
Institut für Programmstrukturen und
Datenorganisation

Lehrstuhl Prof. Dr.-Ing. Klemens Böhm

Evaluation of Spatio-Temporal
Queries in Sensor Networks

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

an der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Inform. Markus Daniel Bestehorn

aus Bielefeld

Datum der mündlichen Prüfung: 17. Januar 2011
Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm
Zweiter Gutachter: Prof. Dr. rer. nat. Michael Gertz

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Acknowledgements

Several people contributed significantly to this dissertation. With this section, I would like to
express my deep gratitude towards these people and acknowledge their respective contributions.

Klemens Böhm is the person behind the research and the quality of this dissertation. He was
the person that taught me research from the beginning to the end and how to publish results.
Furthermore, I am grateful for his tireless editorial effort that improved the quality of my papers
and thus this dissertation: Whenever there was a graph with a font that is too big or to small, a
sentence too long or a verb that could be active instead of passive, Klemens was there to edit it. In
this context ”whenever” is meant literally: Looking through my inbox, I found mails with editorial
comments on papers ranging from 7 am to 12 pm, from Mondays to Sundays. Needless to say, we
never got a paper back from reviewers where the quality of presentation was not mentioned in a
positive way. This dissertation would have been a shadow of itself without his help.

The KIT database group, especially Erik Buchmann, Thorben Burghardt and Mirco Stern, has
been a constant source of inspiration, expertise and amusement. Most members of the database
group had to take time out of their schedules to read one of my papers at one point or another. Erik
always had valuable ideas for research and Mirco was a valuable sparring partner regarding papers
or opinions on different topics related to sensor networks. Thorben, in addition to being a great
colleague, co-designed a practical course with me which was valuable, because it made recruiting
students and getting them interested in sensor networks much easier.

The members of the ZeuS project, funded by the Landesstiftung Baden-Würtemberg, also influ-
enced this dissertation. Both papers on query dissemination are joint work with Zinaida Benenson
and Felix Freiling from the University of Mannheim. ZeuS helped to establish this connection and
was the initial basis for my interest in query dissemination. Furthermore, our energy measurements
to verify our results would not exist without the help of the Institute of Telematics, in particular
Mario Pink and Anton Hergenröder.

I also have to thank all my students who did a lot of coding, had to endure me as a supervisor and
conducted hundreds of experiments: The diploma thesis of Marek Jawurek is the foundation for our
papers on query dissemination. Matthias Klein implemented a mechanism that allows us to collect
evaluation statistics of arbitrary granularity from Sun SPOT sensor nodes over the air. Olga Ulmer
worked on the evaluation of spatio-temporal predicates with a relational database system which
is the baseline for all evaluations regarding spatio-temporal queries in sensor networks. Thomas

I

Thieringer implemented and evaluated our approach for in-network processing of spatio-temporal
predicates and developments. Tobias Schneider evaluated the spatio-temporal query processor on
Sun SPOT sensor networks and had to endure a lot of frustration while debugging software in
large sensor networks. Furthermore, I would like to thank my student assistants that helped me
to implement various pieces of software on Sun SPOT sensor nodes and publish a lot of software:
Sven Meisinger, Johannes Röder, Jürgen Czerny.

There are two exceptional students that are missing in the paragraph above. This is because their
work goes so far beyond anything one could expect from a student or a co-worker that it deserves
a separate paragraph: Stephan Kessler and Andreas Leppert. Andreas implemented and evaluated
a lot of existing query dissemination mechanisms which is frustrating because most of them only
work on paper. Stephan greatly influenced my work on spatio-temporal queries and designed and
implemented detection neighbor approximation mechanisms. In the early days, when Sun SPOTs
were not even available in Europe and most of the software was ”beta” at best, they helped me
to get a start on programming these little sensor nodes. Stephan and Andreas co-designed and
implemented a large portion of the KSN software which is currently used by Sun SPOT users in
more than 40 countries all over the world.

I would also like to thank the people from Sun Microsystems and Syntropy, in particular John
Daniels, Roger Meike, Dave Cleal, David G. Simmons and the other staff members of the Sun
SPOT project at the Sun Labs. Their responses to hundreds of questions by my students and me
on the developer mailing list as well as on forums have been a great help. In addition I would like
to thank Frank Schlichting who magically delivered Sun SPOTs directly into my office at a time
when buying them was not possible.

As with any success in life, one’s family and friends are those that make the success possible.
In particular, I would like to thank my parents, Maike and Kurt, for pushing me to stay at the
university and complete a doctoral degree. Furthermore, in cooperation with my sister Tina and
my brother Max, they always helped me to get my head up again when work frustrated me. My
family helped me to see the positive aspects whenever something negative happened. And finally
I would like to thank that unknown person that invented golf: In combination with my family and
friends, this game helped me through the worst setbacks during my doctoral work, because the
hole world collapses into a sphere of 42.67 millimeters and all computer science is left outside.

II

Zusammenfassung des Inhalts

Einleitung Fortschritte im Bereich der Mikroelektronik haben die Entwicklung von Sensornet-
zen ermöglicht. Dabei handelt es sich um Netzwerke, die aus batteriebetriebenen Kleinstrechn-
ern bzw. Sensorknoten bestehen. Sensorknoten können mittels drahtloser Kommunikation Daten
austauschen und über Sensorik Informationen über ihre Umgebung sammeln. Ein großer Anteil
der Anwendungen von Sensornetzen befasst sich mit der Beobachtung bzw. Überwachung von
beweglichen Objekten. Beispielsweise nutzen Wissenschaftler Sensornetze zur Erforschung der Be-
wegungsmuster von Tieren. Des weiteren werden Sensornetze von Behörden oder dem Militär
eingesetzt, um die Bewegung von Fahrzeugen oder Menschen zu überwachen.

Die Nutzung und Programmierung von Sensorknoten ist komplex, und hemmt deren Einsatz in
der Praxis. Forschungsergebnisse im Bereich Sensordatenbanken haben gezeigt, dass ein deklara-
tiver Zugriff dieses Problem löst. Existierende Ansätze erlauben dem Nutzer den Zugriff auf ein
Sensornetz durch Datenbank-Anfragen, z.B. mittels SQL. Die Anfrage wird dann in relationale
Operatoren zerlegt und durch das Sensornetz verarbeitet. Ein Beispiel für eine solche Anfrage ist
wie folgt:

”Wie hoch ist die aktuell gemessene Durchschnittstemperatur aller Sensorknoten?”

Problematisch hingegen sind Anfragen mit räumlich-zeitlicher Semantik, wie Forschung im Bereich
der so genannten Moving Object Datenbanken gezeigt hat: Diese Anfragen lassen sich mit rela-
tionalen Operatoren nur schwer oder gar nicht ausdrücken. Ein Beispiel für eine räumlich-zeitliche
Anfrage ist:

”Ist das Fahrzeug F in die Region R hinein gefahren?”

Das Informationsinteresse von Nutzern von Sensornetzen, die zur Beobachtung beweglicher Objekte
installiert wurden, hat typischerweise eine räumlich-zeitliche Semantik. Existierende, relationale
Anfrageprozessoren sind damit ungeeignet für Sensornetze, die für die Beobachtung von beweglichen
Objekten installiert wurden.

Zentraler Beitrag dieser Arbeit ist die Bereitstellung eines deklarativen Anfrageprozessors für
räumlich-zeitliche Anfragen in Sensornetzen. Zu diesem Zweck wurden erstmals räumlich-zeitliche
Anfrage-Operatoren für Sensornetze definiert, die dem Benutzer die Möglichkeit geben, die für ihn

III

interessante Objektbewegung abstrakt zu beschreiben. Dies ist schwierig, da bei der Definition die
Eigenschaften von Sensornetzen beachtet werden müssen, u.a.:

1. Sensorknoten können jederzeit temporär oder dauerhaft ausfallen, z.B. weil ihre Batterie leer
ist.

2. Mechanismen zur Detektion von Objekten sind typischerweise ungenau, d.h. die Position eines
detektierten Objektes lässt sich nicht genau bestimmen.

Insgesamt ist also die Information, die ein Sensornetz über die Bewegung eines Objektes sammeln
kann, in der Regel unvollständig und ungenau. Dies verhindert auch die Anwendung von Moving
Object Datenbanken, denn diese setzen beispielsweise voraus, dass festgestellt werden kann, ob ein
Objekt sich innerhalb, außerhalb oder auf der Grenze einer Region befindet.

Basierend auf der Definition von Anfrage-Operatoren zeigt diese Arbeit außerdem, wie räumlich-
zeitliche Anfragen effizient verarbeitet werden können: Effizienz bezieht sich in Sensornetzen vor
allem auf Kommunikation zwischen Sensorknoten, da das Austauschen von Informationen am meis-
ten Energie verbraucht, z.B. um Größenordnungen mehr als Rechenoperationen. Sowohl bei der
Verteilung der Anfrage als auch bei deren Verarbeitung ist Kommunikation notwendig. Diese Ar-
beit geht auf beide Punkte ein: Für die Verteilung der Anfrage wird ein Optimierungsverfahren
vorgestellt, welches redundante Weiterleitungen der Anfrage vermeidet. Für die effiziente Ver-
arbeitung von räumlich-zeitlichen Anfragen werden Verfahren vorgestellt, die eine Verarbeitung
im Sensornetz erlauben. Diese sparen im Vergleich zu relationalen Anfrageprozessoren durch
geschickte Kombination von räumlich-zeitlicher Semantik mit der räumlichen Korrelation von
Objekt-Detektionen verschiedener Sensorknoten bis zu 90% Kommunikation ein.

Räumlich-Zeitliche Anfrage-Operatoren Der im Rahmen dieser Arbeit entwickelte An-
frageprozessor basiert auf Prädikaten, die das räumliche Verhältnis zweier Entitäten ausdrücken.
Beispielsweise ist das Prädikat Inside (O,R) wahr, wenn sich das Objekt O innerhalb der Region
R befindet. Eine Region ist dabei definiert als Punktmenge, die von einer Linie, der sogenannten
Grenze, umgeben ist. Um eine räumlich-zeitliche Anfrage auszudrücken können Benutzer mit-
tels verschiedener Operatoren Prädikate konkatenieren, um so die für sie interessante Bewegung
zu beschreiben. Ein Objekt, das dieser Anfrage entspricht und damit zum Anfrageergbnis gehört,
muss sich so bewegen, dass die Prädikate in der durch die Konkatenation vorgegebenen Reihenfolge
wahr werden.

Um für jedes Objekt O definitiv entscheiden zu können, ob ein Prädikat wie Inside (O,R) wahr
ist, muss das Sensornetz strikte Bedingungen erfüllen, z.B. muss die Position eines Objektes mittels
Sensorik exakt bestimmbar sein. Diese Bedingungen wurden im Rahmen dieser Arbeit untersucht
und es zeigt sich, dass die meisten Sensornetze diese nicht erfüllen. Um auch in Sensornetzen,
die diese Bedingungen nicht erfüllen, räumlich-zeitliche Anfragen ausführen zu können, wurde ein
Approximationsverfahren entwickelt. Das Approximationsverfahren liefert für jede Anfrage drei
Objektmengen: Die erste Menge enthält alle Objekte, deren Bewegung sicher zur Anfrage passen,
und die zweite Menge alle Objekte, deren Bewegung sicher nicht zur Anfrage passen. Die dritte

IV

Menge enthält alle diejenigen Objekte, die möglicherweise die Anfrage erfüllen, aber bei denen eine
definitive Aussage nicht möglich ist, z.B. weil die Position eines Objektes nicht genau bestimmt
werden kann. Für dieses Approximationsverfahren wurden im Rahmen der Arbeit zwei wichtige
Eigenschaften formal bewiesen:

1. Das Verfahren ist auf beliebige Sensornetze anwendbar.
2. Die Approximation ist optimal hinsichtlich der Qualität des Anfrageergebnisses.

Die Definition einer Region als Menge von Punkten, ist in einigen Anwendungsbereichen von Sensor-
netzen problematisch und unnötig komplex. In diesen Anwendungsbereichen formulieren Benutzer
Anfragen, die sich auf die Bewegung von Objekten im Verhältnis zu einer Menge von Sensorknoten
beziehen. Diese Arbeit definiert zum ersten Mal die Semantik räumlich-zeitlicher Anfragen, die
sich auf solche Mengen von Sensorknoten beziehen.

Verteilung von Anfragen Vor der Verarbeitung einer Anfrage muss diese zuerst an alle oder
einen Teil des Sensornetzes verteilt werden. Ein gängiges Verfahren dafür ist probabilistisches Fluten
bei dem jeder Sensorknoten mit Wahrscheinlichkeit P die Anfrage an seine direkten Nachbarknoten
weiterleitet. Ist P zu niedrig, werden nicht alle Sensorknoten erreicht. Wenn zu hoch P ist erhalten
viele Sensorknoten die Anfrage mehrfach und verschwenden dadurch Energie.

Im Rahmen dieser Arbeit wurde ein Optimierer für P entwickelt, der mit Hilfe grober Informa-
tion über die Topologie des Sensornetzes den Parameter P so bestimmt, dass alle Sensorknoten
erreicht werden, aber die Kommunikation minimiert wird. Die Topologie-Information ist dabei
so gewählt, dass sie ohne viel Aufwand beschafft werden kann oder in den meisten Sensornetzen
schon vorliegt, z.B. in Datenstrukturen von Routing-Protokollen. Die Evaluation des Verfahrens
zeigt deutlich, dass die Anwendung des Optimierers zu einer signifikanten Reduktion der benötigten
Kommunikation beim Verteilen der Anfrage an alle Sensorknoten führt.

Verarbeitung räumlich-zeitlicher Anfragen Diese Arbeit zeigt für die verschiedenen, oben
genannten Arten von Anfragen, welche Informationen essentiell benötigt werden, um ein einzelnes
Prädikat oder eine ganze räumlich-zeitliche Anfrage im Sensornetz auszuwerten. Die zentrale Idee
dabei ist, die räumliche Korrelation von Objektdetektionen verschiedener Sensorknoten geschickt
mit der Semantik der gestellten Anfrage zu kombinieren. Auf Basis eines formalen Rahmenwerks
kann ein Sensorknoten, der ein Objekt detektiert, bestimmen, welche der Sensorknoten in seiner
Nachbarschaft das Objekt gleichzeitig noch detektieren könnten. Unter Berücksichtigung der An-
frage lässt sich dann entscheiden, ob und mit welchen dieser Knoten Informationen ausgetauscht
werden müssen. Dies führt bei ca. 50% der Objektdetektionen dazu, dass ohne Kommunikation
zwischen Sensorknoten entschieden werden kann, ob die detektierte Bewegung für die Anfrage rel-
evant ist bzw. ein Prädikat wahr ist. Sollte Kommunikation notwendig sein, wurden im Rahmen
der Arbeit verschiedene Strategien entwickelt, wie Sensorknoten Informationen über Objekte aus-
tauschen können. Welche dieser Strategien zu einem bestimmten Zeitpunkt am effizientesten ist
hängt von zahlreichen Faktoren ab, u.a. der Position des Sensorknotens, seiner Umgebung und der

V

Struktur der Anfrage.
Alle vorgestellten Mechanismen wurden evaluiert und mit den existierenden relationalen Anfrage-

prozessoren verglichen. Die Evaluation wurde sowohl mit Hilfe von Simulationen als auch durch
Installation eines Sensornetzes von 50 Sun SPOTs Sensorknoten durchgeführt. Dabei zeigt sich,
dass die entwickelten Verfahren zur Auswertung von räumlich-zeitlichen Anfragen die benötigte
Kommunikation um 45% bis 90% senken.

Fazit Diese Arbeit bildet die Grundlage für die Verarbeitung von deklarativen, räumlich-zeitlichen
Anfragen in Sensornetzen, die für die Beobachtung von beweglichen Objekten installiert worden
sind. Neben Erkenntnissen zur Modellierung von Detektionsmechanismen und der Formalisierung
von Informationen wurde auch grundlegend untersucht, welche räumlich-zeitlichen Anfragetypen
speziell in Sensornetzen auftreten. Für jeden Anfragetyp wurden die Bedingungen untersucht,
die ein Sensornetz für eine exakte Bearbeitung erfüllen muss, und die Semantik solcher Anfragen
definiert. Des Weiteren wurde gezeigt, wie räumlich-zeitliche Anfragen effizient in Sensornetzen ve-
rarbeitet werden können. Darüber hinaus wurde ein Optimierer zur Reduktion der Kommunikation
bei der Anfrageverteilung entwickelt.

VI

Contents

1 Introduction 1
1.1 Application Examples . 2

1.1.1 Application Example 1: Surveillance . 3
1.1.2 Application Example 2: Animal Tracking . 4
1.1.3 Scope and Assumptions . 5

1.2 Contributions and Outline of this Dissertation . 6

2 Technical Background 9
2.1 Sensor Network Platforms and Architecture . 9

2.1.1 State-of-the-Art on Sensor Nodes . 9
2.1.2 Communication in Sensor Networks . 14
2.1.3 Energy Supply and Consumption . 16
2.1.4 Impact of Future Developments . 18
2.1.5 Summary . 19

2.2 Fundamentals of Moving Object Databases . 20
2.2.1 Point-Set Topology . 20
2.2.2 Spatial and Spatio-Temporal Predicates . 22
2.2.3 Spatio-Temporal Developments . 24
2.2.4 Moving Object Databases vs. Sensor Networks 26

2.3 Processing Relational Queries in Sensor Networks . 27
2.4 Summary . 28

3 Semantics of Spatio-Temporal Queries 31
3.1 Node and Detection Model . 32
3.2 Point-Set Topology for Sensor Networks . 35
3.3 Deriving Predicate Results from Object Detections . 38

3.3.1 Predicate Results for Regions . 41
3.3.2 Predicate Results for Zones . 45
3.3.3 Static and Dynamic Zones . 48

VII

3.3.4 Summary . 49
3.4 Spatio-Temporal Developments . 50

3.4.1 Irregularity of Zones and Concatenation . 50
3.4.2 A Canonical Collection of Spatio-Temporal Developments 52
3.4.3 Formal Description of Object Detection Sequences 61
3.4.4 Detection Terms . 63

3.5 Summary . 70

4 Query Dissemination in Sensor Networks 71
4.1 Problem Statement . 71
4.2 Dissemination of Spatio-Temporal Queries . 73
4.3 Performance Study on Existing Dissemination Approaches 74

4.3.1 Existing Dissemination Approaches . 75
4.3.2 Experimental Setup . 80
4.3.3 Results and Analysis . 82
4.3.4 Discussion . 89

4.4 Optimizing Probabilistic Query Dissemination . 89
4.4.1 Topology Information . 90
4.4.2 Reachability Prediction . 94
4.4.3 Estimating Energy Consumption . 96

4.5 Evaluation . 97
4.5.1 Simulation . 98
4.5.2 Break-Even Analysis . 103
4.5.3 Sun SPOT Case Study . 104

4.6 Summary . 106

5 Energy-Efficient Processing of Spatio-Temporal Queries 107
5.1 Preface . 107
5.2 Data Structures and Algorithms . 108

5.2.1 Detection Scenario Computation . 110
5.2.2 Memory Requirements and Management . 111

5.3 Centralized Strategy . 112
5.4 Distributed Object-Information Collection . 113

5.4.1 Reactive Strategy . 117
5.4.2 Proactive Strategy . 119
5.4.3 ZIP – Zone Information Protocol . 121
5.4.4 Detection Neighbor Approximation . 124
5.4.5 Failure Handling . 125
5.4.6 Distributed Notification Filtering . 126

5.5 Evaluation . 131

VIII

5.5.1 Static Zones – Evaluation . 131
5.5.2 Dynamic Zones – Evaluation . 137

5.6 Summary . 138

6 Conclusion and Future Work 139
6.1 Summary . 139
6.2 Future Work . 141

6.2.1 Queries with non-identifiable Objects . 141
6.2.2 Detection Cost Optimization . 142
6.2.3 Object-Object, Region-Region and Region-Zone Predicates 142
6.2.4 Approximation of Detection Neighbors . 143
6.2.5 Advanced Concatenations and Predicates . 145
6.2.6 Querying the Movement of Humans with Privacy-Related Position Obfuscation145

List of appendices

A Energy Consumption Profile of Sensor Nodes 147
A.1 Experimental Setup . 147
A.2 Results and Analysis . 148

A.2.1 Impact of Communication on node lifetime . 148
A.2.2 Energy consumption of sending and receiving 149
A.2.3 Impact of energy-aware MAC protocols . 151

A.3 Lessons Learned . 153

B Spatio-temporal queries with relational operators 155
B.1 Relational Schema . 156
B.2 Expressing a Spatio-Temporal Query using SQL . 156

B.2.1 Step 1 – Computing OutsideDetectedv . 157
B.2.2 Step 2 – Computing InsideDetectedv . 159
B.2.3 Step 3 – Computing DisjointViewv . 161
B.2.4 Step 4 – Computing InsideViewv . 165
B.2.5 Step 5 – Assembling the subqueries . 167

B.3 Relational Schemas and Regions . 167
B.4 Lessons Learned . 168

C The Karlsruhe Sensor Networking Project 169
C.1 KSN Testbed . 169
C.2 KSN Serialization and Collections . 170

C.2.1 The KSN Serialization Process . 172
C.2.2 Study of Serialization Overhead . 178

IX

C.3 KSN Radio Stack . 181
C.3.1 Design Targets and Overview . 183
C.3.2 Layers of the KSN Radio Stack . 184
C.3.3 Evaluation and Summary . 193

C.4 KSN Simulator . 194
C.4.1 Components of the Simulator . 194
C.4.2 Squawk Adaptation Layer . 195

C.5 KSN Management Application . 198
C.5.1 Main Concepts . 198
C.5.2 Evaluation . 200

D A Topology Discovery Protocol 205
D.1 Overview – Echo-based Topology-Discovery . 205
D.2 Expansion wave . 206
D.3 Contraction wave . 209

List of Figures

1.1 Illustration of a surveillance application . 4
1.2 Illustration of an animal-tracking application . 4

2.1 A Sun SPOT sensor node and its components . 10
2.2 Mica motes: Mica2 (left) and Mica2Dot (right) . 12
2.3 Illustration of B-MAC [105] . 17
2.4 9-Intersection Model for two spatial entities a and b 22
2.5 Spatial Predicates for object/region relations . 22
2.6 9-Intersection representation of spatial predicates (a = oi and b = r) 22
2.7 Development graph for object-region predicates . 25
2.8 Development tree for developments starting

with Disjoint (O,R) . 25

3.1 Illustration of the node model . 33
3.2 PEO

t (S1) based on Dmax . 34
3.3 PEO

t (S1) with a distance estimating detection mechanism 34
3.4 PEO

t (S1) with a position-precise detection mechanism 34
3.5 Illustration of the space partitions for a zone Z . 37
3.6 Example of detection areas, detection ranges and a region 39
3.7 Development graph for an object O and a region R . 53
3.8 Development Graph for an object O and a zone Z . 54
3.9 Development tree with root Disjoint (O,R) . 55
3.10 Development tree with root Meet (O,R) . 55
3.11 Development tree with root Inside (O,R) . 55
3.12 Development tree with root Disjoint (O,Z) . 57
3.13 Development tree with root Meet (O,Z) . 58
3.14 Development tree with root Undetected (O) . 59
3.15 Development tree with root Inside (O,Z) . 60

4.1 Additional area covered by a rebroadcast of node SB after receiving a query from SA 72

XI

4.2 Additional area covered by a rebroadcast of node SC after SA and SB received the
query . 72

4.3 IPD-Setup for the evaluation of existing dissemination algorithms 81
4.4 Grid-Setup . 81
4.5 Setup for broadcast reachability study . 87
4.6 Direct broadcast . 92
4.7 Indirect broadcast . 92
4.8 Reverse broadcast . 92
4.9 Illustration of the Hop-Set model . 93
4.10 Example: Uniform Topology (Node Degree 12) . 99
4.11 Example: Gaussian Topology (325 Nodes) . 99
4.12 Simulation result for uniform distribution with average node degree 4 (125 nodes) . . 101
4.13 Simulation result for uniform distribution with average node degree 8 (225 nodes) . . 101
4.14 Simulation result for uniform distribution with average node degree 12 (325 nodes) . 101
4.15 Simulation result for uniform distribution with average node degree 16 (425 nodes) . 101
4.16 Simulation result for Gaussian distribution with 125 nodes 102
4.17 Simulation result for Gaussian distribution with 225 nodes 102
4.18 Simulation result for Gaussian distribution with 325 nodes 102
4.19 Simulation result for Gaussian distribution with 425 nodes 102
4.20 Map of 17 Sun SPOTs and a Base Station deployed at the IPD 105

5.1 Border Nodes . 115
5.2 Detection events when O moves into Z (S1 ∈ Z, S2 ∈ Z) 117
5.3 Detection events when O leaves Z (S3 ∈ Z, S4 ∈ Z) . 117
5.4 Sensor network before S2 leaves the zone Z (S2,S3 ∈ Z) 122
5.5 Sensor network after S2 left the zone Z (S3 ∈ Z) . 122
5.6 Example for redundant notifications . 127
5.7 Illustration of the filter layer with a zone Z = {S7,S8} 129
5.8 Scalability of data-collection strategies . 132
5.9 Communication per detection-scenario . 132
5.10 Case Study: Sun SPOT positions and object path . 133
5.11 Outdoor Deployment of 50 Sun SPOT nodes . 135
5.12 Ground view of nodes deployed on trees . 135
5.13 Scalability with dynamic zones . 137

6.1 Approximating detection neighbors based on communication neighbors 144
6.2 Reduction of radio output power to approximate detection neighbors 144
6.3 Link-quality based detection neighbor approximation 144
6.4 Detection neighbor approximation based on 2-hop neighbors 144

A.1 Circuit diagram for energy measurements . 148
A.2 Sensor Node Management Device [60] and attached Mica Mote 148
A.3 Node lifetime measurement result . 149
A.4 Energy Consumption for communication . 151
A.5 Energy consumption with B-MAC [105] . 152
A.6 Illustration of B-MAC [105] . 152

B.1 OutsideDetectedv – Node detected object before joining Z 159
B.2 OutsideDetectedv – Node detected object after joining Z 159
B.3 OutsideDetectedv – Node detected object while joining Z 159
B.4 OutsideDetectedv – Node detected object while leaving Z 159
B.5 InsideDetectedv – Node is in Z while detecting object 161
B.6 InsideDetectedv – Node detects object while leaving Z 161
B.7 InsideDetectedv – Node detects object while joining Z 161
B.8 InsideDetectedv – Node joins and leaves Z while detecting object 161

C.1 The KSN Testbed: 41 Sun SPOTs deployed at the IPD 170
C.2 Structural information requiring serialization in a double linked list 172
C.3 Hierarchical class names in Java . 177
C.4 Performance of basic KSN Serialization . 180
C.5 Performance of basic KSN Serialization . 181
C.6 Performance of KSN Serialization with Class-Name Compression 181
C.7 Node topology for the radio stack reliability experiment 181
C.8 Reliability of the default radio stack for Sun SPOTs . 182
C.9 Overview of the KSN Radio Stack . 183
C.10 SHP – Unicast Packets . 186
C.11 SHP – Unicast Control Flow . 186
C.12 SHP – Broadcast Packets . 187
C.13 SHP – Broadcast Control Flow . 187
C.14 AODV – Route requesting and reporting . 188
C.15 Network topology example with four nodes and their links 190
C.16 Multi-Hop message forwarding with a broken link . 191
C.17 Reporting and invalidating broken links . 192
C.18 Successful multi-hop communication and end-to-end acknowledgment 192
C.19 Node topology for the reliability experiment using the KSN Radio Stack 193
C.20 Components and their interactions in the KSN Simulator 195
C.21 KSN Node Framework and Squawk Adaption Layer . 196
C.22 Serial distribution scheme . 199
C.23 Domino distribution scheme . 199
C.24 Tree distribution scheme . 200

C.25 Node Setup for the Evaluation of the KSN Management Application 201

D.1 Example network to illustrate the topology-discovery process 206

Chapter 1

Introduction

A sensor network consists of many sensor nodes deployed over an area to acquire data through sens-
ing. Typically, sensor nodes are battery-powered, miniature computers equipped with application-
specific sensing hardware and a wireless communication interface. These devices have several
advantages over traditional passive sensors which modulate a voltage based on some environmen-
tal parameter, e.g., temperature: Sensor nodes do not require any infrastructure such as wiring
to forward measured values or a permanent power supply. This reduces deployment costs by up
to 90% [127]. Furthermore, they can be applied to scenarios where data must be acquired from
remote areas where such infrastructure is unfeasible, e.g., Antarctica [33] or on glaciers [59, 87]. Ad-
ditionally, the computational capabilities and wireless communication allow sensor nodes to filter,
combine and preprocess data acquired by sensing.

These advantages led to numerous deployments of sensor networks for scientific [20, 23, 33, 59,
63, 69, 70, 85, 123], industrial [43, 56, 76, 88] or surveillance [7, 52, 57, 58, 77, 138] purposes. Each of
these applications has different requirements, e.g., regarding sensing hardware or the capabilities of
the nodes. These different requirements resulted in the development of a large number of different
sensor nodes [3, 35, 41, 97, 120, 131] programmed in various languages [49, 100, 111] using different
types of sensing hardware [4, 19, 80, 114, 119] and software platforms [34, 61, 116, 121]. Thus,
the notion of a sensor network is by no means well-defined and reusing software developed for
one application is difficult unless the exact same nodes with the same sensors are used. Hence,
for most applications software and sometimes even hardware had to be developed from scratch.
This, in combination with the complexity of programming applications for such distributed systems
using unreliable, wireless communication is in the way of easy deployment and usability of sensor
networks.

Research on sensor networks has demonstrated that accessing sensor networks using declarative
queries similar to database systems is a promising approach to solve these problems [17, 18, 50, 133]:
Users view the sensor network as a relational database and describe the data they are interested in
using a query language, e.g., SQL. A query processor installed on each node takes care of sensing,

1

1.1. APPLICATION EXAMPLES

collecting, aggregating and routing the requested information. This declarative approach provides
a uniform way to access the data acquired through sensor networks, can be reused in different
applications and frees the user from details on node platforms, communication protocols or sensing
hardware.

So far, the focus of research on declarative query processing in sensor networks has been relational
queries [2, 28, 31, 65, 66, 81, 82, 84]. This is problematic for a significant portion of sensor networks,
namely those deployed to track moving objects, e.g., animals [23, 69, 85] or vehicles [7, 58, 138].
Users of these sensor networks are interested in the movement of objects, i.e., their queries have a
spatio-temporal semantic. However, expressing spatio-temporal semantics using relational operators
results in very complex queries [130] that are ”hopelessly inefficient to process” [53]. This is because
modeling movement over time requires special data types and operators not offered by relational
databases and the existing query processors for sensor networks as well. This dissertation is the
first that addresses the semantics and processing of spatio-temporal queries in sensor networks.

For traditional database systems, researchers have proposed Moving Object Databases which
support spatio-temporal queries [22, 40, 54, 125]. As this dissertation shows, a straightforward
application of these research results is not possible due to well-known limitations of sensor networks:
for example, moving objects databases model objects as a single point and regions as point sets. This
implies that information on moving objects and regions is complete and accurate. We investigate
the relevant properties of sensor networks and show that only a fraction of sensor networks can
acquire information of such quality. This dissertation provides semantics for spatio-temporal queries
applicable to all types of sensor networks. This is challenging, because these semantics must
cope with the intricacies of sensor networks, e.g., node failures, incomplete object trajectories and
different precisions of sensing hardware. Furthermore, we address the energy-efficient dissemination
and processing of spatio-temporal queries.

The remainder of this chapter is organized as follows: Section 1.1 reviews existing deployments
and introduces two application examples for object tracking sensor networks which serve as an ex-
ample throughout this dissertation. In Section 1.2 we point out the contributions of this dissertation
and outline its content.

1.1 Application Examples

Generally, sensor network applications can be classified as either monitoring or tracking applica-
tions [83]. Monitoring applications use sensor nodes to observe phenomena and report data on
these phenomena to the user, i.e., users are interested in a set of sensor readings. One example for
a monitoring application is [87]: For this deployment, sensor nodes were deployed on top, inside
and below a glacier to monitor pressure, temperature and tilt. A user of this system could be
interested in the temperatures measured inside the glacier. Viewing such a sensor network as a
table/relation is simple and the aforementioned research has shown that accessing the information
obtained using relational queries is promising.

2

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

In a sensor network deployed for tracking, users are interested in the movement of objects. We
describe two applications of object-tracking sensor networks in detail and provide examples for
spatio-temporal queries in sensor networks in the following. Additionally, we use these scenarios to
limit the scope of this dissertation and introduce a set of assumptions. Furthermore, the examples
allow us to introduce the four general types of spatio-temporal queries in sensor networks. This
dissertation shows that each type has different requirements regarding the capabilities of the sensor
network.

1.1.1 Application Example 1: Surveillance

Figure 1.1 illustrates an application from vehicle-target detection and classification called ”A line
in the Sand” [7]. In this application, sensor nodes are deployed to track vehicles moving in an area.
An example for a spatio-temporal query in this application is ”Which vehicles Vi have entered the
restricted access region R?”.

Each node is equipped with sensing hardware to detect and classify moving objects, i.e., a
node can determine if an object is a pedestrian or a vehicle. [7] discusses several approaches for
detection of vehicles and humans: Sophisticated hardware like radar or laser scanners allows precise
localization of objects. Ultrasonic range finders determine the distance of objects to the detecting
node, but not their exact position. Contrary to this, acoustic or thermal sensing hardware only
allows nodes to determine if an object is in the vicinity of the node. Hence, while there exist
detection mechanisms that determine if a detected object is inside the region, on the border or
outside, this is not true for a large portion of detection mechanisms used in sensor networks. The
semantics for spatio-temporal queries must be defined in a such way that they take into account
different precisions of detection mechanisms.

Another issue discussed in [7] is the possibly uncontrolled deployment of sensor nodes for surveil-
lance applications: Particularly for military applications it is often unfeasible to deploy nodes
manually, e.g., because the observed area is controlled by enemy forces. Hence, sensor nodes may
be dropped out of an airplane which might result in unobserved areas and other anomalies [6].
These areas must be taken into consideration when processing spatio-temporal queries in sensor
networks.

For the query above, the region R is a set of points specified by a polygon. Since the polygon
implicitly enumerates all points inside the region and does not change over time, we refer to this
type of region as static region. Another possible way to define a region is the specification of
constraints for measurable values, i.e., the set of points inside the region changes over time. For
example a set of constraints could identify underwater oil-spills and define the region based on this
constraint. In this case, the user is interested in the movement of objects, e.g., boats or animals,
in relation to the oil-spill. We refer to this type of region as dynamic region.

We show that sensor networks must meet relatively strict requirements to provide accurate results
for spatio-temporal queries related to regions. Particularly dynamic regions are problematic and we
show that sensor networks typically cannot make a statement regarding the topological relation of a

3

1.1. APPLICATION EXAMPLES

Figure 1.1: Illustration of a surveillance applica-
tion

Figure 1.2: Illustration of an animal-tracking ap-
plication

moving object and a dynamic region. Users of sensor networks address this issue by observing object
movement in relation to a set of nodes as the second application example shows. For static regions,
we provide an approximation approach that is applicable to any kind of detection mechanism and
prove that this approximation is optimal regarding result quality.

1.1.2 Application Example 2: Animal Tracking

Tracking animals at large temporal and spatial scales is important for understanding their behaviour
and the influence of external factors on their habitat [23, 74]. Sensor Networks are well suited to
allow this, because they can be deployed over large areas and allow observation of vertebrates such
as caribous [91, 110] without intrusion. The following query is an example for a spatio-temporal
query scientists studying caribous using a sensor network as illustrated in Figure 1.2 could issue:
”Which caribous Ci have moved into the tree-covered swamp area on the south-western side of the
river?”

The swamp area that is covered by trees on the south-western side of the river can be modeled
as set of points. Thus, processing the spatio-temporal query would require exact recording on the
location of trees, the swamp and the river. For most sensor network deployments this is impractical.
Instead, the majority of these scientific applications use a controlled deployment, i.e., deployments
are typically carefully planned to observe an area of interest [47]. The controlled deployment
allows recording properties of the surroundings for each node during deployment, i.e., before the
nodes start sensing. Examples for such properties are, if a node is deployed inside the forest or
in a treeless area, close to food resources, in the swamp or in a calving area. This information

4

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

allows users to derive a set of nodes that are inside the area of interest: for example, all nodes
in the tree-covered swamp area on the south-western side of the river (black colored circles in
Figure 1.2). It is sufficiently accurate for the purpose of such an installation if the sensor network
observes caribou movement in relation to this set of nodes. We refer to such a set of nodes as zone
to distinguish it from the term ”region” which describes a point set. In Figure 1.2, the zone is
represented by all black-colored circles and users of these sensor networks typically express their
interest as follows: ”Which caribous Ci have entered the zone Z?” This dissertation is the first to
address spatio-temporal queries regarding zones and we define the semantics for these queries in
Chapter 3.

If the zone is determined based on deployment data, the zone does not change over time, i.e., it
is a static zone. Users can also define a zone based on constraints on measurable phenomena. An
example of such a zone is the set of nodes that currently measure temperatures below 0○C. Similar
to the spatial extend of a dynamic region, the nodes in this zone can obviously change over time
and thus we refer to this type of zone as dynamic zone.

1.1.3 Scope and Assumptions

The applications above limit the scope of this dissertation. We are interested in a declarative
interface for sensor networks that observe moving objects. Thus, we limit our discussion to queries
regarding the spatio-temporal relationship between a moving object and the following four types
of regions/zones:

Static region: A set of points that is constant over time.
Dynamic region: A set of points whose shape and size changes over time.
Static zone: A set of nodes that is constant over time.
Dynamic zone: A set of nodes where nodes are added/removed over time.

We leave aside queries aimed at the topological relationship of two regions, lines and regions, lines
and lines etc.

Additionally, the applications also include implicit assumptions: We assume that nodes are
stationary, i.e., they do not move after the deployment is finished and the nodes start sensing. Once
sensing has started, nodes are able to distinguish between query-relevant objects and irrelevant ones.
This means that if the query is interested in vehicles, the detection mechanism allows each node
to distinguish vehicles from any other kind of moving object, e.g., pedestrians or animals. This
assumption is feasible, because detection mechanisms are typically designed for a specific type of
object. For example, mechanisms for the detection of animals, e.g., acoustic animal recognition [80],
already filter irrelevant events. Other detection mechanisms for animals rely on collars [69, 91]
attached to individuals of the observed species, i.e., animals without a collar remain undetected.

The detection technologies mentioned above typically allow the identification of these individuals
as well which is important for complex spatio-temporal queries. For instance, if node Si detects a
certain object and another node Sj detects the same object later on, the sensor network can derive

5

1.2. CONTRIBUTIONS AND OUTLINE OF THIS DISSERTATION

that the same object was detected twice. Such an identification is typically available, e.g., through
identification numbers on the collars, characteristical noise patters or ferro-magnetical signatures
(cf. [7] for several examples).

1.2 Contributions and Outline of this Dissertation

This dissertation is the first that addresses spatio-temporal queries in sensor networks and its major
contributions are as follows:

C.1 Spatio-Temporal Semantics: We define the semantics of spatio-temporal queries in
sensor networks based on object detections by sensor nodes. First, we develop a formal model that
provides a layer of abstraction for the information acquired through object detection mechanisms
of arbitrary precision. Based on this abstraction we define the semantics of spatio-temporal queries
involving regions as well as zones. We integrate these semantics into the foundations of moving
object databases which is challenging because the semantics also have to take into account the
properties of sensor networks, e.g., unobserved areas, node failures or inaccurate object detection.
The integration is important, because it allows the application of existing results for Moving Object
Databases to sensor networks, e.g., spatio-temporal query languages like [39].

As we show, particularly regions are problematic in combination with inaccurate detection mech-
anisms and unobserved areas. To solve this problem, we propose an approximation approach that
partitions objects detected into three subsets: Objects that definitely conform to a spatio-temporal
query, objects that might conform and objects that definitely do not conform. We formally prove
for this approximation approach that it is optimal, i.e., that a sensor network cannot provide a
better result under non-restrictive assumptions.

In addition, we investigate the semantical depth of our approach in the context of regions as well
as zones and compare it to moving object databases.

C.2 Query Dissemination: There has been a plethora of research aimed at efficient broad-
casting techniques and query dissemination. In many cases, the existing mechanisms have been
solely evaluated using simulations. We conduct a performance study of a representative subset of
the existing mechanisms using a Sun SPOT deployment to disseminate spatio-temporal queries.
The most important result of this study is that particularly highly sophisticated mechanisms often
cannot cope with the nature of sensor networks.

Based on the results of the performance study, we derive that probabilistic broadcasting is a
promising approach. With this approach, upon receiving a query, every node has a probability P
to forward the query. Finding a minimal value for P where all nodes receive the query is an opti-
mization problem. We develop an optimizer for probabilistic query dissemination and demonstrate
its efficiency using simulations as well as a Sun SPOT deployment.

C.3 Efficient Processing: Based on the semantics (C.1), we develop a spatio-temporal query
processor for sensor networks that derives results for spatio-temporal queries efficiently. To derive
results, sensor nodes must collect information on objects and their movement. A naive approach

6

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

to do so is sending all information about detected objects to the base station. But we show that
this is prohibitive regarding energy consumption. Thus, we propose two strategies which allow
in-network computation of results. These strategies differ in the way they collect from nodes close
to each other. By combining the spatial correlation of object detection and the semantics of spatio-
temporal queries, both strategies reduce the number of messages significantly. Our evaluation based
on simulations as well as several Sun SPOT deployments shows that in-network strategies reduce
communication by 45% to 89%, compared to collecting all information at the base station.

The remainder of this dissertation is organized as follows: Chapter 2 explains the basic concepts
of Moving Object Databases and investigates the challenges of processing spatio-temporal queries
in sensor networks. Additionally, Chapter 2 reviews related work and discusses the impact of future
developments regarding the hardware used in sensor networks. Chapter 3 defines the semantical
foundations of spatio-temporal queries in sensor networks (C.1). The details of our work on
query dissemination (C.2) are presented in Chapter 4. This includes a performance study of a
representative subset of existing approaches for query dissemination in a real sensor network. After
the queries has been disseminated to sensor nodes, spatio-temporal queries must be processed with
as little energy consumption as possible. Chapter 5 provides in-network processing strategies for
spatio-temporal queries (C.3). We conclude in Chapter 6 and sketch directions for future research
on spatio-temporal query processing in sensor networks.

Parts of this dissertation were originally published in shortened form in [13] (Semantics), [8, 12]
(Query dissemination) and [14, 15] (Energy-efficient processing).

7

1.2. CONTRIBUTIONS AND OUTLINE OF THIS DISSERTATION

8

Chapter 2

Technical Background

In this chapter, we provide further information on moving object databases, relational query pro-
cessing in sensor networks and sensor node hardware in general. Most importantly, we review
related work and show that neither existing query processors for sensor networks nor moving ob-
ject databases are feasible alternatives for accessing object tracking sensor networks declaratively.
Additionally, we show that the challenges addressed in this dissertation will persist even if future
developments on node hardware, communication protocols etc. are taken into account.

2.1 Sensor Network Platforms and Architecture

The term ”sensor network” is by no means well-defined, because the applications they are used for
have a big impact on the actual hardware and architecture used. For our purpose, a sensor network
is a collection of hundreds or thousands of stationary sensor nodes and at least one base station.
The base station serves as a central point of access from which query results must be sent to the
user. Each node is equipped with sensors, memory, a processor, wireless radio and a battery. This
section investigates the major challenges of sensor network deployments at present and how these
challenges will evolve with future developments in hardware or architecture.

2.1.1 State-of-the-Art on Sensor Nodes

For our deployments and experiments, we used Sun SPOT sensor nodes [120] and Mica motes [131].
We describe both platforms in detail and provide an overview of other, currently available sensor
nodes. Based on this overview, we derive a set of constraints that affect query processing in
sensor networks in general and abstract from concrete platforms. Our mechanisms address these
constraints instead of being tailored towards a specific hardware platform which ensures that they
are applicable to any object tracking sensor network.

9

2.1. SENSOR NETWORK PLATFORMS AND ARCHITECTURE

Example Platform: Sun SPOTs

Sun SPOTs are a development platform published by Sun Research. Each node measures about
70×41×23 millimeters and consists of three components as shown in Figure 2.1 (from top to bottom):
the sensor board, a main board and a rechargeable 3.7V lithium-ion battery with a capacity of 750
mAh.

Figure 2.1: A Sun SPOT sensor node and its components

The default sensor board is equipped with sensors for light, temperature and acceleration. In
addition, the default sensor board has eight programmable LEDs for debugging as well as two
buttons to trigger events on the sensor node. To allow easy extension, pins to attach additional
hardware to the sensor board, e.g., additional sensors for humidity, RFID readers or GPS receivers,
are available as well. Even though a real deployment would tailor the sensors installed to the needs
of the application, the default board is useful during the development process of an application.
Furthermore, the modular architecture of the SPOTs allows the replacement of the default sensor
board with other extension boards or custom sensors ranging from sound, barometric pressure or
magnetic fields to cameras and laser scanners.

The main board contains a 32-bit ARM920T processor which executes at 180MHz max. clock
speed. Furthermore, 512KB RAM and 4MB flash memory are used to store data. Even though
access to flash memory consumes non-negligible amounts of energy, we disregard this, since all

10

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

our mechanisms run exclusively on RAM. SPOTs are IEEE 802.15.4 [64] compatible and use a
CC2420 radio chip for communication. To reduce energy consumption, different components of the
hardware can be switched off and several sleep states of the whole node are supported. This allows
a full-charged Sun SPOT to operate up to 900 days, but naive usage of CPU, LEDs and radio can
reduce this to a few hours (cf. Appendix A).

The main board also contains two AT91 timer/counter units operating at different frequencies.
These allow scheduling of operations with high temporal precision and serve as a clock to determine
the current date and time. There are several ways to synchronize the clock: Whenever software
is installed on a SPOT, the clock is synchronized with the clock of the computer from which the
software is installed. For most deployments, this synchronization is sufficient, since the deviation of
the clock is so small that the batteries are depleted before the deviation becomes significant. Fur-
thermore, there exists protocols which allow fine-grained synchronization of sensor node clocks [38].
Time synchronization is important for our purpose, because it allows two sensor nodes to determine
if they detected an object at the same time. Furthermore, existing protocols to conserve energy by
switching off radio and other devices require clocks to coordinate waking and sleeping.

Software for SPOTs is written in Java (CLDC 1.1 compatible) and executed using a Squawk
virtual machine which is specifically designed for platforms such as sensor nodes. The Squawk VM
is Java ME compatible and thus, code developed for this dissertation could be easily used on other
Java platforms.

Example Platform: Mica Motes

One of the first sensor nodes that were commercially available were Mica motes. Mica motes
have a 4MHz, 8bit ATMEL ATmega128L processor and 4KB of RAM. Additionally, 512 KB of
non-volatile flash memory is installed on Mica motes.

By default, Mica motes do not have any sensing hardware installed, but there are several sensor
boards available. Mica Motes have a 51-pin connector which allows the attachment of these boards
to the nodes. Sensor boards contain different sensors of varying complexity for different physical
phenomena.

The most important difference between motes are the batteries and their impact on the form of
the mote as illustrated by Figure 2.2: Mica2 motes are powered by two standard AA batteries. With
a size 58×32×7 millimeters (excluding batteries), their form precisely matches the form of the two
AA batteries. Contrary to this, Mica2DOT nodes use 3V coin cells to power the same hardware.
This results in a coin-shaped form and reduces the size of the mote to 25× 6 millimeters (exclusive
batteries). Sleep states and shutdown of different components of the hardware is supported as well
and allows motes to run for up to a year.

Another difference between different versions of Mica motes is their radio chip: Similar to Sun
SPOTs, the MicaZ motes [131] use a use the CC2420 chip, while Mica2 and Mica2Dot motes use
CC1000 chips.

The operating system used for Mica motes is TinyOS [61]. TinyOS is an open-source operating

11

2.1. SENSOR NETWORK PLATFORMS AND ARCHITECTURE

Figure 2.2: Mica motes: Mica2 (left) and Mica2Dot (right)

system specifically designed for sensor nodes with energy and memory constraints as they appear
on Mica motes and other platforms. Programs for TinyOS are written in a C-like programming
language called nesC [49]. In this context, the term ”operating system” is different from its
typical meaning for computers since TinyOS lacks many features that typically define an operating
system: Features like process isolation, scheduling, memory management or multi-threading are
not included in TinyOS and its main feature is a set of library interfaces that provide convenient
software abstraction to access hardware. These and many other features known from traditional
operating systems have been removed to reduce the memory footprint of TinyOS to the absolute
minimum.

Other Sensor Node Types

There are multiple platforms for sensor networks that have been designed for different applications.
We discuss them here briefly to provide a broader perspective on sensor nodes and their evolution
over time.

Intel™ Motes [97] have been developed with the aim of providing higher bandwidth, more com-
putational capabilities, smaller size and longer periods of operation for industrial or military ap-
plications. The circuit board of an Intel mote has a size of 30 × 30 millimeters which integrates all
components of the mote: A 12 MHz CPU, 64KB RAM, a radio with a range of approximately 30
meters and several connectors to allow the attachment of sensors and other hardware, e.g., LEDs.
The latest generation of Intel motes [3], has significantly higher computational capabilities than its
predecessor at almost the same size (48 × 36 millimeters): 32MB RAM and 32MB flash memory
allow single nodes to store significant amounts of data. The 32-bit Intel PXA270 XScale CPU
allows processing of such data, even if they are streamed at high temporal resolution. To keep
power consumption low, this CPU supports frequency scaling in the range of 13–416 MHz. Similar
to SPOTs and Mica motes, Intel motes use the CC2420 radio chip, and in addition Intel motes

12

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

support Bluetooth [115].
The ETH Zürich has developed its own sensor node platform called BTnode [41]. There have

been several revisions of the hardware which generally increased memory capacity or communica-
tion capabilities. The current revision 3 uses an ATmega128L micro-controller running at 8 MHz
with 244KB RAM and additionally 128KB flash memory. In addition to the CC1000 low-power
radio chip, BTnodes support Bluetooth for communication. Similar to Mica2 motes, BTmotes are
powered by two AA batteries and thus their size of 58.15 × 33 is also similar.

For further information on different node platforms see [78].

Sensing Hardware and Detection Mechanisms

A large number of different sensors have been reported to work in sensor networks; from simple
passive devices whose resistance varies with environmental conditions such as temperature, humid-
ity or light, to more complex sensors like magnetometers and even radar. Since this dissertation
focuses on object tracking sensor networks, we limit our review to sensing hardware that has been
used for detection of moving objects. This allows the identification of important properties of these
detection mechanisms that must be taken into account when processing spatio-temporal queries in
sensor networks.

Target and object detection has received a lot attention from research [7, 19, 36, 57, 58, 80, 114,
119, 138]. For example, [58] uses magnetometers to detect the magnetic field generated by moving
vehicles. According to their results from an outdoor deployment of 70 nodes, the magnetometers
are able to reliably detect a vehicle at a distance of 8-10 feet. So far, the existing approaches on
object detection are aimed at increasing the accuracy of detection or the efficiency, particularly
if readings from several nodes must be combined to detect an object. The spatio-temporal query
processor proposed in this dissertation builds on top of these approaches: The existing detection
mechanisms try to detect objects and our approach provides users with a declarative way to access
this information on moving objects. In the following, we discuss important lessons learned from
the aforementioned object detection approaches which we must take into account for our approach.

In [80], microphones have been installed on sensor nodes to detect, classify and identify animals,
in this case frogs. Acoustic approaches have been applied to vehicles as well [19, 119], where the
noise of engines or propulsion gear has been used to detect vehicles. Similarly, [91] tracks caribous
using radio-collars. All of these mechanisms share that they cannot determine the exact position of
an object detected. This is different with other detection mechanisms that allow distance estimation
like Laser Scanners or even provide precise locations for detected objects like radar [36].

Several limitations regarding detection of vehicles and humans using magnetometers and
micropower-impulse (MI) radar (TWR-ISM-002-I) have been reported by [7]: Their magnetome-
ters became desensitized over time and this process was accelerated if the sensor node was exposed
to heat for longer periods of time. While this could be fixed by circuitry that re-calibrated the
magnetometers at certain intervals, the area observed by a sensor node was significantly reduced
temporarily. Furthermore, the MI-radar and the magnetometer influenced each other when differ-

13

2.1. SENSOR NETWORK PLATFORMS AND ARCHITECTURE

ent nodes where deployed close to each other. While the documentation [4] of the TWR-ISM-002-I
mentions a maximum range of 60 feet, the actual range of the radar was usually significantly less
and external influences, e.g., rain, reduced the range even more. Hence, one has to take into account
that detection ranges change over time resulting in areas that temporarily or permanently unob-
served. These and other intricacies of object detection must be taken into account when processing
spatio-temporal queries in sensor networks.

2.1.2 Communication in Sensor Networks

Wireless communication is one of the key features of sensor nodes because it allows data transport
without wiring. This section reviews the hardware and the energy consumption characteristics as
well as mechanisms that allow multi-hop communication.

Radio Hardware

As apparent from the review above, the CC2420 [27] and CC1000 [26] radio chips are commonly
used for sensor nodes. While the CC2420 operates at 2.4 GHz, the CC1000 operates at frequencies
below 1 GHz. The radio chips are half-duplex which means that the radio-chip can only either listen
to the wireless medium or send a message, i.e., a node can never listen to its own message. This is
important because nodes sending messages cannot determine if a collision occurred by themselves.
Therefore, sensor networks require measures to avoid collisions as described below.

According to the data sheets of both radio chips, the typical communication distances range
from a few meters to 50 meters. External influences have a significant impact on the actual
communication range: For example, the communication ranges of the Sun SPOTs deployed in
the KSN Testbed described in Appendix C.1 were significantly influenced by metal fire doors (cf.
Figure C.1). If the fire doors were opened, there were nodes that could communicate directly with
each other, while communication between these nodes required relaying of messages by intermediate
nodes if the doors were closed. Generally, we were never able to observe communication ranges of
more than 20 meters indoors and 35 meters outdoors.

Changes in communication ranges and temporarily unavailable nodes must be taken into account
by the design of any mechanism for sensor networks. Typically, this issue is resolved by routing
protocols which will be discussed next, but in some cases errors must be handled at application
level.

Communication Standards and Protocols

Most communication protocols developed for sensor networks are based on the IEEE 802.15.4 [64]
standard. 802.15.4 specifies the two lowest layers of the OSI-model for low-rate wireless personal
area networks (WPAN): the physical layer (PHY) and the medium access control (MAC) layer.
There exist several different protocols based on 802.15.4 that provide high-level protocols, e.g.,

14

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

for routing or compression. We discuss different 802.15.4-compliant implementations of these two
layers first and then describe high-level protocols.

Physical and Medium Access Layer The physical layer (PHY) ultimately provides the trans-
mission service and access to communication hardware. Among other tasks, the main task of PHY
is encoding the digital information into an analogue signal for sending and decoding incoming ana-
logue signals into digital information while receiving. There are several different encoding schemes
and 802.15.4 uses direct-sequence spread spectrum (DSSS). Generally, the aim of these schemes is
to protect the analogue signal from corruption or noise. For all of these schemes this protection
comes at the cost of bandwidth, i.e., the encoded signal takes up more bandwidth than the digital
information that is encoded. This is one of the reasons for the difference between the bandwidth
of the radio chip and the actual bandwidth of a sensor node. For example, the CC2420 radio chip
has a maximum bandwidth of 250 kbps, but one can observe 40 kbps at most in reality.

The MAC layer handles all access to the physical radio channel and device. One of the important
tasks of this layer is contention control: When more than one node attempts to send a message at the
same time, a collision occurs, i.e., receivers of the message cannot decode the message correctly and
therefore discard it. To avoid unnecessary retries and the resulting energy consumption, 802.15.4
specifies a carrier sense multi access with collision avoidance protocol (CSMA/CA). Before sending
a message, a node waits a random time and listens to the wireless medium. If the medium is busy,
i.e., at least one other node is already sending, the message is delayed for a random time. When
the node determines that the medium is clear, it tries to send the message. Waiting or delaying
messages obviously further reduces the radio bandwidth and thus, the MAC layer also contributes
to the reduced bandwidth observed in reality. CSMA/CA reduces the chance of collisions, but does
not prevent or detect them, e.g., because of the hidden terminal problem [45, 109].

The wireless medium is a broadcast medium, i.e., when a message is sent, all nodes in range of the
sender can receive the message. The MAC layer also allows unicast communication by attaching
the unique identifier of the node to a every message. Nodes decode this identifier and discard
the message if it does not match their own identifier. Contrary to broadcast communication, the
unicast communication supports link-level acknowledgements, i.e., the sender can determine if the
message was received by the intended neighbor node.

802.15.4 based High-Level Protocols Due to the ad-hoc nature of sensor networks and the
limited range of radio communication, it must be taken into account that certain nodes cannot
communicate with each other directly. This is the motivation for several high-level protocols [95,
118, 140] that build upon the 802.15.4 specification and provide multi-hop communication, i.e.,
messages are forwarded by multiple nodes if the sender and receiver cannot communicate directly.
The general approach of these protocols is as follows: Each node stores a short list of neighbors,
i.e., nodes it can communicate directly with, and some routing information about the connectivity
of each neighbor to the rest of the network. This information is then used to make intelligent

15

2.1. SENSOR NETWORK PLATFORMS AND ARCHITECTURE

routing decision, i.e., forward the message towards the intended receiver efficiently. The main task
of such a protocol is therefore to acquire and maintain this information on neighbors and their
connectivity. Another feature of these protocols are end-to-end acknowledgements which allow the
sender to determine that a multi-hop transmission of a message was successful.

Routing protocols that allow finding and maintaining routes in sensor networks can be classified
into proactive and reactive protocols (cf. [89] for an overview). In this context, reactive means that
routes between a sender and a receiver are established only on demand whereas proactive protocols
acquire and maintain routes independently of their usage. We briefly describe ad-hoc on-demand
distance vector routing (AODV) [103, 104] because it was used for our evaluation but other routing
protocols could be used as well. Appendix C.3 describes the AODV implementation we used in
detail. In AODV, the network is silent until a node wants to send a message, i.e., it is a reactive
protocol. At this point, the sender node broadcasts a request for a route. Upon receiving a request,
the node stores the identifier of the node it received the request from, checks if there exists an entry
for destination of the request and re-broadcasts the request if no such entry exists. If such an entry
exists, this is reported back to the original sender of the request which in turn can start sending the
message. The KSN Radio Stack described in Appendix C.3 is also based on the AODV protocol
and was used for the majority of the evaluations using Sun SPOTs.

2.1.3 Energy Supply and Consumption

Sensor nodes typically are either battery powered or equipped with a solar panel. In the latter
case, the solar panel is used to recharge batteries which serve as a power supply during times where
no sun light is available [33, 63], e.g., at night or during bad weather. Careless use of the energy
resources can exhaust batteries within hours as shown by Appendix A and reported by [28, 83].
Thus, even if solar panels are used, mechanisms must be designed in a way that energy consumption
is minimized to increase the lifetime of a sensor network.

Typically, sensing and communication dominate the power consumption by orders of magnitude
compared to computation or RAM access [50, 82]. For example, [83] reports that ≈ 94% of the
energy consumption for a simple application collecting sensor readings from Mica motes must
be attributed to communication. Our measurements in Appendix A confirm this even for the
significantly more powerful CPU used in Sun SPOT sensor nodes. Therefore, the key objective
regarding energy efficiency is reducing the energy consumed by the communication devices to a
minimum.

The general problem with reducing energy consumption of communication devices is that the
energy consumed while receiving or sending is almost as high as if there is no communication at all
unless the device is completely switched off. For example, [28] reports that several nodes kept their
radio switched on at all times due to a software bug. The affected nodes depleted their batteries
in a short time while other nodes without the bug of the same deployment ran for weeks. Thus,
keeping the radio switched on at all times is not a viable option, but if the radio is switched off,
the node cannot communicate at all.

16

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 2.3: Illustration of B-MAC [105]

To address this so called idle listening, the networking community has proposed several energy-
aware, 802.15.4-compliant MAC implementations [21, 105, 126, 134]. These MAC protocols reduce
energy consumption by shutting down the radio whenever it is not needed and defining mechanisms
to wake up the radio when it is needed to ensure that communication still works. An example of a
state-of-the-art, energy-aware MAC protocol is B-MAC [105]. The core mechanism of the protocol
and its impact on energy consumption is illustrated in Figure 2.3: Nodes check periodically if there
exists an another neighboring node that would like to send a message and shut down the radio if
no such node exists. If a node has to send a message, the node will notify all surrounding nodes
of this by occupying the medium and sending a preamble. This preamble indicates which node is
the intended recipient of the message and the length of this preamble is at least as long as the
period that nodes shut down the radio. This ensures that the recipient of the message wakes up
its radio at least once during this period and keeps it on until the message is transmitted. The
length of the sleep period is typically in the order of seconds while the time spent sending the actual
message typically takes a few milliseconds. Thus, the energy consumption for the preamble at the
sender and waiting for the message at the receiver is orders of magnitudes larger than sending the
message. This pays off because sensor nodes are typically idle for more than 90% of the time, i.e.,
neither sending nor receiving.

The schema illustrated above applies to all energy-aware MAC protocols [55]: They exploit the
ratio between idle time and active time of sensor nodes to switch the radio off, but induce an over-
head that is large compared to sending the actual message. From a query processing perspective,
the number of times such a MAC layer is forced to wake up the radio is the only influence query
processing has on energy consumption, i.e., the number of times messages are sent or received.
The actual amount of energy consumed for sending/receiving a message depends on several fac-
tors that are outside of the control of the query processor, e.g., actual MAC implementation or
occurrence of collisions. Therefore, we use the number of messages sent and received as a proxy
to evaluate the energy efficiency of our measures. In particular, we do not count the number of

17

2.1. SENSOR NETWORK PLATFORMS AND ARCHITECTURE

bytes sent or received. This is because the time the radio is switched on and thereby the amount of
energy consumed for sending a message is only marginally affected by the size of the message but
mainly depends on the MAC protocol as shown above. Appendix A provides an evaluation that
investigates the energy consumption in relation to message size.

2.1.4 Impact of Future Developments

So far, we studied the properties sensor networks as they are in use today. This section examines
technology trends that will shape research on sensor networks in the future. Predicting these
trends is important, because it allows researchers to distinguish problems that will continue to be
important in the future from problems that become obsolete with further advances in hardware
and software.

Wireless Communication

The most important point regarding the development of radio hardware is that multi-hop commu-
nication will be required even with future developments taken into account. Assuming hardware
with infinite range, the energy required for sending a signal over a distance d is dk where k is the
path-loss exponent. The actual value of k depends on several factors, e.g., the length of the antenna
or if there are obstacles between the sender and the receiver. Realistic values for k are between 2
and 4 with sensor networks usually tending to 4, particularly for indoor deployments [108]. Thus,
multi-hop communication and the energy-efficient routing protocols will remain important in sensor
networks.

Even though low-power radio development could reduce power consumption of radios by one
order of magnitude [108], energy consumption related to communication will still dominate the
overall energy consumption. In particular the predicted energy savings possible in other areas, e.g.,
CPU or memory [25, 42, 62, 86], exceed those possible for communication devices. Therefore, even
with technological advances regarding the energy consumption of different hardware components
taken into account, reducing communication will remain an important design target for query
processing in sensor networks.

Computational Capabilities

The International Technology Roadmap for Semiconductors (ITRS) [68] is an annual prediction of
the technology trends in semiconductor technology for the following 15 years. For the time between
1999 and 2014, the ITRS report has predicted an increase of transistor density by a factor of 30.
This prediction has been accurate so far and the most recent report of 2009 predicts a continuation
of this trend. Thus, it can be expected that the computational capabilities of sensor nodes will also
increase. This is already apparent with the development history of the Intel motes [3, 97] described
above.

18

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Another prediction for 1999–2014 of the ITRS is that while transistor density increases by a
factor of 30, the energy consumption of these chips will only double. This means that increasing
the computational power by a factor of 15 in sensor nodes does not increase power consumption
compared to the chips in sensor nodes today. With the introduction of power saving features into
CPUs used in sensor nodes [3, 86], e.g., frequency scaling, the actual energy costs for computation
has outperformed this prediction of the ITRS.

In addition to the increased computational power of sensor nodes, it is expected that memory
capacity will increase by a factor of 1000 between 1999 and 2014. This trend has matched the
actual performance of semiconductors and the ITRS report of 2009 confirms this trend for the
future. Comparing the 4 kilobytes in Mica motes with 512 kilobytes of Sun SPOTs substantiates
this trend. For sensor nodes, this means that the memory constraints will be a matter of the past
in the near future with flash memory in the order of gigabytes and several megabytes of RAM.

Even though having large quantities of RAM on sensor nodes will increase their energy consump-
tion [2], one can expect that memory will not be an important constraint in the future. In particular,
there have been several proposals for reducing energy consumption of memory chips [25, 42, 62].
Summing up, while the current development of software for sensor nodes has to cope with severe
limitations regarding energy consumption and computational power, these problems will cease to
exist in the future.

Energy Consumption and Storage

The advances of battery technology are closely tied to the requirements of their electronic appli-
cations. However, the time scale for battery improvements is very long compared to electronics.
According to [106], battery capacity only doubles in 35 years while the number of transistors doubles
every 12–24 months according to Moore’s Law [96]. Furthermore, the energy density of batteries
as well as their capacity are bounded by chemical and physical limits.

Thus, while the computational capacity of sensor nodes will increase in the near future, the
energy constraints will remain a key design target for applications in sensor networks. This also
applies to solar powered sensor nodes, since they require batteries to survive time spans without
sun light as mentioned above. In such a solar powered system, the limited capacity combined with
the energy consumption of radio communication will still deplete batteries within days without
sophisticated measures to reduce energy consumption.

2.1.5 Summary

This section has reviewed sensor network technology and the challenges associated with sensor
networks in general, but also with object-tracking sensor networks in particular. We have shown
that energy efficiency is the most important optimization goal in sensor networks, even with future
technological developments taken into account. The largest contributor to energy consumption
is communication and the networking community has made major efforts regarding the reduction

19

2.2. FUNDAMENTALS OF MOVING OBJECT DATABASES

of energy consumption for communication. These state-of-the-art protocols control and minimize
the activity time of the radio chip at hardware level, i.e., they minimize the energy consumption
if communication between nodes is required by the application. Our mechanisms built on top of
these protocols and minimize the number of messages required by the application, in our case the
query processor.

Another challenge of sensor networks that has been addressed by the networking community is
reliable multi-hop communication in the context of changing connectivities, node failures and other
intricacies. We use these results for query processing and cleanly separate between the routing layer
and the query processing layer, i.e., we do not change the routes provided by the networking layer.
This allows the application of our measures to different routing mechanisms. Furthermore, most of
the errors related to communication are handled by the routing layer. Whenever the error handling
of the routing layer is insufficient to obtain correct query results, we show how to detect and handle
the error.

Target or object tracking has received a lot of attention in different contexts resulting in different
approaches for all kinds of objects. A challenge that has to be solved at the query processing layer is
the varying accuracy of detection hardware and the mechanisms that use this hardware to determine
if an object has been detected or not. We address this by defining spatio-temporal semantics that
cope with this varying accuracy and provide feedback about the accuracy of the query result to
the user.

2.2 Fundamentals of Moving Object Databases

Research on moving object databases has shown that relational database systems are insufficient
for efficient storage of spatio-temporal data and processing spatio-temporal queries. To address
this issue, spatio-temporal data types and operators have been introduced. This section reviews
the basic concepts of moving object databases as far as they are relevant for this dissertation. For
further information see [40, 53, 54]. Afterwards, we show that the characteristics of sensor networks
are in the way of applying these research results in a straightforward way to sensor networks.

2.2.1 Point-Set Topology

The fundamental concepts of moving object databases are based on point-set topology [46]. Ac-
cording to point-set topology, a space is composed of infinitely many points, e.g., the d-dimensional
Euclidean space Ed. We will use the 2-dimensional space for illustrations but all concepts, those
of moving object databases as well as our own, can be extended to three or more dimensions and
other spaces.

Point-set topology distinguishes subsets of space, i.e., finite sets of points, which are called
entities. For any entity e, there exists a complement e, i.e., a set of all points not contained in e.
Every entity e partitions the space into three pair-wise disjoint subsets: the interior eI , the border
eB and the exterior eE . We provide the formal definitions of these concepts for Euclidean spaces

20

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

in the following (see [37, 46] for more universal definitions). Let b (c, ε) be an ε-ball i.e., a set of
points whose distance from the center c in the metric d is less than ε > 0:

b (c, ε) = {p ∈ Ed ∣ d (p,c) < ε} (2.1)

Using the concept of a ε-ball, the partitions interior and border are defined as follows:
Definition 1 (Interior): The interior of an entity e, denoted eI , is a point set that contains
a point c ∈ Ed if there exists an ε-ball around c that only contains points in e. ◻
Definition 2 (Border): The border of an entity e, denoted eB, is a point set that contains a
point c ∈ Ed if every ε-ball around c intersects with e and its complement e. ◻

Based on this, the exterior eE contains all points that are neither part of the border nor the
interior, i.e. in the interior of e:
Definition 3 (Exterior): The exterior of an entity e, denoted by eB, is a point set that
contains a point c ∈ Ed if there exists an ε-ball around c that only contains points in e. ◻

There are three different types of entities: objects1, lines and regions. We leave aside lines in the
following, since they are irrelevant in our context.
Definition 4 (Object): An object o is an entity that is represented by its position p ∈ Ed. ◻

An object partitions the space as follows: The interior oI contains only p, the border oB is
empty, and all points except p are the exterior oE .

A region is a point set where every point p satisfies a set of conditions that describe an entity
covering more than one point of space, e.g., a security area or storm. We denote the set of conditions
that define a region r as Cr and the function that checks for a point p if it fulfills Cr as Cr (p):

Cr (p) = {
T iff p fulfills Cr
F Otherwise (2.2)

Defining regions as arbitrary point sets is problematic, because such point sets could contain anoma-
lies like dangling lines, cuts and punctures. To avoid this, [122] introduce regularization which adds
or removes points from regions until the aforementioned anomalies are corrected. To ease our pre-
sentation, we assume that one condition in Cr corrects these anomalies, i.e., all regions are assumed
to be regular in the following.
Definition 5 (Region): A region r is a set of points which satisfy a set of conditions Cr:

r = {p ∈ Ed ∣ Cr (p) = T } (2.3)

For a region r, the partitions defined above are illustrated as follows: The border rB contains all
points of the line encompassing the interior rI . All points that are neither in rB nor in rI are part
of the exterior rE .

1Entities represented by a single point in space are typically called point by publications on this subject. We refer
to such an entity as object to clearly distinguish it from a point which is an element of space.

21

2.2. FUNDAMENTALS OF MOVING OBJECT DATABASES

⎛
⎜
⎝

aB ∩ bB ≠ ∅ aB ∩ bI ≠ ∅ aB ∩ bE ≠ ∅
aI ∩ bB ≠ ∅ aI ∩ bI ≠ ∅ aI ∩ bE ≠ ∅
aE ∩ bB ≠ ∅ aE ∩ bI ≠ ∅ aE ∩ bE ≠ ∅

⎞
⎟
⎠

Figure 2.4: 9-Intersection Model for two spatial entities a and b

rI

o1 rB

rE rI

o2
rB

rE rIo3

rB

rE

disjoint (o1, r) meet (o2, r) inside (o3, r)

Figure 2.5: Spatial Predicates for object/region relations

⎛
⎜
⎝

F F F
F F T
T T T

⎞
⎟
⎠

⎛
⎜
⎝

F F F
T F F
T T T

⎞
⎟
⎠

⎛
⎜
⎝

F F F
F T F
T T T

⎞
⎟
⎠

disjoint (o1, r) meet (o2, r) inside (o3, r)

Figure 2.6: 9-Intersection representation of spatial predicates (a = oi and b = r)

2.2.2 Spatial and Spatio-Temporal Predicates

The 9-intersection model [37] describes the topological relationship of two entities a and b: As
illustrated in Figure 2.4, there are nine possible intersections of the exterior, the border and the
interior of a with the exterior, the border and the interior of b, respectively. Each of these inter-
sections is either empty or not. Hence, a matrix of nine boolean values identifies the relationship
of a and b. The topological relationship of a and b matches a given intersection matrix I, if the
partitions of a and b intersect as described in I.

There exist 29 = 512 unique intersection matrices, but only a few of them make sense. For ex-
ample, if the interior and exterior of two entities intersect, their borders intersect as well. Each
intersection matrix that describes a possible topological relation is associated with a spatial predi-
cate.
Definition 6 (Spatial Predicate): A spatial predicate p (a,b) is a function associated with a
unique intersection matrix I that returns T , if the topological relation of a and b matches I:

p (a,b) = { T iff I matches topological relation of a and b
F Otherwise (2.4)

For an object o and a region r, only three intersection matrices make sense which are associated
with the following predicates: inside (o, r), meet (o, r) and disjoint (o, r). The intersection matrices

22

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

associated with each of these predicates are shown in Figure 2.6. Figure 2.5 illustrates each predicate
and Example 1 explains the intersection matrices matching the topological relationship shown in
each case.
Example 1: The left-most matrix in Figure 2.6 describes disjoint (o1, r). As mentioned before,
the border of an object is empty, i.e., the o1

B of o1 does not intersect with any partition of r. This
is reflected by the first row of the 9-intersection matrix for disjoint (o1, r). The second row implies
that o1

I ∩ rE ≠ ∅, i.e., o1 is outside of r. The last row of the 9-intersection matrix describing
disjoint (o1, r) shows that o1

E intersects with all partitions of r.
The matrices for meet (o2, r) and inside (o3, r) only differ from the matrix for disjoint (o1, r)

in the second row: The topological relation of o2 and r conforms to meet (o2, r) if o2
I ∩ rB ≠ ∅,

i.e., the object o2 is on the border of r. Similarly, o3
I ∩ rI ≠ ∅ implies that o3 is inside of r, i.e.,

inside (o3, r). ◆
So far, all concepts are purely spatial. To include temporal aspects into a model, one needs a

model of time first. We refer to the domain of time as T. Temporal lifting [40, 53] models time as
a sequence of instants t ∈ T where each instant is represented by a real number, i.e., T ⊂ R. Lifting
models a spatial value α that changes over time as a temporal function θ (α) ∶ T→ α.

When entities such as objects or regions move, this is modeled by adding or removing points from
their interior, border and exterior. Based on lifting, one can model a moving object or a moving
region as a point set that changes over time, i.e., an entity e that moves is modeled as a temporal
function θ (e).
Definition 7 (Moving Object): A moving object O is a lifted spatial object o, i.e., a function
θ (Ed) ∶ T→ Ed∪{Ø} that models the position of an object over time. If o = ∅, i.e., the object does
not exist, at some point in time t ∈ T, the function returns Ø for this instant of time. ◻

The set P contains all possible point sets and every region r is an element of P.
Definition 8 (Moving Region): A moving region R is lifted spatial region r, i.e., a function
θ (r) ∶ T → P ∪ {Ø}. If r = ∅ at some instant t ∈ T, the region does not exist at this time and thus
the temporal function returns Ø. ◻

Lifting is applicable to predicates as well: A spatial predicate p (o, r) is a function that returns
either T or F . In the context of p (o, r), the topological relationship of o and r is modeled by the
boolean return value of p (o, r). Hence, a spatio-temporal predicate is a lifted spatial predicate:
Definition 9 (Spatio-Temporal Predicate): A spatio-temporal predicate P (O,R) is a lifted
version of spatial predicate p (o, r), i.e., P (O,R) = T for every instant t ∈ T where p (o, r) = T and
P (O,R) = F otherwise. ◻

To avoid confusion and make notations discernible, we adopt the following convention widely
used by the moving object database community for the remainder of this dissertation: We denote
purely spatial entities and predicates by lower case letters and start spatio-temporal entities and
objects with capital letters. For example, o is a purely spatial object while O is a moving object,
i.e., a spatio-temporal entity. This applies to predicates as well: Inside (O,R) refers to the lifted

23

2.2. FUNDAMENTALS OF MOVING OBJECT DATABASES

version of the spatial predicate inside (o, r).

2.2.3 Spatio-Temporal Developments

In moving object databases, users formulate a query by describing the movement they are interested
in. To express arbitrarily complex changes of relationships between spatio-temporal entities, [40]
defines the concatenation operator as follows:
Definition 10 (Concatenation): The concatenation of two predicates, P ▷ Q, is true if P is
true for some time interval [t0; t1[, and Q is true at t1. ◻

Using this concatenation operator, one can construct sequences of spatio-temporal predicates
P1 ▷ P2 ▷ . . .▷ Pq. We refer to such a sequence of spatio-temporal predicates as spatio-temporal
development.
Example 2: In one of the examples in Section 1.1, the user wants to know which vehicles Vi

have moved into region R. To fulfill the query, a vehicle Vi must be outside of R, then move over
the border RB into the interior RI . This query is expressed as follows:

Disjoint (Vi,R)▷Meet (Vi,R)▷ Inside (Vi,R) (2.5)

This spatio-temporal development usually is referred to as Enter (Vi,R).

Disjoint (Vi,R)▷Meet (Vi,R)▷Disjoint (Vi,R) (2.6)
Inside (Vi,R)▷Meet (Vi,R)▷Disjoint (Vi,R) (2.7)

Other sequences are constructed similarly: The spatio-temporal development in (2.6) is typically
paraphrased as Touch (Vi,R) and (2.7) shows a development called Leave (Vi,R). ◆

Semantical Depth [40] has studied the semantical depth of moving object databases by propos-
ing a canonical collection of spatio-temporal developments. While infinite sequences of spatio-
temporal predicates are possible, this study shows that it is sufficient to explicitly consider a canon-
ical collection of 28 developments for moving object databases. These 28 unique spatio-temporal
developments form a basic set from which more complex developments can be constructed through
concatenation as illustrated by Example 3.
Example 3: Assuming a user is interested in objects O that enter a region R, move around
inside the region and then leave the region. To express this using the aforementioned developments,
the user concatenates Enter (O,R) and Leave (O,R), i.e., Enter (O,R) ▷ Leave (O,R). Even
though ▷ is only defined as a concatenation operator for predicates, this is still correct since
spatio-temporal developments only paraphrase sequences of spatio-temporal predicates. Hence,

24

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Disjoint (O,R)

Inside (O,R)

meet (o, r)Meet (O,R)

▷ ▷

▷ ▷

Figure 2.7: Development graph for
object-region predicates

Disjoint (O,R)

Meet (O,R)

Disjoint (O,R)Inside (O,R)

meet (o, r)

Disjoint (O,R)Inside (O,R)

Figure 2.8: Development tree for developments starting
with Disjoint (O,R)

the expression Enter (O,R)▷ Leave (O,R) translates to the sequence in (2.8).

Disjoint (O,R)▷Meet (O,R)▷

Leave(O,R)

³¹¹¹·¹¹¹µ
Inside (O,R)

´¹¹¹¸¹¹¹¶
Enter(O,R)

▷Meet (O,R)▷Disjoint (O,R) (2.8)

Note that the Inside (O,R)▷ Inside (O,R) occurring at the junction between Enter (O,R) and
Leave (O,R) has been summarized to a single Inside (O,R) since P = P▷P [40]. The concatena-
tion Enter (O,R)▷ Leave (O,R) is typically denoted as Cross (O,R). ◆

In the following, we briefly outline how this canonical collection of 28 spatio-temporal devel-
opments has been obtained. This is important, because we use a similar approach to measure
the semantical depth of our approach and compare it to the semantical depth of moving object
databases.

Figure 2.7 shows the so-called development graph which expresses the possible topological changes
of objects and regions over time. Each vertex is associated with a predicate and an edge corresponds
to the concatenation of the predicates connected by the edge, i.e., an edge (P,Q) equals P ▷Q.
There are several important facts in this graph:

1. There are two vertexes associated to the ”meet” predicate. In this context, the meet (o, r)
means that o is on the border of r at exactly one instant of time. Contrary to this, Meet (O,R)
is true if O is on the border for one or more instants of time.

2. There is no edge between Meet (O,R) and meet (o, r). This is because Meet (O,R) =
meet (o, r)▷Meet (O,R).

3. There is no edge between Inside (O,R) and Disjoint (O,R) and vice versa. The reason for
this is that an object has to move over the border at some point of time between Inside (O,R)
and Disjoint (O,R).

25

2.2. FUNDAMENTALS OF MOVING OBJECT DATABASES

Every possible path (P1,P2, . . . ,Pq) in the development graph describes a possible spatio-temporal
development P1 ▷ P2 ▷ . . . ▷ Pq. There exists infinitely many paths through the graph due to
cycles. To avoid these cycles and obtain a canonical collection of spatio-temporal developments,
[40] construct development trees from the development graph. Each development tree corresponds
to a predicate P and this predicate is the root the tree. The child-nodes of each node are all
predicates reachable from P according to the development graph. To bound the depth of the
tree, child-nodes are leaf-nodes in the tree if (1) all possible predicates are already on the path
back to the root node or (2) the path to the root node contains a cycle. Figure 2.8 shows the
development tree representing all unique developments starting with Disjoint (O,R). This tree
contains seven possible paths/developments. The trees where the other three predicates are root
nodes are symmetrical to this tree, i.e., there are 4 ⋅ 7 = 28 developments.

2.2.4 Moving Object Databases vs. Sensor Networks

The previous section has reviewed the fundamentals of spatio-temporal query processing for tra-
ditional database systems. This section shows that some of the properties of these fundamentals
are in the way of applying them to sensor networks in a straight-forward manner. Furthermore, it
reviews existing work on spatio-temporal query processing in the context of sensor networks.

Moving object databases model objects as a single point in space. This implicitly means that the
exact location of an object is known and for moving objects this implies that the position is known
at any point in time. As shown in Section 2.1.1, most of the detection mechanisms used in sensor
networks cannot provide this accuracy. There has been some work related to uncertainty regarding
the position of objects: For example, [22, 32, 124, 125] have shown how to process spatio-temporal
queries if the position of an object is only known an some instants of time, i.e., object positions are
sampled over time. First, these methods still require precise object positions from time to time.
Second, some are based on relatively strict assumptions, e.g., [125] assume that an object whose
position is p1 at t1 and p2 at t2 moves on a straight line between p1 and p2 ”at a constant speed”.

Modelling regions as well-defined point sets is problematic as well: The border of a region is
defined in such a way that it resembles a line that encompasses the region completely. While
users of object-tracking sensor networks may define a region similarly, this definition does not take
into account that the border of a region may be unobserved. For example, a user may query
Enter (O,R). Lets assume that O moves from the outside of R into the region, but it is never
observed on the border, e.g., because a node that was deployed to observe the border has failed.
From a semantical point of view, the object has entered R, but the predicate Meet (O,R) has never
been true. Another problem with the border is that the time it takes an object to move over a line
is infinitely short, because lines are not ”thick”. Hence, capturing the moment where the object is
on the border would require an infinitely high temporal resolution of the detection hardware.

Capturing the spatial extend of regions is problematic as well in some applications. As motivated
by the application examples in Section 1.1, in these cases users formulate queries regarding the
object movement in the context of a set of nodes. These types of queries are unique to sensor

26

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

networks and thus, there exists no previous work on them. Summing up, while concepts like
predicates, 9-intersection model and predicate concatenation provide a foundation, a substantial
amount of work is required to apply them to sensor networks.

2.3 Processing Relational Queries in Sensor Networks

So far, relational queries have been the focus of research on query processing in sensor networks [17,
18, 31, 50, 66, 81, 82, 84, 133]. Relational approaches are sufficient for queries interested in sets
of measured values or aggregates over such values. An example of such a query is ”What is
the average temperature measured by all nodes?”. It has been shown for traditional database
systems that expressing spatio-temporal queries using relational systems results in complex [130]
queries that are inefficient to process [53]. Appendix B illustrates this for a simple development.
This section investigates the reasons for this and shows that they also apply to sensor networks.
Most importantly we show that using existing relational query processors for sensor networks like
TinyDB [84] or Cougar [133] would result in collecting all data on object detections at the base
station. Our evaluation shows that this is inefficient compared to the in-network processing we
propose.

One of the main reasons for the aforementioned inefficiency is the lack of continuous or time-
aware data types: A value stored in a table is assumed to be constant unless it is updated explicitly.
While this is appropriate for storing results, e.g., of temperature measurements taken at distinct
instants of time, it is problematic if values change continuously. To cope with these continuous
changes, the respective table or attribute value either requires frequent updates or queries are
processed based on outdated data. Another problem is the lack of support for point sets: Since
relational systems only allow the simple data types like integer, float or string for attributes, point
sets are decomposed into separate values stored in many tuples. Processing spatio-temporal queries
requires reconstructing these point sets prior to processing the actual query. Appendix B provides
a SQL statement for a simple spatio-temporal query in a sensor network and illustrates these
problems. The resulting SQL statement contains several subqueries and each of these subqueries
contains joins.

Processing joins in sensor networks is a challenging problem which has received a lot of attention
from the database community [2, 16, 29, 30, 132, 136, 139]. Join operators are important, because
they allow combining a measured value of one node with the measured values of other nodes. This
applies to spatio-temporal queries as well, because object detections of different nodes must be
joined, e.g., in case of Enter (O,R) to determine if O was detected outside of R before it was
detected inside of R. The general problem with join operators in sensor networks is that a single
node typically cannot decide if there exist tuples from other nodes that join with those stored
locally. Finding out if such tuples exist is communication intensive because these tuples may be
arbitrarily distributed over the network.

Most of the aforementioned proposals regarding join processing avoid the problem of arbitrary

27

2.4. SUMMARY

distributed join tuples by imposing restrictions and focusing on special types of join queries. [2]
support the join operator for a relation of sensed data with a pre-defined, static external relation.
Thus, the approach is inapplicable to spatio-temporal queries since these require joins of relations
that frequently change over time as shown above. Others [16, 30, 135, 136] use distance constraints
to ensure that the tuples to be joined are in a small area stored on nodes close to each other. For
example [135] consider joins where the join condition uses a constraint like distance (SA,SB) ≤ d
where d is the distance from node SA to node SB. Their evaluation shows that unless d is smaller
than the communication range of the nodes, the join should be processed at the base station. Since
the distance between nodes detecting the same object may be arbitrarily large, these approaches
would compute the result of a join for a spatio-temporal query at the base station. The analysis
in [16] shows that general join operators require collecting all data at a central location. Unless
the data is distributed in a certain way, this central location is the base station.

Some approaches use a central location such as the base station for partial computation of the
join. An example for such an approach is [132], where the join is computed in two phases: First,
the nodes send compressed representatives of their locally stored tuples to a central location. The
tuples that fulfill the join condition are identified based on the representatives and the central
location sends notifications to the nodes that store these tuples. When a node receives such a
notification, only the tuples that are stored locally and join are forwarded to the central location
to compute the overall join result. There are several problems with these two-phase approaches:
First, the efficiency of these approaches is experimentally evaluated by counting the number of
bytes that must be exchanged between nodes to compute the query result. This assumes that
reducing the message size also reduces the energy consumption. This assumption does not hold
if energy-aware MAC protocols are employed as discussed in Section 2.1.3 and experimentally
shown in Appendix A. Using MAC protocols that are not energy-aware for sensor networks is
not an option [28, 83], because radio chips waste energy due to idle listening. Second, two-phase
approaches are only viable if the selectivity of the join is high, i.e., only a small portion of the
nodes store tuples that contribute to the overall join result. The number of nodes detecting an
arbitrary number of query-relevant objects over time can be arbitrarily high, i.e., selectivity of joins
for spatio-temporal queries is low.

Summing up, mainly due to the join operators, using existing relational query processors for
sensor networks would result in data on object detections being collected at the base station. As our
evaluation shows, this is inefficient compared to our approaches which use in-network computation
as shown in Chapter 5.

2.4 Summary

This chapter has reviewed the three major areas of related work for this dissertation: (1) the state-
of-the-art regarding sensor networking technology as well as future trends, (2) the fundamentals of
processing spatio-temporal queries and (3) existing approaches for processing declarative queries

28

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

in sensor networks.
Our review of sensor network technology has shown why energy is and will stay the most im-

portant aspect regarding the efficiency of query processors. Specifically, reducing the number of
messages that are sent and received is important. Furthermore, there exists a large number of
promising approaches for the detection of various kinds of objects for sensor nodes. All of these
approaches use different hardware and protocols to determine the location of an object at different
degrees of accuracy. But to our knowledge, there does not exist any work on accessing the data
acquired by these detection techniques declaratively using spatio-temporal queries.

Declarative access to sensor networks is a promising approach, because it frees the user from
the intricacies of programming sensor nodes. This has been shown by a plethora of work aimed at
processing relational queries in sensor networks. Applying these relational approaches to process
spatio-temporal queries in object-tracking sensor networks is not feasible, because expressing spatio-
temporal queries using relational operators results in complex queries that are inefficient to process,
as research on moving object databases has shown. The review of the fundamental concepts of
moving object databases has shown that applying them to sensor networks is also not feasible due
to the properties of sensor networks and the aforementioned object detection mechanisms. The
following chapters provide semantics for spatio-temporal queries in sensor networks and show how
to process these queries efficiently with regard to communication.

29

2.4. SUMMARY

30

Chapter 3

Semantics of Spatio-Temporal Queries

This chapter develops the fundamental concepts and semantics for processing spatio-temporal
queries in sensor networks, i.e., contribution C.1. As illustrated in the previous chapter, there
exist numerous detection mechanisms for sensor networks with various properties, particularly re-
garding their precision. To allow the application of our semantics, we provide a node and network
model which also provides an abstraction from the details of object detection. This abstraction
is defined in such a way that it allows the definition of spatio-temporal semantics for all kinds of
detection mechanisms without diminishing the information obtained by a specific detection mech-
anism.

The semantics of the spatio-temporal predicates and developments for regions as well as zones are
based on the aforementioned abstraction. Most sensor networks cannot determine for all objects
if they are outside, on the border or inside of a region due to limitations of the sensing hardware.
Considering these limitations, we show how to obtain meaningful results for predicates expressing
the relationship between an object and a region based on incomplete, imprecise object detections.
Three kinds of results are distinguished: For some objects O, the sensor network can determine
that the topological relationship to a region R conforms to a given predicate P (O,R) despite
the inaccuracy of object detection for sure. In the second case, object detection is not sufficiently
accurate to yield a definite answer. The third case is that the sensor network can rule out that the
topological relationship of O and R conforms to P (O,R). Most important, we formally prove for
our results regarding regions that they are optimal considering the limitations of sensor networks.

Contrary to regions, the concept of a zone is unknown in moving object databases. Thus, we
formally introduce this concept first and provide an integration into the 9-intersection model.
This allows the definition of semantics for predicates that express the spatial and spatio-temporal
relationship between an object and a zone.

Using the semantics for spatio-temporal predicates, we address the semantics of spatio-temporal
developments for both, zones and regions. We introduce a new concatenation operator which
allows users to express spatio-temporal developments in such a way that undetected areas are

31

3.1. NODE AND DETECTION MODEL

taken into account. The chapter concludes with a study of the semantical depth of our approach
in comparison to moving object databases. Summing up, an answer to the question ”What are the
semantics of spatio-temporal queries?” is provided in this chapter. The follow-up question ”How
can sensor networks efficiently derive results for spatio-temporal queries using these semantics?”
will be addressed by chapters 4 and 5.

3.1 Node and Detection Model

The main notion introduced in this section is an abstract detection mechanism. We also illus-
trate how to apply this abstract detection mechanism to concrete examples of existing detection
mechanisms and how to formalize the information acquired by object detection.
Notation (Sensor Network): A sensor network is a set N = {S1,S2, . . . ,Sn} of sensor nodes.
Every node has a position POSi ∈ Ed (1 ≤ i ≤ n) after the deployment is finished.

Processing spatio-temporal predicates requires detection of objects moving in the area where
the sensor network has been deployed. We keep our approach independent from various existing
detection mechanisms by abstracting from the details and characteristics of these mechanisms.
First, we define the area that is observed by a node:
Definition 11 (Detection Area): The detection area DAi of a node Si is the set of points
DAi ⊆ Ed where Si can detect an object. ◻

As shown in Section 2.1.1, the detection area of a node may have any shape or size and may
change over time due to external influences like rain or objects that reduce the detection area.
Figure 3.1 illustrates this for node1 S1 where a rock limits the detection area DA1. Thus, objects
behind the rock remain undetected. A node Si detects the object O at time t if the position p of O
is in DAi at t, i.e., p ∈DAi. The detection function formalizes this:
Definition 12 (Detection Function): The detection function detect (Si,O, t) is defined as
follows:

detect (Si,O, t) = {
T iff O ∈DAi at t
F otherwise (3.1)

An object O is detected at time t if detect (Si,O, t) = T for at least one i ∈ {1, . . . , n}. Depending
on the deployment, it is possible that detection areas overlap. If an object moves into this overlap,
it is detected by more than one node simultaneously.
Definition 13 (Detection Set): The detection set DO

t ⊆ N is the set of all nodes that detect
an object O at some time t.

DO
t = {Si ∈N ∣ detect (Si,O, t) = T } (3.2)

1To make node numbers in figures more discernible, we denote nodes in figures without indices, i.e., nodes S1,S2, . . .
are illustrated in figures by S1, S2,

32

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 3.1: Illustration of the node model

While there exist detection mechanisms that can determine the detection area, most detection
mechanisms cannot (cf. Section 2.1.1). However, the maximum detection range is typically available
prior to the deployment of the nodes.
Definition 14 (Maximum Detection Range): The maximum detection range Dmax is the
maximum distance of an object to a node to be detected. ◻

Example 4 illustrates the difference between the detection area of a node and the maximum
detection range.
Example 4: For passive infrared (PIR) motion detectors, Dmax ≈ 30 meters. The sensor node
in Figure 3.1 has been deployed close to a rock and cannot detect any object behind it. Thus, the
area observed is much smaller than a circle with center POS1 and radius Dmax. Next, if there is
an object in front of the lens of such a sensor, the range may be only a few centimeters. Nodes
typically cannot detect this. ◆

For processing spatio-temporal queries, the instants of time when objects enter or leave detection
areas are important.
Definition 15 (Entry Time): The entry time tentry ∈ T is the instant of time when an object
enters the detection area of a node. ◻

Definition 16 (Exit Time): The exit time texit ∈ T is the instant of time when an object leaves
the detection area of a node. ◻

For non-continuous detection mechanisms nodes can determine tentry and texit by temporal in-
terpolation: Suppose Si checks periodically at t0, t1, . . . for objects. An entry occurs at tj if Si

33

3.1. NODE AND DETECTION MODEL

Figure 3.2: PEO
t (S1) based

on Dmax

Figure 3.3: PEO
t (S1) with a

distance estimating detection
mechanism

Figure 3.4: PEO
t (S1) with

a position-precise detection
mechanism

did not detect an object at tj−1 but detects it at tj , i.e., tentry = tj . An exit occurs at tj if Si

detected an object at tj and does not detect it at tj+1, i.e., texit = tj+1. The frequency at which
nodes must check for objects obviously depends on the properties of the used hardware and the
object it is intended for. An example of such a property is the expected maximum speed of the
objects observed. Research on detection mechanisms reviewed in Section 2.1.1 provides promising
approaches to detect continuously moving objects using non-continuous detection mechanisms with
limited temporal resolution.

Detection mechanisms are used to localize objects detected as accurately as possible. It depends
on the used hardware and several other properties how accurate such a detection is. To allow the
application of our approach to any kind of detection mechanism, we model the result of an object
detection as a point set.
Definition 17 (Position Estimate): The position estimate for an object O detected by Si at
time t ∈ T is a set PEO

t (Si) ⊆ Ed containing all possible points p ∈ Ed where O could be based on
the information provided by the detection mechanism of Si. ◻

The shape and size of PEO
t (Si) depends on the detection mechanism as Example 5 illustrates.

Example 5: Simple mechanisms like acoustic vehicle detection [19, 119] or PIR-based motion
detectors cannot determine their detection area. Furthermore, these detection mechanisms only
determine whether an object O is in the vicinity, i.e., in the detection area DA1, of a node S1 or
not. In these cases, PEO

t (S1) equals the circle with center POS1 and radius Dmax as shown in
Figure 3.2. More sophisticated mechanisms, e.g., laser scanners, determine the distance d from the
node to the detected object. Taking into account a certain deviation ε, PEO

t (S1) is ring-shaped,
see Figure 3.3. Note that some parts of PEO

t (S1) in Figure 3.3 are not part of the detection area
DA1 of S1. If S1 cannot determine its detection area, it cannot distinguish between points in
PEO

t (S1) that are in its detection area and those that are not. Figure 3.4 illustrates PEO
t (Si) for

mechanisms which precisely determine the position of O. ◆

34

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

If several nodes detect an object simultaneously, the sensor network can refine the information
on the object position by intersecting the position estimates acquired by different nodes.
Definition 18 (Possible Object Positions): The set of possible object positions POPO

t ⊆ Ed

at time t ∈ T is the intersection of all position estimates PEO
t (Si) of nodes Si ∈ DO

t .

POPO
t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⋂
Si∈DO

t

PEO
t (Si) iff DO

t ≠ ∅

∅ otherwise
(3.3)

Summing up, the information acquired by object detection in a sensor network is modeled as a
point set.
Definition 19 (Communication Area): The communication area CAi ⊆ Ed of node Si is the
set of points where a node Sj with i ≠ j can receive messages sent by Si. ◻

A node Si can directly communicate with another node Sj if POSj ∈ CAi. Communication
areas may change over time and can have any shape or size. Furthermore, nodes typically cannot
determine their communication area. As discussed in Section 2.1.2, there exist several routing
protocols that determine the set of nodes that a node Si can directly communicate with. These
protocols allow forwarding of messages via multiple hops, e.g., to send results to the base station.
To accomplish this, each node must store a short list of nodes it can communicate directly with
and some routing information about the connectivity of each neighbor to the rest of the network.

Definition 20 (Communication Neighbors): The communication neighbors CN i of a node
Si are the nodes that Si can directly communicate with. ◻

3.2 Point-Set Topology for Sensor Networks

The semantics of spatio-temporal queries in moving object databases are based on the point-set
topology as shown in Section 2.2.1. We inherit the concept of a region and its partitioning of space
into exterior, border and interior from moving object databases. Hence, the semantics of predicates
that express the relationship of a region and an object detected by sensor nodes are equal to those
of moving object databases.

Section 1.1.2 has shown that there exist applications where it is advantageous to observe object
movement in relation to a set of nodes, i.e., a zone. A zone Z is a set of nodes where every node
satisfies a set of conditions CZ , e.g., all nodes inside the swamp area that is covered by trees on
the south-western side of the river of Figure 1.2. Similar to the notation for regions, we refer to
the function that checks for a given node Si if it satisfies CZ as CZ (Si):

CZ (Si) = {
T iff Si satisfies CZ
F Otherwise (3.4)

35

3.2. POINT-SET TOPOLOGY FOR SENSOR NETWORKS

Definition 21 (Zone): A zone Z is a set of nodes which satisfy a set of conditions CZ :

Z = {Si ∈N ∣ CZ (Si) = T } (3.5)

A node Si is inside of Z if Si ∈ Z. Otherwise, Si is outside of Z. In the context of a zone Z, we
refer to the set of nodes that are outside of the zone as Z:

Z = {Si ∈N ∣ CZ (Si) = F} (3.6)

To define the semantics of zones and predicates that express the topological relationship between
objects and zones, it is necessary to define a partitioning of space for zones. This partitioning must
fulfill two requirements:

1. The partitioning must be complete and unambiguous, i.e., it must assign exactly one partition
to every p ∈ Ed.

2. Sensor nodes must be able to derive based on POPO
t in which partition of space a detected

object is.

The core idea to meet these two requirements is as follows: Any point p ∈ Ed can be either in no
detection area, only in detection areas of nodes in Z, only detection areas of nodes in Z and in
detection areas of nodes in Z and Z. Thus, every zone partitions space as follows:
Definition 22 (Unobserved Partition): The unobserved partition Z∅ of a zone Z contains
all points not contained in any detection area:

Z∅ = {p ∈ Ed ∣ ∄Si ∈N ∶ p ∈DAi} (3.7)

Definition 23 (Interior of a Zone): The interior ZI of a zone Z contains all points exclusively
observed by nodes in Z:

ZI = {p ∈ Ed ∣ p ∉ Z∅ ∧ ∄Si ∈ Z ∶ p ∈DAi} (3.8)

Definition 24 (Exterior of a Zone): The exterior ZE of a zone Z contains all points exclusively
observed by nodes in Z:

ZE = {p ∈ Ed ∣ p ∉ Z∅ ∧ ∄Si ∈ Z ∶ p ∈DAi} (3.9)

36

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Definition 25 (Border of a Zone): The border ZB of a zone Z contains all points of space
observed by nodes from Z and Z:

ZB = {p ∈ Ed ∣ ∃Si ∈ Z,∃Sj ∈ Z ∶ p ∈DAi ∧ p ∈DAj} (3.10)

Figure 3.5: Illustration of the space partitions for a zone Z

Figure 3.5 illustrates the partitioning of space for a zone: Circles represent nodes and every node
has a detection area of a certain shape. The partitions are based on these detection areas and can
change over time.

Lemma 3.1. The point sets Z∅, ZI , ZE and ZB partition the space, i.e., every p ∈ Ed is only in
one partition.

Proof. A point p ∈ Ed is either included in at least one detection area or unobserved. Z∅ covers
all points Ed ∖⋃1≤i≤n DAi. The observed points ⋃1≤i≤n DAi are covered by one of the remaining
partitions: All points exclusively observed by nodes outside of Z are covered by ZE . Similarly, ZI

covers all points solely observed by nodes in Z. All points observed by nodes inside and outside
of Z are covered by ZB. Since each of these point sets is pair-wise disjoint with the others, we
conclude that the partitioning is complete and unambiguous. ∎

Table 3.1 summarizes the different types of zones and regions, their formal definition and provides
and example for each type. Note that regions do not consider detection areas and do not have a
partition that contains unobserved areas. This is a major challenge for processing developments
with regions, because the sensor network must determine if the trajectory of an object conforms to
a development even if the object was not detected for some time. For example, an object conforms
to Enter (O,R) (cf. Equation 2.5) even if the object was not detected while crossing the border of
R. Section 3.4 addresses this issue.

37

3.3. DERIVING PREDICATE RESULTS FROM OBJECT DETECTIONS

Zone Region
Formula Node Set Z= {Si ∈N ∣ CZ (Si) = T } Point set R = {p ∈ Ed ∣ CR (p) = T }
Partitions Z∅, ZE , ZI , ZB RE , RI , RB

Type static dynamic static dynamic
Example A set of unique

node identifiers
Nodes measuring
a temperature
greater than 0○C

All points in-
side a polygon
defined by GPS-
coordinates

All points where
the temperature
is greater than
0○C

Table 3.1: Summary of region and zone types

3.3 Deriving Predicate Results from Object Detections

This section shows how to derive predicate results from information acquired by object detection.
When one or more nodes detect an object O at time t, the actual position of O is somewhere
in the set of possible object positions POPO

t . To derive predicate results from POPO
t , one has

to determine how POPO
t intersects with a region or a zone. We formalize different types of

intersections between POPO
t and regions or zones as detection scenarios.

Definition 26 (Detection Scenario): A detection scenario describes the intersection between
the set of possible object positions POPO

t and the partitions of a zone or a region. ◻
The detection scenarios abstract from the details of the object detection or other details like

the node deployment. They also take into account simultaneous detection of an object by more
than one node since they are based on POPO

t . Next, we define the set of detection scenarios that
occur in sensor networks and prove that this set is complete, i.e., covers all possible cases of object
detections. For each detection scenario, a formal expression that defines the detection scenario in
the context of a zone Z and a region R is provided.
Definition 27 (DS∅): The detection scenario DS∅ occurs if POPO

t = ∅, i.e., O is undetected and
thus, POPO

t does not intersect with any (observed) partition of the region or zone.

(ZE ∪ZB ∪ZI) ∩POPO
t = ∅ (RE ∪RB ∪RI) ∩POPO

t = ∅ (3.11)

Definition 28 (DSE): The detection scenario DSE occurs if POPO
t is a subset of the exterior of

the region or zone.

POPO
t ⊆ ZE POPO

t ⊆RE (3.12)

38

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Definition 29 (DSI): The detection scenario DSI occurs if POPO
t is a subset of the interior of

the region or zone.

POPO
t ⊆ ZI POPO

t ⊆RI (3.13)

Definition 30 (DSB): The detection scenario DSB occurs if POPO
t is a subset of the border of

the region or zone.

POPO
t ⊆ ZB POPO

t ⊆RB (3.14)

Definition 31 (D̃SB): The detection scenario D̃SB occurs if POPO
t intersects with all partitions

of the region or zone, i.e., the detection mechanism cannot determine if O is inside, on the border
or outside of a region or zone.

POPO
t ∩ZE ≠ ∅ ∧POPO

t ∩ZB ≠ ∅ ∧POPO
t ∩ZI ≠ ∅

POPO
t ∩RE ≠ ∅ ∧POPO

t ∩RB ≠ ∅ ∧POPO
t ∩RI ≠ ∅ (3.15)

According to the point-set topology for regions introduced in Section 2.2.1, the border of a region
is a line. Most detection mechanisms used in sensor networks (cf. Section 2.1.1) cannot determine if
an object is exactly on such a line, i.e., the border. Thus, D̃SB typically occurs in sensor networks if
the object detected is somewhere near the border and only few detection mechanisms are sufficiently
accurate to distinguish such an object from one on the border. Example 6 illustrates this and how
to derive detection scenarios from object detections.

Figure 3.6: Example of detection areas, detection ranges and a region

39

3.3. DERIVING PREDICATE RESULTS FROM OBJECT DETECTIONS

Example 6: Let N = {S1,S2,S3,S4}, and the node positions are as illustrated in Figure 3.6.
Each node only detects objects in its vicinity, e.g., using a PIR-based mechanism. Thus, if Si

detects an object O, PEO
t (Si) contains all points in the circle with radius Dmax and center POSi.

If each Si detects a vehicle Vi, 1 ≤ i ≤ 4, the following scenarios occur:

V1 : PEV1
t (S1) contains only points from RE . Since S1 is the only node that detects V1,

POPV1
t = PEV1

t (S1) and thus DSE occurs.
V2 : PEV2

t (S2) contains only points from RI . Analogous to the detection of S1, we derive
DSI from this.

V3 : PEV3
t (S3) contains points from all three partitions of Ed. This means that the detection

mechanism is not sufficiently accurate to determine on which side of the border of R the
vehicle V3 is. Thus, D̃SB occurs.

V4 : Analogous to V3.

In case of simultaneous detection of V4 by S4 and S2, POPV4
t is the intersection of PEV4

t (S4) and
PEV4

t (S2). It is a subset of RI and results in DSI .
The detection scenarios for these vehicles obviously change if more sophisticated detection mech-

anisms are used. If S3 could determine its detection area DA3, PEV3
t (S3) = POPV3

t does not
overlap with RB anymore, as illustrated in Figure 3.6. This increased accuracy changes the detec-
tion scenario for V3 from D̃SB to DSI . ◆

The intersection of two sets A and B is empty, if A = ∅ or B = ∅. Thus, the detection scenario
DS∅ only occurs if POPO

t = ∅ or if all partitions of the zone or region are empty.

Lemma 3.2. The detection scenario DS∅ implies that POPO
t = ∅.

Proof. As shown in Section 2.2.1, the partitioning of space by regions is complete and unambiguous
for regions. Hence, there always exists at least one partition that is non-empty. According to
Lemma 3.1, the partitioning for zones is complete as well. Thus, DS∅ implies POPO

t = ∅. ∎

Lemma 3.3. For any object O and point of time t, exactly one of the detection scenarios DS∅,
DSE, DSI , DSB or D̃SB holds.

Proof. The lemma holds if the partitions of space where O could be at t based on the information
provided by one of the detection scenarios are pair-wise disjoint. If DS∅ occurs, the object is
undetected at time t. A point p ∈ Ed is either in at least one detection area or unobserved. DS∅
covers all points Ed ∖ ⋃1≤i≤n DAi. Thus, only those parts of space that are observed must be
considered in the following, i.e., ⋃1≤i≤n DAi. We prove the lemma for the observed part of space
in the context of zones and regions separately.

In the context of a region R, the detection scenario DSI covers all points from RI . Similarly,
DSE covers all points from RE . DSB occurs if the sensor network can determine that O is on the

40

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

border for sure. Contrary to that, D̃SB occurs if the accuracy of the object detection is insufficient
to provide a definite statement if O is on the border, or close to it on either side. In this case an
area around RB is not part of RI and RE . All of these point sets are pair-wise disjoint.

For a zone Z, the points covered by the respective detection scenarios are analogous to those
described above. The only difference is that D̃SB cannot occur, because the border ZB is explicitly
defined as those parts of space where objects are detected by nodes in Z and Z. Hence, the lemma
holds, because all parts of space are covered by the respective detection scenarios. ∎

3.3.1 Predicate Results for Regions

This section shows how to derive results from detection scenarios for predicates that describe the
topological relationship between a region and an object. DSE , DSB and DSI guarantee that the
object detected is in a certain partition. Thus, objects detected with these detection scenarios
conform to a predicate P (O,R) in question or not. As illustrated in Example 6, this is not true
for D̃SB, because POPO

t overlaps with more than one partition of the region. Objects detected
according to D̃SB could fulfill P (O,R), but this is not certain. We take this disparity regarding the
certainty of the object positions into account by adding a third value M (Maybe) to the possible
results of P (O,R):

T : P (O,R) returns T if the sensor network can guarantee that O fulfills P (O,R).
F : P (O,R) returns F if the sensor network can guarantee that O does not fulfill P (O,R).
M: P (O,R) returns M otherwise.

Example 7: Continuing Example 6, we assume that a user interested in all vehicles inside
the region, i.e., Inside (Vi,R). Recall that the sensor network can only narrow down the actual
position of a detected vehicle Vi: PEVi

t (Si) is the circle with radius Dmax around the position POSi

of the detecting node Si. If node Si in Figure 3.6 detects Vi, 1 ≤ i ≤ 4, the results are as follows:

V1: The distance between S1 and R is greater than Dmax. Thus, it is certain that V1 is outside of
R. This yields Inside (V1,R) = F .

V2: PEV2
t (S2) and thus POPV2

t ⊆RI . Hence, Inside (V2,R) = T .
V3: Since the distance between S3 and the border of R is less than Dmax, the detection area could

overlap the border. If a vehicle is detected only by S3, the sensor networks cannot determine
on which side of the border it is. Thus, Inside (V3,R) =M.

V4: Analogously to V3.

Summing this up, the user knows for sure that V2 is in R and that V3 and V4 are possibly in R as
well. ◆
The mapping of each detection scenario to a result for any predicate is specified in the following.
We prove for each predicate that the result obtained this way is optimal. This mapping is the
foundation for meaningful results for spatio-temporal developments in Section 3.4.

41

3.3. DERIVING PREDICATE RESULTS FROM OBJECT DETECTIONS

Deriving Results for Inside (O,R)

Considering the five detection scenarios, there are two scenarios where an object could be in a
region R and one where this is certain:

DSI : POPO
t only intersects with RI , i.e., POPO

t ⊆RI . Hence, O is in R for sure.
D̃SB: POPO

t overlaps with RI but also overlaps with other partitions of R. Thus, it is possible
that O fulfills Inside (O,R) but is not guaranteed.

DS∅: Objects may be in R without being detected, i.e., O might fulfill Inside (O,R) while being
undetected.

Equation 3.16 summarizes the mapping of detection scenarios to predicate results for Inside (O,R):

Inside (O,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T iff DSI

F iff DSE , DSB

M iff D̃SB, DS∅
(3.16)

Lemma 3.4. Let ΩR
Inside be the set of objects in R. The set of objects where Inside (O,R) yields T

or M is the smallest superset of ΩR
Inside that the sensor network can derive from detection scenarios.

Proof. The lemma is true if the objects detected with DSE and DSB do not fulfill Inside (O,R)
for sure. DSE means that POPO

t is a subset of RE , i.e., POPO
t does not intersect with RI . The

detection scenario DSB occurs for objects that are on the border, i.e., POPO
t is a subset of RB.

Hence, the object is not in R in both cases for sure. ∎

Lemma 3.5. The set of objects where Inside (O,R) = T is the largest subset of ΩR
Inside that the

sensor network can derive from the detection scenarios.

Proof. Only DSI corresponds to objects that fulfill Inside (O,R) for sure. The remaining detection
scenarios cannot guarantee that the detected object is in R. DS∅ and D̃SB may occur for objects
outside of R as well. Objects detected according to DSE or DSB are not in R for sure. Thus, there
does not exist a detection scenario of O that guarantees Inside (O,R) except DSI . ∎

We conclude for Inside (O,R) that the result in (3.16) is as accurate as possible considering the
limitations of sensor networks, e.g., unobserved areas and imprecise detection mechanisms.

Deriving Results for Meet (O,R)

The predicate Meet (O,R) is true if O is on the border RB of the region R. Considering the set
of detection scenarios, there is one that guarantees that O is on the border and two others were it
is possible:

42

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

DSB: In this case POPO
t ⊆RB and thus Meet (O,R) = T .

D̃SB: Contrary to the previous case, POPO
t also contains points that are not part of the bor-

der. Thus, the object could be on the border, but the limited accuracy of the detection
mechanism does not allow a definitive answer, i.e., Meet (O,R) =M in this case.

DS∅: The object could be on the border while not being detected by any sensor node and
therefore Meet (O,R) =M in this case.

Equation (3.17) summarizes this:

Meet (O,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T iff DSB

F iff DSI , DSE

M iff D̃SB, DS∅
(3.17)

Lemma 3.6. Let ΩR
Meet be the set of objects on the border RB of R. The set of objects where

Meet (O,R) yields T or M is the smallest superset of ΩR
Meet that a sensor network can derive from

the detection scenarios.

Proof. Analogous to Lemma 3.4, we prove this by considering DSI and DSE : DSI ensures that POPO
t

only contains points from RI , i.e., O is not on the border RB. Similarly, we derive from DSE that
POPO

t is a subset of RE and thus does not intersect with RB. Thus, the set of objects where
Meet (O,R) yields T or M is the smallest superset of ΩR

Meet the sensor network can compute. ∎

Lemma 3.7. The set of objects where Meet (O,R) = T is the largest subset of ΩR
Meet identifiable

by a sensor network.

Proof. Only DSB yields Meet (O,R) = T . Objects O detected according to D̃SB could be on RB,
but it is not sure, because POPO

t also contains points from other partitions. Undetected objects
could be on the border as well, but since they are not detected, it is not certain. For the other two
detection scenarios, it is sure that the detected object is not on the border because POPO

t ∩RB = ∅.
Thus, a sensor network cannot compute a larger subset of ΩR

Meet. ∎
As stated above, most detection mechanisms used in sensor networks cannot determine that

some object O is on RB. Thus, once the distance of an object O to RB falls below a certain limit,
the detection mechanism cannot determine if the object is on the border or just close to it. Hence,
the set of objects detected according to DSB is typically empty.

Even if the sensor nodes are equipped with hardware that allows precise localization of an object,
the result of the detection would be D̃SB in most cases instead of DSB: Since RB is a line, the time
it takes for an object to move over this line is infinitely short. Capturing this moment reliably,
i.e., whenever an object crosses the border, would require detection hardware with infinitely high
temporal resolution. Thus, even with very sophisticated detection mechanisms, sensor networks
cannot detect objects on the border reliably.

43

3.3. DERIVING PREDICATE RESULTS FROM OBJECT DETECTIONS

Summing up, the set of objects detected with DSB is typically very small or empty. According
to Lemma 3.7, sensor networks cannot determine a larger set of objects for which Meet (O,R) is
guaranteed. One might consider removing Meet (O,R) from the set of predicates now since the
only case where Meet (O,R) = T will not occur or occurs rarely. However, removing Meet (O,R)
is problematic as it would reduce the set of spatio-temporal queries expressible in sensor networks
significantly. For example, without Meet (O,R) one cannot express the development Touch (O,R)
defined in (2.6). We show in Section 3.4 that there exist spatio-temporal developments containing
Meet (O,R) whose meaning can be guaranteed despite these problems. We conclude that the
mapping in (3.17) for Meet (O,R) is as accurate as the detection mechanisms allow even if most
object detections around the border lead to Meet (O,R) =M.

Deriving Results for Disjoint (O,R)

To conform to Disjoint (O,R), object O must be in RE . The mapping to detection scenarios is
analogous to Inside (O,R):

Disjoint (O,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T iff DSE

F iff DSI , DSB

M iff D̃SB, DS∅
(3.18)

Obviously, there are lemmas analogous to Lemmas 3.4 and 3.5 for Disjoint (O,R). Hence, we
conclude that the result in (3.18) is as accurate as possible as well.

Static and Dynamic Regions

Moving object databases model regions as (regular) point sets (cf. Definition 5). The application
scenarios in Section 1.1 illustrated that there are two types of regions one must consider: Users
define a static region R using a set of conditions CR that does not change R over time. An example
of such a CR is a polygon that describes the border of the region and every point inside the polygon
is part of the region. The second type are dynamic regions which are based on a CR that may
change the points in R over time. For example, a user might define a CR that describes an oil spill
or an area of low temperature. The points of space that are in such a region changes over time
because the spatial extend of the oil spill or the area of low temperature changes.

The predicate results defined above apply to static and dynamic regions. Computing the detec-
tion scenario to obtain a predicate result for an object detection implicitly assumes that the point
set representing the region is known. Thus, prior to computing a detection scenario at some time
t ∈ T, it is necessary to check for every p ∈ Ed if it is in the region R, i.e., CR (p) = T .

For static regions, this requirement is easy to meet because the region does not change over time.
Thus, one can derive polygons for any static region R that encompass the interior of the region
prior to processing a query or computing detection scenarios. Each node can store the corners of

44

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

the polygon that describes R and given a POPO
t compute the intersection POPO

t ∩R, i.e., derive
a detection scenario.

Checking if a point p is inside or outside of R becomes problematic if R is dynamic, i.e., changes
over time, because computing a polygon beforehand is not possible. The problem is illustrated in
Example 8.
Example 8: Suppose a user is interested in object movement in relation to a region R
that contains all points with a temperature below 0○C. If Si detects an object O at time t and
computes POPO

t , it is not possible to make any statement regarding the intersection of POPO
t

with the partitions of R. Even if Si measures a temperature of less than 0○C, it is not certain that
O is also at a position where the temperature is below 0○C. At the same time, Si cannot foreclose
that O is at a position where the temperature is below 0○C. ◆

There are two ways to solve this problem:

1. Deploy a node at any p ∈ Ed.
2. Equip sensor nodes with sophisticated sensing hardware that allows checking CR (p) for points

p where no sensor node is deployed. As a side condition, nodes must be deployed in such a
way that at least one node can check every point p ∈ Ed.

A deployment where a node is deployed at every p ∈ Ed is not viable. The second option assumes
nodes equipped with sophisticated sensing hardware, e.g., infra-red cameras, which determine the
temperature for the area around a sensor node. It must be noted for this case that the nodes
using these cameras must have considerably more computational power than those available today
to process the images taken by the cameras. Summing up, processing spatio-temporal queries
interested in the relation of an object and a dynamic region requires restrictive assumptions about
sensor nodes and the deployment. Instead of making such assumptions, for most sensor networks
it is sufficient if the movement of an object is observed in relation to a set of nodes, i.e., a zone.
We define the semantics of predicates that express the topological relationship between an object
and a zone next. Since the movement is observed in relation to a set of nodes, this concept allows
processing queries interested in the relationship of a moving object and another moving entity that
covers more than one point in space.

3.3.2 Predicate Results for Zones

Section 3.2 has defined the space partitioning for zones. The partitioning is based on detection
areas. Even if detection areas are not determinable, we can derive the partition of the zone that
contains an object detected by using the following idea: If a node Si ∈ Z detects O at time t, the
position estimate PEO

t (Si) intersects with ZI , i.e., PEO
t (Si)∩ZI ≠ ∅. The actual position p ∈ Ed

of O is either exclusively observed by nodes in Z or nodes inside and outside of Z observe it. Thus,
the object is either in ZI or in ZB. To determine whether O is in ZI or in ZB, one must consider
simultaneous detections by other nodes, i.e., POPO

t : If there exists another Sj ∈ Z that detects

45

3.3. DERIVING PREDICATE RESULTS FROM OBJECT DETECTIONS

O at t, O is at a position p that is observed by nodes in Z as well as nodes in Z. According to
the definitions of the border of a zone, this means that POPO

t ⊆ ZB, i.e., DSB. If there is no node
outside of Z that detects O at t, the actual position of O is exclusively observed by nodes in Z.
Hence, POPO

t ⊆ ZI , i.e., O is detected according to DSI . Summing up, one has to consider how the
detection set DO

t (cf. Definition 13) intersects with Z and Z to determine how POPO
t intersects

with the partitions of the zone, i.e., compute the corresponding detection scenario.

Lemma 3.8. The detection scenario DSE occurs if only nodes in Z detect an object O:

DO
t ⊆ Z ⇒ POPO

t ⊆ ZE

Proof. We prove this implication by contradiction2, i.e., we have to prove that if POPO
t is not a

subset of ZE then DO
t is not a subset of Z. Let Si ∈ Z detect O at t, i.e., detect (Si,O, t) = T .

Thus, O is somewhere in DAi. Since POPO
t is the intersection of the detection areas of all nodes

that detect O at t, POPO
t must contain at least one p ∈DAi. Hence, POPO

t is not a subset of ZE ,
because ZE contains only points exclusively observed by nodes in Z. If POPO

t would not contain
at least one p ∈DAi then detect (Si,O, t) = F . Summing up, DO

t ⊆ Z implies POPO
t ⊆ ZE . ∎

Lemma 3.9. The detection scenario DSI occurs if only nodes in Z detect an object O:

DO
t ⊆ Z ⇒ POPO

t ⊆ ZI

Proof. Analogous to Lemma 3.8, one can prove this by contradiction: The lemma holds if
POPO

t ⊆ ZI implies DO
t ⊆ Z. Let Si ∈ Z detect O at t, i.e., DO

t ⊆ Z is true. Since detect (Si,O, t) =
T , O is somewhere in DAi. This implies that there is at least one point p ∈ POPO

t that is also in
DAi. The partition ZI is the set of points exclusively observed by nodes in Z. Since p must exist
because Si detects O at least p is not in ZI and therefore POPO

t ⊆ ZI is not true. ∎

Lemma 3.10. The detection scenario DSB occurs if there exists a pair of nodes (Si,Sj) with Si ∈ Z
and Sj ∈ Z that detect O at time t:

DO
t ∩Z ≠ ∅ ∧DO

t ∩Z ≠ ∅⇒ POPO
t ⊆ ZB

Proof. DO
t ∩ Z ≠ ∅ implies that O is at some point p ∈ Ed that is observed by nodes from Z.

Similarly, DO
t ∩ Z ≠ ∅ means that nodes from Z detect the object as well. This implies that p

is observed by nodes inside and outside of Z which is the border of the zone (cf. Definition 25).
Hence, the lemma holds. ∎

2To prove A⇒ B by contradiction, it is sufficient to prove B⇒ A.

46

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Lemma 3.11.

POPO
t ∩ZE ≠ ∅⇒ POPO

t ⊆ ZE

POPO
t ∩ZI ≠ ∅⇒ POPO

t ⊆ ZI

POPO
t ∩ZB ≠ ∅⇒ POPO

t ⊆ ZB

Proof. We prove POPO
t ∩ZE ≠ ∅⇒ POPO

t ⊆ ZE : According to Definition 24, ZE only contains
points that are exclusively observed by nodes in Z. Hence, if POPO

t contains points from ZE , the
object is at a position that is exclusively observed by nodes in Z. If there exists a node Si ∈ Z
that detects O, POPO

t does not intersect with ZE anymore. The proofs for the remaining two
implications are analogous. ∎

Lemma 3.11 implies that in the context of a zone Z, POPO
t can never intersect with more

than one partition of Z. Thus, we can omit D̃SB for the definition of predicates that express the
relationship between an object and a zone. This allows the definition of predicates for zones as well
as their semantics.
Definition 32 (Disjoint (O,Z)): The object O conforms to Disjoint (O,Z) if O is exclusively
detected by nodes in Z, i.e., if DSE occurs (cf. Lemma 3.8):

Disjoint (O,Z) = { T iff DSE

F Otherwise (3.19)

Other detection scenarios yield F , because it is certain that O is not in the exterior ZE according
to Lemma 3.11. ◻

Definition 33 (Inside (O,Z)): The object O conforms to Inside (O,Z) if O is exclusively
detected by nodes in Z, i.e., if DSI occurs (cf. Lemma 3.9):

Inside (O,Z) = { T iff DSI

F Otherwise (3.20)

Other detection scenarios yield F , because it is certain that O is not in the interior ZI according
to Lemma 3.11. ◻

Definition 34 (Meet (O,Z)): The object O conforms to Meet (O,Z) if O is detected by nodes
in Z and Z simultaneously, i.e., if DSB occurs (cf. Lemma 3.10):

Meet (O,Z) = { T iff DSB

F Otherwise (3.21)

47

3.3. DERIVING PREDICATE RESULTS FROM OBJECT DETECTIONS

Other detection scenarios yield F , because it is certain that O is not in the border partition ZB

according to Lemma 3.11. ◻
Assuming ΩZ

Disjoint is the set of objects in ZE of Z. Since there is no detection scenario where
Disjoint (O,Z) =M, we conclude that the set of objects where Disjoint (O,Z) yields T equals
ΩZ

Disjoint. Similarly, the sets of objects where Meet (O,Z) and Inside (O,Z) yield T equal ΩZ
Meet

and ΩZ
Inside respectively.

Note that concepts like concatenation or lifting (cf. Definition 10) are applicable to these pred-
icates as well. Thus, one can construct developments that query the spatio-temporal relationship
of objects and zones. For instance, one could define:

Enter (O,Z) = Disjoint (O,Z)▷Meet (O,Z)▷ Inside (O,Z) (3.22)

The space partitioning for regions divides all points of space into three partitions and the resulting
three predicates describe in which partition an object is. In the context of zones, we introduced a
fourth partition Z∅ which contains all points that are unobserved. To allow users to express that
an object movement they are interested in includes that the object is unobserved at some point in
time, we define a corresponding fourth predicate:
Definition 35 (Undetected (O)): An object O conforms to Undetected (O) if there is no node
Si ∈N that detects O, i.e., if DS∅ occurs:

Undetected (O,Z) = Undetected (O) = { T iff DS∅
F Otherwise (3.23)

Note that we abbreviate Undetected (O,Z) to Undetected (O) because the object is not only unde-
tected in relation to Z but also in relation to any other zone. ◻

This predicate is particularly useful in the context of spatio-temporal developments. For example,
a user could be interested in objects that fulfill Inside (O,Z) first and then move into an unobserved
area:

Disappear (O,Z) = Inside (O,Z)▷Undetected (O) (3.24)

Further examples for the use of this predicate are provided in Section 3.4 where spatio-temporal
developments in sensor networks are discussed.

3.3.3 Static and Dynamic Zones

As with regions, there are two variants of zones: dynamic and static zones. As shown in Table 3.1,
users define a static zone Z by providing a CZ where the set of nodes inside Z does not change
over time. Such a CZ could enumerate all nodes in the zones, e.g., using the unique identifier
of a node. A dynamic zone changes over time, i.e., the CZ contains a condition that refers to a

48

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

measurable value like the temperature. As with regions, the semantics of the predicates defined
above are applicable to both versions of the zone.

Contrary to dynamic regions, dynamic zones do not require sophisticated hardware like infra-red
cameras, because every node only has to determine if it is inside the zone or not. For example,
a dynamic zone in Table 3.1 requires each node to determine from time to time if it measures a
temperature below or above 0○C. Contrary to the infra-red camera that would be required for a
dynamic region, an appropriate temperature sensor is typically available by default on sensor nodes
available today (cf. Section 2.1). Thus, dynamic zones do not require any further assumptions
regarding the capabilities of the nodes or the deployment.

3.3.4 Summary

Table 3.2 summarizes the mapping of detection scenarios to results of predicates expressing the
relation between objects and regions in sensor networks. Each row corresponds to a predicate and
every column to a detection scenario that describes how POPO

t overlaps with the partitions of the
region R.

P (O,R) DS∅ DSE DSI DSB D̃SB

Inside (O,R) M F T F M
Meet (O,R) M F F T M

Disjoint (O,R) M T F F M

Table 3.2: Predicate result mapping for an object O and a region R

The results of predicates that describe the relation between an object and a zone are summa-
rized similarly in Table 3.3. Due to the fact that D̃SB cannot occur in the context of zones, the
corresponding column contains ’-’ entries. Based on these results, we focus on spatio-temporal
developments, i.e., sequences of predicates that describe an object movement in relation to a zone
or region that the user is interested in.

P (O,Z) DS∅ DSE DSI DSB D̃SB

Inside (O,Z) F F T F -
Meet (O,Z) F F F T -

Disjoint (O,Z) F T F F -
Undetected (O,Z) T F F F -

Table 3.3: Predicate result mapping for an object O and a zone Z

49

3.4. SPATIO-TEMPORAL DEVELOPMENTS

3.4 Spatio-Temporal Developments

As illustrated in Section 2.2.3, users express spatio-temporal queries by concatenating predicates.
By concatenating predicates, users describe the movement they are interested in declaratively. The
core contribution of this chapter is the translation of sequences of object detections to results for
spatio-temporal developments.

To provide such a translation, some preliminary steps are required: First, we show that the
concatenation operator ▷ (cf. Definition 10) is insufficient to express certain queries in sensor
networks. We solve this by introducing a new concatenation operator ▷̃ . Second, we develop
a canonical collection of spatio-temporal developments for sensor networks similar to the existing
collection for moving object databases. We need this collection to obtain a finite set of developments
which must be translated. The last step is the actual translation of each element of the canonical
collection and the proof that this translation is correct.

3.4.1 Irregularity of Zones and Concatenation

The difference between the partitioning of space for regions and the partitioning for zones is that
regularity [122] cannot be assumed for zones: As stated in Section 2.2.1, regions in moving object
databases are regular. Among other things, this ensures that the border RB always encompasses
the interior RI completely. This is different with zones, as illustrated in Figure 3.5: The border
ZB of the illustrated zone Z partly encompasses the interior ZI and other parts of ZI adjoin to
Z∅.

This has an impact on spatio-temporal developments, as we illustrate with Enter (O,R): Assume
a user is interested in all objects O that move into the zone Z. For regions, the space partitions are
regular, i.e., an object O must cross the border RB. In the context of a zone, a user could express
an interest similar to Enter (O,R) with Enter (O,Z) as defined in (3.22). This is problematic,
because Enter (O,Z) implicitly restricts the set of objects that are part of the result to those that
are observed while crossing the border. For example, an object O might fulfill Disjoint (O,Z)
at some point, then move through an unobserved area and fulfill Inside (O,Z) afterwards. From
a semantical perspective, O also has ”entered” the zone, i.e., fulfills the users query, but since
Meet (O,Z) was not true, it does not fulfill Enter (O,Z).

One might consider solving this by querying for all objects that either fulfill Enter (O,Z) or
HiddenEnter (O,Z) which is defined in (3.25):

HiddenEnter (O,Z) = Disjoint (O,Z)▷Undetected (O)▷ Inside (O,Z) (3.25)

But HiddenEnter (O,Z) is not sufficient as well, because O could fulfill Disjoint (O,Z) first, then
Undetected (O) followed by Meet (O,Z) and finally Inside (O,Z). In this case, O neither fulfills
Enter (O,Z) nor HiddenEnter (O,Z). A user interested in objects O that enter a zone Z, but
does not care if the object is detected or not while crossing the border would have to provide an
infinite number of predicate sequences. This is because an object can move an arbitrary number of

50

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

times between Undetected (O) and Meet (O,Z) before fulfilling Inside (O,Z). Furthermore, users
cannot express this as follows:

Disjoint (O,Z)▷ Inside (O,Z) (3.26)

The sequence in (3.26) never occurs, because ▷ requires Inside (O,Z) to follow Disjoint (O,Z)
immediately. Summing up, users cannot express such a query given the four predicates
Disjoint (O,Z), Meet (O,Z), Inside (O,Z), Undetected (O) and ▷.
Definition 36 (Relaxed Concatenation): The relaxed concatenation of two predicates, P ▷̃
Q, is true if P is true for some time interval [t0; t1[, and Q is true at t2 ≥ t1. ◻

Equation (3.27) defines a development that expresses the query discussed above:

WSNEnter (O,Z) = Disjoint (O,Z) ▷̃ Inside (O,Z) (3.27)

In combination with the predicate Undetected (O), this new concatenation operator increases the
semantical depth because users can explicitly define if the object must be observed or not while
moving as illustrated by Example 9.
Example 9: The area where the sensor network in Figure 1.2 is deployed contains a river
with several bridges. Suppose that due to the controlled deployment (cf. Section 1.1.2) nodes are
deployed so that caribous moving over a bridge are detected, but caribous swimming are not, i.e.,
the river itself is unobserved. A user only interested in caribous Ci entering Z by crossing bridges
can use Enter (Ci,Z). If only caribous that enter Z by swimming are of interest, the user can
express this with the development HiddenEnter (O,Z) defined in (3.25). A user interested in all
caribous entering Z can use WSNEnter (Ci,Z) as defined in (3.27) to express this interest. ◆

Next, we study some important properties of the ▷̃ operator like associativity and combinability
with the ▷ operator.

Lemma 3.12. P1▷P2 ⇒ P1 ▷̃P2

Proof. According to Definition 36, the right-hand side is true if P1 is true for some interval [t0, t1[
and P2 is true at t2 ≥ t1. The left-hand side of the implication states that P1 is true for some
interval [t0, t1[and P2 is true at t2 = t1. Hence, if the left-hand side is true, the right-hand side is
true as well. ∎

Lemma 3.13. P1 ▷̃ (P2 ▷̃P3) = (P1 ▷̃P2) ▷̃P3.

Proof. The left-hand side means ∃ [t0, t1[∶ P1 and ∃t2 ≥ t1 ∶ (P2 ▷̃P3). Furthermore, ∃ [t2, t3[∶ P2
and ∃t4 ≥ t3 ∶ P3. The right-hand side expresses that ∃ [t′0, t

′

3[∶ (P1 ▷̃P2) and ∃t
′

4 ≥ t
′

3 ∶ P3.
Additionally, ∃ [t′0, t

′

1[, t
′

1 ≤ t
′

3 ∶ P1 and ∃t
′

2 ≥ t
′

1 ∧ t
′

2 ≤ t
′

3 ∶ P2. If the left-hand side is true for
t
′

0 = t0, t
′

1 = t1, t
′

2 = t2, t
′

3 = t3 the right-hand side is fulfilled also (and vice versa). ∎

51

3.4. SPATIO-TEMPORAL DEVELOPMENTS

Lemma 3.14. P1▷ (P2 ▷̃P3) = (P1▷P2) ▷̃P3

Proof. P1 ▷ (P2 ▷̃P3) implies P1 ▷̃ (P2 ▷̃P3) based on Lemma 3.12. Similarly, (P1▷P2) ▷̃P3
implies (P1 ▷̃P2) ▷̃P3. Hence, we get P1 ▷̃ (P2 ▷̃P3) = (P1 ▷̃P2) ▷̃P3 which is true according
to Lemma 3.13. ∎

Summing up, users can express spatio-temporal queries using both concatenation operators in
spatio-temporal developments. Thus, we define spatio-temporal developments in the context of
sensor networks as follows:
Definition 37 (Spatio-Temporal Development): A spatio-temporal development P is a
sequence of predicates P = P1 θ P2 θ . . . θ Pq with θ ∈ {▷, ▷̃} that describes the movement of an
object in relation to a zone or a region.

The movement of an object O conforms to P if each pair Pi−1 θ Pi with 2 ≤ i ≤ q is true in the
order defined by P. ◻

In the following, we denote developments that describe the relation of an object O and a region
R with P (O,R). In this case, all predicates refer to O and R as well, i.e., Pi = Pi (O,R)
with 1 ≤ i ≤ q. Since ▷̃ is only required in the context of zones due to their non-regular space
partitioning, P (O,R) = P1 (O,R)▷. . .▷Pq (O,R). For zones, we use a similar notation: P (O,Z)
describes the spatio-temporal relationship between an object O and a zone Z. Each predicate in
P (O,Z) refers to O and Z, i.e., P (O,Z) = P1 (O,Z) θ . . . θ Pq (O,Z) with 1 ≤ i ≤ q and
θ ∈ {▷, ▷̃}.

Based on this definition, we can investigate the semantical depth of our approach and derive a
canonical collection of spatio-temporal developments. This allows us to limit the spatio-temporal
developments which must be translated into sequences of object detections.

3.4.2 A Canonical Collection of Spatio-Temporal Developments

To obtain a canonical collection of spatio-temporal developments, [40] construct a development
graph (cf. Section 2.2.3) which expresses possible spatio-temporal developments. A development
is possible, if an object can move in such a way that the corresponding sequence of predicates
P1 θ P2 θ . . . θ Pq is satisfied.
Definition 38 (Development Graph): A development graph is a graph DG = (V,E) that
expresses every possible predicate sequence:

V: The set of vertexes contains an element for every possible predicate.
E: The set of edges contains an element (Pi,Pj) if an object can move in such a way that Pi θ Pj

is satisfied. ◻

As shown above, the set of predicates applicable to regions and objects differs from the set for
zones and objects. Thus, we construct development graphs for zones and regions separately. Based
on both graphs, we finally enumerate the possible developments.

52

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

The Object/Region Development Graph

There are three predicates that express the relationship between an object and a region. Thus,
the set of vertexes VR for the object/region development graph DGR = (VR,ER) contains three
elements as well, i.e., VR = {Inside (O,R) ,Meet (O,R) ,Disjoint (O,R)}.

Lemma 3.15. For any object O and a region R, there does not exist a movement that fulfills the
predicate sequences Inside (O,R)▷Disjoint (O,R) or Disjoint (O,R)▷ Inside (O,R).

Proof. According to Definition 10, the movement of an object O in relation to a region
R satisfies Inside (O,R) ▷ Disjoint (O,R) if Inside (O,R) = T for some interval [t0, t1[and
Disjoint (O,R) = T at t1. Due to the partitioning of space defined for regions (cf. Section 2.2.1),
to satisfy Inside (O,R) at ti and Disjoint (O,R) later at tj , the object must cross the border at
ti < t < tj . Thus, if Inside (O,R) = T for [t0, t1[, Meet (O,R) = T at t1. Hence, Disjoint (O,R) is
not possible at t1. The proof for Disjoint (O,R)▷ Inside (O,R) is analogous. ∎

Lemma 3.15 implies that there does not exist an edge from Disjoint (O,R) to Inside (O,R) and
vice versa. Figure 3.7 shows the object/region development graph.

Disjoint (O,R)

Meet (O,R)

Inside (O,R)

▷

▷

Figure 3.7: Development graph for an object O and a region R

Comparing this graph to the development graph in Figure 2.7 for objects and regions in moving
object databases shows that they only differ in one vertex: As mentioned before, [40] distinguishes
between meet (o, r) and Meet (O,R). Using their semantics, meet (o, r) = T if o is on the border
of R for exactly one instant of time. Contrary to that, Meet (O,R) = T if O is on the border of R
for a time interval. We omit developments with meet (o, r) here, since this would assume detection
mechanisms with infinite temporal resolution.

The Object/Zone Development Graph

As shown in Section 3.3, there are four predicates that express the relationship between an object
and a zone. Thus, for the object/zone development graph DGZ = (VZ ,EZ), the set of vertexes is
defined as follows: VZ = {Inside (O,Z) ,Meet (O,Z) ,Disjoint (O,Z) ,Undetected (O)}.

53

3.4. SPATIO-TEMPORAL DEVELOPMENTS

Contrary to regions, zones are not regular (cf. Section 3.4.1). As we have shown, this irregularity
necessitates the usage of two different concatenation operators. Lemma 3.12 has shown that P1▷
P2 ⇒ P1 ▷̃P2. Thus, for each edge in ER there must be a corresponding edge in EZ . Furthermore,
if there exists an edge for P1▷P2, there must be another edge to represent P1 ▷̃P2. In addition,
an object can move into or out of an undetected area at any time, i.e., the vertex representing
Undetected (O) must have an edge to any other vertex and vice versa.

As with regions, the predicate sequences Inside (O,Z)▷ Disjoint (O,Z) or Disjoint (O,Z)▷
Inside (O,Z) are not possible. Thus, EZ does not contain corresponding edges. Contrary to that,
the sequences Inside (O,Z) ▷̃Disjoint (O,Z) and Disjoint (O,Z) ▷̃ Inside (O,Z) must be part of
EZ .

Disjoint (O,Z)

Inside (O,Z)

Meet (O,Z)Undetected (O)

▷ ▷̃ ▷ ▷̃

▷ ▷̃ ▷ ▷̃

▷ ▷̃

▷̃

Figure 3.8: Development Graph for an object O and a zone Z

Figure 3.8 summarizes the object/zone development graph. Solid lines represent concatena-
tions that exist for both concatenation operators, namely ▷ and ▷̃ . The dotted line between
Inside (O,Z) and Disjoint (O,Z) represents the fact that this concatenation is only possible with
▷̃ .

Enumeration of Possible Developments

Every path through a development graph represents a possible spatio-temporal development. Con-
sidering the structure of the development graphs above, the number of these paths is infinite due
to cycles. As shown in [40], it is sufficient to restrict the set of developments by constructing
development trees with the following approach:

1. Pick each element in V as the root of a the development tree.
2. From this root element, generate a child node in the tree for every vertex connected to this

root in the development graph.
3. For each child node, construct a set of child nodes – the vertexes connected to it in the

development graph.
4. A node is a leaf node, i.e., the node generation stops, if

(a) representatives of every predicate are on the path from the root to the current node.

54

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

(b) the predicate corresponding to the current node already appears on the path from the
root to the current node, i.e., in case of a cycle.

To obtain the canonical collection, we generate such a tree for every element of V based on the
respective development graphs for regions and zones. Every node in such a tree represents a
spatio-temporal development.

Disjoint (O,R)

Meet (O,R)

Disjoint (O,R)Inside (O,R)

Figure 3.9: Development tree
with root Disjoint (O,R)

Meet (O,R)

Disjoint (O,R)

Meet (O,R)

Inside (O,R)

Meet (O,R)

Figure 3.10: Development
tree with root Meet (O,R)

Inside (O,R)

Meet (O,R)

Disjoint (O,R)Inside (O,R)

Figure 3.11: Development
tree with root Inside (O,R)

Figures 3.9-3.11 show the development trees starting with Disjoint (O,R), Meet (O,R) and
Inside (O,R) respectively. There are 13 nodes, i.e., there are 13 unique spatio-temporal develop-
ments that describe the relationship of an object and a region in a sensor network over time. These
13 developments include three developments consisting of a single predicate. Since semantics for
single predicates have been the focus of Section 3.3 already, there are 10 developments consisting
of two or more predicates for which semantics have yet to be defined. Table 3.4 contains these 10
missing developments for objects and regions.

Disjoint (O,R)▷Meet (O,R) Inside (O,R)▷Meet (O,R)
Meet (O,R) ▷Disjoint (O,R) Meet (O,R) ▷ Inside (O,R)
Disjoint (O,R)▷Meet (O,R)▷Disjoint (O,R) Disjoint (O,R)▷Meet (O,R)▷ Inside (O,R)
Meet (O,R)▷Disjoint (O,R)▷Meet (O,R) Meet (O,R)▷ Inside (O,R)▷Meet (O,R)
Inside (O,R)▷Meet (O,R)▷Disjoint (O,R) Inside (O,R)▷Meet (O,R)▷ Inside (O,R)

Table 3.4: Canonical collection of developments with two or more predicates for objects and regions

We translate each of these developments into a sequence of detection scenarios in Section 3.4.4.
For each development there is a proof that the translation is correct.

Figures 3.12-3.15 contain the development trees starting with Disjoint (O,Z), Meet (O,Z),
Undetected (O) and Inside (O,Z) respectively. Note that there are two types edges to reflect
the different types of concatenations: A solid line indicates that the two predicates may be con-
catenated by either ▷ or ▷̃ . The dotted line occurring between Disjoint (O,Z) and Inside (O,Z)
indicates that both predicates only allow the use of ▷̃ for concatenation.

55

3.4. SPATIO-TEMPORAL DEVELOPMENTS

Each tree contains 31 nodes, i.e., the total number of nodes in all trees is 4 ⋅ 31 = 124. Contrary
to the object/region development tree, each node represents more than one unique development
because solid lines may be either ▷ or ▷̃ . The value above each node indicates the number of
developments this node represents. We explain how to derive these values in the following using
Figure 3.12: The root node Disjoint (O,Z) in Figure 3.12 has edges to three predicates Meet (O,Z),
Undetected (O) and Inside (O,Z). The edge between Disjoint (O,Z) and Meet (O,Z) is solid,
i.e., both predicates may be concatenated using ▷ and ▷̃ . Thus, there are two developments
represented by this path:

1. Disjoint (O,Z)▷Meet (O,Z)
2. Disjoint (O,Z) ▷̃Meet (O,Z).

Similarly, the path from Disjoint (O,Z) to Undetected (O) via Meet (O,Z) represents four devel-
opments. This is because one can ”append” Undetected (O) to each of the two developments above
using either ▷ or ▷̃ .

Since one cannot concatenate Disjoint (O,Z) and Inside (O,Z) using ▷ (cf. Lemma 3.15), the
corresponding dotted edges only represent ▷̃ . For instance, in Figure 3.12 this occurs between the
root node Disjoint (O,Z) and Inside (O,Z), i.e., this path only represents a single spatio-temporal
development: Disjoint (O,Z) ▷̃ Inside (O,Z). Since it is possible to ”append” Meet (O,Z) to
Disjoint (O,Z) ▷̃ Inside (O,Z) using ▷̃ and ▷, the corresponding path represents two unique
developments:

1. Disjoint (O,Z) ▷̃ Inside (O,Z)▷Meet (O,Z)
2. Disjoint (O,Z) ▷̃ Inside (O,Z) ▷̃Meet (O,Z)

By applying the scheme above to all nodes in the development trees starting with Disjoint (O,Z),
we derive that there are 146 unique developments that start with Disjoint (O,Z). Even though the
structure of the trees starting with Meet (O,Z), Undetected (O) and Inside (O,Z) varies slightly,
the number of unique spatio-temporal developments is always 146. Hence, users can express 4⋅146 =
584 unique spatio-temporal developments that describe the relationship between an object and a
zone over time.

56

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Disjoint (O,Z)

Inside (O,Z)
1

Undetected (O)
2

Disjoint (O,Z)
4

Meet (O,Z)
4

Inside (O,Z)
4Disjoint (O,Z)

1

Meet (O,Z)
2

Inside (O,Z)
4

Undetected (O)
4

Disjoint (O,Z)
4

Undetected (O)
2

Inside (O,Z)
4

Undetected (O)
8

Meet (O,Z)
8

Disjoint (O,Z)
4Disjoint (O,Z)

4

Meet (O,Z)
4

Undetected (O)
8

Inside (O,Z)
8

Disjoint (O,Z)
8

Meet (O,Z)
2

Inside (O,Z)
4

Disjoint (O,Z)
4

Undetected (O)
8

Meet (O,Z)
8Disjoint (O,Z)

4

Undetected (O)
4

Disjoint (O,Z)
8

Inside (O,Z)
8

Meet (O,Z)
8

▷ and ▷̃
only ▷̃

Figure 3.12: Development tree with root Disjoint (O,Z)

57

3.4. SPATIO-TEMPORAL DEVELOPMENTS

Meet (O,Z)

Inside (O,Z)
2

Undetected (O)
4

Inside (O,Z)
8

Meet (O,Z)
8

Disjoint (O,Z)
8Meet (O,Z)

4

Disjoint (O,Z)
2

Inside (O,Z)
2

Undetected (O)
4

Meet (O,Z)
4

Undetected (O)
2

Inside (O,Z)
4

Undetected (O)
8

Meet (O,Z)
8

Disjoint (O,Z)
4Meet (O,Z)

4

Disjoint (O,Z)
4

Inside (O,Z)
4

Undetected (O)
8

Meet (O,Z)
8

Disjoint (O,Z)
2

Inside (O,Z)
2

Undetected (O)
4

Meet (O,Z)
4

Disjoint (O,Z)
2Meet (O,Z)

4

Undetected (O)
4

Inside (O,Z)
8

Meet (O,Z)
8

Disjoint (O,Z)
8

▷ and ▷̃
only ▷̃

Figure 3.13: Development tree with root Meet (O,Z)

58

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Undetected (O)

Inside (O,Z)
2

Meet (O,Z)
4

Undetected (O)
8

Disjoint (O,Z)
8

Inside (O,Z)
8Undetected (O)

4

Disjoint (O,Z)
2

Inside (O,Z)
2

Meet (O,Z)
4

Undetected (O)
4

Meet (O,Z)
2

Inside (O,Z)
4

Undetected (O)
8

Disjoint (O,Z)
4

Meet (O,Z)
8Undetected (O)

4

Disjoint (O,Z)
4

Undetected (O)
8

Inside (O,Z)
4

Meet (O,Z)
8

Disjoint (O,Z)
2

Inside (O,Z)
2

Disjoint (O,Z)
2

Meet (O,Z)
4

Undetected (O)
4Undetected (O)

4

Meet (O,Z)
4

Disjoint (O,Z)
8

Inside (O,Z)
8

Undetected (O)
8

▷ and ▷̃
only ▷̃

Figure 3.14: Development tree with root Undetected (O)

59

3.4. SPATIO-TEMPORAL DEVELOPMENTS

Inside (O,Z)

Disjoint (O,Z)
1

Undetected (O)
2

Disjoint (O,Z)
4

Meet (O,Z)
4

Inside (O,Z)
4Inside (O,Z)

1

Meet (O,Z)
2

Inside (O,Z)
4

Undetected (O)
4

Disjoint (O,Z)
4

Undetected (O)
2

Disjoint (O,Z)
4

Undetected (O)
8

Meet (O,Z)
8

Inside (O,Z)
4Inside (O,Z)

4

Meet (O,Z)
4

Undetected (O)
8

Disjoint (O,Z)
8

Inside (O,Z)
8

Meet (O,Z)
2

Disjoint (O,Z)
4

Inside (O,Z)
4

Undetected (O)
8

Meet (O,Z)
8Inside (O,Z)

4

Undetected (O)
4

Inside (O,Z)
8

Disjoint (O,Z)
8

Meet (O,Z)
8

▷ and ▷̃
only ▷̃

Figure 3.15: Development tree with root Inside (O,Z)

60

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

3.4.3 Formal Description of Object Detection Sequences

According to Definition 37, a spatio-temporal development P is a sequence of predicates which
describes the movement of an object in relation to a region or zone. The trajectory of on ob-
ject matches such a development if the object fulfills the predicates in the order specified by the
development. To describe trajectories formally, we define a concatenation operator for detection
scenarios first:
Definition 39 (Detection Concatenation): The concatenation of two detection scenarios,
DS1 � DS2, expresses that an object was detected according to DS1 for the interval3 [t1, t2[and
detected according to DS2 at t2. ◻

Lemma 3.16. DS1 � DS1 = DS1

Proof. The left-hand side means that there is an interval [t1, t2[where an object is detected
according to DS1 and another interval [t2, t3[where the object is detected according to DS1 as well.
This means that the object is detected according to DS1 during [t1, t3[which equals the right-hand
side. ∎
Definition 40 (Detection Sequence): The detection sequence D= DS1 � . . . � DSk describes
the trajectory of an object in relation to a region or zone. D means that for some time interval
[t1, t2[the detection scenario is DS1, DS2 for some time interval [t2, t3[etc. ◻

Based on Lemma 3.16, we assume that any detection sequence has been summarized by applying
DS1 � DS1 = DS1. We use DR

O to denote that the detection sequence refers to the movement of an
object O in relation to a region R. Analogously, DZ

O describes the movement of O in the context
of a zone Z.
Lemma 3.17. For any object O, there exists exactly one detection sequence DO that represents
the information on the movement of O acquired by the sensor network.

Proof. According to Lemma 3.3, at each t ∈ T exactly one detection scenario holds. The detection
sequence DO is the concatenation of these detection scenarios and hence there can be only one. ∎

Given a development P, there exists an infinite number of detection sequences that conform to
this development. This is because an object may move arbitrarily before or after conforming to
the development, e.g., before conforming to Enter (O,R), the object O could alternate between
DSE and DS∅ arbitrary times. To summarize detection sequences that contain a certain pattern,
we introduce the notion of a detection term.
Definition 41 (Detection Term): A detection term defines a pattern that represents a
(possibly infinite) set of detection sequences. The pattern adheres to the following syntax4:

3We have chosen right-open intervals here to be in line with the definition of predicate sequences and the con-
catenation operator ▷ (cf. Definition 10). This does not cause any problems since the temporal resolution of any
detection mechanism is limited in any case.

4The syntax is borrowed from the Extended Backus-Naur Form [67, 129].

61

3.4. SPATIO-TEMPORAL DEVELOPMENTS

t1∣t2: The operator ∣ means an alternative, e.g., t1∣t2 denotes that either the detection term t1
occurs or the detection term t2.

{d}: The detection term t occurs an arbitrary number of times, i.e., {t} = ε∣t∣t � t∣....

A detection sequence is a detection term as well and the operator � may be used to link detection
terms as well with the same semantical meaning. ◻

Example 10: Consider the development Enter (O,R). The detection sequences DSE� D̃SB� DSI

as well as DSE � DS∅ � DSI describe object trajectories that conform to Enter (O,R). The latter
does so because we can infer from the fact that object O has been detected outside of R and inside
of it afterwards that O has crossed the border at some point. Additionally, there exists an infinite
number of detection scenarios that conform to Enter (O,R) as well, such as DSE � D̃SB � DS∅� DSI .
The following detection term reflects this and defines a pattern occuring in all detection sequences
conforming to Enter (O,R):

DSE � {DSB ∣D̃SB ∣DS∅} � DSI (3.28)

All detection sequences that contain DSE once, directly followed by an infinite number of repetitions
of either DS∅, DSB or D̃SB and a concluding DSI conform to this detection term and at the same
time to Enter (O,R). Section 3.4.4 proves the correctness of this term. ◆
Definition 42 (Detection-Term Conformance): A detection sequence D conforms to a
detection term t if D contains a substring of detection scenarios that is represented by t. ◻

To conform to a development, it is sufficient that a substring of a detection sequence conforms to
the detection term. This is because objects may move in arbitrary patters before or after conforming
to the term.
Example 11: Continuing Example 10, suppose that the object O crosses R. This results in
DR

O = DSE � D̃SB � DSI � D̃SB � DSE . The substring DSE � D̃SB � DSI , and thus O, conforms to the
detection term in (3.28) for Enter (O,R). ◆

There exist various standard algorithms to find a substring conforming to a given pattern in a
string [73]. Thus, these algorithms are sufficient to find a substring in a detection sequence which
conforms to a detection term. We now provide detection terms for every possible detection sequence
that conforms to a given spatio-temporal development.

Considering the detection term for Enter (O,R) in (3.28), we summarize that any O detected
with DSE at some time and later with DSI conforms to Enter (O,R). It is not important which
detection scenarios occur between DSE and DSI for O as long as the order described above is
maintained. For a more concise presentation, we summarize these terms with a relaxed version of
the concatenation operator for detection scenarios:
Definition 43 (Relaxed Detection Concatenation): The relaxed concatenation of two
detection scenarios DS1 �̃ DS2, expresses that an object was detected according to DS1 at t1 and
later according to DS2 at t2 with t1 < t2. ◻

62

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Lemma 3.18. Let DS = {DS1,DS2,DS3 . . . ,DSk} be the domain of detection scenarios. If d =
DS3∣. . . ∣DSk for DSi ≠ DSj with i ≠ j, then DS1 � {d} � DS2 = DS1 �̃ DS2.

Proof. Follows directly from Lemma 3.3. ∎
We apply Lemma 3.18 to (3.28): In this case, d = DSB ∣D̃SB ∣DS∅, DS1 = DSE and DS2 = DSI . Thus,

we rewrite the term in (3.28) to DSE �̃ DSI .

Lemma 3.19. DS1 � DS2 ⇒ DS1 �̃ DS2

Proof. According to Definition 43, the right-hand side is true if DS1 occurs for some interval [t0, t1[
and DS2 occurs at t2 ≥ t1. The left-hand side of the implication states that DS1 occurs for some
interval [t0, t1[and DS2 occurs at t2 = t1. Hence, if the left-hand side is true, the right-hand side is
also true. ∎

3.4.4 Detection Terms

To obtain semantics for spatio-temporal developments, we derive a detection term D for every
element P in the canonical collection of developments. A predicate sequence P returns T if the
trajectory of an object in question conforms to the detection term D for sure. Similarly, we provide
a detection term D which allows the sensor network to determine that P = F for every development.
Objects whose trajectory neither allows the sensor network to derive P = T or P = F are those where
the inaccuracy prevents a definite answer, i.e., P =M.

Detection Terms for Regions

Table 3.5 provides a detection term DR
O that describes a trajectory for each predicate sequence

P (O,R) in Table 3.4 such that P (O,R) = T . For each of these terms we provide a proof that the
term is correct. Given a detection term d related to a development P (O,R), we consider d to be
correct for P (O,R) if the following conditions are met:

• There does not exist a detection sequence DR
O of an object O whose movement conforms to

P (O,R) where DR
O does not conform to the term d.

• There does not exist a detection sequence DR
O of an object O whose movement does not conform

to P (O,R) where DR
O conforms to d.

63

3.4.
SPAT

IO
-T

EM
PO

R
A

L
D

EV
ELO

PM
EN

T
S

P (O,R) Detection Term

Disjoint (O,R)▷Meet (O,R) DSE � {D̃SB ∣DS∅} � (DSB ∣DSI)

Inside (O,R)▷Meet (O,R) DSI � {D̃SB ∣DS∅} � (DSB ∣DSE)

Meet (O,R)▷Disjoint (O,R) (DSB ∣DSI) � {D̃SB ∣DS∅} � DSE

Meet (O,R)▷Inside (O,R) (DSB ∣DSE) � {D̃SB ∣DS∅} � DSI

Disjoint (O,R)▷Meet (O,R)▷Inside (O,R) DSE � {DSB ∣D̃SB ∣DS∅} � DSI

Disjoint (O,R)▷Meet (O,R)▷Disjoint (O,R) DSE � DSB � DSE

Inside (O,R)▷Meet (O,R)▷Disjoint (O,R) DSI � {DSB ∣D̃SB ∣DS∅} � DSE

Inside (O,R)▷Meet (O,R)▷Inside (O,R) DSI � DSB � DSI

Meet (O,R)▷Disjoint (O,R)▷Meet (O,R) (DSI ∣DSB) � {D̃SB ∣DS∅} � DSE � {DSE ∣D̃SB ∣DS∅} � (DSI ∣DSB)

Meet (O,R)▷Inside (O,R)▷Meet (O,R) (DSE ∣DSB) � {D̃SB ∣DS∅} � DSI � { DSI ∣D̃SB ∣DS∅} � (DSE ∣DSB)

Table 3.5: Detection terms DR
O where P (O,R) = T

64

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Determining whether P (O,R) = T

Lemma 3.20. To ensure that Meet (O,R) = T , the detection sequence DR
O of an object O must

meet one of the following requirements:

1. DR
O contains DSB.

2. DR
O conforms to DSI �̃ DSE.

3. DR
O conforms to DSE �̃ DSI .

For any other sequence, Meet (O,R) yields M or F .

Proof. According to (3.17), DSB guarantees Meet (O,R) = T . The other two cases imply that O
has been detected on both sides of the border RB. Hence, between these detections there was a
time when O was on RB even if DSB did not occur, e.g., because the object crossed the border
while not being detected by any node. Detection sequences that do not meet either of these re-
quirements conform to {DSE ∣D̃SB ∣DS∅}∣{DSI ∣D̃SB ∣DS∅}. According to (3.17), neither {DSE ∣D̃SB ∣DS∅}
nor {DSI ∣D̃SB ∣DS∅} guarantee Meet (O,R) = T . ∎

Due to Lemma 3.20, developments consisting of two predicates require either DSB or detection
of the object in question on both sides of the border. This is reflected by the detection terms for
these developments in Table 3.5. In any other case, Meet (O,R) must yield either M or F .

Lemma 3.21. If DR
O conforms to DSE � {D̃SB ∣DS∅}� (DSB ∣DSI) the sensor network can guarantee

that P (O,R) = Disjoint (O,R)▷Meet (O,R) = T .

Proof. Since P (O,R) starts with Disjoint (O,R), the start of the detection sequence must guaran-
tee Disjoint (O,R) = T . According to (3.18), the only detection scenario where Disjoint (O,R) = T
is DSE . After DSE occurred, the object may move arbitrarily and P (O,R) = T if either DSB occurs
or DSI guarantees that O crosses the border. ∎

A proof for the correctness of the entry related to Inside (O,R)▷Meet (O,R) is analogous and
thus omitted here.

Lemma 3.22. If DR
O conforms to (DSB ∣DSI)� {D̃SB ∣DS∅}� DSE the sensor network can guarantee

that P (O,R) =Meet (O,R)▷Disjoint (O,R) = T .

Proof. According to Lemma 3.20, Meet (O,R) = T requires either detection on both sides of
the border or DSB. For the first case, the object must be detected with DSI first and then move
arbitrarily until it is detected with DSE . Since DSE also yields Disjoint (O,R) = T , the sensor
network can guarantee P (O,R) = T as well. The latter case above indicates that the object is
on the border at first, i.e., Meet (O,R) = T . Hence, the object only has to fulfill Disjoint (O,R)
afterwards which is the case if {D̃SB ∣DS∅} � DSE . ∎

65

3.4. SPATIO-TEMPORAL DEVELOPMENTS

The principle of the proof for Lemma 3.22 is applicable to prove that (DSB ∣DSE)� {D̃SB ∣DS∅}� DSI

ensures that Meet (O,R)▷ Inside (O,R) = T , because O only moves in the ”opposite” direction.
This concludes our discussion of the detection terms for developments consisting of two predicates.

Lemma 3.23. To derive that Enter (O,R) = T or Leave (O,R) = T , the object O must be detected
according to DSE �̃ DSI and DSI �̃ DSE respectively.

Proof. DSE �̃ DSI summarizes DSE � {DSB ∣D̃SB ∣DS∅} � DSI . The sensor network derives from DSE

that Disjoint (O,R) = T and since DSI occurs some time afterwards, it is sure that Meet (O,R)▷
Inside (O,R) = T as well. The proof for the opposite direction for Leave (O,R) and the term
DSI � {DSB ∣D̃SB ∣DS∅} � DSE is analogous. ∎

Lemma 3.24. If P (O,R) = Disjoint (O,R)▷Meet (O,R)▷Disjoint (O,R), the trajectory must
conform to DSE � DSB � DSE to guarantee that O fulfills P (O,R).

Proof. The first part of the detection term, i.e., DSE� DSB guarantees Disjoint (O,R)▷Meet (O,R).
The term must not contain DS∅ or D̃SB, because in both cases the object could be inside the
region. If the object could be inside R, the sensor network cannot guarantee that Meet (O,R)▷
Disjoint (O,R). Hence, the term must exclude all objects that could be in R between DSE and
DSB. ∎

The term for Inside (O,R) ▷ Meet (O,R) ▷ Inside (O,R) is similar to the term for
Disjoint (O,R)▷Meet (O,R)▷Disjoint (O,R): The only difference is that the term for
Inside (O,R)▷Meet (O,R)▷ Inside (O,R) must exclude all objects that could have been outside
of R.

Lemma 3.25. The term (DSI ∣DSB) � {D̃SB ∣DS∅} � DSE � {DSE ∣D̃SB ∣DS∅} � (DSI ∣DSB) guarantees
that O conforms to Meet (O,R)▷Disjoint (O,R)▷Meet (O,R).

Proof. The first part of the detection term, (DSI ∣DSB)� {D̃SB ∣DS∅}� DSE , already guarantees that
Meet (O,R)▷Disjoint (O,R). This is because the result of the object detection either conforms
to DSB and then DSE , or the object is detected on both sides of the border. Afterwards, O may
move arbitrarily outside of R as reflected by {DSE ∣D̃SB ∣DS∅}. To conform to Disjoint (O,R) ▷
Meet (O,R), the object must either cross the border again or DSB must occur. This is expressed
by the second part of the term, i.e., DSE � {DSE ∣D̃SB ∣DS∅} � (DSI ∣DSB). ∎

Since the proof for Meet (O,R)▷ Inside (O,R)▷Meet (O,R) is analogous, we omit it here.
Summing up, we have proved the correctness of all detection terms in Table 3.5.

66

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Determining whether P (O,R) = F Now we show how sensor networks derive P (O,R) = F .
The most important difference to the previous study regarding P (O,R) = T is that one must
consider the whole detection sequence instead of a substring: While it is sufficient to find a substring
in the detection sequence that conforms to a detection term to determine that P (O,R) = T , to
compute P (O,R) = F the sensor network must rule out that any part of the detection sequence
could possibly conform to P (O,R).

Lemma 3.26. Any object detected according to D̃SB could possibly conform to any spatio-temporal
development P (O,R) that describes the relationship of an object O and a region R over time.

Proof. According to Definition 31, D̃SB means that POPO
t intersects with all partitions of R. This

means that the position of O is so ”close” to the border that the sensor network cannot provide a
definite answer on which side of the border O is. Thus, an object could repeatedly move around
and over the border of R in any way while the sensor network can only determine D̃SB. During
this time, O could fulfill any development that describes the relationship between O and R. ∎

Lemma 3.26 implies that detection sequences that definitely do not conform to a development
must not contain D̃SB. Looking at Table 3.2, this also applies to DS∅. This is because detection
areas typically may have any shape or size and undetected objects can cross the border of a region
in arbitrary ways unless assumptions regarding the coverage of space with detection areas are made.
For controlled deployments (cf. Section 1.1), making such assumptions is sometimes viable and
thus we discuss three of these so called coverage assumptions in the following:

CA∅: We assume nodes have been deployed randomly and it is not fixed a priori which parts of
space are observed.

CAB: Nodes have been deployed in such a way that a complete coverage of the border RB can
be assumed for query processing.

RB ⊆
n

⋃
i=1

DAi (3.29)

Thus, objects cannot cross the border without being detected.
CABI : The deployment guarantees that objects inside as well as objects on the border are de-

tected.
RB ∪RI ⊆

n

⋃
i=1

DAi (3.30)

This means, that DS∅ may only occur for objects that are in the exterior of R.

We show how to determine P (O,R) = F in case of DS∅ with respect to different coverage assump-
tions in the following.

Lemma 3.27. In case of CA∅, an object O that is temporarily undetected, i.e., DS∅ occurs at least
once in DR

O, could conform to any development P (O,R).

67

3.4. SPATIO-TEMPORAL DEVELOPMENTS

PCA∅ (O,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T iff DR
O conforms to d

F iff (DR
O = {DSI}) ∨ (DR

O = {DSE})
M Otherwise

(3.31)

PCAB (O,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T iff DR
O conforms to d

F iff DR
O does not conform to d and DR

O = {DSI ∣DSE ∣DS∅∣DSB}
M Otherwise

(3.32)

PCABI (O,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T iff DR
O conforms to d with DS∅ replaced by DSE

F iff DR
O does not conform to d and DR

O = {DSI ∣DSE ∣DSB}
M Otherwise

(3.33)

Proof. As stated above, detection areas may have any size or shape and thus the set of points that
is unobserved could intersect with any partition of R. An undetected object O could be at any of
these unobserved points in space and thus in any partition of R. Hence, O may conform to any
development that describes the relation between O and R. ∎

Summing up, if assumptions about the coverage of space, i.e., the area observed, are unfeasi-
ble, any occurrence of DS∅ or D̃SB in the detection sequence rules out P (O,R) = F . Therefore,
P (O,R) = F only if the object is detected according to either DSI or DSE at all times.

This changes if one of the other coverage assumptions is taken into account: Assuming CAB,
the sensor network can derive that objects do not cross the border while being undetected. Thus,
any detection sequence that does not conform to the development P (O,R) in question and whose
detection sequence contains any detection scenarios except D̃SB definitely does not conform to the
development, i.e, P (O,R) = F . The case with CABI is similar: Objects cannot cross the border
without being detected. Thus, the rule above regarding the question if P (O,R) = F applies as
well. Additionally, any undetected object must be outside of the region R, i.e., in RE . Thus, prior
to determining if the detection sequence of O conforms to the term in Table 3.4 associated with
P (O,R), we can replace any occurrence of DS∅ with DSE .

Summary – Development results for queries with regions This concludes our study re-
garding results of spatio-temporal developments in the context of objects and regions. Given a
detection term d associated with a development P (O,R), Equations 3.31-3.33 summarize how the
result of P (O,R) is determined in a sensor network.

Theorem 1. The results for spatio-temporal developments which describe the relationship between
an object and a region are optimal considering the limitations of detection mechanisms in sensor
networks.

Proof. Let ΩP(O,R) be the set of objects that conform to a development P (O,R) in question. The

68

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

set of objects where P (O,R) = T is the largest subset of ΩP(O,R) a sensor network can derive
according to the lemmas in Section 3.4.4. Similarly, the set of objects where P (O,R) = F is the
largest superset of ΩP(O,R) the sensor network can derive. Therefore, the set of objects where
P (O,R) =M is minimal, i.e., contains only objects where the accuracy of the object detection
prevents a definitive answer. ∎

Detection Terms for Zones

According to Table 3.3, all predicates that express the relation between an object O and a zone
Z either yield T or F , but never M. Furthermore, the table shows also that for any predicate
P (O,Z), there exists exactly one detection scenario DSi which yields P (O,Z) = T and all other
detection scenarios DSj ≠ DSi yield P (O,Z) = F . Compared to regions, this eases the translation
of detection sequences to development results considerably.

Lemma 3.28. Suppose DSi is the detection scenario which yields Pi (O,Z) = T and DSj is the
detection scenario which yields Pj (O,Z) = T . If DZ

O conforms to DSi � DSj, then Pi (O,Z) ▷
Pj (O,Z) = T . If DZ

O does not conform to DSi � DSj, then Pi (O,Z)▷Pj (O,Z) = F .

Proof. We prove Pi (O,Z)▷Pj (O,Z) = T first: According to Definitions 39 and 42, conformance
of DZ

O to DSi � DSj means that the object O was detected with DSi during [t1, t2[and then with
DSj at t2. Since DSi yields Pi (O,Z) = T , we derive that Pi (O,Z) = T for the interval [t1, t2[and
Pi (O,Z) = T at t2. Hence, Pi (O,Z)▷Pj (O,Z) = T .

If DZ
O does not conform to DSi � DSj , there is no substring in DZ

O where DSi is followed by DSj .
This means that either DSj never follows DSi, or DSi or DSj never occur. For all of these cases, the
sensor network can guarantee that O does not fulfill Pi (O,Z)▷Pj (O,Z) and thus return F . ∎

Lemma 3.29. Suppose DSi is the detection scenario which yields Pi (O,Z) = T and DSj

is the detection scenario which yields Pj (O,Z) = T . If DZ
O conforms to DSi �̃ DSj, then

Pi (O,Z) ▷̃Pj (O,Z) = T .

Proof. Analogous to the proof for Lemma 3.28. ∎
Lemmas 3.28 and 3.29 imply the detection terms for any of the developments for zones defined

in Section 3.4.2 are simply obtained by iteratively concatenating detection scenarios. Assuming
a development P (O,Z) = P1 (O,Z) θ P2 (O,Z) θ . . . θ Pq (O,Z) this works as follows: DSi

is the detection scenario where Pi (O,Z) = T according to Table 3.3. Thus, the detection term
starts with DS1 and the second detection scenario in the term is DS2. If the concatenation operator
between P1 (O,Z) and P2 (O,Z) is ▷, then the detection term starts with DS1 � DS2. Otherwise,
the detection terms starts with DS1 �̃ DS2. Next, we consider P3 (O,Z) and how it is concatenated
to P2 (O,Z). This continues until a detection scenario corresponding to Pq (O,Z) terminates the
detection term. For example, the development Enter (O,Z) defined in (3.22) has the detection
term DSE � DSB � DSI .

69

3.5. SUMMARY

This approach is applicable to any of the 584 developments of the canonical collection of spatio-
temporal developments developed in Section 3.4.2. Since deriving these detection terms is straight-
forward and due to the large number of developments, we do not list them in this dissertation.

Theorem 2. Suppose ΩP(O,Z) is the set of objects that conform to a development P (O,Z). The
set of objects O determined by the sensor network where P (O,Z) = T equals ΩP(O,Z).

Proof. Directly follows from Lemmas 3.28 and 3.29 and the fact that there does not exist a predicate
P (O,Z) which yields M for any detection scenario. ∎

3.5 Summary

This chapter developed the fundamental concepts regarding spatio-temporal queries in sensor net-
works. First, we have introduced a space partitioning for zones similar to the one existing for
regions from moving object databases. The space partitioning is important, because it allows the
application of the 9-intersection model which is also the foundation for moving object databases.
We also investigated the differences between the space partitioning for regions and the space par-
titioning for zones. Most importantly, the latter partitioning is not regular which is problematic
because users cannot express certain queries given the set of predicates and operators known from
moving object databases. To solve this problem, we introduced predicates and operators specifi-
cally aimed at sensor networks. Second, we have shown how to abstract from the details of object
detection and how to apply our approach to any kind of sensor network deployed with the intend to
track moving objects. Using these two first steps, we introduced the notion of detection scenarios
which formalize the information obtained through object detection.

Based on the detection scenarios, we defined the semantics of spatio-temporal predicates that
describe the relation between an object and a region or a zone over time. For regions, we have
shown that the inaccuracy of object detection mechanisms and other properties of sensor networks,
e.g. unobserved areas, sometimes prevent a definitive answer if some predicate or development
is true or not. This problem has been solved by classifying objects into three categories: The
first category contains objects that conform to a given predicate or development, the second one
contains objects that do not conform for sure and the third category consists of objects that possibly
conform but where it is not sure. We studied the semantical depth of spatio-temporal queries in
sensor networks in the context of regions and zones by obtaining a canonical collection of spatio-
temporal developments for both cases. Most importantly, we have proved for every element in these
collections that the aforementioned classes are optimal taking the properties of sensor networks and
detection mechanisms into account. This concludes our study regarding Contribution C.1 and the
remainder of this dissertation focused on deriving the results defined here efficiently, i.e., with a
minimal amount of communication.

70

Chapter 4

Query Dissemination in Sensor
Networks

Processing any kind of query, i.e., relational or spatio-temporal, consists of four steps:

1. Dissemination of the query from the base station to the nodes of the sensor network.
2. Capturing sensor values depending on the query.
3. Processing the query based on values sensed.
4. Returning intermediate or overall results to the base station.

The dissemination of queries, i.e., contribution C.2, is the subject of this chapter. We address the
steps 2-4 for spatio-temporal queries in chapter 5. Despite the focus on spatio-temporal queries in
this dissertation, the dissemination approach presented in the following is applicable to relational
queries which require tuples from all nodes as well.

4.1 Problem Statement

While the result of a query may be based on the sensor data of a few nodes, the number of nodes,
that must receive the query to ensure a correct result, is typically much larger. As we show in this
chapter, spatio-temporal queries require that all nodes receive the query. Thus, while the number
of nodes that detect an object may be arbitrarily small, the query dissemination always requires
communication with all nodes. Considering that communication has a major impact on the lifetime
of sensor nodes (cf. Appendix A), reducing the number of messages for query dissemination is a
priority. Hence, this chapter focuses on the dissemination of a query to all nodes while sending and
receiving a minimum number of messages.

The simplest form of query dissemination to reach all nodes is flooding: The base station broad-
casts the query to all nodes it can reach directly. Following this initial broadcast, each node receiving
the query rebroadcasts the query once. Flooding wastes a lot of energy, because a large number of

71

4.1. PROBLEM STATEMENT

Figure 4.1: Additional area covered by a rebroad-
cast of node SB after receiving a query from SA

Figure 4.2: Additional area covered by a rebroad-
cast of node SC after SA and SB received the
query

rebroadcasts do not result in additional nodes being reached. As illustrated in Figure 4.1, whenever
a node rebroadcasts a query, at most 61% additional area are reached by this rebroadcast. This
is a theoretical optimum that only occurs if circular sending ranges are assumed1 and nodes are
placed in such a way that the distance between nodes equals the sending range. If there are more
than two nodes, the additional area is further reduced as illustrated in Figure 4.2 and drops to less
than 20% for average networks [98]. The main difficulty for energy-efficient query dissemination is
choosing a minimal set of nodes that rebroadcast the query while reaching all nodes. Finding this
minimal set is equivalent to the Dominating Set Problem, which is NP-complete [48].

Since finding an optimal set of rebroadcast nodes is not viable, a large number of heuristic
approaches for query dissemination have been proposed (cf. [117, 128] for an overview). However,
these algorithms have not been tested in real sensor networks and evaluations so far have been
limited to simulations. Thus, comparing them with the goal of using an existing approach for
dissemination of spatio-temporal queries is problematic due to different evaluation setups and
assumptions used with different simulators. We conducted a study to evaluate existing approaches
in a sensor network consisting of Sun SPOTs. The results of this study are presented in Section 4.3
and show that most sophisticated broadcast algorithms do not work in sensor networks or require
excessive overhead to cope with the reality of sensor networks. Contrary to this, relatively simple
algorithms like probabilistic or counter-based dissemination are well-suited for our purpose.

With probabilistic dissemination, whenever a node receives a query for the first time, the node
rebroadcasts with a probability of 0 < P < 1. The core problem of this approach is the value of
the constant P : If P is too low, many nodes do not receive the query and if P is close to 1, the
energy is wasted due to unnecessary broadcasts. We provide an optimization approach that allows
finding a value for P so that all nodes are reached while avoiding unnecessary broadcasts. With
counter-based dissemination, after receiving a query, each node waits a timeout of random length

1While this assumption is frequently made, it is unrealistic and highly misleading. We use this assumption here
just for illustration purposes.

72

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

before it determines if the query must be rebroadcasted. While waiting for the timeout, the node
counts the number of additional rebroadcasts of the query by its neighbors. If this number exceeds
a threshold TCBD, the node does not rebroadcast and otherwise the node rebroadcasts. As with
probabilistic dissemination, the core problem is the value for TCBD.

Summing up, we address the following issues in this chapter; the numbers are in line with the
corresponding sections:

4.2: This section shows that the evaluation of spatio-temporal queries requires that all nodes
receive the query.

4.3: Instead of simulations, we use data on reachability and efficiency acquired using Sun
SPOT deployments to compare existing query dissemination approaches. This shows that
probabilistic dissemination is the most promising approach for our purpose.

4.4: For probabilistic dissemination, the rebroadcast probability is the most important opti-
mization parameter. However, setting this parameter for different network topologies has
not been investigated so far. We are the first to provide an optimization approach that
finds a minimal value for the rebroadcast probability while reaching all nodes.

4.5: This section investigates the effectiveness regarding the number of reached nodes and
efficiency regarding the number of messages sent or received of our optimization approach.
We also study the general impact of the rebroadcast probability on reachability.

It must be noted that the optimization approach for the rebroadcast probability could be used for
the dissemination of any kind of message in a sensor network. Thus, while this dissertation is aimed
at spatio-temporal queries, the results on query dissemination are also applicable to relational query
processing in sensor networks.

4.2 Dissemination of Spatio-Temporal Queries

Prior to the dissemination of a query, one must answer which nodes must receive the query to
warrant that all nodes, which could possibly contribute to the result of the query, receive the
query. While determining the set of nodes that could possibly contribute to a query result for
”What is the average temperature on the third floor?” is straightforward, spatio-temporal queries
are more complicated: Consider the case of a static region R and a development P (O,R) =
Disjoint (O,R)▷Meet (O,R). According to Table 3.5, to determine the result for this query, we
must be able to determine for the detection sequence DR

O of any object O, if it conforms to the
following detection term:

DSE � {D̃SB ∣DS∅} � (DSB ∣DSI)

To determine DSE , the nodes outside of the region R must know that O is of interest, i.e., receive
the query. Similarly, the regions in R must receive the query, because DSI is part of the detection
term. Looking at the detection terms in Table 3.5, this applies to all spatio-temporal developments.

73

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

Thus, only queries that contain a single predicate would allow a reduction of the number of nodes
that must receive the query.

For queries interested in the relationship of a zone and an object, the situation is similar: Any
development that contains the three predicates Disjoint (O,Z), Meet (O,Z) and Inside (O,Z)
requires that all nodes receive the query. If the zone is dynamic, i.e., the nodes inside the zone
change over time, the query must be disseminated to all nodes because nodes must determine if
they are in the zone or outside of it. Thus, only queries with one or two predicates would be
possible candidates for a reduction of the number of nodes that must receive a query.

Assuming one of the above cases occurs where it is sufficient if a subset of all nodes receives the
query, actually reducing this number is difficult, because it requires knowledge about the topology
of the sensor network: Assuming a node Si has received a query. To determine that Si does not have
to forward the query, Si must ensure that suppressing the query does not prevent the query from
being received at some node Sj which must receive the query. To make this decision, knowledge
on the network topology is required because Si must know that Sj will be reached via another
node if Si does not forward the query. Amongst other things, this chapter illustrates that acquiring
information on the topology of the network that would allow this decision is costly in terms of
communication and energy consumption. Hence, we conclude that spatio-temporal queries should
be disseminated to all nodes.

4.3 Performance Study on Existing Dissemination Approaches

There has been a plethora of research related to broadcasting techniques and query dissemination in
ad-hoc networks (see [117, 128] for an overview). To choose an approach that disseminates a query
to all nodes of a sensor network most efficiently, we conducted a study to compare these existing
approaches. While there exist comparisons and each approach has been evaluated separately as
well, to our knowledge these evaluations are solely based on simulations. It has been noted that
simulations tend to make simplified assumptions that often do not hold well in practice [57]. In
particular, real-world phenomena that impact the wireless communication between sensor nodes are
usually not considered in simulations. Thus, we carefully selected a set of dissemination algorithms
and evaluated them in different sensor networks consisting of Sun SPOTs. This study considers
the following two aspects to measure the efficiency and effectiveness of existing dissemination
approaches:

Efficiency: Communication is of utmost importance in sensor networks as discussed in Sec-
tion 2.1.3. We measure the efficiency for dissemination approaches by counting the messages
sent and received. As shown in Appendix A, counting the number of messages sent or re-
ceived is a sufficiently accurate measure to evaluate the energy consumption of mechanisms at
application level like query dissemination and processing.

Effectiveness: In our case, reaching all nodes is important regarding the correctness of query
results. We refer to the ratio between the nodes reached and the total number of nodes

74

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

as reachability. Maintaining high reachability while reducing the communication for query
dissemination is our goal.

Our results differ significantly from those obtained through simulations previously. We discuss the
reasons for these differences.

4.3.1 Existing Dissemination Approaches

In this section we describe the dissemination approaches we used for our evaluation in detail.
There exist two classes of dissemination approaches: topology-based dissemination and epidemic
dissemination. Topology-based approaches, e.g., [79, 101, 102, 107], use detailed information on the
network topology to choose the nodes that rebroadcast a message. The scalable broadcast algorithm
(SBA) [102] requires knowledge about all nodes reachable via two hops. While the procedure to
choose the set of nodes that rebroadcasts varies between the topology-based algorithms, all of them
have in common that the maintenance of the topology information incurs significant overhead. As
our evaluation shows, this overhead is larger than the total number of messages used by epidemic
approaches and therefore SBA is the only representative of this class in our study.

Epidemic approaches do not use information on the nodes in their vicinity to determine the
nodes that should rebroadcast the query. For example counter-based dissemination [92, 93] uses a
threshold value TCBD to determine if a node should rebroadcast: If a node receives TCBD broadcasts
in a certain period of time after receiving the query for the first time, it does not rebroadcast.
Similarly, probabilistic approaches assign a probability P to each node to determine the probability
of a rebroadcast. We evaluated different variations of counter-based and probabilistic dissemination.

Flooding

Flooding [99] is the simplest query dissemination algorithm as illustrated by Algorithm 1: The base
station broadcasts the query initially and each receiver Si of the query rebroadcasts it once. To
ensure that the query is rebroadcasted only once, each Si stores an identifier of the query or a hash
value. This is necessary, because each node typically receives the same query multiple times.

Algorithm 1: Flooding for query dissemination
Input: OldQueries — Set of queries stored at Si that have been rebroadcasted previously

1 When Si receives the query q do
2 if q ∉ OldQueries then // Was the query rebroadcasted previously?
3 Insert identifier of q into OldQueries
4 Rebroadcast q
5 end
6 end

75

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

Flooding has significant drawbacks: Most importantly, in networks with a high node density,
i.e., each node has multiple 1-hop neighbors, it results in a large number of broadcasts even though
a small number would be sufficient. Another drawback is the so called ”broadcast storm prob-
lem” [98] due to the contention between nodes rebroadcasting simultaneously: The CSMA/CA (cf.
Section 2.1.2) used by the MAC layer checks if the medium is busy before rebroadcasting the query.
If the medium is busy for an extended period of time, the broadcast is aborted which could result in
nodes not being reached by the query. The nature of flooding is conductive to contention, because
a node rebroadcasts a query, all receivers will try to rebroadcast simultaneously. Furthermore, in
combination with the lack of collision detection at the MAC layer level, the simultaneous rebroad-
cast is likely to result in collisions. As our evaluation shows, these possible reasons for message
losses result in the fact that flooding sometimes does not reach all nodes of the sensor network.

Counter-Based Dissemination

The core idea of the counter-based dissemination (CBD) [92, 93] shown in Algorithm 2 is as follows:
When a node receives a query and waits for a random time, it will receive rebroadcasts of the same
query. The number of rebroadcasts of the same query this node receives while waiting is indirectly
proportional to the additional area/nodes reached by a rebroadcast. The random wait time is called
Random Access Delay (RAD) and it serves two purposes: First, it avoids collisions and contention
because rebroadcasts of nodes that received the query from the same node are spread over time.
Second, it allows nodes to count the number of redundant query rebroadcasts by neighbor nodes
and estimate probability that additional nodes are reached by its own rebroadcast. After the
RAD expired, the node compares the number of redundant query rebroadcasts it received with
a threshold value TCBD: If TCBD is greater (see Line 9), the node rebroadcasts. Otherwise, the
rebroadcast is suppressed.

The approach is based on two parameters: the length of the RAD and TCBD. The RAD can be
any random value from a given interval [tmin, tmax]. The length of this interval must be sufficiently
large to spread the rebroadcasts and avoid collisions. The main optimization parameter is TCBD,
as it controls how many rebroadcasts are suppressed. If TCBD is too small, the query may not
reach all nodes, particularly in areas of the network with low node density. On the other hand, a
high value for TCBD results in a large number of redundant query rebroadcasts.

The main drawback of CBD is the fact that it requires redundant query rebroadcasts to determine
if a node should rebroadcast the query. Thus, once a node decides to suppress a rebroadcast, energy
has already been wasted for sending and receiving these redundant messages.

Probabilistic Dissemination

Algorithm 3 illustrates probabilistic dissemination: Whenever a node Si receives a query, Si re-
broadcasts this query only with a probability of 0 < P ≤ 1. Similar to CBD, our implementation of
the probabilistic dissemination uses a RAD to avoid collisions and contention.

76

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Algorithm 2: Counter-based query dissemination (CBD)
Input: OldQueries — Set of queries stored at Si that have been rebroadcasted previously
Input: TCBD — CBD threshold value

1 When Si receives the query q do
2 if q ∉ OldQueries then // Check if query was rebroadcasted previously
3 if Counter for q exists then // Has q been received by Si previously?
4 Increment counter for q by 1
5 Exit // Another thread has already started the RAD for q

6 else
7 Create a counter for q with initial value of 1
8 Start the Random Access Delay (RAD) and sleep until it expires
9 if TCBD is greater than the counter value for q then

10 Rebroadcast query q
11 Insert identifier of q into OldQueries
12 end
13 end
14 end
15 end

Regarding communication and reachability, the rebroadcast probability P must be optimized: If
P is too high, the approach degenerates into flooding resulting in the aforementioned drawbacks.
Contrary to this, a low P results in a large number of nodes not receiving the query. The tradeoff
between reachability and communication overhead is not well understood. We investigate this
tradeoff and provide an optimization approach to find a minimal value for P where all nodes are
reached in Section 4.4.

Probabilistic Counter-based Dissemination

According to simulation results [92, 94], efficiency of CBD can be improved by introducing a
rebroadcast probability PP CBD. We refer to this variant CBD as probabilistic counter-based dis-
semination (PCBD). This approach is a combination of CBD and the probabilistic dissemination
approach, i.e., it counts the number of rebroadcasts and then rebroadcasts with a predefined prob-
ability PP CBD.

Algorithm 4 outlines this dissemination approach: When a node Si receives a query, it checks if
the query has been received before. If it is the first time that q has been received, Si starts a RAD
and counts duplicates of q it receives in the meantime. If the number of duplicates received during
the RAD is greater than TP CBD, Si does not rebroadcast q. In any other case, Si generates a random
number as shown in Line 10. By comparing the random value with PP CBD, Si determines if q must

77

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

Algorithm 3: Probabilistic query dissemination
Input: OldQueries — Set of queries stored at Si that have been rebroadcasted previously
Input: P— rebroadcast probability between 0 and 1

1 When Si receives the query q do
2 if q ∉ OldQueries then // Check if query was rebroadcasted previously
3 randomNumber ←random value between 0 and 1
4 if randomNumber ≤ P then
5 Start the Random Access Delay (RAD) and sleep until it expires
6 Rebroadcast query
7 Insert identifier of q into OldQueries
8 end
9 end

10 end

be rebroadcasted or not. Summing up, the approach has two optimization parameters inherited
from CBD and probabilistic dissemination. The properties of these parameters are analogous to
the respective algorithm described above.

SBA: Scalable Broadcast Algorithm

The Scalable Broadcast Algorithm (SBA) [102] uses knowledge on the local network topology to
determine the set of nodes that rebroadcast the query. The topology knowledge is stored on each
node Si in a list that contains an entry for each 1-hop neighbor of Si. Each entry corresponding
to a 1-hop neighbor Sj of Si is a list that contains the 1-hop neighbors of Sj , i.e., 2-hop neighbors
(via Sj) of Si. The core idea of SBA is that a node can determine if there are neighbors that did
not receive the query yet based on the topology information and the rebroadcasts of a query.

As illustrated in Algorithm 5, whenever a node Si receives a query for the first time, it copies
the list containing the topology information (cf. Line 4). Since the query was broadcasted by a
1-hop neighbor Sj , Sj and all of its 1-hop neighbors can be removed from the list. This is because,
at the time when Sj rebroadcasts, it reaches its 1-hop neighbors as well. Similar to CBD, a RAD
is used to delay the rebroadcast and allow other neighbors to rebroadcast first. Each time another
copy of the query arrives at Si, the sender and its 1-hop neighbors are removed from the list of
remaining nodes (cf. Line 12). After the RAD expired, Si can determine if a sufficient number of
neighbors did not receive the query yet. The parameter TSBA determines how many nodes must
be left in the list of remaining nodes to require a rebroadcast of the query by Si.

To acquire the topology information stored in RemainingNodes, each node Si broadcasts a Hello-
Packet periodically. This message contains a list of the 1-hop neighbors of Si. Each node receiving
this list creates or updates the entry corresponding to Si stored locally. The Hello-Packet Rate

78

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Algorithm 4: Probabilistic Counter-based query dissemination (PCBD)
Input: OldQueries — Set of queries stored at Si that have been rebroadcasted previously
Input: TCBD — CBD threshold value

1 When Si receives the query q do
2 if q ∉ OldQueries then // Check if query was rebroadcasted previously
3 if Counter for q exists then // Did Si receive q previously?
4 Increment counter for q by 1
5 Exit // Another thread has already started the RAD for q

6 else
7 Create a counter for q with initial value of 1
8 Start the Random Access Delay (RAD) and sleep until it expires
9 if TP CBD is greater than the counter value for q then

10 randomNumber ← random value between 0 and 1
11 if randomNumber ≤ PP CBD then
12 Rebroadcast query q
13 Insert identifier of q into OldQueries
14 end
15 end
16 end
17 end
18 end

(HPR) controls the length of the periods between Hello-Packets. Setting the HPR is difficult:
If the HPR is too short, the overhead for maintaining topology information increases drastically.
The reason for this is that broadcasting a Hello-Packet from each node in the network equals the
communication for flooding the complete network once with a message. Furthermore, a short HPR
results in contention and collisions, e.g., query messages are lost due to collisions with Hello-Packets.
If the HPR is too long, the topology information of sensor nodes becomes outdated resulting in
nodes being missed by the query. Even if the nodes are not moved, external influences continuously
change the topology of the network, e.g., because doors are opened and closed.

In addition to the HPR, the parameters for TSBA and the length of the RAD are important. The
characteristics of the RAD have been discussed in the context of CBD previously and apply here
as well. With the default implementation, TSBA equals 1. Increasing TSBA obviously comes at the
risk of nodes not receiving the query.

79

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

Algorithm 5: Scalable Broadcast Algorithm
Input: OldQueries — Set of queries stored at Si that have been rebroadcasted previously
Input: TSBA— SBA threshold value
Input: 2HopNeighbors— List of all communication neighbors and their communication

neighbors
1 When Si receives the query q do
2 if q ∉ OldQueries then // Check if query was rebroadcasted previously
3 if This is the first time Si received q then
4 RemainingNodes ← Copy of 2HopNeighbors
5 Remove the sender of q and its 1-hop neighbors from RemainingNodes
6 Start the Random Access Delay (RAD) and sleep until it expires
7 if Length of RemainingNodes ≥ TSBA then
8 Rebroadcast query // This is executed after the RAD
9 Insert identifier of q into OldQueries

10 end
11 else
12 Remove the sender of q and its 1-hop neighbors from RemainingNodes
13 end
14 end
15 end

4.3.2 Experimental Setup

We implemented the aforementioned dissemination approaches for Sun SPOTs using KSN software
modules (cf. Appendix C for further information). In the following, we describe the different node
setups and values we measured during the evaluation.

Node Setups

We used two different deployments of Sun SPOTs [120]: the Grid-Setup and the IPD-Setup. For
the Grid-Setup we deployed 24 Sun SPOTs as illustrated in Figure 4.4. The distance between the
nodes was 2.5 cm and the sending range of each Sun SPOT was reduced to minimum (Output
Power −30). This ensures, that each node can only communicate directly with the nodes next
to it. We also varied the position of the node that starts the query dissemination, i.e., the base
station. There are two possible start positions, center and periphery, for the dissemination which
are marked by black circles.

The IPD-Setup consists of 24 nodes as illustrated in Figure 4.3 and partly overlaps with the
KSN Testbed (cf. Appendix C.1). Contrary to the Grid-Setup, the output power of the radio chip
was not reduced. The IPD-Setup is more challenging than the Grid-Setup, because nodes do not

80

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 4.3: IPD-Setup for the evaluation of existing dissemination
algorithms

Figure 4.4: Grid-Setup

have a uniform distance between each other and communication ranges vary, e.g., because doors
are opened and closed.

Parameters and Measurands

For all dissemination approaches evaluated, we varied the following parameters:

Query rate: The query rate determines the time between queries. For the Grid-Setup, we used
query rates from 5 to 120 seconds. In the IPD-Setup, the query rate was constant at 3 minutes.

Base station position: As illustrated in Figure 4.4, the position of the base station was varied
in the Grid-Setup between a node at the periphery and one in the center.

Number of queries: This is the number of queries disseminated into the sensor network with
regard to the query rate. For the Grid-Setup, we used 10 queries and for the IPD-Setup, we
disseminated between 12 and 20 queries.

To compare effectiveness and efficiency of the different approaches, we measured the following
values:

Number of Hello-Packets: This is the number of messages sent and received for acquiring topol-
ogy information required for SBA. For all other dissemination approaches, this measurand is
0.

Number of query messages: This measurand counts communication required for the dissemi-
nation of the query.

Sum of all messages: By summing up the number of Hello-Packets and the number of messages
for the dissemination of the query, we measure the total communication required for query
dissemination.

Average number of queries received: To measure reachability, we count the number of queries
received at each node and compute the average over all nodes. By taking into account the
total number of queries disseminated, this allows us to determine the relative reachability.

Rebroadcast rejections: Each dissemination approach tries to reduce the number of rebroad-
casts. This value counts the number of nodes that rejected the rebroadcast because it was

81

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

determined to be redundant. By taking into account the total number of nodes, we can derive
the percentage of nodes that rebroadcasted a query.

Recall that our main focus is reachability, i.e., the ratio between the nodes reached and the total
number of nodes in the sensor network. The performance of a dissemination approach is the ratio
between reachability and the amount of communication required.

4.3.3 Results and Analysis

This section analyzes and compares the results of the dissemination approaches introduced above
for both setups. We present the results for the Grid-Setup for each approach separately first and
then provide the results for the IPD-Setup. We used query rates of 5, 15, 30 and 90 seconds and
for each query rate 10 queries were disseminated. If applicable, the RAD was in an interval of 0 to
25 seconds, i.e., the rebroadcast was delayed by 25 seconds at most for each node.

Flooding

Tables 4.1 and 4.2 show the number of messages and the reachability for flooding in the Grid-Setup
with query rates from 5 to 90 seconds. Since there are 24 nodes and 10 queries, the theoretical
expectation is that the number of messages sent is always 24 ⋅ 10 = 240 and the reachability equals
100%.

With the base station at the center, the reachability across all query rates is always well above
90%, but never 100%. This means that in every run there were one or two nodes that did not
receive the query even with flooding. The reason for this are collisions resulting in disrupted
messages and the general unreliability of the wireless medium. Despite the efforts of CSMA/CA
(cf. Section 2.1.2), these collisions occur because of the hidden terminal problem [45, 109].

In contrast to the results for the base station at the center, placing the base station at the
periphery of the network affects the results significantly: With low query rates, the reachability
is close to the optimum and even a little bit better than those obtained with the base station
at the center. The reason for this is that the dissemination runs ”one directional”, i.e., from the
bottom left to the upper right corner. This reduces the probability for the hidden terminal problem
to occur. With high query rates, a relatively large number of the queries are lost because nodes
repeatedly try to access the wireless medium but cannot because the medium ”is busy”. These
timeouts when accessing the medium also occurred with the base station at the center, but with
the base station at the center the nodes were reached before the medium was busy permanently.

Summing up, even with flooding the reachability is never 100% due to the unreliability of the
medium and collisions. All other approaches try to achieve the reachability of flooding while
requiring less messages.

82

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Query Rate Query rebroadcasts Reachability
90 239 99.5%
30 235 98%
15 175 73%
5 156 65%

Average 201 84%

Table 4.1: Results for flooding with a peripheral
base station

Query Rate Query rebroadcasts Reachability
90 222 93%
30 226 94%
15 230 96%
5 223 93%

Average 225 94%

Table 4.2: Results for flooding with base station
at the center

Counter-Based Dissemination

The results for CBD with the Grid-Setup averaged over query rates of 5, 15, 30 and 90 seconds
are shown in Table 4.3. For the Grid-Layout we tested different values for TCBD between 2 and 5.
A look at the number of rejected rebroadcasts shows that values above 4 for TCBD are not viable,
since at 5 there are no rebroadcast rejections. This means that CBD with TCBD = 5 performs like
flooding for this setup except for the delay due to the RAD.

As expected, increasing TCBD results in an increase of the number of query broadcasts, i.e.,
messages sent. For the setup with the base station at the center, this increase only results in a
marginal increase of reachability. It is noteworthy, that TCBD = 2 already achieves a reachability
above 90% while reducing the number of messages by 41%. As with flooding, the reachability is
reduced significantly if the dissemination starts at the periphery of the network. Particularly at
high query rates, a large number of queries is lost due to collisions and unreliability of the medium.

The average number of messages across all experiments with CBD achieving a reachability of
more than 90% is 203. Thus, compared to flooding, CBD requires 40 messages (≈ 17%) less. A
more detailed look reveals that most of the disseminations, that achieved a reachability above 90%,
had a query rate of 90 or 30 seconds: Only 3 disseminations at 15 second and none at 5 second
query rates reached more than 90% of the nodes. Summing up, CBD is a very efficient and effective

83

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

Base Station Position TCBD Query rebroadcasts Reachability
Center 2 160 91%
Center 3 204 94%
Center 4 216 94%
Center 5 227 95%

Periphery 2 116 67%
Periphery 3 146 70%
Periphery 4 180 80%
Periphery 5 205 86%

Table 4.3: Result for CBD averaged over query rates from 5 to 90 seconds

approach for query dissemination at low query rates and if query are not disseminated from the
periphery of the network.

Probabilistic Counter-Based Dissemination (PCBD) [92, 94] reports, that the efficiency
of CBD can be improved by introducing a rebroadcast probability PP CBD as described above. We
tested values of 50%, 65% and 90% for PP CBD with the same setup we used for CBD. It has
been reported that PP CBD = 65% is optimal for the average scenario. The results in Table 4.4 are
averaged across all query rates (5,15,30,90) and base station positions (center, periphery).

PP CBD Query rebroadcasts Avg. Reachability
50% 37 27%
65% 86 57%
90% 135 70%

Table 4.4: Average number of messages and reachability for PCBD

A general look at the results shows that the reachability achieved with PCBD is much lower than
with CBD or flooding. The reason for this is obviously that required rebroadcasts (according to
CBD) are suppressed due to the probability parameter. A detailed look at the result shows that the
ratio between the actual number of rebroadcasts and the number of rebroadcasts that CBD would
have made corresponds to the probability used. For example, while CBD would have rebroadcasted
the query 108 times, PCBD with PP CBD = 65% rebroadcasted 69 times, which equals 64%. Due to
the low reachability, we did not conduct any further experiments with PCBD in the IPD-Setup.

84

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Probabilistic Dissemination

Similar to the previous experiments, we used different query rates for the experiments with prob-
abilistic query dissemination. Table 4.5 shows some of the results averaged across all query rates.
The rebroadcast probability P was increased in steps of 5% from 15% to 95% and for each value
of P , we disseminated 10 queries.

Base Station Position P Query rebroadcasts Avg. Reachability
Center 15% 12 27%
.

Center 65% 118 83%
Center 70% 143 95%
Center 75% 161 95%
Center 80% 175 96%
.

Center 95% 216 98%
Periphery 15% 7 17%

.
Periphery 65% 106 62%
Periphery 70% 113 71%
Periphery 75% 147 86%
Periphery 80% 162 87%

.
Periphery 95% 191 89%

Table 4.5: Average number of messages and reachability for probabilistic dissemination

The result shows two important points: First, the increase in reachability is not linear compared
to the increase of the rebroadcast probability P . At some value of P < 1, the reachability is
”saturated” and further increases do not result in higher reachability. This is expected as the
analysis in [75] has shown. For example with the base station at the center, this ”saturation
point” is reached somewhere between a rebroadcast probability of 65% and 70%. At this point, the
reachability is equal to the reachability offered by flooding or CBD. In some cases the reachability is
even higher than with flooding, because the amount of rebroadcasts is significantly lower reducing
the probability for collisions.

The second important point is the fact that the probabilistic dissemination at an optimal value
for P is more effective and efficient than CBD with an optimal value for TCBD: With the base
station at the periphery of the network, CBD reaches 86% of the nodes with more than 200 rebroad-
casts, the same number of nodes is reached with more than 50 rebroadcasts less with probabilistic
dissemination. Similarly, with the base station at the center, the probabilistic approach requires

85

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

significantly less messages to reach 95% of the nodes.
Summing up, probabilistic dissemination is promising and offers a huge potential for energy

savings compared to both, CBD and flooding at no cost regarding reachability. The only drawback
is that finding an optimal value for P is more difficult than with CBD where basically TCBD = 2
or TCBD = 3 is always a good choice.

Scalable Broadcast Algorithm

For the experiments with SBA we varied the length of the RAD, the Hello-Packet Rate (HPR) and
TSBA. Before we analyze results, we discuss two important problems that our initial experiments
with SBA revealed: At first, we started the experiment by initiating a Hello-Packet broadcast on
each node, waited for a constant time interval and then started the query dissemination. This
resulted reachability values of less then 20% most of the time and never more than 40%. The
reason for this, even though we carefully initiated the Hello-Packet broadcasts to avoid collisions,
was that the topology information stored on each node was incomplete, i.e., nodes missed Hello-
Packets from 1-hop neighbors. This is because broadcasts are not acknowledged and a broadcast of
Si in the setup illustrated in Figure 4.5 rarely reaches eight nodes as expected by theory. As shown
in Table 4.6, from a total of 100 broadcasts consisting of one packet, most of the times four to six
of the surrounding eight nodes received the broadcast. In some cases, only three and in less than
10% of the cases seven or eight nodes are reached. To solve this problem for our experiments, we
had to conduct an initialization phase consisting of two or three Hello-Packet broadcasts for each
node. While this solves the problem, it also shows that the efficiency of SBA degrades significantly
if external influences frequently result in topology changes and require frequent updates of the
topology information for SBA.

The second problem were the Hello-Packets themselves: When a query dissemination was started
by the base station and other nodes were in the process of broadcasting Hello-Packets, the amount
of collisions was high. This resulted in low reachabilities for these experiments of less than 50%
on average. Particularly with query rates of 5 or 15 seconds, the problem was serious and leads
to the conclusion that SBA is not viable with high query rates. We solved this, by stopping the
broadcasting of Hello-Packets before the dissemination of the query started. Summing up, before
the dissemination of the queries started at the given rate, each node sent two or three Hello-Packets
and then waited for the dissemination to start.

Table 4.7 shows the result of our experiment with SBA for query rates of 30 and 90 seconds with
TSBA = 1. Initial tests with TSBA > 1 resulted reachabilities of less than 20% which is the reason
why this parameter was kept constant for our experiments. Other parameters like the length of the
RAD were also varied and the results showed that their impact on the reachability is negligible.
Since each of the 24 nodes sent two or three Hello-Packets during initialization, the values in the
second column are always multiples of 24.

The most important fact regarding the results is that SBA performs worse than flooding or
CBD regarding the amount of messages as well as the reachability. We did not encounter a case

86

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 4.5: Setup for broadcast reacha-
bility study

Nodes reached (out of 8) Occurrences
1 0
2 2
3 7
4 21
5 38
6 27
7 4
8 1

Total Number of Broadcasts 100

Table 4.6: Results of the broadcast reachability study

Query Rate Hello-Packets Query rebroadcasts Total Messages sent Reachability
30 48 152 200 67%
30 72 161 233 82%
90 48 181 229 82%
90 72 184 256 85%

Table 4.7: Results for SBA for query rates of 30 and 90 seconds

87

4.3. PERFORMANCE STUDY ON EXISTING DISSEMINATION APPROACHES

Dissemination approach Broadcasts Reachability
Flooding 378 79%

CBD with TCBD = 3 335 76%
Probabilistic with P = 0.75 307 84%

SBA 577 85%

Table 4.8: Query dissemination results for the IPD-Setup

where more than 90% of the nodes were reached, even for low query rates. In most cases, the
sum of Hello-Packets and queries is higher than with flooding. The reason for this behaviour can
be deducted from the results regarding broadcast reachability in Table 4.6: SBA is based on the
assumption that broadcasts are perfect, i.e., all surrounding nodes are reached. In addition to this,
SBA heavily depends on the correctness of the topology information stored on a node. This is
problematic as our initial attempts to use SBA have shown.

IPD-Setup

For all experiments using the IPD-Setup, we disseminated 20 queries at a rate of one query every
three minutes into the network. Table 4.8 shows the results.

Compared to the Grid-Setup, the reachabilities of all approaches were significantly lower. This
must be attributed to the characteristics of indoor deployments with doors, walls and other ob-
stacles that influence sending ranges permanently or temporary. For further details regarding the
difficulties associated with this setup refer to Section C.1.

For CBD, we used the threshold value of 3 which resulted in a reduced number of messages
compared to flooding with a comparable reachability. For the dissemination with SBA, we adapted
the process we used for the Grid: During the initialization phase, each node broadcasted two
Hello-Packets and afterwards each node broadcasted another Hello-Packet every 10 minutes for the
duration of the 60 minute experiment. Thus, each node had to send 8 Hello-Packets resulting in 192
broadcasts of Hello-Packets throughout the experiment. Considering the 577 broadcasts of SBA
overall, this leaves 385 rebroadcasts of queries which is a little bit more than the other approaches
required altogether. It must be noted though that the reachability of the other approaches compared
to SBA is a little bit lower. As with the Grid-Setup, sending Hello-Packets does not pay off.

The best result was observed with the probabilistic dissemination at a rebroadcast probability
of 75%. Since setting P = 75% was a guess, we also tested P = 80%. This resulted in a similar
reachability (85%) so it must be assumed that the aforementioned saturation point is at or below
75%. Even with this possibly sub-optimal value for P , the reachability is similar to SBA while
reducing the communication required significantly, particularly compared to SBA. This shows that
probabilistic dissemination is the most promising approach of those studied and finding an approach
to determine an optimal P has a great potential to reduce energy consumption.

88

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

4.3.4 Discussion

Most of the topology-based, sophisticated mechanisms do not work or do not disseminate the query
efficiently compared to flooding even for small networks. While all of them determine rebroadcast
nodes differently, their main problem is acquiring topology information and the overhead associated
with it. Typically the topology information requires so called Hello-Packets which must be sent
periodically and thus cause contention as well as collisions when disseminating a query. Each
period of sending Hello-Packets equals the flooding of a message through the network and this
overhead can only pay off if several queries have to be disseminated per Hello-Packet period. Our
experiments have shown that particularly with high query rates, topology-based mechanisms like
SBA show a low reachability. Simple approaches dominate and typically are more robust regarding
incomplete or partially incomplete topology information.

The results justify our decision to further investigate probabilistic query dissemination and the
optimization of the rebroadcast probability parameter instead of CBD or SBA: SBA does not
increase reachability significantly, but drastically increases the amount of messages required for
query dissemination, particularly due to Hello-Packets. Thus, SBA and other algorithms using
Hello-Packets to obtain network topology information are not viable options for our purpose. CBD
obtains reasonable reachability at values of 2-3 for TCBD and further increases do not increase
reachability but only increase its communication overhead. Probabilistic dissemination with a
well-chosen rebroadcast probability can achieve a high reachability and significantly reduce com-
munication compared to CBD. The main drawback with probabilistic dissemination is that finding
such a rebroadcast probability in sensor networks is difficult and has not been investigated yet. We
address this issue in Section 4.4.

Another important fact regarding the processing of spatio-temporal queries is that none of the
dissemination algorithms can reliably provide a reachability of 100%. Since this also occurs with
flooding, the reasons for these losses of queries must be attributed to the characteristics of the
wireless medium. Hence, it is unlikely that other dissemination protocols could be able to provide
a reachability of 100% at reasonable costs in terms of energy consumption. Thus, it must be
expected that there are some nodes that did not receive the query and therefore do not participate
in query processing.

4.4 Optimizing Probabilistic Query Dissemination

In this section we focus on probabilistic dissemination where each node rebroadcasts queries with
a fixed probability P . Parameter P allows to fine-tune the tradeoff between energy spent for
query dissemination and the number of nodes reached. Moreover, our performance study as well
as the analysis in [75] have shown that in sensor networks there exists a saturation point for the
rebroadcast probability. This means that there exists a rebroadcast probability PSat < 1 such
that increasing P beyond PSat does not increase the number of nodes reached significantly. Thus,
the query dissemination can save energy by using PSat as rebroadcast probability. Our goal is to

89

4.4. OPTIMIZING PROBABILISTIC QUERY DISSEMINATION

develop a model to predict for every value of P the number of nodes R reached and the energy
E consumed by the query-dissemination process. Knowing the dependencies between P , R and E

allows the base station to estimate how many nodes can be reached using a fixed amount of energy,
or at which P improving the reachability means spending a huge amount of energy to reach only
a few nodes more.

Our energy-usage prediction depends on reachability prediction, which in turn depends on the
network topology. The more the base station knows about network topology, the more precise the
predictions can be. However, gathering topology information consumes energy as shown for SBA
in Section 4.3. We are interested in making predictions using topological information which can
be obtained without exhausting potential energy savings due to gathering fine-grained topology
information.

In the following we develop two functions: The reachability function R (P) estimates the de-
pendency between the number of nodes reached R and the rebroadcast probability P . Similarly,
the energy consumption function E (P) predicts the energy consumption for the dissemination of a
query with rebroadcast probability P . More specifically, E (P) estimates the energy consumption
based on the number of messages sent and received.

4.4.1 Topology Information

Our predictions regarding reachability and energy consumption are based on topological infor-
mation. This section defines the underlying network model of our approach and formalizes the
information regarding network topology. We outline several different ways to collect this infor-
mation and Appendix D provides a detailed description of the implementation we used for our
experiments. The overhead associated with acquiring the information on the network topology will
be investigated in our evaluation in Section 4.5.

It is important to note that information required by our approach differs significantly from
the information required by SBA and other topology-based approaches: For SBA, the required
information was relatively fine-grained and had to be updated whenever small changes or external
influences had an impact on the connectivity of the nodes among each other. Thus, each node
must broadcast Hello-Packets frequently which resulted in a large overhead. Our approach uses
topology information that provides a very coarse view of the network and the connectivity of the
nodes. Thus, external influences rarely change the topology information which reduces the overhead
associated with acquiring this information drastically. Even though the information is not fine-
grained, it allows relatively accurate predictions regarding reachability and energy consumption as
the evaluation shows.

The Hop-Set Model

Our estimation of the reachability and energy consumption is based on a Hop-Set model. We use
this model to abstract from the details of the sensor network topology.

90

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

When the base station broadcasts a message to disseminate it to all nodes of the sensor network,
the message disperses through the network in several steps, beginning at the base station. We refer
to these steps as hops. If a node SB receives a broadcast from node SA, SB is reached by SA. If
SB rebroadcasts the message it received from SA and reaches SC , SC was reached via 2 hops.
Definition 44 (Message Path): The path of a message P = [Ssend,Si, . . . ,Sj ,Srecv] is the
sequence of nodes the message travelled from the sender Ssend via an arbitrary sequence of inter-
mediate nodes Si, . . . ,Sj to the receiver Srecv. The path length equals ∣P ∣ − 1 if ∣P ∣ is the number
of elements in P . ◻

For example, the path of the message above received at SC is [SA,SB,SC] with length 2. When-
ever a node Si receives a message that is being disseminated, this message has travelled h hops
over the path from the base station to Si. An arbitrary node may receive several instances of the
same message via different paths during dissemination.
Definition 45 (Minimal Path Length): If Si receives n instances of the same message via the
paths P1, . . . , Pn, the minimal path Pmin is the path with the fewest elements/nodes. The minimal
path length is the length of Pmin, i.e., ∣Pmin∣. ◻

Since each node rebroadcasts a message once at most (cf. Section 4.3.1), rebroadcasting stops
after all nodes that are connected to the network have received the query. Implicitly, this assigns a
distance h to every node Si which equals the minimal path length from the base station to Si.
Definition 46 (Hop Set): Hop Set The hop set HSh is the set of all nodes with a minimal
path length of h hops to the base station. ◻

The Hop-Set model classifies nodes by their distance in terms of hops from the base station.
Figure 4.9 shows an example where the hop set HSi−1 contains 2 nodes and HSi contains 3.

Hop-Set Connectivity

Using the abstraction of the hop-set model, a node Srecv can receive a message broadcasted by
Ssend in three different ways:

Direct: The broadcast from Ssend reaches Srecv directly if Ssend ∈ HSi−1 and Srecv ∈ HSi. Fig-
ure 4.6 illustrates this.

Indirect: The broadcast from Ssend reaches Srecv indirectly if Ssend and Srecv are in the same hop
set as illustrated by Figure 4.7.

Reverse: The broadcast from Ssend reaches Srecv reversely if Srecv ∈ HSi and Ssend ∈ HSj with
i < j. See Figure 4.8 for an illustration of reverse broadcasts.

It is important to note that the sender Ssend of a reverse broadcast is not necessarily from HSi+1 if
the receiver Srecv is in HSi. Broadcast2 communication between sensor nodes is not bi-directional,

2Unicasts typically require bi-directional communication since the receiver of a unicast message must acknowledge
the message with the sender as defined by 802.15.4. Broadcasts do not use acknowledgements.

91

4.4. OPTIMIZING PROBABILISTIC QUERY DISSEMINATION

Figure 4.6: Direct broadcast Figure 4.7: Indirect broadcast Figure 4.8: Reverse broadcast

i.e., if Ssend can communicate with Srecv this does not imply that Srecv can also communicate
directly with Ssend. Thus, it is possible that Srecv ∈ HSi receives reverse broadcasts from Ssend

even if Ssend is not in HSi+1.
The hop-set model only considers messages that disperse from the base station, but not the

opposite direction. Taking reverse broadcasts into account for reachability prediction would require
more detailed topology information. Acquiring and maintaining this information would increase
the overhead associated with topology information. Hence, we will not consider reverse broadcasts
to predict the reachability of probabilistic query dissemination. We will show in Section 4.5, that
our predictions are sufficiently accurate to determine a probability where (almost) all nodes are
reached, but only a fraction of nodes forwards the queries.

To predict how the query disperses through the hop sets by direct and indirect broadcasts, we
need the following information for each hop set HSh:

Hop-Set size: The hop set size ∣HSh∣, i.e., the number of nodes in HSh.
Inter-Connectivity: Inter [h] equals the average number of nodes in HSh that will receive a

broadcast by an arbitrary node from HSh−1. We need this value to predict the number of
nodes reached by direct broadcasts.

Intra-Connectivity: Intra [h] is the average number of nodes in HSh that an arbitrary node
from the same hop set can reach. This value is required to predict how many nodes will be
reached by indirect broadcasts.

Example 12 illustrates these values for the topology in Figure 4.9. Note that both connectivity
values are averages. This is important, because external influences that reduce or increase the
communication range of a few nodes typically do not have a significant impact on these averages.
Thus, frequent updates are avoided. For example, a test with the KSN Testbed (cf. Appendix C)
has shown that both connectivity values did not change significantly over the course of 24 hours
while SBA required updates in the order of minutes.
Example 12: Figure 4.9 contains a cut-out of a sensor network topology. Vertexes represent
sensor nodes aligned as hops sets and edges correspond to uni-directional links between nodes.
Table 4.9 shows the hop set sizes and connectivity information for the topology in Figure 4.9.

92

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 4.9: Illustration of the Hop-
Set model

HSi−1 HSi HSi+1

Hop Set Size 2 3
Interconnectivity 3 5

3
Intraconnectivity 0 4

3

Table 4.9: Topology information for Figure 4.9

Empty cells represent values that would require information not contained in Figure 4.9. HSi

consists of 3 nodes and HSi−1 of 2 nodes. Hence, ∣HSi∣ = 3 and ∣HSi−1∣ = 2. HSi+1 is not shown in
Figure 4.9.

Since the nodes of HSi−1 cannot communicate with each other, the intra-connectivity for HSi−1
equals 0. The intra-connectivity of HSi is computed as follows: The node on top has a link to the
node in the middle, the node in the middle a link to the node on top and to the bottom one, and the
node at the bottom a connection the node in the middle. Thus, there are 4 connections within HSi

and 3 nodes resulting in Intra [i] = 4
3 . Inter-connectivity for HSi equals 3 because there are two

nodes in HSi−1 and each one of them reaches 3 nodes in HSi with a broadcast. Inter [i + 1] = 5
3

is computed similarly. ◆

Topology Information Discovery

As stated above, to predict reachability, we require for each hop set HSh the size ∣HSh∣, the inter-
connectivity Inter [h] and the intra-connectivity Intra [h]. Topology discovery has received a lot
of attention resulting in multiple approaches applicable to a wide range of node types and usage
scenarios [5, 71, 90, 112]. All of these approaches acquire information on the topology of a sensor
network at a granularity that would be sufficient for our purpose. Another source for required
information are the data structures of routing protocols commonly used for sensor networks, e.g.,
CTP [44] or AODV [103]. These protocols must acquire topology information and store it in routing
tables to allow the forwarding of messages over multiple hops (cf. Section 2.1.2).

It strongly depends on the underlying communication protocols, hardware and the system ar-
chitecture which one of these existing approaches is applicable to a concrete deployment. To avoid
such dependencies, particularly for our evaluation, we implemented a very simple topology discov-
ery protocol based on the echo-algorithm [24]. The main steps of this topology discovery protocol
are as follows:

1. The base station broadcasts a topology request message to all nearby nodes. This topology
request contains a hop counter whose initial value is 0 and an address field which identifies the
last node that broadcasted this message.

93

4.4. OPTIMIZING PROBABILISTIC QUERY DISSEMINATION

2. Whenever a node Si receives the topology request for the first time, it stores the hop counter
value, the marks the last rebroadcaster as its parent node, increments the hop counter, replaces
the address of the topology request with its own and rebroadcasts it. Afterwards, Si creates
three empty lists: Uncles, Siblings and Children.

3. After the first topology request has been received, Si waits a limited amount of time for other
instances of the same topology request. When such a copy arrives at Si, the node modifies
the aforementioned lists and parent node pointers according to the hop count value in the
topology request copy. For example, if the hop counter value in the received topology request
is equal to the hop counter value the node stored initially, the node is stored in Siblings as it
has the same distance from the base station, i.e., it is in the same hop set.

4. Based on the three lists and the hop count value, each node can compute its own connectivity
values and its distance from the base station in hops. After the wait time has ended, each
node forwards these connectivity values to its parent. Each parent aggregates the values of its
children and forwards these towards the base station.

Appendix D provides a detailed description of the data structures and implementation of this pro-
tocol. Obviously, flooding the whole sensor network with the topology request requires a large
number of messages and is less efficient than the sophisticated topology discovery protocols men-
tioned above. Despite this inefficiency, our evaluation shows that the overhead associated with this
topology discovery protocol pays off after a few probabilistic query disseminations. Recall that the
average values regarding connectivity of the hop sets remain relatively constant over time even if
the sending ranges of a nodes change over time.

4.4.2 Reachability Prediction

In the following, we predict total reachability R (P) for a given rebroadcast probability P by
considering the nodes reached directly and those reached indirectly separately: Let Rdirect (h, P)
be the number of nodes in hop set HSh which have been reached directly, and let Rindirect (h, P)
denote the number of nodes which are reached indirectly. Since reverse broadcasts are left aside,
the number of nodes R (h, P) reached at the h-th hop can be computed as follows:

R (h, P) =min (Rdirect (h, P) +Rindirect (h, P) , ∣HSh∣) (4.1)

The minimum function is necessary to ensure that the maximum number of nodes returned is not
greater than the actual number of nodes in the hop set. This can occur, because direct and indirect
reachability are estimated separately and a node can receive multiple instances of the same query
from surrounding nodes. Thus, Rdirect (h, P) +Rindirect (h, P) could be larger than the number of
nodes in the hop set HSh.

The total reachability for a given P is the sum over all hops:

R (P) =∑
h
R (h, P) (4.2)

94

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

In the following we will show how the functions Rdirect (h, P) and Rindirect (h, P) can be computed
to predict R (h, P). Based on these predictions, we compute the reachability for different values of
P before the dissemination of a query using the topology information described above. Thus, we
determine a minimal value for P where R (P) equals the number of nodes in the sensor network
and disseminate the query using this rebroadcast probability.

Predicting direct reachability

Independently of the value for P the query dissemination always starts with a broadcast of the
query by the base station. Thus, all nodes in the first hop set HS1 are reached directly (the base
station corresponds to HS0), i.e., Rdirect (1, P) = ∣HS1∣. The core idea based on recursion for
the prediction of the number of nodes reached for all hop sets HSh with h > 1 is as follows: A
node in the hop set HSh−1 can only rebroadcast after it has been reached directly or indirectly.
Therefore, the number of nodes that could potentially rebroadcast the query from HSh−1 to HSh
is equal to the number of nodes reached in HSh−1, i.e., R (h − 1, P). Of these R (h − 1, P) nodes,
only Bh−1 = R (h − 1, P) ⋅ P rebroadcast. We predict the number of nodes reached by these Bh−1
rebroadcasts based on the links from HSh−1 to HSh, i.e., the interconnectivity Inter [h]. Summing
up, we estimate the number of nodes reached directly for HSh based on the total number of nodes
reached in the previous hop set HSh−1. This recursion stops at HS1 where we know that ∣HSh∣
nodes have been reached by the broadcast of the base station.

The prediction of the number of nodes reached by the aforementioned B rebroadcasts is based on
an urn model which we explain in the following: Let P (event) denote the probability of a certain
event. We need the probability of the event ”A node from HSh is reached directly”, i.e., a node in
HSh receives its message from a node in HSh−1. The probability of this event is:

P (A node from HSh is reached directly) = 1 − P (not reached directly) (4.3)

We compute the counter-event ”not reached directly” by considering the nodes in HSh−1 which
have not received the query previously. If Bh−1 = R (h − 1, P) ⋅ P , then the number of nodes that
do not rebroadcast is Bh−1 = ∣HSh−1∣ −Bh−1. Thus, the hop set HSh−1 is partitioned into a set of
Bh−1 broadcasters and Bh−1 non-broadcasters.

Equation 4.4 computes the probability of the counter-event, and its fundamental idea is as follows:
The counter-event corresponds to randomly choosing Inter [h] nodes out of hop set HSh−1 and
choosing non-broadcasters only. When randomly choosing the first node, the probability to choose
one of the Bh−1 non-broadcasters is Bh−1

∣HSh−1∣
. For every node chosen, the total number of nodes

remaining is reduced by 1. Therefore, assuming that the first node chosen was a non-broadcaster,
the probability that the next randomly chosen node is also a non-broadcaster is Bh−1−1

∣HSh−1∣−1 . Thus,
the probability that the first Inter [h] randomly chosen nodes are non-broadcasters is computed

95

4.4. OPTIMIZING PROBABILISTIC QUERY DISSEMINATION

by Equation 4.4:

P (not reached directly) =
⌈Inter[h]⌉−1
∏
l=0

Bh−1 − l
∣HSh−1∣ − l

(4.4)

We predict the number of nodes from HSh receiving the query directly by multiplying the proba-
bility P (A node from HSh is reached directly) with the size of the hop set ∣HSh∣:

Rdirect (h, P) = P (A node from HSh is reached directly) ⋅ ∣HSh∣ if h > 1 (4.5)

Due to the fact that P (A node from HSh is reached directly) is computed using Bh−1 =
R (h − 1, P) ⋅ P , this results in the following recursive function:

Rdirect (h, P) = {
∣HS1∣ if h = 1
P (A node from HSh is reached directly) ⋅ ∣HSh∣ if h > 1 (4.6)

Nodes in hop set HSh that are not reached directly can still be reached indirectly, i.e., by a
subsequent broadcast by nodes from the same hop set. We predict the number of nodes reached in
this way next.

Predicting indirect reachability

To calculate the number of nodes reached indirectly, we assume that the nodes which have received
the query, are equally distributed over the hop set. Thus, if Rdirect (h, P) out of ∣HSh∣ nodes are
reached directly, each node in HSh has obtained the message with probability Rdirect(h,P)

∣HSh∣
. Our

experimental evaluation will show that this simplification is legitimate, i.e., it is not necessary to
collect topological information in more detail.

To estimate the number of nodes reached indirectly, we re-use the approach from above: If there
are Rdirect (h, P) nodes that were reached directly, then Rdirect (h, P) ⋅ P rebroadcast the query.
It depends on the intraconnectivity Intra [h] of the hop set HSh how many nodes receive these
Rdirect (h, P) ⋅ P rebroadcasts:

Rindirect (h, P) = Rdirect (h, P) ⋅ P ⋅ Intra [h] (4.7)

4.4.3 Estimating Energy Consumption

Based on the prediction of the number of nodes reached, we can estimate the number of messages
sent and received. As shown in Appendix A, counting the messages sent and received provides
an estimation of the energy consumption for probabilistic dissemination. The number of messages
sent in hop set HSh is as follows:

MSGsend (h, P) = R (h, P) ⋅ P (4.8)

96

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

A node in hop set HSh might receive messages from nodes in many other hop sets. As we have
explained in Section 4.4.1, modeling reverse broadcasts (cf. Figure 4.8) would require topological
information with a very high level of detail. To avoid this, we estimate the number of received
messages MSGrecv (h, P) by considering nodes in the previous (HSh−1), current (HSh) and next
(HSh+1) hop set, because the majority of broadcasts are received from these nodes. Equations 4.9
and 4.10 estimate how many messages sent by nodes in HSh are received from nodes in the previ-
ous/current hop set respectively:

MSGprevious
recv (h, P) = Esend (h, P) ⋅ Inter [h] (4.9)

MSGcurrent
recv (h, P) = Esend (h, P) ⋅ Intra [h] (4.10)

Since topology information to estimate reverse broadcasts is not available, we estimate the number
of links from HSh+1 to HSh based on the average connectivity of nodes in HSh to nodes of HSh+1.
This implies bi-directional links which generally cannot be assumed, but our evaluation shows that
this is sufficiently accurate to estimate the number of messages received. We multiply this number
with the number of sent messages to estimate the number of received messages in the next hop set
MSGnext

recv (h, P):
MSGnext

recv (h, P) = Esend (h, P) ⋅
Inter [h + 1] ⋅ ∣HSh+1∣

∣HSh+1∣
(4.11)

Finally, we estimate the total number of messages received as follows:

MSGrecv (h, P) = Eprevious
recv (h, P) + Ecurrent

recv (h, P) + Enext
recv (h, P) (4.12)

To convert these values for the messages sent and received, it is sufficiently accurate to multiply
them with average energy consumption constants for sending esend and receiving erecv. Typically,
these constants can be obtained from the data sheet of the sensor nodes used or determined by
experiments similar to those in Appendix A. The total energy cost of the probabilistic flooding is
calculated by multiplying the messages sent and received with the vector of energy consumption
constants, and adding them up for every hop set:

E (P) =∑
h

(MSGsend (h, P) ,MSGrecv (h, P)) ⋅ (
esend

erecv
) (4.13)

For most sensor node platforms, sending and receiving consumes a similar amount of energy (cf.
Appendix A), i.e., esend ≈ erecv.

4.5 Evaluation

In this section we evaluate the prediction model with different node setups using simulations and
a deployment of 17 Sun SPOT sensor nodes [120]. We compare the predictions to the query
dissemination in simulated networks of up to 425 nodes and in a real sensor network. Specifically,
we investigate the following hypotheses:

97

4.5. EVALUATION

H.1 Spending energy to obtain the topology information required for our reachability predic-
tion for probabilistic query dissemination pays off after a few queries.

H.2 The accuracy of the reachability prediction based on the topology information is high.
H.3 Compared to other existing approaches, our approach for optimizing probabilistic dissem-

ination reduces communication.
H.4 In particular, the number of messages received during query dissemination is reduced

significantly by our approach.
H.5 Probabilistic query dissemination is appropriate for sensor networks of a wide range of

characteristics regarding node distribution or density.
H.6 The topology information required for the reachability prediction does not require frequent

updates.

Our model produces stochastic results for the average case, i.e., it works well for sufficiently dense
networks or for large numbers of trials. Thus, we expect a small deviation between the predicted
values and experimental results.

4.5.1 Simulation

For the simulation we used our Karlsruhe Sensor Networking Simulator (cf. Appendix C), which
is interface-compatible to Sun SPOT sensor nodes. This enables us to deploy the prediction model
and the topology-discovery protocol in both the simulated environment and the real deployment.

Simulation setup

To evaluate our approach with a wide range of parameters, we generated networks of varying node
densities and two different topologies.

Uniform: This topology is an example for a sensor deployment that has been carefully planned
to provide a defined coverage of a region. The nodes are distributed uniformly in a circular
area with a radius of 30 units around the base station, as illustrated in Figure 4.10. We used
a fixed radius and varied the average number of neighbors (the average node degree) for every
node from 4 to 16 to create topologies ranging from sparse to dense.

Gaussian: This topology corresponds to a ”smart-dust scenario” where the nodes are arbitrarily
deployed over an area of interest, e.g., from an airplane. The placement of nodes follows
a Gaussian distribution. In particular, we use Gaussian sampling with the center of the
environment as mean and a standard deviation of 18 units to place the nodes. Again, the area
covered has a size of 30 units. For our simulations, we vary the number of nodes from 125 to
425. As shown in in Figure 4.11, most nodes are located close to the center, and the further
away from the base station, the lower the node density. Because some of the nodes close to the
edge of the area are disconnected from the network, even a rebroadcast probability of P = 1.0
will not deliver the query to all nodes.

98

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 4.10: Example: Uniform Topology (Node
Degree 12)

Figure 4.11: Example: Gaussian Topology (325
Nodes)

We generated 40 instances for each parameter setup to exclude stochastic errors, i.e., 320 different
topologies. To enable a comparison between both topology types, Table 4.10 shows which node
degree in uniform node distributions equals which number of nodes.

Average Node Degree Used Sensors
4 125
8 225
12 325
16 425

Table 4.10: Average node degree in Uniform scenario and number of nodes

Energy consumption constants In order to determine the energy consumption for (1) a sim-
ulated query dissemination and (2) the energy-consumption prediction, the energy consumption
constants esend and erecv must be determined. We obtained these values from experiments with
MicaZ [131] described in Appendix A.

esend = 0.0691 mAs (4.14)

erecv = 0.0583 mAs (4.15)

Similar values have been obtained in [83].

99

4.5. EVALUATION

Experiment execution

We evaluated each of the 320 different topologies in four steps:

Step 1 Fetch the required topology information using the topology-discovery protocol of outlined
in Section 4.4.1.

Step 2 Predict the total reachability R (P) for rebroadcast probabilities P ∈ {0, 0.05,⋯, 1}.
Step 3 For each rebroadcast probability, simulate 120 query disseminations and count the num-

ber of messages sent and received.
Step 4 Compute the energy consumption using Equation 4.13.

Since we conducted 120 query disseminations for each of the 320 topologies, the experimental
results in the following are based on more than 38.000 simulation runs. This is a sufficiently high
number to foreclose a significant impact on the results due to stochastic errors or anomalies.

Results and Analysis

Figures 4.12–4.15 show the simulation results for uniform node distributions and Figures 4.16–
4.19 those of Gaussian node distributions. On each diagram, the x-axis shows the rebroadcast
probability P used to disseminate the query. The relative reachability for this value of P , i.e., the
percentage of nodes reached, is plotted on the left side and the energy consumption based on esend

and erecv on the right side of each diagram.
For all simulations, the predicted number of nodes is relatively close to the actual number of

nodes reached, but always below it, i.e., the model never overestimates reachability. While there is
some deviation between the prediction and the actual number of nodes reached, e.g., in Figure 4.15
at P = 0.3, this deviation is very small at the point where reachability is close to 100%. Since
it is important for processing spatio-temporal queries that all nodes are reached, this is the point
where we need the accuracy. An in-depth look at the results reveals the reason for this deviation:
If the reachability is significantly below 100%, the portion of nodes that are reached by reverse
broadcasts only increases. Since our model does not take into account reverse broadcasts, the
prediction always underestimates the reachability in these cases. The slight underestimation of the
reachability in all cases is also advantageous considering the fact that the actual reachability in
real deployments will be lower than the reachability computed by the simulator. Summing up, the
results support H.2, in particular for values of P that achieve a reachability close to 100%.

Our results also provide an insight regarding the applicability of probabilistic query dissemination
and its limitations: Except for relatively sparse networks, i.e., networks where the average node
has 4 nodes or less it can reach with wireless communication, reachabilities of more than 90% were
observed. Generally, the higher the density of the nodes, the higher are the possible energy savings.
In those cases, where the actual reachability was below 90%, it is still possible to reduce energy
consumption by missing some nodes: For example, with networks of 325 or 425 nodes with Gaussian
distribution, the results in Figures 4.18 and 4.19 show that there exists a rebroadcast probability

100

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.12: Simulation result for uni-
form distribution with average node degree 4
(125 nodes)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 20

 40

 60

 80

 100

 120

 140

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.13: Simulation result for uni-
form distribution with average node degree 8
(225 nodes)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

 250

 300

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.14: Simulation result for uniform
distribution with average node degree 12
(325 nodes)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450
R

ea
ch

ab
il

it
y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.15: Simulation result for uniform
distribution with average node degree 16
(425 nodes)

0.65 ≤ PSat ≤ 1 at which the reachability stagnates. Further increases of the rebroadcast probability
beyond this point increase energy consumption linearly while only increasing reachability marginally
or not at all. The only cases where probabilistic query dissemination is not advantageous are
those where the average node density is 4 or less. In these scenarios, a significant part, e.g., in
Figure 4.16 about 40% of the nodes, of the network is completely unreachable. It is questionable
if such networks occur in reality and other dissemination approaches would not achieve better
results. At least for moderately dense networks, probabilistic query dissemination achieves high
reachabilities at relatively low costs, and for these networks our results support H.5.

Table 4.11 shows the average number of messages sent/received for the uniform topologies with
425 nodes for P ≥ 0.5, i.e., some of the absolute values for the diagram in Figure 4.15. Based on

101

4.5. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.16: Simulation result for Gaussian dis-
tribution with 125 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 20

 40

 60

 80

 100

 120

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.17: Simulation result for Gaussian dis-
tribution with 225 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

 250

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.18: Simulation result for Gaussian dis-
tribution with 325 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

 250

 300

 350

 400

R
ea

ch
ab

il
it

y
 i

n
 %

E
n
er

g
y
 c

o
st

 i
n
 m

A
s

Re-Broadcast Probability

Reachability: Simulation
Reachability: Prediction
Energy cost: Simulation
Energy cost: Prediction

Figure 4.19: Simulation result for Gaussian dis-
tribution with 425 nodes

these message counts, the energy consumed by sending or receiving is computed using (4.13) in
combination with the constants esend and erecv.

The energy savings compared to flooding are large. With flooding (P = 1), the dissemination
of a query to all 425 nodes would require 29.37 + 408.71 = 438.09 mAs on average. According to
our model, all nodes are reached with P = PSat = 0.6. The simulation shows that this prediction is
accurate since all nodes are reached, but the energy consumption is considerably lower with about
17.52+ 244.29 = 261.81 mAs on average. Except for topologies with a low node density, the energy
savings are similar. Additional experiments using CBD with TCBD = 2 to disseminate a query in
the same scenarios (uniform, 425 nodes) resulted in an average energy consumption of more than
310 mAs. Hence, we conclude that our results confirm H.3.

Table 4.11 also provides an insight regarding the composition of these energy savings: For the
uniform topologies with 425 nodes, probabilistic query dissemination with P = 0.6 reduces average
energy consumption by 438.09 − 261.81 = 176.28. The energy saved due to messages that are not

102

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Rebroadcast Sending Receiving
Probability Messages Energy in mAs Messages Energy in mAs
0.5 211.9 14.64 3516.0 204.98
0.6 253.6 17.52 4190.2 244.29
0.7 295.8 20.44 4882.0 284.62
0.8 339.1 23.43 5600.3 326.50
0.9 382.1 26.40 6306.9 367.70
1.0 425.0 29.37 7010.6 408.71

Table 4.11: Avg. messages sent/received for uniform node distribution with 425 nodes

sent is 29.37−17.52 = 11.85 mAs. Thus, most of the energy savings must be attributed to messages
that are not received, i.e., H.4 is confirmed.

4.5.2 Break-Even Analysis

This section investigates H.1 and shows that that the topology-discovery pays off after a few
probabilistic query disseminations with an optimized rebroadcast probability P . In the following,
we assume a uniform scenario with 425 nodes and an average node degree of 16. As shown above,
using a rebroadcast probability of P = 0.6, query dissemination requires 261.81 mAs. In comparison,
flooding (P = 1) requires 438.09 mAs, i.e., 176.28 mAs more than probabilistic query dissemination.
However, our reachability prediction requires topology information which must be obtained prior
to probabilistic query dissemination while flooding does not require any topology information.
Thus, these costs must be taken into account when comparing flooding with probabilistic query
dissemination.

Computing the energy consumption of the topology discovery protocol for this scenario is
straight-forward. Each of the 425 nodes broadcasts a topology request once to its neighbors. Since
each node has 16 communication neighbors on average, this results in 425 ⋅ 16 messages that are
received during the phase where the topology request is flooded into the network. Equation (4.16)
estimates the energy consumption for this:

E
Expansion
T opDisc = 0.0691mAs

Send
⋅ 425

+ 0.0583 mAs

Receive
⋅ 425 ⋅ 16Receives

Send
= 425.8075 mAs (4.16)

After each node has broadcasted a topology request once, the topology information must be aggre-
gated and transported back to the base station. For this, each node collects the topology informa-
tion from 16 nodes on average and forwards it towards the base station. According to (4.17), this

103

4.5. EVALUATION

part of the topology discovery protocol also consumes 425.8075 mAs for our example of 425 nodes:

E
Contraction
T opDisc = 0.0583 mAs

Receive
⋅ 425 ⋅ 16Receives

Send

+ 0.0691mAs
Send

⋅ 425

= 425.8075 mAs (4.17)

Summing up, acquiring the topology information to predict the reachability and determine PSat

consumes 811.615 mAs in this particular scenario. Considering the energy savings of 176.28 mAs
per probabilistic query dissemination, we compute 4 ⋅ 176.28 < 811.615 < 5 ⋅ 176.28. Hence, after
the dissemination of five queries, this initial energy consumption has paid off and each query
disseminated afterwards further increases the energy saved by our approach.

A calculation for the Gaussian topology yields similar results. As the analysis in [75] has shown,
there exists a PSat < 1 for any densely connected sensor network such that probabilistic flooding
reaches all nodes. Our prediction model allows for precomputation of PSat prior to the dissemination
of the query. Afterwards we use a rebroadcast probability close or equal to PSat, thus saving energy.
Thus, compared to flooding, the topology discovery will pay off for any of these sensor networks
after a few query disseminations.

In addition to this, it must be noted that there are several other topology discovery proto-
cols [5, 71, 90, 112] that are more efficient but require assumptions on node hardware, software or
system architecture. If one of these protocols is applicable, they should be used to further reduce
the number of query disseminations until the probabilistic approach pays off. Summing up, this
confirms H.1.

4.5.3 Sun SPOT Case Study

We have tested our model and the topology-discovery protocol in a real environment. Figure 4.20
shows 17 Sun SPOT sensor nodes (circles) and a base station (square) deployed in our offices. Each
node counts and stores the number of incoming and outgoing messages locally. We have repeated
the following experiment 10 times:

1. Disseminate a query using flooding (P = 1.0) to determine the number of nodes that can be
reached. This is necessary, because in real deployments external factors such as metal doors
or electrical devices can prevent nodes from being reached in any case.

2. Fetch the topology data using the topology-discovery protocol.
3. Predict the number of nodes reached with different values for the rebroadcast probability P

based on the topology information collected. Determine PSat, the lowest value for P where
reaching all 17 nodes is predicted.

4. Disseminate a query message into the network using probabilistic flooding with a rebroadcast
probability of PSat.

104

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure 4.20: Map of 17 Sun SPOTs and a Base Station deployed at the IPD

Table 4.12 shows the average results for the 10 query disseminations with flooding and probabilistic
dissemination: Generally, the accuracy of the prediction and thereby the number of nodes reached
with PSat is good, even though there is a small difference between the 16.3 nodes reached by simple
flooding compared to the probabilistic flooding with 15.4 nodes reached on average. This confirms
our simulation results and H.2.

Avg. Reached Nodes (of 17) Messages Sent Messages Received
Flooding 16.3 16.3 63.8

Probabilistic 15.4 10.2 34

Table 4.12: Result of the flooding experiment using the Sun SPOT deployment

The nodes that were not reached were always the two nodes at the bottom-right corner of
Figure 4.20. Further analysis of their routing tables shows that both of them only have a single
node that connects them to the rest of the network. With simple flooding, external factors like
metal doors or electric devices might prevent these nodes from obtaining the query. Probabilistic
flooding further decreases the probability that these nodes receive the query by (1 − P). Hence,
probabilistic flooding should not be used in sparse networks or areas of the network that are sparsely
connected. Sensor nodes can detect this, e.g., by looking at their routing tables, and use flooding
in these areas of the network by default.

Furthermore, Table 4.12 confirms that the number of messages sent and received with proba-
bilistic flooding is much lower than the one with the simple flooding. The amount of energy saved
due to reduced communication clearly outweighs the small inaccuracy of the prediction. Thus, the
results of the case study support H.4 and H.3. Since wireless sensor networks cannot guarantee
100% reachability anyway, a small deviation in the prediction of the number of nodes reached does
not limit the applicability of our approach.

105

4.6. SUMMARY

After the 10 disseminations of the query, we continued to collect topology information every 10
minutes for 24 hours using the topology discovery protocol outlined in Section 4.4.1. After the
topology discovery was completed, we computed PSat and recorded it. Analogous to the 10 times
where the query was disseminated afterwards, the result of this computation was always PSat ≈ 0.63.
Thus, despite humans moving throughout the building, lifts, fire doors and other obstacles, the
topology information was relatively unaffected. This confirms that the structure of our topology
information does not require a lot of maintenance contrary to the topology information required
by SBA and other topology-based approaches. With this, we conclude that H.6 as well as all of
our other hypotheses have been confirmed by our evaluation results.

4.6 Summary

This chapter focused on the first step towards the efficient processing of spatio-temporal queries
whose semantics have been defined in Chapter 3: The dissemination such a query into the sensor
network. First, we have shown that spatio-temporal queries require that all nodes receive the query,
i.e., a large number of nodes must communicate with each other. Since communication is expensive
in terms of energy, it is of utmost importance that this communication-intensive part of the query
processing is completed efficiently.

Dissemination of messages in sensor networks has received a lot of attention from the networking
community. With the aim of finding an existing approach for our case, we have evaluated a set
of state-of-the-art dissemination approaches in different sensor networks consisting of Sun SPOTs.
The evaluation showed that probabilistic query dissemination is a promising approach. The main
challenge of probabilistic dissemination is finding PSat, i.e., a minimal rebroadcast probability P
where all nodes receive the query. We developed an analytical model that predicts the number of
nodes reached for a given value of P and connectivity information. Our evaluation shows that our
predictions are sufficiently accurate to determine PSat before the query dissemination starts and
then disseminate the query efficiently. This concludes our discussion regarding Contribution C.2.
In the following, we assume that the query has been disseminated using this approach before the
processing of the spatio-temporal query starts.

106

Chapter 5

Energy-Efficient Processing of
Spatio-Temporal Queries

As illustrated in Section 2.1, energy is and will be a valuable resource in sensor networks. Thus,
query processing must avoid excessive energy consumption. While Chapter 4 focused on the dis-
semination of the query, this chapter will assume that the query has been disseminated to all nodes
and try to compute results for spatio-temporal queries with minimal energy consumption, i.e.,
Contribution C.3.

Processing a spatio-temporal query requires the collection of all query-relevant information, e.g.,
on objects detected or changes of a dynamic zone, from the nodes of the sensor network and derive
detection scenarios from this information. A straightforward approach for this is sending all of
this information to the base station. Our evaluation shows that this approach is prohibitively
inefficient for sufficiently large sensor networks, e.g., more than 40 nodes. The core contribution
of this chapter are two strategies which allow in-network processing of spatio-temporal queries and
only send results to the base station. These strategies reduce the number of messages required to
collect the necessary information significantly.

This chapter concludes with an extensive evaluation of our measures using simulations as well
as Sun SPOTs. Our results show that the two in-network strategies reduce communication by 45%
to 89% compared to collecting all information at the base station. Recall that existing relational
query processors for sensor networks would collect the information on object detections at the base
station. As illustrated using WSNEnter (O,Z) as an example in Appendix B, this is due to the
join operations required to express spatio-temporal semantics using relational operators.

5.1 Preface

For the remainder of the chapter, we assume that the following steps have been completed before
the sensor network starts to process a query:

107

5.2. DATA STRUCTURES AND ALGORITHMS

1. Definition of a condition CZ(see 3.4).
2. Specification of the movement of interest as a spatio-temporal development P (O,Z).
3. Dissemination of a pair [P (O,Z) ,CZ] to all nodes of the sensor network.

The last step is important, because it allows each node determine if it is in the zone or outside of
it. Furthermore, every node can determine which predicate or detection scenarios are of interest.

The query result returned to the base station, i.e., to the user, includes every element whose
movement conforms to P (O,Z) as defined by Chapter 3. To accomplish this, the sensor nodes
must compute the detection scenario whenever an object O is detected. This results in a sequence of
detection scenarios DO (cf. Definition 40). Based on DO, the sensor network can use the detection
term associated with P (O,Z) derived in Section 3.4 to determine if O conforms to P (O,Z). We
describe our approach in the following steps; the numbers are in line with the ones of the respective
sections:

5.2 Data Structures and Algorithms: We describe the data structures where we store infor-
mation on object detections by different nodes, and whether a node is in the zone or outside
of it. Based on this, we describe algorithms that compute detection scenarios based on these
data structures.

5.3 Centralized Data Collection: A straightforward strategy to acquire the information neces-
sary to compute detection scenarios collects all data at the base station. This is our base-line
strategy.

5.4 Distributed Data Collection: We propose two strategies that exploit the spatial correlation
of object detections to allow in-network computation of detection scenarios. The evaluation in
Section 5.5 shows that this reduces communication significantly.

The chapter concludes with an evaluation of our measures using simulations as well as Sun SPOT
deployments.

Since nodes may fail at any time, we also address failure detection and handling for the distributed
data strategies proposed in Section 5.4. If the result of a detection scenario computation could be
affected by a node failure, we notify the base station of this problem and mark the respective
detection scenario. This allows users to dismiss certain results or at least consider that the result
is potentially incorrect because a node failed.

5.2 Data Structures and Algorithms

To store the information on objects detected, we use a list Detections. It depends on the strategy
where Detections is stored: For the centralized strategy, we store Detections at the base station.
Contrary to that, the distributed strategies share and replicate the elements of Detections in such
a way that sensor nodes can compute detection scenarios based on it. Every element of Detections
represents the detection of an object O by a node Si during a time interval [tentry, texit]. Thus,
every element of Detections has the following structure:

108

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

NodeID: Identifier of the node Si detecting O.
ObjectID: An identifier of the object O that has been detected by Si.

tO
entry: The entry time (cf. Definition 15) at which O entered the detection area of Si.
tO
exit: This value either equals Ø or a time t > tentry. If it equals Ø, this indicates that Si is still

detecting O. Otherwise, this value equals the exit time texit (cf. Definition 16) at which O left
the detection area of Si.

We say an element E originates from node Si if E.NodeID = Si. Note that an object that repeatedly
enters and leaves the detection area of a node may result in several list elements originating from
the same node.

In the following, we assume that standard methods like add (E) for adding elements to Detections
as well as mechanisms which allow iteration over all elements of Detections are supported. The
data stored in ObjectID depends on the properties of the objects and how they are detected: For
RFID-tagged objects, the attribute of a list entry is a the identifier associated with the RFID-tag.
Similarly, radio-collars for animal tracking (cf. Section 1.1.2) always correspond to some kind of
identifier which is stored in this field. Even in cases where identifiers are not assigned a-priori to
objects, there are cases where generating a unique identifier from detections is possible. For example
in [19], vehicles are detected and identified using microphones and according to their results one
can generate so called signatures based on the data acquired by the microphones. Their approach
uses these signatures generated by engines and propulsion gear to identify different vehicles. In
this case, ObjectID would be this signature or a hash value generated from such an approach.

According to Definition 15, the moment an object O moves into the detection area of a node
Si is the entry time. When such an entry occurs at time t1, an entry E = [Si,O,t1,Ø] is added to
Detections by calling Detections.add (E). Afterwards, O may be in the detection area of Si for an
arbitrary time. This entry E must be updated when O leaves the detection area at t2, i.e., the entry
E is modified and becomes [Si,O,t1,t2]. As discussed in Section 3.1, our approach is applicable to
non-continuous detection mechanisms by temporal interpolation as well.

Similarly, the information which nodes are inside of the zone Z is stored in a list called Zo-
nes. Again, we assume a list implementation that supports standard list operations and supports
iteration. Every element of the list has the following attributes:

NodeID: Identifier of the node Si that is in the zone Z for some time.
tZentry: This value marks the start of the time interval during which Si was in Z.

tZexit: This value marks the end of the time interval during which Si was in Z. As with
objects, tZexit either equals Ø or t > tZexit. The first case indicates that Si is still in Z
and the latter case that Si has been in Z during [tZentry, t

Z
exit].

Modeling zones in this way assumes that there is only one zone. To support multiple zones, a list
element in Zones would require an additional field for a ”zone identifier”. We omit this additional
attribute to ease our presentation.

109

5.2. DATA STRUCTURES AND ALGORITHMS

As with Detections above, modifications of the list occur if Si enters or leaves a Z. Whenever a
node Si determines that CZ (Si) = T at t1 while CZ (Si) = F at the last test before t1, it generates
an entry E = [Si, t1, Ø] and calls Zones.add (E). For static zones, This occurs only at the time when
Si receives the query for the first time. Afterwards Si is either in Z or in Z for all times. Thus,
tZexit = Ø for all times in the context of static zones. With dynamic zones, nodes may enter and
leave a zone multiple times. When Si leaves Z at time t2 > t1, the element [Si, t1, Ø] mentioned
above is updated to [Si, t1, t2].

5.2.1 Detection Scenario Computation

According to Section 3.3.2, the sensor network must compute how the detection set DO
t intersects

with Z and Z to compute a detection scenario at time t for a given object O. We refer to this
computation as isDetecting (S∗, t,O), which is defined as follows:

isDetecting (S∗, t,O) = { T iff ∃Si ∈ S∗ ∶ detect (Si,O, t) = T
F Otherwise (5.1)

Algorithm 6: Implementation of isDetecting (S∗, t,O)
Input: The lists Detections and Zones
Input: An object identifier ObjectID of O, a set of nodes S∗ and a value t ∈ T
Output: T if a node in S∗ detected O at t, otherwise F

1 for each node Si ∈ S∗ do
2 for each entry E in Detections do
3 if E.NodeID = Si.NodeID AND E.ObjectID =O.ObjectID AND E.tO

entry ≤ t ≤ E.tO
exit

then
4 return T // Node in S∗ detects O at t
5 end
6 end
7 end
8 return F

The input parameter S∗ is either Z or Z. Determining Z and Z for some time t is straightfor-
ward and only requires a single iteration over Zones. Algorithm 6 provides an implementation for
isDetecting (S∗, t,O): The algorithm consists of two nested loops. The outer loop runs through
the nodes of S∗ and the inner loop tests for each Si ∈ S∗ if it detects O at time t.

To compute a detection scenario in the context of a zone Z, we use isDetecting (S∗, t,O)
twice: First, we compute isDetecting (Z, t,O) and then isDetecting (Z, t,O). According to
Lemmas 3.8-3.10, one can determine the detection scenario according to Table 5.1: Each cell

110

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

isDetecting (Z, t,O)
T F

isDetecting (Z, t,O) T DSB DSI

F DSE DS∅

Table 5.1: Deriving detection scenarios using isDetecting (S∗, t,O)

corresponds to a pair of booleans that represent the result of the calls to isDetecting (Z, t,O)
and isDetecting (Z, t,O) and contains the corresponding detection scenario.

In the following, we address the collection of the elements in Detections and Zones to ensure that
the result of the detection scenario computation according to Table 5.1 is correct.
Definition 47 (Correctness): The computation of a detection scenario DS∗ is correct if the
space partition that corresponds to DS∗ (cf. Definitions 32-34) contains the position p ∈ Ed of the
object detected. ◻
Definition 48 (Completeness): A lists Detections and Zones are complete regarding an object
O and a time t if they meet the following requirements:

• Detections must contain all elements [Si, O, t1, t2] with t1 ≤ t and t ≤ t2 or t2 = Ø.
• Zones must contain all elements [Si, t3, t4] with t3 ≤ t and t ≤ t4 or t4 = Ø. ◻

Lemma 5.1. If Detections and Zones are complete, the detection scenario computed according to
Table 5.1 is correct.

Proof. Without loss of generality, assume the computed detection scenario regarding an object
O and a time t is DSE , i.e., O is in ZE according to Definition 24. Considering Lemma 3.8, this
implies that there is at least one node Si ∈ Z that detects O. The computed detection scenario
would be incorrect, if there existed another node Sj ∈ Z which detects O at t as well. Such a node
cannot exist since Detections and Zones are complete. For the other detection scenarios, the proof
is similar. ∎

Summing up, the base station or an arbitrary sensor node must store complete lists Detections
and Zones locally to compute a detection scenario for a given object O and a time t. Acquiring
the elements for both lists to keep them complete while minimizing the amount of messages is our
goal in the following.

5.2.2 Memory Requirements and Management

While future developments are likely to lift memory restrictions of sensor nodes, we briefly inves-
tigate the memory footprint of both lists. This shows that even with current, memory-restricted
sensor nodes storing these lists on sensor nodes is viable.

111

5.3. CENTRALIZED STRATEGY

The Sun SPOT sensor nodes we used for our reference implementation are uniquely identified by
a so called IEEE address which are 16 bytes long. Thus, the attribute NodeID requires 16 bytes.
This could be reduced to 8 bytes, because IEEE addresses contain a prefix and a postfix where
the prefix identifies Sun as the manufacturer of the devices. This prefix is equal for all nodes and
thus could be omitted, but since memory was never an issue for our reference implementation, we
stored the complete IEEE address. The timestamps in both lists, i.e., tentry and texit, require 16
bytes each as well, since they are time values obtained through the standard java clock interface.

We analyze the memory footprint of a single element in Zones first: Every element takes 16⋅3 = 48
bytes of memory. An element is created whenever a node enters a zone. Note that leaving a zone
does not result in another element, because the element is only modified.

The amount of memory required per element in Detections depends on the properties of the object:
As with Zones, we need 48 bytes per element for NodeID and the two timestamps. As mentioned
above, the size of the object identifier depends on the object. Our reference implementation used
another 16 bytes for ObjectID which lead to a total size of 64 bytes per element in Zones.

Considering the 512 kilobytes of RAM that are available on Sun SPOT sensor nodes, we conclude
that a single node could store thousands of elements in both lists before memory becomes an issue.
Therefore, we assume in the following that nodes always have sufficient amounts of memory to
store list elements required to compute a detection scenario. On platforms that are more memory
restricted, it would be advisable to treat both lists like queues and remove old items whenever new
items must be added.

5.3 Centralized Strategy

A straightforward approach to collect information on objects detected and zones is that every node
notifies the base station whenever an object enters or leaves a detection area or a node joins or
leaves a zone. Based on these notifications, the base station can generate elements for Detections
and Zones and compute detection scenarios according to Table 5.1.

Algorithm 7 illustrates this strategy in two parts: Arbitrary nodes that detect objects or
join/leave Z execute Lines 1-5. Transmitting such a notification from a node Si to the base station
requires routing protocols (cf. Section 2.1.2). These protocols forward messages via multiple hops
if Si is not a communication neighbor of the base station.

The base station executes the second part starting at Line 7: First, the information contained in
the notification received by the base station is integrated into one of the lists Detections or Zones.
Afterwards, the base station must wait a timeout tdelay before the computation of the detection
scenario can start. The timeout ensures that notifications of other nodes which simultaneously
detect the same object or join/leave a zone have arrived before the computation of the detection
scenario starts. The actual value of tdelay depends on factors such as communication hardware,
distance of the notifying node Si to the base station, the routing protocol etc. For our reference
implementation we used a delay of 30 seconds.

112

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Algorithm 7: Centralized data collection
1 When O enters/leaves DAi of Si at t do
2 Si sends enter/exit notification [Si, O, t] to base station
3 end
4 When Si joins/leaves Z at t do
5 Si sends join/leave notification [Si, t] to base station
6 end
7 When base station receives notification from Si do
8 Modify Detections or Zones at base station
9 Wait tdelay

10 if Detections has to be modified then
11 Derive Detection Scenario DS∗ using Table 5.1
12 DZ

O←DZ
O� DS∗ // Append DS∗ to detection term

13 else
14 for each object O in Detections do
15 Derive Detection Scenario DS∗ using Table 5.1
16 DZ

O←DZ
O� DS∗

17 end
18 end
19 Check if there is an object O whose detection term conforms to P (O,Z)
20 end

Lemma 5.2. Suppose Si sends a notification about object detection or zone change at t ∈ T. If tdelay

is the maximum time a notification needs to travel from a node Si to the base station, Detections
stored at the base station is complete at t + tdelay.

Proof. We produce the proof of the contrary: If the notification from Si has not arrived at t+ tdelay,
then tdelay was not the maximum time a notification may need to reach the base station. ∎

After the timeout expired, the base station can assume that Detections and Zones are complete.
Hence, the base station can compute the detection scenario and check if any objects fulfill the users
query P (O,Z).

5.4 Distributed Object-Information Collection

In the following, we propose two strategies which distribute the both lists among the nodes of the
sensor network, i.e., each node stores only a part of both lists. The distribution is done in such a
way that any node Si detecting an object O can compute the detection scenario. As we show, this
reduces communication for two reasons:

113

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

• Nodes only notify the base station of objects that possibly fulfill the query, i.e., those that at
least fulfill one P (O,Z) ∈ P (O,Z).

• There are fewer nodes from which data must be collected, i.e., only some nodes communicate.

The latter point stems from the following idea: When a node Si detects an object O, only nodes
in its vicinity can detect the object simultaneously. This is because O at position p ∈ Ed can be
detected only by nodes whose detection area contains p. The problem is that detection mechanisms
in sensor networks typically do not allow precise localization of the object detected, i.e., p is
unknown. But in turn, Si can derive that only nodes that are close-by could possibly detect O
at the same time. More formally, only nodes whose detection area overlaps with DAi of Si could
possibly detect O simultaneously, i.e., contain p.
Definition 49 (Detection Neighbor): Node Sj is a detection neighbor of Si if the detection
areas of both nodes overlap, i.e., DAi ∩DAj ≠ ∅. DN i is the set of detection neighbors of Si. ◻

Recall that the detection area is indeterminable as well for most detection mechanisms but we
show in Section 5.4.4 how sensor nodes can approximate their set of detection neighbors.
Notation (Detection Neighbor Subsets): We refer to the subset of detection neighbors of
a node Si that are in Z as DNZ

i . Similarly, DNZ
i contains all detection neighbors of Si that are

outside of Z, i.e., in Z. Note that DNZ
i ∩DNZ

i = ∅.
For static zones, every node Si can derive for each detection neighbor Sj ∈ DN i if it is in Z or

not since the query has been disseminated to all nodes previously. In case of dynamic zones, we
develop a light-weight protocol in Section 5.4.4 which allows each node to determine which of its
detection neighbors are inside or outside of the zone. Thus, we assume in the following that Zones
at least contains the information which of its detection neighbors are in Z and which are in Z.

Lemma 5.3. Detections stored at Si is complete regarding the object O and time t if Si detects O
at t and obtains all list elements for Detections regarding O originating from its detection neighbors
DN i.

Proof. We prove this by showing that there cannot exist a node Sj ∉ DN i that detects O at t.
Sj ∉ DN i implies that the detection areas of Si and Sj do not overlap, i.e., DAi ∩DAj = ∅. Thus,
there does not exist a p ∈ Ed where Si and Sj can detect O simultaneously. Hence, Sj cannot
detect O at t. ∎

Lemma 5.3 limits the nodes from which Si must acquire list elements for Detections to the
detection neighbors DN i. By taking into account that Si is either in Z or Z we actually can
compute a correct detection scenario without Detections being complete.
Definition 50 (Semi-Completeness): Detections regarding O and t stored at a node Si ∈ Z
is semi-complete if it contains all list elements [Sj ,O,t1,t2] with t1 ≤ t ≤ t2 where Sj ∈ DNZ

i .
Detections regarding O and t stored at a node Si ∈ Z is semi-complete if it contains all list

elements [Sj ,O,t1,t2] with t1 ≤ t ≤ t2 where Sj ∈ DNZ
i . ◻

114

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

The notion of semi-completeness is important, because it allows for a significant reduction of
the number of nodes which must exchange list elements from Detections to determine a detection
scenario.

Lemma 5.4. Let Si detect O at t. Without loss of generality, let Si ∈ Z. If Detections stored at
Si is semi-complete regarding O and t, the computation of the detection scenario at Si according
to Table 5.1 is correct.

Proof. Since Si detects O, isDetecting (Z, t,O) = T . Thus, only isDetecting (Z, t,O) remains
to be computed by Si. This only requires list elements from nodes in Z as shown in Algorithm 6,
i.e., S∗= Z. ∎

Lemma 5.4 implies that the detection scenario computation is still correct if Detections contains
only list elements from a subset of certain detection neighbors. This reduces the communication,
because this set is empty for most nodes.
Definition 51 (Border Node): Si is a border node if

• Si ∈ Z and DNZ
i ≠ ∅, or

• Si ∈ Z and DNZ
i ≠ ∅. ◻

Figure 5.1: Border Nodes

Figure 5.1 illustrates the concept of border nodes using the deployment and zone partitioning
for zone Z in Figure 3.5: Non-border nodes inside Z are represented by black-colored circles.
Black-colored squares correspond to border nodes inside Z. Similarly, grey-colored squares and

115

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

circles correspond to border and non-border nodes outside of Z, respectively. A significant share
of the nodes in this scenario are non-border nodes. According to Lemma 5.5, non-border nodes
can compute detection scenarios without obtaining elements for Detections originating from any
detection neighbor. This reduces the amount of communication and thus conserves energy.

Lemma 5.5. If a non-border node Si detects O at t and modifies Detections accordingly, Detections
stored at Si is semi-complete.

Proof. Without loss of generality let Si ∈ Z and DNZ
i = ∅, i.e., Si is not a border node. DNZ

i = ∅
implies that there does not exist a node Sj ∈ Z whose detection area overlaps with the detection
area of Si. Thus, simultaneous detection of an object by Si and some Sj ∈ Z is not possible
by definition. Hence, detection of an object O by Si implies isDetecting (Z, t,O) = F and
isDetecting (Z, t,O) = T . ∎

Summing up, non-border nodes do not exchange any elements stored in Detections with detection
neighbors to compute a detection scenario. As illustrated by Figure 5.1, the portion of border nodes
is relatively small compared to the number of non-border nodes.

Depending on the structure of the development P (O,Z) queried, the concept of border nodes
allows for further reduction of communication as shown by Lemma 5.6:

Lemma 5.6. Let P (O,Z) = P1 (O,Z) ▷ P2 (O,Z). Detections and the resulting list elements
stored in Detections originating from non-border nodes are not necessary to process P (O,Z).

Proof. Without loss of generality, assume the non-border node Si detects O at time t1 and derives
a detection scenario DS∗ that yields P1 (O,Z) = T according to Table 3.3. If O fulfills P (O,Z) at
some time t2 > t1, there will be a border node Sj that detects O and computes DS∗. Thus, Sj derives
P1 (O,Z) = T as well and if O fulfills P (O,Z) this must be followed directly by P2 (O,Z) = T .
If no such border node exists, O does not fulfill P (O,Z) and therefore O is irrelevant regarding
the users interest. Hence, the detection of a non-border node is irrelevant for developments like
P (O,Z). ∎

Lemma 5.6 refers to developments constructed using ▷ exclusively. Sensor nodes typically have a
deep-sleep mode [113] which reduces their energy consumption significantly. Recall from Section 2.1
that most sensor nodes support different sleep modes which reduce power consumption by order
of magnitude by switching off unused hardware components. Appendix A provides a comparison
of the energy consumption of Sun SPOTs using different sleep modes. According to Lemma 5.6,
non-border nodes can employ such a deep-sleep mode to conserve energy while developments like
Enter (O,Z) are processed. These non-border nodes only have to wake up occasionally to forward
results to the base station. Next, we propose two strategies which allow a node Si that detects O
to efficiently obtain list elements for Detections originating from detection neighbors to compute
the detection scenario.

116

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

5.4.1 Reactive Strategy

The core idea of the reactive strategy is as follows: At query-dissemination time, each node has
received P (O,Z). Each predicate of the development is related to a detection scenario according
to Table 3.3. For instance, for WSNEnter (O,Z) each node knows that only DSE and DSI are
relevant. When an object O enters or leaves the detection area of Si at time t, Si checks if this
possibly results in a predicate P (O,Z) of P (O,Z) being true. If so, Si requests list elements
for Detections regarding O from some or all of its detection neighbors. Si stores each list element
from the detection neighbors and computes a detection scenario DS∗ after the list elements from all
detection neighbors have arrived. If DS∗ yields P (O,Z) = T for any P (O,Z), Si notifies the base
station. A core question is: ”When Si detects O, which detection neighbors could have elements
stored in their Detections-list that are relevant to compute the detection scenario?” The answer to
this question depends on three aspects whenever a node Si detects or stops detecting an object O:

• The predicates P (O,Z) that form P (O,Z).
• Whether Si ∈ Z or Si ∈ Z.
• Whether O has entered or left the detection area DAi.

Figure 5.2: Detection events when O
moves into Z (S1 ∈ Z, S2 ∈ Z)

Figure 5.3: Detection events when O
leaves Z (S3 ∈ Z, S4 ∈ Z)

Table 5.2 summarizes from which detection neighbors Si has to request list elements for Detec-
tions from to check if a given detection scenario has occurred when Si detects O. In the following,
we explain these cells, using Figures 5.2 and 5.3 as an illustration. Figure 5.2 shows two nodes S1
and S2, their respective detection areas and the trajectory of an object O. S2 is in Z and S1 is
not in Z, i.e., S1 ∈ Z. The trajectory of O shows that the object moves into Z and the instants
of time where O either enters or leaves a detection area are marked ti with 1 ≤ i ≤ 4. Similarly,
Figure 5.3 shows an object that leaves Z. To ease presentation, we use nodes S3 and S4 as well as
time instants marked ti with 5 ≤ i ≤ 8 to discuss this case.

The first row of Table 5.2 is related to DSI , i.e., P (O,Z) contains Inside (O,Z). There are two
cases that can lead to DSI :

(1) An object enters the detection area DAi of a node Si ∈ Z.

117

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

(2) An object leaves DAj of Sj ∈ Z.
For all other detection events, no communication is required, as reflected by the ’∅’ entries.

Reactive Si ∈ Z Si ∈ Z

DSI Entry DNZ
i ∅

Exit ∅ DN i

DSB Entry DNZ
i DNZ

i

Exit ∅ ∅

DSE Entry ∅ DNZ
i

Exit DN i ∅

Table 5.2: Detection-neighbor partitions for the reactive strategy

Case (1) occurs at t2 in Figure 5.2 and t5 in Figure 5.3. Applying Lemma 5.4, S2 only requires
list elements for Detections from its detection neighbors outside of Z, i.e., DNZ

2 , to compute the
detection scenario at t2. The corresponding DNZ

i entry in Table 5.2 reflects this. At t2, S1 ∈ DNZ
2

returns a list element [S1,O,t1,Ø]. From this, S2 can derive that S1 and S2 detect O simultaneously,
i.e., DSI did not occur. Contrary to this, S3 derives DSI for O for t5 because its only detection
neighbor S4 does not detect O at this time.

Case (2) is different, because objects leave DAij of Sj ∈ Z, i.e., Sj does not detect the object
any more and thus cannot apply Lemma 5.4. Hence, Detections stored at Sj has to be complete,
i.e., Sj must request tuples from all detection neighbors. This is reflected by the DN i entry in the
first row of Table 5.2. This case occurs at t3 in Figure 5.2 and t8 in Figure 5.3. In both cases, the
node outside of Z must verify that no other node outside of Z still detects the object, and that
there is at least one node in Z detecting it. Hence, DSI occurs at t3 but not at t8.

The second row of Table 5.2 is related to DSB, i.e., Meet (O,Z) is part of P (O,Z). DSB requires
simultaneous detection of O by nodes inside and outside of the zone Z. Thus, when an object leaves
a detection area, DSB either already has occurred or does not occur at all, i.e., no communication
is required. Contrary to that, objects entering a detection area can result in DSB. This allows
applying Lemma 5.4. Thus, if Si ∈ Z, only tuples from DNZ

i are required and vice versa.
The entries in Table 5.2 for DSE , i.e., P (O,Z) contains Disjoint (O,Z), are derived analogously

to those for DSI : An object detection can conform to DSE the moment it enters the detection area
of a node outside of Z or by leaving the detection area of a node in Z. The first case occurs
for S1 at t1. Thus, S1 requests list elements from S2 at t1 to ensure that S2 does not detect O
simultaneously. In this case, S2 indicates that it does not detect O at t1 and thus DSE occurs
which yields Disjoint (O,Z) = T . Similarly, S3 ∈ Z has to request list elements from all detection
neighbors at t7, because Lemma 5.4 is inapplicable. This is because S3 does not detect O anymore.
In this case, DSE occurs because S4 ∈ DNZ

3 detects O.

118

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Algorithm 8: Reactive Strategy
1 When O enters or leaves the detection area of Si do
2 Modify Detections as described in Section 5.2;
3 DN ∗i← Set of detection neighbors that must be queried according to Table 5.2 ;
4 Request list elements regarding O from every node in DN ∗i ;
5 Wait for response from every node in DN ∗i ;
6 Determine detection scenario DS∗ according to Table 5.1;
7 Notify base station if DS∗ yields P (O,Z) = T for any P (O,Z) in P (O,Z);
8 end

Algorithm 8 summarizes the reactive strategy. When O enters or leaves the detection area of Si

at t, Si modifies Detections accordingly. Afterwards, Si requests tuples on O from a set DN ∗i of
detection neighbors. Each response from a detection neighbor is inserted into Detections stored at
Si. We address node failures, i.e., cases where nodes in DN ∗i fail to respond to the request sent by
Si in Section 5.4.5.

After all detection neighbors have responded, Si determines the detection scenario DS∗. The base
station is notified if DS∗ yields P (O,Z) = T for any P (O,Z) in P (O,Z). This is necessary, because
for example with Enter (O,Z), an arbitrary node that determines Inside (O,Z) for some object O
cannot determine if O has conformed to Disjoint (O,Z) or Meet (O,Z) previously. Since objects
may enter and leave the detection area of a node Si repeatedly, this can result in sending multiple
notifications regarding the same object and predicate to the base station. It depends on the query,
if such a notification is redundant or required for query processing: For P (O,Z) = Enter (O,Z),
multiple notifications on a single predicate are obviously redundant because every predicate occurs
once in Enter (O,Z). Contrary to that, developments like Touch (O,Z) possibly require multiple
notifications regarding a single predicate, e.g., Disjoint (O,Z), and these may originate from the
same node:

Touch (O,Z) = Disjoint (O,Z)▷Meet (O,Z)▷Disjoint (O,Z) (5.2)

Section 5.4.6 addresses this problem.

5.4.2 Proactive Strategy

As illustrated in Algorithm 8, the reactive strategy requires communication for requesting tuples
and for responding to these requests. The proactive strategy tries to avoid responses. Algorithm 9
outlines the proactive strategy, and the core idea is as follows: When O enters or leaves the detection
area of Si at t, Si modifies the Detections-list it stores. This modification is either an insertion or an
update of a list element in Detections. In case of an insertion, Si adds an element E = [Si, O, t, Ø]
with Detections.add (E). An update indicates that O left DAi, i.e., some element [Si, O, t1, Ø]
is changed to [Si, O, t1, t2] (cf. Section 5.2). Afterwards, Si immediately sends the modified list

119

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

element to a subset DN ∗i of its detection neighbors. Each detection neighbor Sj ∈ DN ∗i stores the
modified tuple. This ensures that Detections stored at Si and each Sj is semi-complete as long as
either node detects O. According to Lemma 5.4, Si and any Sj ∈ DN ∗i that currently detects O
can compute the detection scenario correctly.

Algorithm 9: Proactive Strategy
1 When O enters/leaves detection area of Si do
2 Modify Detections as described in Section 5.2;
3 DN ∗i← Detection neighbors determined according to Table 5.3;
4 Send updated tuple(s) to every node in DN ∗i ;
5 if O entered the detection area of Si then
6 Goto Line 12;
7 end
8 end
9 When Si receives updated tuples about O from a detection neighbor Sj do

10 Insert updated tuples into Detections;
11 if O left the detection area of Sj and Si detects O then
12 Wait a timeout tdelay;
13 Determine detection scenario DS∗ according to Table 5.1;
14 Notify base station if DS∗ yields P (O,Z) = T for any P (O,Z) in P (O,Z);
15 end
16 end

Algorithm 9 consists of two parts: The first part is only executed by the node Si whose detection
area is either entered or left by O. First, Si must modify the locally stored version of Detections.
Second, if Si ∈ Z, the detection neighbors outside of Z, i.e., DNZ

i , must be informed about this
change. Last, Si must compute a detection scenario if O entered DAi. Before Si can do so it has
to wait tdelay to ensure that nodes whose detection areas were entered simultaneously get time to
report their updates. For our reference implementation this delay was 10 seconds. If the object
left DAi, Detections stored at Si is not semi-complete anymore.

The second part starting at Line 9 is executed by by nodes receiving the update from the node
whose detection area was either entered or left by O. As expected, each node must update the
locally stored list Detections. Next, the node that received the update must determine if it has
to compute a detection scenario: If the update indicates that O entered a detection area, the
node does not have to trigger the computation of a detection scenario, because the node who sent
the update will compute it. If O left the detection area, the node receiving the update can only
compute a new detection scenario if the node itself detects O.

As with the reactive strategy, when an object enters and leaves the detection area of a single
node more than once, multiple notifications are sent to the base station. Section 5.4.6 shows how

120

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

to reduce communication related to redundant notifications sent from arbitrary nodes to the base
station.

Again, the important step is determining the set DN ∗i in Line 3 since it determines the number
of messages. Analogously to the reactive strategy, Table 5.3 lists which detection neighbors must
receive an update to ensure semi-completeness, for each detection scenario. Similarly to the reactive
strategy, we explain each cell using the trajectories in Figures 5.2 and 5.3 as examples.

Proactive Si ∈ Z Si ∈ Z

DSI Entry ∅ DNZ
i i

Exit ∅ DNZ
i i

DSB Entry DNZ
i i DNZ

i i
Exit DNZ

i i DNZ
i i

DSE Entry DNZ
i i ∅

Exit DNZ
i i ∅

Table 5.3: Detection-neighbor partitions for the proactive strategy

Recall that DSI can either occur (1) when an object enters the detection area of a node inside
the zone or (2) when the detection area of a node outside of the zone is left. An object detection
conforming to DSI requires at least one node Si ∈ Z to detect the object. If such a detection occurs,
Si must determine if there exists a simultaneous detection by another node Sj ∈ Z. Case (1) occurs
at t2 in Figure 5.2 and at t5 in Figure 5.3. To compute the detection scenario correctly at t2, S2
must know that S1 ∈ Z currently detects O. Case (2) occurs when O leaves the detection area of
S1 at t3. In this case, the information at S2 is updated, and S1 then correctly determines DSI for O.
Regarding O in Figure 5.3, S3 computes DSI at t5, because there do not exist any relevant detections
by any Si ∈ Z. Summing up, if the query requires DSI , nodes outside of the zone must send updates
to their detection neighbors inside the zone whenever objects enter/leave their detection areas.
DSB requires simultaneous detection by nodes in Z as well as Z. Thus, every Si ∈ Z must be

informed about detections of detection neighbors in Z and vice versa. The entries in the row
corresponding to DSB in Table 5.3 reflect this.

5.4.3 ZIP – Zone Information Protocol

So far, we assumed that the entries in Zones are available and that nodes are able to partition
their detection neighbors into DNZ

i and DNZ
i . As illustrated in Table 3.1, for static regions this

assumption is valid by definition, because CZ resembles a list of node identifiers that are in Z.
After receiving CZ at time t, every node Si inserts an element [Sj ,t,Ø] into Zones stored at Si

for every Sj in CZ . Based on this information, Si determines DNZ
i and DNZ

i by iterating once

121

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

through Zones, i.e., detection neighbors that have no corresponding entry in Zones are in DNZ
i .

Neither Zones nor DNZ
i and DNZ

i needs to be updated at any time afterwards, because the zone
is static.

With dynamic zones, this is different because nodes may join or leave Z at any time. To ensure
that spatio-temporal query processing derives correct results after a node Si joins or leaves Z the
following steps must be completed:

1. Si must notify all of its detection neighbors DN i that it joined or left Z at time t ∈ T.
2. If Si detects an object O while joining/leaving Z, Si must compute a new detection scenario

for O. This requires collecting information on O from detection neighbors that were irrelevant
for detection-scenario computation previously.

The reasoning behind the second step is illustrated by Example 13:

Figure 5.4: Sensor network before S2 leaves
the zone Z (S2,S3 ∈ Z)

Figure 5.5: Sensor network after S2 left the
zone Z (S3 ∈ Z)

Example 13: Figure 5.4 shows three detection neighbors S1, S2 and S3 and a vehicle V1 at
some time ti. At this time, S2 and S3 are in a dynamic zone Z. The vehicle V1 is detected by S1
and S2, but not by S3. Thus, V1 is detected with DSB. At ti+1, S2 determines that CZ (S2) = F ,
i.e., S2 leaves Z at ti+1, as illustrated by Figure 5.5. This change also affects the detection scenario
of V1 even if it has not moved at all because it is detected exclusively by nodes outside of Z at ti+1,
i.e., DSE occurs which yields Disjoint (O,Z) = T . ◆

A straightforward approach to accomplish both steps would be sending the notification first,
sending the list of objects detected by Si next and then sending all Detections-lists stored at
detection neighbors of Si back to Si. In the following, we show that this is inefficient and provide a
better approach that exploits the characteristics of the data collection strategies described above.
The Zone Information Protocol ensures semi-completeness after Si joins/leaves Z while reducing
communication and thus reducing energy consumption. To ease the presentation, we present ZIP
in three algorithms that represent the three phases of ZIP:

P.1 Notify all detection neighbors DN i of the node Si that joined/left Z.

122

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

P.2 Collect object-detection information from detection neighbors of Si to ensure semi-
completeness for correct detection scenario computation.

P.3 Recompute the detection scenario for every object detected while Si joined/left Z.

Algorithm 10: P.1 of ZIP – Notifying detection neighbors
1 When Si joins or leaves Z at ti do
2 List L ← ∅
3 for all elements E in Detections where E.NodeID = Si and E.tO

exit = Ø do
4 L.add (E)
5 end
6 Send notification containing L to every Sj ∈ DN i

7 DN ∗i ← Set of detection neighbors from which responses to the notification are expected
8 Wait until all nodes in DN ∗i have responded and continue in Algorithm 12
9 end

Phase P.1 of ZIP is illustrated in Algorithm 10 After Si joins or leaves Z, it generates a list L of all
objects that are currently in the detection area DAi. This list is attached to the notification that
Si either left or joined Z. Si sends this notification to all Sj ∈ DN i, i.e., all detection neighbors of
Si.

In Line 7, Si computes a set DN ∗i of detection neighbors from which it expects a response
regarding the notification it just sent. The core idea to compute DN ∗i at this point is as follows:
According to Lemma 5.4, it is sufficient for correct detection scenario computation of a node Si ∈ Z
that detects O at t requests list elements from DNZ

i and vice versa. This is applicable to detection-
scenario computation for the time t when Si joined or left Z as well. Thus, if Si ∈ Z after t, i.e.,
after Si joined Z, all nodes Sj ∈ DNZ

i must respond by sending a list of all objects detected at t.
Analogously, if Si left Z at t, i.e., Si ∈ Z at t, all nodes Sj ∈ DNZ

i must inform Si about objects
they detected at t. Example 14 illustrates this idea.
Example 14: Continuing Example 13, S2 left Z, i.e., S2 ∈ Z at ti+1. To determine the detection
scenario for ti+1, S2 requires list elements from DNZ

2 . Thus, S2 only expects a response from DNZ
2 ,

i.e., S3, but not from DNZ
2 = {S1}. ◆

Note that any detection neighbor Sj can determine if it must reply to the notification sent
by Si by using the same idea: If Si ∈ Z and Sj ∈ Z or if Si ∈ Z and Sj ∈ Z, the recipient of
the notification must send a response to Si that contains all objects currently detected by Sj .
Algorithm 11 illustrates this. As shown in Algorithm 12, every response that the node which
joined or left Z receives, results in new elements in Detections stored at Si. After all responses
have arrived, i.e., Si received replies from all nodes in DN ∗i computed in Line 7 of Algorithm 10, the
computation of detection scenarios as described in Section 5.2 starts. With this we conclude our
discussion regarding distributed processing of spatio-temporal queries in the context of dynamic

123

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

Algorithm 11: P.2 of ZIP – Responding to Notifications
1 When Sj receives notification that Si joined/left Z at ti do
2 Modify the element corresponding to Si in Zones (cf. Section 5.2)
3 if (Si ∈ Z and Sj ∈ Z) or (Si ∈ Z and Sj ∈ Z) then
4 List LSj ← ∅
5 for all elements E in Detections where E.NodeID = Sj and E.tO

exit = Ø do
6 LSj .add (E)
7 end
8 Send LSj to Si;
9 end

10 end

Algorithm 12: P.3 of ZIP – Recomputing detection scenarios
1 When Si receives response regarding zone change at ti from Sj do
2 Insert all elements from LSj into Detections stored at Si

3 end
4 When Si has received responses from all nodes in S∗ computed in Algorithm 10 do
5 for Objects O detected by Si at ti do
6 Determine detection scenario DS∗ according to Table 5.1
7 Notify base station if DS∗ yields P (O,Z) = T for any P (O,Z) in P (O,Z)
8 end
9 end

zones. The evaluation shows that ZIP reduces communication significantly compared to sending
all list elements to the base station.

5.4.4 Detection Neighbor Approximation

As stated in Section 3.1, there exist detection mechanisms where the detection area is indeter-
minable. In this case, nodes cannot determine their detection neighbors. To solve this problem, we
use a superset D̃N i which contains at least all detection neighbors DN i, i.e., DN i ⊆ D̃N i. Using
D̃N i instead of DN i obviously still yields a correct result, because those nodes in D̃N i that are
not detection neighbors of Si cannot detect an object simultaneously. Several approaches to derive
such a superset are conceivable, and we outline two of them:

Communication Neighbors: If the communication range can be assumed to be much larger than
the maximum detection range, a valid superset is CN i (cf. Definition 20), i.e., D̃N i = CN i.

124

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

In this case, all detection neighbors are communication neighbors as well. This approach is
applicable to most detection mechanisms used in WSN, and we use it for our evaluation.

Node Positions: Another approach is applicable if nodes know their position: The set D̃N i

contains all nodes with a distance of at most 2 ⋅Dmax to Si.
The evaluation in Section 5.5 uses the approximation D̃N i = CN i and investigates the associated
overhead. More sophisticated approaches to determine detection neighbors are a subject for future
work as we discuss in Section 6.2.4.

5.4.5 Failure Handling

When a node fails, there are two possible consequences:
1. An object O that would have been detected is not detected.
2. Some nodes detect O, but the detection-scenario computation is possibly incorrect because it

is based on an incomplete list Detections.
We have shown how users can express queries if they are interested in objects that are temporarily
unobserved in Section 3.4.1. Therefore we focus on (2), i.e., we notify the user if query results
returned could be incorrect due to node failures. We discuss the detection of failures first and
continue with failure handling.

Failure Detection

It depends on the strategy used for data collection how failures are detected. A node Si using the
reactive strategy requests tuples from its detection neighbors DN ∗i and expects a response from
each of them. If no such response has been received after a timeout, Si derives that the detection
neighbors whose responses are missing have failed.

The drawback of the proactive strategy is that nodes cannot detect failures of detection neigh-
bors using missing responses. Without further measures, a failed node might not send updates to
detection neighbors and thus affect query results. A practical approach to solve this is sending bea-
con messages periodically to detection neighbors. If beacon messages are missing from a detection
neighbor, nodes will assume a failure. Our evaluation includes the additional messages induced by
this. Note that this problem also occurs with the centralized strategy, i.e., additional messages are
required to detect node failures if the centralized strategy is used.

Failure Handling

The user must be notified of a node failure if it could have an impact on the query result, i.e., if
the computation of the detection scenario is incorrect. In the following, we refer to the node whose
failure has been detected as Sf . When Si detects the failure of Sf ∈ DN i and computes a detection
scenario later, the result is possibly incorrect. We denote the detection scenario computed based
on an incomplete relation Detections with DSerr.

125

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

Lemma 5.7. If DSerr = DSB, the failure of Sf did not affect the computation of the detection
scenario.

Proof. According to Table 5.1, DSB occurs if there exists at least one node in Z and one node
from Z that detect the object. This is independent from the potential detection of Sf and thus
the detection scenario computation is not affected by the failure of Sf . ∎

Lemma 5.8. If DSerr = DSI and Sf ∈ Z or DSerr = DSE and Sf ∈ Z, the failure of Sf did not affect
the computation of the detection scenario.

Proof. We prove this only for the case of DSerr = DSI . The reasoning for DSerr = DSE is analogous.
DSerr = DSI implies that there exists a node Sj ∈ Z that currently detects O. Since Sf ∈ Z,
an additional tuple originating from Sf would not change the result of the detection scenario
computation. Hence, the failure of Sf cannot affect the result. ∎

Summing up, the base station must be notified of node failures in the following two cases:

• DSerr = DSI , and Sf ∈ Z
• DSerr = DSE , and Sf ∈ Z

This notification is a message that contains DSerr, the identifier of the object detected and an
identifier of Sf .

5.4.6 Distributed Notification Filtering

According to Algorithms 8, 9 and 12, nodes that compute a detection scenario DS∗ which yields
P (O,Z) = T for any predicate P (O,Z) in the query P (O,Z) send a notification to the base
station. Each of these notifications consists of an object identifier ObjectID and the predicate
P (O,Z).

On the one hand, these notifications are necessary to determine if the trajectory of O conforms to
the predicates in the order defined by P (O,Z). On the other hand, objects could move repeatedly
in and out of the same detection area. This would generate an arbitrary number of redundant
notifications. We call a notification redundant, if the notification is related to a predicate P (O,Z)
of P (O,Z) for which another notification has been sent to the base station previously. Preventing
these redundant notifications completely is problematic, because it would require coordination
among many nodes of the sensor network which would require more communication than sending
the redundant notifications. This problem is illustrated by Example 15.
Example 15: The sensor network in Figure 5.6 consists of 29 sensor nodes deployed as a grid
and a base station BS. Of these 29 nodes, there are four, specifically S22, S23, S28 and S29, that
form a static zone Z. The solid, black edges between nodes indicate that the connected nodes are
communication neighbors (cf. Definition 20). Assuming the user is interested in WSNEnter (O,Z),
the base station must be notified if Inside (O,Z) or Disjoint (O,Z) occurs.

126

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

BS S1 S2 S3 S4 S5

S6 S7 S8 S9 S10 S11

S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23

S24 S25 S26 S27 S28 S29

Object O

Disjoint (O,Z)-
Notification
Inside (O,Z)-
Notification

t1t1t1t1

t1

t1

t1

t2t2t2t2

t2

t2

t3

t3

t3
t3t3t3t3

t4
t4

t4

t4

t4t4t4t4

Figure 5.6: Example for redundant notifications

The blue line represents the trajectory of the object O and S27 is the first to detect O at t1.
Assuming the detection-scenario computation at S27 results in DSE , S27 must send a notification
regarding Disjoint (O,Z) = T to the base station via 7 hops (solid, red lines). Next, S21 detects
O and resulting in another notification regarding Disjoint (O,Z) = T at t2 via 6 hops (red, dotted
lines). Obviously, this notification is redundant, because S27 has previously sent the same notifica-
tion at t1. To prevent this and future notifications about Disjoint (O,Z), S27 would have to inform
all other nodes where Disjoint (O,Z) = T could occur, i.e., all nodes outside of Z, that further
notifications regarding Disjoint (O,Z) = T are redundant. There are 29 − 4 = 25 such nodes in Z,
i.e., the communication required to send this notification is much larger than just forwarding the
notification. Note that informing 25 nodes does not equate 25 hops, but a much larger number of
hops, because S27 cannot communicate with all of these nodes directly. This would change, if O
would ”visit” a sufficient number of nodes outside of Z resulting in a higher number of notifications.

At t3, S22 detects O which results in DSI and yields Inside (O,Z) = T . This requires a notification
to the base station which travels 7 hops. The following notification at t4 is redundant, because the
base station was notified about Inside (O,Z) = T previously. In this case, all nodes in Z would
have to be informed after t3 that Inside (O,Z) is not of interest anymore. Thus, informing these
four nodes would pay off because it saves 8 hops for transmitting the second, redundant notification
at t4 (green, dotted line). This must be attributed to the small number of nodes inside Z, i.e., with
a larger zone it would not pay off.

Summing up, even with the small example in Figure 5.6, informing other nodes to prevent

127

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

redundant notifications is communication intensive and only pays of if the number of nodes which
must be informed is very small. ◆

Note that the problem above is mainly relevant for queries with relaxed concatenation ▷̃ , because
according to Lemma 5.6, only border nodes are active for queries with ▷. Thus, in the following,
we focus on queries constructed using ▷̃ .

We conducted an in-depth performance study for networks with 100-400 nodes where redundant
notifications are prevented completely. As illustrated by Example 15, preventing the redundant no-
tifications is problematic, because in most cases the communication required for this coordination
is larger then sending redundant notifications. Omitting the details, in general, these approaches
only pay off in two cases: The first case occurs if the zone is very small, i.e., consists of few nodes,
P (O,Z) does not contain Disjoint (O,Z) and the objects move in repeating patterns through the
same detection areas. This case is illustrated in Example 15. The second case is just the opposite,
i.e., the zone almost covers the whole sensor network, P (O,Z) does not contain Inside (O,Z)
and objects move repeatedly through the same detection areas. Therefore, we provide a filter-
ing approach that does not require any coordination among sensor nodes, but filters redundant
notifications.

The core idea to filter notifications on the way between sensor nodes and the base station is
illustrated in Figure 5.7: A sensor network can be viewed as a tree where the root is the base
station and edges represent links to the base station over which notifications are forwarded. To
filter out redundant notifications, each node Si keeps a list of previously forwarded notifications.
Whenever a notification must be forwarded by Si, this list is used to check if forwarding the
notification is redundant. The notification is suppressed in this case. The actual route that a
notification travels to reach the base station is determined by the routing protocol that is in use
(cf. Section 2.1.2). As previously stated, choosing the route is complicated and the networking
community has developed several promising routing protocols that solve this problem. We do not
interfere with the routing decisions of these protocols and just use the approach outlined above to
stop messages from being routed/forwarded at all.

When a node Si receives a query, Si generates a list ForwardedPredicates which represents the
query P (O,Z) and associates each predicate P (O,Z) with a list of object identifiers for which
notifications regarding P (O,Z) have been forwarded previously by Si. Thus, every element in
ForwardedPredicates has the following two attributes:
P (O,Z): The predicate P (O,Z) from P (O,Z) this list entry corresponds to.
ForwardedObjID: A list of object identifiers. The node Si storing ForwardedPredicates adds an

object identifier ObjectID to this list, when it forwards a notification regarding P (O,Z) = T
for an object identified by ObjectID towards the base station.

Algorithm 13 describes the initialization of ForwardedPredicates. It is important in the following
that the order of the elements in ForwardedPredicates equals the order of the predicate in P (O,Z).

As shown in Algorithm 14, whenever the node Si receives a notification regarding an object
O and a predicate P (O,Z) travelling towards the base station, it checks ForwardedPredicates to

128

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

S1 S2 S3 S4 S5 . . . S6 S7 S8

S9 S10 S11

S12

BS

Base Station

. . .

. . .

Object O

t1

t2

t3 t4 t5 t6

t7

t1 t4

t1

t6

t7

Disjoint (O,Z)-
Notification
Meet (O,Z)-
Notification

Figure 5.7: Illustration of the filter layer with a zone Z = {S7,S8}

Algorithm 13: Initialization of ForwardedPredicates
1 When Si receives a query with P (O,Z) for the first time do
2 for each P (O,Z) in P (O,Z) do
3 ForwardedPredicates← ∅
4 Generate new list element E with E.P (O,Z) = P (O,Z) and E.ForwardedObjID = ∅
5 Add E to the end of ForwardedPredicates
6 end
7 end

determine, if forwarding this notification would be redundant. If the notification is not redundant,
it is forwarded (Line 5). The notification is redundant, if there exists an entry in ForwardedPredica-
tes related to P (O,Z) where the identifier of O is not in ForwardedObjID. After the notification
has been forwarded, the node must check if it can ensure that future notifications regarding O and
P (O,Z) are redundant. For developments that contain each predicate at most once, this is simple,
i.e., when P (O,Z) occurs once, every subsequent forwarding is redundant. Example 16 illustrates
this.
Example 16: Considering the routing tree displayed in Figure 5.7, i.e., every edge represents
a route from a Si to the base station chosen by the routing layer. The trajectory of the object
O results in detections of O by nodes S1-S8. The zone Z contains S7 and S8 and the user is
interested in P (O,Z) = Disjoint (O,Z) ▷̃Meet (O,Z). At first, S1 detects O and notifies the
base station of Disjoint (O,Z) = T by sending a notification message via S9 and S12. Next, S2
detects O and sends another – in this case redundant – notification to S9. Due to the fact that

129

5.4. DISTRIBUTED OBJECT-INFORMATION COLLECTION

Algorithm 14: Filtering redundant notifications
1 When Si generated or received a notification regarding O and a predicate P (O,Z) do
2 for every element E in ForwardedPredicates (from first to last element) do
3 if E.P (O,Z) equals P (O,Z) then
4 if E.ForwardedObjID does not contain the identifier of O then
5 Forward notification using the routing layer
6 if object identifier of O is contained in every ForwardedObjID list before E then
7 E.ForwardedObjID.add (O)
8 end
9 Exit // Element found; notification has been forwarded

10 end
11 end
12 end
13 end

S9 has already forwarded a notification related to Disjoint (O,Z) and O it can derive that this
notification is redundant. Similarly, S9 suppresses the notification of S3. Using the same reasoning,
S12 suppresses the notifications by S4 and S5. Note that there may be an arbitrary number of hops
between the base station BS and S12. ◆

For developments which contain at least one predicate more than once, e.g., Touch (O,Z) (cf.
Equation (5.2)), suppressing notifications is not as simple: Assuming P (O,Z) occurs twice in
P (O,Z), Si can only ensure that subsequent notifications of P (O,Z) are redundant if Si already
forwarded notifications for all predicates that must occur before P (O,Z), i.e., the first instance of
P (O,Z) as well. Example 17 illustrates this.
Example 17: Assuming P (O,Z) = Disjoint (O,Z) ▷̃Meet (O,Z) ▷̃Disjoint (O,Z) and a
node Si receives a notification which indicates that an object O conformed to Disjoint (O,Z). If
such a notification Disjoint (O,Z) arrives for the first time, the node has to forward it anyways.
When the same notification arrives for the second time, e.g., because O repeatedly moves in and
out of the detection area of a single node, Si cannot rule out that Meet (O,Z) has occurred in the
meantime. Thus, Si must forward notifications regarding Disjoint (O,Z) until it has forwarded a
notification for Meet (O,Z). ◆

This filtering approach has an important property that might not be obvious: The probability
that a node suppresses a notification increases as the distance to the base station decreases (in
terms of hops). This is useful, because nodes that connect the base station to the sensor network
are typically the nodes that are burdened the most with forwarding messages to and from the base
station. If one of these nodes fails because its batteries are depleted, the base station loses one of
its connections to the network and a whole part of the network might not be connected to the base

130

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

station anymore. Contrary to this, nodes that are far away from the base station rarely forward
messages and thus do not spend so much energy. Thus, the aforementioned approach protects the
most important nodes of the sensor network.

5.5 Evaluation

We have evaluated our approach thoroughly using simulations and Sun SPOT deployments to
investigate the following hypotheses:

H.1 Both distributed strategies scale better with the number of nodes and the number of detections
than the centralized strategy.

H.2 The proactive strategy is the most energy-efficient for Inside (O,Z) and Disjoint (O,Z).
H.3 The reactive strategy is the most energy-efficient for Meet (O,Z).
H.4 The centralized strategy is energy-efficient for small networks and nodes around the base

station.
H.5 Distributed strategies reduce communication required for processing spatio-temporal develop-

ments like Enter (O,Z) or WSNEnter (O,Z).

We present the evaluation setup for static and dynamic zones separately in the following. To
run exactly the same software for simulations and the Sun SPOT deployments, we used the KSN
Simulator (cf. Appendix C).

5.5.1 Static Zones – Evaluation

Each simulation run consists of the following steps:

1. Generate a WSN of 100-300 nodes that are randomly deployed over an area. The size of the
area is constant to account for different node densities, i.e., varying numbers of detection and
communication neighbors.

2. Define a zone of varying size. Zones contain between 2 and 30 nodes.
3. Generate 50 different object paths using a random walk model with starting points randomly

chosen.
4. For each object path evaluate each detection scenario using each strategy.
5. Count the number of messages sent and received.

Overall, the results presented here are based on more than 100.000 simulation runs.
Since detection areas tend to be indeterminable, we have approximated the set of detection

neighbors with the set of communication neighbors: To do so, a node sends a beacon message
periodically. Each node receiving it adds the sender to the list of detection neighbors. We graph the
communication required for these beacons for distributed strategies separately. For the proactive
approach, these periodic beacon messages would allow the detection of failures and notification of
the base station as well.

131

5.5. EVALUATION

Simulation Results

Figure 5.8 shows the average number of messages per simulation run for WSN of 100-300 nodes
to compute DSI . Graphs for other detection scenarios are similar and omitted here. As expected,
the number of messages required by the centralized strategy increases linearly with network size.
Contrary to this, network size only affects both distributed strategies marginally. The reason
for this is the increasing node density, i.e., more detection neighbors per node. Even the added
overhead for the approximation of detection neighbors does not change this. The large share
of communication related to detection-neighbor approximation suggests that more sophisticated
mechanisms for this could reduce energy-consumption even further. Thus, we conclude that H.1
is true. Detection-neighbor approximation should be investigated in future work.

 0

 20000

 40000

 60000

 80000

C
e

n
tra

liz
e

d
P

ro
a

c
tiv

e
R

e
a

c
tiv

e

C
e

n
tra

liz
e

d
P

ro
a

c
tiv

e
R

e
a

c
tiv

e

C
e

n
tra

liz
e

d
P

ro
a

c
tiv

e
R

e
a

c
tiv

e

C
e

n
tra

liz
e

d
P

ro
a

c
tiv

e
R

e
a

c
tiv

e

C
e

n
tra

liz
e

d
P

ro
a

c
tiv

e
R

e
a

c
tiv

e

A
v
g

.
N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s

Number of Nodes

Messages for neighbor detection
Messages for predicate evaluation

300250200150100

Figure 5.8: Scalability of data-collection
strategies

 0

 20

 40

 60

 80

 100

C
entralized

P
roactive

R
eactive

C
entralized

P
roactive

R
eactive

C
entralized

P
roactive

R
eactiveA

vg
. N

um
be

r
of

 M
es

sa
ge

s

DS
B

DS
O

DS
I

Figure 5.9: Communication per detection-
scenario

Figure 5.9 shows the average number of messages per detection-scenario computation. Since the
centralized strategy sends all tuples to the base station and computes the detection scenario there,
the average number of messages is constant. The result is that distributed strategies require between
45%−85% less messages than the centralized strategy. Comparing both distributed strategies shows
that the proactive strategy is advantageous for DSI and DSE . This is expected, because S∗ is smaller
for the proactive strategy when objects leave the detection area of a node (cf. Tables 5.2 and 5.3).
These roles are reversed for DSB, because the proactive strategy is triggered more often than the
reactive one. Summing up, these results confirm H.2 and H.3.

The distributed strategies reduce communication to process spatio-temporal developments as
well. Table 5.4 shows the average number of messages to determine that O conforms to Enter (O,Z)
or WSNEnter (O,Z) (cf. (3.22) and (3.27)), respectively. As expected, the centralized strategy re-
quires at least twice as much communication since every detection event must be forwarded to
the base station. For WSNEnter (O,Z), the proactive strategy is most efficient. This is be-
cause this development does not contain Meet (O,Z). The difference between Enter (O,Z) and

132

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Strategy Number of Messages per Object for
Enter (O,Z) WSNEnter (O,Z)

centralized 334 334
proactive 44,3 123,8
reactive 39,1 163,1

Table 5.4: Avg. number of messages for Enter (O,Z) and WSNEnter (O,Z)

WSNEnter (O,Z) must be attributed to Lemma 5.6 because all non-border nodes are basically in-
active for Enter (O,Z). Compared to the centralized strategy the savings of distributed strategies
are between 51% and 89%. This confirms H.5.

Sun SPOT Case Study

Since simulations always abstract from certain real-world phenomena and these may impact perfor-
mance, e.g., interferences or collisions, we conducted a case study using real sensor nodes. For our
case study, we used two Sun SPOT deployments: The first deployment used 26 Sun SPOTs and a
base station deployed on our office floors as shown in Figure 5.10. The second deployment used 50
nodes deployed outside of the computer science building of the Karlsruhe Institute of Technology.
We discuss both deployments in the following separately.

Indoor deployment As shown in Figure 5.10, we deployed 26 Sun SPOT sensor nodes on the
floors of the Institute of Program Structures and Data Organization. Blue dots indicate a node
outside of the zone Z, and a red dot corresponds to a node inside Z. The object moved on the
path indicated in black and the base station is represented by the black square on the right-hand
side of the figure. For this setup, we only evaluated a single predicate Inside (O,Z).

Figure 5.10: Case Study: Sun SPOT positions and object path

In analogy to the simulations, we assumed that nodes cannot determine their detection areas
by themselves. Thus, a node periodically sent beacons to approximate the set of its detection

133

5.5. EVALUATION

neighbors, i.e., DN i = CN i.

Strategy Number of Messages
Collect Result Forward. Total

centralized 137 0 137
proactive 115 42 157
reactive 145 33 178

Table 5.5: Case study results

Table 5.5 shows the result of the case study: The rightmost column contains the total number
of messages sent, i.e., the sum of the two columns in the middle which reflect messages for data
collection (left) and result forwarding (right). Since the centralized strategy computes all results
at the base station, the number of messages sent to forward the result is 0. A simulation that
replicated the node setup and object movement of the case study had the same results. This is
important, because it indicates that real-world phenomena from which simulations have abstracted
would not significantly change the previous findings based on simulations.

The centralized strategy required 137 messages, the distributed approaches 20 respectively 41
more. The result is expected due to the relatively small network: Messages required 5 hops at most
to reach the base station, i.e., communicating with detection neighbors required more messages than
computing detection scenarios at the base station. Considering the simulation results and the result
of the case study, we conclude that H.4 is true.

Further analysis shows that the approximation DN i = CN i has resulted in an over assessment:
Prior to the experiment, we determined the number of detection neighbors ∣DN i∣ for every node
by calibration. Approximately 50% of the communication neighbors were not detection neighbors.
While this does not affect the result, it increases the number of messages sent for data collection.
Thus, while the simple approximation DN i = CN i yields correct results, the potential for further
reduction of energy consumption by improving detection-neighbor approximation is large.

Outdoor deployment Figure 5.11 shows a bird’s eye view of an outdoor deployment consisting
of 50 Sun SPOTs deployed over an area of approximately 2500m2. The L-shaped building on the left
and bottom of the figure is the computer science building of the Karlsruhe Institute of Technology.
As the picture in Figure 5.12 shows, every node was attached to a tree. Again, blue dots represent
nodes outside of Z, red dots nodes inside of Z and the black square is the base station. Note that
despite the larger number of nodes compared to the indoor deployment, the distance in terms of
hops from most nodes to the base station has not changed significantly: for the majority of the
nodes, 1-4 hops are sufficient to reach the base station.

Out of several object paths we tested, we selected the two shown in Figure 5.11 because they
offer the most important insights in combination with a given query: The green-colored trajectory
belongs to the object O1 and we present the results for processing the query Enter (O1,Z) here.

134

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Object O2 moved as indicated by the red-colored trajectory and the results presented here belong
to Touch (O2,Z) (cf. Equation (5.2)). For both trajectories, we processed the query using the
centralized, reactive and proactive strategy.

Figure 5.11: Outdoor Deployment of 50 Sun
SPOT nodes

Figure 5.12: Ground view of nodes deployed
on trees

The results of Enter (O1,Z) are shown in Table 5.6. Compared to the indoor deployment,
the most obvious difference is the increase in messages for the centralized strategy. This number
increased due to the large number of nodes that detected O1. Even though the number of hops
for sending a corresponding message to the base station was similar to the indoor deployment, the
increase in nodes that actually detected O1 made the difference. Thus, the result confirms H.1.

A detailed study of the result reveals the reason for the difference between the reactive and
the proactive approach: When objects leave the detection area of a border node Si, the reactive
approach results in querying all detection neighbors of Si. With the trajectory of O1, this occurred
several times and resulted in a large number of messages for collecting the information with the
reactive strategy. Since both distributed strategies require considerably less communication than
the centralized strategy, H.5 is confirmed as well for this setup.

The results of Touch (O2,Z) are shown in Table 5.7. Again, the centralized approach results
in a large number of messages, despite the fact that the object mostly moves in the vicinity of

135

5.5. EVALUATION

Strategy Number of Messages
Collect Result Forward. Total

centralized 264 0 264
proactive 147 12 159
reactive 168 16 184

Table 5.6: Results for Enter (O1,Z)

the base station. Compared to both distributed strategies, the difference regarding the number of
messages is significant. For even larger networks or in deployments where the base station is not
in the center of the network, it is expected that the centralized approach is completely unfeasible.
Another problem that we observed with the centralized approach is the fact that the routing layer
is constantly forced to find routes to the base station, because every node that detects the object
requires a route to the base station. These messages are not included in the numbers provided
here, because they largely depend on the routing protocol used. But they affect query processing,
for example because the messages required for route discovery and maintenance collide with those
for query processing.

Strategy Number of Messages
Collect Result Forward. Total

centralized 302 0 302
proactive 144 73 217
reactive 123 55 178

Table 5.7: Results for Touch (O2,Z)

The most interesting aspect of this results is the comparison between reactive and proactive: The
reactive strategy required less messages. This is because the object travels along the border of the
zone for most of the time. The reason is Meet (O,Z): The reactive strategy only sends requests into
the zone whenever O2 enters a detection area, for Meet (O,Z) and Disjoint (O,Z). Contrary to
that, the proactive strategy required border nodes to send updates to detection neighbors whenever
O2 has entered or left a detection area. Since O2 mostly has moved outside or in the border of
Z, the communication intensive case where a node using the reactive strategy has to request list
elements from all of its detection neighbors only occurred twice. The combination these two facts
results in less messages for the reactive strategy. Considering the results obtained for Enter (O2,Z)
as well as those for Touch (O2,Z), we consider H.3 and H.2 to be confirmed as well.

Considering all results we obtained with different outdoor deployments (even those omitted here),
object trajectories and spatio-temporal developments, we conclude:

136

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

• The proactive approach typically requires the lowest number of messages.
• The centralized strategy requires the largest number of messages of all three strategies unless

the trajectory as well as the distance to the base station in term of hops is very short.
• There exist few cases, e.g., the experiment with Touch (O2,Z) above, where the reactive

approach is considerably better than the proactive strategy.

Summing up, our evaluation for static zones confirms all of our hypotheses.

5.5.2 Dynamic Zones – Evaluation

We repeated the simulations above for a dynamic zone, i.e., the same node distributions as well
as object trajectories were used. The only difference between the experiments above and this
experiment is that we simulated a zone that moved from the right side of the sensor network to
the left side, like a wave. Thus, at first there are no nodes in the zone, then nodes join the zone
over time and each node remains in the zone for a constant amount of time. After this time has
elapsed, each node leaves the zone and stays out of the zone. Figure 5.13 shows the result in a
similar way to Figure 5.8, i.e., the result is for DSI which yields Inside (O,Z) = T . The results for
the other detection scenarios/predicates is similar.

 0

 20000

 40000

 60000

 80000

 100000

C
e
n
tra

liz
e
d

P
ro

a
c
tiv

e
R

e
a
c
tiv

e

C
e
n
tra

liz
e
d

P
ro

a
c
tiv

e
R

e
a
c
tiv

e

C
e
n
tra

liz
e
d

P
ro

a
c
tiv

e
R

e
a
c
tiv

e

C
e
n
tra

liz
e
d

P
ro

a
c
tiv

e
R

e
a
c
tiv

e

C
e
n
tra

liz
e
d

P
ro

a
c
tiv

e
R

e
a
c
tiv

eA
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Number of Nodes

Messages for neighbor detection
Messages for predicate evaluation

Zone Information

Figure 5.13: Scalability with dynamic zones

As expected, the result is similar to the result for static zones. The amount of traffic generated to
determine detection neighbors in both distributed cases is unaffected by the dynamic zone. Since the
predicate evaluation is integrated into ZIP, the number of messages related to collecting information
on objects detected does not change significantly compared to Figure 5.8. The additional messages
directly related to ZIP depends on the density of the network. The higher the density, the larger
is the set of detection neighbors per node and thus the amount of messages with dynamic zones
increases.

137

5.6. SUMMARY

Note that the ”zone movement” we used for this experiment is extreme, because all nodes join
and leave the zone once. In reality, it would depend on the underlying phenomenon but it is more
likely that few nodes join and leave the region over time. We conducted experiments with less nodes
that joined or left the zone and in most cases, the amount of traffic related to the ZIP protocol
was minor unless large numbers of nodes join/left the zone. Summing up, we conclude that the
findings for static zones hold for dynamic zones as well.

5.6 Summary

This section has addressed the energy-efficient processing of spatio-temporal queries in sensor net-
works. Based on the semantics of Chapter 3 and the assumptions that the query has been dissem-
inated efficiently using the approach in Chapter 4, we have shown how to process spatio-temporal
predicates in-network. Processing spatio-temporal queries requires the collection of information on
zones and objects detected from different nodes. Sending all of this information to the base station
is a straightforward approach, but unfeasible considering the limited energy resources of sensor
nodes.

By introducing the fundamental concepts of detection neighbors and border nodes, we have
shown how to reduce the number of nodes that must exchange information on objects and zones
significantly. As we have shown, object detections by significant parts of the sensor network cannot
contribute to the query result for queries like Enter (O,Z). Thus, these nodes may use sleep modes
to conserve power. For the remaining nodes, we introduced to strategies to exchange information on
objects detected efficiently and only when necessary. Both strategies combine the spatial correlation
of object detections and the semantics of spatio-temporal queries to reduce communication and thus
energy consumption. Our evaluation using simulations as well as Sun SPOT sensor nodes shows that
both strategies reduce communication and thereby energy consumption significantly: The number
of messages required for processing single predicates as well as spatio-temporal developments is
reduced by 45% to 90% compared to collecting all information at the base station.

138

Chapter 6

Conclusion and Future Work

A significant portion of sensor networks is deployed with aim of observing the movement of objects
detected by sensor nodes. Database research has shown that accessing sensor networks declar-
atively is a promising approach. But so far, the focus of research has been relational queries.
Relational queries are insufficient to express queries interested in the movement of objects, i.e.,
the queries occurring in the aforementioned type of sensor network. This dissertation provides the
fundamental concepts for spatio-temporal semantics in sensor networks, as well as an approach to
processing spatio-temporal queries efficiently. The following chapter concludes this dissertation by
summarizing the most important contributions as well as interesting, related subjects for future
work.

6.1 Summary

The first part of this dissertation has exclusively addressed the semantics of spatio-temporal queries
in sensor networks. As the discussion of the properties of sensor networks in general and detection
mechanisms in particular has shown, these semantics had to be defined in such a way that they
can cope with inaccurate or incomplete information on moving objects. In addition to the concept
of regions, which we inherited from moving object databases, we have also introduced the notion
of a zone. Thus, users of sensor networks can express queries interested in the spatio-temporal
relationship between objects detected by sensor nodes and a region, i.e., a point set, or a zone, i.e.,
a set of nodes. For both, regions and zones, we defined the semantics of spatio-temporal predicates
as well as developments, i.e., concatenations of predicates that describe complex movement patterns
the user is interested in.

Based on a flexible model of sensor networks and their detection mechanisms, we have defined
five detection scenarios and shown how to map every possible detection of an object to a detection
scenario. Thus, the detection scenarios formalize the information obtainable by sensor networks
and any kind of detection mechanism on the objects detected. Each detection scenario describes

139

6.1. SUMMARY

how the region or zone overlaps with the set of points where the object could be based on the
information acquired by the detection mechanism. This approach takes into account the varying
degrees of accuracy of different object detection mechanisms, simultaneous detection of a single
object by several nodes, unobserved areas etc.

The semantics defined in the context of regions address the problem, that most sensor networks
cannot determine if a detected object is outside, on the border or inside of the region if the actual
position of the object is sufficiently close to the border of the region. To solve this issue, a sensor
network returns three sets of objects regarding a query interested in the spatio-temporal relationship
of an object and a region: The first set contains all objects that definitely conform to the query.
The second set contains objects that definitely do not conform to the query. The last set contains
objects which possibly conform to the query, but the inaccuracy of object detection or unobserved
areas prevent a definitive answer. We have proven that this result is optimal independently of the
detection.

To process spatio-temporal queries in the context of zones, we introduced a space partitioning
that allows the application of the 9-intersection model known from moving object databases. The
semantics of predicates that express the relationship between an object and a zone are based on
this space partitioning. Using the aforementioned detection scenarios, we have shown how to map
object detections to predicate results in the context of zones. An important detail is that the space
partitioning for zones is not regular. The predicates and concatenation operators for regions are
based on the assumption that the space partitioning is regular. Thus, in the context of zones,
there exist queries that cannot be expressed using these operators. To solve this, we introduced
concatenation operators and an additional predicate that allow users to express spatio-temporal
queries with non-regular space partitions.

A study of the semantical depth has shown that there exist queries in moving object database
that require infinite temporal resolution of the detection mechanism and thus cannot be applied
to sensor networks. All remaining spatio-temporal developments have been translated to detection
terms, i.e., terms that describe sequences of object detections based on detection scenarios. The
semantical depth of queries related to zones has been investigated as well: There are 584 unique
spatio-temporal developments that describe the spatio-temporal relationship of an object and a
zone.

Since sensor nodes have limited resources, particularly regarding energy, we addressed energy effi-
cient processing of spatio-temporal queries as well, i.e., processing queries with a minimal amount of
communication. Processing queries in sensor networks requires dissemination of the query first and
then the collection of information from different sensor nodes. The second part of this dissertation
studies query dissemination in sensor networks. A performance evaluation of existing mechanisms
for query dissemination shows that particularly simple mechanisms are well-suited for sensor net-
works. In particular, probabilistic query dissemination provides a good tradeoff between reliability,
i.e., disseminating the query to all nodes, and energy spent for communication. We developed
an optimizer that determines a rebroadcast probability for probabilistic query dissemination that
reduces communication while reaching all nodes.

140

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

The third part of this dissertation studies the energy-efficient processing of spatio-temporal
queries and how to collect information on moving objects in an efficient way. Sending all information
regarding on objects and zones to the base station is inefficient because most object detections are
irrelevant for the query result. To solve this, we propose two strategies that exploit the spatial
correlation of object detection and the semantics of spatio-temporal queries to reduce the number
of noes that must communicate with each other significantly. As a result, for most queries, a large
portion of the nodes does not communicate at all and if communication is required, only direct
neighbors exchange messages.

All of the mechanisms have been evaluated systematically using simulations as well as Sun SPOT
deployments. The simulations investigated the scalability of our measures which is important for
sensor networks consisting of hundreds or thousands of sensor nodes. The various deployments
of Sun SPOT sensor nodes have shown that our measures can cope with the intricacies of sensor
networks. Furthermore, these deployments confirmed the results obtained through simulations.

6.2 Future Work

There are a number of interesting research questions that we did not address to limit the scope
of this dissertation. We conclude with a selection research topics that either built on top of this
dissertation or are related to the topic of spatio-temporal queries in sensor networks.

6.2.1 Queries with non-identifiable Objects

This dissertation has assumed that objects are uniquely identifiable. As stated in Section 1.1, this
means that if Si detects O at some time t1 and Sj detects O at t2 > t1, the sensor network can
derive that both nodes detected the same object. Despite the increasing level of sophistication of
detection mechanisms and the advances of hardware used in sensor networks, there are detection
mechanisms that will never allow the identification of objects. For instance, induction loops cannot
identify objects detected. It remains to be investigated which concepts of this dissertation could
be reused for sensor networks where identification of objects is unfeasible.

Even though queries interested in the movement of a single object are not possible if objects
cannot be identified, there are spatio-temporal predicates and queries users could be interested in:
Continuing the example of a network of induction loops, a user could be interested in the number
k of objects that entered a region. While an accurate computation of k might not be possible, the
sensor network could try to derive lower and upper bounds for k. This is useful, because users can
derive how many objects have entered a region for sure and how many additional objects possibly
have entered the region. Such an approach would require predicates that return lower and upper
bounds for the number of objects conforming to it. Furthermore, new concatenation operators for
these predicates and ultimately new ways to express queries would have to be developed.

Applications for these types of spatio-temporal queries overlap with those used to motivate this
dissertation: Scientists that observe the population of different kinds of animals could analyze

141

6.2. FUTURE WORK

how many animals of a given population exhibit a certain behaviour/movement by expressing a
declarative query. Similarly, authorities could access traffic monitoring systems to investigate the
reasons or patterns that lead to traffics jams.

6.2.2 Detection Cost Optimization

As discussed in Section 2.1.1, for certain types of objects there exist various detection mechanisms.
For example, there are various mechanisms that detect vehicles [7, 19, 58] using different types of
sensing hardware. These different detection mechanisms also require various amounts of energy to
detect an object and relatively accurate mechanisms typically require more energy than those that
only determine if an object is in the vicinity of a node or not.

Considering the semantics of predicates related to regions (cf. Section 3.3.1), if nodes are
equipped with various detection mechanisms, the differences regarding energy consumption could
be exploited. Whenever a node detects an object according to D̃SB using the ”cheap” (in terms
of energy consumption) detection mechanism, one should consider applying the more expensive
but more accurate mechanism. While this is straightforward for a single node, it becomes more
complicated if detection neighbors are taken into account or the case where several nodes detect
the object simultaneously. Selecting a subset of a set of detection neighbors which should use the
more accurate mechanism and coordinating nodes after the subset has been selected is complex.
The detection neighbors must be selected in such a way that the information gained by using the
more accurate mechanism is maximal while keeping the number of nodes that actually use the
”expensive” mechanism is minimal. This selection process should also take into account current
energy levels, e.g., to avoid that a detection neighbors whose battery already is relatively low has
to use the more ”expensive” mechanism.

6.2.3 Object-Object, Region-Region and Region-Zone Predicates

This dissertation has focused on moving objects and their relation to regions and zones. Besides
predicates that express the relation of objects and regions, moving object databases also allow users
to query relations of regions and regions. These predicates allow users to express queries like ”Did
the oil spill overlap with the nature protection area?”.

Considering the concept of zones introduced in this dissertation, users could express queries
related to zones and zones or zones and regions in sensor networks. In the example above, the oil
spill would be modeled by a dynamic zone and the nature protection area as a static region. It
remains to be investigated if the space partitioning for zones provided in Section 3.3.2 is applicable
to these queries as well. Independently of that, predicates related to the topological relationship
of a point set and a node set have not been addressed previously. Additionally, the semantics of
queries interested in the spatio-temporal relationship of two dynamic zones have not been addressed
so far. Assuming the semantics of the two types of queries have been defined, the next question in
both cases is processing these queries efficiently.

142

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Another type of queries not addressed by this dissertation are queries interested in the rela-
tionship between trajectories of (different) objects. For example, a user might be interested which
trajectories of other objects have crossed the trajectory of an object O1. Such queries would require
other concatenation operators and different mechanisms for processing them efficiently in a sensor
network.

6.2.4 Approximation of Detection Neighbors

Our mechanisms in Chapter 5 are based on the concept of detection neighbors. Determining these
detection neighbors is problematic in sensor networks where nodes cannot determine their detection
area. We proposed two approaches for the approximation the set of detection neighbors and used
the substitution with the set of communication neighbors for our evaluation. While this approxi-
mation is correct for most sensor networks, our evaluation shows that a significant communication
overhead is related to messages related to this approximation. Furthermore, this approximation
over-estimates the number of detection neighbors significantly, e.g., the indoor deployment (cf.
Section 5.5) showed that approximately 50% of assumed detection neighbors were not detection
neighbors in reality. This affects the efficiency of query processing, because nodes exchange infor-
mation on object detections or zones with other nodes that are not detection neighbors. Thus, the
development of such approximations for different detection mechanisms that approximate detection
neighbors is a promising approach for research.

The approximation based on communication neighbors requires further investigation as well, par-
ticularly reducing the over-estimation. Figure 6.1 illustrates the problem: While S2 is a detection
neighbor of S1, S3 is not. But using the approach to approximate the detection area with the set of
communication neighbors leads to S1 treating S3 as a detection neighbor and thus wasting energy.
Note that communication as well as detection areas are illustrated using circles in for this example.
As we pointed out earlier, they usually are not, but we use this simplification here to outline the
problem and a few ideas to solve it. An optimal approach would select exactly those communication
neighbors that are detection neighbors as well. Without information on the detection mechanism
or the actual detection area of all nodes, getting such a selection is typically not possible.

To demonstrate the different research questions that arise from this problem, we outline several
ideas regarding the selection of detection neighbors from a set of communication neighbors for an
arbitrary node Si:

Reduction of output power: Instead of selecting a subset of communication neighbors as de-
tection neighbors, this approach would reduce the number of communication neighbors com-
pletely. Most radio chips support different radio output power modes, i.e., one could reduce the
output power to remove nodes from the set of communication neighbors that are too far away
to be detection neighbors. As illustrated in Figure 6.2 this can solve the problem, but might
also result in detection neighbors not being identified. Furthermore, this approach could result
in a partitioned network, i.e., a subset of nodes is not connected to the base station anymore.

143

6.2. FUTURE WORK

Figure 6.1: Approximating detection
neighbors based on communication
neighbors

Figure 6.2: Reduction of radio output
power to approximate detection neigh-
bors

Figure 6.3: Link-quality based detec-
tion neighbor approximation

Figure 6.4: Detection neighbor approx-
imation based on 2-hop neighbors

Link Quality: If supported by the radio stack, e.g., the KSN Radio Stack (cf. Appendix C),
nodes can derive the link quality to different communication neighbors. Typically, if the link
between two nodes Si and Sj has a high quality, one can derive that both nodes are relatively
close to each other. Depending on the maximum range of the detection mechanism and the
radio hardware, the set of detection neighbors of Si could be approximated by only selecting
communication neighbors with a good link quality. Figure 6.3 illustrates this. This approach is
problematic if external influences reduce the link quality between two nodes but do not affect
the detection area.

2-Hop Neighborhood: Another approach that allows a node Si to determine which communi-
cation neighbors are closer than others is comparing the set of communication neighbors. As
illustrated in Figure 6.4, if the set of communication neighbors of Si mostly overlaps with
the set of communication neighbors of a node Sj , we can derive that both nodes are close

144

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

to each other. Contrary to this, if the sets of communication neighbors from both nodes do
not overlap, it is likely that both nodes are not close to each other and thus not detection
neighbors. This approach is problematic because it is communication intensive because every
node Si must send its set of communication neighbors to all of its communication neighbors.

More fundamental research regarding the approximation of detection neighbors could improve the
performance of spatio-temporal query processing significantly.

6.2.5 Advanced Concatenations and Predicates

Both, this dissertation as well as moving object databases, are based on predicates P (e1,e2) that
express the relationship of two spatio-temporal entities over time. While this is sufficient to express
queries like Enter (O,R) that are only concerned with two entities, expressing relationships of three
or more entities is difficult.

A user might be interested in objects O that are in R1 and inside of R2 at the same time. Defining
predicates that allow three arguments, e.g, Inside (O,R1,R2) in the case above, is sufficient for
queries related to three entities but not for four. Defining a new set of predicates for every number
of entities would result in an infinity number of predicates that must be supported by the query
processor. Thus, the approach is not viable.

A more elegant approach to express the afore mentioned query is the definition of additional
concatenation operators. For the query above, it suffices to define a concatenation operator whose
semantic is ”and at the same time”. Adding this concatenation operator would allow the user the
express the query with ”Inside (O,R1) and at the same time Inside (O,R2)”. This approach is
better than the one discussed above, because it does not require any additional predicates and
offering additional flexibility. For instance, queries like ”Inside (O,R1) and at the same time
Disjoint (O,R2)” are possible as well. Further flexibility could be achieved by introducing con-
catenation operators allowing queries like ”Inside (O,R1) and Disjoint (O,R2) at least 5 minutes
before”. Finding a minimal set of operators, similar to the set of relational operators for relation
databases, that is complete in the context of spatio-temporal queries, allows the expression of every
possible spatio-temporal query, is a challenging task.

6.2.6 Querying the Movement of Humans with Privacy-Related Position Ob-
fuscation

Location-based services are information or entertainment services that use the geographical po-
sition of a user to enhance or personalize the service presented to the user. With the advent of
handheld, GPS-enabled devices, an increasing number of such services have been created ranging
from emergency services [1] to advertisement customized to the users position. Note that for certain
applications, it is desirable to reveal the users position completely, e.g., emergency services, while
other applications do not require an accurate position of the user.

145

6.2. FUTURE WORK

Revealing the users position and allowing certain entities to accurately track the user over time
has been identified as a privacy threat. These privacy threats in the context of location-based
services has received a lot of attention from the research community. This research tries to reach
two conflicting goals: The users position must be protected by obfuscating its position or ensure
that the user is sufficiently anonymous towards the provider of the service. If the users position
is completely obfuscated, the quality of the service degrades to the point where it is unusable.
Thus, the users position must be sufficiently obfuscated to ensure privacy while still allowing the
execution of the service. For instance, to find the nearest cash terminal, it might be sufficient if the
service provider knows that the user is within a certain region to determine a set of nearby cash
terminals.

These location-based services require spatial or spatio-temporal queries. Due to the position
obfuscation, the situation of the service is similar to sensor nodes using detection mechanisms that
cannot determine the position of a detected object accurately. It remains to be investigated, how
the detection model and the resulting detection scenarios as well as their translations could be
applied to allow the execution of location-based services based on obfuscated position data.

146

Appendix A

Energy Consumption Profile of
Sensor Nodes

Prior to the energy efficient implementation of the query dissemination and spatio-temporal query
processor, we conducted a set of experiments to determine the important aspects of energy efficiency
in sensor networks. The setup and the results of these experiments are provided in this section
and justify our approach to evaluate our measures by counting the number of messages sent and
received. More precisely, the following hypotheses are proven experimentally:

H.1 Exchanging information via wireless communication reduces the time until batteries are
depleted significantly.

H.2 Energy consumption for sending a message is marginally higher than receiving a message.
H.3 The number of bytes contained in a single message has a minor impact on energy con-

sumption, particularly if energy-efficient MAC protocols are used.

For each node type, we describe the experimental setup first and investigate aforementioned hy-
potheses based on the results.

A.1 Experimental Setup

To measure the energy consumption of a sensor node we used the Sensor Node Management Device
(SNMD) [60]. The SNMD was attached between the battery and energy consuming components of
the sensor nodes, e.g., CPU, memory, wireless communication chip and sensing board. Figure A.1
illustrates a simplified circuit diagram of the setup and Figure A.2 shows the energy measurement
device with a Mica mote attached to it1. We measured the voltage drawn by the node at a high
temporal resolution of up to 20 kHz and computed the energy consumption based on this.

1The experiments were conducted at a time when the SNMD was still in development and had a less compact
appearance, but the basic features have not been changed since then.

147

A.2. RESULTS AND ANALYSIS

Figure A.1: Circuit diagram for energy measure-
ments

Figure A.2: Sensor Node Management Device [60]
and attached Mica Mote

A.2 Results and Analysis

For each measurement, we ran different applications with different properties regarding energy
consumption on the nodes. We describe these applications first and the analyze the results of the
energy measurement in the context of our hypotheses.

A.2.1 Impact of Communication on node lifetime

For this experiment, we fully charged the batteries of three Sun SPOTs according to the specification
of the battery. Afterwards, we assigned one of the following applications to one of the SPOTs:

High: This application prevented the usage of any power conservation features of the SPOTs. To
increase power consumption, the radio and CPU were in use permanently.

Medium: This application raised an event on the SPOT every five minutes. After the event was
raised, the SPOT sends data and then uses the shallow sleep mode to conserve energy while
waiting for the next event. Note that the radio is not switched off during shallow sleep.

Low: A SPOT running this application is put into shallow sleep mode at all times.

While shallow sleep mode reduces energy consumption considerably, the overall power consumption
is still orders of magnitude higher than in deep sleep mode. Table A.1 compares both power saving
modes. SPOTs that run mainly in deep sleep mode can run for up to 900 days.

Figure A.3 shows the measured voltage over time (in hours). The experiment ends when the
battery reaches a critical voltage at ≈ 3.3V . If this occurs, the battery hardware shuts the SPOT
down. The application “high” depleted the battery an hour while each of the other applications
ran 15 hours or more. Thus, constant usage of the CPU and radio drastically reduce the lifetime
of the node. Comparing the “medium” and the “low” application shows that the additional use of
the radio compared to using the sleep mode continuously reduces node lifetime considerably.

Regarding the absolute values in Figure A.3 it must be noted, that in shallow sleep certain
parts of the hardware are still switched on and consume energy as shown in Table A.1. Most

148

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
o
lt
a
g
e
 [
V

]

Time (hours)

Node Lifetime

17,6614,89

1,01

Low

Standard

High

Figure A.3: Node lifetime measurement result

importantly, the radio is still switched on. Switching the radio off would require energy-aware
MAC protocols, e.g., B-MAC [105], that ensure communication between nodes while switching off
the radio for certain periods of time. Initial tests of the three applications with B-MAC resulted
in the following: The “high” application was unaffected, since the radio is constantly in use and
B-MAC cannot shut down the radio chip. Both, the “medium” and the “low” applications achieved
lifetimes of more than two weeks and the experiment was stopped. While these protocols increase
node lifetime by reducing energy consumption for idle listening, they increase energy consumption
for sending messages due to synchronization overhead (see Section 2.1.3). We investigate this
overhead in Section A.2.3 and conclude that the results of this experiment confirm H.1. Similar
results have been obtained for Mica motes in [83].

A.2.2 Energy consumption of sending and receiving

This experiment used two nodes where a sender sends a message of varying size to a receiver. The
size of the message was increased from 1 packet to 10 packets. The experiment was conducted as
follows:

1. Sender and receiver are started and switch off their radio.
2. The energy measurement using the SNMD is started and both SPOTs switch their radio back

on.
3. After the radio is ready at the sender, the sender tries to deliver the first packet to the receiver.
4. After receiving an acknowledgement for the first packet, the next packet is sent. This procedure

continues until all packets are sent.

149

A.2. RESULTS AND ANALYSIS

Shallow Sleep Deep Sleep
CPU On with CPU clock stopped Off
Master System Clock On Off
Low-level firmware On Ona

RAM On, but inactive Main power off, RAM content pre-
served with low power standby

Flash memory On, but inactive Off
CC2240 radio chip On Off
AT91 peripheral clocks On, if in use, otherwise off Off
External/sensor board On Off
Power consumption ≈ 24 mA ≈ 32 µA

Table A.1: Energy saving modes for Sun SPOTs
aThis is required to wake up the SPOT, e.g., at a given time.

5. After the last packet has been acknowledged by the receiver, the energy measurement is
stopped.

Switching off the radio before the start of the experiment simulates the fact that before nodes can
send messages the radio must be switched on. Keeping the radio on at all times is not a viable
option as the experiment above has shown. Therefore the energy consumption for switching the
radio on before sending a message must be taken into account to measure the energy consumed for
sending a message. On both nodes, the usage of sleep modes or any other power-saving mechanism
was prevented, i.e., all components of the nodes were on at any time. Both nodes used the KSN
Radio Stack (see Section C.3) on top of the default Sun SPOT MAC protocol, i.e., no energy-aware
MAC protocol was used.

Figure A.4 shows the result of the experiment. The difference regarding energy consumption
between the sender and the receiver is marginal even for 10 packets. This confirms H.2. In addition
to the result also shows that the size of the message has a minor impact on energy consumption even
if there is no energy-aware MAC protocol. Sending a message consisting of a single packet consumed
9.14 mAs. Doubling the size to two packets leads to an energy consumption of 9.94 mAs, i.e., an
increase of 8.8%. Increasing the message size by an order of magnitude only doubles the energy
consumption. Thus, even without energy-aware MAC protocols H.3 is confirmed. With energy-
aware MAC protocols this relative increase becomes even smaller since these protocols induce a
large constant overhead for sending and receiving. We investigate energy consumption of these
protocols in the following.

150

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

E
n
e
rg

y
 C

o
n
s
u
m

e
d
 [
m

A
s
]

Number of Packets

Energy Consumption (Unicast)

Send
Receive

Figure A.4: Energy Consumption for communication

A.2.3 Impact of energy-aware MAC protocols

So far, all experiments used a default implementation of a 802.15.4 compatible MAC protocol which
was not energy-aware, i.e., the radio chip was on at all times. This section investigates the impact
of energy-aware MAC protocols such as B-MAC [105] or X-MAC [21]. Contrary to the previous
experiments, we use Mica motes for this to ease presentation. This is because energy readings are
difficult to interpret on Sun SPOTs because parallel processes such as garbage collection distort
the readings. Experiments with SUN SPOTs had similar results which is expected since both node
types use the CC2420 radio chip. Again, we used the Sensor Node Management Device (SNMD) [60]
to obtain energy measurements.

We used two Mica Motes where the access to the wireless medium was controlled by a B-MAC
implementation [72] provided with TinyOS [61]. One of the nodes broadcasts (sender) a single
packet and the other mote (receiver) just receives the message broadcasted. Figure A.5 shows the
energy readings of both nodes and Figure A.6 illustrates the schema of B-MAC as explained in
Section 2.1.3. We explain the important points in time (marked with [T1] , [T2] , [T3] , [T4]) for
sender and receiver in the following.

The time interval t at which each node checks the medium for incoming messages is 1 second. The
point in time where sender and receiver switch on the radio and check if there are incoming messages
are marked with [T1]. For the first two intervals, both nodes switch off the radio immediately and
save energy. After 2.3 seconds (at [T2]), the sender application starts the sending process by
switching the radio on, listening to the medium. Since there is no other node currently sending a
message, the sender starts with the preamble. Since the radio chip is packet-based, it sends short
packets to indicate that a.) no other node should send at this time and b.) the intended receivers

151

A.2. RESULTS AND ANALYSIS

 0

 10

 20

 30

 40

 0 1000 2000 3000 4000

E
ne

rg
y

(m
A

)

Time (ms)

Energy Consumption (Sender)

[T1] [T2] [T4]

 0

 10

 20

 30

 40

 0 1000 2000 3000 4000

E
ne

rg
y

(m
A

)

Time (ms)

Energy Consumption (Receiver)

[T1] [T3] [T4]

Figure A.5: Energy consumption with B-
MAC [105]

Figure A.6: Illustration of B-MAC [105]

(in this case all surrounding nodes since it is a broadcast) should keep the radio on. The length
of the preamble is longer than 1 second to ensure that all receivers have time to switch their radio
on. At [T3], the receiver wakes up the radio since 1 second has elapsed since the last wake up.
Contrary to the last two times, this time the radio is kept on since the preamble of the sender
indicates that the receiver is an intended recipient of a message. Broadcasting the actual message
happens in a few milliseconds at [T4]. Both nodes switch the radio off a few milliseconds after the
message is broadcasted/received.

The readings from sender and receiver show two important points with regard to our hypothe-
ses H.2 and H.3: While the radio is switched on, both nodes consume an almost equal amount of
energy, i.e., H.2 is confirmed. Compared to the preamble of more than 1 second and the waiting
for the actual message at the receiver, the time and energy spent for sending/receiving the message
is negligible. An increase of the message size would result in a longer time spent sending the actual
message. The time/energy spent previously for preamble and waiting is bigger by at least an order
of magnitude unless hundreds of packets must be sent. With this we conclude that H.3 is confirmed
as well.

152

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

A.3 Lessons Learned

This section investigated the energy consumption characteristics of sensor nodes in particular with
regard to communication. As expected, communication has by far the largest impact on node
lifetime. More accurately, the amount of time a sensor node has to switch the radio chip on
significantly reduces its lifetime. As observed by [28] and our experiments, keeping the radio
on at all times is not a viable option. The networking community has taken major steps to
reduce idle listening, i.e., time where the radio chip is on but there no message to receive. While
these efforts reduce idle listening and thereby increase node lifetimes significantly, they come at
the cost of a large overhead for sending and receiving messages. Thus, the number of messages
exchanged between sensor nodes is the most important factor for the evaluation of the energy
efficiency of an application. Within reasonable limits, the actual size of the messages does not affect
energy consumption significantly which is a common misconception, particularly of the database
community.

This confirms our approach for the evaluation of our mechanisms for query dissemination and
in-network processing: We count the number of messages sent and received to measure its impact
on the sensor networks lifetime.

153

A.3. LESSONS LEARNED

154

Appendix B

Spatio-temporal queries with
relational operators

This portion of the appendix serves as an illustration why expressing spatio-temporal semantics
with relational operators and executing them over a table is inefficient and unnecessarily complex.
We use the development WSNEnter (O,Z) defined in (B.1) as an example of a simple spatio-
temporal query in a sensor network:

WSNEnter (O,Z) = Disjoint (O,Z) ▷̃ Inside (O,Z) (B.1)

From a semantical point of view, the user is interested in every object O that is exclusively detected
by nodes not in Z at first and later on exclusively detected by nodes in Z (cf. Section 3.3.2). We
assume that the zone is dynamic, i.e., nodes may be in the zone at some time and leave the zone
at a later time. We introduce a relational schema for storing dynamic zones and object detections
at first. Afterwards, we derive the SQL statement that expresses WSNEnter (O,Z). Finally,
we show that a query regarding the spatio-temporal relationship of an object and a region, e.g.,
Enter (O,R), is even more complex to express because SQL does not provide operators for point
sets.

Since we only want to illustrate the difficulties associated with the expression of spatio-temporal
queries using relational operators, we will not deal with any aspect of the implementation. Prior to
the execution of the SQL statement derived in Section B.2, all data on zones and objects detected
must be collected wherever the statement is executed. An approach to achieve this data collection
would be the centralized strategy we introduced in Chapter 5, i.e., whenever a node detects an
object, stops detecting an object, enters or leaves the zone, it sends a corresponding message to
the base station.

155

B.1. RELATIONAL SCHEMA

B.1 Relational Schema

The relation Detections stores the detection of objects by different nodes at different times.
Table B.1 illustrates the schema of Detections. The table contains a tuple for each time an object
moves into the detection area of a node. After this entry, the object may move arbitrarily inside
the detection area and leave it at some time. Whenever this leave happens, the node updates the
attribute texit of the tuple created at the time of the entry.

Attribute Name Attribute Description
NodeID Identifier of the node Si detecting the object identified by attribute

ObjectID.
ObjectID Identifier of the object detected by Si.
tentry t ∈ T when Si starts to detect the object.
texit This value is either Ø or a t > tentry. If it is Ø, Si is still detecting the

object. Otherwise, Si has detected the object during the time interval
[tentry; texit[.

Table B.1: The schema of the relation Detections

Note that this schema assumes continuous detection of objects. In cases where the used detec-
tion mechanism is non-continuous, one can interpolate detections: Suppose Si checks periodically
at t0, t1, . . . for objects. With interpolation, an arbitrary node Si inserts a corresponding tuple
whenever it did not detect an object O at ti−1 but detects it at ti. Similarly, Si updates texit in the
tuple corresponding to the object O from Ø to tj if Si detected O at time tj−1, but does not detect
O at tj .

The relation Zones stores the times for each node when it was inside a given zone. The schema
illustrated in Table B.2 is similar to Detections. The main difference is that each tuple stores an
identifier of the zone instead of an object identifier. The mechanisms for maintaining the tuples
in this relation are analogous to those described above: Whenever a node Si determines that it is
part of the zone Z at time ti, it inserts a tuple [Si,Z, ti,Ø] into Zones. This tuple is updated to
[Si,Z, ti, tj] if Si determines that it is not part of the zone anymore at time tj with ti < tj .

B.2 Expressing a Spatio-Temporal Query using SQL

This section describes how to express the development WSNEnter (O,Z) using SQL based on the
schema described above. The core idea for this is as follows: First, one needs to determine all objects
O that have fulfilled Disjoint (O,Z) at some time ti, i.e., have been detected by nodes outside of
Z exclusively (cf. Definition 32). One of these objects O fulfills WSNEnter (O,Z) if there exists a
time tj > ti where O is detected exclusively by nodes in Z, i.e., if it fulfills Inside (O,Z) after ti.

To ease presentation, we decompose the development of the SQL statement into several steps:

156

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Attribute Name Attribute Description
NodeID Identifier of the node Si that this tuple is about.
ZoneID Identifier of the zone Si is/was in.
tentry t ∈ T when Si ”entered” the zone.
texit This value is either Ø or a t > tentry. If it is Ø, Si is still in the zone

identified by ZoneID. Otherwise, Si has been in this zone during the
time interval [tentry; texit[.

Table B.2: The schema of the relation Zones

Step 1 Obtain a set of tuples [ObjectID,iStart,iEnd] where nodes outside of Z detect the
object identified by ObjectID during the time interval [iStart,iEnd]. We construct a
view called OutsideDetectedv that contains these tuples.

Step 2 Similarly to the previous step, we generate a set of tuples [ObjectID,iStart,iEnd] where
nodes inside of Z detect the object. As with the result from Step 1, we summarize the
tuples computed in this step using a view called InsideDetectedv.

Step 3 Join OutsideDetectedv and InsideDetectedv to check which of the time intervals of
the tuples overlap and compute tuples [ObjectID,iStart,iEnd] that correspond to in-
tervals where only nodes outside of Z detect the object identified by ObjectID. The
tuples obtained in this step correspond to objects and time intervals where the predicate
Disjoint (O,Z) is true. The view DisjointViewv contains the corresponding tuples.

Step 4 Similar to the previous step, we join OutsideDetectedv and InsideDetectedv again to
compute those objects where Inside (O,Z) has been true for some time. The query result
of this step will be summarized in the view InsideViewv.

Step 5 By joining InsideViewv and DisjointViewv we compute those objects where
Disjoint (O,Z) has been true before Inside (O,Z) was true.

We use views in the following to summarize intermediate results to ease our presentation. Views
are marked with a ’v’ superscript to clearly separate them from materialized relations, i.e., rela-
tions physically stored on sensor nodes or the base station. This is important, because views are
reconstructed whenever their data is required, i.e., the underlying query is executed. For sensor
networks this means that accessing the view either requires re-execution of the underlying query
or storing all tuples required for the reconstruction at a central point, e.g., the base station.

B.2.1 Step 1 – Computing OutsideDetectedv

This section provides the SQL statement that constructs the view OutsideDetectedv. The SQL
statement in Algorithm 15 generates a tuple [ObjectID,iStart,iEnd] for every start of a detection
by node outside of Z of an object identified by ObjectID at some time. The values of iStart and
iEnd frame the interval during which an object was detected by nodes outside of Z.

157

B.2. EXPRESSING A SPATIO-TEMPORAL QUERY USING SQL

Algorithm 15: SQL statement to get all objects detected by nodes outside of Z
1 SELECT ObjectID, d.tentry AS iStart, d.texit AS iEnd FROM Detections d
2 WHERE NOT EXISTS SELECT * FROM Zones z
3 WHERE d.NodeID = z.NodeID AND z.ZoneID= Z
4 AND z.tentry≤ d.tentry

5 AND ((d.tentry ≤ z.texit) OR (z.texit =Ø))
6 AND NOT EXISTS SELECT * FROM Zones z
7 WHERE d.NodeID = z.NodeID AND z.ZoneID= Z
8 AND d.tentry ≤ z.tentry

9 AND ((z.tentry ≤ d.texit) OR (d.texit =Ø))
10 UNION
11 SELECT ObjectID, d.tentry AS iStart, z.tentry AS iEnd FROM Detections d, Zones z
12 WHERE d.NodeID = z.NodeID AND z.ZoneID = Z
13 AND d.tentry ≤ z.tentry

14 AND ((z.tentry≤ d.texit) OR (d.texit =Ø))
15 UNION
16 SELECT ObjectID, z.texit AS iStart, d.texit AS iEnd FROM Detections d, Zones z
17 WHERE d.NodeID = z.NodeID AND z.ZoneID = Z
18 AND NOT (z.texit =Ø)
19 AND d.tentry ≤ z.texit

20 AND ((z.texit < d.texit) OR (d.texit =Ø))

There are four different cases that must be taken into account to acquire these intervals and each
subquery in Algorithm 15 corresponds to one of them:

1. An object was detected by a node that never joins or leaves the zone Z. In this case, there
is a node Si that detected an object but there does not exist a tuple for Si in Zones. This
case is covered by Lines 1-9. In this case, iStart and iEnd equal the start and the end of the
detection as stored in Detections.

2. A node detects an object before it joins or after has left Z. Figures B.1 and B.2 illustrate
this using time bars for two tuples from Zones and Detections. Lines 1-9 address this case
as well: The EXIST statements requests tuples from Zones that indicate that the node Si that
detected an object according to Detections has joined or left Z while detecting an object. If
no such tuple in Zones exists, the node detecting the object was outside of Z and thus, the
start and the end of the interval [iStart,iEnd] equal d.tentry and d.texit respectively.

3. A node joins Z while detecting an object (see Figure B.4). This case occurs if d.tentry ≤ z.tentry

and z.tentry ≤ d.texit (Lines 11-14). In this case, the interval returned is defined as iStart =
d.tentry and iEnd = z.tentry.

4. A node leaves Z while it detects an object (see Figure B.3). This case is analogous to the case

158

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure B.1: OutsideDetectedv – Node de-
tected object before joining Z

Figure B.2: OutsideDetectedv – Node de-
tected object after joining Z

Figure B.3: OutsideDetectedv – Node de-
tected object while joining Z

Figure B.4: OutsideDetectedv – Node de-
tected object while leaving Z

where the node joins the zone while detecting the object. Hence, the object must be detected
after z.tentry and at least until the node leaves the zone, i.e., d.tentry ≤ z.texit (cf Lines 16-20).
Therefore, iStart = z.texit and iEnd = d.texit.

Summing up, OutsideDetectedv contains a tuple [ObjectID,iStart,iEnd] for every detection of
an object by a node during a time when the node was outside of Z at some time. Note that each
of these tuples does not imply Disjoint (O,Z) = T for the corresponding object O because there
could be nodes in Z that detect O at a time that overlaps with the time indicated by the tuple.

B.2.2 Step 2 – Computing InsideDetectedv

The SQL statement in Algorithm 16 constructs the view InsideDetectedv. Analog to
OutsideDetectedv, the SQL statement generates a tuple [ObjectID,iStart,iEnd] for every start
of a detection by node inside of Z of an object identified by ObjectID at some time.

Similar to Algorithm 15, we decompose the query into several subqueries. Each subquery
corresponds to one of the following cases where a node inside Z detects an object; similar to
OutsideDetectedv, we illustrate each case with a figure that displays time bars representing tu-
ples from Zones and Detections:

159

B.2. EXPRESSING A SPATIO-TEMPORAL QUERY USING SQL

Algorithm 16: SQL statement to get all objects detected by nodes in Z
1 SELECT ObjectID, d.tentry AS iStart, d.texit AS iEnd FROM Detections d, Zones z
2 WHERE d.NodeID = z.NodeID AND z.ZoneID = Z
3 AND z.tentry ≤ d.tentry

4 AND ((d.texit ≤ z.texit) OR (z.texit =Ø))
5 UNION
6 SELECT ObjectID, d.tentry AS iStart, z.texit AS iEnd FROM Detections d, Zones z
7 WHERE d.NodeID = z.NodeID AND z.ZoneID = Z
8 AND z.tentry ≤ d.tentry

9 AND NOT (z.texit =Ø)
10 AND d.tentry ≤ z.texit

11 AND ((z.texit ≤ d.texit) OR (d.texit =Ø))
12 UNION
13 SELECT ObjectID, z.tentry AS iStart, d.texit AS iEnd FROM Detections d, Zones z
14 WHERE d.NodeID = z.NodeID AND z.ZoneID = Z
15 AND d.tentry ≤ z.tentry

16 AND NOT (d.texit =Ø)
17 AND z.tentry ≤ d.texit

18 AND ((d.texit ≤ z.texit) OR (z.texit =Ø))
19 UNION
20 SELECT ObjectID, z.tentry AS iStart, z.texit AS iEnd FROM Detections d, Zones z
21 WHERE d.NodeID = z.NodeID AND z.ZoneID = Z
22 AND d.tentry ≤ z.tentry

23 AND NOT (z.texit =Ø)
24 AND ((z.texit ≤ d.texit) OR (d.texit =Ø))

1. Lines 1-4 generate a tuple [ObjectID,iStart,iEnd] for all detections where the node was in
Z for all times while detecting an object. Figure B.5 illustrates this case using time bars. In
this case, the beginning and the end of the detection frame the interval [iStart,iEnd], i.e.,
iStart = d.tentry and iEnd = d.texit.

2. As illustrated by Figure B.6, a node Si ∈ Z may leave the zone while detecting an object. The
subquery in Lines 6-11 of Algorithm 16 addresses this case. The appropriate intervals for the
tuple [ObjectID,iStart,iEnd] are iStart = d.tentry and iEnd = z.texit.

3. Similarly to the previous case, a node may join Z while detecting an object and then
stop detecting the object while still being in the zone as shown by the time bars in Fig-
ure B.7. As defined by the subquery in Lines 13-18, the attribute values for the tuple
[ObjectID,iStart,iEnd] are iStart = z.tentry and iEnd = d.texit.

4. The counter-case to the first one is that a node detects an object while joining and leaving Z.

160

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure B.5: InsideDetectedv – Node is in
Z while detecting object

Figure B.6: InsideDetectedv – Node de-
tects object while leaving Z

Figure B.7: InsideDetectedv – Node de-
tects object while joining Z

Figure B.8: InsideDetectedv – Node joins
and leaves Z while detecting object

This is illustrated by Figure B.8. Lines 20-24 contain the subquery corresponding to this case.
It results in iStart = z.tentry and iEnd = z.texit for the tuple [ObjectID,iStart,iEnd].

Analogous to OutsideDetectedv, the set of tuples created by the SQL statement in Algorithm 16
creates a tuple for every object detection by a node Si that is in Z at some time during the detection.
Recall that these tuples do not necessarily correspond to objects O where Inside (O,Z) = T ,
because the time intervals could still overlap with detections by nodes outside of Z.

B.2.3 Step 3 – Computing DisjointViewv

The previous steps derived tuples [ObjectID,iStart,iEnd] which describe intervals where nodes
inside or outside of Z detected objects. The results of these steps have been summarized in the two
views InsideDetectedv and OutsideDetectedv respectively. Next, we provide an SQL statement
that computes tuples [ObjectID,iStart,iEnd] for objects O where Disjoint (O,Z) = T for the
interval [iStart,iEnd].
Notation (Tuple Overlap): A tuple T1 = [ObjectID,iStart,iEnd] overlaps with another
tuple T2 = [ObjectID,iStart,iEnd] if at least one of the following conditions is true:

• T1.iStart ≤ T2.iStart ≤ T1.iEnd

161

B.2. EXPRESSING A SPATIO-TEMPORAL QUERY USING SQL

• T2.iStart ≤ T1.iStart ≤ T2.iEnd
• T2.iStart ≤ T1.iEnd ≤ T2.iEnd
• T1.iStart ≤ T2.iEnd ≤ T1.iEnd

Similarly to the previous queries, this SQL statement consists of several subqueries, but since
these are a little more complex, we describe them one by one. Due to its length, we omit the
complete SQL statement at this point, but to obtain it, one has to use the UNION operator to
”concatenate” all of them into the view definition of DisjointViewv.

Algorithm 17: Disjoint (O,Z) – Tuples without overlapping detections in InsideDetectedv

1 SELECT o.ObjectID, o.iStart, o.iEnd FROM OutsideDetectedv o
2 WHERE NOT EXISTS (
3 SELECT * FROM InsideDetectedv i
4 WHERE i.ObjectID = o.ObjectID
5 AND i.iStart ≤ o.iStart
6 AND ((o.iStart ≤ o.iEnd) OR (i.iEnd =Ø))
7) AND NOT EXISTS (
8 SELECT * FROM InsideDetectedv i
9 WHERE i.ObjectID = o.ObjectID

10 AND o.iStart ≤ i.iStart
11 AND ((i.iStart ≤ o.iEnd) OR (o.iEnd =Ø))
12)

The first subquery in Algorithm 17 computes all tuples that describe a detection by a node Si ∈ Z
for an interval [iStart,iEnd] that does not overlap with any detection/tuple in InsideDetectedv.
The first part of the query (Lines 2-6) checks for every tuple [ObjectID,iStart,iEnd] in
OutsideDetectedv if there is a tuple in InsideDetectedv which overlaps with iStart. The
second part (Lines 7-11) of the query performs the same check with iEnd for every tuple in
OutsideDetectedv. For every tuple that fulfills both conditions, it is sure that the corresponding
object O conforms to Disjoint (O,Z) for the interval [iStart,iEnd].

The remaining cases are those where either iStart, or iEnd or both overlap with tuples from
InsideDetectedv, i.e., there are detections by nodes outside of Z that partly or completely overlap
with detections by nodes inside of Z. We consider these three cases separately in the following.

First, we consider the case where several tuples [ObjectID,iStart,iEnd] in InsideDetectedv

describe detections which overlap with iStart of a single tuple in To = [ObjectID,iStart,iEnd]
from OutsideDetectedv. Algorithm 18 computes a tuple [ObjectID,iStart,iEnd] for of these
tuples To from OutsideDetectedv where [iStart,iEnd] describes an interval where the object
is detected exclusively by nodes outside of Z. According to Definition 32, Disjoint (O,Z) = T
for these intervals. As shown in Algorithm 18, the computation first requires an equi-join of

162

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Algorithm 18: Disjoint (O,Z) – Tuples where only iStart overlaps with tuples in
InsideDetectedv

1 SELECT o.ObjectID, MAX (i.iEnd) AS iStart, o.iEnd FROM OutsideDetectedv o,
InsideDetectedv i

2 WHERE o.ObjectID = i.ObjectID
3 AND i.iStart ≤ o.iStart
4 AND NOT (i.iEnd =Ø)
5 AND o.iStart ≤ i.iEnd
6 AND NOT EXISTS (
7 SELECT * FROM InsideDetectedv i2
8 WHERE i2.ObjectID = o.ObjectID
9 AND i2.iStart ≤ o.iEnd

10 AND ((o.iEnd ≤ i2.iEnd) OR (i2.iEnd =Ø))
11)
12 GROUP BY o.ObjectID, o.iEnd
13 HAVING MAX (i.iEnd) < o.iEnd

InsideDetectedv and OutsideDetectedv using ObjectID. Lines 3-5 select those tuples from the
join result, where To.iStart overlaps with a detection inside of Z. To compute the correct iStart
where the object was detected exclusively outside of Z, one has to find the detection from inside
Z with the maximum iEnd. The HAVING in the end ensures that this maximum is not greater than
To.iEnd, because in this case the object was never detected exclusively outside of Z.

Similar to above, we consider tuples To = [ObjectID,iStart,iEnd] from OutsideDetectedv

where iEnd overlaps with tuples from InsideDetectedv. To compute the interval [iStart,iEnd]
for To where the object was detected exclusively outside of Z, the tuple with the minimum iStart
out of those tuples from InsideDetectedv that overlap with To must be found. Again, we use
an equi-join of OutsideDetectedv and InsideDetectedv as well as a group-operator to find this
tuple. Lines 2-4 selects tuples from the join result, where To.iEnd overlaps with tuples from
InsideDetectedv. These tuples are grouped by ObjectID and To.iStart and then we compute
the minimum iStart from detections by nodes inside of Z.

Algorithm 20 is a combination of the two previous cases: Assuming there is a tuple
To = [ObjectID,iStart,iEnd] where iEnd as well as iStart are overlapped by detections in
InsideDetectedv. To obtain a correct result tuple [ObjectID,iStart,iEnd] that describes an
interval where the object is exclusively detected by nodes outside of Z, the steps described in
Algorithms 18 and 19 must be completed for each of these tuples in OutsideDetectedv.

163

B.2. EXPRESSING A SPATIO-TEMPORAL QUERY USING SQL

Algorithm 19: Disjoint (O,Z) – Tuples where only iEnd overlaps with tuples in
InsideDetectedv

1 SELECT o.ObjectID, o.iStart, MIN (i.iStart) AS iEnd FROM OutsideDetectedv o,
InsideDetectedv i

2 WHERE o.ObjectID = i.ObjectID
3 AND o.iStart ≤ i.iStart
4 AND ((i.iStart ≤ o.iEnd) OR (o.iEnd =Ø))
5 AND NOT EXISTS (
6 SELECT * FROM InsideDetectedv i2
7 WHERE o.ObjectID = i2.ObjectID
8 AND i2.iStart ≤ o.iStart
9 AND ((o.iStart ≤ i2.iEnd) OR (i2.iEnd =Ø))

10)
11 GROUP BY o.ObjectID, o.iStart
12 HAVING o.iStart <MIN (i.iEnd)

Algorithm 20: Disjoint (O,Z) – Tuples where iStart and iEnd overlap with tuples in
InsideDetectedv

1 SELECT o.ObjectID, MAX (i1.iEnd) AS iStart, MIN (i2.iStart) AS iEnd FROM
OutsideDetectedv o, InsideDetectedv i1, InsideDetectedv i2

2 WHERE o.ObjectID = i1.ObjectID AND o.ObjectID = i2.ObjectID
3 AND i1.iStart ≤ o.iStart
4 AND NOT (i1.iEnd =Ø)
5 AND o.iStart ≤ i1.iEnd
6 AND o.iStart ≤ i2.iStart
7 AND ((i2.iStart ≤ o.iEnd) OR (o.iEnd =Ø))
8 GROUP BY o.ObjectID, o.iStart, o.iEnd
9 HAVING MAX (i1.iEnd) <MIN (i2.iStart)

164

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

B.2.4 Step 4 – Computing InsideViewv

This section provides SQL statements to compute tuples [ObjectID,iStart,iEnd] that describe
time intervals during which an object identified by ObjectID has been detected exclusively by nodes
in Z. As with Disjoint (O,Z) above, this computation is based on the tuples InsideDetectedv

and OutsideDetectedv and consists of four subqueries which we discuss separately in the following.
To obtain the complete SQL statement for Inside (O,Z), the subqueries must be ”concatenated”
using UNION operations.

Algorithm 21: Inside (O,Z) – Tuples without overlapping detections in OutsideDetectedv

1 SELECT i.ObjectID, i.iStart, i.iEnd FROM InsideDetectedv i
2 WHERE NOT EXISTS (
3 SELECT * FROM OutsideDetectedv o
4 WHERE o.ObjectID = i.ObjectID
5 AND o.iStart ≤ i.iStart
6 AND ((i.iStart ≤ o.iEnd) OR (o.iEnd =Ø))
7) AND NOT EXISTS (
8 SELECT * FROM OutsideDetectedv o
9 WHERE o.ObjectID = i.ObjectID

10 AND i.iStart ≤ o.iStart
11 AND ((o.iStart ≤ i.iEnd) OR (i.iEnd =Ø))

The subquery in Algorithm 21 derives tuples [ObjectID,iStart,iEnd] for all tuples in
InsideDetectedv which do not overlap with any tuples from InsideDetectedv. The approach
is analogous to Algorithm 17: The first part (Lines 2-6) determines for a given tuple Ti from
InsideDetectedv if there are tuples in OutsideDetectedv that overlap with Ti.iStart. The check
if there are tuples in OutsideDetectedv performs the same check for Ti.iEnd in Lines 7- 11

Algorithms 22 and 23 are analogous to Algorithms 18 and 19 respectively: Both restrict the
start or the end of the interval appropriately for tuples that partly overlap with detections by
nodes outside of Z. Based on this, Algorithm 24 combines both steps in cases where the start and
the end of a detection stored in InsideDetectedv overlaps with tuples in OutsideDetectedv.

165

B.2. EXPRESSING A SPATIO-TEMPORAL QUERY USING SQL

Algorithm 22: Inside (O,Z) – Tuples where only iStart overlaps with tuples in
OutsideDetectedv

1 SELECT i.ObjectID, MAX (o.iEnd) AS iStart, i.iEnd FROM InsideDetectedv i,
OutsideDetectedv o

2 WHERE i.ObjectID = o.ObjectID
3 AND o.iStart ≤ i.iStart
4 AND NOT (o.iEnd =Ø)
5 AND i.iStart ≤ o.iEnd
6 AND NOT EXISTS (
7 SELECT * FROM OutsideDetectedv o2
8 WHERE o2.ObjectID = i.ObjectID
9 AND o2.iStart ≤ i.iEnd

10 AND ((i.iEnd ≤ o2.iEnd) OR (o2.iEnd =Ø))
11)
12 GROUP BY i.ObjectID, i.iEnd
13 HAVING MAX (o.iEnd) < i.iEnd

Algorithm 23: Inside (O,Z) – Tuples where only iEnd overlaps with tuples in
OutsideDetectedv

1 SELECT i.ObjectID, i.iStart, MIN (o.iStart) FROM InsideDetectedv i,
OutsideDetectedv o

2 WHERE i.ObjectID = o.ObjectID
3 AND i.iStart ≤ o.iStart
4 AND ((o.iStart ≤ i.iEnd) OR (i.iEnd =Ø))
5 AND NOT EXISTS (
6 SELECT * FROM OutsideDetectedv o2
7 WHERE o2.ObjectID = i.ObjectID
8 AND o2.iStart ≤ i.iStart
9 AND ((i.iStart ≤ o2.iEnd) OR (o2.iEnd =Ø))

10)
11 GROUP BY i.ObjectID, i.iStart
12 HAVING i.iStart <MIN (o.iStart)

166

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Algorithm 24: Inside (O,Z) – Tuples where iStart and iEnd overlap with tuples in
OutsideDetectedv

1 SELECT i.ObjectID, MAX (o1.iEnd) AS iStart, MIN (o2.iStart) AS iEnd FROM
InsideDetectedv i, OutsideDetectedv o1, OutsideDetectedv o2

2 WHERE i.ObjectID = o1.ObjectID AND i.ObjectID = o2.ObjectID
3 AND o1.iStart ≤ i.iStart
4 AND NOT (o1.iEnd =Ø)
5 AND i.iStart ≤ o1.iEnd
6 AND i.iStart ≤ o2.iStart
7 AND ((o2.iStart ≤ i.iEnd) OR (i.iEnd =Ø))
8 GROUP BY i.ObjectID, i.iStart, i.iEnd
9 HAVING MAX (o1.iEnd) <MIN (o2.iStart)

B.2.5 Step 5 – Assembling the subqueries for WSNEnter (O,Z)
Using the two views InsideViewv and DisjointViewv the computation of the set of objects whose
movement conforms to WSNEnter (O,Z) is straightforward: As illustrated in Algorithm 25, both
views are joined and the respective starts of the intervals are compared. Any object with a tu-
ple in DisjointViewv which has a corresponding tuple in InsideViewv afterwards conforms to
WSNEnter (O,Z).

Algorithm 25: SQL statement to determine objects that conform to WSNEnter (O,Z)
1 SELECT d.ObjectID FROM DisjointViewv d, InsideViewv i
2 WHERE d.ObjectID = z.ObjectID AND z.ZoneID = Z
3 AND d.iStart < i.iStart

We implemented the aforementioned views using an Oracle 10g DBMS. The resulting relational
execution plan had a depth of 16, i.e., some tuples had to be accessed by 16 relational operators.
Most importantly, the operator tree contained several joins and self-joins. This problematic con-
sidering the problems associated with join processing in sensor networks (cf. Section 2.3). Hence,
we conclude that sending all tuples for Detections and Zones to the base station would be the
best strategy for a relational query processor.

B.3 Relational Schemas and Regions

The query addressed in the previous section did not require any operations on point sets. Instead,
we only demonstrated the complexity of expressing a sequence of detections by nodes that are

167

B.4. LESSONS LEARNED

either inside or outside of a given zone Z. The resulting query is already complex and the execution
requires several joins and exist operations on the given tuples.

A query that operates on point sets is even more complex. Consider the development
Enter (O,R) as an example: First, one would have to find a schema to model the position es-
timate (cf. Definition 17). Such a representation has to distribute the point set that represents
the position estimation of a single detection over several tuples or relations to decompose it into
the basic types supported by relational database systems. Thus, to compute the possible object
position (cf. Definition 18) for some instant of time would require several (self-)joins to recon-
struct the position estimation for every node detecting a given object. Once these point sets are
reconstructed, computing the intersection of these point sets would finally yield the possible object
positions. Since the intersection of two point sets is not an operation that is supported by database
systems, this would require further subqueries with joins.

Summing up, it is reasonable to conclude that expressing Enter (O,R) using SQL would be
even more complex than WSNEnter (O,Z) because operations on point sets are not supported by
relational database systems. This also applies to the existing relational query processors for sensor
networks, since they only provide an abstraction of these relational concepts for sensor networks.

B.4 Lessons Learned

This section has illustrated the difficulties that occur when users try to express queries that have
spatio-temporal semantics using a relational database system. Even a relatively simple spatio-
temporal query is problematic, because expressing sequences of events, temporal intervals and the
relation between these intervals results in complex queries. Even more problematic are queries
where point sets and their topological relation are involved: Point sets must be reconstructed
through several (self-)joins and operations to check if point sets overlap are difficult to express with
SQL or relational operators.

It must be noted also that the intermediate results generated by these queries are large, because
tuples originating from every node of the sensor network are joined. Furthermore, the tests for
non-existence tests in some of these queries require sending a confirmation from every node in
the sensor network to a central point, e.g., the base station. Thus, the existing relational query
processors would transport all tuples to the base station and execute joins as well as non-existence
operators there.

168

Appendix C

The Karlsruhe Sensor Networking
Project

The Karlsruhe Sensor Networking Project (KSN) served as a platform to publish general-purpose
software for Sun SPOTs created for this dissertation. At the beginning of our work, the software
available for Sun SPOTs was also in its infancy: Among other things, communication was problem-
atic due to bugs in low-level layers of the default communication stack. Additionally, programming
SPOTs was error-prone mainly because the missing serialization lead to unnecessarily complex code
for relatively simple applications. In the meantime, some of these problems have been addressed,
but since we used most of the KSN software for the evaluation of the various mechanisms presented
in this dissertation, we describe it here.

The published software is not tailored towards query processing as numerous other projects have
shown, e.g., in [137] the KSN Radio Stack was used for water monitoring. Before we describe the
various pieces of KSN software, we describe the KSN testbed and thereby introduce several problems
we encountered during our work with sensor nodes in general and Sun SPOTs in particular. This
provides insight into the motivation and the most important design targets for our work.

C.1 KSN Testbed

To evaluate and test our mechanisms, we deployed 41 Sun SPOT sensors nodes at the Institute
for Program Structures and Data Organization (IPD) as displayed in Figure C.1. This setup has
several intricacies that influenced the design of the spatio-temporal query processor described in
the main part of the dissertation as well as all components developed in the KSN project. We
describe a few of them to motivate our measures, particularly regarding the development of the
KSN Radio Stack and the KSN Management Application.

Deploying 41 Sun SPOT sensor nodes to test and evaluate software for sensor networks poses
the unique challenge that one has to administrate sensor nodes without having physical access to

169

C.2. KSN SERIALIZATION AND COLLECTIONS

Figure C.1: The KSN Testbed: 41 Sun SPOTs deployed at the IPD

them. This is because manually walking into each office to reset nodes or update software is not an
option. While the software provided with Sun SPOTs has a so called over-the-air (OTA) command
server which allows users to access nodes using the radio, the software was not developed with a
testbed of this size in mind. As we show in Section C.5, this OTA command server is relatively
unreliable and inefficient regarding the time it takes to update software on up to 41 nodes.

Another problem with this setup are the external influences that interfere with radio commu-
nication: Most importantly, this testbed is deployed in a computer science building with many
wireless networks and wireless devices accessing the Internet using these networks. The frequencies
used by Sun SPOTs and their 802.15.4-compatible radio chip as well as the 802.11-compatible de-
vices commonly used by wireless devices such as laptops overlap. This causes contention, collisions
and reduced radio ranges. Thus, all our measures must be able to cope with such a collision-rich
environment.

Another problem is the building itself: There are fire doors consisting of steel as well as ferrocon-
crete walls that prevent wireless communication. While the ferroconcrete walls are just constantly
preventing communication, the fire doors are opened and closed by people using the building.
Opening one of the fire doors changes the network topology, because nodes that previously could
not communicate directly are able to exchange messages temporarily. These changes influence
processes like software deployment in the testbed, because the network topology changes while the
transfer is in progress. Summing up, the external conditions require that software is designed in
such a way that nodes can cope with topology changes quickly even during data transmission.

C.2 KSN Serialization and Collections

Sun SPOT run Java programs, i.e., use an object-oriented approach to define data structures and
operators. While this is advantageous for complex applications to maintain software quality and
allow reusability of code, it is problematic when object structures must be transferred from one
place to another. This includes storing objects on a disk, in flash memory or transferring them

170

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

between different hosts. The reason for this is that the physical devices responsible for storage or
transmission are not object-oriented, i.e., they only ”understand” simple data types like bytes or
integers. Serialization techniques have proven to be very useful to solve this issue.

In general, serialization techniques encapsulate the process of transferring an object from one
host to another as follows: First, before the object is sent, the object is decomposed into a string
of bytes, i.e., serialized. This string of bytes is then transferred to a remote host. After the string
has been received completely at the remote host, the sent object is reconstructed from the string of
bytes, i.e., deserialized. To serialize an object, the structure of the object and how it is organized
in memory must be known. In Java, this depends on the virtual machine (VM) and therefore the
serialization must be reimplemented for every virtual machine with serialization support. However,
the Squawk VM used on Sun SPOTs does not support serialization.

While implementation and maintenance of small applications is possible without serialization,
larger programs like query processors require it, as the following example demonstrates: Consider
a query processor that has to deliver a result set from a given node to the base station. In most
cases, the result set will be a complex data structure containing tuples with different attribute
values of varying types. Without a serialization mechanism, the result set would require a custom
implementation of the decomposition into a string of bytes for every complex data structure. Im-
plementing these custom mechanisms is not only error-prone and time consuming, it also breaches
software engineering principles. For example the principle of locality is breached because changing
a data structure in the result set would also require modifications of the communication process.
Other important aspects like type safety of software engineering are also neglected by this manual
serialization: Errors during the reconstruction of an object at the receiver could result in differ-
ences between the sent object and the object reconstructed at the receiver. These errors result in
exceptions that are hard to track because they are raised in a totally different part of the code.

The KSN Serialization [11] offers a general approach to solve these issues. In combination with
the KSN Radio Stack (cf. Section C.3) it offers an almost desktop-like solution for programming
communication intensive applications for Sun SPOTs. In addition to the serialization mechanism,
we implemented a complete set of serializable collection data structures for Sun SPOTs like hash
maps or array lists. More specifically, the KSN Serialization has the following main features:

1. Applicable to almost any kind of object structure. Limitations are investigated in Section C.2.1.
2. Full Java ME compatibility. This is important because it allows the use of the KSN Serializa-

tion on other devices like mobile phones or robots as well.
3. Can be applied without modification of the VM. The implementation is written completely in

Java and usable by including the necessary classes and interfaces.
4. Automatically resolves object references, i.e., serializing an object that contains a reference to

another object results in the serialization of the references object as well.
5. Adheres to software engineering principles like locality: A change of the structure of a class

only leads to changes inside the class and does not affect other parts of the implementation,
e.g., communication code.

171

C.2. KSN SERIALIZATION AND COLLECTIONS

6. Ensures type safety.
7. Complete implementation of the Java Collection API including serialization for Java ME.

Figure C.2: Structural information requiring serialization in a double linked list

The advantages of serialization come at the cost of increased message size compared to manual
serialization, i.e., writing a custom serialization routine for each type of object that is transmitted.
This is because the information on the structure of the objects is contained in the source code of
the application and not in the message itself. For example, if a program requires transmission of a
double linked list (cf. Figure C.2), with manual serialization it is sufficient to send the elements of
the list. Since the programmer knows in which order the items were sent and that the list is double
linked. The complete structure of the initial list can be reconstructed at the receiver solely based on
the elements in the list. Contrary to this, serialization must sent the structural information as well.
In case of the double linked list, this structural information includes references to the predecessor
and successor in addition to the element of the list. As we show, this overhead can be excessive
preventing an application of serialization to sensor nodes. We provide a very efficient approach to
reduce this overhead significantly resulting in a viable serialization approach for sensor networks.

C.2.1 The KSN Serialization Process

This section provides an in-depth look at the steps that must be performed for serialization. We use
the serialization and deserialization of the double-linked list as a running example (see Figure C.2).
The class that implements the double-linked list is called DoubleLinkedList from now on. Every
element of the list is an instance of the class ListElement. Each of these elements contains a
random integer declared as int number and two references to the previous and the next element,
i.e., two references to other instances of ListElement. Listing C.1 contains a code fragment that
declares this class.

In Java, the serialization and deserialization of data is accomplished through streams. In the
following, we denote the stream that is responsible for serializing data into bytes as OutputStream.
The counterpart of this stream is the InputStream which reconstructs a copy of the data from the
bytes created by the OutputStream.

172

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

1 public class ListElement implements KSNSerializable {
private ListElement next;

3 private ListElement previous;
private int number;

5 public ListElement(ListElement next, ListElement previous, int number) {
this.next = next;

7 this.previous = previous;
this.number = number;

9 }
// Remainder of this class will be illustrated in the following

11 ...
}

Listing C.1: Declaration of the class ListElement

Serialization method Description
writeBoolean () Serializes boolean values
writeByte () Serializes byte values
writeChar () Serializes char values
writeFloat () Serializes Float values
writeInt () Serializes int values
writeObject () Serializes complex objects

Table C.1: Methods of OutputStream

Serialization of primitive values OutputStream encapsulates methods that decompose prim-
itive types like int or char or objects into bytes. As shown in Table C.1, for each primitive type1,
there is a method that serializes this type. Thus, to serialize the random integer number in an
element of the list, one simply uses OutputStream.writeInt (number).

In JAVA, a variable of type int requires 4 bytes [51]. Prior to writing the four bytes that
determine the value of number, the KSN Serialization must denote that these four bytes must
belong to an int value. To do so, the KSN Serialization uses a type identifier, i.e., a byte value
that uniquely identifies each primitive type. Hence, for the serialization of the number one needs
4 + 1 = 5 bytes. Other instances of primitive types are serialized similarly.

The counterpart of the OutputStream at the receiver is the InputStream. For every write-
method in Table C.1 the InputStream has a corresponding read-method as shown in Table C.2.
The InputStream is responsible for the reconstruction of primitive types and objects. For the
aforementioned int-value, the receiver reads the first of the 5 bytes to restore the byte type iden-

1We have omitted some types in this table and the corresponding table for InputStream. The documentation of
the KSN Serialization [11] presents a complete list.

173

C.2. KSN SERIALIZATION AND COLLECTIONS

tifier. Based on the type identifier, the receiver determines that the next four bytes belong to a
int-value. Thus, the receiver reserves four bytes in memory, reads four bytes and stores them in
the memory reserved.

Deserialization method Description
readBoolean () Reconstructs boolean values
readByte () Reconstructs byte values
readChar () Reconstructs char values
readFloat () Reconstructs Float values
readInt () Reconstructs int values
readObject () Reconstructs complex objects

Table C.2: Methods of InputStream

Serialization of complex objects The serialization process is started when the method
writeObject () of an instance of OutputStream is called. To allow serialization on a Sun SPOT,
a class must implement the interface KSNSerializable. This interface requires every serializable
class to implement two methods:

• WriteObjectOnSensor (): This method is called by the OutputStream to write the state of an
object to the stream.

• ReadObjectOnSensor (): This method reads bytes from the stream and reconstructs the state
of the serialized object.

Both methods are necessary because the Squawk VM used on Sun SPOT does not support
serialization. Additionally, every class that implements KSNSerializable must also imple-
ment a no-argument constructor. In the following, we show how WriteObjectOnSensor () and
ReadObjectOnSensor () are implemented, how references are reconstructed and the role of the
no-argument constructor.

As shown in Listing C.1 implements KSNSerializable. The serialization of an instance of
ListElement requires writing the int value as well as the references to the next and the previous
element in the list to OutputStream. Listing C.2 shows how accomplish this in three steps: The
first step in Line 8 serializes the primitive data type as described above. Afterwards, the two
references to the next (Line 9) and the previous element (Line 10) in the list must be serialized.

The serialization of the reference to the next and the previous element in the list is more com-
plicated as the serialization of a primitive value like number. The main reason for this is that the
references must be resolved correctly in order to keep the original list consistent with the previous
one. The KSN Serialization deals automatically with this problem: Whenever an object is serial-
ized for the first time, the serialization mechanism generates a unique identifier of the object based

174

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

public class ListElement implements KSNSerializable {
2 private ListElement next;

private ListElement previous;
4 private int number;

// See Listing C.1 for constructor
6 ...

public void WriteObjectOnSensor (OutputStream oos) {
8 oos.writeInt (number);

oos.writeObject (next);
10 oos.writeObject (previous);

}
12 // Remainder of this class will be illustrated in the following

...
14 }

Listing C.2: Implementation of WriteObjectOnSensor () for ListElement

on the internal address where the object is stored in memory. This identifier is stored on the SPOT
during serialization. Thus, when a node serializes an object structure where the same object is
referenced more than once, the node can check if the object references has been serialized already.
This is important to resolve cyclic references in object structures.

If an object is serialized for the first time, the serialization starts by writing a special type
identifier that mark the beginning of an object structure to the instance of OutputStream. In the
following, the unique identifier mentioned above is written to the stream and the complete class
name of the object that is being serialized. Afterwards, the method WriteObjectOnSensor () of
the object is called and the process recurs until all elements of the list are serialized once.

The deserialization reverses the whole process: First, the special type identifier that marks the
beginning of an object structure is read from the instance of InputStream. This allows the receiver
of the object structure to determine that the next set of bytes is a class name to corresponds to the
class of the object that was serialized. After reading this class name, the receiver creates an empty
instance of this class by calling the no-argument constructor. Thus, the KSN Serialization cannot
be applied to classes that do not implement a no-argument constructor. After this empty instance
has been created in memory, the method ReadObjectOnSensor () is called and restores the internal
state of the object. Listing C.3 illustrates the implementation of ReadObjectOnSensor () for the
ListElement class.

Note that ReadObjectOnSensor () reads the values of the internal variables in the same order
as they were written on the stream: Line 8 uses the process for deserialization of primitive values
described above. The references to the next and the previous element of the list are resolved by
reading the unique identifier, creating an empty instance and restoring their internal values first.
Again, references are restored based on the unique identifier computed during the serialization.

175

C.2. KSN SERIALIZATION AND COLLECTIONS

public class ListElement implements KSNSerializable {
2 private ListElement next;

private ListElement previous;
4 private int number;

public ListElement(){} // No-argument constructor
6 // deserialization

public void ReadObjectOnSensor (InputStream ois) {
8 this.number = ois.readInt ();

this.next = ois.readObject ();
10 this.previous = ois.readObject ();

}
12 }

Listing C.3: Implementation of WriteObjectOnSensor () for ListElement

Hence, the complete structure of the object including all references are restored in memory.

KSN Serialization vs. Java Serialization for PCs

Compared to the serialization offered by Java for personal computers, the KSN Serialization requires
some additional code for every class that requires serialization support:

• No-argument constructor.
• A class specific implementation of WriteObjectOnSensor () and ReadObjectOnSensor ().

The no-argument constructor is typically a single line of code per class as illustrated in Listing C.3.
The two methods for reading and writing the state of an object to the stream are typically one line
per internal variable of a class. Recent, but yet unpublished work by users of the KSN Serialization
have focused at automatic generation of this additional code. These additional lines of code are
required until the virtual machine used on Sun SPOTs supports serialization, but in general, the
overhead is relatively small. For example, the additional programming required for the serialization
of the double-linked list is less than 30 lines of code. Sending the double-linked list without KSN
Serialization requires significantly more than these 30 lines, mainly because references must be
reconstructed even if they are not transmitted.

Even if it ”feels” like Java Serialization, there are some limits to our approach which cannot be
overcome without VM support:

• KSN Serialization cannot process internal variables declared with the attribute final. This is
because these variables are protected from being written after the instantiation of an object,
i.e., before ReadObjectOnSensor () is called.

• The requirement to have a no argument constructor can lead to difficulties if a class needs
certain parameters to exist.

176

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Reducing the Overhead of Serialization

As explained above, the complete class name is required for the deserialization of an object and
thus must be written to the stream. Class names can be relatively long and increase the length of
the byte array that is transmitted from one node to another significantly, particularly if the actual
content of a class is relatively low. In initial versions of the KSN Serialization, this resulted in node
failures, because nodes were out of memory. We address this issue by introducing two measures
that reduce the overhead related to serialization.

To serialize a variable that corresponds to a primitive piece of data, e.g., an int-value, one has to
decompose the byte into two pieces: The value itself which results in 4 bytes in case of an int and
the structural information that these 4 bytes belong to an int. For the initial version of the KSN
Serialization, this was a string of 7 bytes that identified a primitive data type. Thus, the serialization
of the int value results in 11 bytes. This is clearly inefficient and we changed the encoding scheme in
such a way that every primitive data type only results in a into a single additional byte for structural
information. This comes at the cost of limiting the design to a maximum of 256 primitive data
types but considering the fact most modern programming languages have less than 20 primitive
data types, this is sufficient. Our evaluation shows that this reduces the overhead associated with
serialization significantly.

With the double-linked list above, the complete class name of the class ListElement must be
transmitted once for each reference to an instance of this class. Considering a double-linked list of
n elements, this means this class name is transmitted at least 2 ⋅n times. This is clearly inefficient.

PackageA

PackageB PackageC

C1 C2 . . .

Figure C.3: Hierarchical class names in Java

We solve this problem using an online tree-compression that transfers each class name only
once at most. Its core idea is as follows: As illustrated in Figure C.3, Java class names are
hierarchic, i.e., represent a tree. For example, to transfer an instance of the class C1, the whole
class name packageA.packageB.C1 must be transferred as well. If an instance of C2 must be

177

C.2. KSN SERIALIZATION AND COLLECTIONS

transferred afterwards, the complete class name packageA.packageB.C1 is transferred again. The
online tree-compression assigns a hash value to each node of the tree. For the first instance of
C1 is transferred, we transmit the hash value associated with packageA.packageB.C1. For any
subsequent instance of C1, it is sufficient to transmit the hash value instead of the whole class
name. Additionally, in case of the transmission of an instance of C2, a large portion of the class
path is equal to the previously transmitted class path of C1. Thus, the tree compression ensures
that the hash value associated with packageA.packageB and the class name C2 are transmitted.
Again, subsequently transmitted instances of C2 only require retransmission of the hash value
associated with packageA.packageB.C2 afterwards. Our evaluation shows that this reduces the
message size of serialized messages significantly.

C.2.2 Study of Serialization Overhead

As stated at the beginning, the advantages of serialization for transferring objects come at the
cost of increased message size compared to ”manual serialization”. This section investigates the
overhead induced by the KSN Serialization and shows that the class-name compression reduces
this overhead drastically.

Experimental Setup

To measure the overhead of serialization, we assumed that an application has to send a linked list of
simple values from one node to another. The application generates between 10 and 1.000 elements
for the list randomly and serializes the list into a string of bytes. The length of this string in bytes
is the result of the experiment. We used four different serialization mechanisms which are outlined
in the following.

Manual Serialization This approach resembles a program that does not run any kind of serial-
ization and thus requires the programmer to manually write the whole serialization/deserialization
code. Therefore the programmer can suit the serialization to the data that is expected in his
application and thus reduce the amount of data that must be transferred, since the structure of
the serialized objects as well as references / pointers are not serialized. It is expected, that this
approach performs very well regarding data size compared to KSN Serialization.

The program was written by an experienced programmer with in-depth knowledge of the inter-
nals of Java serialization and the linked list data structure. Including tests and debugging, the
development of the manual serialization took a few hours. This approach is tightly integrated
into the written application and the reusability of the written code is very limited. Changing the
communication protocol or the type of list that is used, e.g., from the linked list to an array-based
list, would require re-writing large portions of the code.

178

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Manual Serialization with ZIP compression This serialization mechanism used the software
developed above in combination with the compression layer of the KSN Radio Stack. The compres-
sion layer of the KSN Radio Stack is a customized ZIP algorithm that has been fine-tuned to the
characteristics of radio communication between sensor nodes. It is expected that this mechanism
will result in the lowest data size of all approaches presented.

KSN Serialization The approach uses the KSN Serialization, which is generally applicable for
the serialization / deserialization of all objects that implement the KSNSerializable interface. The
expected data sizes for this approach are expected to be the largest in this evaluation, since all
structural information of the transferred objects and references must be transmitted together with
the data.

Writing the serialization code for the linked list was a matter of minutes. Due to the object-
oriented approach, only a few classes had to be modified for serialization and writing the code does
not require in-depth knowledge of the communication protocol or any other part outside of the
list. More importantly, the serialization code for the double-linked list has been reused extensively:
We integrated the serialization code into the collections delivered with KSN software packages.
Since most collection data structures have a similar structure, the code originally written for the
double-linked list has been partially reused in other collection classes as well, e.g., the array-based
list implementations.

KSN Serialization with ZIP compression This approach is analogous to the manual seri-
alization with ZIP compression: The data produced by the KSN Serialization is compressed by
the compression layer integrated in the KSN Radio Stack. This approach should result in data
sizes lower than those achieved with the KSN Serialization, but higher than any of the manual
serialization approaches.

Summary Summing up, the setup for our experiment heavily favours the manual serialization,
mainly for two reasons: First, a linked list is a very simple data structure compared to object struc-
tures typically encountered in object-oriented programs. For example the data structures required
for the spatio-temporal query processor contain all kinds of collection data structures, inheritance
and many other features not covered by this example. Second, the elements are randomly created
which reduces the compression rate of the ZIP algorithm contained in the KSN Radio Stack. In
typical applications, the data sent is correlated in some way which allows better compression ratios.

Results and Analysis

Figure C.4 shows the result of the experiment for KSN Serialization without any compression
mechanism (cf. Section C.2.1). The data sizes obtained with the basic KSN Serialization are much
larger than the data size with manual serialization. This is because the structural information in
the form of class names but also for primitive data types increases the amount of information that

179

C.2. KSN SERIALIZATION AND COLLECTIONS

must be transmitted: The manual serialization only transmits the values required to reconstruct
the object. Contrary to that, the KSN Serialization has to send the structural information, e.g.,
in case of our list pointers to the next and the previous object as well as class names. For long
package paths, this overhead can be 50 bytes and more per object.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

S
en

t D
at

a
(K

B
)

List-Items

Manual Ser.

Manual Ser. + ZIP

KSN Ser.

KSN Ser. + ZIP

Figure C.4: Performance of basic KSN Serialization

Comparing the results of KSN Serialization with compressions to those without serialization
shows that the potential for compression mechanisms is large: While the uncompressed list of 1000
elements requires 415 kilobytes, the compressed list is only 52 kilobytes.

Figure C.5 shows the result of the experiment with the KSN Serialization that encodes the
structural information for primitive data types into single bytes. Compared to the results in
Figure C.4, the improvement is obvious: The primitive data type compression reduces data size
by a factor of two: 415 kilobytes for 1000 list elements are reduced to 225 kilobytes without
compression. The compression of the serialized data reduces the amount of data that is transmitted
to ≈ 50 kilobytes. The manual serialization still requires only 50% of that, i.e., ≈ 25 kilobytes, but
as stated above, the manual serialization does not transmit the structural data that make up a
large part of the information one has to transmit.

While the compression of primitive types is advantageous as shown in Figure C.5, the class
names are still serialized as strings. To illustrate the problem, consider the following example: Our
application produces list objects of the same type with different/random content. Assume the list
elements are from the package ksn.somePackage and their class name is ListElement, i.e., the full
class path is ksn.somePackage.ListElement. Without class name compression, the complete class
name is transmitted for every element of the list. Thus, independently of its random content, every
element requires 15+11+1 = 27 bytes just for class names. Considering a list of 1000 elements, the
class names for list elements already use 27 kilobytes, despite the fact, that all elements are of the
same type.

Figure C.6 shows the result of the experiment with compressed class names as described in
Section C.2.1: The improvement compared to Figure C.5 is significant. Generally the KSN Serial-

180

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

S
en

t D
at

a
(K

B
)

List-Items

Manual Ser.

Manual Ser. + ZIP

KSN Ser.

KSN Ser. + ZIP

Figure C.5: Performance of basic KSN Seri-
alization

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

S
en

t D
at

a
(K

B
)

List-Items

Manual Ser.

Manual Ser. + ZIP

KSN Ser.

KSN Ser. + ZIP

Figure C.6: Performance of KSN Serializa-
tion with Class-Name Compression

ization with compression is closer the the manual serialization. Recall that the whole setup is still
favorable for the manual serialization and that the effort for programming the manual serialization
is relatively high compared to the few lines of code required for KSN Serialization.

C.3 KSN Radio Stack

During the development of the spatio-temporal query processor and other components for software,
we had to work around the unreliability of the default radio stack many times. In particular,
over-the-air software distribution was problematic as soon as the applications distributed were
significantly larger than, for example, a ”Hello-World demo”.

Figure C.7: Node topology for the radio stack reliability experiment

We investigated the reliability of the standard radio stack delivered with Sun SPOTs with a
simple experiment: SPOT A in Figure C.7 generates a message of 100.000 bytes containing random
numbers. This message must be sent to SPOT C. By reducing the output power of the radio chip
on each Sun SPOT, we made sure that SPOT A (4808) cannot sent data directly to C (4D69),
but the messages must be relayed via SPOT B (01FD). To test, if the message was forwarded

181

C.3. KSN RADIO STACK

successfully, we computed a checksum on SPOT A and C. A run of this experiment was considered
to be successful if the checksums on both nodes were equal.

We repeated the experiment for the default radio stack six times and it never finished successfully.
Even more problematic was the fact that only two of these runs actually finished at all. In both
cases, the checksum was wrong but since the message was actually passed from the radio stack to the
application shows that using the default stack would require handling even checksum calculation at
the application level. The remaining four cases never finished, i.e., even if the application handled
all communication errors, these four errors would not have been detected and thus not have been
handled.

 1

 2

 3

 4

 20
 40

 60
 80

 100

 0

 20

 40

 60

 80

 100

S
u
c
c
e
s
s
 P

e
rc

e
n
ta

g
e

Hops

Msg. Size (KB)

 0

 20

 40

 60

 80

 100

Figure C.8: Reliability of the default radio stack for Sun SPOTs

Figure C.7 shows the result of an advanced version of the setup above: For this experiment, we
varied the number of hops, i.e., 1-4 hops, and the message size between 10 and 100 kilobytes of
data. For each set of nodes and data size, we repeated the experiment 15 times. The result shows
clearly, that the existing radio stack becomes very unreliable for data sizes of several kilobytes.
Furthermore, forwarding messages even for small numbers of hops is very unreliable.

Since several modifications of the default radio stack were unsuccessful, we decided to develop
our own radio stack for Sun SPOT sensor nodes. This radio stack has been used for all of our
evaluations and we describe the design decisions in the following. At the end of this section, we
repeat an advanced version of the above experiment that demonstrates that the KSN Radio Stack
reliably forwards messages even if the network topology changes during transmission. Furthermore,
the evaluation of the KSN Management application consist of an experiment where an application
of more than 800 kilobytes was distributed over-the-air via multiple hops. This would not be

182

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

possible without a reliable radio stack implementation.

C.3.1 Design Targets and Overview

Similarly to other well-known communication stack implementations, e.g., TCP/IP, the KSN Radio
Stack uses a layer architecture to handle the different aspects of communication between Sun SPOT
sensor nodes. To obtain 802.15.4 compatibility, we use the 802.15.4 layer provided by Sun and
implement every layer above. Figure C.9 provides an overview of the radio stack and its layers.
Every layer has a specified task and we provide a more detailed description in the following.

Figure C.9: Overview of the KSN Radio Stack

Considering the problems with the default Sun SPOT layer, the main design target for the KSN
Radio Stack was increasing the reliability for communication between Sun SPOTs, particularly over
multiple hops. In addition to that, the KSN Radio Stack offers the following features:

• Flexibility: Every layer implements a generic interface. Thus, users can change the order
of the layers above the SHP Dispatcher, e.g., for some applications it makes sense to move
the compression layer below the routing layer. Furthermore, this eases the implementation of
new, user-defined layers because integrating new layers is achieved simply by implementing an
interface. Changing or integrating layers during runtime is also possible.

• Link-Quality Awareness: The radio chip used on most sensor nodes provides link-quality
information. This information is useful, for example when choosing routes, because the higher
the quality of a link, the higher the probability that transmissions do not fail or have to
be repeated. This quality information is automatically aggregated through the stack and
applications may access it.

• Multi-Stack Support: In addition to the possibility to replace each layer with another
implementation, one can use multiple stacks at one time. In the KSN Radio Stack this is

183

C.3. KSN RADIO STACK

done by the SHP Level Dispatcher. For example, we typically use different stacks for the
real application and for the management tools during experiments. This allows us to collect
statistics, e.g., the number of messages sent or received, without disturbing the application or
having to subtract the messages for statistics collection from the statistics itself.

C.3.2 Layers of the KSN Radio Stack

This section describes ever layer of the radio stack, its designated task and the most important
facts about the implementation briefly. For more details, refer to [10]. Figure C.9 shows the default
layers of the KSN Radio Stack and we describe each layer now separately using a bottom-up order.

SHP – Single Hop Protocol

To increase the reliability of communication, the first step is increasing the reliability of the com-
munication between nodes that are communication neighbors (cf. Definition 20), i.e., nodes that
can communicate directly with each other. The MAC layer provided by 802.15.4 already provides
reliable communication, but only for single packets of 127 bytes at most. In most applications,
packets of larger sizes occur, i.e., communication for messages of much larger sizes must be reliable
as well. Thus, the main objective for the Single Hop Protocol (SHP) is reliable communication
between communication neighbors for messages of arbitrary size.

For practical reasons, the amount of data that may be transmitted between Sun SPOTs is limited
by the memory available on the nodes. But the design of the layer should avoid a tight limit on
the message size, because it is likely that future sensor nodes will have more memory. The current
implementation of the SHP layer can transmit 232 bytes = 4096 megabytes using a unicast. This
boundary stems from the maximum size of an array that can occur on a 32-bit virtual machine as
it is used on Sun SPOTs. The broadcast has a lower limit: only 6.881.280 bytes can be transmitted
by a single broadcast, but since broadcasting data of more than 10 kilobytes results in high loss
rates, it is unlikely that this is a limitation. We discuss the packet flow of the SHP layer for unicast
and broadcast separately in the following.

Unicast Figure C.10 illustrates the packet layout for the different types of packets occurring
during unicasts at the level of the SHP layer. Note that the first bytes of every packet are reserved
by 802.15.4. For every packet, the first part is a byte the indicates the type of the packet. The
semantics of each of these packet types are as follows:

Data Request Packet: When Ssend must send a message to a communication neighbor Srecv, it
indicates this by sending this packet. Prior to sending this packet, Ssend generates a unique
Request Number which uniquely identifies this transmission. All packets exchanged in the
following use this identifier to associate each packet with a transmission. The packet contains
the number of bytes, the checksum and how many packets will be required to transmit the
message.

184

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

OK, go ahead: This packet is the response to the request above and indicates that Srecv is ready
to receive the message. Nodes could indicate that they are not ready in case they do not have
sufficient unused memory or other problems that prevent receiving/forwarding the message,
e.g., low battery.

Data Packet: This packet contains a fragment of at most 100 bytes of the actual message. To
allow Srecv to get the fragments ordered correctly to allow reconstruction of the actual message,
each of these packets contains a sequence number that indicates the position of the fragment
in the overall message.

Data Acknowledgement: The receiver Srecv sends an acknowledgement that the packet with
the sequence number was received correctly.

Complete Packet: The packet indicates that Srecv was able to reconstruct the message success-
fully and the computed checksum equals the checksum of provided during the data request at
the beginning.

Checksum Error Packet: This packet indicates that an error occurred during transmission and
the checksum computed from the message received does not equal the checksum provided at
request time.

Each of these packets has a specific role during the transmission. The control flow for a multi-
packet transmission at SHP level is illustrated in Figure C.11: The transfer starts with a request
which is answered by the receiver Srecv as soon as the receiver is ready to receive the message. If
this request is not answered, this could have two reasons:

1. The node Srecv is not a communication neighbor of Ssend or vice versa, i.e., either the request
never arrives at Srecv or the sender does not get the corresponding acknowledgement.

2. Srecv has failed.
Independently of the reason for the failure, the SHP layer will abort the transmission with an error
and report the error to one of the upper layers, e.g., the routing layer. The upper layers then may
decide to deliver the message via another route or abort the transmission altogether.

An important detail at this point is the sequence number provided in the data packet: For
large messages, e.g., for over-the-air deployment of software, messages may have more than 256
fragments, i.e., the byte used for sequence numbers is insufficient. If such an overflow occurs, the
sequence number restarts at 0 and the SHP layer enforces that the Srecv sends an acknowledgement
for the fragment with sequence number 0 before this overflow occurs.

The MAC layer of the 802.15.4 layer sends acknowledgements as well for every packet. Obviously,
these are redundant as the SHP layers sends acknowledgements as well. Thus, for most of our
experiments, we switched the MAC layer acknowledgements off to reduce the contention that
might occur if several nodes send at once.

Broadcast Broadcasts are not acknowledged because the broadcast messages are intended for to
be received by all communication neighbors. There are two types of packets for broadcasts whose
format is illustrated in Figure C.12:

185

C.3. KSN RADIO STACK

Figure C.10: SHP – Unicast Packets Figure C.11: SHP – Unicast Control Flow

Broadcast with more Fragments: This packet contains a fragment of a broadcast message and
indicates that there will be more fragments, i.e., the message is not complete. As with uni-
casts, the sender Ssend generates a unique identifier which allows receivers to identify packets
associated with different transmissions.

Broadcast Last Fragment: Analogous to the packet above, this packet contains a fragment of
a broadcast message. It also indicates that the whole broadcast transmission is finished, i.e.,
every node that received all fragments (as indicated by the sequence numbers) should be able
to reconstruct the message.

As shown in Figure C.13, a node must receive all fragments of a broadcast message before it can
reconstruct it. The sequence numbers start at 0 and increase by one for every packet. Since packets
are not acknowledged, nodes can determine if a fragment is missing if the sequence numbers are
not a complete sequence.

Error Handling and Route Quality In the description above we have omitted several packets
and cases related to errors. After the transmission, receiver and sender can generate quality infor-
mation regarding the link quality that occurred while transmitting the message. This information
is returned to the application. For further information on both subjects refer to the KSN Radio
Stack Manual [10].

186

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure C.12: SHP – Broadcast Packets Figure C.13: SHP – Broadcast Control Flow

SHP Dispatcher

The SHP dispatcher allows nodes to have more than one independent series of upper layers using
the reliable single hop communication provided by the SHP layer. The motivation behind this layer
is a lesson we learned from our testbed deployment described in Section C.1: For an evaluation of
the query processing mechanism, we deployed the latest build of the query processor which also
included a modified version of the radio stack. The deployment was accomplished over-the-air and
after the software was deployed on every node, the node restarts and uses the new version of the
query processor. Unfortunately, the radio stack modification contained a bug and as soon as the
node restarted, it was unable to communicate with any other node. To fix this bug, we had to
collect all nodes and re-deploy an error-free version via USB because we could not access the nodes
anymore ”over the air”. To avoid such situations in the future, we introduced the SHP dispatcher.
This allows us to have a radio stack that is proven to work for over-the-air deployment and a
different one for query processing. After the aforementioned incident, we could rely on the stack
for over-the-air deployment whenever the stack for query processing contained bugs that prevented
accessing nodes.

The implementation of the SHP layer is simple: The SHP layer attaches a stack identifier to
every message. When the message is forwarded to another node, this stack identifier is used to
determine which stack should be used to process the message and forward it to the application. The
stack also allows changing stacks at runtime, i.e., the dispatcher provides an interface to replace
stacks without restarting the node or deploying new software.

High-Level Layers

All layers above the SHP dispatcher are dynamically stackable, i.e., the structure of the stack
can be changed at runtime. To allow this, every layer has to implement a common interface
LayerInterface and inherit from an abstract superclass called AbstractLayer. Thus, every layer

187

C.3. KSN RADIO STACK

implementation has to implement the following methods:

sendBroadcast (): This method passes data from the layer above the current layer to the layer
below. The use of this method indicates that the data must be broadcasted.

sendData (): As with the method above, the method passes data from the current layer to the
layer below to send it via unicast to a given destination.

receiveData (): This method is used by lower layers to pass incoming data to the layers above.

At the construction of the layer, it must be specified how the layer forwards outgoing messages
passed to it from an upper layer and how it handles incoming data from lower layers. The layer
below a high-level layer is always either another layer or the SHP dispatcher described in Sec-
tion C.3.2. In the following we describe several implementations of high-level layers which we used
during our experiments.

Routing Layer To allow communication between nodes that are not communication neighbors,
i.e., intermediate nodes must forward the message, we implemented a routing layer based on the
AODV routing protocol [103]. AODV is an experimental routing protocol designed for mobile
ad-hoc networks. The protocol ensures that routes are loop free and avoids problems such as the
well-known ”count to infinity”-problem. Routing with AODV requires every node to store a routing
table. We describe this table later and provide an overview of the route finding process of AODV
first:

Figure C.14: AODV – Route requesting and reporting

1. Assuming a node SA must send a message to a destination SB and has not send messages
previously to SB, SA must initiate a so called Route Request (RREQ). SA can do this by
broadcasting a route request message which initially does not contain any information except
the originator of the request as well as the destination SB.

188

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

2. Any intermediate node that receives the RREQ will rebroadcast the RREQ unless it already
has a route to the destination requested, e.g., SB. When rebroadcasting the RREQ, any
intermediate will insert its own node identifier into a list contained in the RREQ. Thus,
the list contains a sequence of nodes that previously received the RREQ and forwarded it.
Additionally, intermediate nodes store the information contained in the RREQ. For example,
if the list of previous forwarders contains nodes SX and SY , the intermediate node can derive
that there is a route to SA via SX and SY , a route to SX via SY as well as a route to SX .

3. If the RREQ arrives at a node Si that has a route to the destination of the request or the
destination itself receives the request, Si will send a route reply (RREP) to the initiator of the
node. This reply is sent using the list of forwarders contained in the RREQ.

For further details on AODV refer to RFC 3561 [103]. Some of our experiments have shown that
the route invalidation used by AODV is not well-suited for sensor networks where nodes do not
move. Thus, we have modified the AODV protocol and tailored our implementation our needs. We
focus on this modification in the following.

Routing Table Every node in the network manages a local routing table that contains entries
for every known route. Each element of the routing table contains the following entries:

Destination: Address of the destination node of this route.
Next Hop: Address of a communication neighbor to which messages must be sent to reach the

destination corresponding to this entry.
Hop Count: Number of hops which have to be taken in order to reach the destination if the

message is forwarded to the node with the address stored in Next Hop.
Sequence Number: This number is used by AODV for route management and ensures that routes

are loop-free.
Route Quality: Aggregated information on the quality of the connections belonging to this route.

Whenever the node storing this table sends a messages over this route, the aggregate is updated.

As illustrated by Table C.3 which contains the routing table for the network topology in Fig-
ure C.15, this table may contain several entries for the same destination, i.e., the routing table is
2-dimensional. This is advantageous, because it avoids route flapping as Example 18 illustrates.

Example 18: Assuming the link between SB and SC in Figure C.15 is weak, i.e., the probability
to lose packets or whole messages when transferring over this link is high, particularly if the message
is large. If SB could only store a single entry for each destination and SB must transfer a large
message to SB, it is likely that route flapping would occur. First, SB would try to send the message
directly and it is likely that this fails, i.e., SB deletes the route to SC from the routing table. Since
there are no other routes to SB stored in the routing table, SA must initiate a RREQ and wait for
a new route. The RREQ is only a single packet, thus it is likely that this transmission succeeds

189

C.3. KSN RADIO STACK

Figure C.15: Network topology ex-
ample with four nodes and their
links

Destination Next Hop Hop Count

SB SB 0
SC SC 0
SD SB 1
SD SC 1

Table C.3: Routing Table of SA

and hence SB will end up trying to send the message again to SB instead of an indirect route over
SA or SB. ◆

The route flapping described in Example 18 is avoided, because nodes have several entries for
a single destination and try these routes before trying to discover new routes. A node creates
multiple entries for the same destination if it receives multiple RREP messages. Using the topology
in Figure C.15, SA would receive a RREP from SB and SC regarding a RREQ for SD. This would
indicate that there are multiple routes to SD and hence these entries are created.

Depth First Search Routing In the following we illustrate the major difference between the
standard AODV routing and the implementation used by the KSN Radio Stack. Our implementa-
tion distinguishes between the following packets:

Route Request (RREQ): As aforementioned, this packet is broadcasted to search for a new
route.

Route Reply (RREP): This is a reply that is sent back to the initiator of a route request to
indicate that a route was found.

Data Packet: Whenever a valid route has been established from the routing table, these packets
are sent towards the destination of a message to transmit the actual message.

Data Acknowledgement: Once the destination has received all fragments of a message, it sends
this acknowledgement to indicate that the transmission was successful. Note that this ac-
knowledgement is different from the acknowledgement sent by the SHP layer described in Sec-
tion C.3.2. The latter acknowledgement indicates that a transmission between two communi-
cation neighbors was successful, while this acknowledgement is a end-to-end acknowledgement

190

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

indicating successful transmission between nodes that are not (necessarily) communication
neighbors.

Route Error (PERR): This packet indicates that there was a broken link on the way to the
destination. When a node receives this packet, it checks if there is an alternate route to the
destination and tries to find a way around the broken link.

When standard AODV encounters a broken link on a route while forwarding a message, the corre-
sponding node generates a so called Route Error Packet (PERR). This packet is the forwarded back
to the original sender of the message and all nodes on the way ”backward” invalidate the whole
route, i.e., remove it from the routing table. After the PERR has arrived at the original sender, it
tries to find a new route. Instead of restarting the routing, we use a depth-first search approach to
circumvent broken links. We illustrate this in the following using a step-by-step example.

SA SB

SC

SD

SE

Data
Packet

Data
Packet Error

Figure C.16: Multi-Hop message forwarding with a broken link

Figure C.16 illustrates a sensor network with five nodes where SA has to send a message to SE .
The routing table contains a single entry where the destination equals SE and the next hop for
this destination is SB. Thus, SA starts by sending the first data packet to SB. According to the
routing table of SB, there are two routes to SE and SB choses SC as the next hop for the message
it received from SA. Similarly SC tries to forward the message, but fails to do so, e.g., because an
external influence prevents the use of the link between SC and SE at this time.

Since the link between SC and SE is currently unavailable, SC removes the corresponding entry
from its routing table. Due to the fact that the routing table stored at SC does not contain any
further entries for the destination SE , SC sends a Route Error packet back to SB from which it
obtained the message previously. This is illustrated in Figure C.17. Based on the Route Error
packet, SB can derive that the route to SE via SC is invalid and remove it from the routing table
as well. Contrary to situation at SC , there is another entry for SE in the routing table of SB.
Thus, to circumvent the broken link between SC and SE , the message is routed via SD as shown
in Figure C.18.

When the message from SA finally reaches SE , the data transfer is finished. To allow SA to
determine that the message was successfully received, SE sends an acknowledgement back to SA.
The acknowledgement is routed via the nodes that successfully forwarded the message as shown

191

C.3. KSN RADIO STACK

SA SB

SC

SD

SE

Data
Packet

Invalid

Route
Error

Figure C.17: Reporting and invalidating broken links

SA SB

SC

SD

SE

Data
Packet

Invalid

Data
Packet

Data
Packet

ACKACK

ACK

Figure C.18: Successful multi-hop communication and end-to-end acknowledgment

in Figure C.18. When the acknowledgement flows back to the initiator, nodes update the route
quality information for the route used in their routing table.

Compression Layer As indicated by the name of the layer, this layer compresses the data that
must be sent and decompresses data received. The layer itself can use any compression algorithm
available. For our experiments we used an implementation of jzlib2 and ported it to Sun SPOTs.

The experiments for serialization as well as other experiments have shown that compressing
the application data in this way is highly efficient and reduces congestion considerably for large
messages. During over-the-air deployment of new software for the query processor, the compression
rates often reached 50-60%, i.e., the time it took to update software was halved.

Protocol Dispatcher The protocol dispatcher allows the conversion of incoming and outgoing
data for different applications. As with the SHP dispatcher, the protocol dispatcher allows the
application to chose how to communicates at application level, e.g., stream based, packet based
etc.

2http://www.jcraft.com/jzlib/

192

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

While there are several protocols that have been implemented by users of the KSN Radio Stack,
we only mention those implemented by us initially here:

Packet-Port Protocol: This protocol provides a similar interface for communication to desktop
Java: Each node has virtual ports and may listen or send data using different ports. This
protocol allows porting libraries or applications that have been used on PCs previously to Sun
SPOTs without much re-implementation.

LoWPAN-Emulation Protocol: The default radio stack for Sun SPOT used an implementa-
tion of LoWPAN [95]. To allow users of this stack to use the KSN Radio Stack, this protocol
emulates the LoWPAN implementation used on Sun SPOTs and allows stream based commu-
nication.

For more information on these protocols refer to the KSN Radio Stack Manual [10].

C.3.3 Evaluation and Summary

We repeated the experiment we conducted with the default stack with the KSN Radio Stack using a
similar setup. Figure C.19 shows the setup, where the SPOT with the address 4808 has to send 100
kilobytes to 4D69. As with the experiment above, the output power of the radio chip was reduced
in such a way that 4808 cannot send the data directly to 4D69, i.e., 01FD had to forward data
sent by 4808 to 4D69. The main difference between the previous experiment and this one is that
we remove 01FD during the experiment and replace it with 01EF. This setup is more challenging
than the one above, because the route over which fragments of the 100 kilobyte message must be
forwarded to 4D69 must be adapted on-the-fly.

Figure C.19: Node topology for the reliability experiment using the KSN Radio Stack

The removal of the nodes simulates changing external influences that impact data transfer. An
example of such an influence could be the fire doors in the KSN testbed shown in Figure C.1: We

193

C.4. KSN SIMULATOR

had several occasions where software had to be deployed and people walking in our office floors
opened or closed these doors. Whenever the doors are open, the topology of the network among
the nodes surrounding these doors changes.

The experiment above was repeated more than 20 times with 3 nodes and never failed to complete
the sending of the message. Repeating the experiment with 4-6 nodes had the same result, even if
multiple nodes were moved during the data transfer. This indicates that our main goal of increasing
the reliability of data transfers, independently of their size, has been reached.

A more sophisticated application that demonstrates the capabilities of the stack is shown in
Section C.5 where the radio stack is used for over-the-air software deployment in sensor networks.
In particular, the KSN Management Application tries to exploit parallelism when distributing
software among several nodes. Compared to the experiment above, this adds another difficulty the
radio stack has to cope with: Since software is not distributed sequentially but in parallel on several
different nodes, several nodes send large amounts of data at the same time resulting in congestion.
We show that the radio stack can cope with this as well.

C.4 KSN Simulator

The development of the KSN Simulator had two main design targets:

1. Testing of Sun SPOT software prior to deployment on sensor nodes without requiring a re-
implementation.

2. Conducting experiments to investigate the scalability of our measures.

We provide a high-level description how to accomplish both steps here. To enable the execution
of the same software within the simulator as on Sun SPOTs, we implemented a node framework
that adapts the interface of the Squawk virtual machine used on Sun SPOTs. Some details of this
framework are presented after some of the main components of the simulator have been introduced.

C.4.1 Components of the Simulator

Figure C.20 shows the three major components of the KSN Simulator. The environment is the
component that simulates the actual ”world” which has to be modeled. Thus, this component
contains simulated nodes, moving objects and any other entities that has to be simulated, interacts
with sensor nodes or affects the simulation in any way.

The clock ensures that a virtual time among all nodes progresses at the same speed for every
node. This is important, because nodes and other components have to be executed in separate
threads and processes which are subject to the scheduling of the operating system. The scheduling
might result in some threads/processes getting more time on the CPU to execute and could thereby
result in asynchronous execution of the code on different nodes. For example, a node Si sends a
message at same time t1 where another Sj ∈ CN i sends a message as well. Normally this would

194

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Environment

Clock

Statistics
Server

Time Tick

Finish No-
tification

Statistics
Event

Figure C.20: Components and their interactions in the KSN Simulator

result in a collision, but if the thread for Si would receive more execution time, this collision would
not be simulated by the simulator. The clock ensures that the virtual time proceeds at each entity
in the environment at the same pace independently of the scheduling as follows: Every entity is
registered at the clock and executes so called operations. For each instant of time at most one
operation is executed. For a moving object such an operation could be moving a certain distance
through the environment, for a node an operation could be sending/receiving or switching one of
the LEDs on. Whenever an entity finishes an operation, the entity notifies the clock and the thread
or process is made inactive. The clock marks the entity it received such a notification from in a local
data structure. When the clock has received a notification from all entities in the environment, it
starts a new time cycle by unmarking all entities and sending a time tick to the environment. The
environment re-activates all entities at once and each entity starts the execution of a new operation.

The third component is the statistics server. This component is required for experiments that
measure the performance of a mechanism is some way. The performance measurements require
that the environment reports event to the statistics server. For example, while a node Si sends a
message to another Sj , the environment raises several events related to the number of packets that
are transmitted, collisions and other performance relevant indicators. The statistics server stores
these events for every experiment and after the experiment has finished, the events are written to
a disk or a database server.

C.4.2 Squawk Adaptation Layer

To execute the same software on SPOTs as well as simulations, we introduced the KSN node frame-
work which provides an adaptation layer that separates the actual hardware from the application
running on a node. This adaptation is accomplished by the Squawk Adaptation Layer shown in
Figure C.21.

As explained above, the simulator is built around the concept that each node executes an oper-
ation for each clock tick generated by the clock component. Whenever the clock starts a new time

195

C.4. KSN SIMULATOR

Operating
System

Simulator

Ready Queue

Waiting Queue

Squawk Adaptation Layer

Event Handler Executor

Sun SPOT

Environment

Clock

OP ready
1OP ready

2OP ready
3

. . .

OP wait
1OP wait

2
. . .

Object Detection Communication

Communication
LED

Operation
State Change

Finish Notification Ticks

Finish Notifications Ticks

Finish Notifi-
cations

Ticks

Forward
Events

execute

Operation
finished

Figure C.21: KSN Node Framework and Squawk Adaption Layer

cycle by sending a tick to the environment, the tick is forwarded through the adaptation layer to
the operating system of each simulated node. The operating system consists of four parts:

Waiting queue: This queue contains operations that are waiting for an external event to occur.
Until such an external event occurs, the operations are not executed. An example of such an
event would be an object detection, a message received or an event raised by another operation.

Event handler: The event handler forwards events to all operations. An operation can register
for an event with the event handler and if this event occurs, the operation is notified. How
the event is handled by the operation depends on the operation.

Ready queue: This queue contains operations that are ready for execution. If there are multiple
operations ready for execution, the order of execution depends on the queue implementation.
While the default implementation enforces first-in-first-out ordering, there are other imple-
mentations using priorities or other orderings.

196

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Executor: This component halts all execution on a node until a tick from the clock arrives and
executes the operations. After an operation has finished execution, the clock is notified. Events
raised during the execution of an operation are passed to the event handler.

These components exist on SPOTs as well and the only difference between the execution on
SPOTs and in the simulator is that the SPOT may continue executing operations without waiting
for clock ticks. The mechanism that ensures this is completely transparent for the application
and implemented in a straightforward way: If the Squawk Adaptation Layer is executed on a
SPOT, it issues a clock tick as soon as the executor has indicated that the operation previously
selected for execution is finished. Otherwise, the finish notification is forwarded to the Clock via
the Environment component as shown in Figure C.21.

Every time cycle in the simulator starts when the clock issues a clock tick to the environment.
The environment wakes up every node and forwards the clock tick to each one. Each node receiving
the clock tick starts the time cycle by raising an time tick event through the event handler. This
is required because operations may pause their execution for a limited time. For example, an
operation could pause its execution until a timeout expires or an external event occurs such as an
incoming message. The time tick event ensures that the operation is reactivated in time, i.e., such
an operation would receive the time tick event and handle it in such a way that it is moved from
the waiting queue to the ready queue.

After the time tick event, the executor acquires the next operation from the ready queue and
executes it. During this execution, the operation may raise other events which are processed by
the event handler. Furthermore, the execution may indicate that it has to wait, i.e., request that it
is moved to the waiting queue. For example, an operation that has to send a unicast message to a
nearby node has to wait until either a timeout expires or an acknowledgement of the message has
been received. Thus, after the operation has called the appropriate interface function of the Squawk
Abstraction Layer, it indicates that it has to wait for an event associated with the acknowledgement
for the message sent. Depending on whether the node is a real SPOT or simulated, the message
sent is passed to the KSN Radio Stack which either uses the 802.15.4 MAC of a SPOT or an
802.15.4-emulation layer of a simulated node. If the acknowledgement is received at some time, the
operation may indicate that it is ready for further execution.

When operations are moved from the ready to the waiting queue or vice versa, the event handler
issues another event to the other operations to indicate this. Similarly, if operations finish their
execution, other operations waiting for the corresponding event are informed. This is useful, because
in some cases operations wait until another operation finishes its execution.

When an operation either finishes its execution or indicates that it has to wait, the time cycle
on the node ends. The executor notifies the squawk adaptation layer that the time cycle ended
which either forwards it to the clock or issues a time tick event as described above. The Squawk
Adaptation Layer handles all access to detection hardware, radio or LEDs as well and either
forwards these calls to real hardware or the environment.

197

C.5. KSN MANAGEMENT APPLICATION

C.5 KSN Management Application

Management of single sensor nodes or the whole sensor network is a crucial task during the de-
velopment or the evaluation of software for sensor networks. Examples of management activities
are:

• Updating software executed on sensor nodes.
• Resetting system properties, e.g., the output power of the radio chip or the length of a timeout.
• Collecting statistics and evaluation results from sensor nodes, e.g., the number of messages

sent/received.
• Restarting some or all sensor nodes,e.g., after an experiment has finished.

If there are many nodes or the nodes are physically inaccessible, executing these tasks manually
is inefficient or impossible. For example, updating software for our testbed (cf. Section C.1) by
walking into every office is not feasible. The KSN Management application is a flexible solution
for managing large sensor networks over the air.

Contrary to real deployments of sensor networks, sensor nodes in a development testbed are
usually connected to a permanent power supply. Therefore, management applications do not have
to maximize efficiency, e.g., by minimizing the number of messages transferred, but have to execute
tasks reliably. To ensure reliable communication, we base our approach on the KSN Radio Stack
which was described in Section C.3.

The software provided with Sun SPOT sensor nodes provides a management application, but this
application has some major drawbacks: Most importantly, updating software with this management
application is very unreliable, particularly due to the problems associated with the default radio
stack. Another problem is that all management tasks provided by this application are base-station
centered. Figure C.22 illustrates why this is problematic. Assuming the software on nodes S1,
S2 and S3 must be updated. In this application, S1 would receive the software first. Afterwards,
the base station BS, would start sending the software to S2 via S1. Next, S3 must be updated,
which results in forwarding the software again via S1 and S2. In the following, we call this scheme
for executing management tasks in a sensor network serial distribution scheme. We compare our
approach with this one and show that it is inefficient.

In the following, we only introduce the major concepts of the management application. The KSN
Management manual [9] provides a more detailed description.

C.5.1 Main Concepts

During the execution of a management task, the KSN Management Application distinguishes be-
tween three roles:

Executor: This role is assigned to a node that is currently executing the job associated with the
management task, e.g., restarting or changing system preferences.

198

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

BS

S1

S2

S3

Figure C.22: Serial distribu-
tion scheme

BS

S1

S2

S3

Figure C.23: Domino distri-
bution scheme

Controller: A node that performs this role controls the execution of the job at the executor.
Observer: This node receives notifications that indicate the progress of the execution of the

management task. This role is typically assigned to the base station, e.g., when a node out
of the set of target nodes restarts, it sends a message to the base station after the restart is
completed.

To keep our system flexible, we distinguish between the following three orthogonal parameters for
a given task:

• Job: This is the activity that must be executed on a given set of nodes.
• Target nodes: This is a set of nodes where the aforementioned activity must be executed.
• Distribution Scheme: This indicates how the job is distributed among the nodes in the

network.

The distribution scheme determines the order and how the management task is executed by the
different nodes in the set of target nodes. There are three distribution schemes that are currently
supported by the KSN Management Application: With the serial scheme illustrated in Figure C.22,
the base station always performs the role of the controller and the observer. The role of the executor
is assigned to the node that currently executes the management job. The main drawback of the
serial distribution is that nodes potentially forward the same job more than once. Using the example
of updating software, with this strategy the software is sent once from the base station BS to S1.
Afterwards, S2 becomes executor and assuming S2 is not a communication neighbor of the base
station BS, the software is sent to S2 via S1. After all nodes in Figure C.22 received the software,
S2 has received it twice and S1 even three times. For large networks, this is clearly impractical.

The domino distribution scheme illustrated in Figure C.23 circumvents this problem by forward-
ing step-wise from one node to another. First, the base station is observer and controller at the

199

C.5. KSN MANAGEMENT APPLICATION

same time. Using Figure C.23, the first executor is S1. After the management job has been finished
on S1, the executor-role is passed to S2 and S1 becomes controller. This continues until all target
nodes have finished the task.

BS

S1 S2

S3 S4 S5 S6

Figure C.24: Tree distribution scheme

The most sophisticated distribution scheme is the tree distribution scheme illustrated in Fig-
ure C.24 because executes management tasks in parallel. Continuing the example of updating
software on nodes, the software is sent from the base station BS to S1 first, i.e., the base station is
controller and S1 is executor. Afterwards, the base station starts sending the software to S2 while
S1 starts transferring the software to S5 or S6. Thus, S1 becomes controller and nodes S2 and S5
become executors. This continues until all nodes have been executor once. The coloring of the
arrows in Figure C.24 indicates which executions of management tasks occur in parallel. As we
show, this scheme reduces the time it takes to distribute software in a sensor network significantly.

C.5.2 Evaluation

In this section we evaluate the management application. First, we compare its reliability and per-
formance to that of the management software provided with the default package. Second, we show
that the different distribution schemes significantly impact the performance of the management
application and reduce the time it takes to update software in a sensor network.

Comparison with the default management software

To compare the KSN Management Application with the existing over-the-air management capa-
bilities of Sun SPOTs, we deployed six sensor nodes (red dots) and a base station (black square)
at the Institute for Program Structures and Data Organization as shown in Figure C.25. For this
comparison, we assumed that the software of node 58DE requires an update. The update process
was started every time by the base station and the nodes are deployed in such a way that the
software must be forwarded via several hops. While the actual number depends on the routing
protocol, we determined that this was 6 hops in most cases. We also varied the size of the software
update: First, we send an update consisting of a well-known demo application (Bouncing Ball) for
Sun SPOTs which has about 25 kilobytes. Second, we increased the size of the software update to

200

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Figure C.25: Node Setup for the Evaluation of the KSN Management Application

834 kilobytes by updating the library on 58DE. An update was considered to be successful, if 58DE
could execute the update after it was received completely. In addition to counting the number of
successful updates, we also measured the time it took to successfully complete an update.

The result of the evaluation is shown in Table C.4: As expected from our results with the default
radio stack in Section C.3, the size of the software update influences the success rate. While
almost half the updates finished successfully with the default node management system, updating
the library never finished successfully. This must be attributed to the unreliability of the default
radio stack. Even though updating the library took about 14 minutes with the KSN Management
Application, it always finished successfully. Thus, we conclude that our design target to obtain a
reliable node management tool has been reached.

Performance of the KSN Management Application

To investigate the performance of the KSN Management Application in terms of speed when
updating software, we deployed 14 Sun SPOTs and a base station on a desk. We assumed that
the user wants to update the software on all 14 nodes and conducted this update using all three
distribution schemes. We repeated the experiment with two different software updates: The first
one was the demo we already used for the experiment above, i.e., 25 kilobytes. The second software

201

C.5. KSN MANAGEMENT APPLICATION

Default Node Management KSN Management Application
Success Rate Avg. Duration Success Rate Avg. Duration

Bouncing Ball (25 KB) 4/10 = 40% 75 sec. 10/10 = 100% 59 sec.
Library (834 KB) 0/3 = 0% - 3/3 = 100% 14 min.

Table C.4: Reliability and performance results for the KSN Management Application and the
default node management

update contained a HelloWorld-application of about 1.5 kilobytes. The software update task was
considered successful if all nodes had been updated successfully and we measured the time it took
the KSN Management Application to complete the task. Since updating the software worked every
time, we do not provide the success rate in the following and only show the time.

This setup has an important detail that demonstrates the reliability of the KSN Radio Stack
as well: Since all nodes are put on the desk, they are all in communication range. This results
in heavy contention particularly when several nodes send messages in parallel, i.e., with the tree
distribution. Since all updates were successful, we conclude that the radio stack as well as we the
KSN Management Application are applicable to collision-rich setups.

Distribution scheme
Serial Domino Tree

HelloWorld (1.5 KB) 2 min. 20 sec. 3 min. 1 min. 15 sec.
Bouncing Ball (25 KB) 5 min. 6 min. 35 sec. 2 min. 35 sec.

Table C.5: Duration of the software updates for 14 Sun SPOT sensor nodes

Table C.5 shows the result of the experiment. For both software updates, the tree distribution
scheme was the fastest. This is unexpected because with all nodes placed on a desk, collisions
occurring when nodes try to send software simultaneously should reduce the performance of the
tree distribution scheme significantly. To further investigate this, we repeated the experiment
with increasing numbers of nodes. The result was that somewhere between 35 and 40, i.e., 40
nodes are placed in such a way that each node can communicate with 39 others, there is a point
were the collisions prevent routing and communication causing the software deployment with tree
distribution to be slower or fail. We consider this scenario to be sufficiently unlikely to occur
in reality that we conclude that the tree distribution is the best distribution scheme regarding
performance. Further investigation shows that the advantage of the tree distribution over the
other schemes increases when the sensor network is less dense and the number of nodes increases.

Another unexpected result is that domino distribution is slower than the serial distribution. First
off all, this changes as soon as the base station requires more than 1 hop to reach a node. Second,
the main reason for this result is that reading flash memory is slow: With the serial distribution,

202

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

the base station reads the application from the main memory of the computer it is attached to and
then sends it. Contrary to this, with the domino scheme, nodes read from flash and then send the
software to the next node. Since the flash memory is much slower than the main memory of the
computer the base station is attached to, the domino distribution is slower overall.

203

C.5. KSN MANAGEMENT APPLICATION

204

Appendix D

A Topology Discovery Protocol

The optimizer for the rebroadcast parameter P for probabilistic query dissemination developed in
Chapter 4 is based on the hop-set model. According to Definition 46, a hop set HSh is a node set
containing all nodes that have a distance of h hops to the base station. As shown in Section 4.4, our
prediction of reachability and energy consumption for probabilistic query dissemination requires
the following information:

Hop-Set size: The hop set size ∣HSh∣ which equals the number of nodes in the hop set HSh.
Inter-Connectivity: Inter [h] equals the average number of nodes in HSh that will receive a

broadcast by an arbitrary node from HSh−1.
Intra-Connectivity: Intra [h] is the average number of nodes in HSh that an arbitrary node

from the same hop set can reach.

There are several ways to acquire such information, e.g., by using gossip protocols or by extracting
topology information from meta-data of the routing protocol [5, 71, 90, 112]. However, these
approaches strongly depend on the underlying communication protocols, hardware and system
architecture. To avoid such dependencies, particularly for our evaluation, we decided to develop a
lightweight topology discovery protocol based on the principle of the echo algorithm [24] and used
it during our evaluation. This part of the appendix describes the implementation of our topology
discovery algorithm in detail.

D.1 Overview – Echo-based Topology-Discovery

The echo algorithm [24] consists of an expansion wave, where messages are flooded from the base
station to distant nodes, and a contraction wave that flows back to the base station. We use this
concept to transport a request for topology information in the expansion wave, and we aggregate
and return this information in the contraction wave. In particular, the base station initiates the
topology discovery by broadcasting a Topology-Discovery Request Message (TDReq), thus starting

205

D.2. EXPANSION WAVE

Name Description Data Type
TDReq.sender Sender of the TDReq Node Identifier
TDReq.hop Hop Number Integer

Table D.1: Contents of a Topology-Discovery Request Message TDReq

the expansion wave. Table D.1 describes the content of a TDReq message. The small network in
Figure D.1 with a base station BS and seven nodes will illustrate the topology-discovery process.
Edges between nodes in Figure D.1 represent bi-directional links. In this example, the topology
discovery is started by the base station broadcasting a TDReq to Nodes S1, S2, S3 and S4.

BS

S1

S2

S3

S4

S5

S6

S7

Figure D.1: Example network to illustrate the topology-discovery process

D.2 Expansion wave

When a node Si receives a TDReq for the first time, the receiver must accomplish four steps, as
illustrated in Algorithm 26:

1. Create three empty node lists Uncles, Siblings and Children (Line 3) and mark the sender of the
request, i.e., TDReq.sender as the parent node of Si (Line 5). Si also extracts the hop number
TDReq.hop and stores it (Line 4).

2. Si replaces TDReq.sender with its own identifier and rebroadcasts the request with an incre-
mented hop number (cf. Lines 6-8).

3. Start a timeout tchildren (cf. Line 9) to ensure that Si does not wait forever for potential
children. The length of the timeout should be sufficiently long to allow the children to receive,
process and rebroadcast the Topology-Discovery Request.

4. Si waits until the timeout expires or messages belonging to the contraction wave have been
received from all children. Afterwards, Si continues/starts the contraction wave by generating
a Topology Discovery Response Message (TDResp) and sending it to its parent node.

206

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

In the example in Figure D.1, nodes S1, S2, S3 and S4 receive the TDReq from the base station,
thus mark the base station as their parent node, rebroadcast the TDReq with an incremented hop
counter and start a timeout to wait for further TDReq messages (cf. Lines 5-9 of Algorithm 26).

Algorithm 26: Handling of incoming TDReq messages
1 When Si receives TDReq do
2 if Si has not received any TDReq previously then
3 create empty lists Uncles, Siblings and Children ;
4 Si.hop← TDReq.hop;
5 Si.parent← TDReq.sender;
6 Increment TDReq.hop by 1;
7 TDReq.sender ← Si;
8 rebroadcast TDReq;
9 start timeout tchildren;

10 end
11 else
12 if TDReq.hop = Si.hop + 2 then
13 Add TDReq.sender to Children
14 end
15 if TDReq.hop = Si.hop + 1 then
16 Add TDReq.sender to Siblings
17 end
18 if TDReq.hop = Si.hop then
19 Add TDReq.sender to Uncles
20 end
21 end
22 end

After receiving the first TDReq and while waiting for the timeout of Line 9, a node can receive
further TDReq messages, since every node broadcasts its own TDReq message (see Step 2 above).
As illustrated in Section 4.4.1, a TDReq can reach any node either as a direct, indirect or reverse
broadcast. Depending on the sender of the TDReq, i.e., TDReq.sender, a node that receives a TDReq
must modify one these lists:

• Uncles: This case corresponds to a direct broadcast where a node with a distance of h hops
to the base station receives a TDReq from a node with distance h− 1. The first TDReq received
is from the parent node in the previous hop set HSh−1. Every further TDReq corresponds to
an additional connection from the h-th hop set to the previous hop set HSh−1. After the first
TDReq has been received by a node Si, every sender of a subsequent TDReq is added to Uncles
stored by Si.

207

D.2. EXPANSION WAVE

• Siblings: A node that rebroadcasted a TDReq must be added to Siblings by the receiver of this
rebroadcast, if the rebroadcaster and the receiver have a distance of h hops to the base station.
This case corresponds to an indirect broadcast. The sender is a sibling of the receiver and
therefore must be added to Siblings (Line 16).

• Children: This case corresponds to a reverse broadcast, i.e., Si receives a TDReq from another
node Sj whose distance to the base station is larger. If TDReq.hop equals Si.hop + 2, then Sj

is a child of Si. Hence, Si inserts Sj into Children. If TDReq.hop > Si.hop + 2, Si ignores the
message.

In the example in Figure D.1, S1 receives a TDReq from S2. Since S2 has incremented the hop
counter before rebroadcasting, S1 adds S2 to Siblings and continues to wait until the timeout
tchildren expires. Similarly, S2 adds S1 as a sibling and start the contraction wave once the timeout
expired, sine both S1 and S2 do not have any children. Assuming that S2 rebroadcasts TDReq prior
to S4, S3 is parent of S5 and S6. When S3 receives TDReq from S5 and S6, both are added to
Children. Once S4 rebroadcasts TDReq, S6 receives it and adds S4 to Uncles.

Algorithm 27 shows the possible transitions from the expansion to the contraction wave.

Algorithm 27: Transitions from expansion to contraction phase
1 When the timeout tchildren expires on Si do
2 if Children ≠ ∅ then
3 Wait until all nodes in Children have sent a reply;
4 else
5 Initiate a TDResp message according to Algorithm 28 // Si is a leaf node;
6 send TDResp to Si.parent;
7 end
8 end
9 When Si has received a TDResp from every node in Children do

10 Use Algorithm 29 to aggregate topology information into one TDResp;
11 send TDResp to Si.parent;
12 end

Leaf nodes like Nodes S1, S2, S5, S6 and S7 in Figure D.1 end up with Children = ∅. Thus, they
start the contraction phase by generating a TDResp using Algorithm 28 (cf. Line 5 in Algorithm 27).
An arbitrary node Si uses Children to determine when the topology information of all child nodes
has been collected, e.g., S3 will wait for S5 and S6 to send their aggregated topology information.
Afterwards, the node aggregates the topology information received from the children with its own as
defined by Algorithm 29. The resulting TDResp is sent to the base station/parent node (Line 11 of
Algorithm 27). The initiation of the contraction wave and the aggregation of topology information
is described next.

208

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

D.3 Contraction wave

The contraction wave starts on leaf nodes where the timeout (cf. Step 3 above) expires without any
incoming response messages from children. After the timeout has expired, the leaf node will execute
Algorithm 28 in order to generate a Topology-Discovery Response Message (TDResp)). Table D.2
illustrates the structure of such a TDResp message.

Name Description Data Type
TDResp.sender Sender of the TDResp Node Identifier
TDResp.∣HSh∣ Size of the hop set HSh Integer
TDResp.Inter [h] Tuple to compute Inter [h] [Integer,Integer]
TDResp.Inter [h] Tuple to compute Intra [h] [Integer,Integer]

Table D.2: Contents of a Topology-Discovery Response Message TDResp

The contraction wave starts, when a node sends the resulting TDResp to its parent node. For leaf
nodes, TDResp must be generated in such a way that the parent node can aggregate the contained
values for hop set size ∣HSh∣, inter-connectivity Inter [h] and intra-connectivity Intra [h] as defined
in Section 4.4.1. Note that Inter [h] and Intra [h] are average values, i.e., the corresponding entries
in TDResp are tuples that represent the sum of uncles/siblings and the size of the corresponding
hop set.

Algorithm 28: Generating TDResp messages at leaf nodes
1 When the timeout tchildren expires on Si and Children = ∅ at Si do
2 h← Si.hop;
3 Generate new TDResp message;
4 TDResp. ∣HSh∣← 1 // Set hop set size to 1;
5 TDResp.Inter [h]← [count(Uncles)+1,1] // take parent node into account => +1;
6 TDResp.Intra [h]← [count(Siblings),1];
7 return TDResp // Si sends this to parent node;
8 end

Continuing the example in Figure D.1, the responses generated using Algorithm 28 by S1, S2,
S5, S6 and S7 are sent to the corresponding parent node. In case of S1 and S2 this is the base
station. The parent node of S5 and S6 is S3 and S4 is the parent node of S7.

In case the node has children, i.e., Children is not empty, the node will wait for all children to
return their response message (cf. Line 9 in Algorithm 27). To avoid endless waiting because a child
fails to return its response message, we limit the waiting time for children with a sufficiently large
timeout. If either this timeout expires, or if all children have responded, the lists of all children

209

D.3. CONTRACTION WAVE

must be aggregated as illustrated in Algorithm 29.

Algorithm 29: Aggregation of TDResp messages
1 When Si has received a TDResp from every node in Children do
2 Aggregate ∣HSh∣-values of all TDResp messages;
3 Aggregate Inter [h]-tuples from all TDResp messages from child-nodes;
4 Aggregate Intra [h]-tuples from all TDResp messages from child-nodes;
5 Generate new TDResp from these aggregates;
6 h← Si.hop;
7 Increment TDResp.∣HSh∣ by 1;
8 TDResp.Inter [h]+ = [count(Uncles)+1,1];
9 TDResp.Intra [h]+ = [count(Siblings),1];

10 return TDResp // Si sends this to parent node;
11 end

The aggregation is straightforward: The corresponding values of TDResp messages from child
nodes of a node Si are added. For example, if the response messages of two nodes S1 and S2
contain hops set sizes ∣HS1

h∣ and ∣HS2
h∣, these are aggregated by computing ∣HS1

h∣ + ∣HS2
h∣. In case

of tuples, either for inter-connectivity or intra-connectivity, the respective attribute values of the
tuple are added to each other. As a last step, the topology information of the current node is
aggregated by counting uncles and siblings (Lines 7-9) and writing them into the TDResp message.
The results are sent to the parent node of the current node, as described in Line 11 of Algorithm 27.

This continues until the base station BS has received all TDResp messages from nodes in the first
hop set HS1, i.e., all communication neighbors of the base station. Similarly to the aggregation
of the TDResp messages by intermediate nodes as illustrated in Algorithm 29, the base station
aggregates the topology information as well. As a last step, the base station computes average values
from the tuples representing inter-connectivity and intra-connectivity in the TDResp messages.

210

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Bibliography

[1] FCC 94-102. In S. Shekhar and H. Xiong, editors, Encyclopedia of GIS, page 313. Springer,
2008. ISBN 978-0-387-30858-6.

[2] D. J. Abadi, S. R. Madden, and W. Lindner. REED: Robust, efficient Filtering and Event
Detection in Sensor Networks. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 769–780. VLDB Endowment, 2005. ISBN 1-59593-154-6.

[3] R. Adler, M. Flanigan, J. Huang, R. Kling, N. Kushalnagar, L. Nachman, C.-Y. Wan, and
M. Yarvis. Intel Mote 2: an advanced platform for demanding sensor network applications.
In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked sensor
systems, pages 298–298, New York, NY, USA, 2005. ACM. ISBN 1-59593-054-X. doi: http:
//doi.acm.org/10.1145/1098918.1098963.

[4] Advantaca, Inc. TWR-ISM-002-I Radar: Hardware User’s Manual, 2002.
[5] A. Ahmed and B. Far. Topology discovery for network fault management using mobile agents

in ad-hoc networks. Electrical and Computer Engineering, 2005. Canadian Conference on,
pages 2041–2044, may. 2005. ISSN 0840-7789. doi: 10.1109/CCECE.2005.1557387.

[6] N. Ahmed, S. S. Kanhere, and S. Jha. The holes problem in wireless sensor networks: a
survey. SIGMOBILE Mob. Comput. Commun. Rev., 9(2):4–18, 2005. ISSN 1559-1662. doi:
http://doi.acm.org/10.1145/1072989.1072992.

[7] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao,
M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko,
A. Vora, and M. Miyashita. A line in the sand: a wireless sensor network for target detection,
classification, and tracking. Comput. Netw., 46(5):605–634, 2004. ISSN 1389-1286. doi:
http://dx.doi.org/10.1016/j.comnet.2004.06.007.

[8] Z. Benenson, M. Bestehorn, E. Buchmann, F. C. Freiling, and M. Jawurek. Query Dissemi-
nation with Predictable Reachability and Energy Usage in Sensor Networks. In D. Coudert,
D. Simplot-Ryl, and I. Stojmenovic, editors, ADHOC-NOW, volume 5198 of Lecture Notes
in Computer Science, pages 279–292. Springer, 2008. ISBN 978-3-540-85208-7.

[9] M. Bestehorn, S. Kessler, and A. Leppert. KSN OTA Management System Manual, 2009.
URL http://www.ipd.kit.edu/KSN/Management.

[10] M. Bestehorn, S. Kessler, and A. Leppert. KSN Radio Stack Manual, 2009. URL http:
//www.ipd.kit.edu/KSN/RadioStack.

[11] M. Bestehorn, S. Kessler, and A. Leppert. KSN Serialization Manual, 2009. URL http:
//www.ipd.kit.edu/KSN/Serialization.

[12] M. Bestehorn, Z. Benenson, E. Buchmann, M. Jawurek, K. Böhm, and F. C. Freiling. Query
Dissemination in Sensor Networks - Predicting Reachability and Energy Consumption. Ad
Hoc & Sensor Wireless Networks, 9(1-2):85–107, 2010.

[13] M. Bestehorn, K. Böhm, P. Bradley, and E. Buchmann. Deriving Spatio-temporal Query
Results in Sensor Networks. In M. Gertz and B. Ludäscher, editors, SSDBM, volume 6187
of Lecture Notes in Computer Science, pages 6–23. Springer, 2010. ISBN 978-3-642-13817-1.

211

http://www.ipd.kit.edu/KSN/Management
http://www.ipd.kit.edu/KSN/RadioStack
http://www.ipd.kit.edu/KSN/RadioStack
http://www.ipd.kit.edu/KSN/Serialization
http://www.ipd.kit.edu/KSN/Serialization

BIBLIOGRAPHY

[14] M. Bestehorn, K. Böhm, E. Buchmann, and S. Kessler. Energy-efficient processing of spatio-
temporal queries in wireless sensor networks. In Proceedings of the 18th SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, GIS ’10, pages 340–
349, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0428-3. doi: http://doi.acm.org/
10.1145/1869790.1869838. URL http://doi.acm.org/10.1145/1869790.1869838.

[15] M. Bestehorn, K. Böhm, E. Buchmann, and S. Kessler. Energy-Efficient Processing of Spatio-
Temporal Queries in Wireless Sensor Networks (Extended Version). Technical Report of the
Karlsruhe Institute of Technology, 2010. http://dbis.ipd.kit.edu/english/1588.php.

[16] B. J. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for in-network
query processing. In IPSN’03: Proceedings of the 2nd international conference on Information
processing in sensor networks, pages 47–62, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN
3-540-02111-6.

[17] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. Personal Communica-
tions, IEEE, 7(5):10–15, oct 2000. ISSN 1070-9916. doi: 10.1109/98.878531.

[18] P. Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor Database Systems. In K.-L. Tan,
M. J. Franklin, and J. C. S. Lui, editors, Mobile Data Management, volume 1987 of Lecture
Notes in Computer Science, pages 3–14. Springer, 2001. ISBN 3-540-41454-1.

[19] R. Braunling, R. M. Jensen, and M. A. Gallo. Acoustic target detection, tracking, clas-
sification, and location in a multiple-target environment. Peace and Wartime Applica-
tions and Technical Issues for Unattended Ground Sensors, 3081(1):57–66, 1997. doi:
10.1117/12.280662. URL http://link.aip.org/link/?PSI/3081/57/1.

[20] T. Brooke and J. Burrell. From ethnography to design in a vineyard. In DUX ’03: Proceedings
of the 2003 conference on Designing for user experiences, pages 1–4, New York, NY, USA,
2003. ACM. ISBN 1-58113-728-1. doi: http://doi.acm.org/10.1145/997078.997083.

[21] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: a short preamble MAC protocol
for duty-cycled wireless sensor networks. In SenSys ’06: Proceedings of the 4th international
conference on Embedded networked sensor systems, pages 307–320, New York, NY, USA,
2006. ACM. ISBN 1-59593-343-3. doi: http://doi.acm.org/10.1145/1182807.1182838.

[22] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with deterministic
error bounds. The VLDB Journal, 15:211–228, 2006. ISSN 1066-8888. URL http://dx.
doi.org/10.1007/s00778-005-0163-7. 10.1007/s00778-005-0163-7.

[23] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat Monitoring:
Application Driver for Wireless Communications Technology. SIGCOMM Comput. Commun.
Rev., 31(2 supplement):20–41, 2001. ISSN 0146-4833. doi: http://doi.acm.org/10.1145/
844193.844196.

[24] E. J. H. Chang. Echo Algorithms: Depth Parallel Operations on General Graphs. IEEE
Trans. Softw. Eng., 8(4):391–401, 1982. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/
TSE.1982.235573.

[25] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko. Tuning
garbage collection for reducing memory system energy in an embedded java environment.

212

http://doi.acm.org/10.1145/1869790.1869838
http://link.aip.org/link/?PSI/3081/57/1
http://dx.doi.org/10.1007/s00778-005-0163-7
http://dx.doi.org/10.1007/s00778-005-0163-7

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

ACM Trans. Embed. Comput. Syst., 1(1):27–55, 2002. ISSN 1539-9087. doi: http://doi.acm.
org/10.1145/581888.581892.

[26] Chipcon/Texas Instruments. CC1000: Single Chip Very Low Power RF Transceiver, 2010.
URL http://focus.ti.com/lit/ds/symlink/cc1000.pdf.

[27] Chipcon/Texas Instruments. CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver, 2010. URL http://focus.ti.com/lit/ds/symlink/cc2420.pdf.

[28] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate Data Collection in Sen-
sor Networks using Probabilistic Models. In ICDE ’06: Proceedings of the 22nd International
Conference on Data Engineering, page 48, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2570-9. doi: http://dx.doi.org/10.1109/ICDE.2006.21.

[29] A. Coman and M. A. Nascimento. A Distributed Algorithm for Joins in Sensor Networks. In
SSDBM ’07: Proceedings of the 19th International Conference on Scientific and Statistical
Database Management, page 27, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2868-6. doi: http://dx.doi.org/10.1109/SSDBM.2007.26.

[30] A. Coman, M. A. Nascimento, and J. Sander. On Join Location in Sensor Networks. In
MDM ’07: Proceedings of the 2007 International Conference on Mobile Data Management,
pages 190–197, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 1-4244-1241-2.
doi: http://dx.doi.org/10.1109/MDM.2007.35.

[31] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggregation Techniques for
Sensor Databases. In ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, page 449, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-
2065-0.

[32] V. T. de Almeida and R. H. Güting. Supporting uncertainty in moving objects in network
databases. In GIS ’05: Proceedings of the 13th annual ACM international workshop on
Geographic information systems, pages 31–40, New York, NY, USA, 2005. ACM. ISBN
1-59593-146-5. doi: http://doi.acm.org/10.1145/1097064.1097070.

[33] K. A. Delin, R. P. Harvey, N. A. Chabot, S. P. Jackson, M. Adams, D. W. Johnson, and
J. T. Britton. Sensor Web in Antarctica: Developing an Intelligent, Autonomous Platform
for Locating Biological Flourishes in Cryogenic Environments. In 34th Lunar and Planetary
Science Conference, March 2003.

[34] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - A Lightweight and Flexible Operating System
for Tiny Networked Sensors. Local Computer Networks, Annual IEEE Conference on, 0:455–
462, 2004. ISSN 0742-1303. doi: http://doi.ieeecomputersociety.org/10.1109/LCN.2004.38.

[35] P. Dutta and D. Culler. Epic: An Open Mote Platform for Application-Driven Design.
In IPSN ’08: Proceedings of the 7th international conference on Information processing in
sensor networks, pages 547–548, Washington, DC, USA, 2008. IEEE Computer Society. ISBN
978-0-7695-3157-1. doi: http://dx.doi.org/10.1109/IPSN.2008.59.

[36] P. K. Dutta, A. K. Arora, and S. B. Bibyk. Towards radar-enabled sensor networks. In IPSN
’06: Proceedings of the 5th international conference on Information processing in sensor
networks, pages 467–474, New York, NY, USA, 2006. ACM. ISBN 1-59593-334-4. doi:

213

http://focus.ti.com/lit/ds/symlink/cc1000.pdf
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

BIBLIOGRAPHY

http://doi.acm.org/10.1145/1127777.1127848.
[37] M. J. Egenhofer and R. D. Franzosa. Point Set Topological Relations. International Journal

of Geographical Information Systems, 5(2):161–174, 1991.
[38] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference

broadcasts. SIGOPS Oper. Syst. Rev., 36(SI):147–163, 2002. ISSN 0163-5980. doi: http:
//doi.acm.org/10.1145/844128.844143.

[39] M. Erwig and M. Schneider. Developments in Spatio-Temporal Query Languages. In DEXA
’99: Proceedings of the 10th International Workshop on Database & Expert Systems Applica-
tions, page 441, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0281-4.

[40] M. Erwig and M. Schneider. Spatio-Temporal Predicates. IEEE TKDE, 14(4):881–901, 2002.
ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2002.1019220.

[41] ETH Zürich. BTnodes – A Distributed Environment for Prototyping Ad Hoc Networks, 2010.
URL http://www.btnode.ethz.ch/.

[42] X. Fan, C. Ellis, and A. Lebeck. Memory controller policies for DRAM power management.
In ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics
and design, pages 129–134, New York, NY, USA, 2001. ACM. ISBN 1-58113-371-5. doi:
http://doi.acm.org/10.1145/383082.383118.

[43] A. Flammini, P. Ferrari, D. Marioli, E. Sisinni, and A. Taroni. Wired and wireless sensor
networks for industrial applications. Microelectron. J., 40(9):1322–1336, 2009. ISSN 0026-
2692. doi: http://dx.doi.org/10.1016/j.mejo.2008.08.012.

[44] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo. The Collection Tree Pro-
tocol (CTP), 2007. URL http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html.

[45] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in wireless
networks. SIGCOMM Comput. Commun. Rev., 27(4):39–49, 1997. ISSN 0146-4833. doi:
http://doi.acm.org/10.1145/263109.263137.

[46] S. Gaal. Point Set Topology. Academic Press, 1964.
[47] C. Gamage, K. Bicakci, B. Crispo, and A. S. Tanenbaum. Security for the Mythical Air-

Dropped Sensor Network. In ISCC ’06: Proceedings of the 11th IEEE Symposium on Com-
puters and Communications, pages 41–47, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2588-1. doi: http://dx.doi.org/10.1109/ISCC.2006.143.

[48] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

[49] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language:
A holistic approach to networked embedded systems. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation, pages 1–
11, New York, NY, USA, 2003. ACM. ISBN 1-58113-662-5. doi: http://doi.acm.org/10.1145/
781131.781133.

[50] J. Gehrke and S. Madden. Query processing in sensor networks. Pervasive Computing, IEEE,
3(1):46–55, jan.-march 2004. ISSN 1536-1268. doi: 10.1109/MPRV.2004.1269131.

[51] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd

214

http://www.btnode.ethz.ch/
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Edition) (Java (Addison-Wesley)). Addison-Wesley Professional, 2005. ISBN 0321246780.
[52] A. Grilo, K. Piotrowski, P. Langendoerfer, and A. Casaca. A Wireless Sensor Network Ar-

chitecture for Homeland Security Application. In ADHOC-NOW ’09: Proceedings of the 8th
International Conference on Ad-Hoc, Mobile and Wireless Networks, pages 397–402, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-04382-6. doi: http://dx.doi.org/10.1007/
978-3-642-04383-3 34.

[53] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and
M. Vazirgiannis. A foundation for representing and querying moving objects. ACM Trans.
Database Syst., 25(1):1–42, 2000. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/352958.
352963.

[54] R. H. Güting, V. Teixeira de Almeida, and Z. Ding. Modeling and Querying Moving Objects
in Networks. VLDB J., 15(2):165–190, 2006.

[55] G. P. Halkes, T. van Dam, and K. G. Langendoen. Comparing energy-saving MAC protocols
for wireless sensor networks. Mob. Netw. Appl., 10(5):783–791, 2005. ISSN 1383-469X. doi:
http://doi.acm.org/10.1145/1160143.1160161.

[56] A. v. Halteren, R. Bults, K. Wac, D. Konstantas, I. Widya, N. Dokovski, G. Koprinkov,
V. Jones, and R. Herzog. Mobile Patient Monitoring: The Mobihealth System. The Journal
on Information Technology in Healthcare, 2(5):365–373, October 2004. URL http://doc.
utwente.nl/66488/.

[57] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu,
J. Hui, and B. Krogh. Energy-efficient surveillance system using wireless sensor networks. In
MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications,
and services, pages 270–283, New York, NY, USA, 2004. ACM. ISBN 1-58113-793-1. doi:
http://doi.acm.org/10.1145/990064.990096.

[58] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P. Vicaire,
J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. VigilNet: An integrated sensor
network system for energy-efficient surveillance. ACM Trans. Sen. Netw., 2(1):1–38, 2006.
ISSN 1550-4859. doi: http://doi.acm.org/10.1145/1138127.1138128.

[59] M. Heavner, R. Fatland, E. Hood, C. Connor, T. L. Hansen, M. S. Schultz, T. LeFebvre,
and A. Esterline. Sensor Webs in Digital Earth: Monitoring Climate Change Impacts. In
G. Uzochukwu, editor, Proceedings of the 2007 National Conference on Environmental Sci-
ence and Technology, pages 211–217. Springer, 2007. ISBN 978-0-387-88482-0.

[60] A. Hergenröder, J. Wilke, and D. Meier. Distributed Energy Measurements in WSN Testbeds
with a Sensor Node Management Device (SNMD). In GI/ITG Energy-aware Systems and
Methods, Feb. 2010. to appear.

[61] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for networked sensors. SIGPLAN Not., 35(11):93–104, 2000. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/356989.356998.

[62] H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware virtual
memory. In ATEC ’03: Proceedings of the annual conference on USENIX Annual Technical

215

http://doc.utwente.nl/66488/
http://doc.utwente.nl/66488/

BIBLIOGRAPHY

Conference, pages 57–70, Berkeley, CA, USA, 2003. USENIX Association.
[63] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and M. Parlange. Sen-

sorScope: Application-specific sensor network for environmental monitoring. ACM Trans.
Sen. Netw., 6(2):1–32, 2010. ISSN 1550-4859. doi: http://doi.acm.org/10.1145/1689239.
1689247.

[64] Institute of Electrical and Electronics Engineers, Inc. (IEEE). 802.15.4 – Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Per-
sonal Area Networks (LR-WPANs), October 2003.

[65] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In MobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and networking, pages 56–67, New York, NY,
USA, 2000. ACM. ISBN 1-58113-197-6. doi: http://doi.acm.org/10.1145/345910.345920.

[66] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of Network Den-
sity on Data Aggregation in Wireless Sensor Networks. In ICDCS ’02: Proceedings of the
22 nd International Conference on Distributed Computing Systems (ICDCS’02), page 457,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1585-1.

[67] ISO. ISO/IEC 14977:1996: Information technology — Syntactic metalanguage — Extended
BNF. International Organization for Standardization (ISO), Geneva, Switzerland, 1996. URL
http://www.iso.ch/cate/d26153.html.

[68] ITRS. International Technology Roadmap for Semiconductors, 2010. URL www.itrs.net.
[69] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-

efficient computing for wildlife tracking: design tradeoffs and early experiences with Ze-
braNet. SIGARCH Comput. Archit. News, 30(5):96–107, 2002. ISSN 0163-5964. doi:
http://doi.acm.org/10.1145/635506.605408.

[70] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences with Ze-
braNet. SIGARCH Comput. Archit. News, 30(5):96–107, 2002. ISSN 0163-5964. doi:
http://doi.acm.org/10.1145/635506.605408.

[71] A. M. Khedr and W. Osamy. A topology discovery algorithm for sensor network using
smart antennas. Computer Communications, 29(12):2261 – 2268, 2006. ISSN 0140-3664.
doi: DOI:10.1016/j.comcom.2006.03.002. URL http://www.sciencedirect.com/science/
article/B6TYP-4JKJSF1-1/2/2106d315f8e9adbb10eda5ead37cb8c6.

[72] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A component-based architecture for power-
efficient media access control in wireless sensor networks. In SenSys ’07: Proceedings of the
5th international conference on Embedded networked sensor systems, pages 59–72, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-763-6. doi: http://doi.acm.org/10.1145/1322263.
1322270.

[73] D. E. Knuth, J. H. J. Morris, and V. R. Pratt. Fast Pattern Matching in Strings. SIAM
Journal on Computing, 6(2):323–350, 1977.

[74] W. Koenig, D. Van Vuren, and P. Hooge. Detectability, Philopatry, and the Dis-

216

http://www.iso.ch/cate/d26153.html
www.itrs.net
http://www.sciencedirect.com/science/article/B6TYP-4JKJSF1-1/2/2106d315f8e9adbb10eda5ead37cb8c6
http://www.sciencedirect.com/science/article/B6TYP-4JKJSF1-1/2/2106d315f8e9adbb10eda5ead37cb8c6

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

tribution of Dispersal Distances in Vertebrates. Trends in Ecology & Evolution, 11
(12):514 – 517, 1996. ISSN 0169-5347. doi: http://dx.doi.org/10.1016/S0169-5347(96)
20074-6. URL http://www.sciencedirect.com/science/article/B6VJ1-3WJG223-7P/2/
32968219bb7a42b8ecd35f84bc6fb666.

[75] B. Krishnamachari, S. Wicker, R. Bejar, M. Pearlman, and C. Critical Density Thresholds
in Distributed Wireless Networks. In Communications, information and network security,
2002.

[76] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, N. Kushalnagar,
L. Nachman, and M. Yarvis. Design and deployment of industrial sensor networks: experi-
ences from a semiconductor plant and the north sea. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pages 64–75, New York, NY,
USA, 2005. ACM. ISBN 1-59593-054-X. doi: http://doi.acm.org/10.1145/1098918.1098926.

[77] P. Langendorfer, A. Grilo, K. Piotrowski, and A. Casaca. A Wireless Sensor Network Reliable
Architecture for Intrusion Detection. In Next Generation Internet Networks, pages 189–194,
Apr. 2008. doi: http://dx.doi.org/10.1109/NGI.2008.32.

[78] Laura Marie Feeney, editor and Can Basaran and others. Critical evaluation of platforms
commonly used in embedded wireless sensor networks research. Public report, Embedded
Wisents Project FP6-004400, 2006. URL http://www.embedded-wisents.org/studies/
survey_wp2.html.

[79] H. Lim and C. Kim. Multicast tree construction and flooding in wireless ad hoc networks. In
MSWIM ’00: Proceedings of the 3rd ACM international workshop on Modeling, analysis and
simulation of wireless and mobile systems, pages 61–68, New York, NY, USA, 2000. ACM.
ISBN 1-58113-304-9. doi: http://doi.acm.org/10.1145/346855.346865.

[80] N.-H. Liu, C.-A. Wu, and S.-J. Hsieh. Long-Term Animal Observation by Wireless Sen-
sor Networks with Sound Recognition. In WASA ’09: Proceedings of the 4th International
Conference on Wireless Algorithms, Systems, and Applications, pages 1–11, Berlin, Hei-
delberg, 2009. Springer-Verlag. ISBN 978-3-642-03416-9. doi: http://dx.doi.org/10.1007/
978-3-642-03417-6 1.

[81] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny AGgregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002. ISSN
0163-5980. doi: http://doi.acm.org/10.1145/844128.844142.

[82] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional
query processor for sensor networks. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 491–502, New York, NY, USA, 2003.
ACM. ISBN 1-58113-634-X. doi: http://doi.acm.org/10.1145/872757.872817.

[83] S. R. Madden. The design and evaluation of a query processing architecture for sensor net-
works. PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 2003. Chair-
Franklin, Michael J.

[84] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122–173,

217

http://www.sciencedirect.com/science/article/B6VJ1-3WJG223-7P/2/32968219bb7a42b8ecd35f84bc6fb666
http://www.sciencedirect.com/science/article/B6VJ1-3WJG223-7P/2/32968219bb7a42b8ecd35f84bc6fb666
http://www.embedded-wisents.org/studies/survey_wp2.html
http://www.embedded-wisents.org/studies/survey_wp2.html

BIBLIOGRAPHY

2005. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/1061318.1061322.
[85] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor net-

works for habitat monitoring. In WSNA ’02: Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications, pages 88–97, New York, NY, USA,
2002. ACM. ISBN 1-58113-589-0. doi: http://doi.acm.org/10.1145/570738.570751.

[86] T. L. Martin. Balancing batteries, power, and performance: system issues in cpu speed-setting
for mobile computing. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1999.
Adviser-Siewiorek, Daniel P.

[87] K. Martinez, J. K. Hart, and R. Ong. Environmental Sensor Networks. Computer, 37(8):
50–56, 2004. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/MC.2004.91.

[88] M. Mazzu, S. Scalvini, A. Giordano, E. Frumento, H. Wells, K. Lokhorst, and F. Glisenti.
Wireless-accessible sensor populations for monitoring biological variables. Journal of
Telemedicine and Telecare, 14(3):135–137, March 2008. ISSN 1357-633X. doi: 10.1258/
jtt.2008.003010. URL http://dx.doi.org/10.1258/jtt.2008.003010.

[89] C. Mbarushimana and A. Shahrabi. Comparative Study of Reactive and Proactive Routing
Protocols Performance in Mobile Ad Hoc Networks. In AINAW ’07: Proceedings of the 21st
International Conference on Advanced Information Networking and Applications Workshops,
pages 679–684, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2847-3.
doi: http://dx.doi.org/10.1109/AINAW.2007.123.

[90] S. Mehta, W.-S. Yoon, S.-W. Min, and S. Yu. Topology generation algorithms for home
sensor networks. Software Technologies for Future Embedded and Ubiquitous Systems, 2004.
Proceedings. Second IEEE Workshop on, pages 166–168, may. 2004. doi: 10.1109/WSTFES.
2004.1300435.

[91] J. M. Metsaranta. Assessing Factors Influencing the Space Use of a Woodland Caribou
Rangifer Tarandus Caribou Population using an Individual-Based Model. Wildlife Biology, 14
(4):478–488, Dec. 2008. ISSN 0909-6396. doi: http://dx.doi.org/10.2981/0909-6396-14.4.478.

[92] A. Mohammed, M. Ould-Khaoua, and L. Mackenzie. An Efficient Counter-Based Broadcast
Scheme for Mobile Ad Hoc Networks. In K. Wolter, editor, Formal Methods and Stochastic
Models for Performance Evaluation, volume 4748 of Lecture Notes in Computer Science,
pages 275–283. Springer Berlin / Heidelberg, 2007. URL http://dx.doi.org/10.1007/
978-3-540-75211-0_20. 10.1007/978-3-540-75211-0 20.

[93] A. Mohammed, M. Ould-Khaoua, and L. Mackenzie. Improvement to Efficient Counter-Based
Broadcast Scheme through Random Assessment Delay Adaptation for MANETS. Computer
Modeling and Simulation, 2008. EMS ’08. Second UKSIM European Symposium on, pages
536–541, sep. 2008. doi: 10.1109/EMS.2008.69.

[94] A. Mohammed, M. Ould-Khaoua, L. Mackenzie, and J. Abdulai. Performance evaluation of an
efficient counter-based scheme for mobile ad hoc networks based on realistic mobility model.
Performance Evaluation of Computer and Telecommunication Systems, 2008. SPECTS 2008.
International Symposium on, pages 181–188, jun. 2008.

[95] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6 Packets over

218

http://dx.doi.org/10.1258/jtt.2008.003010
http://dx.doi.org/10.1007/978-3-540-75211-0_20
http://dx.doi.org/10.1007/978-3-540-75211-0_20

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard), Sept. 2007. URL http://www.
ietf.org/rfc/rfc4944.txt.

[96] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 8(4), apr
1965.

[97] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel. The Intel®Mote platform: a
Bluetooth-based sensor network for industrial monitoring. In IPSN ’05: Proceedings of the 4th
international symposium on Information processing in sensor networks, page 61, Piscataway,
NJ, USA, 2005. IEEE Press. ISBN 0-7803-9202-7.

[98] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem in a mobile
ad hoc network. In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, pages 151–162, New York, NY, USA, 1999.
ACM. ISBN 1-58113-142-9. doi: http://doi.acm.org/10.1145/313451.313525.

[99] K. Obraczka, K. Viswanath, and G. Tsudik. Flooding for reliable multicast in multi-hop ad
hoc networks. Wirel. Netw., 7(6):627–634, 2001. ISSN 1022-0038. doi: http://dx.doi.org/10.
1023/A:1012323519059.

[100] R. U. Pedersen, J. Nørbjerg, and M. P. Scholz. Embedded programming education with Lego
Mindstorms NXT using Java (leJOS), Eclipse (XPairtise), and Python (PyMite). In WESS
’09: Proceedings of the 2009 Workshop on Embedded Systems Education, pages 50–55, New
York, NY, USA, 2009. ACM. ISBN 978-1-4503-0021-6. doi: http://doi.acm.org/10.1145/
1719010.1719019.

[101] W. Peng and X. Lu. AHBP: An efficient broadcast protocol for mobile Ad hoc networks.
Journal of Computer Science and Technology, 16:114–125, 2001. ISSN 1000-9000. URL
http://dx.doi.org/10.1007/BF02950416. 10.1007/BF02950416.

[102] W. Peng and X.-C. Lu. On the reduction of broadcast redundancy in mobile ad hoc networks.
In MobiHoc ’00: Proceedings of the 1st ACM international symposium on Mobile ad hoc
networking & computing, pages 129–130, Piscataway, NJ, USA, 2000. IEEE Press. ISBN
0-7803-6534-8.

[103] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV)
Routing, July 2003.

[104] C. E. Perkins, J. T. Malinen, R. Wakikawa, A. Nilsson, and A. J. Tuominen. Internet
Connectivity for Ad Hoc Mobile Networks, 2002.

[105] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor net-
works. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 95–107, New York, NY, USA, 2004. ACM. ISBN 1-58113-879-2. doi:
http://doi.acm.org/10.1145/1031495.1031508.

[106] R. Powers. Batteries for Low Power Electronics. In Proceedings of the IEEE, pages 687–693.
IEEE, April 1995.

[107] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint Relaying for Flooding Broadcast Mes-
sages in Mobile Wireless Networks. In HICSS ’02: Proceedings of the 35th Annual Hawaii
International Conference on System Sciences (HICSS’02)-Volume 9, page 298, Washington,

219

http://www.ietf.org/rfc/rfc4944.txt
http://www.ietf.org/rfc/rfc4944.txt
http://dx.doi.org/10.1007/BF02950416

BIBLIOGRAPHY

DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1435-9.
[108] J. M. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan. 12.3 Pico-

Radios for Wireless Sensor Networks – The Next Challenge in Ultra-Low Power Design. In
Proceedings of the International Solid-State Circuits Conference, feb 2002.

[109] A. Rahman and P. Gburzynski. Hidden Problems with the Hidden Node Problem. In in
Proceedings of 23rd Biennial Symposium on Communications, pages 270–273, 2006.

[110] J. W. Rettie and F. Messier. Hierarchical Habitat Selection by Woodland Caribou: Its
Relationship to Limiting Factors. Ecography, 23(4):466–478, 2000. ISSN 09067590. URL
http://www.jstor.org/stable/3683077.

[111] R. Riggs, J. Huopaniemi, A. Taivalsaari, M. Patel, and A. Uotila. Programming Wireless
Devices with the Java 2 Platform, Micro Edition. Sun Microsystems, Inc., Mountain View,
CA, USA, 2003. ISBN 0321197984.

[112] R. RoyChoudhury, S. Bandyopadhyay, and K. Paul. A distributed mechanism for topology
discovery in ad hoc wireless networks using mobile agents. In MobiHoc ’00: Proceedings
of the 1st ACM international symposium on Mobile ad hoc networking & computing, pages
145–146, Piscataway, NJ, USA, 2000. IEEE Press. ISBN 0-7803-6534-8.

[113] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. Physical
layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In
MobiCom ’01: Proceedings of the 7th annual international conference on Mobile computing
and networking, pages 272–287, New York, NY, USA, 2001. ACM. ISBN 1-58113-422-3. doi:
http://doi.acm.org/10.1145/381677.381703.

[114] N. Shrivastava, R. M. U. Madhow, and S. Suri. Target tracking with binary proximity sensors:
fundamental limits, minimal descriptions, and algorithms. In SenSys ’06: Proceedings of the
4th international conference on Embedded networked sensor systems, pages 251–264, New
York, NY, USA, 2006. ACM. ISBN 1-59593-343-3. doi: http://doi.acm.org/10.1145/1182807.
1182833.

[115] B. S. I. G. (SIG). Bluetooth Core Specification Version 4.0, apr 2010. URL http://www.
bluetooth.com.

[116] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java™ on the bare metal
of wireless sensor devices: the squawk Java virtual machine. In VEE ’06: Proceedings of the
2nd international conference on Virtual execution environments, pages 78–88, New York, NY,
USA, 2006. ACM. ISBN 1-59593-332-6. doi: http://doi.acm.org/10.1145/1134760.1134773.

[117] D. Simplot-Ryl, I. Stojmenovic, and J. Wu. Energy efficient backbone construction, broad-
casting, and area coverage in sensor networks. John Wiley & Sons, nov 2005. ISBN 978-0-
471-68472-5.

[118] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, and M. Nixon. WirelessHART: Applying
Wireless Technology in Real-Time Industrial Process Control. In Real-Time and Embedded
Technology and Applications Symposium, 2008. RTAS ’08. IEEE, pages 377–386, Apr. 2008.
doi: 10.1109/RTAS.2008.15.

[119] G. P. Succi, T. K. Pedersen, R. Gampert, and G. Prado. Acoustic target tracking and target

220

http://www.jstor.org/stable/3683077
http://www.bluetooth.com
http://www.bluetooth.com

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

identification: recent results. Unattended Ground Sensor Technologies and Applications, 3713
(1):10–21, 1999. doi: 10.1117/12.357130. URL http://link.aip.org/link/?PSI/3713/10/
1.

[120] SUN Microsystems Inc. Small Programmable Object Technology (SPOT), 2009. URL www.
sunspotworld.com.

[121] D. Thompson and R. Miles. Embedded programming with the microsoft .net micro framework.
Microsoft Press, Redmond, WA, USA, 2007. ISBN 9780735623651.

[122] R. Tilove. Set Membership Classification: A Unified Approach to Geometric Intersection
Problems. Computers, IEEE Transactions on, C-29(10):874–883, oct. 1980. ISSN 0018-9340.
doi: 10.1109/TC.1980.1675470.

[123] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson,
P. Buonadonna, D. Gay, and W. Hong. A macroscope in the redwoods. In SenSys ’05:
Proceedings of the 3rd international conference on Embedded networked sensor systems, pages
51–63, New York, NY, USA, 2005. ACM. ISBN 1-59593-054-X. doi: http://doi.acm.org/10.
1145/1098918.1098925.

[124] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain. The Geometry of Uncertainty in
Moving Objects Databases. In EDBT ’02: Proceedings of the 8th International Conference on
Extending Database Technology, pages 233–250, London, UK, 2002. Springer-Verlag. ISBN
3-540-43324-4.

[125] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving
objects databases. ACM Trans. Database Syst., 29(3):463–507, 2004. ISSN 0362-5915. doi:
http://doi.acm.org/10.1145/1016028.1016030.

[126] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wireless
sensor networks. In SenSys ’03: Proceedings of the 1st international conference on Embedded
networked sensor systems, pages 171–180, New York, NY, USA, 2003. ACM. ISBN 1-58113-
707-9. doi: http://doi.acm.org/10.1145/958491.958512.

[127] J. Werb. Making Sense of the Sensor Network Value Chain, 2008. URL
www.adaptive-wireless.co.uk/wp-content/uploads/2008/09/making_sense_of_the_
sensor_network_value_chain.pdf.

[128] B. Williams and T. Camp. Comparison of Broadcasting Techniques for Mobile Ad Hoc
Networks. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MOBIHOC), 2002.

[129] N. Wirth. What can we do about the unnecessary diversity of notation for syntactic defini-
tions? Commun. ACM, 20(11):822–823, 1977. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/359863.359883.

[130] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and
Solutions. In SSDBM ’98: Proceedings of the 10th International Conference on Scientific
and Statistical Database Management, pages 111–122, Washington, DC, USA, 1998. IEEE
Computer Society. ISBN 0-8186-8575-1. doi: http://dx.doi.org/10.1109/SSDM.1998.688116.

[131] XBow Technology Inc. Wireless Sensor Networks, 2009. URL http://www.xbow.com.

221

http://link.aip.org/link/?PSI/3713/10/1
http://link.aip.org/link/?PSI/3713/10/1
www.sunspotworld.com
www.sunspotworld.com
www.adaptive-wireless.co.uk/wp-content/uploads/2008/09/making_sense_of_the_sensor_network_value_chain.pdf
www.adaptive-wireless.co.uk/wp-content/uploads/2008/09/making_sense_of_the_sensor_network_value_chain.pdf
http://www.xbow.com

BIBLIOGRAPHY

[132] X. Yang, H. B. Lim, T. M. Özsu, and K. L. Tan. In-network execution of monitoring queries
in sensor networks. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 521–532, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-686-8. doi: http://doi.acm.org/10.1145/1247480.1247538.

[133] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in Sensor
Networks. SIGMOD Record, 31(3):9–18, 2002.

[134] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless sensor
networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1567 – 1576, 2002. doi:
10.1109/INFCOM.2002.1019408.

[135] M. L. Yiu, N. Mamoulis, and S. Bakiras. Retrieval of Spatial Join Pattern Instances from
Sensor Networks. In SSDBM ’07: Proceedings of the 19th International Conference on Sci-
entific and Statistical Database Management, page 25, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-2868-6. doi: http://dx.doi.org/10.1109/SSDBM.2007.41.

[136] H. Yu, E.-P. Lim, and J. Zhang. On In-network Synopsis Join Processing for Sensor Networks.
In MDM ’06: Proceedings of the 7th International Conference on Mobile Data Management,
page 32, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2526-1. doi:
http://dx.doi.org/10.1109/MDM.2006.113.

[137] M. Zennaro, A. Floros, G. Dogan, T. Sun, Z. Cao, C. Huang, M. Bahader, H. Ntareme, and
A. Bagula. On the Design of a Water Quality Wireless Sensor Network (WQWSN): An Appli-
cation to Water Quality Monitoring in Malawi. Parallel Processing Workshops, International
Conference on, 0:330–336, 2009. ISSN 1530-2016. doi: http://doi.ieeecomputersociety.org/
10.1109/ICPPW.2009.57.

[138] W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile target tracking in sensor
networks. INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, 4:2434–2445, mar. 2004. ISSN 0743-166X.

[139] X. Zhu, H. Gupta, and B. Tang. Join of Multiple Data Streams in Sensor Networks. Knowledge
and Data Engineering, IEEE Transactions on, 21(12):1722–1736, dec. 2009. ISSN 1041-4347.
doi: 10.1109/TKDE.2009.38.

[140] ZigBee Alliance. ZigBee Specification, Jan. 2008. URL http://www.zigbee.org.

222

http://www.zigbee.org

Index

HPR, 79
Disjoint (O,Z), 47
Inside (O,Z), 47
Meet (O,Z), 47
Undetected (O), 48
D̃SB, 39
DSB, 39
DSE , 38
DSI , 38
DS∅, 38
802.15.4, 11, 14, 15, 170
9-Intersection Model, 22

ACK
End-to-End, 16
Link-Level, 15

AODV, 16, 93, 188
PERR, 191
Route Flapping, 189
RREP, 189, 190
RREQ, 188, 190

B-MAC, 17, 151
Bluetooth, 13
Border, 21

Region, 21
Zone, 36

Border Node, 115
Border of a Zone, 36
Broadcast, 91

Direct, 91
Indirect, 91

Reverse, 91
BTnode, 13

CBD, 76, 77, 83, 84
CC1000, 11, 13, 14
CC2420, 11, 12, 14, 15
Communication Area, 35
Communication Neighbors, 35
Completeness, 111
Concatenation, 24

Relaxed, 51
Strict, 24

Controlled Deployment, 4
Correctness, 111
Counter-based Dissemination, 83
Counter-based dissemination, 76
CSMA/CA, 15, 82
CTP, 93

Declarative Query, 1
Definition

Disjoint (O,Z), 47
Inside (O,Z), 47
Meet (O,Z), 47
Undetected (O), 48
D̃SB, 39
DSB, 39
DSE , 38
DSI , 38
DS∅, 38
Border, 21
Border Node, 115

223

INDEX

Border of a Zone, 36
Communication Area, 35
Communication Neighbors, 35
Completeness, 111
Concatenation, 24
Correctness, 111
Detection Area, 32
Detection Concatenation, 61
Detection Function, 32
Detection Neighbor, 114
Detection Scenario, 38
Detection Sequence, 61
Detection Set, 32
Detection Term, 61
Detection-Term Conformance, 62
Development Graph, 52
Entry Time, 33
Exit Time, 33
Exterior, 21
Exterior of a Zone, 36
Hop Set, 91
Interior, 21
Interior of a Zone, 36
Maximum Detection Range, 33
Message Path, 91
Minimal Path Length, 91
Moving Object, 23
Moving Region, 23
Object, 21
Position Estimate, 34
Possible Object Positions, 35
Region, 21
Relaxed Concatenation, 51
Relaxed Detection Concatenation, 62
Semi-Completeness, 114
Spatial Predicate, 22
Spatio-Temporal Development, 52
Spatio-Temporal Predicate, 23
Unobserved Partition, 36
Zone, 36

Deployment
Controlled, 4
Uncontrolled, 3

Detection Area, 32
Detection Concatenation, 61
Detection Function, 32
Detection Mechanism

Magnetometer, 13
Microphone, 13
Radar, 13

Detection Neighbor, 114
Detection Scenario, 38

D̃SB, 39
DSB, 39
DSE , 38
DSI , 38
DS∅, 38

Detection Sequence, 61
Detection Set, 32
Detection Term, 61
Detection-Term Conformance, 62
Development Graph, 25, 52
Development Tree, 26
Direct Broadcast, 91
Direct Reachability, 95
Dissemination

Counter-based, 76, 83
Epidemic, 75
Flooding, 75
Probabilistic, 76, 85
Probabilistic counter-based, 77, 84
Scalable Broadcast Algorithm, 78, 86
Topology-Based, 75

DSSS, 15
Dynamic Region, 3, 5
Dynamic Zone, 5

Efficient Processing, 6
End-to-End ACK, 16
Entity, 20

224

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Border, 21
Complement, 20
Object, 21, 23
Region, 21, 23

Entry Time, 33
Exit Time, 33
Exterior, 21

Region, 21
Zone, 36

Exterior of a Zone, 36

Flooding, 75

Hello-Packet Rate, 79
Hidden Terminal Problem, 15
Hop Set, 91
Hop set size, 92
HPR, 86

Idle Listening, 17, 28
IEEE 802.15.4, 11, 14, 15, 170
Indirect Broadcast, 91
Indirect Reachability, 96
Intel Mote, 12
Inter-Connectivity, 92
Interior, 21

Region, 21
Zone, 36

Interior of a Zone, 36
Intra-Connectivity, 92
ITRS, 18

Lifting, 23
Link-level ACK, 15

MAC, 14
B-MAC, 17, 151
Energy-Aware, 17

Magnetometer, 13
Maximum Detection Range, 33
Message Path, 91

Mica
Mica2, 11
Mica2Dot, 11
Motes, 11

Microphone, 13
Minimal Path Length, 91
Minimal path length, 91
Monitoring Application, 2
Moore’s Law, 19
Moving Object, 23
Moving Object Database, 2
Moving Region, 23

nesC, 12
Notation

Detection Neighbor Subsets, 114
Entry Time, 33
Exit Time, 33
Sensor Network, 32
Tuple Overlap, 161

Object, 21, 23
Moving, 23
Spatial, 21

Passive Sensor, 1
Path Length, 91

Minimal, 91
Path-loss Exponent, 18
PCBD, 77, 84
PERR, 191
PHY, 14
Point-set Topology, 20
Position Estimate, 34
Possible Object Positions, 35
Predicate

Disjoint (O,Z), 47
Inside (O,Z), 47
Meet (O,Z), 47
Undetected (O), 48
Sequence, 24

225

INDEX

Spatial, 22
Spatio-Temporal, 23

Probabilistic counter-based Dissemination, 77,
84

Probabilistic Dissemination, 76, 85

Query Dissemination, 6

RAD, 76, 78, 82, 83, 86
Radar, 13

Micropower-impulse, 13
Radio Chip

CC1000, 11, 13, 14
CC2420, 11, 12, 14, 15

Random Access Delay, 76
Reachability, 75, 94

Direct, 95
Indirect, 96

Reachability Function, 90
Region, 21, 23

Dynamic, 3, 5
Moving, 23
Spatial, 21
Static, 3, 5

Relational Database, 1
Relaxed Concatenation, 51
Relaxed Detection Concatenation, 62
Reverse Broadcast, 91
Routing Protocol, 16

AODV, 16, 93, 188
CTP, 93
Proactive, 16
Reactive, 16

RREP, 189, 190
RREQ, 188, 190

SBA, 78, 86
Scalable Broadcast Algorithm, 78, 86
Semi-Completeness, 114
Sensor Network, 1, 32
Sensor Node, 1

BTnode, 13
Intel Mote, 12
Intel Mote2, 12
Mica Mote, 11
Mica2, 11
Mica2Dot, 11
Sun SPOT, 10, 80, 97, 148, 169

Sensor Node Management Device, 147
Sleep Mode, 11, 17, 116, 148

Deep, 116, 148
Shallow, 148
Sleep Period, 17

Small Programmable Object Technology, 10
SNMD, 147
Space Partition

Border, 37
Exterior, 36
Interior, 36
Unobserved, 36

Spatial Object, 21
Spatial Predicate, 22
Spatial Region, 21
Spatio-Temporal Development, 52
Spatio-temporal Development, 24
Spatio-Temporal Predicate, 23
Spatio-Temporal Semantic, 2
Spatio-Temporal Semantics, 6
Static Region, 3, 5
Static Zone, 5
Sun SPOT, 10, 80, 97, 148, 169

Temporal Function, 23
Temporal Lifting, 23
TinyOS, 11
Tracking Application, 2

Uncontrolled Deployment, 3
Unobserved Partition, 36

WPAN, 14

226

Dissertation of Markus Bestehorn Karlsruhe Institute of Technology

Zone, 5, 36
Dynamic, 5
Static, 5

227

	Introduction
	Application Examples
	Application Example 1: Surveillance
	Application Example 2: Animal Tracking
	Scope and Assumptions

	Contributions and Outline of this Dissertation

	Technical Background
	Sensor Network Platforms and Architecture
	State-of-the-Art on Sensor Nodes
	Communication in Sensor Networks
	Energy Supply and Consumption
	Impact of Future Developments
	Summary

	Fundamentals of Moving Object Databases
	Point-Set Topology
	Spatial and Spatio-Temporal Predicates
	Spatio-Temporal Developments
	Moving Object Databases vs. Sensor Networks

	Processing Relational Queries in Sensor Networks
	Summary

	Semantics of Spatio-Temporal Queries
	Node and Detection Model
	Point-Set Topology for Sensor Networks
	Deriving Predicate Results from Object Detections
	Predicate Results for Regions
	Predicate Results for Zones
	Static and Dynamic Zones
	Summary

	Spatio-Temporal Developments
	Irregularity of Zones and Concatenation
	A Canonical Collection of Spatio-Temporal Developments
	Formal Description of Object Detection Sequences
	Detection Terms

	Summary

	Query Dissemination in Sensor Networks
	Problem Statement
	Dissemination of Spatio-Temporal Queries
	Performance Study on Existing Dissemination Approaches
	Existing Dissemination Approaches
	Experimental Setup
	Results and Analysis
	Discussion

	Optimizing Probabilistic Query Dissemination
	Topology Information
	Reachability Prediction
	Estimating Energy Consumption

	Evaluation
	Simulation
	Break-Even Analysis
	Sun SPOT Case Study

	Summary

	Energy-Efficient Processing of Spatio-Temporal Queries
	Preface
	Data Structures and Algorithms
	Detection Scenario Computation
	Memory Requirements and Management

	Centralized Strategy
	Distributed Object-Information Collection
	Reactive Strategy
	Proactive Strategy
	ZIP – Zone Information Protocol
	Detection Neighbor Approximation
	Failure Handling
	Distributed Notification Filtering

	Evaluation
	Static Zones – Evaluation
	Dynamic Zones – Evaluation

	Summary

	Conclusion and Future Work
	Summary
	Future Work
	Queries with non-identifiable Objects
	Detection Cost Optimization
	Object-Object, Region-Region and Region-Zone Predicates
	Approximation of Detection Neighbors
	Advanced Concatenations and Predicates
	Querying the Movement of Humans with Privacy-Related Position Obfuscation

	Energy Consumption Profile of Sensor Nodes
	Experimental Setup
	Results and Analysis
	Impact of Communication on node lifetime
	Energy consumption of sending and receiving
	Impact of energy-aware MAC protocols

	Lessons Learned

	Spatio-temporal queries with relational operators
	Relational Schema
	Expressing a Spatio-Temporal Query using SQL
	Step 1 – Computing OutsideDetectedv
	Step 2 – Computing InsideDetectedv
	Step 3 – Computing DisjointViewv
	Step 4 – Computing InsideViewv
	Step 5 – Assembling the subqueries

	Relational Schemas and Regions
	Lessons Learned

	The Karlsruhe Sensor Networking Project
	KSN Testbed
	KSN Serialization and Collections
	The KSN Serialization Process
	Study of Serialization Overhead

	KSN Radio Stack
	Design Targets and Overview
	Layers of the KSN Radio Stack
	Evaluation and Summary

	KSN Simulator
	Components of the Simulator
	Squawk Adaptation Layer

	KSN Management Application
	Main Concepts
	Evaluation

	A Topology Discovery Protocol
	Overview – Echo-based Topology-Discovery
	Expansion wave
	Contraction wave

