
Building Geo-Scientific Applications on Top of GeoToolKit:
a Case Study of Data Integration1

Oleg Balovnev, Martin Breunig, Armin B. Cremers, Marcus Pant
Institute of Computer Science III, University of Bonn

1 This work is funded by the German Research Foundation (DFG)
within the collaborative research center SFB350 „Interactions between
and Modeling of Continental Geosystems“ at the University.of Bonn

Abstract.
 Today’s geo-information systems are historically

grown products which are hardly extensible to meet the
requirements imposed by 3D/4D-modeling. The next gen-
eration GISs should benefit from modern software engi-
neering technologies. A component-based design encour-
ages a fast „assembly“ of applications from high-level
software building blocks. Following this approach a com-
plex general-purpose geo-information system can be sub-
stituted by a family of specialized subsystems which due to
the common design basis are open for mutual data ex-
change. We introduce GeoToolKit - a component software
intended for the development of 3D/4D geo-scientific appli-
cations. We also present our experience in building differ-
ent types of geo-scientific applications on top of
GeoToolKit. We show that common data types inherited by
diverse applications from the GeoToolKit spatial class
hierarchy create an excellent basis for the database-level
integration of heterogeneous geo-scientific data.

Introduction

Today’s geo-information systems are complex
„historically grown“ software packages. Application pro-
gramming within such systems can be extremely compli-
cated. Internal data structures and functions are often com-
pletely hidden from the user. As a result they are hardly
extensible to meet the requirements imposed, for instance,
by 3D/4D-modeling. The next generation GISs should
benefit from modern software engineering technologies.
Among the most promising technologies is a component-
based software design. Software building blocks with cor-
related interfaces encourage a fast „assembly“ of special-
purpose applications for particular domains. A necessary
basis for the integration of such components can be pro-
vided by an object-oriented programming environment.
Application-specific components can be customized and
reused for the development of applications in related do-
mains. Following this approach a general purpose geo-
information system can be substituted by a family of spe-
cialized subsystems which due to the common design basis
are open for the inter-communication and mutual data ex-
change.

GeoToolKit

Within the collaborative research center SFB350 at the
University of Bonn we have developed a component soft-
ware called GeoToolKit [1] which is intended to facilitate
the design and implementation of 3D/4D geo-applications.
The idea was to provide for an application developer a
range of geo-oriented software building blocks involving
DBMS-based spatial data maintenance, special support for
efficient spatial retrieval, communication, visualization and
graphical interfaces which the user could assemble in a
ready-to-use application. Therefore GeoToolKit is not a
GIS-in-a-box package - it is rather a library of C++ classes
that allows the incorporation of spatial functionality within
an application under development. It is primarily oriented
on software engineers with the C++ experience involved in
the development of special-purpose geo-applications which
can be hardly modeled within standard GISs.

GeoToolKit evolved on the basis of the experience we
gained within the collaborative research center while devel-
oping diverse geo-scientific applications. GeoToolKit’s
architecture and functionality was initially inspired by re-
quirements of GeoStore[2] - an information system for the
database support of 3D geological modeling. At the same
time we tried to make a toolkit general enough to be used in
the development of a possibly wide range of applications.
However, it was obvious for us that a toolkit should be
more than just a set of empty interface specifications, i.e. it
should do something. GeoToolKit always provides at least
one complete implementation for all object types and func-
tions specified in the interface.

Persistent Spatial Data Management

GeoToolKit addresses foremost the efficient storage
and retrieval of 3D-spatial objects within a database. To
achieve this GeoToolKit is tightly coupled with the object-
oriented DBMS ObjectStore®. Fig.1 presents GeoToolKit’s
data model for persistent spatial objects in an OMT-like
notation [3].

An abstract SpatialObject class - the root of the spatial
object class hierarchy - specifies an interface, which is to be
inherited by all concrete spatial objects. A concrete class

provides a representation for the object as well as an im-
plementation of the geometric functions. Thus GeoToolKit
guarantees that any spatial object has at least the function-
ality of the most general class. Usually concrete classes
have additional functions which are peculiar to this geo-
metric entity.

inheritance;

1:1 relationship;

1:n relationship;
representational
data type

User-Defined
Spatial Objects

User-Defined
Access

Methods

Group PlaneLine

SurfaceCurve Solid

TetrahedronTriangleSegmentPoint

1D 2D 3D0D

R-Tree LSD-Tree

BoundingBox(BB)

AccessMethod(AM)

methods:
insert(SO)
remove(SO)
retrieve(BB):SET<SO>

Space(S)

methods:
insert(SO)
remove(SO)
retrieve(BB):S
add_index(AM)

Spatial-Object
Class Hierarchy

methods:
contains(BB):BOOL
intersection(BB):BB AccessMethod

Class Hierarchy

SpatialObject(SO)

methods:
contains(SO):BOOL
intersection(SO):SO
distance(SO):REAL
clone():SO

TriangNetPolyline TetraNet

Box

GeoToolKit Kernel

Fig. 1 GeoToolKit’s spatial object data model

Currently GeoToolKit offers classes for the represen-
tation of and manipulation with simple (point, segment,
triangle, tetrahedron) and complex (curve, surface, solid)
3D spatial objects. The GeoToolKit class hierarchy is com-
plete: any spatial object can be modeled either directly by
one of the built-in spatial classes or as a composition of
these classes within a group. A Group is a heterogeneous
collection of spatial objects, which are further treated as a
single object.

Any newly defined data type customized according to
the GeoToolKit conventions can be included in the class
library for the further re-utilization. A new type can inherit a
representation and a functionality from one of the embed-
ded classes redefining only functions which get, for exam-
ple, a more efficient implementation. Sometimes, however,
it may be beneficial to create a completely new type. Then,
instead of re-using GeoToolKit’s types, an application de-
veloper creates his own class as a specialization of the most
general Spatial-Object class. In this case he is responsible
to provide the complete geometric functionality, which is
defined in the abstract root class.

Geo-scientific applications are characterized by ex-
tremely complex non-regular shapes, which are usually
decomposed into a set of adjacent spatial primitives. Corre-
spondingly, GeoToolKit offers classes Polyline, Triangle-
Net and TetraNet as default representations for the abstract
classes Curve, Surface and Solid respectively.

GeoToolKit distinguishes between geometric predi-
cates returning true or false (equal, intersect, contains) and
geometric operations (intersection, division) returning a

new spatial object. Geometric operations are algebraically
closed: the result is a new spatial object which can be stored
in the database or used as an argument in other geometric
operations. As mentioned above, the initial choice of the
geometric functionality was inspired by the requirements of
interactive geological modeling, which, fortunately, turned
out to be general enough for a lot of other geo-scientific
applications. Currently GeoToolKit provides the following
operations: intersection of spatial objects, partitioning of
spaces and spatial objects by a plane, clipping a part of a
space by means of bounding box, equality and containment
checks.

Space is a special container class capable of efficient
retrieval of its elements according to their location in space
which is specified either exactly as a point or as a bounding
box. A space serves both as a container for spatial objects
and as a program interface to the spatial query manager
which is invoked by retrieve member functions. To provide
an efficient retrieval a space utilizes spatial indexes. If the
user is not satisfied with the embedded spatial indexes he
can customize his own indexing method as a specialization
of the abstract AccessMethod class.

Visualization

An adequate visualization is extremely important for
geo-scientific applications. Diverse external stand-alone
graphical viewers can be utilized for the visualization of
geo-scientific data. As input they use text files in a special
format (e.g. VRML). Therefore a really interactive commu-
nication with an external program (including database man-
agement systems) is hardly possible. Apart from this, a
typical viewer supports only a very limited set of operations
which can be applied to the visualized objects. Operations
are either very general (in the case of general-purpose view-
ers) or very special (in the case of specialized ones). In both
cases a viewer cannot provide the functionality the user
needs for his particular tasks.

To enable the integration of arbitrary operations and
really interactive communication with spatial databases we
included in GeoToolKit a special support for the develop-
ment of 2D/3D viewer tightly coupled with the database
component. GeoToolKit provides 2D-/3D-Viewer classes
which realize a basic functionality required for the success-
ful navigation in space (e.g. moving/rotating of the view-
point for 3D viewer), which enables a more convenient and
effective selection of spatial objects from the database. The
user can always customize his own viewer as a specializa-
tion of one of the embedded viewer classes by extending it
with special-purpose operations. Though the functionality
of 2D- and 3D-viewers significantly differs, there are some
basic design principles which are common for both viewers.

All visual objects including user-defined classes are
defined as specializations of the root VisualObject class. A
visual object contains a reference to the corresponding
database object and, if necessary, a representation of this
object in the internal format of a concrete visualization tool.
Usually it contains some auxiliary data members needed for
the advanced management (e.g. a layer specification in the
2D-viewer). The VisualObject class hierarchy completely
reproduces the persistent SpatialObject class hierarchy, thus
providing a distinct separation of the database and visuali-
zation components.

3D-Viewer

methods:
zoom(factor)
move(x,y,z)
rotate(x,y,z)
scale(axe,factor)
....

2D-Viewer
methods:
scaleX(factor)
scaleY(factor)
goto(x,y)
....

inheritance;
1:1 relationship;

1:n relationship;

Scene(S)
methods:
insert(VO):BOOL
remove(VO):BOOL
get(Name):VO
list():STRING
....

Viewer
VisualObject(VO)

methods:
getName():STRING
getType():STRING
...

gtvSurface
CGI3D
BRep

gtSurface

Spatial-Object
Class Hierarchy

Map-Viewer

Operation(O)
data members
name: STRING
func: FUNCTION

Spatial
Object

Visual-Object
Class Hierarchy

OpDictionary(O)
methods:
insert(O):BOOL
remove(O):BOOL
apply(Name):BOOL
list():STRING
....

Fig. 2. Visual Object class hierarchy.

The interface specified in the root class serves primar-
ily for the organization of a flexible interactive communica-
tion with the selected object. Among others it specifies a
function that returns a textual representation of the object
with different level of details. This representation is util-
ized, for example, in the data browser. In addition to the
visualization of database objects GeoToolKit offers service
objects such as 2D/3D bounding boxes or line segments
which can be interactively created and manipulated by the
user. These objects serve usually for the graphical specifi-
cation of spatial queries.

Each visual object class can maintain its own diction-
ary of operations which can be applied to its instances. The
default list of operations is pre-defined in the root class. It
includes general operations as, for example, hide an object
or load it in the data browser. All visual objects automati-
cally inherit the default list of operations. The developer
can easily customize the operation list using methods pro-
vided with the basic visual object class.

Visual objects are maintained in a special collection
class called Scene. We can bind to a scene a list of opera-
tions which will be applied to all its elements. A default list
includes such operations as retrieval of an object according
to its coordinate, name, type, priority, etc. Due to the set-
oriented nature of the functions associated to a scene it is a
usual way to integrate interactive queries within a graphical
viewer. Query formulation and presentation of results in
spatial databases is much more complicated than in
„textual“ databases. Though traditional methods of query

formulation are also reasonable in spatial databases a
graphical form is often much more transparent and compact,
i.e. convenient for the end-user than alphanumeric expres-
sions and masks. The same is true for the presentation of the
results with the only difference that it is rather required than
desired. At the same time spatial data contain a lot of the-
matic information which is alphanumeric by its nature.
Masks and query expressions are still the most convenient
form for querying such types of values. Since spatial and
alphanumeric data coexist in a single object very often a
query contains both spatial and thematic predicates. Such
mixed queries should combine both graphical and non-
graphical querying methods which complement one another.

By default a viewer provides a general purpose inter-
active query manager which is activated through the univer-
sal function binding mechanism described above. A user
can always substitute the default query manager with his
own one, which can realize more convenient application-
specific masks instead of error-prone string-based queries.
Query results can be either transferred from the temporal
buffer into the scene or used for the iterative step-by-step
refinement of the retrieval conditions, when every subse-
quent query is applied to the results of previous one. The
query manager activation callback can be attached to a
visual service object (e.g. bounding box), which is used for
the graphical specification of selection criteria. In this case
the query manager is automatically activated with the de-
fault selection predicate inherited from the bounding box,
thus realizing a mixed graphical-textual data retrieval strat-
egy.

Binding of a logical scene to the concrete window im-
plementation is performed in the Viewer class. A viewer
window consists of two areas: a drawing area and a control
panel, which serves for the button- and menu based interac-
tion with the viewer and the presentation of textual infor-
mation Fig. 3 presents a variety of viewers implemented in
GeoStore on the basis of GeoToolKit’s viewer classes.
There are a 2D-map viewer, a 3D-viewer, a specialized 2D-
viewer for geological sections. The user can navigate in the
drawing area with the mouse and can specify service objects
(e.g. a clipping box). A control panel consists of the menu
bar, an optional control buttons bar and a message area. The
menu bar contains several pull-down menus which provide
methods for the activation of pre-defined and customized
functions. Customized functions associated with the scene
are selected in a scrolled list (operation selection menu).
The mostly often used functions (e.g. load a database object
per name) can be included in menus explicitly.

The visualization components are integrated into the
OSF/Motif® environment. For the implementation of draw-
ing area we used OpenGL® and more high-level object-
oriented graphical libraries CGI® and Cgi3D [4] developed
at the University of Bonn.

Building Applications on top of GeoToolKit

We present below our experience gained during the
development of three different applications each illustrating
diverse aspects of GeoToolKit’s usage. The first and the
most advanced one, GeoStore, was initially developed
without GeoToolKit. Moreover, it was just our GeoStore
experience, that inspired the architecture and functionality
of GeoToolKit. That’s why before launching the develop-
ment of new applications, we decided to re-design GeoStore
on the GeoToolKit basis in order to evaluate explicitly the
benefits this approach would bring.

The second application deals with the maintenance of
spatio-temporal data. Since such objects were not supported
in GeoToolKit this application illustrates how GeoToolKit
can be extended in order to meet new challenges.

The last application illustrates how to integrate in
GeoStore data which are stored in GeoToolKit non-
compliant databases.

Reconstructing GeoStore

 Modeling geological structures and history always
starts with a careful geometric analysis of the present as-
sembly of geological surfaces, bodies and property distri-
butions, being the key to reveal the nature and interaction of
earlier processes. A process of computer-aided development
of a consistent geometric model is known in geology as
interactive 3D/4D modeling [5]. The model is further tested
by backward restoration and balancing. The final model is
used for the specification of boundary conditions for 3D
transport models, or for the production and consistent up-
dates of geological maps.

The starting point for the interactive geological
3D/4D-modeling is the digitalization of geological sections
gained from open-cast workings. A section is a geological
abstraction obtained as a result of an intersection of a verti-
cal plane with geological strata and faults. Geological strata
are sheet-like structures in earth with different mineral
composition, texture and/or grain size. A fracture in earth
materials along which the opposite sides have been dis-

Fig. 4 GeoStore’s Windows: 2D-map viewer; 2D-viewer for geological cross-section(CgiPanel); 3D-viewer; operation selection menu.

placed is known as a fault. A stratum is modeled as a list of
layered bodies which are usually specified by their bound-
ing surfaces. A fault is modeled as a simple surface. Within
a section strata and faults are represented as point sets
grouped in startigraphic and fault lines. Each point in a
section contains 3D-coordinates is complemented with
geologically-specific data such as stratigraphy. The second
step in the interactive 3D-modeling is the generation of
triangulated surfaces spread between sections. The final
step, which is a part of our current work, is the transition
from stratigraphical bounding surfaces to volumes.

The intention of GeoStore was to supply geo-scientists
with a tool which would provide a consistent storage and
efficient access for the data involved in all stages of the
interactive 3D-modeling using a modern database technol-
ogy. We began development of GeoStore’s development
with the elaboration of an object data model. There are
three basic classes: Section, Stratum and Fault with exten-
sions used as entry point to the database. A stratum in a
section (StratInSection) contains an ordered list of
stratigraphical lines. A stratigraphical line (StratLine) is a
specialization of a geometric line, extended for the efficient
computations with the additional topological information,
namely a list of stratigraphical lines above the given one
(Hanging) and the bounding faults (Left Fault and Right
Fault).

GeoToolKit
Segment

Fault

Surf ace

FaultLineStratInSection

2

CurvePlane

SectionStra tum

Hanging

StratLine

2
GeoPoint

Point

Left/Right

GeoToolKit

Fig. 4. GeoStore’s class hierarchy.

Currently GeoStore supports two basic types of spatial
queries:
• Queries on strata and faults within a section. The user,

for example, may select all strata with a certain hanging
stratum in a given depth interval located between speci-
fied faults. This type of queries uses primarily the topo-
logical relationships explicitly stored in the database.

• Queries on triangulated stratigraphic and fault sur-
faces. This type of queries deals primarily with geomet-
ric 3D-operations like horizontal or vertical slices
through stratigraphic and fault surfaces, an intersection

between surfaces or clipping of a part of a surface within
a bounding box.

While redesigning GeoStore on top of GeoToolKit the
main design principle we followed was to inherit from the
geometric kernel as much functionality as possible (Fig.4).
Following this approach, a user-defined class automatically
inherits the whole geometric functionality of its parent. For
every geological entity we found its geometric "pattern",
which served as its ancestor in the class hierarchy. For ex-
ample, a geological fault is represented now as a specializa-
tion of the geometric entity Solid, which was extended with
geology-specific features (e.g. stratigraphy) and relation-
ships (e.g. the Hanging stratum). By using the inheritance
we achieved that every geological entity could be treated as
a geometric object. GeoToolKit’s geometric kernel was able
to operate directly on the collections of geological objects
without intermediate transformations. In the case of the
incorporation we would have to create a temporary space
and to copy there the geometric ingredients of geological
objects - the task which may be too expensive in the data-
base context.

A solid may have two alternative representations: a
bounding surface approximated in turn by a triangle net-
work and a tetrahedron network. The first one is widely
used in computer graphics. However, we chose the alterna-
tive representation of solids because it has a serious advan-
tage for geo-scientific applications: any internal point not
only automatically inherits values characteristic to the
whole solid but also preserves them during series of diverse
geometric manipulations and transformations.

However, to find a geometric pattern for such a so-
phisticated object as a geological section was not easy.
There were conflicts between its representation as a rectan-
gle or as a combination of curves. Therefore we imple-
mented the Section class as a composite object containing
both components. Since Section inherits directly from the
abstract SpatialObject class, it provides both the represen-
tation and the implementation for all functions specified in
the SpatialObject class. Practically the re-implementation
resulted in delegating the functionality to elementary geo-
metric components.

GeoStore is characterized by its tight coupling between
database and visualization. Due to this the user is able to
switch at any time between the object browser and one of
the internal 2D/3D-graphical viewers, which are imple-
mented as specialization of the GeoToolKit embedded
viewers. In addition to a default interpretation the user can
assign to a service object his own interpretation. For exam-
ple, on the 2D-map a line segment can be used to specify a
bounded vertical plane, that proved to be a very convenient
method to specify vertical slices of underlying geological
substances known in geology as cross-sections.

Topological relationships (e.g. neighborhood) used to
provide very useful "guidelines" not available earlier in the
"pure" geometric world. In order to benefit from this addi-
tional information we simply re-implemented virtual func-
tions. An overridden function either substitutes the geomet-
ric function completely or performs a kind of pre-selection
for the geometric function calling it with the restricted sub-
set of spatial objects.

A qualitative analysis of the GeoToolKit-based recon-
struction with the development of the initial Oracle-based
version followed by the native ObjectStore version demon-
strated the superiority of the methodology proposed. First of
all, taking into account the complex structure of data with
multiple interrelationships between objects the object-
oriented data-model turned out to be more suitable for the
development of GeoStore because it avoided the
"impedance mismatch" between data as stored in the data-
base and the representation required by the geometric algo-
rithms for the efficient computing in main memory. In com-
parison with the native ObjectStore implementation
GeoStore classes contain now only geology-specific data
members and methods. A considerable part of geometric
relationships between geological objects was directly inher-
ited from the GeoToolKit classes.

Spatio-Temporal Data Browser

The ability to follow a topological evolution of geo-
logical entities is of special interest for geoscientists. Geo-
logical entities are characterized by relative large and ir-
regular time intervals between time states available. On the
contrary, for the smooth animation small regular time inter-
vals are required. Therefore missed time states need to be
interpolated. An interpolation between primitive simplex
objects (simplexes) is straightforward. An interpolation of
complexes can be reduced to the simplex-to-simplex inter-
polation only if complexes have the same cardinality. How-
ever, an object may change with time its size and/or shape
in such a way that it will need more simplexes for the ade-
quate representation than before. For example, in the result
of deformations a flat platform (for the representation of
which two triangles are quite enough) may transform into a
spherical surface which will need a much larger number of
triangles for the qualitative representation.

GeoDeform [6] is a geo-scientific application for cal-
culating geological deformations which have been devel-
oped at the Geological Institute of the Bonn University. For
the visualization of spatial objects changing in time
GeoDeform uses a model proposed in the graphical library
GRAPE [7]. According to this model each time state con-
tains two representations of the same object with different
number of simplexes (a discretization factor). The first
representation (post-discretization) corresponds to the ap-

proximation of the current state of the object with the dis-
cretization required by its current size and shape. The sec-
ond one (pre-discretization) corresponds to the approxima-
tion of the current state of the object but with the discreti-
zation used in the previous state. Due to this extension an
interpolation can be always performed between representa-
tions with the same discretization factor: the post-
discretization of the previous state and pre-discretization of
the current state of the object.

retrieve(T):SOStratLineFaultLine

StratInSection

Left

Right

Surface

Space

SpatialObject

Stratum

GeoStore
Pre

Sequence
getObject(T):SO

TimeStep

time: T
Post

GeoToolKit GeoDeform

Fault

Section

Curve

TimeStratum

Fig. 5. Spatio-temporal extensions for GeoToolKit.

To provide an appropriate maintenance of a large
number of spatio-temporal objects GeoDeform was ex-
tended with a database component developed on the
GeoToolKit basis. The task was to integrate into
GeoToolKit’s pure spatial classes a concept of time so that a
spatial functionality already available could be re-utilized
and a maximal level of compatibility with GRAPE was
provided. To represent different time states of the same
spatial object we introduced a class TimeStep (Fig. 5),
which contains a time tag and two references (pre and post)
to spatial objects. If the pre- and post-discretization factors
are equal, pre and post links simply refer to the same spa-
tial object. The model proposed is general enough since an
arbitrary spatial object can be chosen as a representation of
a time state. In the case of GeoDeform there are geological
strata and faults modeled through GeoStore’s Stratum and
Fault classes which in turn are defined as a specialization of
GeoToolKit’s Surface class.

A sequence of TimeStep instances characterizing dif-
ferent states of the same spatial object are gathered into a
spatio-temporal object (class TimeSequence). Being a spe-
cialization of the abstract class SpatialObject, a sequence
can be treated in the same way as any other spatial object,
i.e. it can be inserted into a space as well as participate in all
geometric operations. The spatial functionality is delegated
by default to the spatial object referred to in the latest
TimeStep instance.

A selection for the interpolation differs from a com-
mon selection with a specified key. If there is no object in
the time sequence that hits exactly the time stamp t speci-

fied in the retrieve function, instead of NULL it should
return a pair of neighbor time steps with time tags t1 and t2,
so that t1 < t < t2. The same is valid for the time interval. If
interval’s margins do not exactly hit the time step instances
in the sequence, the resulting set includes all time steps
fitting the interval completely extended with the nearest
ancestor of the time step with the lowest time tag and the
nearest successor of the time step with the highest time tag.
Any TimeSequence instance can be inserted in and spatially
retrieved from the GeoToolKit’s space as any other spatial
object. However, to perform a temporal retrieval we intro-
duced a special container class (Scene) which is capable of
both spatial and temporal retrieval.

Though the data model presented was developed for a
particular application it turned out to satisfy in main the
requirements of geo-scientists and seems to be general
enough to be used in various geo-applications. After the test
stage we are going to include it in GeoToolKit as a standard
component.

 Well Data Management

The main objective of the geo-information system
WellStore was to provide an integrated storage of all kinds
of data related to drilling wells. In the past raw-data tables
and diagrams were maintained in the form of flat ASCII
files or even as paper-sources. Multiple data-formats with
non-observable number of mutations made analysis and
computations on well-data a complex and error-prone task.
Since data were often dispersed between different sources
it was hardly possible to inquire the whole data set and to
get a comprehensive view on the problem. As a further
drawback existing software systems perform just one or two
steps in data processing taking no care of how the results
can be used by other applications.

The necessity to provide an efficient maintenance of
large amounts of well data and support a reliable shared
access to data from multiple applications from various geo-
scientific areas made us turn to standard database manage-
ment systems. A typical well data element consist of a man-
datory header incorporating diverse accounting data and the
well location. Optionally various measurements may be
coupled with the well: electrical logs, samples, stratigraphi-
cal interpretations. In general well data are characterized by
the lack of direct interrelations between separate well enti-
ties. However, data referred to within a single well may
have very sophisticated hierarchical structures which need
non-standard data types for their representation (Fig.6). In
addition to the traditional selection criteria (e.g. well id)
wells are often retrieved from the database according to
diverse spatial criteria involving neighborhood or occur-
rence in a certain region. Taking into account non-standard
data types which were hardly to represent within relational

DBMSs we decided to design WellStore on the object-
oriented basis on top the ObjectStore database management
system.

W ELL

Strata
Scale-units

METADATA

STRATA
INFORMATION

GEOPHYSICS
INFORMATION

STRATUM PETROGRAPHY

STRATA
DESCRIPTION

SAMPLES
INFORMATION

STRATA
INTERPRETATION

ELECTRO-LOG
ENTRY

POLLEN-
ELEMENT

Pollen
specification

ELECTRO-LOG
M EASUREMENT UNIT

geoW ell

gtSegment

Spatia lObject

GeoToolkit

GeoStore

Spatial Object
class hierarchy

Fig. 6. The WellStore object model

WellStore provides an interactive browsing of well
data stored in the database in order to select a well for fur-
ther processing by one of application-specific routines pre-
liminary linked to WellStore. If necessary, the results of the
processing are stored back in the database (e.g., in form of
various stratigraphical interpretations). Currently WellStore
provides the following selection criteria (and their arbitrary
combinations): id, location (region), depth, strata, existence
of stratatigraphical, geophysical or samples data. The user
can additionally specify whether he needs stratigraphical
interpretations or just the original stratigraphical data.

One of our goals was to provide a system with extensi-
ble functionality. New implementations of geo-scientific
algorithm can easily be linked to the system. As an example
of such module integration we implemented a palynologic
algorithm, developed at Bonn University, which provides a
statistical analysis of pollen data to allow a review of the
climatic situation in former ages. Results of the analysis are
indications of precipitation, average temperature and hu-
midity. Another example of such „algorithm plug-in“ ap-
proach is implemented in WellStore’s geophysics compo-
nent. It permits to perform „cross-plots“ (Fig. 7) of the e-log
data. This diagram illustrates relationships between a well’s
geophysical units of measurement stored in its e-log infor-
mation. The integration of an algorithm for the frequency of
existence of a concrete species of pollen data inside the
strata is currently in progress.

An interpretation editor embedded in WellStore per-
mits to define, to edit and to store user’s own strata inter-
pretations. The editor displays the lithological profile and
the original stratigraphical data of the current well. The
lithological profile can be manipulated by changing the

boundaries and descriptions of a single stratum. The integ-
rity-check control mechanism guarantees semantic correct-
ness of the changes. A well’s electro-log diagram can serve
as an additional guideline during the interpretation. Starting
from this diagram the geo-scientist can define and store
individual strata-boundaries and strata-descriptions based
on the original stratigraphical data.

Fig. 7 WellStore’s E-log diagram

Such facilities as 3D-spatial retrieval, spatial manipu-
lations, 3D-visualization, which are extremely important for
the interactive 3D-modeling generally do not play a signifi-
cant role in a typical well management system. To avoid
redundancy they were not taken in the account while de-
signing basic data structures. However, wells may addi-
tionally provide a lot of useful information which can be
used to check models generated in the process of interactive
3D-modeling. From the other side, a lot of well processing
applications would benefit considerably when the user
could additionally get an integrated 3D-model of the geo-
logical region surrounding the well. The idea to make well
data available for GeoStore and vice versa, seemed to be
very promising.

As mentioned above, GeoStore benefits considerably
from the fact that its data types are built on top of the
GeoToolKit class library. All application-specific data such
as stratigraphic surfaces and faults are retrieved, processed

and visualized primarily by GeoToolKit’s runtime environ-
ment (geometric kernel). The data types stored in a well
database are not compliant with GeoToolKit’s classes. To
make well database entities „known“ to the GeoToolKit
kernel we followed a wrapper approach.

First of all we found in the GeoToolKit class library a
geometric pattern for a well. In our case a simple 3D-line
segment turned out to be the most relevant geometric repre-
sentation (in general, a more complex geometric represen-
tation may be required, e.g. a 3D-curve). Consequently, we
specify a new class geoWell as a specialization
GeoToolKit’s class gtSegment. To avoid an unnecessary
redundancy (which may cause serious consistency problems
by updates) the geoWell class contains only a reference to
the corresponding well instance in the well database. Every
well contains all data needed for the correct reconstruction
of its geometric shape. The problem is that these data are
often stored in the way not suitable for the direct usage by
the gtSegment methods. Sometimes they are even dispersed
in different data segments. To capture this we had to rede-
fine only the data access methods. For the efficiency pur-
poses the mostly often accessed data members can be cop-
ied in the geoWell object.

We can insert instances of the newly defined geoWell
class in GeoStore’s space. Being included in space the wells
can be automatically retrieved, manipulated and visualized
by GeoToolKit’s geometric kernel as any other GeoStore
native class. Thus we automatically benefit from the func-
tionality already implemented in GeoToolKit. For example,
we automatically can get a projection of wells on the verti-
cal plane thus contributing in the construction of consistent
geological cross-sections.

When a well database is attached to GeoStore, a tem-
poral snapshot of the current state of the well database is
captured. At the end of the GeoStore session this temporal
sub-space and its elements are removed from the GeoStore
working space.

Conclusions

The partial re-design of GeoStore as well as the im-
plementation of several new applications on top of
GeoToolKit proved the advantages of the GeoToolKit-based
development. The GeoStore classes contain now only geol-
ogy-specific data members and methods. A significant part
of geometric relationships between geological objects can
be inherited from GeoToolKit classes. This results in con-
siderable reduction of code, that not only accelerates the
development process but also increases the reliability of
applications since the re-use of already approved methods
preserves the developer from inevitable errors during the
new development. The developers could focus on the appli-
cation semantics instead of such "creative" tasks as optimal

assembling of spatial objects from multiple tables or the
implementation of routine geometric algorithms. Since
application specific classes no longer contain geometry-
related components, the classes become significantly shorter
and, consequently, more understandable for external users.
From the other side, our experience demonstrates, that the
GeoToolKit core can be easily extended to satisfy special
requirements. The GeoToolKit functionality (spatial re-
trieval, indexing, etc.) is available in a full volume for ex-
tended objects as well.

Developing all applications on the common
GeoToolKit basis we make a significant contribution in the
non-redundant and consistent maintenance of shared data.
Data designed and stored within a particular application
become available for other GeoToolKit-compliant applica-
tions as well. Moreover, already existing geodata stores can
be connected to GeoToolKit-compliant data „circuits“.

Apart from this, the object-modeling technique turned
out to be an appropriate environment for the communication
between geo- and computer scientists. Geologists not-
experienced in software design quickly adopted this tech-
nique and successfully applied it, utilizing the pre-defined
set of GeoToolKit entities as building blocks. The data
model designed in such way is then practically one-to-one
mapped on the GeoToolKit class library.

Acknowledgments

This work was done in the close cooperation with the
Geological Institute at the University of Bonn. We thank
Prof. A. Siehl, R.Alms, T.Jentzsch, M.Klett, T.Utescher
who provided the geological backgrounds for the work.
Special thanks to Norbert Klein, Dirk Moebius, Wolfgang
Mueller and Michael Werner who made a significant con-
tribution in the implementation of software.

References

[1] O. Balovnev, M. Breunig, A.B. Cremers. From GeoStore
to GeoToolKit: The second step. In: Proceedings of the
5th International Symposium on Spatial Databases, LNCS,
Vol. 1262, Springer, 1997, pp. 223-237.

 [2] Th. Bode, M. Breunig, A.B. Cremers. First Experiences
with GeoStore, an Information System for Geologically
Defined Geometries. In Proceedings IGIS’94, LNCS,
Vol. 884, Springer, 1994, pp. 35-44.

[3] J. Rumbaugh et al. Object-Oriented Modeling and Design.
Prentice Hall, New Jersey, 500p.

[4] D. Fellner. Extensible Image Synthesis. In. P. Wisskirchen
(Ed). Object-Oriented and Mixed Programming Para-
digms, Springer, 1996, 7-21.

[5] R. Alms, K. Klesper, A. Siehl. Three-Dimensional Mod-
eling of Geological Features with Examples from the Ce-
nozoic Lower Rhine Basin. In: Foester, A, Merriam, D
(Eds.) Geological Modelling and Mapping, 113ß133, Ple-
num Press, New York, 1996

[6] R. Alms, O. Balovnev, M. Breunig, A.B. Cremers, T.
Jentzsch, A. Siehl. Space-Time Modelling of the Lower
Rhine Basin Supported by an Object-Oriented Database.
In: Physics and Chemistry of the Earth, XXII General As-
sembly of Geophysical Society, Vienna, Austria, 21-25
April 1997, In: Physics and Chemistry of the Earth (in
print).

 [7] K. Polthier, M. Rumpf, A concept for Time-Dependent
Processes. In: Goebel et al. (Eds) Visualization in Scien-
tific Computing. 137-153, Springer, Vienna.

