+0.35

−0.39,
∣∣Re(rρ,−C )

∣∣ = 0.21+0.49
−0.21,

(7.7)
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we see that, in order to assign to rπ/ρC an effect caused by r̃π/ρEW = 1, one would have to overshoot
its default value by about three times the upper error estimate. As this rough estimation has
demonstrated, it is unlikely that an order of magnitude enhancement in the branching ratios
Bs → φπ, φρ originates in hadronic uncertainties of the colour-suppressed tree amplitude. Let
us compare this situation with B → Kπ: The considered scenario with r̃π/ρEW = 1 corresponds
to r̃EW = rEW for the B → Kπ parameters in Eqs. (6.9) and (6.13) and the relevance of the
colour-suppressed tree is then determined by

∣∣∣∣
Re(rC)

Re(rEW)

∣∣∣∣ = 0.54+0.32
−0.40,

∣∣∣∣
Im(rC)

Im(rEW)

∣∣∣∣ = 0.33+2.47
−0.33 (7.8)

where the ratio of the real parts is relevant for the observables RB,K,π
c,n and SKπ whereas the

ratio of the imaginary parts is relevant for ∆ACP. For the observables RB,K,π
c,n and SKπ we find

moderate rC pollution similar to Br(Bs → φπ, φρ). For ∆ACP, however, the situation is not that
clear due to the large uncertainties of the imaginary parts.

We conclude this section quoting our QCDF results for the SM values of the Bs → φπ, φρ
observables. For the CP-averaged branching fractions we obtain

Br(B̄s → φπ0) = 1.6+1.1
−0.3 · 10−7, Br(B̄s → φρ0) = 4.4+2.7

−0.7 · 10−7. (7.9)

Due to the strong suppression of annihilation topologies, one ends up with the same results (up
to the stated accuracy) when using the approximate formula (7.2) for the amplitudes, with the
numbers for P π/ρ

EW and rπ/ρC given in Eqs. (7.4) and (7.5). Adding the errors of P π/ρ
EW and rπ/ρC in

quadrature gives also a reasonable result for the uncertainty of the branching ratios since corre-
lations between the EW penguin and the colour-suppressed tree amplitude drop out in the ratio
r
π/ρ
C . Because of smallness of the branching ratios which is due to the absence of QCD pen-

guin and colour-allowed tree contributions, these decays have not been observed yet. However,
they are in reach of LHCb or a potential SuperB factory, especially if they are enhanced by NP.
The branching ratio Br(B̄s → φρ0) is dominated by decays into longitudinally polarised vector
contributing

BrL(B̄s → φρ0) = 3.7+2.5
−0.7 · 10−7 . (7.10)

This corresponds to a longitudinal polarisation fraction of

fL = 0.84+0.08
−0.11 . (7.11)

One of the main sources of uncertainty in the QCDF predictions for the branching fractions is
the form factor ABs→φ

0 . It can in principle be eliminated by considering the ratios

Br(B̄s → φρ0)

Br(B̄s → φπ0)
= 2.83+0.35

−0.23,
BrL(B̄s → φρ0)

Br(B̄s → φπ0)
= 2.38+0.10

−0.08 . (7.12)

Finally, we have calculated the direct CP asymmetries obtaining

ACP(B̄s → φπ0) = 0.27+0.50
−0.62, ACP(B̄s → φρ0) = 0.19+0.53

−0.61 . (7.13)
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8. MODEL INDEPENDENT ANALYSIS

In the previous chapter we proposed to test the hypothesis of NP in the EW penguin sector,
as suggested by the discrepancy in the B → Kπ observable ∆ACP, by a measurement of the
decays Bs → φπ, φρ. In this chapter we support our proposal by a quantitative analysis pursuing
the following strategy: We parametrise NP in EW penguins in a model independent way by
adding corresponding terms to the Wilson coefficients C(′)

7 , ..., C
(′)
10 . By performing a χ2-fit we

determine then the NP parameters in such a way that they describe well the B → Kπ data, i.e.
in particular solve the ∆ACP discrepancy. Further hadronic decays like B → Kρ,K∗π,K∗ρ are
used to impose additional constraints at the 2 σ level. With respect to the resulting fit we study
then the decays Bs → φπ, φρ and quantify a potential enhancement of their branching fractions.
Note that such an exhaustive analysis, correlating different hadronic decay modes which are
sensitive to isospin violation, is only possible if hadronic matrix elements are calculated from
first principles like in the framework of QCDF. A method based on flavour symmetries, as it has
been used in most studies of B → Kπ decays so far, could not achieve this. In particular, the
decays Bs → φπ, φρ which are our main interest are not related to any other decay via SU(3)
flavour and so their branching fractions could not be predicted in this way.

This chapter is organised as follows: In Section 8.1 we introduce our parametrisation of the Wil-
son coefficients and discuss the size of the NP parameters which is needed in order to solve the
∆ACP discrepancy. Furthermore, from our QCDF results we derive simple approximate formulae
for Br(Bs → φπ) and Br(Bs → φρ) which permit the calculation of these quantities without im-
plementing the whole apparatus of QCDF. In Section 8.2 we briefly explain the Rfit method [82]
before applying it to the B → Kπ observables and discussing the results. The consequences on
the decays Bs → φπ, φρ are eventually investigated in Section 8.3.

8.1. Modified EW penguin coefficients

In the SM the Wilson coefficients C7, ..., C10 obey at the electroweak scale the hierarchy C9 ≫
C7 ≫ C8, C10. This is because C9 receives 1/ sin2 θW -enhanced contributions from Z-penguin
and box diagrams in contrast to C7 while C8,10 are generated for the first time at the two-loop
level due to their colour structure. For our model independent analysis we include arbitrary NP
contributions into the LO coefficients C(0)

7 and C
(0)
9 as well as into their mirror counterparts.
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Normalising the new coefficients to the SM value of C(0)
9 , we have

C
(0)
9 = C

(0), SM
9 (1 + η9) , C

(0)′
9 = C

(0), SM
9 η′9 ,

C
(0)
7 = C

(0), SM
7 + C

(0), SM
9 η7 , C

(0)′
7 = C

(0), SM
9 η′7 . (8.1)

at the weak scale with η(′)
7,9 = q

(′)
7,9 e

iϕ
(′)
7,9 providing a new weak phase ϕ(′)

7,9. The coefficient C(0), SM
9

contains m2
t/M

2
W - and 1/ sin2 θW - enhanced parts of CSM

9 as explained in Section 2.1.2. In that
section we described also the scheme which we use for the renormalisation group evolution.
Applying it to the NP coefficients leads to the low-scale values displayed in table 8.1.

In our analyses we will study several different scenarios. First, we consider the cases where only
one of the coefficients η7, η9, η′7, η′9 is different from zero. This means we assume the dominance
of an individual NP operator as it has also been done for example in Ref. [81]. Second, we
consider the possibility of having η7 = η9 or η′7 = η′9. Such a structure would for example arise
from NP contributions to photon penguin diagrams. Finally, we study left-right symmetric new
contributions corresponding to the three cases η7 = η′7, η9 = η′9 and η7 = η′7 = η9 = η′9. Each of
these scenarios can be described by means of two real parameters, the absolute value q and phase
ϕ of the NP contributions. This reduced number of free parameters allows us to perform a fit to
B → Kπ data and to draw meaningful conclusion on the Bs → φπ, φρ decays. The study of this
large set of well-motivated simplified scenarios is assumed to represent all relevant features of
the general framework with unrelated η7, η9, η′7, η′9.

Our main motivation for adding NP to the coefficients C(′)
7 , ..., C

(′)
10 was the claim that the ∆ACP

discrepancy can be solved in this way, namely by generating the terms r̃EW, r̃C
EW, r̃A

EW introduced
in (6.13). Setting

−δ ≡ ϕ7 = ϕ9 = ϕ′
7 = ϕ′

p, (8.2)

as it is fulfilled for all the scenarios which we consider, we obtain

r̃EW = (q7 − q′7)
[
(−0.12)+0.04

−0.05 + (−0.02)+0.07
−0.02 i

]
+

(q9 − q′9)
[
0.12+0.05

−0.04 + 0.02+0.02
−0.07 i

]

r̃C
EW = (q7 − q′7)

[
0.10+0.03

−0.02 + 0.01+0.01
−0.06 i

]
+

(q9 − q′9)
[
0.04+0.02

−0.03 + (−0.005)+0.016
−0.026 i

]

r̃A
EW = (q7 − q′7)

[
0.03+0.04

−0.07 + (−0.06)+0.12
−0.01 i

]
+

(q9 − q′9)
[
0.007+0.003

−0.010 + (−0.006)+0.012
−0.003 i

]
. (8.3)

Let us briefly discuss the main characteristics of these coefficients:

• First of all, note that left-right symmetric models obviously do not contribute to B → Kπ
at all. This general feature ofPP decays follows from Eq. (2.14). Therefore such a scenario
cannot solve the ∆ACP discrepancy.

• The q(′)
7 and q(′)

9 contributions to r̃EW tend to cancel each other. Hence in the scenarios with
η7 = η9 or η′7 = η′9 the coefficient r̃EW is negligible.
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CNP
i (mb)/αe CNP ′

i (mb)/αe

C7 −0.966 η7 + 0.009 η9 −0.966 η′7 + 0.009 η′9

C8 −0.387 η7 + 0.002 η9 −0.387 η′7 + 0.002 η′9

C9 0.010 η7 − 1.167 η9 0.010 η′7 − 1.167 η′9

C10 −0.001 η7 + 0.268 η9 −0.001 η′7 + 0.268 η′9

Table 8.1: NLO Electroweak penguin short-distance coefficients at the scale mb. Modifications to other
short-distance coefficients are negligible.

• Whereas the contribution from q
(′)
9 to Re(r̃C

EW) shows the typical colour-suppression com-
pared to the one to Re(r̃EW), this pattern is not obeyed by the q(′)

7 terms. This is due to a
conspirative interplay of the large mixing of C7 into C8 (compare Tab. 8.1), constructive
summation of theC7/3 andC8 contributions to a8 in Eq. (2.11) and the chiral enhancement
factor rπ,Kχ ≈ 1.5 in Eq. (2.12). None of these three effects is present in the q9 case.

• The annihilation coefficient r̃A
EW develops for q(′)

7 6= 0 a large imaginary part. In scenarios
with non-vanishing η(′)

7 this term gives the dominant contribution to ∆ACP.

From Eq. (6.20) we see that the ∆ACP discrepancy can be solved either through r̃EW or through
r̃A

EW. Except for the left-right symmetric models, all the scenarios mentioned above can achieve
such a solution. In Fig. 8.1 this is illustrated for the cases with a single η7 or η9 and for the
η7 = η9 scenario. Graphs for the respective mirror scenarios are obtained by a 180◦ rotation.
The yellow region contains those points of the (Re(ηi), Im(ηi)) - plane for which the theory error
band overlaps with the experimental 1 σ region, whereas the blue region represents those points
for which also the experimental mean value lies within the theory error interval. The red circle
illustrates the minimal q - value needed to reduce the ∆ACP tension below the 1 σ level. For the
three scenarios in Fig. 8.1 we read off q7 & 0.3, q9 & 0.8 and q7 = q9 & 0.4. The fact that in the
η7 = η9 case only a small NP contribution is needed, in spite of the absence of r̃EW, demonstrates
the importance of the annihilation term r̃A

EW. Finally, we like to stress that the solution of the
∆ACP discrepancy via a minimal q - value requires the adjustment of the phase ϕ to a certain
value. Realistic scenarios avoiding such a fine-tuning have therefore at least slightly larger q -
values, typically q ∼ 1.

Our main goal is to study the impact of such a NP scenario on the decays Bs → φπ, φρ. The
NP contributions to C(′)

7 , ..., C
(′)
10 generate the r̃π/ρEW - term introduced in Eq. (7.6). Assuming again

universality (8.2) for the weak phases, we obtain

r̃πEW = −0.9 (q7 + q′7 − q9 − q′9)

r̃ρ,0EW = 0.9 (q7 − q′7 + q9 − q′9)

r̃ρ,−EW = −0.6 (q7 + q9)

r̃ρ,+EW = 0.6 (q′7 + q′9) × P ρ,−
EW /P ρ,+

EW , (8.4)
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where we have neglected q7,9 contributions to r̃ρ,+EW and q′7,9 contributions to r̃ρ,−EW according to their
Λ2

QCD/m
2
b suppression. The SM EW penguin amplitude P ρ,+

EW drops out from the total expression

(7.6) of the amplitude, P ρ,−
EW is given in Eq. (7.5). The parameters r̃π/ρEW develop only very small

imaginary parts and uncertainties not indicated in (8.4). This is because they are ratios of equal
topologies such that uncertainties and strong phases approximately cancel. We have stated the
expression (8.4) for two reasons: First, in order to make obvious the main consequences of q(′)

7,9 on
the B → φπ, φρ decays. We see that for qi = O(1) indeed new contributions with the magnitude
of the leading SM EW penguin are generated. While left-right symmetric NP was invisible in
B → Kπ, it could be detected in Bs → φπ and in principle also in Bs → φρ due to the different
interference patterns of r̃ρ,−EW and r̃ρ,+EW with the corresponding SM contributions. Furthermore,
left- and righthanded NP could be distinguished by a polarisation measurement ofBs → φρ. This
general feature of V V decays has been pointed out by Kagan [4]. Note that the question of left-
vs. right-handed NP can not be answered from B → Kπ alone since, as we have seen, the two
scenarios differ only by a rotation in the NP parameter space. The second benefit of expression
(8.4) is that it allows the calculation of theBs → φπ, φρ branching ratios to a very good accuracy.
Therefore it permits the study of these decays without the extensive implementation of QCDF.
To calculate the branching ratios one simply evaluates Eq. (7.6) inserting (7.4), (7.5) and (8.4).
Different phases ϕ(′)

7,9 can be accounted for by individuating the single terms in (8.4). Adding the

uncertainties of P π/ρ
EW and rπ/ρC in quadrature leads moreover to a reasonable error estimate.

8.2. Fit to B → Kπ data

In this section we fit the NP parameters q(′)
7,9, ϕ(′)

7,9 in our various scenarios to the B → Kπ data.
We start by giving a brief review of the Rfit method [82] which we use.

8.2.1. The Rfit method

In order to find out which values of the free parameters qi of a model are most likely to be
realised in nature one proceeds as follows: One calculates a set of observables xth

k (q1, q2, ...) for
fixed values of the qi. Assuming that the xk obtained in this way are the true values of these
observables, the probability for obtaining a certain set of results from the measurements is then
determined by statistics. A scenario in which the actually measured values xexp

k occur with a
larger probability is then believed to be realised more likely than one which predicts a lower
probability. The “best” values for q1, q2, ... are therefore those which maximise the probability as
a function of the qi, the so-called likelihood function L(q1, q2, ...), or equivalently minimise the
χ2 function

χ2
exp =

∑

k

(xk − xexp
k )2

(σexp
k )2

, (8.5)

with
xk = xth

k (q1, q2, ...). (8.6)
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Figure 8.1: NP contribution needed to solve the ∆ACP discrepancy in the three scenarios (from left to
right) with single η7, single η9 and equal η7 = η9 contribution. Yellow region: Theory error band and
experimental 1σ region overlap. Blue region: Theory error band and experimental mean value overlap.
Red circle: Minimal magnitude of the NP contribution needed to reduce the ∆ACP discrepancy below the
1σ level.

Here σexp
i represents the experimental 1 σ uncertainty.

The χ2 formula (8.5) follows from the assumption of a Gaussian distribution for the results of a
measurement. The non-trivial task of the analysis is the implementation of the theoretical error
into (8.5). If one would know the probability distribution P

(
xk|xth

k (q1, q2, ...)
)

for the theory
predictions one could include it into a total χ2 function which then would have to be minimised
by the true set of values (q1, q2, ... ; x1, x2, ...). Note that the true value of the observable xk is not
given anymore by an exact theory value as in (8.6) but must be determined from the fit as well. In
practice, however, one hardly knows the distribution of the theory errors since they are not caused
by statistics. The best one can usually do is to estimate a range of values

[
xth
k − σth

k,−, x
th
k + σth

k,+

]

within which the true value is expected to lie. The Rfit scheme in which the true value xk is
assumed to lie certainly within the error interval but no preference is given to any of the allowed
values corresponds to a frequentist approach and can formally be implemented by the theoretical
χ2 function [82]

χ2
th =

∑

k





0, if (xth
k (q1, q2, ...) − σth

k,−) ≤ xk ≤ (xth
k (q1, q2, ...) + σth

k,+)

∞, otherwise
. (8.7)

The total χ2 = χ2
exp + χ2

th is then to be minimised by finding appropriate (q1, q2, ...; x1, x2, ...).
After performing the minimisation with respect to the xk one is left with a χ2 function for the qi
which reads

χ2 =
∑

k





[(
xth
k (q1, q2, ...) − σth

k,−

)
− xexp

k

]2

(σexp
k )2

, if xexp
k <

(
xth
k (q1, q2, ...) − σth

k,−

)
,

[(
xth
k (q1, q2, ...) + σth

k,+

)
− xexp

k

]2

(σexp
k )2

, if xexp
k >

(
xth
k (q1, q2, ...) + σth

k,+

)
,

0, otherwise

. (8.8)
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Figure 8.2: Fit to B → Kπ data for the single η9 model (left) and the model with η7 = η9 (right). For
further explanations see text.

This amounts to choosing xk from the theory interval
[
xth
k − σth

k,−, x
th
k + σth

k,+

]
in such a way that

it is closest to the experimental xth
k and yields therefore the most conservative χ2 values.

Using the χ2 function (8.8) it is possible to define confidence levels by means of the function [82]

CL(q1, q2, ...) =
1√

2Ndof Γ(Ndof/2)

∫ ∞

∆χ2(q1,q2,...)

e−t/2tNdof/2−1 dt ,

with ∆χ2(q1, q2, ...) = χ2(q1, q2, ...) − χ2
min . (8.9)

Here Ndof is the number of free model parameters qi, χ2
min is the minimum of the χ2 function

and Γ denotes the Gamma function. Setting CL = 1 − 68.27/100, CL = 1 − 95.45/100 and
CL = 1 − 99.73/100 one individuates the 1 σ, 2 σ and 3 σ confidence levels, respectively.

8.2.2. Results

In our χ2 function we include ∆ACP, ∆A0
CP, the mixing-induced CP asymmetry SKπ and the one

of the pairs (RB
c , R

B
n ), (RK

c , R
K
n ) and (Rπ

c , R
π
n) which gives the best constraints for the scenario

under consideration. Since hadronic uncertainties partially cancel in ∆ACP, ∆A
(0)
CP and in the

ratios RB,K,π
c,n , we obtain better results in this way than from fitting directly to branching ratios

and CP asymmetries. Apart from the χ2 fit, we consider constraints at the 2 σ level from all the
B → Kπ observables, from the corresponding observables of the decays B̄ → Kρ, K⋆π, K⋆ρ
and from other hadronic B decays like B → φK, φK∗, φφ. Especially the constraints from
B̄ → Kρ and B̄ → K⋆π give some complementary information because they test different
chirality structures than B̄ → Kπ and are therefore sensitive to other linear combinations of the
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Figure 8.3: Fit to B → Kπ data for the single η′9 model (left) and the model with η′7 = η′9 (right). For
further explanations see text.

η
(′)
7,9. The resulting fits for the single η9 and for the η7 = η9 scenarios are shown in Fiq. 8.2. The

region excluded by the 2 σ constraints is hatched by the grey grid. The 1 σ, 2 σ and 3 σ regions
resulting from the B̄ → Kπ fit are marked by the respective labels and the best fit points are
branded red-coloured. In the single η9 case the best fit point is given by

q̂9 = 1.84, ϕ̂9 = −103◦, (8.10)

whereas in the η7 = η9 case a plateau of χ2 = 0 points arises due to the large theoretical errors.
It turns out that the B → Kπ observables are not very sensitive to the single η7 scenario and so
the fit does not work well here. Hence within the single η7 setting one can only rely on the 2 σ
constraints. The same is of course true for the left-right symmetric models which do not affect
B → Kπ at all.

The fits for the mirror scenarios are simply obtained through a rotation by 180◦. However, this
does not hold for the constraints since the B → Kρ, K∗π decays are unaffected by a η7,9 → η′7,9
replacement. It turns out that the constraints are stronger in the single η′9 and in the η′7 = η′9
scenarios than in their unprimed counterparts and that the best fit regions are cut away in these
cases. The corresponding plots are shown in Fig. 8.3. We further remark that in all the considered
scenarios including the single η(′)

7 and the left-right symmetric ones, NP effects are limited to
qi < 5 by the 2 σ constraints.

In our sample models we introduced NP exclusively in the EW penguin operators. In realistic
models, however, a new contribution in the EW penguin sector comes usually in combination
with NP of comparable size in the QCD penguins since the new contribution in general matches
onto a linear combination of the QCD and EW penguin operators. By using mainly isospin vi-
olating observables for the fit and as constraints, we reduced the sensitivity to additional effects
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Scenario B̄s → φπ B̄s → φρ B̄s → φLρL

SM 1.7 (1.0) 1.6 (1.0) 1.7 (1.0)

η7 46.7 (28.6) 23.1 (14.1) 25.0 (14.1)

η9 15.9 (8.5) 14.7 (8.4) 16.6 (9.0)

η̂9 4.5 (2.1) 4.4 (2.4) 4.7 (2.2)

η7 = η9 1.7 (1.0) 21.1 (12.6) 23.2 (12.9)

η′7 59.9 (37.2) 54.4 (34.6) 62.1 (38.6)

η′9 8.4 (5.3) 3.0 (1.6) 3.2 (1.5)

η′7 = η′9 1.7 (1.0) 8.0 (5.2) 9.0 (5.7)

η7 = η′7 142.1 (87.1) 1.6 (1.0) 1.7 (1.0)

η9 = η′9 53.7 (33.4) 1.6 (1.0) 1.7 (1.0)

η7 = η′7 = η9 = η′9 1.7 (1.0) 1.6 (1.0) 1.7 (1.0)

Table 8.2: Maximum enhancement BrSM+NP/BrSM in the various scenarios for φπ, φρ and longitudinally
polarised φLρL final states. The branching ratio BrSM+NP is evaluated at the upper end of the theory error
band, the result for the mean value is given in brackets.

from Q3, ..., Q6. Yet in the ϕ(′)
i ≈ 90◦, 270◦ region, the terms linear in r̃(C)

EW in the RB,K,π
c,n tend

to vanish. The quadratic terms on the other hand contain also interference terms of the new EW
penguin contribution with a potential new QCD penguin contribution. Moreover, the quantities
∆ACP and ∆A0

CP which are primarily sensitive to isospin violation in the ϕ(′)
i ≈ 90◦, 270◦ sec-

tor are not much constraining (except for excluding η(′)
i ≈ 0). Therefore this region is mainly

constrained by quadratic contributions to RB,K,π
c,n and by the mixing induced CP asymmetries

SKπ, SφK which are sensitive to QCD penguins with a new weak phase as well. Our results for
ϕ

(′)
i ≈ 90◦, 270◦ are thus strictly valid only in the pure scenario with NP exclusively in the coef-

ficients C(′)
7 , ..., C

(′)
10 and can be transferred to a more general case only as a order-of-magnitude

estimation.

8.3. Consequences for B → φπ, φρ

With the B → Kπ fits at hand we are now in a position to study a potential enhancement of
Br(B̄s → φπ, φρ). To this end we consider all points in parameter space which lie within the 1 σ
region of the B → Kπ fit and fulfill the additional 2 σ constraints. Our results are displayed in
Tab. 8.2. We present the maximum enhancement factor BrSM+NP/BrSM of the branching fractions
in the various scenarios for φπ, φρ and longitudinally polarised φLρL final states. The value for
BrSM is given by the respective mean value in Eqs. (7.9), (7.10) whereas BrSM+NP is evaluated at



8.3 Consequences for B → φπ, φρ 93

-4 -2 0 2 4
-4

-2

0

2

4

5
10

20

Im
(η

9
)

Re(η9)

-4 -2 0 2 4

-4

-2

0

2

4

5

10
20

Im
(η

7
)

Re(η7)

Figure 8.4: Enhancement BrSM+NP/BrSM for B̄s → φρ in the single η9 scenario (left) and for B̄s → φπ
in the single η7 scenario (right). For further explanations see text.

the upper end of the error band, i.e. it includes a theory error in favour of an enhancement. Results
which are obtained using the mean value instead are given in brackets. Concerning the left-right
symmetric scenarios one should have in mind, that like the SM they violate ∆ACP at the > 2 σ
level since they have no impact on B → Kπ decays. The corresponding enhancement factors
shown in Tab. 8.2 are obtained by ignoring ∆ACP and considering only all the other constraints.
The η̂9 scenario in Tab. 8.2 corresponds to the best fit point (8.10) obtained for the single η9

set-up.

In order to be distinguishable from the SM, a particular scenario must at least provide a value for
BrSM+NP/BrSM which exceeds a potential enhancement factor faked by hadronic uncertainties in
the SM prediction and stated in the first line of Tab. 8.2. This is possible in most of the scenarios
since typically an enhancement of more than an order of magnitude is allowed. Exceptions are
B̄s → φπ for η(′)

7 = η
(′)
9 and B̄s → φ(L)ρ(L) for left-right symmetric models and have their

origin in the pattern of Eq. (8.4). Furthermore, effects in the single η′9 and the η′7 = η′9 scenarios
are limited by the small allowed region resulting from the B → Kπ fit (compare Fig. 8.3).
Largest effects occur as expected in the scenarios which are least constrained by B → Kπ,
i.e. the single η(′)

7 and the left-right symmetric models. Especially in these cases a B̄s → φπ
measurement would complement B → Kπ data and, while the left-right symmetric models lack
the motivation via the ∆ACP discrepancy, the η′7 setting resolves it with ease (see Fig. 8.1).

We have seen that NP in the EW penguin coefficients allows for an enhancement of Br(B̄s →
φπ, φρ) of more than an order of magnitude. According to the simple topological structure of
these decays, the observation of such an effect would be a clear and unambiguous signal for such
a scenario. It is interesting to raise also the reversed question, i.e. whether the absence of such an
effect would rule out a NP solution of the ∆ACP discrepancy, at least for a specific scenario. This
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is, however, not compulsory. In nearly all the considered settings there are points within the 1 σ
region of the B → Kπ fit which do not generate an enhancement of the Br(B̄s → φπ, φρ). The
only exception is the single q′7 case: Here an enhancement factor of at least 2.6 would occur in
B̄s → φπ. This time we have exploited the theoretical error in disfavour of an enhancement (for
the mean value a factor of 3.3 occurs).

For illustrative purposes we present in Fig. 8.4 a plots of BrSM+NP/BrSM for B̄s → φρ) with the
η9 set-up and for B̄s → φπ in the η7 scenario. The region excluded by the 2 σ constraints is once
again branded by the grey grid, the 1 σ region of the B → Kπ fit resides inside the thick black
curve (in the η7 case to the left of the curve). The parameter points for which the enhancement
factor lies within the theory error band of the SM prediction is displayed by the red ring.
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9. SURVEY OF VIABLE NP MODELS

In the previous chapter we have studied B → Kπ and Bs → φπ, φρ in a model-independent
way by introducing generic NP contributions to the Wilson coefficients C(′)

7 , ..., C
(′)
10 . We have

seen that, depending on the specific scenario, NP coefficients with the magnitude of the SM co-
efficient C9 can solve the ∆ACP discrepancy in B → Kπ and may lead to an order of magnitude
enhancement of the branching fractions ofBs → φπ, φρ. Given this situation, it remains to check
whether realistic NP models can provide such contributions to the EW penguin coefficients. Fur-
thermore, effects in the non-leptonic decays B → Kπ and Bs → φπ, φρ which are generated in
a specific model are accompanied by and related to effects in other processes like B → Xsℓ

+ℓ−

and Bs-B̄s-mixing. These processes usually give tight constraints on the new flavour structures
and it has to be investigated if the effects inB → Kπ andBs → φπ, φρ survive these constraints.

We start this chapter by listing the processes which set the most stringent constraints. Then we
will study in detail the generic situation of a model with a modified flavour-changing Z-coupling
as well as a model with an additional U(1) gauge symmetry.

9.1. Constraints from B̄ → Xsℓ
+ℓ−, B̄ → K∗ℓ+ℓ− and Bs-B̄s mixing

The semileptonic decay B̄ → Xsℓ
+ℓ− can be accounted for by enlarging the effective Hamilto-

nian (2.1) by adding the operators

Q9V =
1

2
(s̄αγ

µPLbα) (ℓ̄γµℓ) and Q10A =
1

2
(s̄αγ

µPLbα) (ℓ̄γµγ5ℓ) (9.1)

and their mirror copies Q′
9V and Q′

10A. The SM expressions for the short-distance coefficients
C9V and C10A can be found in Refs. [83,84]. For the renormalisation group evolution we proceed
in analogy to the case of the electromagnetic penguin operators, treating those parts of C9V and
C10A which are enhanced by xtW = m2

t/M
2
W and/or 1/ sin2 θW as leading order. This results in

the following initial conditions at the scale µ = O(MW ):

C
(0)
9V =

α

2π

(
Y0(xtW )

sin2 θW
− xtW

2

)
,

C
(1)
9V =

α

2π

(
−4Z0(xtW ) +

xtW
2

+
4

9

)
+

α

2π

αs
4π

(
Y1(xtW )

sin2 θW
− 4xtW

(
4

3
− π2

6

))
,

C
(0)
10A = − α

2π

Y0(xtW )

sin2 θW
, C

(1)
10V = − α

2π

αs
4π

Y1(xtW )

sin2 θW
. (9.2)
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The functions Y0,1 and Z0 can be found e.g. in Ref. [85]. Following Ref. [84] and extending the
formulae quoted there to include the effects of the mirror operators, we calculate the ratio

Rℓ+ℓ−(q2) ≡
d
dq2

Γ(b→ s ℓ+ℓ−)

Γ(b→ c ℓν̄)
, (9.3)

where q2 = (pℓ+ + pℓ−)2 is the invariant massof the lepton pair. We then consider the integrated
ratio

Rℓ+ℓ−|[1,6] ≡
∫ 6GeV2

1GeV2

Rℓ+ℓ−(q2) dq2 (9.4)

as an additional 2 σ constraint with the experimental result given by [86]

Rℓ+ℓ−|[1,6] = (1.51 ± 0.48) · 10−5. (9.5)

Apart from the semileptonic inclusive decays B̄ → Xsℓ
+ℓ−, the exclusive mode B̄ → K∗ℓ+ℓ−

has been proven to be a useful process to constrain new physics, thanks to the possibility of
considering various angular observables [87, 88]. Here we focus only on the forward-backward
asymmetryAFB, which is sufficient to give a constraint complementary to that ofRℓ+ℓ−|[1,6] [87]:
We require the sign of AFB(q2) integrated over q2 > 14 GeV2 to be negative.

Finally, we consider constraints coming from Bs-B̄s mixing, which is described by the effective
weak Hamiltonian

H(2)
eff =

G2
FM

2
W

4π2
(λ

(s)
t )2

∑

i

CiQi , (9.6)

with the operators

QVLL = (s̄αγ
µPLbα) (s̄βγµPLbβ),

QSLL
1 = (s̄αPLbα) (s̄βPLbβ), QSLL

2 = (s̄ασ
µνPLbα) (s̄βσµνPLbβ),

QLR
1 = (s̄αγ

µPLbα) (s̄βγµPLbβ), QLR
2 = (s̄αPLbα) (s̄βPRbβ). (9.7)

In the SM only CVLL 6= 0, while in extensions of the SM all operators can receive contributions.
The matrix element relevant for Bs-B̄s mixing,

MBs

12 =
1

2mBs

〈B0
s |H

(2)
eff |B̄0

s 〉, (9.8)

is evaluated using lattice results from Ref. [89]. Besides the Bs-B̄s mass difference [90]

∆Ms = 2|MBs

12 |
exp.
= (17.77 ± 0.12)ps−1, (9.9)

we use the quantity

∆s ≡
MBs

12

MBs ,SM
12

= |∆s|eiφs, (9.10)

as additional constraint. This observable has been analysed in Ref. [91] in different generic NP
scenarios and the results suggest the possibility of having a NP contribution with a large new
weak phase. A fit of ∆s and the analogous quantity ∆d to the data shows a 3.4 σ discrepancy for
the SM value ∆s = 1. In our study of the Z ′ models we take those points of the NP parameter
space as excluded which give a ∆s outside the 2 σ region drawn in Fig. 9 of Ref. [91].
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9.2. Flavour-changing Z-boson coupling

A simple way to get a large new contribution to the EW penguin sector is to consider a flavour-
changing Zs̄b coupling. Such a coupling would induce new contributions to C

(′)
7 , ..., C

(′)
10 via

tree-level Z-exchange. A FCNC Z coupling arises for example at tree level in models with an
additional generation of exotic quarks transforming in a non-canonical way under SU(2)L [92].
Being non-universal in flavour space, the Z-coupling to quarks is then no longer protected by
the GIM mechanism and it is rendered flavour non-diagonal by the CKM rotation. In other NP
models a FCNC Z coupling is typically generated through a loop of virtual particles. The fact
that the Zs̄b coupling is dimensionless allows in principle for a non-decoupling behaviour as it
is exhibited by the SM coupling for mt → ∞. However, the FCNC Z coupling clearly has to
involve a SU(2)L × U(1)Y breaking term and gauge invariance implies a v2/M2

NP decoupling
with MNP representing the scale of the respective NP model [44]. The impact of a model with a
modified Z coupling on B → Kπ has been studied in Refs. [30, 43] using flavour symmetries.
We will perform here an updated analysis using QCDF and analysing the consequences forBs →
φπ, φρ.

9.2.1. Effective Hamiltonian

We parametrise the Zs̄b coupling in the Lagrangian as

L ⊃ − g

2 cos θW
s̄γµ

[
κsbL PL + κsbR PR

]
b Zµ . (9.11)

This parametrisation follows Ref. [43]. Since the flavour violating couplings are expected to
be small, the flavour-diagonal couplings are to leading order the same as in the SM. Matching
tree-level diagrams with Z exchange onto the ∆B = ∆S = 1 effective Hamiltonian adds then
new contributions δCi to the SM Wilson coefficients Ci and generates also coefficients C ′

i of the
mirror operators. The resulting contributions read at the weak scale

δC3 =
1

6

κsbL

λ
(s)
t

, C ′
5 =

1

6

κsbR

λ
(s)
t

,

δC7 =
2

3

κsbL

λ
(s)
t

sin2 θW , C ′
7 = − 2

3

κsbR

λ
(s)
t

cos2 θW ,

δC9 = − 2

3

κsbL

λ
(s)
t

cos2 θW , C ′
9 =

2

3

κsbR

λ
(s)
t

sin2 θW . (9.12)

A contribution of the same order as the loop-induced Standard Model one arises for

|κsbL/R| ∼ |κSM| ≡ α

π sin2 θW
λ

(s)
t C0(xtW ) ∼ 0.00035 , (9.13)

where the loop functionC0(x) can be found e.g. in Ref. [85]. The corresponding values at the low
scale mb are obtained by means of the renormalisation group evolution described in Sect. 2.1.2.
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Figure 9.1: Fit to B → Kπ data for the single κsbL model (left) and the model with κsbL = κsbR (right). For
further explanations see text.

Within the same framework, one obtains new contributions to the short-distance coefficients of
the semileptonic operators in (9.1), namely

δC9V = − κsbL

λ
(s)
t

(
2 sin2 θW − 1

2

)
, C ′

9V = − κsbR

λ
(s)
t

(
2 sin2 θW − 1

2

)
,

δC10A = − κsbL

λ
(s)
t

(
1

2

)
, C ′

10A = − κsbR

λ
(s)
t

(
1

2

)
. (9.14)

Diagrams with Z-exchange contribute also to Bs-B̄s mixing via the Wilson coefficients

δCVLL
1 =

4π2

√
2GFM2

W

(
κsbL

λ
(s)
t

)2

, CVRR
1 =

4π2

√
2GFM2

W

(
κsbR

λ
(s)
t

)2

,

CLR
1 =

8π2

√
2GFM2

W

κsbL

λ
(s)
t

κsbR

λ
(s)
t

. (9.15)

Explaining the ∆s discrepancy encountered in Sect. 9.1 with the help of these new contribu-
tions would push the couplings κsbL,R to large values. Note, however, that in most realistic cases
the couplings κsbL,R are loop-induced with the consequence of Eq. (9.15) representing actually
two-loop effects. Usually such scenarios provide also one-loop contributions from box diagrams
which then are more likely to account for the ∆s discrepancy. Therefore we prefer not to include
∆s as a constraint into our analysis and regard a potential relaxation of the ∆s discrepancy only
as a bonus feature.
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Scenario B̄s → φπ B̄s → φρ B̄s → φLρL

SM 1.7 (1.0) 1.6 (1.0) 1.7 (1.0)

κsbL 2.6 (1.6) 1.8 (1.2) 1.9 (1.2)

κsbR 4.0 (2.3) 2.5 (1.5) 2.8 (1.6)

κsbL = κsbR 1.7 (1.0) 1.6 (1.0) 1.7 (1.0)

Table 9.1: Maximum enhancement BrSM+NP/BrSM in the various scenarios for φπ, φρ and longitudinally
polarised φLρL final states. The branching ratio BrSM+NP is evaluated at the upper end of the theory error
band, the result for the mean value is given in brackets.

9.2.2. Results

Similarly to the model-independent analysis, we consider the special cases of a single κsbL , a
single κsbR and κsbL = κsbR in our study of the modified Z coupling. Since cos2 θW ≫ sin2 θW ,
the κsbL scenario shares the most important features with the η9 set-up of the model-independent
study and the same holds for κsbR and η′7. The resulting fits for a single κsbL and for κsbL = κsbR ,
normalised to the SM value κSM, are shown in Fig. 9.1. The meanings of the coloured regions and
the grey grid are the same as in the plots presented in the previous chapter. The main difference
to the more general model-independent approach is that we face now additional constraints from
semileptonic decays andBs-B̄s mixing. The allowed region for the former is given by the interior
of the black curve, the allowed region for the latter by the grey areas outside the zone preferred by
the B → Kπ fit. We see that the ∆s anomaly of Bs-B̄s mixing cannot be resolved in a modified
Z scenario when fulfilling at the same time the semileptonic constraints. This has already been
noted in Ref. [93]. Here we recognise that also B → Kπ,Kρ,K∗π data is not compatible with
a solution of ∆s in this way. This statement holds also for the single κsbR case not shown in
Fig. 9.1. Here it is the 2 σ constraints from B → Kρ,K∗π which exclude the parameter values
required for explaining ∆s. In the previous section we remarked that it is plausible to assign the
explanation of ∆s to other effects not directly related to the modified Z coupling. Pursuing this
strategy, we are left with the semileptonic decays which are compatible with the 1 σ region of
the B → Kπ fit for all three cases but constrain the FCNC couplings κsbLR to very small values.

As a consequence we expect no significant effects inBs → φπ, φρ. This expectation is confirmed
by the maximum enhancement factors given in Tab. 9.1, which are determined in analogy to the
ones in Tab. 8.2. In the κsbL = κsbR case no enhancement occurs at all because of the pattern
in Eq. (8.4): Equal contributions to C7 and C ′

9 and to C9 and C ′
7 cancel pairwise. The largest

effect which one could gain in the other scenarios is a factor of ∼ 4 in the case of single κsbR .
Therefore an enhancement of Bs → φπ, φρ due to a new modified Z contribution becomes
indistinguishable in practise from the potential enhancement caused by a large non-factorisable
SM effect. This situation is illustrated in Fig. 9.2 where the black curve indicates the region
allowed from semileptonic decays and the dashed green curves surround the 1 σ regions of the
B → Kπ fit. We see that the SM error band, represented by the red ring, nearly fills out the



100 9. Survey of viable NP models

-4 -2 0 2 4

-4

-2

0

2

4

2

5
10

Im
(κ

sb L
)/
|κ

SM
|

Re(κsb
L )/|κSM|

-4 -2 0 2 4

-4

-2

0

2

4

5

10 20

Im
(κ

sb R
)/
|κ

SM
|

Re(κsb
R )/|κSM|

Figure 9.2: Enhancement of BrSM+NP/BrSM for B̄s → φρ in the single κsbL scenario (left) and for
B̄s → φπ in the κsbR scenario (right). For further explanations see text.

complete allowed region.

Our results can be summarised as follows: The constraints from semileptonic decays still allow
for a solution of ∆ACP via a modified Z coupling. This possibility would be excluded if one
would find enhancement of Bs → φπ or Bs → φρ by an order of magnitude.

9.3. Models with an additional U(1) gauge symmetry

Additional U(1) gauge symmetries are not introduced in order to solve any particular problem
of the SM but they appear as remnant of many fundamental NP extensions like Grand Unified
Theories, various forms of dynamical symmetry breaking and little Higgs models. The associated
Z ′ gauge bosons are in many scenarios expected to have masses at the TeV scale. An extensive
review about the physics of extra Z ′ bosons can be found in Ref. [94]. Implications on flavour
physics have been discussed in Refs. [45, 95].

9.3.1. Effective Hamiltonian

For simplicity we neglect the effects of Z-Z ′ mixing and assume the absence of exotic fermions
which could mix with the Standard Model fermions through non-universal Z ′ couplings. We
write the general quark-antiquark-Z ′ boson coupling as [43, 95]

LZ′ ⊃ −gU(1)′√
2

∑

i,j

d̄iγ
µ
[
ζ ijL PL + ζ ijR PR

]
dj Z

′
µ (i, j = d, s, b) (9.16)
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and similarly for the up-type quarks. The couplings of interest are the flavour-changing ζsbL,R as
well as the flavour-conserving charges ζuL,R ≡ ζuuL,R and ζdL,R ≡ ζddL,R. Note that SU(2)L invariance
implies ζuL = ζdL ≡ ζqL whereas no restrictions hold in case of ζuR, ζdR. Following Ref. [43] we
introduce the parameter

ξ ≡
g2
U(1)′

g2

M2
W

M2
Z′

(9.17)

with gU(1)′ denoting the gauge coupling of the additional U(1)′ gauge group and MZ′ being the
mass of theZ ′-boson. We find then at the electroweak scale the following additional contributions
to the short-distance coefficients in Eq. (2.1):

δC3 = − ζsbL

λ
(s)
t

ζqL ξ , C ′
3 = − 1

3

ζsbR

λ
(s)
t

(
ζuR + 2ζdR

)
ξ ,

δC5 = − 1

3

ζsbL

λ
(s)
t

(
ζuR + 2ζdL

)
ξ , C ′

5 = − ζsbR

λ
(s)
t

ζqL ξ ,

δC7 = − 2

3

ζsbL

λ
(s)
t

(
ζuR − ζdR

)
ξ , C ′

7 = 0 ,

δC9 = 0 , C ′
9 = − 2

3

ζsbR

λ
(s)
t

(
ζuR − ζdR

)
ξ . (9.18)

Following the approach of Ref. [95] we assume the largest contributions to reside in the EW
penguin coefficients. This can be arranged by choosing ζqL = 0 and (ζuR + 2ζdR) = 0. We are left
then with only one non-zero charge combination (ζuR − ζdR) which can be set to (ζuR − ζdR) = 1
without loss of generality by a proper redefinition of the Abelian coupling gU(1)′ . The coupling of
the Z ′ boson to quarks is not related to its coupling to leptons. Therefore tight constraints from
semileptonic decays, as we encountered in the case of a modified Z coupling, can be avoided
here by simply switching off the Z ′ coupling to leptons. Such “leptophobic” Z ′ bosons can for
example appear in models with a E6 gauge symmetry (see e.g. Ref. [96]). Since leptophobic Z ′

bosons avoid detection via traditional Drell-Yan processes, their mass is much less constrained
allowing for larger values of the parameter ξ.

Apart from the non-leptonic processes we are interested in, the only constraints come fromBs-B̄s

mixing. The corresponding Wilson coefficients read

δCVLL
1 =

4π2
√

2

GFM2
W

(
ζsbL

λ
(s)
t

)2

ξ, CVRR
1 =

4π2
√

2

GFM2
W

(
ζsbR

λ
(s)
t

)2

ξ,

CLR
1 =

8π2
√

2

GFM2
W

(
ζsbL

λ
(s)
t

) (
ζsbR

λ
(s)
t

)
ξ . (9.19)

9.3.2. Results

We consider the three special cases of single ζsbL , single ζsbR and ζsbL = ζsbR . From Eq. (9.18)
we see immediately that the single ζsbL scenario is in direct correspondence to the single η7 case
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Figure 9.3: Fit to B → Kπ data for the single ζsbR (left) and the single ζsbL model (right). Constraints
from Bs-B̄s mixing are displayed for ξ = 1/2 (brown), ξ = 1/25 (orange) and ξ = 1/100 (black). For
further explanations see text.

discussed in our model-independent study in Chapter 8. The same holds for ζsbR and η′9. Therefore
the results of the B → Kπ fits presented in Figs. 8.2 and 8.3 can directly be translated into fits
for the quantities ζ̃sbL,R = ξ ζsbL,R. To this end the corresponding graphs must be rotated by 180◦

according to the minus signs in Eq. (9.18) and the normalisation of the axes has to be adjusted
properly. As a consequence the enhancement factors ofBs → φπ, φρ stated in Tab. 8.2 for η7 and
η′9 apply also to the single ζsbL and single ζsbR scenarios, respectively, as long as only constraints
from non-leptonic B decays are considered. For ζsbL = ζsbR , on the other hand, neither Bs → φπ
nor Bs → φρ develop an enhancement because of the cancellation of the η7 and η′9 effects in
(8.4).

As novel feature compared to the model-independent analysis we have additional constraints
from Bs-B̄s mixing. In the relevant Wilson coefficients (9.19) the parameters ζsbL,R and ξ enter
always in combinations

ξ ζsbi ζ
sb
j =

1

ξ
ζ̃sbi ζ̃sbj , i, j = L,R. (9.20)

Therefore the Bs-B̄s mixing constraint in the (Re(ζ̃sbi ), Im(ζ̃sbi )) - plane depends on the parame-
ter ξ determined by the coupling constant gU(1)′ and the Z ′ mass MZ′ . It gets stronger for smaller
ξ, i.e. for smaller gU(1)′ and larger Z ′ mass MZ′ . This behaviour, which might seem counter-
intuitive at first sight, has its origin in the dependence of the hadronic decays on the parameter
combinations ζ̃sbi = ξ ζsbi . If one chooses smaller ξ values, one needs larger values of the FCNC
couplings ζsbi in order to obtain the same effects in the hadronic decays. Since the Bs-B̄s mixing
coefficients (9.19) depend quadratically on the ζsbi , this procedure sharpens their constraints.
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Scenario B̄s → φπ B̄s → φρ B̄s → φLρL

SM 1.7 (1.0) 1.6 (1.0) 1.7 (1.0)

ζsbL 5.5 (3.5) 4.9 (3.2) 5.5 (3.5)

ζsbR 6.5 (4.1) 5.9 (3.8) 6.8 (4.3)

ζsbL = ζsbR 1.7 (1.0) 1.6 (1.0) 1.7 (1.0)

Table 9.2: Maximum enhancement BrSM+NP/BrSM in the various scenarios for ξ = 1/25. The branching
ratio BrSM+NP is evaluated at the upper end of the theory error band, the result for the mean value is given
in brackets.

In Fig. 9.3 we present our results of the B → Kπ fits for the single ζsbL and the single ζsbR
scenarios. The 2σ region for ∆s is shown for different values of ξ. We recognise that there is
very little overlap of the 1 σ region of the B → Kπ fit with the region preferred by ∆s in the
ζsbR case. The same holds for the ζsbL = ζsbR scenario, not shown in Fig. 9.3. This phenomenon
is easily understood: The observables ∆ACP and ∆s both call for NP with a large imaginary
part. The branching ratios of hadronic B decays depend at leading order linearly on the real
part of ζsbL,R and draw the ζsbL,R values therefore to the imaginary axis. The observable ∆s, on the
other hand, depends quadratically on ζsbL,R and favours values on the diagonal. For the ζsbL setting
this situation is relaxed due to the weak constraints from B → Kπ. From the diagrams we see
further that theBs-B̄s mixing constraint is very tight. It prohibits large effects inBs → φπ, φρ for
realistic values of the parameter ξ . 1/25. For ξ = 1/25, which would correspond for example
to gU(1)′ ∼ g and MZ′ ∼ 400 GeV, we present the maximum enhancement factors in Tab. 9.2.
These numbers are obtained abandoning the 1 σ region of the B → Kπ fit and requiring only
agreement with the 2 σ constraints. We find that enhancement of a factor ∼ 5 is possible in the
ζsbL and ζsbR scenarios whereas no effect can occur in the ζsbL = ζsbR case because of Eq. (8.4).
For ξ < 1/100 the constraints from Bs-B̄s mixing become so strong that practically no effect in
Bs → φπ, φρ would be detectable. Measurement of a significant enhancement would therefore
set a lower limit on ξ, equivalent to an upper limit on the Z ′ mass MZ′ .
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10. CONCLUSIONS

In this thesis we have studied the impact of different NP scenarios on rare B decays mediated by
a FCNC b → s transition. Our focus has been on non-leptonic decays, governed by the effective
Hamiltonian (2.1), and throughout the work we relied on QCD factorisation (QCDF) [3] for the
evaluation of hadronic matrix elements.

The first part of the thesis addressed a particular NP scenario, the MSSM for large values of
tan β. We considered a version of Minimal Flavour Violation (MFV) in which all elementary
couplings of neutral bosons to (s)quarks are flavour-diagonal and the flavour structures of W ,
charged-Higgs and chargino couplings are determined by the CKM matrix. It is well-known
that in this scenario perturbative calculations of Feynman amplitudes have to be supported by a
resummation of tanβ-enhanced higher order corrections. This subject is usually treated with the
help of an effective field theory which is found by integrating out the genuine supersymmetric
particles and is therefore valid only forMSUSY ≫ v,MA0,H0,H± . Using the diagrammatic method
developed in Ref. [14] and extending it to the case of flavour-changing interactions, we derived
resummation formulae which do not assume any hierarchy between MSUSY, the electroweak
scale v and the Higgs masses.

As a first result we found that the resummation formula for the Yukawa coupling ydi
of down-type

quarks depends on the renormalisation scheme chosen for the MSSM parameters. In particular,
the familiar expression of Eq. (4.24) is modified if the sbottom mixing angle θ̃b is used as input.
This result is useful in high-pT collider physics, since it permits the correct treatment of tanβ-
enhanced effects in production and decay of bottom squarks.

Our main achievement is, however, the resummation of tan β-enhanced loop corrections to
flavour-changing processes for arbitrary values of SUSY masses. We translated the results into
effective Feynman rules (collected in Section 4.5.2) which permit the inclusion of the resummed
corrections into calculations of Feynman amplitudes beyond the decoupling limit. Complex
phases of flavour-conserving parameters like the trilinear SUSY-breaking term At are consis-
tently included in our results. The effective Feynman rules can easily be implemented into com-
puter programs like FeynArts [28] and they can be applied to FCNC processes with virtual SUSY
particles as well as to collider processes with external SUSY particles.

We found that our results for the renormalisation of CKM elements and for the loop-induced
neutral-Higgs couplings to quarks are represented by the same functions in terms of the param-
eters ǫb and ǫFC as in the decoupling limit MSUSY ≫ v,MA0,H0,H± . However, the parameters ǫb
and ǫFC as an incarnation of self-energy diagrams now contain also decoupling parts. As novel
results we found tan β-enhanced loop-induced couplings of gluinos and neutralinos and deter-
mined the analogous corrections to chargino couplings. These results permit the calculation of
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tan β-enhanced corrections to processes involving a decoupling supersymmetric loop which can-
not be studied consistently with the effective-field-theory method.

We then analysed the impact of the new FCNC gluino couplings on rareB decays. To this end we
determined analytic expressions for all gluino contributions to the effective Hamiltonian (2.1),
including gluon-, photon- and Z-penguin as well as box diagrams (collected in Appendix A.4).
Most of these contributions turned out to be numerically small for two reasons: Firstly, for posi-
tive µ and tanβ ∼ 50 typical values of the FCNC gluino coupling are ∼ 0.1 ≪ 1. Secondly, the
gluino contributions suffer from GIM-like suppression effects. There is one exception: Chirally
enhanced contributions to the magnetic and chromomagnetic operators Q7γ and Q8g involve a
left-right flip in the squark line proportional to the corresponding quark mass und thus avoid
the GIM cancellation. Whereas the contribution from gluino-squark loops to C7γ is accidentally
small, the one to C8g can indeed contribute as much as the chargino-squark diagram. In order
to illustrate the phenomenological consequences of this gluino-squark contribution to C8g, we
briefly discussed its effect on the mixing-induced CP asymmetry in the decay B0 → φKS. In
this context we improved the leading order analyses performed in Refs. [74,75] by our full NLO
QCDF treatment.

In the second part of the thesis we have studied the possibility of probing isospin violation in
hadronic B decays. We started by examining the situation in B → Kπ decays in light of the
current data. Using QCDF for our analysis, the only observable which we found in disagreement

with its SM prediction is ∆ACP. Here, our QCDF result ∆ACP
SM
= 1.9+5.8

−4.8% deviates from the

measured value ∆ACP
exp.
= (14.8 ± 2.8)% by ∼ 2.5 σ. We demonstrated in a model-independent

analysis that this discrepancy can easily be resolved by an additional NP contribution to the EW
penguin operators Q(′)

7 , ..., Q
(′)
10 which is of the same order as the SM coefficient CSM

9 . An excep-
tion are left-right symmetric scenarios where the contributions to PP decays cancel. Furthermore
we pointed out that, in the case of NP in C(′)

7 the solution comes about via an annihilation con-
tribution in the QCDF framework, whereas the solution in the case of NP in C(′)

9 is, as expected,
due to a new contribution to the colour-allowed EW penguin amplitude. For various scenarios
we performed frequentist fits to B → Kπ data. We found the fit to work good for NP in C(′)

9

while NP in C(′)
7 is only poorly constrained from B → Kπ alone. Especially in this case, the PV

counterparts B → Kρ and B → K∗π, which are sensitive to a different chirality structure than
B → Kπ, give valuable additional information.

Motivated by the ∆ACP discrepancy, we suggested the decays Bs → φπ, φρ as golden channels
for the study of isospin violation. These decays are purely isospin-violating and dominated by
the EW penguin topology. In this work we performed the first analysis of the impact of NP in EW
penguins on these decays. From our full QCDF results we derived simple approximate expres-
sions (Eqs. (7.4)-(7.6), (8.4)) which reproduce the Bs → φπ, φρ amplitudes with high accuracy
for arbitrary scenarios with NP in C(′)

7 , ..., C
(′)
10 . By quoting these formulae we facilitate the study

of these decays without an extensive implementation of the QCDF framework. With respect to
our B → Kπ fits we investigated then for various scenarios the maximum enhancement of the
Bs → φπ, φρ branching ratios. The results displayed in Tab. 8.2 show that in many cases an
enhancement by an order of magnitude is possible. Particular exceptions are left-right symmetric
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models which have no impact on the V V decay Bs → φρ and scenarios with (approximately)
equal contributions to C(′)

7 and C(′)
9 which cancel in Bs → φπ.

Finally, we analysed some models in which the new contributions in the EW penguin sector are
generated via exchange of the SM Z-boson or of an additional Z ′-boson with flavour-changing
couplings. A flavour-changing Z-couling is induced by penguin diagrams in the SM and it can
for example receive additional contributions from loops involving new particles, like in super-
symmetry. We found that in such a scenario the semileptonic constraints still allow for NP to an
extent which is sufficient to resolve the ∆ACP discrepancy. On the other hand, they prevent the
Bs → φπ, φρ decays from developing an enhancement which beats the hadronic uncertainties of
the SM prediction. Therefore, a large effect measured in these decays would rule out the mod-
ified Z coupling. The semileptonic constraints can for example be avoided in a model with an
additional Z ′ boson whose couplings to leptons can be switched off. Such a “leptophobic” Z ′

can appear for example in models with a E6 gauge symmetry. Our analysis showed that in this
scenario constraints from hadronic B decays and Bs-B̄s mixing can be fulfilled simultaneously
only at the 2 σ level. The tight constraints from Bs-B̄s mixing limit a potential enhancement of
Bs → φπ, φρ to a factor ∼ 5 in the case of a large gU(1)′ coupling and a light Z ′ boson.

We stress again that the decays Bs → φπ, φρ are highly sensitive to isospin-violating NP. Their
measurement would complement the analysis of B → Kπ decays and could shed light on the
“∆ACP puzzle”. For this reason we like to encourage experimental efforts to measure these de-
cays at LHCb and at prospective Super-B factories.
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A. APPENDIX

A.1. Sparticle mixing

In this section our conventions for sparticle masses and mixing matrices are defined. We follow
closely the conventions of the SLHA [61] which we extend in Section A.1.1 to account for
complex phases in the squark mass matrices. In Section A.1.3 we derive explicit expressions for
certain combinations of elements of the chargino mixing matrices.

A.1.1. Squark mixing

In the naive MFV scenario the squark mass-matrices are block-diagonal in the Super-CKM basis
with one hermitian 2 × 2-block for each squark flavour q̃. Let us parametrise these blocks as

M2
q̃ =


m

2
q̃L

Xq̃

X∗
q̃ m2

q̃R


 . (A.1)

The real diagonal elements are given by

m2
q̃L

= m̃2
Q + m2

q + (T 3
q −Qq sin2 θW )M2

Z cos 2β,

m2
q̃R

= m̃2
q + m2

q + Qq sin2 θWM
2
Z cos 2β. (A.2)

with m̃2
Q and m̃2

q being the respective entries of the diagonal soft matrices (m̃2
Q)ij and (m̃2

u,d)
ij

introduced in Eq. (3.6). The expressions mq, T 3
q and Qq denote the mass, weak isospin and

charge of the corresponding partner-quark, MZ and θW are the Z-boson mass and the weak
mixing angle. The off-diagonal elements read

Xũ = yu (A∗
u vu − µ vd), Xd̃ = y

(0)∗
d (A∗

d vd − µ vu), (A.3)

for up- and down-type quarks, respectively. Here the entries of the diagonal matrices aiju,d defined

in Eq. (3.6) have been parametrised as aq = Aqyq. The Yukawa coupling y(0)
d contains tanβ-

enhanced counterterm contributions as discussed in Section 4.31.

Performing unitary rotations

R̃q =


 cos θ̃q sin θ̃qe

iφ̃q

− sin θ̃qe
−iφ̃q cos θ̃q


 (A.4)

1The corresponding corrections to m2
d in the diagonal elements of the squark mass-matrix are negligible since

m2
d ≪ m̃2

QL
, m̃2

dR
.
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on the quark fields we can diagonalise the mass matrices as follows:

R̃qM2
q̃ R̃

q† = diag(m2
q̃1, m

2
q̃2), (A.5)

m2
q̃1,2

=
1

2

(
m2
q̃L

+m2
q̃R

±
√

(m2
q̃L

−m2
q̃R

)2 + 4|Xq|2
)
. (A.6)

The mixing-angle θ̃q and the phase φ̃q can be expressed by means of the relation

eiφ̃q sin 2θ̃q =
2Xq̃

m2
q̃1
−m2

q̃2

. (A.7)

Note that for the determination of the masses from Eq. (A.6) and the mixing parameters from Eq.
(A.7) an iterative proceeding might be necessary depending on the renormalisation scheme (see
discussion in Section 4.3.3). To give separate expressions for θ̃q and φ̃q one has to specify the
allowed range for both parameters. Choosing θ̃q ∈ [0, π/4] and φ̃q ∈ [0, 2π) for example results
in

sin 2θ̃q =

∣∣∣∣
2Xq̃

m2
q̃1
−m2

q̃2

∣∣∣∣ , φ̃q = arg

(
2Xq̃

m2
q̃1
−m2

q̃2

)
. (A.8)

Constraining θ̃q to this interval amounts to defining q̃1 (q̃2) as the eigenstate which is predomi-
nantly left-handed (right-handed).

A.1.2. Chargino mixing

In our conventions the chargino mass-matrix is given by

Meχ± =


 M2

√
2MW sin β

√
2MW cosβ µ


 . (A.9)

We define the biunitary transformation which brings it into diagonal form as

Ũ∗Meχ± Ṽ † = diag(m
eχ±

1
, m

eχ±

2
). (A.10)

The matrices Ũ and Ṽ are chosen in such a way that m
eχ±

1,2
are real an positive. They can be

determined by diagonalising the matrices M †

eχ±Meχ± and Meχ±M †

eχ± , respectively. In Feynman
amplitudes for diagrams with chirality-flipping propagators only certain combinations of matrix-
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elements of Ũ and Ṽ appear. These combinations can be expressed as

Ũ11Ṽ11 =
m

eχ±

1
M2 −m

eχ±

2
µ∗ eiψ

m2
eχ±

1

−m2
eχ±

2

, Ũ11Ṽ12 =
√

2MW

m
eχ±

1
sin β +m

eχ±

2
cosβ eiψ

m2
eχ±

1

−m2
eχ±

2

,

Ũ12Ṽ12 =
m

eχ±

1
µ−m

eχ±

2
M∗

2 e
iψ

m2
eχ±

1

−m2
eχ±

2

, Ũ12Ṽ11 =
√

2MW

m
eχ±

1
cosβ +m

eχ±

2
sin β eiψ

m2
eχ±

1

−m2
eχ±

2

,

Ũ21Ṽ21 =
m

eχ±

1
µ∗ eiψ −m

eχ±

2
M2

m2
eχ±

1

−m2
eχ±

2

, Ũ21Ṽ22 = −
√

2MW

m
eχ±

1
cos β eiψ +m

eχ±

2
sin β

m2
eχ±

1

−m2
eχ±

2

,

Ũ22Ṽ22 =
m

eχ±

1
M∗

2 e
iψ −m

eχ±

2
µ

m2
eχ±

1

−m2
eχ±

2

, Ũ22Ṽ21 = −
√

2MW

m
eχ±

1
sin β eiψ +m

eχ±

2
cosβ

m2
eχ±

1

−m2
eχ±

2

(A.11)

with
eiψ = (M2µ−M2

W sin 2β)/(m
eχ±

1
m

eχ±

2
). (A.12)

For large tan β the cosβ-terms can be neglected and the above expressions reduce to

Ũ11Ṽ11 =
M2

m
eχ±

1

·
m2

eχ±

1

− |µ|2

m2
eχ±

1

−m2
eχ±

2

, Ũ11Ṽ12 =

√
2MWmeχ±

1
sin β

m2
eχ±

1

−m2
eχ±

2

,

Ũ12Ṽ12 =
µ

m
eχ±

1

·
m2

eχ1
− |M2|2

m2
eχ±

1

−m2
eχ±

2

, Ũ12Ṽ11 =
M2

m
eχ±

1

·
√

2MWµ sinβ

m2
eχ±

1

−m2
eχ±

2

,

Ũ21Ṽ21 =
M2

m
eχ±

2

·
|µ|2 −m2

eχ±

2

m2
eχ±

1

−m2
eχ±

2

, Ũ21Ṽ22 = −
√

2MWmeχ±

2
sin β

m2
eχ±

1

−m2
eχ±

2

,

Ũ22Ṽ22 =
µ

m
eχ±

2

·
|M2|2 −m2

eχ±

2

m2
eχ±

1

−m2
eχ±

2

, Ũ22Ṽ21 = − µ

m
eχ±

2

·
√

2MWM2 sin β

m2
eχ±

1

−m2
eχ±

2

. (A.13)

A.1.3. Neutralino mixing

In our conventions the neutralino mass-matrix is given by

Meχ0 =




M1 0 −MZ sin θW cos β MZ sin θW sin β

0 M2 MZ cos θW cosβ −MZ cos θW sin β

−MZ sin θW cos β MZ cos θW cosβ 0 −µ
MZ sin θW sin β −MZ cos θW sin β −µ 0



.

(A.14)
We define the unitary transformation which brings it into diagonal form as

Ñ∗Meχ0Ñ † = diag(meχ0
1
, meχ0

2
, meχ0

3
, meχ0

4
). (A.15)
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The matrix Ñ is chosen in such a way that meχ0
1..4

are real an positive.

A.2. Loop functions

The results for the quark self-energies with internal SUSY particles are given in terms of the
following functions:

B0(m1,m2) =
2

4 − d
− γE + log 4π + 1 − 1

m2
1 − m2

2

[
m2

1 log
m2

1

µ2
− m2

2 log
m2

2

µ2

]
,

C0(m1,m2,m3) =
m2

2

(m2
1 − m2

2)(m
2
3 − m2

2)
log

m2
1

m2
2

+
m2

3

(m2
1 − m2

3)(m
2
2 − m2

3)
log

m2
1

m2
3

,

D0(m1,m2,m3,m4) =
m2

2

(m2
2 − m2

1)(m
2
2 − m2

3)(m
2
2 − m2

4)
log

m2
1

m2
2

+

(2 ↔ 3) + (2 ↔ 4)

D2(m1,m2,m3,m4) =
m4

2

(m2
2 − m2

1)(m
2
2 − m2

3)(m
2
2 − m2

4)
log

m2
1

m2
2

+

(2 ↔ 3) + (2 ↔ 4). (A.16)

In our expressions for the Wilson coefficients, we use the following loop functions:

• Gluino-induced penguin contributions:

fF8g(x) = − x+ 1

2(x− 1)2
+

x log x

(x− 1)3
, fA8g(x) = − 1

2(x− 1)
+

x log x

2(x− 1)2
,

fF7γ(x),= −fF8g(x)/3 fA7γ(x) = 0

f̃F8g(x) =
x2 − 5x− 2

12(x− 1)3
+

x log x

2(x− 1)4
, f̃A8g(x) = fF8g(x)/4 ,

f̃F7γ(x),= −f̃F8g(x)/3 f̃A7γ(x) = 0

fFPg(x) =
2x2 − 7x+ 11

18(x− 1)3
− log x

3(x− 1)4
, fAPg(x) = − 1

2(x− 1)
+

(2x+ 1) log x

6(x− 1)2
,

fFPγ(x),= −fFPg(x)/3 fAPγ(x) = 0

fZ(x, y) =
1

x− y

[
2x2 log x

x− 1
− 2y2 log y

y − 1

]
. (A.17)
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• Chargino-induced penguin contributions:

g7γ(x) =
5 − 7x

12(x− 1)2
+
x(3x− 2) log x

6(x− 1)3
, g8g(x) =

x+ 1

4(x− 1)2
− x log x

2(x− 1)3
. (A.18)

• Box contributions:

F (x, y) = − x log x

(x− y)(x− 1)2
− y log y

(y − x)(y1)2
− 1

(x− 1)(y − 1)
,

G(x, y) =
x2 log x

(x− y)(x− 1)2)
+

y2 log y

(y − x)(y − 1)2
+

1

(x− 1)(y − 1)
. (A.19)

A.3. Feynman rules for large tan β

In this section we give explicit Feynman rules for the flavour-changing vertices generated by
replacement rule (iii) in Section 4.5.2. We suppress colour indices of (s)quarks, repeated indices
are not summed over.

dj

di

S0 − i√
2

[
xSd

(
δji y

(0)
dj

+
δZL

ji

2
y

(0)
dj

−
δZR

ji

2
y

(0)
di

)
PL

+(xSd )
∗

(
δji y

(0)∗
dj

+
δZR

ji

2
y

(0)∗
dj

−
δZL

ji

2
y

(0)∗
di

)
PR

]
(A.20)

with xSd = (cosα,− sinα, i sinβ,−i cosβ) for S0 = (H0, h0, A0, G0)

uj

di

S+

iξSL yuj
Vji PL + iξSR

(
y

(0)∗
di

V
(0)
ji +

δZR
ji

2
y

(0)∗
dj

Vjj

)
PR (A.21)

with ξSL = (cosβ, sin β) and ξSR = (sin β,− cosβ) for S+ = (H+, G+) (A.22)

ũs
j

di
χ̃c

m
iVji

(
yuj
R̃
uj

s2 Ṽ
∗
m2 − gR̃

uj

s1 Ṽ
∗
m1

)
PL

+ iR̃
uj

s1 Ũm2

(
y

(0)∗
di

V
(0)
ji +

δZR
ji

2
y

(0)∗
dj

Vjj

)
PR (A.23)
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d̃s
j

ui
χ̃m

iV
(0)∗
ij

[(
y

(0)
dj
R̃
dj

s2Ũ
∗
m2 − gR̃

dj

s1Ũ
∗
m1

)
PL + yui

R̃
dj

s1Ṽm2PR

]
(A.24)

d̃s
j

di
g̃a

−i
√

2gsT
a

[(
δji +

δZL
ji

2

)
R̃
dj

s1PL −
(
δji +

δZR
ji

2

)
R̃
dj

s2PR

]
(A.25)

d̃s
j

di
χ̃0

m
i

(
δji +

δZL
ji

2

)[√
2R̃

dj

s1

(
g

2
Ñ∗
m2 −

g′

6
Ñ∗
m1

)
− y

(0)
dj
R̃
dj

s2Ñ
∗
m3

]
PL

− i

(
δji +

δZR
ji

2

)[√
2

3
g′R̃

dj

s2Ñm1 + y
(0)∗
dj

R̃
dj

s1Ñm3

]
PR (A.26)

A.4. Gluino contributions to the ∆B = 1 = ∆S = 1 Hamiltonian

In this section we quote our results for the gluino contributions to the Wilson coefficients of the
∆B = ∆S = 1 Hamiltonian defined in Eqs. (2.1) and (2.2). We will use a notation which allows
us to apply the results to the case of naive MFV (as in chapter 5) as well as to the generic MSSM.
To this end we numerate the squarks as d̃α with α = 1, ..., 6 instead of d̃si with i = 1, 2, 3 and
s = 1, 2 as in the case of naive MFV. The 6 × 6 mixing matrix R̃d appearing in the generic
MSSM is defined in complete analogy to its 2 × 2 counterparts R̃d in Eq. (A.5).

The generic form of the quark-squark-gluino coupling in the down-sector is given by

di

g̃a

d̃α
−i

√
2gsT

A
[
GL
αiPL −GR

αiPR
]

(A.27)

where the 6 × 3 matrices GL
αi and GR

αi parametrise the flavour structure. In the generic MSSM
they are simply given by

GL
αi = R̃d

αi, GR
αi = R̃d

α,i+3 . (A.28)
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In the MSSM with naive MFV they read

GL
αi =





(
δαi +

δZL
αi

2

)
R̃dα

11 , α = 1, 2, 3
(
δα−3,i +

δZL
α−3,i

2

)
R̃
dα−3

21 , α = 4, 5, 6
,

GR
αi =





(
δαi +

δZR
αi

2

)
R̃dα

12 , α = 1, 2, 3
(
δα−3,i +

δZR
α−3,i

2

)
R̃
dα−3

22 , α = 4, 5, 6
. (A.29)

We decompose the Wilson coefficients into contributions CPg from gluon penguins, CPγ from
photon penguins, κsbL from Z penguins and bu,d1,...,4 from box diagrams:

C3 = −1

6

αs
4π

CPg +
1

6

κsbL

λ
(s)
t

+
1

3
(bu3 + 2bd3),

C4 =
1

2

αs
4π

C7Pg +
1

3
(bu4 + 2bd4),

C5 = −1

6

αs
4π

CPg +
1

3
(bu1 + 2bd1),

C6 =
1

2

αs
4π

CPg +
1

3
(bu2 + 2bd2),

C7 =
2

3

αe
4π

CPγ +
2

3
sin2 θW

κsbL

λ
(s)
t

+
2

3
(bu1 − bd1),

C8 =
2

3
(bu2 − bd2),

C9 =
2

3

αe
4π

CPγ − 2

3
cos2 θW

κsbL

λ
(s)
t

+
2

3
(bu3 − bd3),

C10 =
2

3
(bu4 − bd4). (A.30)

The parameter κsbL representing the Z penguin is defined in the same way as the modified Z
coupling introduced in Chapter 9. Parametrising the quark-squark-gluino vertex as in (A.27) we
obtain the following results from squark-gluino loops:

C g̃
7γ,8g =

√
2

4GFλ
(s)
t

g2
s

m2
g̃

6∑

α=1

[
mg̃

mb

GL∗
α2 G

R
α3

(
CF f

F
7γ,8g(xα) + CA f

A
7γ,8g(xα

)

+GL∗
α2 G

L
α3

(
CF f̃

F
7γ,8g(xα) + CA f̃

A
7γ,8g(xα)

)]
,

C g̃
P γ,Pg =

√
2

4GFλ
(s)
t

g2
s

m2
g̃

6∑

α=1

[
GL∗
α2 G

L
α3

(
CF f

F
Pγ,Pg(xα) + CA f

A
Pγ,Pg(xα)

)]
, (A.31)
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κL,g̃sb = −1

2

αs
4π
CF

6∑

α,β=1

3∑

i=1

GL∗
α2 G

R
αiG

R∗
βi G

L
β3 fZ(xα, xβ), (A.32)

Neglecting left-right mixing of the first two squark generations as well as successive 3 → 1 and
1 → 2 flavour transitions, we obtain for the gluino boxes (q = u, d):

bg̃1q =

√
2

4GFλ
(s)
t

α2
s

m2
g̃

6∑

α=1

GL∗
α2G

L
α3

[
1

18
F (xα, xq+3) − 5

18
G(xα, xq+3)

]

bg̃2q =

√
2

4GFλ
(s)
t

α2
s

m2
g̃

6∑

α=1

GL∗
α2G

L
α3

[
7

6
F (xα, xq+3) +

1

6
G(xα, xq+3)

]

bg̃3q =

√
2

4GFλ
(s)
t

α2
s

m2
g̃

6∑

α=1

GL∗
α2G

L
α3

[
− 5

9
F (xα, xq) +

1

36
G(xα, xq)

]

bg̃4q =

√
2

4GFλ
(s)
t

α2
s

m2
g̃

6∑

α=1

GL∗
α2G

L
α3

[
1

3
F (xα, xq) +

7

12
G(xα, xq)

]
. (A.33)

A.5. QCDF results for B → Kρ, K∗π, K∗ρ

In the Tab. A.1 we have collected our SM predictions for the decays B → Kρ,K∗π,K∗ρ. The
branching ratios and CP asymmetries are abbreviated as Brij , AijCP where the first index refers to
the charge of the K(∗) and the second index to the charge of the π (ρ). The observables RM

c,n and
∆A−,0

CP are defined in analogy to the corresponding quantities for B → Kπ in chapter 6.
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B → Kρ B → K∗π B → K∗ρ

Observable Theory Experiment Theory Experiment Theory Experiment

Br00 × 106 3.1+6.1
−1.9 4.7+0.7

−0.7 2.5+2.6
−2.8 2.4+0.7

−0.7 2.6+2.7
−1.8 3.4+1.0

−1.0

Br−+ × 106 4.4+9.8
−3.1 8.6+0.9

−1.1 7.7+6.0
−7.4 8.6+0.9

−1.0 5.8+4.5
−2.6 < 12

Br−0 × 106 1.8+3.7
−1.3 3.81+0.48

−0.46 6.1+3.8
−5.2 6.9+2.3

−2.3 4.5+2.7
−1.8 < 6.1

Br0− × 106 3.8+9.6
−3.1 8.0+1.5

−1.4 8.4+6.6
−8.6 9.9+0.8

−0.9 6.0+5.0
−2.9 9.2+1.5

−1.5

RB
c 0.95+0.53

−0.27 0.95+0.23
−0.19 1.45+2.33

−0.27 1.39+0.48
−0.48 1.46+0.51

−0.25 —

RB
n 0.71+0.21

−0.17 0.91+0.19
−0.17 1.52+6.73

−0.33 1.79+0.76
−0.46 1.10+0.93

−0.35 1.26+0.56
−0.35

RK(∗)

c 0.75+0.24
−0.22 0.82+0.16

−0.13 1.47+0.72
−0.17 1.49+0.54

−0.52 1.46+0.52
−0.35 —

RK(∗)

n 0.57+0.20
−0.23 0.79+0.20

−0.17 1.54+3.22
−0.27 1.92+0.81

−0.47 1.10+0.98
−0.43 1.26+0.56

−0.35

Rπ,ρ
c 0.80+0.20

−0.27 0.87+0.21
−0.17 1.01+0.17

−0.46 1.07+0.17
−0.14 1.00+0.16

−0.18 —

Rπ,ρ
n 0.54+0.28

−0.20 0.75+0.16
−0.13 2.23+15.61

−0.67 2.68+1.42
−1.08 1.61+2.24

−0.78 1.26+0.56
−0.35

R 1.20+0.34
−0.20 1.03+0.16

−0.14 1.06+0.40
−0.04 0.99+0.26

−0.26 1.18+0.16
−0.08 —

A00
CP −0.22+0.32

−0.21 0.01+0.20
−0.20 −0.00+0.50

−0.64 −0.15+0.12
−0.12 −0.22+0.32

−0.21 0.09+0.19
−0.19

A−+
CP 0.39+0.20

−0.91 0.15+0.06
−0.06 −0.14+0.85

−0.50 −0.18+0.08
−0.08 0.36+0.10

−0.41 —

A−0
CP 0.71+0.25

−1.65 0.37+0.11
−0.11 −0.07+0.66

−0.29 0.04+0.29
−0.29 0.41+0.14

−0.40 0.20+0.32
−0.29

A0−
CP 0.001+0.013

−0.022 −0.12+0.17
−0.17 0.007+0.041

−0.006 −0.038+0.042
−0.042 −0.002+0.004

−0.017 −0.01+0.16
−0.16

∆A−
CP 0.31+0.11

−0.74 0.22+0.13
−0.13 0.06+0.24

−0.22 0.22+0.30
−0.30 0.05+0.16

−0.17 —

∆A0
CP 0.07+0.12

−0.37 −0.13+0.26
−0.26 0.007+0.649

−0.500 0.11+0.13
−0.13 0.25+0.31

−0.44 0.10+0.25
−0.25

SCP 0.46+0.21
−0.17 0.54+0.18

−0.21 0.82+0.16
−0.22 — — —

Table A.1: Theoretical versus experimental results for the B → Kρ,K∗π,K∗ρ decays. The experimental
data is taken from [42].
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