

 Karlsruhe Reports in Informatics 2011,1
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

The OpenProcessor Platform

Fostering Research on the Hardware/Software Boundary

Raphael Neider

 2011

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

The OpenProcessor Platform

Fostering Research on the Hardware/Software Boundary

Raphael Neider
Karlsruhe Institute of Technology (KIT)

Am Fasanengarten 5
76128 Karlsruhe, Germany

neider@kit.edu

ABSTRACT
Today’s computing systems typically execute task-specific
software on general purpose hardware. As a consequence,
the software layer must make do with whatever instructions,
information, and services the underlying hardware exposes.
This restriction can lead to implementing inefficient approx-
imations rather than the intended functionality of software.
For example, virtual memory subsystems in operating sys-
tems often approximate the desired least recently used (or
least frequently used) strategy for page replacement using
a two-handed clock algorithm just because the hardware
only provides a single referenced bit rather than the required
timestamp (or reference counter) per page.

Programmable hardware such as sufficiently large field pro-
grammable gate arrays (FPGAs) has been available for quite
some years and could be used to give software developers
the possibility to alter or augment the hardware to better
match their demands. However, there is no basic system
available that can serve as a starting point for FPGA-based
HW/SW research and that is both sufficiently powerful and
easy enough to work with.

In this report, we describe the OpenProcessor platform, a
free and open source computing platform, comprising both
synthesizable hardware and support software. The hardware
is described in Verilog, ready for deployment on an FPGA
development board, and designed with a focus on extensibil-
ity and simplicity rather than utmost performance in order
to attract many developers. The software stack comprises
a microkernel-based operating system offering a subset of
the POSIX API to execute on the FPGA plus a number of
management and monitoring services to run on an attached
PC.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: hardware/software
interfaces, instruction set design (RISC), modeling of com-
puter architecture; D.2.5 [Software Engineering]: Testing

Technical Report 2011,1
Department of Informatics
Karlsruhe Institute of Technology (KIT)

and Debugging—debugging aids, tracing ; D.4.9 [Operating
Systems]: Systems Programs and Utilities; D.4.6 [Operating
Systems]: Security and Protection—access controls

General Terms
Design, Experimentation, Measurement

1. INTRODUCTION
Today’s computers comprise both hardware and software.
Of these two, software – even system software such as the
Linux or BSD kernels – is relatively easily accessible for a
large group of people, as the required tools (a computer with
a text editor and a compiler) are inexpensive and the re-
quired software development skills are provided by schools,
high schools, and universities. As a consequence, many de-
velopers can and do continuously devise, implement, and
evaluate improvements to open source software and con-
tribute their findings to the community of developers and
users, causing rapid progress of software features.

Conversely, hardware development traditionally required ac-
cess to expensive development tools (both software and man-
ufacturing facilities) and was thus performed by only very
few developers – typically employees of hardware manufac-
turers such as Intel or AMD or hardware design companies
such as ARM. Apart from the lack of tools, hardware de-
velopment skills were also not as common as software devel-
opment skills are – probably due to the fact that they were
of little use for the common developer who did not have
the means to actually implement and evaluate her potential
hardware improvements. Thirdly, we are unaware of any
complete open source hardware platform that could serve as
a starting point for interested hobbyist developers.

As a consequence of this imbalance in development force
on the software and the hardware sides, software has suc-
cessfully exploited most if not all of the hardware features
available and is now somewhat limited in its progress by
the lack of hardware support. As an example, many op-
erating systems approximate the theoretically optimal least
recently used (or least frequently used) page replacement pol-
icy using a two-handed clock algorithm, which rather imple-
ments a recently not used policy. The need to rely on this
approximation stems from the hardware, which commonly
only provides a single “referenced” bit per page instead of
true timestamps (or access counters or access frequencies).
If hardware development could and was to be done by more
people, the chance of finding efficient and effective hardware

1

improvements to better support software would greatly in-
crease.

Over the past years we have seen an ever increasing avail-
ability of sufficiently large reconfigurable hardware devices
such as FPGAs, which allow developers to actually imple-
ment and evaluate non-trivial hardware systems – even at
home. At the same time, high schools and universities have
begun teaching hardware development skills, e.g., by offering
courses in the Verilog or VHDL hardware description lan-
guages and even courses in FPGA-based hardware design.
As a consequence, hardware development could now be car-
ried out (or at least be supported) by a larger community not
unlike the software development communities. As a matter
of fact, an active open source hardware community already
exists, as evidenced by websites such as OpenCores.org [2].

However, one of the major problem remains: Most commod-
ity hardware is still “closed” and kept a trade secret of its
developers and is thus not open for modification and exper-
imentation by such a community. Even if companies such
as Intel or AMD decided to publish their hardware designs,
these would probably be too complex for the casual devel-
oper to be able to contribute.

Thus, we see demand for a rudimentary, modular computing
system that is at the same time

1. powerful enough to be of use,

2. simple enough to attract a large number of developers,
and

3. small enough to fit into today’s reconfigurable hard-
ware devices to facilitate testing and evaluating mod-
ifications.

Our contribution is the OpenProcessor platform, a com-
pletely synthesizable computing environment including a pro-
cessor core and device controllers for implementation on an
FPGA development board. Additionally, the platform pro-
vides supporting software tools such as a compiler toolchain
based on GNU GCC [1], a bootloader, and a microkernel-
based operating system that offers a subset of the POSIX
API to run applications on. All components are completely
open source and simple enough to facilitate experimentation
by anyone interested, which has been successfully demon-
strated by a number of students who have developed and
implemented modifications on core features of the platform
each in three to six months.

The rest of this report is organized as follows: In Section 2,
we provide an overview of the hardware of the OpenPro-
cessor platform with a focus on the design decisions that
were made to keep even low level aspects such as virtual
memory support of the platform easily exchangeable and/or
customizable. Following the basic platform overview, we
will point out some of the major monitoring and debugging
means available on the OpenProcessor platform to facilitate
performance evaluation down to the level of single instruc-
tions in Section 3. In Section 4, we briefly describe the
microkernel-based operating system KaOS that we have co-
developed with the hardware to explore the requirements of

Figure 1: The OpenProcessor platform comprises a
processor and several device controllers, connected
via a hierarchical Wishbone bus.

modular operating systems and that can serve as a start-
ing point for experiments in the realm of system software
or hardware/software co-design. Related work with respect
to reconfigurable hardware and microkernel-based systems
is presented in Section 6, before we conclude in Section 7
with a summary and a glance at future work.

2. OPENPROCESSOR PLATFORM
The OpenProcessor platform provides a rudimentary yet
fully functional computing system, implemented in the hard-
ware description language Verilog and targeted at being in-
stantiated in a field programmable gate array (FPGA).

As a physical basis for the system we use an off-the-shelf
Memec 4VLX60MB development board, which features a
sufficiently large Virtex 4 LX60 FPGA at its core. The
FPGA is connected to 64 MiB of DDR SDRAM, 4 MiB of
Flash memory, an RS-232 connector, an RS-232–USB-bridge,
a 100 Mbit Ethernet connector, and a 2x16 character LCD
as well as to four LEDs, four pushbuttons and eight DIP
switches for user interaction. The board also includes a
clock generator, which is used to supply the OpenProces-
sor system in the FPGA fabric with a 50 MHz clock.

The OpenProcessor platform (see Figure 1) provides im-
plementations of controller modules for each of the above
mentioned devices except the clock generator, which is con-
figured via a separate set of DIP switches. The device con-
troller modules are connected to the OpenProcessor core us-
ing the Wishbone interconnect [13] in its bus configuration,
though most controllers are connected to the Wishbone bus
via an adapter module to facilitate a change of the inter-
connect in the future (e.g., to compare bus, ring, and point-
to-point interconnects while keeping the rest of the system
unchanged). The platform also provides support for virtual
memory via software-managed translation look-aside buffers
with address space tags (tagged TLBs) as well as write-back
caches for cacheable memory pages.

In the following sections, we will present the design of the
CPU core, followed by a discussion of the virtual memory
management scheme and the fundamental I/O devices in the
system.

2

2.1 OpenProcessor Core
At the heart of the OpenProcessor platform lies the Open-
Processor core, a pipelined, 32 bit MIPS-like RISC processor
that has been designed to be easily understandable without
sacrificing too much performance.

2.1.1 Register Set
The OpenProcessor core offers 64 32 bit registers, split into
32 general purpose registers (r0–r31) for use by the soft-
ware and 32 special purpose registers (r32–r63) to facili-
tate interrupt and exception handling as well as privilege
management (see Section 2.1.5), and to provide basic execu-
tion statistics (see Section 3.1). The default register usage
is shown in Table 1. In addition to these externally visible
registers, the CPU has an internal status register to hold
the traditional arithmetic status flags (parity, sign, zero and
carry), and an internal instruction pointer register, which
is incremented after each instruction unless it is explicitly
redefined by a taken branch instruction (see below).

Register Purpose / default usage
r0 always reads as 0
r1 reserved for kernel-mode entry
r2–r15 callee-saved registers
r2 stack pointer
r3 frame pointer (if desired)
r16–r31 caller-saved registers
r27 fourth argument
r28 third argument
r29 second argument
r30 first argument
r31 return address (set by call instructions)
r32–r47 privileged registers
r32‡ saved status register
r33 saved instruction pointer
r34‡ saved next instruction pointer
r35 faulting address (if memory related)
r36 fault reason
r37 fault information
r38 opcode of the faulting instruction
r44† kernel ASID
r45‡ user ASID
r46† kernel config
r47‡ user config
r48–r63 read-only registers (for benchmarking)
r48 hold register (upper 32 bit of r56–r63)
r56 number of operand fetch stall cycles
r57 number of TLB-related stall cycles
r58 number of D-cache related stall cycles
r59 number of I-cache related stall cycles
r60 number of taken branches
r61 total number of instructions executed
r62 total number of stalled cycles
r63 total number of clock cycles since start-up

Table 1: The OpenProcessor platform implements
32 general purpose and up to 32 special purpose
registers.
†: read when (re-)entering kernel mode,
‡: read when returning to user mode

2.1.2 Instruction Encoding
As shown in Table 2, instructions are encoded in 32 bit words
with only five similarly structured formats. The formats are
laid out to make instruction decoding easy: The instruction
class, which mostly identifies the structure of the opcode,
is always encoded in the three most significant bits of the
instruction, followed by a class-dependent number of bits to
identify the operation. Indices of the register operands (if
used) are always located in bits 16–21, 10–15, and 0–5, and
immediate operands (if used) are always located in bits 0–9
or 0–15, again depending on the class of the instruction.

Five of the eight instruction classes are used to implement
the basic integer-only instruction set, the remaining three
classes can be used to implement extensions such as the
event instruction (see Section 3.2).

Instructions in classes 0–2 provide the common set of integer
arithmetic operations (add, add with carry, sub, sub with
borrow, and a 32 bit × 32 bit → 32 bit mul, but no div due
to its complexity in hardware), bitwise and logic operations
(and, or, xor, not, plus bit set/reset/toggle instructions),
sign- and zero-extensions of 8 bit or 16 bit values, and arith-
metic as well as logical shift and rotate operations (sal, sar,
sll, slr, rol, ror). Class 0 instructions address two source
registers and a (third) destination register. Instructions in
class 1 address one source register and a destination register
and take their second operand from a 10 bit (signed) imme-
diate embedded in the opcode. Class 2 addresses only one
register, which serves as both the first operand and as the
result register, and carries a 16 bit immediate to be used as
the second operand.

All of these instructions also update the status register ac-
cording to the result of the operation.

Memory access is implemented in class 3: Aside from sign-
extending loadsN and zero-extending loaduN instructions
to read N ∈ {8, 16, 32}bit entities, this class also covers un-
conditional storeN as well as guarded storegN instruc-
tions to conditionally write N ∈ {8, 16, 32}bit from the N
least significant bits of the first register operand to mem-
ory. Inspired by MIPS’ linked load/store conditional in-
structions [15], the guarded stores only succeed if no other
thread (or CPU/DMA device) modified any memory loca-
tion between a previous load and the guarded store. A
sequence of load and guarded store instructions can thus
be used to implement atomic read-modify-write memory cy-
cles, which in turn can be used to implement synchroniza-
tion facilities such as (counting) semaphores. This simple,
address-agnostic scheme works well with only one CPU in
the system, as guarded stores will only fail if an interrupt
or exception has occurred between the load and the store.
When multiple CPUs access a shared memory, the address
of the load and the guarded store should probably match
and be watched for external modifications, so that guarded
stores fail less often.

Memory accesses must be naturally aligned; otherwise the
result is undefined. For simplicity, the CPU does not raise an
exception for unaligned memory accesses, but rather passes
on whatever result is delivered from the memory implemen-
tation. In practice, the compiler will make sure that all

3

Example Semantics Encoding scheme (MSb on the left)
add rZ, rA, rB rZ ← rA + rB ccc.oooooooo.aaaaaa.bbbbbb.----zzzzzz

addj rA, rB, J rA ← rB + J ccc.oooooooo.aaaaaa.bbbbbb.jjjjjjjjjj

addi rA, J rA ← rA + J ccc.oooooooo.aaaaaa.jjjjjj jjjjjjjjjj

loadu16 rA, (rB), J rA ← MEM[rB + J] AND 0xFFFF ccc.oooooooo.aaaaaa.bbbbbb.jjjjjjjjjj

jcci M, V, J skip J instructions iff status AND M == V ccc.ooo.mmmmm.vvvvv.jjjjjj jjjjjjjjjj

call M, V, (rB), J conditionally call the function at rB+4J ccc.ooo.mmmmm.vvvvv.bbbbbb.jjjjjjjjjj

Table 2: The OpenProcessor instructions are encoded using one of only five formats to simplify decoding.
c: class, o: operation, a/b/z: first/second/third register operand, j: (sign-extended) immediate,
m/v: mask and required value of status bits for conditional branches, –: don’t care

objects are suitably aligned unless they are under the influ-
ence of the packed attribute, in which case GCC will ignore
alignment requirements and access the objects byte-by-byte.
The latter case results in fairly costly, but correct memory
accesses. See our discussion of the Ethernet module in Sec-
tion 2.3.4 for an example of how I/O hardware can help to
meet alignment requirements.

Class 7 provides conditional branches and calls, each of which
can either be relative to the current instruction pointer (us-
ing a 16 bit signed displacement) or specify the absolute des-
tination address in a register. Each branch is predicated
with a 5 bit mask to be applied to the status register and
a 5 bit vector of values and is taken only if all selected bits
equal the given values. To set up the status register, condi-
tional branches are typically preceded by a sub instruction
to effectively compare two values.

All branch instructions have a single branch delay slot [20],
meaning that the instruction that follows the branch is ex-
ecuted regardless of whether the branch is actually taken
or not. Such branch delay slots are common on in-order
pipelined architectures and serve to hide the latency be-
tween loading the branch instruction and recognizing that it
actually is a taken branch. Without branch delay slots, all
instructions loaded in the meantime would have to be dis-
carded; declaring (a subset of) them as branch delay slots
thus improves runtime efficiency.

Notable design decisions regarding the instruction set in-
clude the omission of any of the common special purpose
instructions for TLB- and/or cache management such as
MIPS’ tlbrd or tlbwr instructions or Intel’s wbinv. Both
TLBs and caches are regarded as (more or less) regular I/O
devices using the memory mapped I/O approach, which can
accommodate more extreme changes to the interface of the
TLB or cache modules and simplifies CPU design by further
decoupling the CPU from the memory hierarchy.

2.1.3 Execution Pipeline
As illustrated in Figure 2, the OpenProcessor core features
an eight-stage pipeline including result and load forward-
ing. The pipeline is derived from the classic five-stage RISC
pipeline [19] comprising instruction fetch (IF), instruction
decode and operand fetch (ID/OF), execution (EX), mem-
ory access (MA), and write back (WB) stages, but differs
notably in several aspects.

The classic five-stage pipeline is based on the assumption

Figure 2: The OpenProcessor pipeline comprises
eight stages: three for “instruction fetch”, one
for both “instruction decode” and “operand fetch”,
three for “execute” and “memory access”, and one
for“write back”. The arrows on the {left|right} show
available {result|load} forwarding paths.

that memory accesses can succeed in a single cycle, so that
one MA cycle suffices. However, our current cache imple-
mentation requires two cycles for memory writes even on
cache hits: The first cycle is used to determine a hit on
the cache, and only after the hit has been ascertained will
the second cycle be used to update the data in the cache.
In order to allow for proper pipelining of all memory ac-
cesses, both reads and writes take two cycles in the cache
module. Though a specialized read-only implementation for
the instruction cache might provide single-cycle access to
instructions in the future, we currently use the same cache
implementation for both the instruction and the data path,
thus increasing the pipeline length by two stages, I-Cache
and D-Cache, to seven stages.

Another decision that has been made in favor of simplicity
over performance is the lack of a first level (L1) cache that
could be accessed without requiring prior virtual-to-physical
address translation via the TLB: Such “virtually indexed,
virtually tagged” caches suffer from aliasing effects [7], i.e.,
multiple virtual addresses can refer to the same physical
memory location, which can lead to multiple copies of a sin-
gle physical datum residing in the cache at the same time. In
such a scenario, the L1 cache logic must avoid data inconsis-

4

tencies either by ensuring that updates to one of the copies
invalidate the other copies, or by updating all copies of the
data in the cache simultaneously, or by avoiding duplicate
data in the cache in the first place.

In its present state, the OpenProcessor platform avoids the
aliasing problems by not incorporating any L1 caches; it
only provides “physically indexed, physically tagged” second
level (L2) caches that do not suffer from aliasing effects as
they operate on physical addresses. On the downside, ac-
cess to L2 caches requires the incoming address to be trans-
lated from the virtual to the physical domain before use,
which requires at least one additional cycle per memory ac-
cess and thus reduces performance. To counter this effect,
the pipeline of the OpenProcessor core includes one I-TLB
stage and one D-TLB stage to perform the virtual address
translation just before the instruction and data caches are
accessed. As a result, the core retains single-cycle through-
put of all instructions including load and store in the com-
mon case of hits both in the instruction and (if required) in
the data cache, but pays for this property with an increased
instruction latency of two more cycles, I-TLB and D-TLB,
raising the pipeline length to nine cycles.

Due to the inclusion of all required address computation
logic into the ID/OF stage, memory addresses need not be
computed in the EX stage, so that the D-TLB stage can be
overlaid with the EX stage to decrease the pipeline length to
the announced eight cycles. The effectively three additional
stages as compared to the classic pipeline are shaded blue
in Figure 2.

2.1.4 Forwarding and Stalling Logic
Many pipelined architectures – including the OpenProcessor
core – apply load and result forwarding [8] (or bypassing) to
hide latencies between loading a word from memory or com-
puting an arithmetic result and making it available through
the register file.

In the classic five-stage RISC pipeline, the result of the arith-
metic and logic unit (ALU) is available by the end of the EX
stage, but stored into the register file only two cycles later
by the end of the WB stage. Without forwarding logic, the
updated values will thus be visible to following instructions
only once the providing instruction has passed its WB stage.
If the immediately following instruction already requires the
updated register as an input, this instruction will either read
the old value or must be delayed (or stalled, using a pipeline
interlock [19]) until the updated result is available from the
register file. Result forwarding logic cuts this time short by
providing ALU results from instructions in or before their
WB stage as an alternative input to the ID/OF stage.

As shown in Figure 2, the forwarding logic of the Open-
Processor needs to deliver ALU results from the (new) D-
Cache stage in addition to the EX, MA, and probably WB
stages, whence forwarding would be required for the classic
pipeline as well. This does not cost performance, but makes
the forwarding logic more complex in terms of hardware re-
sources. However, as implementing this logic yields fairly
regular code along the lines of “if stage X holds a new value
for register Y, forward it to ID/OF”, the perceived com-
plexity for the hardware developer does not increase much

with an increasing number of stages, so that we rather ac-
cept complicating the forwarding logic than implementing
single-cycle L1 caches.

Similar to result forwarding, load forwarding logic serves to
provide the results of load instructions that have not yet
passed their WB stage as alternative inputs to the ID/OF
stage. However, the result of a load instruction is only
available at the end of the MA stage, which is two classic
and even three OpenProcessor pipeline stages away from
the ID/OF stage. The result of a load instruction is thus
not yet available when the following instruction leaves its
ID/OF stage, hence it cannot be forwarded in time. As
a consequence, this following instruction either experiences
a load delay [20] and reads the old register value, or must
itself be delayed for one cycle in the classic pipeline and two
cycles in our system – despite full forwarding logic. On the
bright side, this case only costs a little performance but does
not increase hardware complexity as no additional/different
forwarding paths are required this time.

The alternative to stalling, i.e., the introduction of two load
delay slots, so that a load will – by definition – only be
visible at the third instruction after the load instruction,
has been rejected due to its awkward assembly level pro-
gramming model and due to the fact that exceptions and
interrupts would interfere badly with these load delay slots,
making them hardly usable.

Misses in either the instruction cache or the data cache cause
memory accesses to take more than the two cycles allotted
to them in the pipeline. In these cases, we halt the com-
plete pipeline and wait for the cache to fetch the required
data from main memory. On instruction cache misses, the
later stages could continue execution and fill in no-operation
bubbles from the stalled IF stage so that more potential
operands could be computed early and thus later stalls be
avoided, but as the benefits are considered small compared
to the increase in pipeline control complexity, we stick to
the simpler scheme for now.

2.1.5 Two Modes of Execution
The OpenProcessor core supports both a typically restricted
user mode of execution and a fully privileged kernel mode.
The two modes can be entered using two branch instruc-
tions: syscall will (re-)enter kernel mode, while rtu will
“return” to user mode. Apart from the actions taken on
mode switches (see below), the two modes are not funda-
mentally different from the hardware’s point of view: The
mode switch merely serves as a trigger for loading a new
set of permissions from a configuration register (r46/r47
for kernel/user mode) as well as a new address space iden-
tifier (ASID) from another register (r44/r45 respectively).
After the mode switch has been completed (i.e., only after
its branch delay slot has been executed using the previous
mode), all memory references to both instruction and data
memory will be governed by the new ASID, whereas access
to privileged resources such as memory mapped TLB con-
figuration registers or the privileged CPU registers r32–r47
will be controlled by the newly loaded configuration regis-
ter, whose contents is shown in Table 3. This configuration
register is designed so that it is safe to use an initial value
of 0 to start up in a fully privileged mode with interrupts

5

and address translation disabled, so that low level system
startup code can ignore IRQs and TLB management issues.

Bit Effect when set
0 Enable interrupt processing.
1 Enable virtual addressing (enable TLB).

2–29 (unused)
30 Disable access to TLB control registers.
31 Disable access to privileged CPU registers.

Table 3: The configuration registers r46 and r47
control access to privileged resources such as TLB
configuration registers and privileged CPU registers
separately for the two modes of execution.

The hardware switches to kernel mode implicitly on inter-
rupts and exceptions or explicitly via a syscall instruc-
tion. Execution in kernel mode always starts at one of twelve
hard-wired entry points: Six of them are used when entering
kernel mode from user mode, the other six are used when the
CPU was already in kernel mode prior to the kernel-mode
(re-)entry, which allows the kernel, e.g., to load a new kernel
stack on kernel entries but continue execution on the current
kernel stack during re-entries. The six entry points reflect
the cause of the kernel entry: system startup, interrupt, I-
TLB miss, instruction decode exception (privileged register
requested without permission), D-TLB miss, or system call.
For security reasons, even system calls are vectored through
a single entry point rather than allowing the user to specify
an entry point in the kernel code.

On implicit kernel-mode entries, the hardware saves the in-
terrupted CPU state:

• the contents of the status register after the last suc-
cessfully executed instruction in r32,

• the instruction pointer of the first instruction that has
not been executed to completion in r33,

• and the instruction pointer of the instruction to exe-
cute after the one pointed to by r33 in r34.

While r34 will in most cases be 4+r33, it is still required to
correctly continue execution when an instruction in a branch
delay slot has been interrupted or caused an exception. In
this case, r33 will point to the branch delay slot, whereas
r34 will point to the target of the (taken) branch.

On explicit kernel entries via the syscall instruction, no
state is saved in the special purpose registers. Instead, the
return address is stored in the link register (r31) as for reg-
ular call instructions.

In either case, returning to user mode is done using the
rtu instruction, which is a regular register-indirect branch
instruction that takes the destination address from its reg-
ister argument (typically r33). After having executed its
branch delay slot, rtu enters user mode by loading the user-
mode ASID and configuration from r45 and r47 and sets
up the instruction fetch logic to continue with the instruc-
tion pointed to by r34. Additionally, the first user-mode

instruction is tagged to use the saved status register from
r32 instead of the current status register. Finally, imme-
diate re-entry to kernel mode must retain the continuation
address in r34, which is also achieved by tagging the first
instruction in user mode.

2.2 Virtual Memory Management
The OpenProcessor platform provides virtual memory by
means of a software controlled, 4-way TLB to map 4 KiB
pages. The TLB can be configured at synthesis time to offer
either a dual-ported unified TLB with a single buffer per
way for 512 translation entries that is shared among the
instruction and data paths, or to offer split instruction and
data translation buffers for 256 translation entries each (per
way).

2.2.1 Implementation
Each of the TLB ways is implemented using two of the dual-
ported 2 KiB RAM blocks embedded in the Virtex 4 FPGA,
which also explains the size of 512 entries: as detailed below,
4 byte per RAM block are used per translation entry, so that
512 entries make the best use of the 2 KiB RAM blocks.

With 4 KiB pages (12 bit offset) and 256/512 entries (8/9 bit
TLB set index), we need to store 12/11 bits of the incoming
addresses (the tag) in one of the RAM blocks to facilitate
proper hit detection. To discern addresses from different
address spaces, we store the address tag together with the
20 bit address space identifier (ASID) in the first RAM block.
The other RAM block stores the physical frame number to
which the page is mapped (upper 20 bit of the physical ad-
dress) and up to 12 access permission bits representing CPU-
defined access types: right now these are valid, read, write,
and execute. A TLB hit is reported only if a translation
entry matching the requested virtual address and ASID is
found and has at least all the permission bits set that are
requested by the CPU (which always includes the valid bit).
Additionally, one of the permission bits is used to indicate
that the page may be cached – which should be clear for
memory mapped I/O pages.

The first access port of the RAM blocks is used to fulfill
instruction TLB accesses, the second port is used to serve
data TLB requests. In the split configuration, the instruc-
tion TLB covers the first 256 entries of the RAM block – the
data TLB covers the upper 256 entries. This scheme allows
the data path to access the instruction path for updates, as
required below.

2.2.2 Interface
Differing from MIPS and many other architectures, there are
no instructions or CPU registers dedicated to TLB manage-
ment. Instead, the TLB offers its configuration interface,
consisting of four registers to accept the virtual page num-
ber, the physical frame number, the address space identifier
and the permission bits for a new address translation entry,
mapped to virtual memory: If one of the virtual addresses
assigned to TLB configuration is written to, the TLB will
check if the current thread is allowed to access the TLB
configuration (see configuration registers r46/47, Table 3)
and either update the addressed TLB configuration register
or try to map the address to its physical address. When

6

the virtual address register is updated, the values from the
configuration registers are converted to TLB entry form and
committed to the translation buffer. The ways that are to
be affected by such an update are conveyed as a bitmask in
the (currently) four least significant bits of the virtual ad-
dress to map, so the software is in full control of which TLB
way(s) is/are to be used. This scheme allows to quickly flush
the TLB by invalidating all four ways of a set at once, to re-
serve TLB ways for certain applications, or even to simulate
a smaller TLB by leaving 1–3 ways unused.

The memory mapped approach to managing TLB entries
provides a very flexible interface, which requires only few
changes to the rest of the hardware system when changed.
On the downside, updates to the instruction TLB cannot be
handled that way, as no writing memory access ever occurs
on the instruction path. To work around this problem, we
merge the instruction and data TLBs into one module with
a shared buffer space and allow the data path to update
translations for both the data and the instruction path. For
this purpose, the virtual address register is mapped to two
memory locations: one serves to update the data path trans-
lations, the other triggers updates to the instruction path.
For unified TLB configurations, both register accesses be-
have in the same way and predictably update the (shared)
translation entries. Software does not even have to know
if the TLB is currently configured to be split or unified;
the software can always access the TLB as if it were split
between data and instruction path, which facilitates compa-
rable measurements with the only modification between test
runs being the TLB configuration.

On TLB misses, the hardware raises a TLB miss exception,
indicating which way best matched the requested transla-
tion (to allow adding permissions) and which access type
was requested by passing the up to 12 access permission bits
from the CPU on to the exception handler in r36. There is
currently no hardware-support for clever TLB entry replace-
ment (e.g., based on time since last use or access frequency),
so that we employ a global round robin TLB way assignment
and replacement scheme. However, future implementations
are free to provide more relevant information to the handler
to improve the system in this respect.

2.2.3 Previous Approach
The TLB configuration presented above is the second one
that we implemented for the platform. Initially, we had
implemented a more flexible scheme which allowed us to
map arbitrary 2n-sized pages by storing an address mask
along with the virtual and physical addresses. All addresses
that matched the stored virtual address when masked with
the stored address mask were mapped to the stored phys-
ical addresses after having ORed in the unmasked bits of
the incoming addresses (typically an offset). This scheme
required parallel checks on all the TLB entries (fully asso-
ciative), which in turn ruled out the RAM blocks as storage,
so that we had to revert to store the translation entries in
registers within the FPGA fabric. As each of the translation
entries (including the address mask) required 3×32 = 96 bits
plus permission and valid bits, the number of TLB entries
to be implemented that way while keeping the hardware ac-
ceptably small seemed to be too small to be of much use:
We started with four entries, which proved to be too small

to accommodate mappings for both kernel and user mode,
and thus increased the number to eight TLB entries before
switching to the less flexible, but simpler and more main-
tenance friendly scheme presented above. More research is
required to determine sane limits and evaluate benefits of
the flexible approach.

2.3 I/O Devices
As the development board provides only 64 MiB of DDR
RAM plus 4 MiB of Flash, the 32 bit physical address space
of the OpenProcessor platform offers enough space to cover
any I/O devices’ control, status, and data registers includ-
ing device buffers (e.g., for the Ethernet controller). Thus,
all I/O devices are accessed via memory mapped I/O, the
address ranges and relative locations of the device-specific
registers are defined manually at synthesis time and inserted
into a (non-machine readable) memory map to avoid con-
flicts and overlaps.

2.3.1 Memory Controllers
The most important device on the platform is the SRAM
controller, which serves to make up to 32 FPGA internal
RAM blocks available as memory via the system bus. This
memory is initialized at synthesis time with a bootloader to
start up the system.

Other memory-related devices on the platform include the
TLBs and the caches, the latter of which only expose a sin-
gle control register that can be written to in order to write
back and invalidate the whole cache (TLB management has
been discussed in Section 2.2). Similarly, the DDR mem-
ory controller can be configured at runtime with respect to
its CAS latency and with respect to the phase shift of the
external DDR clock relative to the system clock, which has
been an important feature while debugging DDR memory
access.

2.3.2 Programmable Timer
Aside from memory, there is a programmable timer that can
be used to either generate interrupt requests at a fixed rate
(anywhere between every and every 232 − 1 cycles) or only
once after up to 232 cycles. This device is used by the operat-
ing system to facilitate round robin scheduling by setting up
a one-shot timer event to occur after the remaining timeslice
length of the scheduled thread has expired.

2.3.3 Basic I/O
The user I/O devices (eight DIP switches, four pushbuttons,
and four LEDs) are controlled by a general purpose I/O con-
troller module that provides the status of the switches and
buttons via its status register and takes a four bit value
per LED at its configuration register, which is used to con-
trol the brightness of the LEDs via pulse width modulation
(PWM). For convenience, the current LED status is also
readable from the status register to facilitate read-modify-
write operations and relieve the software from having to keep
track of this state, which would be required if one wants to
change only one of the LEDs. The LEDs have provided
a valuable debugging aid in the early stages of the system
when serial I/O or even network was not yet/no longer pos-
sible and continue to do so, e.g., by signaling the current
mode of execution/pending interrupts/thread switches/. . .

7

The second important debugging aid is the liquid crystal dis-
play (LCD), which provides two lines of 16 characters each.
The LCD character buffer is mapped to physical memory,
so that displaying text is as simple as writing the text to the
character buffer. This display is particularly helpful in sit-
uations where the system freezes, as the display will retain
the last text written there before the freeze. As access to
the LCD is significantly faster than writing the characters
to the PC via RS-232 (which is the third means of debug
output, but limited by the PC’s maximum baud rate to no
more than 1 Mbaud or ≈ 100 kB/s as compared to several
MB/s on the LCD), the LCD can be used to quickly locate
the problem. More debug output (exceeding the 2x16 char-
acters the LCD can handle) can then be emitted via RS-232.

The RS-232 controller is the third I/O device in the system.
It exposes a status word that indicates whether a character is
available, which character this is, and whether the transmit
buffer is full. For efficiency, the RS-232 module internally
maintains a receive FIFO buffer as well as a transmit FIFO
buffer of configurable sizes (currently 8 entries for both);
however, the buffers can only be accessed in FIFO order
by reading a single character from the data register or by
writing a single character to the transmission control register
of the controller.

2.3.4 Ethernet
For high-speed communication, the OpenProcessor platform
provides a 100 Mbit Ethernet controller, which internally
uses an 8 KiB receive buffer to buffer incoming packets and a
2 KiB transmit buffer, which suffices to hold a single Ether-
net frame (which is at most 1522 bytes long as per the IEEE
802.3 Ethernet standard). Both buffers are mapped to mem-
ory in the same 8 KiB region because the receive buffer is
read-only and the transmit buffer is write-only.

A 32 bit status register indicates whether a (new) packet
has been received, including its length (11 bit) and position
(13 bit) in the receive buffer. By reading this status register,
the software also indicates that it has completed processing
the previous packet, so that the receive logic can reuse its
buffer space. Similarly, the Ethernet module provides a sta-
tus register that conveys whether the module is idle or (still)
busy sending the previous frame. If it is idle, the software
can copy the next frame to the transmit buffer and trigger
the transmit logic by writing a 16 bit start offset and a 16 bit
length to a control register.

The Ethernet module can be configured to provide basic
Ethernet protocol off-loading services such as generating and
stripping off the Ethernet preamble that precedes all frames.
Furthermore, the module can generate and check the frame
check sequence (FCS, a CRC-32) at the end of an Ethernet
frame to ascertain data integrity; incoming frames with an
invalid FCS are then discarded.

As a specialty, the Ethernet module makes up for the mis-
alignment of Ethernet payload caused by the 14 byte long
Ethernet header. In order to align payload data to 4 byte
boundaries, the receive logic starts writing Ethernet frames
at addresses equal to 2 (mod 4) into the receive buffer to fa-
cilitate efficient, word-wise access at higher protocol layers.
Similarly, the Ethernet module can start sending from arbi-

trary addresses within the transmit buffer, so that outgoing
data can be copied in word-wise, possibly including invalid
data just before the frame, which can then be skipped by
starting transmission at the proper offset. Fixing alignment
in the Ethernet module is important, as byte-wise copying
or access to unaligned 32 bit words (implemented by GCC
using four byte-accesses) takes four times as long as word-
wise, aligned accesses – a significant factor considering the
large amount of data to be processed by the network stack.

2.3.5 Interrupts
Notifications from the I/O devices to the CPU can be trig-
gered using interrupt request lines per device. However, the
interrupts are not delivered from the source devices directly
to the CPU; instead they are aggregated and mediated by
a programmable interrupt controller (PIC). The PIC can
be configured to mask selected interrupt sources to enable
polling (or ignoring) them and to protect the user-mode han-
dler from nested requests. The PIC can also be queried to
determine which interrupts are pending (even if masked).

At the moment, there are four possible interrupt sources:
each of the four pushbuttons asserts an IRQ while pressed,
the timer module asserts an IRQ if the timer expires, and
both the RS-232 and the Ethernet module indicate idle trans-
mit states as well as the availability of new data using two
separate IRQ lines each.

3. MONITORING AND DEBUGGING
Being designed with future improvements in mind, the Open-
Processor platform provides a number of features dedicated
to performance measurements/monitoring and low-level de-
bugging.

3.1 Hardware Event Counters
The most fundamental means to assess hardware perfor-
mance is to count the number of cycles a specific operation
requires. The OpenProcessor platform facilitates this by ex-
posing a number of 64 bit counters to provide basic execution
statistics. All 64 bit counters in this section are accessed by
reading the lower 32 bit from their respective base register
(r49 to r63), which causes the upper 32 bit to be latched
into the hold register (r48), whence they can be retrieved
at a later time.

Specifically, the platform publishes a timestamp counter that
counts clock cycles since startup in r63. Together with
r61, which reveals the number of instructions executed since
startup, this can be used to compute the number of cycles
per instruction (CPI), which should ideally be close to 1 on
this platform.

If the CPI value is significantly larger than 1, other regis-
ters can help to identify the cause: r62 counts the num-
ber of stall cycles of the pipeline, i.e., usually cycles spent
waiting for memory. The remaining “unproductive” cycles
(r63− r61− r62) are wasted on no-operation cycles in the
pipeline, introduced by pipeline flushes due to interrupts and
exceptions and by taken branches, the number of which is
accessible via r60.

More details on the cause of stall cycles can be obtained

8

from r56 through r59, which respectively provide the num-
ber of stall cycles called for by the ID/OF stage (waiting for
memory operands that are provided too late), the number
of TLB-related stall cycles (caused by updates to the trans-
lation entries, as each one causes a one cycle delay), and
the number of cycles the instruction and data caches have
waited for data from memory.

For short code fragments, it is sufficient to consider the dif-
ference of only the low 32 bit of these counters, which keeps
the overhead negligible if only few counters are evaluated. If
the counter values are to be recorded at a high frequency or
over a longer period of time to facilitate “side-effect free” off-
line analysis, however, reading the counters and especially
writing them to memory has been seen to seriously impact
performance: Measurements of the cycles used by the inter-
process communication code path went up by nearly 50 %
(from 11,000 to over 20,000 cycles) just by adding instrumen-
tation along the path. Thus, we provide a better alternative
for this purpose: the software event log.

3.2 Software Event Log
Instead of reading the counters and writing them to memory
in software, we provide a special event instruction that ac-
cepts two register arguments and a 10 bit immediate and logs
them together with a selection of the previously mentioned
counters to a dedicated circular buffer that provides room
for 2048 entries of 8 words each. The words to log are config-
ured at synthesis time and usually include the two operands
to the event instruction, the opcode (to gain access to the
immediate), the address of the event instruction to map
the event to the code, and the low words of the timestamp
counter, the stall cycle counter, the executed instructions
counter and the taken branches counter.

The log is mapped to memory as an array of 8 words per
entry, so that it can easily be read once the instrumented
code path has been executed. Despite being implemented as
a circular buffer, the first record (at offset 0) always maps
to the most recent log entry to simplify log evaluation. The
last entry in the array (index 2047) thus always represents
the oldest log record available (if any).

Using the event instruction instead of manually writing the
counters to memory both reduces code size (one instruction
instead of eight to store eight counter values – not counting
target address computations) and runtime overhead espe-
cially by avoiding cache misses in the recording phase.

The downside of this approach is that is is pretty costly in
terms of hardware resources: 2048 records of 8 × 4 bytes
each amount to 64 KiB of memory or 32 RAM blocks of
2 KiB each. Considering that only 160 such RAM blocks are
available in the FPGA, such logs are expensive and cannot
grow much larger than that.

3.3 CPU Trace Unit
During debugging of software that executes on the Open-
Processor platform, we often found it desirable to be able to
go back in time to see where an observable error such as a
pagefault at an invalid address was caused. Using the logs
described above, we provide a configurable trace unit that
logs the address, opcode, both register operands and ALU

result (if any) plus ASID, pipeline control bits, the 16 least
significant bits of the timestamp counter and the contents
of the status register of the last 2048 instructions executed
for later inspection.

The trace unit can be configured to trace execution in user
mode and/or in kernel mode, it can be restricted to log exe-
cution only in a given address space or it can be disabled to
preserve its current state. Typically, we setup the trace unit
to trace execution of both user and kernel mode, but turn it
off once we have reached kernel mode and turn it on again
just before we return to the user mode of an“interesting”ad-
dress space. This provides us not only with the trace of the
potentially faulty execution in user mode, but also conveys
register values that are saved during kernel entry just before
the trace unit is turned off – a valuable aid in debugging.

However, the trace unit is not limited to debugging pur-
poses: The inclusion of the least significant 16 bits of the
timestamp counter facilitate detection of pipeline conflicts in
the past execution (indicated by adjacent instructions with
non-adjacent timestamps) or unexpected cache misses.

3.4 Cache Activity Log
To further analyze cache behavior, we employ another log
(using only three instead of eight rows per entry to save
memory) to record a history of cache misses, cache hits,
write back and/or flush events. The cache log can even be
configured to record the data values that are loaded into or
read from the cache. However, it turns out that this hardly
ever conveys useful information not yet available from the
CPU trace log.

In addition to the cache activity log, the cache implementa-
tion itself provides access to a number of 64 bit counters to
count hit, miss, and write back events of the cache. Further-
more, the cache also counts the number of cycles spent on
writing cache lines back to memory, on reading data from
memory, on flushing the cache, on marking cache lines as
dirty (this takes one cycle per previously clean cache line),
and even the number of cycles spent on memory accesses
that bypass the cache (such as I/O accesses). As with the
CPU statistics, the 64 bit values are conveyed by the cache
using a 32 bit hold register in addition to the counter-specific
base registers, all of which are mapped to memory addresses.

4. KAOS
The OpenProcessor platform provides system software in
addition to the synthesizable hardware, not only to test and
demonstrate the hardware, but also to provide a starting
point for the co-development of hardware and software fea-
tures, such as the page replacement algorithm based or page
access timestamps or counters as motivated in the introduc-
tion.

Due to the custom instruction set of the OpenProcessor core,
we first needed to provide a cross-compiler toolchain for the
platform. Given some prior knowledge of the GNU GCC
and binutils, we implemented a rudimentary back-end to
enable GCC and the GNU binutils to generate code for the
OpenProcessor core. This compiler back-end is incomplete
(support for 64 bit data types, C++ exceptions, debugging
information and floating point are all missing), so we decided

9

Figure 3: The OpenProcessor includes KaOS, a
microkernel-based multi-server operating system
that provides a subset of the POSIX environment
for applications.
The KaOS kernel and the roottask are trusted com-
ponents; arrows indicate the “calls” relation.

not to try to port an existing OS such as L4, Minix 3, or
Linux to the platform to start with. Instead, we went for an
incrementally co-developed microkernel-based system that
– being completely understood – would simplify debugging.
The system is depicted in Figure 3.

4.1 KaOS Kernel
The KaOS kernel is a microkernel heavily inspired by L4 [10],
but implemented in C (not C++). Both kernels provide
threads and address spaces as their sole abstractions, com-
plemented by synchronous IPC (with timeouts) to interact
with threads and a virtual memory mapping mechanism to
recursively construct address spaces from user mode. No-
table differences from the L4 kernel are the absence of kernel-
provided memory structures such as L4’s kernel interface
page or user-level thread control blocks, since these are pri-
marily provided to support portability of the L4 kernel and
are thus not required in a system that targets a single archi-
tecture.

The KaOS kernel handles exceptions, delivers interrupts via
IPC to registered interrupt handlers, creates, destroys, and
schedules threads using a priority-based round-robin sched-
uler, and updates TLB entries after TLB misses.

4.2 Support Servers
On top of the KaOS kernel, a number of applications (so-
called servers) implement a subset of the POSIX API with
the notable exception of forking, which is difficult in micro-
kernel-based systems due to the distributed state of its pro-
cesses: Applications typically hold handles on many servers,
and duplicating all of them on fork is often too heavyweight.
Instead, we replaced forking by a combined fork-and-exec
routine to execute programs in a new address space (similar
to Windows’ CreateProcess) and a lightweight KaOS system

call to create a new thread.

Three servers provide the basic functionality. The remain-
ing servers are loaded as applications from a ROMFS image
(similar to Linux’ initial ramdisk), which is facilitated by
a ROMFS server that offers access to the filesystem using
standard open/read/close calls. Loading applications is
controlled by a loader server that also manages the address
space layout of the applications (with respect to thread’s
stacks and memory mapped files) and serves as their pager,
meaning that the kernel will ask the loader thread to resolve
page faults if the kernel cannot resolve TLB misses on its
own. The memory that the loader hands out to its clients
on pagefaults comes from physmem, a server that manages
free physical memory for use by pagers such as the loader.

Once these servers are up and running, the system can load
additional servers (e.g., from the ROMFS) to enhance func-
tionality: Most importantly, a console server can be used
to synchronize output to the serial console and to give all
threads stdout, stderr, and stdin streams without having
to grant them access to the RS-232 hardware directly.

Another central server provides network functionality via
Berkeley sockets together with Ethernet/IP/UDP layers and
low-level network services such as BOOTP, (R)ARP and
ICMP. This network server is then used to grant access to a
network filesystem, implemented via an augmented TFTP
server that supports partial read and write requests to access
only selected parts of a file, directory listings and a stat

command to obtain information about the type, size, and
timestamps of a remotely available file.

4.3 C Library
The functionality of the servers is offered either using a
server-specific remote procedure call (RPC) interface, or hid-
den behind the standard libc/POSIX calls. While the for-
mer interface is slightly more efficient, it is not well portable
and often awkward to use. The libc/POSIX interface, on the
other hand, must typically translate file handles to (serverId,
handle) tuples and can then use the server-specific interface
to provide the desired functionality.

Due to this translation requirements, we implemented a new
libc for the OpenProcessor platform, which can (statically)
be linked into the servers and applications to support their
implementation. As a specialty, most of the libc can be used
in a way that does not involve any support servers, which
allows even the KaOS kernel to use the provided printf

for output via the RS-232 module and malloc and free for
memory management. However, malloc usually uses mmap

to obtain or enlarge its managed heap, but since mmap is pro-
vided by the loader server, this approach is not viable for the
kernel. As a workaround, the kernel provides a predeclared
heap (currently 256 KiB) at a non-zero address conveyed to
the library through the symbol __heap_start. Regular ap-
plications define this symbol to NULL, thus indicating that
mmap can and should be used.

4.4 System Startup
The OpenProcessor platform consists of both hardware and
software, so the software could be integrated into the hard-
ware by employing initialized RAM blocks within the FPGA.

10

However, hardware synthesis takes about 25 minutes on a
1 GHz Intel Core Duo with 1 GiB of RAM, whereas soft-
ware compilation takes less than 30 seconds on the same
machine. With software being expected to change more of-
ten than hardware, we need to separate the software from
the hardware and combine them only at runtime – possi-
bly updating the software several times without having to
rebuild the hardware.

One way to solve this problem is to start execution after
startup from persistent memory such as the 4 MiB of Flash
on the development board. Due to its limited space and awk-
ward programmability from the host PC, we take a different
approach and load the software from the PC every time af-
ter startup using a stable piece of software (4 KiB code plus
1 KiB data) that is embedded into the FPGA RAM blocks
that are mapped at addresses 0–64 KiB. This SRECLoader
is considered “stable” in the sense that it does not change
regularly, so embedding it into the hardware poses no prob-
lem.

After system startup, execution is directed to the SREC-
Loader program. The SRECLoader waits for data to be
pushed onto the FPGA board via RS-232 in the form of S-
records, i.e., hex-encoded chunks of up to 16 bytes of data
per line preceded by a target address and protected against
transmission errors using a simple checksum. Upon recep-
tion of a line, the SRECLoader validates the checksum, de-
codes and writes the data into place and sends an acknowl-
edgment (or error indication) back to the PC, which then
either retransmits the faulty line or continues with the next
S-record. A special type of S-records provides the address of
the entry point into the loaded code (if any) and also serves
to terminate the loading process.

The SRECLoader could be (and has been) used to directly
load the KaOS kernel and its support servers into memory
and start their execution. However, being as simple as it
is, the loader transfers data at only about 4 KiB/s from the
PC; loading the 400 KiB kernel, the 450 KiB roottask that
includes the three basic servers (cf. Section 4.2), and the
250 KiB ROMFS image, which provides the remaining sys-
tem servers, would take more than 4 minutes. Instead, we
use the SRECLoader to load a 9 KiB ELFLoader, which in
turn takes less than 20 s @ 60 KiB/s via RS-232 to load the
KaOS kernel, the roottask, and the ROMFS image by using
larger chunks and by avoiding to hex-encode the data for
transmission, which doubles its size.

After having loaded the three modules, the ELFLoader cre-
ates and stores a memory map (in memory), in order to
convey the type, size, and position of the loaded modules
to the KaOS system. Only after the memory map has been
created does the ELFLoader identify the kernel module and
start its execution at its entry point, storing a pointer to the
memory map in r30 for the kernel to use.

From now on, the kernel initializes its data structures (mainly
the thread control blocks) and starts execution of the first
user-mode thread – the trusted roottask. For this to work,
both the kernel and the roottask must be mapped 1:1 (i.e.,
their physical addresses match their virtual addresses), be-
cause he roottask does not have a pager assigned that could

arbitrarily remap its pages. As a consequence, kernel and
roottask must be linked to disjoint address ranges.

When starting the roottask, the kernel passes along a pointer
to the memory map, so that the roottask can (a) create a list
of free memory regions for the physmem server to manage,
and (b) point the ROMFS server to the start of the ROMFS
image, so that the loader service can start the remaining
system services.

On startup, the system typically executes a number of tests
to continuously validate that both hard- and software are
still intact, before dropping into a command line interpreter
(calling it a “shell” would be too much at the moment) that
allows to interactively load and execute additional programs
from the ROMFS image or via network.

4.5 Monitoring and Debugging
In order to profit from the monitoring and debugging capa-
bilities of the hardware, KaOS includes a kernel debugger,
which can be invoked at any time by sending a ^ character
via RS-232 to the system. Alternatively, the debugger can
be invoked through software, e.g., after having detected a
problem, using a microkernel system call.

Upon entry, the debugger will dump basic statistics such as
the current time stamp, the aggregated time spent in user
mode respectively kernel mode, the number of kernel entries
and their causes (interrupt, exception, system call) and the
number of thread switches. To facilitate rough but simple
measurements of these figures for the code that executes
between two invocations of the debugger, the differences of
these figures from their values at the previous kernel debug-
ger invocation are also output on entry to the debugger.

After that, the debugger provides a command line interface,
which allows to enter a number of commands to inspect the
states of threads and address spaces in the system, to dump
the event log, CPU trace, and cache log, to list pending
IPC timeouts (the only form of application-specific timers
managed by the kernel), and even to inspect hexdumps of
memory regions of arbitrary address spaces.

While the system executes the kernel debugger, the system
is frozen: No interrupts are processed, and no scheduling
decisions are taken to dispatch ready-to-run threads until
the kernel debugger is left using the quit command.

5. USE CASES
The OpenProcessor has already been used to conduct re-
search in two major areas: Firstly, its memory access path
has been augmented to better support page replacement de-
cisions, and secondly, the system has been augmented to
keep the contexts of multiple threads in hardware to facili-
tate fast switching between interacting threads.

5.1 Memory Profiling
One of the motivations to develop the OpenProcessor plat-
form was to improve the page replacement decision of op-
erating systems by providing more information per physi-
cal page than the single referenced bit: access counters to
support least frequently used (LFU) page replacement, or

11

timestamps to support the (generally favored) least recently
used (LRU) policy.

In [4] we have examined the feasibility of reference counting
on the OpenProcessor platform. Considering that maintain-
ing the counters should not interfere with regular system
operation, the counters have to be placed into a dedicated
memory separate from the system’s main memory; placing
them in some of the FPGA internal RAM blocks is the op-
tion of choice.

However, even with only 64 MiB of main memory on the
development board, using a standard page size of 4 KiB
yields 64 MiB / 4 KiB = 16 k physical pages and providing a
counter of 32 bit per physical page would already require a
total of 64 KiB of memory or 32 RAM blocks of 2 KiB each.
As RAM blocks are typically one of the scarcest resources on
an FPGA, we opted to only monitor a configurable region
of memory at any time.

To this end, we provide four memory profiling units, each
of which can monitor 512 successive blocks of memory of 2n

bytes within a naturally aligned, contiguous region of 29+n

bytes with n and the starting address being configurable at
runtime. The counter values are 32-bit wide (so that each
memory profiling unit uses a single 2 KiB RAM block), are
read/write accessible at runtime and can thus be used by
the OS to drive its LFU page replacement strategy.

Further work conducted after [4] added configuration op-
tions to make the reference counters saturate instead of wrap
around at 232−2, and to disable individual counters by writ-
ing 232− 1 into them to support “pinned” pages (pages that
should not be replaced).

As retrieving the 4× 512 counters from all the memory pro-
filing units for each page replacement decision is both costly
and repetitive, [12] added hardware to the OpenProcessor
platform that automatically iterates over the counters and
remembers the indices and values of the 4 (later extended to
8) smallest counters per memory profiling unit, thus grant-
ing the OS immediate access to the 8 best candidates for
replacement according to the “least frequently used” (LFU)
policy.

Again, further work on the memory profiling units now al-
lows us to record the timestamp of the last access per page
instead of counting the accesses using another runtime con-
figuration option to the profiling units. Using the same selec-
tion mechanism as above, the four smallest “counter” values
(timestamps) now lead to the least recently accessed pages,
thus facilitating “least recently used” (LRU) page replace-
ment policies within the monitored memory region.

An evaluation of this last system, including proper handling
of timestamp overflows via “aging” is in progress [6].

5.2 Register Banking
The OpenProcessor core is a RISC-based CPU with 32 reg-
isters. On each thread switch, all of these registers must be
saved to memory and filled with the state of the next thread
from memory. Even worse, on each involuntary kernel entry
(exception, interrupt), a considerable subset of these regis-

ters (namely those that are to be saved by the caller of a
function – the caller-saved registers) must be saved to pro-
tect them from changes by kernel code.

To reduce the cost of context switches and kernel entries,
[14] and [17] investigate the benefits of keeping multiple con-
texts in hardware by providing multiple register banks, each
of which can freely be assigned to a thread’s user-mode or
kernel-mode context. By assigning two banks to each thread,
one to its user-mode execution and one for its kernel-mode
execution, kernel entries come at virtually no cost. By ded-
icating banks to frequently used service threads (pagefault
handler, network and file system servers, . . .), communica-
tion with these services can be improved.

An evaluation of the effects and problems such as access
to other thread’s register state during IPC or sane bank
assignment strategies is in progress [17].

6. RELATED WORK
The OpenProcessor platform covers both reconfigurable hard-
ware and microkernel-based operating systems, so we relate
it to a limited set of previous works in both areas separately.

6.1 FPGA-Based Systems
Other systems that use FPGAs to facilitate modifications
to a given hardware platform exist. Most prominently, the
BEE3 platform [5], intended for system architecture research
with a focus on multi-core architectures, is a powerful plat-
form housing multiple Virtex 5 FPGAs and several GiB of
memory on custom built PCBs, assembled into standard
server racks. Though the platform is used successfully by a
number of research projects such as RAMP [18], it is rather
expensive and complex and not targeted at the interested
hobbyist developer as the OpenProcessor platform is.

ABACUS [11] employs FPGA technology to facilitate fast
program profiling by monitoring and analyzing most if not
all memory accesses in real time and providing statistical
results of memory access performance and bottlenecks. In
a way, this is close and even beyond one of the intended
research topics for which we developed the OpenProcessor
platform, but ABACUS is specialized (and limited) to mem-
ory access monitoring, whereas we aim at providing a general
research platform for system architecture.

There are also many processor cores available for synthe-
sis and instantiation on an FPGA. Most notably among
these are probably the free OpenSPARC T1/T2 [3], multi-
threaded open-source implementations of the 64 bit SPARC
v9 architecture provided and supported by Oracle (formerly
Sun Microsystems), and the community effort OpenRISC, a
32 or 64 bit processor with optional floating point support
that is hosted on opencores.org [2], together with a large
amount of additional free hardware source code. There are
even commercial processor cores available for licensing, e.g.,
the LEON family of SPARC v8 implementations (see [21]
for an overview), or Xilinx’ MicroBlaze processor [22], a re-
source efficient 32 bit processor especially designed to be im-
plemented on Xilinx FPGAs.

However, most of the cores above are either too large and
complex for our aims, target improvements of a single given

12

processor architecture, or are too much geared towards a
prescribed system architecture to leave much room for mod-
ifications in the areas that interest us most: virtual memory
management and context/thread management by the oper-
ating system.

6.2 Microkernel-Based Systems
The OpenProcessor KaOS kernel borrows heavily from the
L4 microkernel [10], especially with respect to the memory
mapping techniques and the IPC interface. Projects such as
L4VFS [16] that implement a subset of the POSIX API on
top of L4 seem to have ceased to exist.

MINIX 3 [9] is a well-known microkernel-based operating
system that implements the POSIX API and focuses on ro-
bustness. It is more mature and more thoroughly designed
than the the KaOS system, and available for the Intel x86
platform – ports to other architectures are planned.

7. CONCLUSION
We have presented the OpenProcessor platform, a fully func-
tional yet relatively simple computing platform that com-
prises both a customizable hardware basis (implemented in
the Verilog HDL) and a microkernel-based operating system
that provides a subset of the POSIX API through a number
of server applications.

The system is designed to foster research on the hardware
and is thus expected to be in constant flux with respect to its
interfaces and capabilities. As the system is small and sim-
ple enough to be instantiated on inexpensive, off-the-shelf
FPGA development boards, it is ideally suited as a basis
for hobbyist developers or students. Some student projects
have already confirmed that significant contributions can be
made in less than six months.

The source code for the complete OpenProcessor platform
is available upon request from the authors of this report.

8. REFERENCES
[1] GNU compiler collection. http://gcc.gnu.org/

(2010-07-13).

[2] OpenCores website. http://www.opencores.org/
(2010-07-13).

[3] OpenSPARC website. http://www.opensparc.net/
(2010-07-13).

[4] B. Ahues. Entwurf und Implementierung einer
erweiterten Speicherkontrolleinheit. Study thesis,
University of Karlsruhe, Aug. 2008.
http://os.ibds.kit.edu/97_357.php (2011-01-14).

[5] J. D. Davis, C. P. Thacker, and C. Chang. BEE3:
Revitalizing computer architecture research. Technical
Report MSR-TR-2009-45, Microsoft Research, Apr.
2009.

[6] S. Friedmann. Benchmark-based evaluation of
hardware-assisted page replacement strategies. Study
thesis, Karlsruhe Institute of Technology (KIT), Mar.
2011. http://os.ibds.kit.edu/97.php (to appear).

[7] J. R. Goldman. Coherency for multiprocessor virtual
caches. In Proceedings of the Second International
Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages
72–81, 1987.

[8] J. L. Hennessy and D. A. Patterson. Computer
Architecture: a Quantitative Approach. Morgan
Kaufmann, second edition, 1996.

[9] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Reorganizing UNIX for reliability. In
C. Jesshope and C. Egan, editors, Proceedings of the
Eleventh Asia-Pacific Conference (ACSAC), volume
4168 of Lecture Notes in Computer Science, pages
81–94. Springer, Sept. 2006.

[10] J. Liedtke. Towards real microkernels. In
Communications of the ACM, volume 39, pages 70–77,
Sept. 1996.

[11] E. Matthews, L. Shannon, S. Blagodurov,
S. Zhuravlev, and A. Fedorova. ABACUS: A
hardware-based software profiler for modern
processors. Poster and demo at the Fifth European
Conference on Computer Systems (EuroSys), 2010.

[12] S. Müller. Improving memory management with
hardware-generated memory access profiles. Study
thesis, University of Karlsruhe, June 2009.
http://os.ibds.kit.edu/97_1385.php (2011-01-14).

[13] OpenCores Organization. WISHBONE
System-on-Chip (SoC) Interconnection Architecture
for Portable IP Cores, Sept. 2002.

[14] S. Ottlik. Reducing overhead in microkernel based
multiserver operating systems through register banks.
Study thesis, Karlsruhe Institute of Technology (KIT),
Oct. 2010. http://os.ibds.kit.edu/97_2194.php
(2011-01-14).

[15] D. A. Patterson and J. L. Hennessy. Computer
Organization and Design, chapter A. Morgan
Kaufmann, third edition, Aug. 2004.

[16] M. Pohlack and B. Döbel. L4VFS: L4 virtual file
system layer, Sept. 2006.
http://demo.tudos.org/l4vfs_tutorial.html

(2010-07-13).

[17] V. van Santen. Design and implementation of multiple
register banks to improve context switch performance
on the OpenProcessor platform. Study thesis,
Karlsruhe Institute of Technology (KIT), Mar. 2011.
http://os.ibds.kit.edu/97.php (to appear).

[18] J. Wawrzynek, M. Oskin, C. Kozyrakis, D. Chiou,
D. A. Patterson, S.-L. Lu, J. C. Hoe, and K. Asanovic.
RAMP: A research accelerator for multiple processors.
Technical Report UCB/EECS-2006-158, EECS
Department, University of California, Berkeley, Nov.
2006.

[19] Wikipedia. Classic RISC pipeline, 2010.
http://en.wikipedia.org/w/index.php?title=

Classic_RISC_pipeline&oldid=364211949

(2010-07-28).

[20] Wikipedia. Delay slot, 2010.
http://en.wikipedia.org/w/index.php?title=

Delay_slot&oldid=370853871 (2010-07-28).

[21] Wikipedia. LEON, 2010. http://en.wikipedia.org/
w/index.php?title=LEON&oldid=366625033

(2010-07-28).

[22] Xilinx Inc. The MicroBlaze soft processor core.
http://www.xilinx.com/tools/microblaze.htm

(2010-07-13).

13

	2011,1_Titelbl.pdf
	The OpenProcessor Platform
	Fostering Research on the Hardware/Software Boundary

	ib-2011-1-2.pdf

