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Preface

The topic of this thesis are two further developments of the Factorization
method for electrical impedance tomography (EIT). In EIT current is ap-
plied to the surface of the investigated subject and the resulting voltage
is measured at the surface. From these measurements one tries to recover
information about the conductivity inside the subject. The Factorization
method for EIT is a noniterative method to detect domains inside the in-
vestigated subject that exhibit a different conductivity than the a priori
known background medium.

We start by giving an introduction to the direct and the inverse prob-
lem of EIT in Chapter 1. We show how our mathematical model can be
derived from Maxwell’s equations and give an outline of the functional
analytic setting we are dealing with. Afterwards we discuss the direct
and the inverse problem of EIT and give a short summary of some recon-
struction methods and in particular the Factorization method.

For the Factorization method for EIT it is usually assumed that either
all the inclusions have a higher or they all have a lower conductivity than
the background medium. In Chapter 2 we therefore develop a modifi-
cation of the Factorization method for EIT that is capable of detecting
mixed inclusions, i.e. in the case in which there are both inclusions with
a higher as well as inclusions with a lower conductivity than the back-
ground medium. Parts of Chapter 2 have been previously published in
the paper [71].

Since the Factorization method only provides information about shape
and location of inclusions but not about their actual conductivity we
present a method to compute the conductivity inside inclusions after
they have been localized in Chapter 3. This method is based on a new
version of the Factorization method for EIT that involves a factorization
with three operators that are different from those in Chapter 2. In partic-
ular, we show some essential properties of the spectrum of the operator
that appears in the middle of this new factorization and that it is closely
related to the conductivity of the inclusions.



vi

This work has partly been supported by the German Federal Min-
istry of Education an Research (BMBF) under the project ‘Regularization
Methods for Electrical Impedance Tomography in Medicine and Geo-
science ’. This financial support is gratefully acknowledged.

Furthermore, this work would not exist without the support of my
colleagues at the department of mathematics of the Karlsruhe Institute
of Technology. First of all, I would like to thank my advisor Prof. Dr.
Andreas Kirsch for many fruitful discussions as well as the excellent
supervision during the recent years. I also thank PD Dr. Tilo Arens
for being the co-examiner of this thesis and for a lot of encouragement
from the beginning of my work on. Moreover, I am much obliged to Dr.
Armin Lechleiter, Andreas Helfrich-Schkarbanenko and Sven Heumann
for many stimulating discussions and valuable remarks. Finally, I would
like to thank PD Dr. Frank Hettlich, Marc Mitschele, Dr. Kai Sandfort,
Monika Behrens, Dr. Karsten Kremer, Dr. Sebastian Ritterbusch and Dr.
Slavyana Geninska for their help and for providing a very friendly work-
ing atmosphere.



Contents

1 Electrical Impedance Tomography 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Direct Problem . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Derivation of the Mathematical Model . . . . . . . . 2
1.2.2 Functional Analytic Setting . . . . . . . . . . . . . . 3
1.2.3 The Direct Problem . . . . . . . . . . . . . . . . . . . 5

1.3 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Identifiability and Reconstruction Methods . . . . . 7
1.3.2 The Factorization Method . . . . . . . . . . . . . . . 8
1.3.3 Outline of this Work . . . . . . . . . . . . . . . . . . 10

2 Detection of Mixed inclusions 13
2.1 The Factorization Method for two Inclusions . . . . . . . . 14

2.1.1 The Standard Factorization Method . . . . . . . . . 14
2.1.2 Representations of the Middle Operator . . . . . . . 24

2.2 The Covering Method . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Contrasts in the Absolute Conductivity . . . . . . . 29
2.2.2 Insulating and Perfectly Conducting Inclusions . . 43

2.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . 48
2.3.1 The Original Factorization Method . . . . . . . . . . 48
2.3.2 Different Parameters and Noise Levels . . . . . . . 50
2.3.3 Different Covering Domains . . . . . . . . . . . . . 57

3 Determination of the Conductivity 61
3.1 A new Version of the Factorization Method . . . . . . . . . 61
3.2 The Spectrum of the Middle Operator . . . . . . . . . . . . 67

3.2.1 A Radially Symmetric Example . . . . . . . . . . . . 67
3.2.2 Constant Conductivity Contrast . . . . . . . . . . . 70
3.2.3 Several Conductivity Contrasts . . . . . . . . . . . . 82
3.2.4 Complex-valued Conductivities . . . . . . . . . . . 91



viii Contents

3.3 Determination of the Conductivity . . . . . . . . . . . . . . 94
3.3.1 Approximation of the Spectrum . . . . . . . . . . . 95
3.3.2 Approximation of the Conductivity . . . . . . . . . 103

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . 104
3.4.1 Numerical Solution of the Direct Problem . . . . . . 104
3.4.2 Approximation of Spectrum and Conductivity . . . 105
3.4.3 Inexact Data . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.4 An Alternative Approach . . . . . . . . . . . . . . . 114

4 Conclusions 119

List of Symbols 123

Index 127

Bibliography 129



1 Electrical Impedance
Tomography

This first chapter serves as an introduction to this work. After a short
summary of possible technical applications of electrical impedance to-
mography we turn towards the investigation of the direct problem. Af-
terwards we formulate the inverse problem and present some important
results concerning identifiability and various reconstruction methods. At
last we give an outline of the development of the Factorization method
and explain what new results our work contributes to the Factorization
method for impedance tomography.

1.1 Motivation

In electrical impedance tomography (EIT) current is applied to the sur-
face of the investigated subject and the resulting electrical potential is
measured at the surface. From a set of such measurements one tries to
obtain information about the conductivity inside the subject.

There is a large variety of possible applications of this imaging method.
First of all, there are applications in medicine such as lung imaging or the
detection of breast tumors. Since different tissues inside the body have
different conductivities, these tissues can potentially be visualized using
EIT. In contrast to other imaging methods in medicine, production as
well as application of EIT devices are relatively cheap and there are no
harmful side-effects such as radiation exposure as they are unavoidable
e.g. for X-ray tomography.

Another important field of application is geoelectrical imaging where
one tries to recover information about the conductivity distribution in the
ground. Since different materials in the ground exhibit different electrical
properties, they can also be distinguished using EIT.
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In the following section we derive the mathematical model for the di-
rect problem of EIT, and afterwards we formulate the corresponding in-
verse problem and give an outline of some reconstruction methods.

1.2 The Direct Problem

In this section we investigate the direct problem of electrical impedance
tomography. At first we give an outline how the mathematical model
can be derived from Maxwell’s equations. Afterwards we explain our
functional analytic setting to ensure unique solvability and introduce the
Neumann-to-Dirichlet operator.

1.2.1 Derivation of the Mathematical Model

We first assume that the investigated subject is three-dimensional while
later we will see that the resulting direct problem for EIT applies to sub-
jects in R2 as well. Let B be the subject unter investigation, i.e. B ⊂ R3 is
a bounded and simply connected C2-domain. The following considera-
tions are adopted from [16].

The starting point for the derivation of the mathematical model for
EIT are Maxwell’s equations for conductive materials in the frequency
domain:

curlE = iωµH, curlH = (σ− iωε) E. (1.1)

Let [x] , [E] , [H] ∈ R be scaling factors such that x = [x] x̃, E(x) =
E([x] x̃) = [E] Ẽ(x̃) and H(x) = H([x] x̃) = [H] H̃(x̃). In particular, the
terms in brackets carry the corresponding units while the quantities with
tildes don’t. Now we obtain

curlx̃ Ẽ = iωµ
[H] [x]

[E]
H̃, curlx̃ H̃ = (σ− iωε)

[E] [x]
[H]

Ẽ.

Here curlx̃ Ẽ is defined by curlx̃ Ẽ(x̃) = curl [E]
[x] E(x) and, analogously,

curlx̃ H̃(x̃) denotes curl [H]
[x] H(x).

The mean value of σ in B is denoted by σ, and we choose the scaling
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factors such that σ
[E][x]
[H] = 1. Hence the equations can be transformed to

curlx̃ Ẽ = iωµσ [x]2 H̃, curlx̃ H̃ =
1
σ

(σ− iωε) Ẽ.

Now the complex-valued admittivity is defined by γ := 1
σ (σ− iωε)

from which it is easy to see that Re γ is non-negative and has mean value
1 while Im γ is non-positive and depends on the applied frequency ω.
In this work the complex-valued admittivity γ will be called (complex-
valued) conductivity.

For non-ferromagnetic materials and low frequencies ω as they are
usually used in EIT the term ωµσ [x]2 is negligible. We therefore pos-
tulate curlx̃ Ẽ = 0 in B which also implies curlE = 0 in B and thus that
there exists an electrical potential u such that E = ∇u. Plugging this
equality into the second equation in (1.1) and applying the divergence
yields div (γ∇u) = 0.

The current applied to the boundary ∂B can be modelled by a Neu-
mann boundary condition. To derive this boundary condition from Max-
well’s equations we have to add the current density J to right hand side
of (1.1) to obtain

curlH = (σ− iωε) E + J. (1.2)

By substituting E = ∇u in (1.2) and using the divergence theorem in
small domains at the boundary ∂B the Neumann boundary condition
γ ∂

∂ν u = f for f = ν · J at ∂B can be obtained. For a more detailed deriva-
tion we refer to [16].

On the whole, we obtain a boundary value problem for the electrical
potential u:

div (γ∇u) = 0 in B, γ
∂

∂ν
u = f on ∂B,

and in order to analyse this problem we present some required functional
analytic tools in the following subsection.

1.2.2 Functional Analytic Setting

We proceed by giving an outline of the the functional analytic setting of
this work. For more extensive introductions we refer to [66], [21] or [29].
Let B be a bounded domain in Rd for d ∈ {2, 3} with C2-boundary.
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First of all we will deal with the following function spaces on the
boundary:

C2
�(∂B) = {g ∈ C2(∂B) : 〈g, 1〉 = 0},

L2
�(∂B) = {g ∈ L2(∂B) : 〈g, 1〉 = 0},

where 〈·, ·〉 denotes the standard scalar product in L2. It is obvious that
C2
�(∂B) is a dense subspace of L2

�(∂B). Now we consider the Sobolev
space H

1
2 (∂B) and its dual space, H−

1
2 (∂B). It is well-known that the

imbedding j : H
1
2 (∂B) → L2(∂B) is compact and has dense range (see

e.g. Thm. 3.27 in [66]).
Using the Riesz representation theorem we identify L2(∂B) with its

dual space which implies that the scalar product in L2(∂B) is identical to
the dual evaluation between L2(∂B) and its dual space. Furhermore, this
dual form extends to the dual pairing in H−

1
2 (∂B)× H

1
2 (∂B).

Now we define two more function spaces on ∂B:

H
1
2� (∂B) = {g ∈ H

1
2 (∂B) : 〈g, 1〉 = 0},

H−
1
2� (∂B) = {g ∈ H−

1
2 (∂B) : 〈g, 1〉 = 0}.

Here, in the first line 〈·, ·〉 denotes the scalar product in L2(∂B), while
in the second line it is meant in the sense of the dual evaluation between
H−

1
2 (∂B) and H

1
2 (∂B). These two spaces are closed subspaces of H

1
2 (∂B)

and of H−
1
2 (∂B), respectively. Now we can argue as before and identify

L2
�(∂B) with its dual space. We observe that H

1
2� (∂B) is compactly em-

bedded in L2
�(∂B) and that H−

1
2� (∂B) is the dual space of H

1
2� (∂B). This

leads to the Gelfand triple

H
1
2� (∂B) ⊂ L2

�(∂B) ⊂ H−
1
2� (∂B),

which will play an important role in Chapter 2 (compare Theorem 2.2.6).
In addition, we will need appropriate function spaces inside the do-

main B. First of all, we define the space

L2(B, Rd) :=

h : B→ Rd :
∫∫
B

|h|2 dx < ∞

 ,
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which we will mainly need in Chapter 3.
The electrical potential u that solves the direct problem of EIT is usu-

ally considered as an element of the Sobolev space H1(B). A connection
to the previously defined Sobolev spaces on the boundary is given by the
trace theorem (see e.g. Chapter 3 in [66]) which states that for u ∈ H1(B)
the trace u|∂B is an element of H

1
2 (∂B) and that the trace operator that

maps u ∈ H1(B) to u|∂B is bounded.
Last but not least, we need to define the following closed subspace of

H1(B):

H1
�(B) = {u ∈ H1(B) : u|∂B ∈ H

1
2� (∂B)},

in which we will look for solutions of the direct problem in the following
section.

1.2.3 The Direct Problem

Now we have collected all the tools to formulate the direct problem in
the subject B ⊂ Rd (d = 2, 3) which is assumed to be a bounded and
simply connected C2- domain.

The conductivity γ : B → C is assumed to be such that γ ∈ L∞(B).
Furthermore, we assume that Re γ is bounded from below by a constant
c > 0 and that Im γ is non-positive almost everywhere in B.

For a given current pattern f at ∂B we now want to find a an electrical
potential u that solves the Neumann boundary value problem

div(γ∇u) = 0 in B, γ
∂u
∂ν

= f on ∂B. (1.3)

A weak formulation for the Neumann boundary value problem with
boundary values f ∈ L2(∂B) is to find u ∈ H1(B) that solves∫∫

B

γ∇u · ∇ψ dx =
∫
∂B

f ψ ds for all ψ ∈ H1(B). (1.4)

By setting ψ ≡ 1 in B we observe that for existence of a solution u ∈
H1(B) to (1.4) the current pattern f has to satisfy f ∈ L2

�(∂B). Since
we restrict the Neumann boundary values to L2

�(∂B), the problem (1.4)
doesn’t change if the test functions ψ are restricted to H1

�(B). In addition,
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u can be determined uniquely at most up to an additive constant. We
therefore also restrict our solutions u to H1

�(B).
As a result we obtain the following weak formulation: for a given cur-

rent pattern f ∈ L2
�(∂B) find u ∈ H1

�(B) that solves∫∫
B

γ∇u · ∇ψ dx =
∫
∂B

f ψ ds for all ψ ∈ H1
�(B). (1.5)

Now the right hand of (1.5) side leads to a linear form L : ψ 7→
∫
∂B

f ψ ds

on H1
�(B) for which we can estimate

|Lψ| ≤ ‖ f ‖L2(∂B) ‖ψ‖L2(∂B) ≤ c ‖ f ‖L2(∂B) ‖ψ‖H1(B)

for some constant c > 0, hence L is bounded on H1
�(B). On the left hand

side of (1.5) the bilinear form a(u, ψ) =
∫∫
B

γ∇u · ∇ψ dx on H1
�(B) is

bounded since

|a(u, ψ)| ≤ ess sup{γ} ‖∇u‖L2(B) ‖∇ψ‖L2(B) ≤ c̃ ‖u‖H1(B) ‖ψ‖H1(B)

for some constant c̃ > 0. Coercivity of a can be shown using the lower
bound c for Re γ and Poincaré’s inequality:

Re {a(u, u)} ≥ c ‖∇u‖2
L2(B) ≥ ĉ ‖u‖2

H1(B)

for some constant ĉ > 0. Using the Lax-Milgram theorem (see [66] or
[21]) it can now be shown that the problem (1.5) is uniquely solvable for
every f ∈ L2

�(∂B) and that it is well-posed, i.e. the potential u depends
continuously on the Neumann data f . Throughout this work the solution
of the direct problem is meant in the sense of (1.5).

The trace theorem yields together with the well-posedness of the direct
problem that the Neumann-to-Dirichlet operator

Λ : L2
�(∂B)→ L2

�(∂B), f 7→ u|∂B,

where u ∈ H1
�(B) solves (1.5) is well-defined and bounded.

Now that we have introduced the weak formulation (1.5) we may also
consider the conormal derivative ∂γ that corresponds to the normal deri-
vative in the classical formulation (1.3). In Chapter 4 of [66] it is shown
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that for a weak solution u ∈ H1(B) of the partial differential equation
div(γ∇u) = 0 the conormal derivative at ∂B is an element of H−

1
2 (∂B)

and the map u 7→ ∂γu is also bounded.

In addition, it can be shown that Λ is an isomorphism from H−
1
2� (∂B)

to H
1
2� (∂B) (see e.g. [30]). Furthermore, this result also implies that Λ has

dense range in L2
�(∂B).

1.3 The Inverse Problem

The inverse problem of electrical impedance tomography (or inverse con-
ductivity problem) is to recover the conductivity γ from the knowledge
of the Neumann-to-Dirichlet-map Λ. This inverse problem has first been
posed by Calderon in the influential paper [15]. Since then, various
proofs for uniqueness of the inverse problem, i.e. the unique identifia-
bility of γ from the knowledge of Λ, have been developed for different
classes of conductivities and dimensions. We proceed by giving a short
outline of identifiability results.

1.3.1 Identifiability and Reconstruction Methods

In [58] Kohn and Vogelius showed unique identifiability of real-valued
piecewise analytic conductivities, and Sylvester and Uhlmann proved in
[73] uniqueness for real-valued C2-conductivities in dimensions d ≥ 3.
In Section 5.7 of [47] a uniqueness result for piecewise C2-conductivities
is shown. For the dimension d = 2 uniqueness for real-valued W2,p con-
ductivities was shown by Nachman in [68], and Astala and Päivärinta
proved uniqueness even for real-valued L∞ conductivities in [5]. The
most general uniqueness result for real-valued conductivities in dimen-
sions d ≥ 3 is shown by Brown and Torres in [7] so far. A uniqueness
result for complex-valued conductivities is shown by Francini in [24].

These identifiability results also led to reconstruction methods out of
which a very successful one is the d-bar method (see e.g. [57] or the
review paper [75]).

There are some stability results for the determination of the conduc-
tivity from the Neumann-to-Dirichlet-map (see e.g. [1]). However, they
require rather restrictive regularity assumptions on the conductivity. In
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Section 2.3 of [8] and in Chapter 7 of [70] a simple example for radially
symmetric conductivities demonstrates the severe ill-posedness of the
inverse conductivity problem

There is a large variety of reconstruction methods for EIT out of which
we only mention a few. A very successful class of reconstruction meth-
ods is based on the linearization using the Fréchet derivative of Λ with
respect to γ. This linearization can be used to develop iterative recon-
struction methods as well as one-step algorithms (see e.g. [17], [22] and
[65]).

Another class of reconstruction methods uses the a priori assumption
that there is an inclusion, i.e. a domain inside the investigated subject
with a different conductivity than the background medium. The main
idea is the linearization of the problem using the Fréchet derivative with
respect to the boundary of the inclusion. This Fréchet derivative is called
domain derivative, and the linearization leads to iterative reconstruction
methods as in [43] or [23].

The assumption that there is an inclusion is also fundamental for the
reconstruction approaches in [40], [41] and [42] which are adaptions of
the concept of the convex scattering support and the convex backscatter-
ing support from [60] and [38] to the inverse problem of EIT.

For a more extensive overview over various aspects of impedance to-
mography and reconstruction methods we refer to the review articles
[16],[6] and [75].

1.3.2 The Factorization Method

This work is also focused in the detection and characterization of anoma-
lies or inclusions, i.e. of domains in which the conductivity is different
from the background medium. In order to formulate the corresponding
inverse problem we state further a priori assumptions. Let Ω be a C2-
domain such that Ω ⊂ B and B \Ω is connected. Furthermore, let the
conductivity be as follows:

γ(x) = γ0(x) + χΩ(x)γ1(x),

where χΩ denotes the characteristic function of the domain Ω. γ0 is
called the background conductivity and is assumed to be known a priori
and sufficiently smooth.
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The problem that we consider in Chapter 2 is to recover the inclu-
sion Ω from the Neumann-to-Dirichlet map Λ. More precisely, let Λ0 :
L2
�(∂B)→ L2

�(∂B) be the Neumann-to-Dirichlet map for the background
case, i.e. for the case in which the conductivity is equal to γ0 every-
where in B. In particular, Λ0 : L2

�(∂B) → L2
�(∂B), and f 7→ u0|∂B, where

u0 ∈ H1
�(B) solves (1.5) for γ0 instead of γ. Now the problem is to recover

the inclusion Ω from the difference Λ−Λ0.

The method that we use to solve this inverse problem is the Factoriza-
tion method that has first been suggested by Kirsch in [51] for inverse
obstacle scattering problems. Since then the method has been applied
to a wide range of problems such as scattering by an inhomogeneous
medium (see [52]) or scattering from obstacles with mixed boundary
conditions (see [33], [37], [35] and [36]). The method has also been de-
veloped for scattering from periodic structures and rough surfaces (see
[4], [3], [62]) and for Maxwell’s equations (see [54]). The monograph [56]
presents many aspects and applications of the method.

The Factorization method for impedance tomography has first been
developed by Brühl and Hanke in [8], [10], [9] and [11]. The review arti-
cle [39] provides an overview over these papers. Since then the method
experienced further analysis, extensions and further developments. In
[61] a regularization technique for the Factorization method is devel-
oped, while in [53] and [25] more general partial differential equations
are under consideration. In [32] the detection of infinitely thin inclusions
is considered. Furthermore, there are several works dealing with weaker
assumptions on the conductivity (see e.g. [45] [27], [28]).

The assumption that Λ is known, i.e. that the whole surface potential
u|∂B is known for every current pattern f ∈ L2

�(∂B) is an idealized model
called the continuum model. In real applications the current is applied
and the voltage is measured through a finite number of electrodes. The
most realistic way to model these electrodes is the complete electrode
model (see [18] or [72]). The Factorization method has successfully been
applied in the framework of the complete electrode model in [44], [46]
and [64]. However, for the sake of simplicity we restrict to the continuum
model in this work.
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1.3.3 Outline of this Work

This work consists of two main parts and contributes to the Factorization
method for EIT as follows.

One drawback of the Factorization method for EIT is that in order to
prove it to work one has to assume that either all the inclusions (i.e. all
the components of Ω) have a higher or a lower conductivity than the
background medium. In Chapter 2 we therefore present a modified ver-
sion of the Factorization method which we can prove to work even in the
mixed case, i.e. in the case of both inclusions with a lower conductivity
and inclusions with a higher conductivity than the background medium.
This modification is mainly is based on the considerations in [34], [33]
and [37] where a modified version of the Factorization method for in-
verse scattering problems with different types of obstacles is presented.

In Section 2.1 we therefore first investigate the Factorization method
for EIT in the case of at least two disjoint inclusions. We show that in the
case of mixed inclusions, the usual proof for the Factorization method to
work fails. The main reason for this is that in the case of mixed inclusions
the operator that appears in the middle of the factorization fails to be
coercive.

Afterwards, in Section 2.2 we adapt the method suggested by Grin-
berg and Kirsch in [34], [33] and [37] for acoustic scattering problems to
derive the Factorization method for a slightly different factorization to
the inverse problem of detecting inclusions in EIT. The method is mainly
based on the idea to cover one type of inclusions with a synthetic inclu-
sion to obtain a factorization in which the middle operator is coercive.
As a result we obtain a two-step algorithm in which we first cover one
type of inclusions to reconstruct the other type and then vice versa.

In Section 2.3 we present some numerical tests with this new method
and compare the results to the results obtained with the original Factor-
ization method which is not proven to work in the mixed case.

Since the Factorization method (or any other qualitative method) pro-
vides information about location and shape of inclusions but not about
their actual conductivity, it is desirable to have a method to obtain this
conductivity after the inclusions have been identified. In Chapter 3 we
present such a method that is also closely related to the Factorization
method.

This method is based on a new version of the Factorization method for
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EIT that involves a factorization with three operators that are different
from those in e.g. Chapter 2. In Section 3.1 we present this new version
of the method and introduce the operators involved.

Afterwards, in Section 3.2 we investigate the spectrum of the operator
in the middle of the factorization for the case of piecewise constant con-
ductivities and show bounds for it. This spectrum is also closely related
to the spectrum of boundary integral operators. In addition, we show
that the spectrum of the middle operator exhibits one accumulation point
for the case of only one inclusion and N different accumulation points in
the case of N inclusions with different conductivities. These accumula-
tion points have a direct connection to the desired conductivity contrasts.

Since the information about the conductivity inside anomalies can be
obtained from knowledge about the spectrum of the middle operator of
the factorization, in Section 3.3 we develop numerical methods to obtain
an approximation of the spectrum from a generalized eigenvalue prob-
lem that involves only operators that are known after the inclusions have
been detected. We also implemented some numerical tests with this new
method that are described in Section 3.4.





2 The Factorization Method for
EIT in the Case of Mixed
Inclusions

For the Factorization method in EIT it is usually assumed that there is
only one type of inclusions present, e.g. only inclusions with a higher
or with a lower conductivity than the background. To our knowledge
there is no proof that the method works for mixed inclusions, i.e. the
case in which there are inclusions with a lower as well as inclusions with
a higher conductivity than the background medium. This is a severe
restriction since there are applications for EIT in which such mixed con-
ductivity distributions do occur, e.g. thorax imaging.

The reason for this restrictive assumption is that the proof of the main
result of the method, i.e. the range identity, relies on the fact that the op-
erator that appears in the middle of the factorization is either positively
or negatively coercive or at least a compact perturbation of such an op-
erator. For a mixed conductivity distribution this is no longer fulfilled.

There are several recent works dealing with related problems of weak-
ening assumptions on the problem setting for the Factorization method.
In the article [27] it is shown that the assumption on the contrast be-
tween the background conductivity and the inclusion conductivity can
be weakened but it is still assumed that the conductivity inside all inclu-
sions is either higher or lower than in the background. In [28] a slightly
different partial differential equation is considered. Again, the contrasts
in the coefficients of the differential equation need to have the same di-
rection for all inclusions.

A very related problem occurs for the Factorization method in acous-
tic scattering if there are both sound-soft and sound-hard obstacles. This
problem has been considered by Grinberg and Kirsch in [34], [33], [37]
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and [56]. They introduced additional a priori information about the loca-
tion of the obstacles in order to derive the Factorization method for slight
modifications of the far field operator. For this modified version of the
Factorization method it can be shown that the method works in the case
of both sound-soft and sound-hard obstacles.

The aim of this chapter is to apply these techniques to EIT. At first,
in Section 2.1 we formulate the Factorization method for EIT according
to [53] and illustrate why we cannot prove that the method works in
the mixed case. In Section 2.2 we present the modified version of the
Factorization method and show that it is capable of detecting inclusions
even in the mixed case, while in Section 2.3 we show some numerical
examples using the new method.

2.1 The Factorization Method for two
Inclusions

In this section we first summarize the main steps for the Factorization
method in EIT as it is formulated in [53]. Afterwards we take a closer
look at the middle operator in the case of two disjoint inclusions. These
considerations serve as a basis for the covering method that is presented
in the following section.

2.1.1 The Standard Factorization Method

We start by explaining the problem setting and by providing an overview
over the original Factorization method for impedance tomography. Be-
fore we can define the operators that appear in the factorization, we need
to state some basic assumptions on the underlying geometry of the body
considered and the inclusions as well as the conductivity distribution.
Since our considerations are aimed at the detection of mixed inclusion
types, we adapt our notations to the case of at least two disjoint inclu-
sions.

Assumption 2.1.1. Let B ⊂ Rd (d ∈ {2, 3}) be a bounded C2-domain. Let
Ω1, Ω2 be subdomains of B with C2-boundaries, Ω1, Ω2 ⊂ B and Ω1 ∩
Ω2 = ∅. By Ω we denote the union of both inclusions: Ω = Ω1 ∪Ω2. Let
B \Ω be connected.
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Additionally, we allow isotropic and complex-valued conductivities
that have properties as stated below.

Assumption 2.1.2. Let the conductivity be as follows: γ : B→ C and

γ(x) =


γ0(x), x ∈ B \Ω,
γ0(x) + γ1(x), x ∈ Ω1,
γ0(x) + γ2(x), x ∈ Ω2.

Let the background conductivity γ0 be real-valued, satisfy γ0 ∈ C2,α(B)
for some α > 0 and let let γ0 be strictly positive, i.e. there exists c0 > 0
such that

γ0(x) ≥ c0 > 0 for all x ∈ B.

For γ we require that Re γ is strictly positive, i.e. there exists c > 0 such
that

Re γ(x) ≥ c > 0 for almost all x ∈ B.

We assume that γj ∈ L∞(Ωj) (j = 1, 2) and allow two different types of
inclusions: for j = 1, 2 there exists cj > 0 such that either

Re γj(x) ≤ −cj < 0 for almost all x ∈ Ωj or

Re γj(x) ≥ cj > 0 for almost all x ∈ Ωj.

In the first case we call Ωj an inclusion of type 1 and in the second case
an inclusion of type 2.

The inclusions may have a complex-valued conductivity with nega-
tive imaginary part. In particular, we assume that for j = 1, 2 either
Im γj(x) = 0 holds for almost all x ∈ Ωj or Im γj(x) < 0 holds for almost
all x ∈ Ωj (see also Remark 2.1.6).

Assumption 2.1.2 means in particular that type 1 inclusions have a
lower absolute conductivity than the background, while type 2 inclu-
sions have a higher absolute conductivity than the background.

We proceed by deriving the Factorization method according to [53] but
for the special case of two disjoint inclusions. We only recall the main
results while for the corresponding proofs we refer to [53]. Firstly, we
define the operators that appear in the factorization of Λ−Λ0. Consider
the operator

G : H−
1
2� (∂Ω1)× H−

1
2� (∂Ω2)→ L2

�(∂B), (g1, g2)
> 7→ v|∂B ,
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where v ∈ H1(B \Ω) with v|∂B ∈ H
1
2� (∂B) solves

∫∫
B\Ω

γ0∇v · ∇ψ dx =
∫

∂Ω1

g1ψ ds +
∫

∂Ω2

g2ψ ds for all ψ ∈ H1(B \Ω).

(2.1)
This weak formulation corresponds to the following Neumann boundary

value problem: find v ∈ H1(B \Ω) such that v|∂B ∈ H
1
2� (∂B) and

div(γ0∇v) = 0 in B \Ω,
∂γ0 v = gj on ∂Ωj (j = 1, 2),

∂γ0 v = 0 on ∂B.

As shown in [53], G is compact and one-to-one,R(G) is dense in L2
�(∂B),

and the corresponding assertions hold for its adjoint G∗ : L2
�(∂B) →

H
1
2� (∂Ω1)× H

1
2� (∂Ω2).

Furthermore, the following operator will appear:

T : H
1
2� (∂Ω1)× H

1
2� (∂Ω2)→ H−

1
2� (∂Ω1)× H−

1
2� (∂Ω2),

(h1, h2)
> 7→

(
∂γ0 w|+,1 , ∂γ0 w|+,2

)>
,

where w ∈ H1(B \ ∂Ω) with w|∂B ∈ H
1
2� (∂B) satisfies the jump conditions

w|+,j − w|−,j = hj (j = 1, 2) and

∫∫
B

γ∇w · ∇ψ dx = 0 for all ψ ∈ H1
�(B). (2.2)

The notation w|± denotes the trace of w from the exterior and interior
of Ωj, respectively. In addition, we use the notation w|±,j for the traces
from exterior and interior at the particular boundary ∂Ωj (j = 1, 2). The
corresponding classical formulation is to find w ∈ H1(B \ ∂Ω) such that
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w|∂B ∈ H
1
2� (∂B) that solves the transmission problem

div(γ∇w) = 0 in B \ ∂Ω,
∂γ0 w = 0 on ∂B,

∂γ0 w|+ − ∂γw|− = 0 on ∂Ωj (j = 1, 2),

w|+ − w|− = hj on ∂Ωj (j = 1, 2).

(2.3)

The operator T0 : H
1
2� (∂Ω1) × H

1
2� (∂Ω2) → H−

1
2� (∂Ω1) × H−

1
2� (∂Ω2) is

defined just the same as T but with γ replaced by γ0 in (2.2), i.e. T0
corresponds to T in the background case.

In order to show well-definedness and boundedness of T we derive
a weak formulation equivalent to the problem (2.2) and the additional
jump conditions at ∂Ωj (j = 1, 2).

For hj ∈ H
1
2� (∂Ωj) choose ŵ(j) ∈ H1(Ωj) such that ŵ(j)

∣∣∣
∂Ωj

= hj

(j = 1, 2). Then by setting w̃ = w + χΩ1 ŵ(1) + χΩ2 ŵ(2) we obtain the
formulation: find w̃ ∈ H1

�(B) satisfying∫∫
B

γ∇w̃ · ∇ψ dx =
∫∫
Ω1

γ∇ŵ(1) · ∇ψ dx +
∫∫
Ω2

γ∇ŵ(2) · ∇ψ dx (2.4)

for all ψ ∈ H1
�(B). Since w = w̃ in B \Ω the definition of T is equivalent to

setting (h1, h2)
> 7→

(
∂γ0 w̃|+,1 , ∂γ0 w̃|+,2

)>
and w̃ solves (2.4). Here we

can also show unique solvability using the Lax Milgram theorem, and
from the trace theorem we obtain well-definedness and boundedness of
T, T0.

Now we state the well-known factorization that can be proven inde-
pendently of the signs of γ1 and γ2,

Λ−Λ0 = G(T − T0)G∗. (2.5)

Figure 2.1 illustrates this factorization, and for its proof we refer to [53].
The adjoint T∗ of T is characterized just as T but in the transmission

boundary value problem (2.3) (and thus also in (2.4)) γ is replaced by γ.
This implies for real-valued conductivities that T is self-adjoint and in
particular that T0 is self-adjoint.
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-

?

6

L2
�(∂B)

H
1
2� (∂Ω)

L2
�(∂B)

H−
1
2� (∂Ω)

Λ−Λ0

T − T0

GG∗

Figure 2.1: Diagram of operators and spaces in the factorization (2.5)

Moreover, we can define the operators Re T := 1
2 (T + T∗) and Im T :=

1
2i (T− T∗), and the equality T = Re T + i Im T holds obviously. Now for
Im T it is shown in [53] that

〈(Im T)h, h〉 = Im 〈Th, h〉 = −
∫

Ω
Im γ |∇w|2 ≥ 0 for all h ∈ H

1
2� (∂Ω).

(2.6)
Under the assumption that only one inclusion type is present inside B the
real part of the middle operator T − T0 satisfies the following coercivity
assertions (Theorem 2.3 in [53]):

Lemma 2.1.3. Let T, T0 be defined as above.

(a) If Ω1 and Ω2 are both of type 1, then there is c > 0 such that

〈(Re T − T0)h, h〉 ≥ c ‖h‖2

H
1
2 (∂Ω)

for all h ∈ H
1
2� (∂Ω),

(b) If Ω1 and Ω2 are both of type 2, then there is c > 0 such that

〈−(Re T − T0)h, h〉 ≥ c ‖h‖2

H
1
2 (∂Ω)

for all h ∈ H
1
2� (∂Ω).
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In the following sections the case of mixed inclusions will be consid-
ered. However, we will show connection to the cases in which there is
only one of the two inclusion types present. We therefore define the fol-

lowing modified versions of T for j = 1, 2: T(j) : H
1
2� (∂Ωj) → H−

1
2� (∂Ωj)

and it maps hj 7→ ∂γ0 w̃(j)
∣∣∣

j,+
. As for (2.4) we choose ŵ(j) ∈ H1(Ωj) such

that ŵ(j)
∣∣∣
∂Ωj

= hj and w̃(j) ∈ H1(B \ ∂Ωj) with w̃(j)
∣∣∣
∂B
∈ H

1
2� (∂B) solves

∫∫
B

γ0∇w̃(j) · ∇ψ dx +
∫∫
Ωj

γj∇w̃(j) · ∇ψ dx =
∫∫
Ωj

γ∇ŵ(j) · ∇ψ dx (2.7)

for all ψ ∈ H1(B).
Now we observe that T(j) is equal to T for the case in which Ωj is

the only inclusion inside B. In addition, we define T(j)
0 : H

1
2� (∂Ωj) →

H−
1
2� (∂Ωj) just the same but with γ ≡ γ0 everywhere in B. Now Lemma

2.1.3 implies the following assertion.

Lemma 2.1.4. Let T(j), T(j)
0 be defined as above for j = 1, 2, then there is c > 0

such that:

(a)
〈
(Re T(1) − T(1)

0 )h, h
〉
≥ c ‖h1‖2

H
1
2 (∂Ω)

for all h1 ∈ H
1
2� (∂Ω1),

(b)
〈
(Re T(2)

0 − T(2))h, h
〉
≥ c ‖h2‖2

H
1
2 (∂Ω)

for all h2 ∈ H
1
2� (∂Ω2).

Another immediate conclusion from Lemma 2.1.3 is that the operator
Re T − T0 is one-to-one. Later we will see that these coercivity results
are not valid in the mixed case. However, we are still able to show the
following Lemma, which we will need in Section 2.2.

Lemma 2.1.5. Assume that Ω1 is of type 1 while Ω2 is of type 2, then:

(a) The operator T − T0 is one-to-one.

(b) For 0 6= h = (h1, h2)
> ∈ H

1
2� (∂Ω1)× H

1
2� (∂Ω2) with (Re T − T0)h =

0 it holds that Im 〈Th, h〉 > 0.
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Proof. Part a): Let h = (h1, h2)
> ∈ H

1
2� (∂Ω1) × H

1
2� (∂Ω2) be such that

(T − T0)h = 0. Then

∂γ0 w|+,1 = ∂γ0 w0|+,1 , ∂γ0 w|+,2 = ∂γ0 w0|+,2 ,

where w, w0 are weak solutions to the transmission boundary value prob-
lem (2.3) for the actual conductivity and the background case, respec-
tively. By uniqueness of the Neumann problem in B \Ω we know that
w ≡ w0 in B \Ω, from which we can conclude, using the jump conditions
at ∂Ω1, ∂Ω2, that

∂γ w|−,1 = ∂γ0 w0|−,1 , ∂γ w|−,2 = ∂γ0 w0|−,2 ,

w|−,1 = w0|−,1 , w|−,2 = w0|−,2 .

Using the first Green identity it yields∫∫
Ωj

γ |∇w|2 dx =
∫∫
Ωj

γ0 |∇w0|2 dx (j = 1, 2). (2.8)

We have to distinguish between two different cases. If Im γ < 0 in Ω1,
then we obtain∇w ≡ ∇w0 ≡ 0 in Ω1 immediately. If γ is real-valued in-
side Ω1 then we have to argue as follows: we use the first Green identity
to show ∫∫

Ω1

γ∇w · ∇(w− w0) dx =
∫

∂Ω1

(w− w0)∂γw ds = 0, (2.9)

and estimate using (2.9)

0 ≤
∫∫
Ω1

γ |∇(w− w0)|2 dx

=
∫∫
Ω1

γ∇w · ∇(w− w0) dx−
∫∫
Ω1

γ∇w0 · ∇(w− w0) dx

=
∫∫
Ω1

γ |∇w0|2 dx−
∫∫
Ω1

γ∇w0 · ∇w dx.
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Using (2.9) once more yields∫∫
Ω1

γ |∇w0|2 dx ≥
∫∫
Ω1

γ |∇w|2 dx.

This inequality and the fact that Ω1 is a type 1 inclusion allows us to
estimate ∫∫

Ω1

γ |∇w|2 dx =
∫∫
Ω1

γ0 |∇w0|2 dx

≥
∫∫
Ω1

γ |∇w0|2 dx + c1

∫∫
Ω1

|∇w0|2 dx

≥
∫∫
Ω1

γ |∇w|2 dx + c1

∫∫
Ω1

|∇w0|2 dx.

Now it follows that ∇w0 ≡ 0 and from (2.8) that ∇w ≡ 0 in Ω1. Hence
w and w0 are constant inside Ω1. We have to apply the very same ar-
guments to the inclusion Ω2 using its type 2 property to show that also
∇w ≡ ∇w0 ≡ 0 in Ω2. This means that the normal derivatives of w, w0 at
∂Ω1 and at ∂Ω2 from both sides are zero, which implies that w = w0 = 0

in B \Ω. Now h1 and h2 have to be constant, and since hj ∈ H
1
2� (∂Ωj)

(j = 1, 2) we obtain h1 = 0 and h2 = 0.
Part b): Case 1: If Im γ = 0 almost everywhere in Ω1 and in Ω2, then

Re T − T0 = T − T0 which is injective according to part a).
Case 2: Now we assume that both Im γ1 < 0 and Im γ2 < 0 almost

everywhere in Ω1 and Ω2, respectively. From (2.6) we obtain

Im 〈Th, h〉 = −
∫∫
Ω

Im γ |∇w|2 dx.

Hence Im 〈Th, h〉 = 0 implies that w = const in Ω1 and in Ω2, from
which we deduce that w solves the homogeneous Neumann problem in

B \ Ω and therefore w ≡ 0 in B \ Ω. Since h ∈ H
1
2� (∂Ω1) × H

1
2� (∂Ω2)

it follows as in part a) that h = 0 and thus that Im T is positive on

H
1
2� (∂Ω1)× H

1
2� (∂Ω2).
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Case 3: The remaining case is the one in which Im γ < 0 inside one
inclusion and Im γ = 0 inside the other inclusion. We assume without
loss of generality that Im γ1 < 0 almost everywhere in Ω1 and Im γ2 = 0
almost everywhere in Ω2. As before we know that

Im 〈Th, h〉 = −
∫∫
Ω1

Im γ1 |∇w|2 dx,

and Im 〈Th, h〉 = 0 implies that w = const in Ω1. It is easy to show that
Im 〈Th, h〉 = −Im 〈T∗h, h〉 and

Im 〈T∗h, h〉 =
∫∫
Ω1

Im γ1 |∇w̃|2 dx,

where w̃ is the weak solution of (2.3) for γ instead of γ. We deduce that
w̃ also has to be constant in Ω1, and ∂γ0 w|+,1 = ∂γ0 w̃|+,1 = 0. Since γ is
real-valued outside Ω1, both w and w̃ are weak solutions to the following
transmission boundary value problem: find w ∈ H1(B \ (Ω1 ∪ ∂Ω2))

such that w|∂B ∈ H
1
2� (∂B) solves

div(γ∇w) = 0 in B \ (Ω1 ∪ ∂Ω2),
∂γ0 w = 0 on ∂B ∪ ∂Ω1,

∂γ0 w|+ − ∂γw|− = 0 on ∂Ω2

w|+ − w|− = h2 on ∂Ω2

in the weak sense. This problem has a unique solution, thus ∂γ0 w|+,2 =
∂γ0 w̃|+,2, and

Im Th =
1
2i

(
∂γ0 w|+,1 − ∂γ0 w̃|+,1 , ∂γ0 w|+,2 − ∂γ0 w̃|+,2

)>
= (0, 0)>.

Now let h ∈ H
1
2� (∂Ω1)×H

1
2� (∂Ω2) 6= (0, 0)> be such that (Re T − T0) h =

0. Then the identity (T − T0)h = (Re T − T0)h + i (Im T)h = i (Im T)h
and part a) yield the assertion.

Remark 2.1.6. Our assumptions on Im γ are rather strict since inclusions
in which Im γ is negative only inside a subdomain of Ωj (j = 1, 2) are not
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allowed. However, under certain smoothness assumptions on γ such as
e.g. γ ∈ C1(Ωj) (j = 1, 2) the proof of part b) of Lemma 2.1.5 can be
extended to more general conductivities using the unique continuation
principle.

Now we return to our outline of the Factorization method and assume
that there is only one of the two inclusion types present. The coercivity
results from Lemma 2.1.3 play a crucial role in the proof of the range
identity

R
(
|Re Λ−Λ0|

1
2
)

= R(G), (2.10)

since it relies on existence and bijectivity of the operator |Re T − T0|
1
2 :

H
1
2� (∂Ω) → L2

�(∂Ω) (compare Section 2.3 in [53]). This range identity
is the main result for the Factorization method, and it leads to a binary
criterion that characterizes the inclusion Ω. In order to derive this binary
criterion we first have to define dipole potentials.

The Neumann function N for the domain B and the background con-
ductivity γ0 is for a fixed point y ∈ B defined as the distributional solu-
tion to

divx (γ0∇x N(x, y)) = δ(x− y) in B,

∂γ0,x N(x, y) = |∂B|−1 on ∂B,∫
∂B

N(x, y)ds(x) = 0.
(2.11)

N is also symmetric, i.e. N(x, y) = N(y, x) for all x, y ∈ B, x 6= y (see e.g.
[67]). Using the Neumann function we construct the dipole potential ϕy
for every point y ∈ B by setting

ϕy(x) = γ0(y)
(
â · ∇yN(x, y)

)
, (2.12)

where â is an arbitrary but fixed unit vector.
Now the range identity (2.10) can be used in the following way: it can

be shown that
y ∈ Ω1 ∪Ω2 ⇔ ϕy ∈ R(G), (2.13)

and the proof is mainly based on the singularity of ϕy in y (compare The-
orem 2.6 in [53]). Together with the range identity (2.10) and the Picard
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criterion we obtain the following equivalence: let y ∈ B, then

y ∈ Ω1 ∪Ω2 ⇔
∞

∑
k=1

∣∣〈ϕy, ψk
〉∣∣2

λk
< ∞

with an eigensystem {λk, ψk : k ∈ N} of |Re Λ−Λ0|.
This binary criterion can now be used to decide whether a point y ∈

B lies inside the inclusion Ω = Ω1 ∪ Ω2 or not. However, we have to
assume that there is only one inclusion type present, which is a severe
restriction.

2.1.2 Representations of the Middle Operator

In order to investigate the Factorization method in the special case in
which at least two disjoint inclusions are present we now take a closer
look at the middle operator T − T0. Our aim is to use the superposition
principle to write T − T0 in the form

T − T0 =

(
T(11) − T(11)

0 T(12) − T(12)
0

T(21) − T(21)
0 T(22) − T(22)

0

)

where T(ij), T(ij)
0 : H

1
2� (∂Ωj)→ H−

1
2� (∂Ωi).

In particular, for h = (h1, h2)
> ∈ H

1
2� (∂Ω1) × H

1
2� (∂Ω2) these partial

operators satisfy(
T(11) − T(11)

0

)
h1 +

(
T(12) − T(12)

0

)
h2 = ((T − T0)h)|∂Ω1

,

and (
T(21) − T(21)

0

)
h1 +

(
T(22) − T(22)

0

)
h2 = ((T − T0)h)|∂Ω2

.

The mapping properties of the partial operators are also illustrated in
Figure 2.2.

Furthermore, we derive a connection to the cases in which only one
of the two inclusions is present. This will enable us to make use of the
coercivity results from Lemma 2.1.4. The subsequent considerations are
based on the weak formulation (2.4).
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Figure 2.2: Diagram of the partial operators of T − T0 and corresponding spaces

We start by deriving such a representation for T0. Let (h1, h2)
> ∈

H
1
2� (∂Ω1) × H

1
2� (∂Ω2) be given and choose ŵ(j) ∈ H1(Ωj) that satisfies

ŵ(j)
∣∣∣
∂Ωj

= hj (j = 1, 2). Now consider the following problems: for

(j = 1, 2) find w̃(jj)
0 ∈ H1

�(B) such that∫∫
B

γ0∇w̃(11)
0 · ∇ψ dx =

∫∫
Ω1

γ0∇ŵ(1) · ∇ψ dx for all ψ ∈ H1
�(B), (2.14)

∫∫
B

γ0∇w̃(22)
0 · ∇ψ dx =

∫∫
Ω2

γ0∇ŵ(2) · ∇ψ dx for all ψ ∈ H1
�(B). (2.15)

By addition of (2.14) und (2.15) we realize that w̃0 := w̃(11)
0 + w̃(22)

0 is
the solution to (2.4) for the background case, i.e. γ ≡ γ0. Now we define
the components of T0:

T(11)
0 : H

1
2� (∂Ω1)→ H−

1
2� (∂Ω1), h1 7→ ∂γ0 w̃(11)

0

∣∣∣
+,1

, w̃(11)
0 solves (2.14),

T(12)
0 : H

1
2� (∂Ω2)→ H−

1
2� (∂Ω1), h2 7→ ∂γ0 w̃(22)

0

∣∣∣
+,1

, w̃(22)
0 solves (2.15),

T(21)
0 : H

1
2� (∂Ω1)→ H−

1
2� (∂Ω2), h1 7→ ∂γ0 w̃(11)

0

∣∣∣
+,2

, w̃(11)
0 solves (2.14),

T(22)
0 : H

1
2� (∂Ω2)→ H−

1
2� (∂Ω2), h2 7→ ∂γ0 w̃(22)

0

∣∣∣
+,2

, w̃(22)
0 solves (2.15).
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Now we observe that T(jj)
0 = T(j)

0 holds for j = 1, 2, where the opera-

tors T(j)
0 (j = 1, 2) have been defined in the previous section using the

variational problem (2.7) in the background case. This means in partic-
ular that T(11)

0 corresponds to T0 in the case in which only the inclusion

Ω1 is present, and T(22)
0 corresponds to T0 in the case in which Ω2 is the

only inclusion, respectively. The following lemma provides the desired
representation for T0.

Lemma 2.1.7. T(12)
0 and T(21)

0 are compact operators. Hence T0 can be repre-
sented by

T0 =

(
T(1)

0 0
0 T(2)

0

)
+ K0

where K0 is a compact operator.

Proof. We only prove the assertion for T(12)
0 ; for T(21)

0 the arguments are

analogous. Let
(

h(2,j)
)

j∈N
be a bounded sequence in H

1
2� (∂Ω2). Then

the corresponding sequence of solutions
(

w̃(22,j)
0

)
j∈N

of (2.15) is also

bounded in H1(B). Now let U ⊂ B \Ω2 be a subdomain with U ⊂ B \Ω2

and ∂Ω1 ⊂ U. Following Theorem 8.8 in [29] the sequence
(

w̃(22,j)
0

)
j∈N

is even bounded in H2(U) and the trace theorem yields that there is a
constant c such that

∥∥∥∂γ0 w̃(22,j)
0

∥∥∥
H

1
2 (∂Ω1)

≤ c for all j ∈ N. From com-

pactness of the imbedding J : H
1
2� (∂Ω1) → H−

1
2� (∂Ω1) we obtain the

assertion.

For T the partitioning is not as simple as for T0, since the conductivity
contrasts γ1, γ2 appear in Equation (2.4). However, we start as before and
divide T into parts contributed by the jump conditions at the individual

inclusion boundaries. As before, for (h1, h2)
> ∈ H

1
2� (∂Ω1) × H

1
2� (∂Ω2)

choose ŵ(j) ∈ H1(Ωj) with ŵ(j)
∣∣∣
∂Ωj

= hj (j = 1, 2) and consider the
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following problems: find w̃(jj) ∈ H1
�(B) (j = 1, 2) satisfying∫∫

B

γ∇w̃(11) · ∇ψ dx =
∫∫
Ω1

γ∇ŵ(1) · ∇ψ dx for all ψ ∈ H1
�(B), (2.16)

∫∫
B

γ∇w̃(22) · ∇ψ dx =
∫∫
Ω2

γ∇ŵ(2) · ∇ψ dx for all ψ ∈ H1
�(B). (2.17)

One can easily see that w̃ := w̃(11) + w̃(22) is a solution to (2.4). As before,
we define component operators:

T(11) : H
1
2� (∂Ω1)→ H−

1
2� (∂Ω1), h1 7→ ∂γ0 w̃(11)

∣∣∣
+,1

, w̃(11) solves (2.16),

T(12) : H
1
2� (∂Ω2)→ H−

1
2� (∂Ω1), h2 7→ ∂γ0 w̃(22)

∣∣∣
+,1

, w̃(22) solves (2.17),

T(21) : H
1
2� (∂Ω1)→ H−

1
2� (∂Ω2), h1 7→ ∂γ0 w̃(11)

∣∣∣
+,2

, w̃(11) solves (2.16),

T(22) : H
1
2� (∂Ω2)→ H−

1
2� (∂Ω2), h2 7→ ∂γ0 w̃(22)

∣∣∣
+,2

, w̃(22) solves (2.17).

All four partial operators are well-defined and bounded. However,
T(11) is not identical to T in the case in which Ω1 is the only inclusion. The
same holds for T(22). We therefore carry out one more decomposition of
these two operators and consider the operators T(1), T(2) defined in (2.7).
We continue by investigating T(12) and T(21) as well as the difference
between T(11) and T(1) (between T(22) and T(2), respectively).

Lemma 2.1.8. Let T(ij) and T(i) (i, j = 1, 2) be defined as above. Then:

(a) The operators T(12) and T(21) are compact.

(b) The operators S(1) := T(11)− T(1) and S(2) := T(22)− T(2) are compact.

Proof. Part a): We decompose the operator T(12) into two bounded op-
erators out of which one is compact. The proof for T(21) is completely
analogous. Therefore let Ω̂1 be a simply connected C2-domain in B such
that Ω̂1 ⊂ B, Ω1 ⊂ Ω̂1 and Ω̂1 ∩Ω2 = ∅. Then T(12) = T̃ ◦ T̂, where T̂ :
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H
1
2� (∂Ω2) → H−

1
2� (∂Ω̂1) maps h2 to ∂γ0 w̃(22)

∣∣∣
∂Ω̂1

, where w̃(22) ∈ H1
�(B)

solves (2.17). The second operator T̃ : H−
1
2� (∂Ω̂1) → H−

1
2� (∂Ω1) maps g

to ∂γ0 v|1,+, where v ∈ H1
�(Ω̂1) solves

div(γ∇v) = 0 in Ω̂1,

∂γ0 v = g on Ω̂1

in the weak sense. Both T̃ and T̂ are bounded operators. Following the
same arguments as in the proof of Lemma 2.1.7 it can be shown that

R(T̂) ⊂ H
1
2� (∂Ω̂1) and thus that T̂ is a compact operator.

Part b): The operators S(1) and S(2) are as follows: S(1) : H
1
2� (∂Ω1) →

H−
1
2� (∂Ω1), h1 7→ ∂γ0 ṽ(1)

∣∣∣
+,1

where ṽ(1) ∈ H1
�(B) solves

∫∫
B

γ∇ṽ(1) · ∇ψ dx = −
∫∫
Ω2

γ2∇w̃(1) · ∇ψ dx for all ψ ∈ H1
�(B), (2.18)

and w̃(1) is solution to problem (2.7) for j = 1.

Analogously, S(2) : H
1
2� (∂Ω2) → H−

1
2� (∂Ω2), h2 7→ ∂γ0 ṽ(2)

∣∣∣
+,2

where

ṽ(2) ∈ H1
�(B) is solution to∫∫

B

γ∇ṽ(2) · ∇ψ dx = −
∫∫
Ω1

γ1∇w̃(2) · ∇ψ dx for all ψ ∈ H1
�(B), (2.19)

and w̃(2) is solution to (2.7) for j = 2. By addition of (2.7) and (2.18) (and
of (2.7) and (2.19), respectively) we realize that w̃(11) := w̃(1) + ṽ(1) solves
(2.16) (and that w̃(22) := w̃(2) + ṽ(2) solves (2.17), respectively). We thus
conclude that T(1) + S(1) = T(11) and T(2) + S(2) = T(22).

Now it remains to show that S(1) and S(2) are compact operators. We
only prove the assertion for S(1) and decompose it as follows: S(1) =

S̃ ◦ Ŝ, where Ŝ : H
1
2� (∂Ω1)→ H

1
2� (∂Ω2), S̃ : H

1
2� (∂Ω2)→ H−

1
2� (∂Ω1), and

h1
Ŝ7−→ w̃(1)

∣∣∣
2,−

S̃7−→ ∂γ0 ṽ(1)
∣∣∣
+,1

,
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where w̃(1) is the solution of (2.7) and ṽ(1) solves (2.18). We can apply
the very same arguments as in part a) to show that the map Ŝ is a com-
pact operator. Furthermore, S̃ is obviously bounded, and the proof is
completed.

Altogether we have derived the representation

T =
(

T(1) 0
0 T(2)

)
+ K

with a compact operator K. By combination with Lemma 2.1.7 we obtain
the following assertion.

Corollary 2.1.9. Let the operators T(j), T(j)
0 (j = 1, 2) be defined as above. Then

the operator T − T0 can be represented as

T − T0 =

(
T(1) − T(1)

0 0
0 T(2) − T(2)

0

)
+ K̃

with a compact operator K̃

This representation is fundamental for the covering method that is pre-
sented in the following section.

2.2 The Covering Method

After the original Factorization method for EIT has been investigated in
the previous section we now present our modified version of the method
that is capable of detecting mixed inclusions. We first derive the method
for real-valued and bounded conductivity contrasts while in Section 2.2.2
we show that we can even extend it to insulating and perfectly conduct-
ing inclusions.

2.2.1 Contrasts in the Absolute Conductivity

Let us turn towards the mixed case, i.e. there is an inclusion Ω1 of type 1
as well as an inclusion Ω2 of type 2. In this section we derive the Factor-
ization method for slight modifications of Λ−Λ0 under some additional
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B

Ω̃1

Ω̃2Ω1

��

@R

Ω2

Figure 2.3: Sketch of inclusions and the a priori known domains Ω̃1, Ω̃2

a priori assumptions on the inclusions’ locations. We show that using
these we can reconstruct inclusions even in the mixed case. This setting
is defined in the following assumption.

Assumption 2.2.1. We assume that we know C2-domains Ω̃1, Ω̃2 ⊂ B
for which Ω̃1 ∩ Ω̃2 = ∅, Ω̃1 ∪ Ω̃2 ⊂ B and Ωj ⊂ Ω̃j (j = 1, 2) hold, and

B \ (Ω̃1 ∪ Ω̃2) is connected.

This configuration is illustrated in Figure 2.3. The a priori knowledge
of Ω̃1, Ω̃2 is –at least in some applications– no strong restriction. For
example, in medical applications one knows roughly where the different
tissues lie and which conductivities they usually have.

According to Lemma 2.1.4 the following coercivity assertions hold for
the operators on the diagonal in the representation of T− T0 in Corollary
2.1.9: there exist constants c1, c2 > 0 such that〈(

Re T(1) − T(1)
0

)
h1, h1

〉
≥ c1 ‖h1‖2

H
1
2 (∂Ω1)

for all h1 ∈ H
1
2� (∂Ω1),〈

−
(

Re T(2) − T(2)
0

)
h2, h2

〉
≥ c2 ‖h2‖2

H
1
2 (∂Ω2)

for all h2 ∈ H
1
2� (∂Ω2).

(2.20)

Now it is easy to see that the operator Re T − T0 is neither positively nor
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negatively coercive, so that we are not able to apply the Factorization
method immediately. In order to derive a new factorization for slight
modifications of Λ−Λ0, we need to define some auxiliary operators.

Remark 2.2.2. In order to distinguish between operators that decouple
according to the different inclusions and operators that don’t decouple
we use different notations. Operators with a superscript index j (such
as e.g. T(j), T(j)

0 ) correspond to the case in which Ωj is considered the
only inclusion. On the other hand, we will shortly define several oper-
ators with a subscript index (such as e.g. Q̃j or G̃j), and their definition
involves both inclusions.

At first let us define Q(1), Q(2) by

Qj : H−
1
2� (∂Ωj)→ H−

1
2� (∂Ω̃j), g 7→ ∂γ0 w|∂Ω̃j

,

where w ∈ H1(B \Ωj) with w|∂B ∈ H
1
2� (∂B) solves the boundary value

problem

div(γ0∇w) = 0 in B \Ωj,

∂γ0 w = g on ∂Ωj,

∂γ0 w = 0 on ∂B

(2.21)

in the weak sense (j = 1, 2).
Furthermore, we will need the composed operators

Q̃1 : H−
1
2� (∂Ω1)× H−

1
2� (∂Ω2)→ H−

1
2� (∂Ω̃1)× H−

1
2� (∂Ω2),

Q̃2 : H−
1
2� (∂Ω1)× H−

1
2� (∂Ω2)→ H−

1
2� (∂Ω1)× H−

1
2� (∂Ω̃2).

They are defined similarly to the operators Q(1), Q(2): Q̃1 : (g1, g2)
> 7→(

∂γ0 w̃|∂Ω̃1
, g2

)>
, where w̃ ∈ H1(B \Ω) with w̃|∂B ∈ H

1
2� (∂B) solves

div(γ0∇w̃) = 0 in B \Ω,
∂γ0 w̃ = gj on ∂Ωj (j = 1, 2),

∂γ0 w̃ = 0 on ∂B,

(2.22)



32 Detection of Mixed inclusions

in the weak sense, while Q̃2 is defined by (g1, g2)
> 7→

(
g1, ∂γ0 w̃|∂Ω̃2

)>
,

where w̃ also solves (2.22). We remark that the boundary value problem
(2.22) is the same problem that defines the operator G and thus that the
weak formulation corresponding to (2.22) is (2.1).

The following lemma provides some basic properties of the newly de-
fined operators.

Lemma 2.2.3. Let Q(1), Q(2), Q̃1 and Q̃2 be defined as above, then:

(a) Q1 and Q2 are compact operators.

(b)

Q̃1
(
T − T0

)
Q̃∗1 =

(
Q(1)

(
T(1) − T(1)

0

)
(Q(1))∗ 0

0 T(2) − T(2)
0

)
+ K̃1,

Q̃2
(
T − T0

)
Q̃∗2 =

(
T(1) − T(1)

0 0
0 Q(2)

(
T(2) − T(2)

0

)
(Q(2))∗

)
+ K̃2,

(2.23)

where K̃1, K̃2 are compact operators.

Proof. Part a): Compactness of Q(1) and Q(2) can be shown using the
same arguments as in the proof of Lemma 2.1.7.

Part b): We first show that Q̃1 is a compact perturbation of
(

Q(1) 0
0 I

)
.

As in Section 2.1.2 we consider the weak formulations for the boundary
value problems (2.21) and (2.22). For (2.21) the weak formulation is to

find w ∈ H1(B \Ω1) such that w|∂B ∈ H
1
2� (∂B) and∫∫

B\Ω1

γ0∇w · ∇ψ dx =
∫

∂Ω1

g1ψ ds for all ψ ∈ H1(B \Ω1), (2.24)
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while for (2.22) we have to find w̃ ∈ H1(B \Ω) such that w̃|∂B ∈ H
1
2� (∂B)

and∫∫
B\Ω

γ0∇w̃ · ∇ψ dx =
∫

∂Ω1

g1ψ ds +
∫

∂Ω2

g2ψ ds for all ψ ∈ H1(B \Ω),

Setting v := w− w̃ in B \Ω we obtain by subtraction and the first Green
identity that∫∫

B\Ω

γ0∇v · ∇ψ dx = −
∫∫
Ω2

γ0∇w · ∇ψ dx−
∫

∂Ω2

g2ψ ds

= −
∫

∂Ω2

(∂γ0 w + g2) ψ ds

for all ψ ∈ H1(B \ Ω1). Now we observe that the difference operator

Q̂ :=
(

Q(1) 0
0 I

)
− Q̃1 maps (g1, g2)

> to
(

∂γ0 v|∂Ω̃1
, 0
)>

. Furthermore, the
map

Q̂1 : H−
1
2� (∂Ω1)× H−

1
2� (∂Ω2)→ H−

1
2� (∂Ω2),

(g1, g2)> 7→ ∂γ0 w|+,2 + g2,

where w solves (2.24) is a bounded linear operator. Using the same argu-
ments as in the proof of Lemma 2.1.8 we can show that the map

Q̂2 : H−
1
2� (∂Ω2)→ H−

1
2� (∂Ω̃1)× H−

1
2� (∂Ω2), g 7→ (∂γ0 v, 0)> ,

where v ∈ H1(B \Ω) with v|∂B ∈ H
1
2� (∂B) solves∫∫

B\Ω

γ0∇v · ∇ψ dx = −
∫

∂Ω2

gψ ds for all ψ ∈ H1(B \Ω)

is a compact operator. By construction it is clear that Q̂ = Q̂2 ◦ Q̂1 holds
which implies that there is a representation Q̃1 =

(
Q(1) 0

0 I

)
+ K with a
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compact operator K. Since Q(1) is also compact, plugging this represen-
tation into Q̃1(T − T0)Q̃∗1 yields the assertion. The proof for the second
equality is analogous.

In addition, we will need the operators G̃(j) : H−
1
2� (∂Ω̃j) → L2

�(∂B)
(j = 1, 2) that are defined just as G in Section 2.1 but with Ω replaced by
Ω̃j, i.e. the operator G̃(j) maps gj 7→ v|∂B, where v ∈ H1(B \ Ω̃j) with

v|∂B ∈ H
1
2� (∂B) is the weak solution to the boundary value problem

div(γ0∇v) = 0 in B \ Ω̃j,

∂γ0 v = gj on ∂Ω̃j,

∂γ0 v = 0 on ∂B.

(2.25)

Furthermore, we define G̃1 : H−
1
2� (∂Ω̃1) × H−

1
2� (∂Ω2) → L2

�(∂B) by

(g1, g2)
> 7→ ṽ|∂B, and ṽ ∈ H1(B \ (Ω̃1 ∪Ω2)) with ṽ|∂B ∈ H

1
2� (∂B) solves

div(γ0∇ṽ) = 0 in B \ (Ω̃1 ∪Ω2),

∂γ0 ṽ = g1 on ∂Ω̃1,
∂γ0 ṽ = g2 on ∂Ω2,
∂γ0 ṽ = 0 on ∂B

in the weak sense. For the operator G̃2 : H−
1
2� (∂Ω1) × H−

1
2� (∂Ω̃2) →

L2
�(∂B) the corresponding definition holds.
It is quite obvious that G̃(1), G̃(2), G̃1, G̃2 have the same properties as

G concerning compactness, injectivity, and denseness of the range (com-
pare page 16). The following Lemma shows some connections between
the newly defined operators.

Lemma 2.2.4. The operators defined above have the following properties, where
K1, K2 are compact operators:

(a)
G = G̃1Q̃1, G = G̃2Q̃2,
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(b)

G̃(1)(G̃(1))∗ = G̃1

(
I K∗1

K1 K1K∗1

)
G̃∗1

G̃(2)(G̃(2))∗ = G̃2

(
K2K∗2 K2

K∗2 I

)
G̃∗2 .

(c) Q̃1 and Q̃2 are one-to-one and have dense range. The same holds for their
adjoints Q̃∗1 and Q̃∗2

Proof. Part a) follows immediately from the definition of the appearing
operators.

Part b): Define K1 : H−
1
2� (∂Ω̃1) → H−

1
2� (∂Ω2) by g1 7→ ∂γ0 v|∂Ω2

and

v ∈ H1(B \ Ω̃1) with v|∂B ∈ H
1
2� (∂B) solves (2.25) for j = 1 in the weak

sense. Analogously to the proof of Lemma 2.1.8 it can be shown that K1
is compact.

We observe that the identity G̃(1) = G̃1

(
I 0

K1 0

)
holds which implies

(G̃(1))∗ =
(

I K∗1
0 0

)
G̃∗1 and thus G̃(1)(G̃(1))∗ = G̃1

(
I K∗1

K1 K1K∗1

)
G̃∗1 . The argu-

ments for the second identity are analogous.
Part c): Since G is injective we deduce from part a) that Q̃1 is injective

and thus that Q̃∗1 has dense range in H−
1
2� (∂Ω1)× H−

1
2� (∂Ω2).

Now we derive a representation for the adjoint Q̃∗1 and show that it is
injective. We therefore first show an alternative representation for Q̃1.

Consider the partial operator Q̃(11) : H−
1
2� (∂Ω1) → H−

1
2� (∂Ω̃1) that

maps g1 7→ ∂γ0 w1|∂Ω̃1
, and w1 ∈ H1(B \Ω) with w1|∂B ∈ H

1
2� (∂B) solves

div(γ0∇w1) = 0 in B \Ω, ∂γ0 w1 = g1 on ∂Ω1, ∂γ0 w1 = 0 on ∂Ω2 ∪ ∂B
in the weak sense.

In addition, consider the operator Q̃(12) : H−
1
2� (∂Ω2) → H−

1
2� (∂Ω̃1)

that maps g2 7→ ∂γ0 w2|∂Ω̃1
, and w2 ∈ H1(B \Ω) with w2|∂B ∈ H

1
2� (∂B)

solves div(γ0∇w2) = 0 in B \Ω, ∂γ0 w2 = g2 on ∂Ω2, ∂γ0 w2 = 0 on
∂Ω1 ∪ ∂B in the weak sense.

Now we observe that w := w1 + w2 solves (2.22) and thus that the iden-

tity Q̃1 =
(

Q̃(11) Q̃(12)

0 I

)
holds, which also implies Q̃∗1 =

(
(Q̃(11))∗ 0
(Q̃(12))∗ I

)
. The
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next step is to show representations for the adjoints (Q̃(11))∗, (Q̃(12))∗.

In fact, (Q̃(11))∗ : H
1
2� (∂Ω̃1) → H

1
2� (∂Ω1), h1 7→ v|∂Ω1

, and v ∈ H1(B \

(Ω∪ ∂Ω̃1)) with v|∂B ∈ H
1
2� (∂B) solves the transmission boundary value

problem div(γ0∇v) = 0 in B \ (Ω ∪ ∂Ω̃1), ∂γ0 v = 0 on ∂B ∪ ∂Ω1 ∪ ∂Ω2,
v|− − v|+ = h1 in ∂Ω̃1 and ∂γ0 v|− = ∂γ0 v|+ on ∂Ω̃1 in the weak sense.

Now we can use the second Green identity to show that Q̃(11) and

(Q̃(11))∗ are indeed adjoint to each other. Therefore let g1 ∈ H−
1
2� (∂Ω1)

and h1 ∈ H
1
2� (∂Ω̃1) be arbitrary, and let w1, v be the corresponding weak

solutions of the above boundary value problems, then:〈
Q̃(11)g1, h1

〉
=
∫

∂Ω̃1

∂γ0 w1(v|− − v|+)− w1(∂γ0 v|− − ∂γ0 v|+︸ ︷︷ ︸
=0

) ds

=
∫

∂Ω1

v∂γ0 w1 − w1 ∂γ0 v︸︷︷︸
=0

ds +
∫

∂Ω2

v ∂γ0 w1︸ ︷︷ ︸
=0

−w1 ∂γ0 v︸︷︷︸
=0

ds

−
∫
∂B

v ∂γ0 w1︸ ︷︷ ︸
=0

−w1 ∂γ0 v︸︷︷︸
=0

ds =
〈

g1, (Q̃(11))∗h1

〉
.

In the same way it can be shown that the adjoint of Q̃(12) is given by

(Q̃(12))∗ : H
1
2� (∂Ω̃1) → H

1
2� (∂Ω2), h1 7→ v|∂Ω2

, where v is defined by the
above transmission problem.

The only thing that remains to show is that Q̃∗1 is injective. There-

fore let (h1, h2) ∈ H
1
2� (∂Ω̃1)× H

1
2� (∂Ω2) be such that (Q̃(11))∗h1 = 0 and

(Q̃(12))∗h1 + h2 = 0. The first identity yields that v has zero Cauchy val-
ues at ∂Ω1 and thus that v ≡ 0 in Ω̃1 \Ω1. In addition, the continuity
of ∂γ0 v across ∂Ω̃1 yields that v solves the homogeneous Neumann prob-
lem in B \ (Ω̃1 ∪Ω2) and thus that v ≡ 0 in the whole of B which also
implies h1 = 0. Now the second identity yields h2 = 0 immediately, and
injectivity of Q̃∗1 is shown, which also implies that Q̃1 has dense range

in H−
1
2� (∂Ω̃1)× H−

1
2� (∂Ω2). For Q̃2 the arguments are completely analo-

gous.

Figures 2.4 and 2.5 illustrate the connections between the factorization
(2.5) and the newly introduced operators G̃1, G̃2, Q̃1 and Q̃2 that have
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Figure 2.4: Diagram of operators and spaces corresponding to the new factoriza-
tion of Λ−Λ0 (compare Lemma 2.2.4 part a))
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been shown in Lemma 2.2.4. Now we have collected all the tools we
need to derive our new factorization.

Therefore consider the following perturbed Neumann-to-Dirichlet dif-
ference maps:

Λ̃1 := Λ−Λ0 + ρ1G̃(1)(G̃(1))∗, Λ̃2 := Λ−Λ0 + ρ2G̃(2)(G̃(2))∗,

with parameters ρ1, ρ2 ∈ C. First, we remark that both maps only contain
measured data and information known a priori: Λ is obtained from mea-
surement data, Λ0 is obtained either from measurement data or from in-
formation about the background conductivity γ0 and for G̃j, G̃∗j we only
need information about γ0 and the covering domains Ω̃j (j = 1, 2). Us-
ing Lemma 2.2.4 and the factorization (2.5) we can derive factorizations
of Λ̃1 and Λ̃2:

Λ̃1 = G(T − T0)G∗ + ρ1G̃(1)(G̃(1))∗

= G̃1

{
Q̃1(T − T0)Q̃∗1 + ρ1

(
I K∗1

K1 K1K∗1

)}
G̃∗1 ,

Λ̃2 = G(T − T0)G∗ + ρ2G̃(2)(G̃(2))∗

= G̃2

{
Q̃2(T − T0)Q̃∗2 + ρ2

(
K2K∗2 K2

K∗2 I

)}
G̃∗2 .

Our aim is now to show that for these factorizations the Factorization
method works. On order to do this, several properties of the appearing
operators have to be verified. These properties can be established by
choosing the parameters ρ1, ρ2 in a proper way as we will see in the
following considerations.

We therefore proceed by investigating the new middle operators S1, S2
defined by

S1 = Q̃1
(
T − T0

)
Q̃∗1 + ρ1

(
I K∗1

K1 K1K∗1

)
, (2.26)

S2 = Q̃2
(
T − T0

)
Q̃∗2 + ρ2

(
K2K∗2 K2

K∗2 I

)
. (2.27)
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Lemma 2.2.5. Let ρ1, ρ2 ∈ C be such that Re ρ1 < 0, Re ρ2 > 0 and Im ρj > 0
(j = 1, 2). Then the middle operators S1, S2 have the following properties:

(a) Im 〈S1h, h〉 ≥ 0 for all h = (h1, h2)
> ∈ H

1
2� (∂Ω̃1)× H

1
2� (∂Ω2) and

Im 〈S2h, h〉 ≥ 0 for all h = (h1, h2)
> ∈ H

1
2� (∂Ω1)× H

1
2� (∂Ω̃2).

(b) If 0 6= h = (h1, h2)
> is such that (Re Sj)h = 0, then Im 〈Sjh, h〉 > 0

(j = 1, 2).

Proof. Part a): We only consider the operator S1 from (2.26) while for S2
the arguments are the same:

S1 = Q̃1
(
T − T0

)
Q̃∗1︸ ︷︷ ︸

=:H

+ρ1

(
I K∗1

K1 K1K∗1

)
︸ ︷︷ ︸

:=H̃

.

From (2.6) we know that 〈Im Hh, h〉 ≥ 0 for all h ∈ H
1
2� (∂Ω̃1)×H

1
2� (∂Ω2),

and H̃ is non-negative since it is an operator of the type A∗A. Hence

Im 〈S1h, h〉 = 〈Im Hh, h〉 + Im {ρ1}
〈

H̃h, h
〉
≥ 0,

and the first assertion is shown.

Part b): Let h = (h1, h2)
> ∈ H

1
2� (∂Ω̃1)× H

1
2� (∂Ω2) satisfy (Re S1)h = 0

and h 6= 0. If Re Hh = 0 then it follows that H̃h = 0. From Lemmas
2.1.5 and 2.2.4 we obtain that 〈Im Hh, h〉 > 0 and thus 〈Im S1h, h〉 > 0. If
Re Hh 6= 0, then we conclude that H̃h 6= 0 and thus

〈
H̃h, h

〉
> 0. This

implies together with part a) that Im 〈S1h, h〉 > 0 which completes the
proof.

Now we derive another representation of Λ̃1 that is used to prove that
the middle operator S1 is a compact perturbation of a negatively coercive
operator. Using Corollary 2.1.9 as well as Lemmas 2.2.3 and 2.2.4 we
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obtain

Λ̃1 = G

{(
T(1) − T(1)

0 0
0 T(2) − T(2)

0

)
+ K̃

}
G∗ + ρ1G̃(1)(G̃(1))∗

= G̃1

{(
ρ1 I 0
0 T(2) − T(2)

0

)

+

(
Q(1)(T(1) − T(1)

0 )(Q(1))∗ K∗1
K1 0

)
+ K̃

}
G̃∗1

= G̃1

{(
ρ1 I 0
0 T(2) − T(2)

0

)
+ ˜̃K1

}
G̃∗1 .

(2.28)

˜̃K1 is a compact operator, and if the parameter ρ1 is chosen as in Lemma
2.2.5 then from (2.20) it follows that Re S1 is indeed a compact pertur-
bation of a negatively coercive operator. Analogously we can derive a
corresponding representation for Λ̃2:

Λ̃2 = G

{(
T(1) − T(1)

0 0
0 T(2) − T(2)

0

)
+ K̃

}
G∗ + G̃(2)(G̃(2))∗

= G̃2

{(
T(1) − T(1)

0 0
0 ρ2 I

)

+

(
0 K2

K∗2 Q(2)(T(2) − T(2)
0 )(Q(2))∗

)
+ K̃

}
G̃∗2

= G̃2

{(
T(1) − T(1)

0 0
0 ρ2 I

)
+ ˜̃K2

}
G̃∗2 ,

(2.29)

with a compact operator ˜̃K2, and choosing ρ2 as in Lemma 2.2.5 and (2.20)
yield that Re S2 is a compact perturbation of a coercive operator.

Now we summarize our results from (2.28) and (2.29) as well as from
Lemma 2.2.5 and the knowledge about the properties of the operators G̃1
and G̃2. We have derived the two factorizations

Λ̃1 = G̃1S1G̃∗2 , Λ̃2 = G̃2S2G̃∗2 ,

and the appearing operators have the following properties:
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(a) Λ̃1 : L2
�(∂B) → L2

�(∂B) and Λ̃2 : L2
�(∂B) → L2

�(∂B) are bounded
operators.

(b) The operators G̃1 : H−
1
2� (∂Ω̃1) × H−

1
2� (∂Ω2) → L2

�(∂B) and S1 :

H
1
2� (∂Ω̃1)× H

1
2� (∂Ω2)→ H−

1
2� (∂Ω̃1)× H−

1
2� (∂Ω2) are bounded.

(c) The operators G̃2 : H−
1
2� (∂Ω1) × H−

1
2� (∂Ω̃2) → L2

�(∂B) and S2 :

H
1
2� (∂Ω1)× H

1
2� (∂Ω̃2)→ H−

1
2� (∂Ω1)× H−

1
2� (∂Ω̃2) are bounded.

(d) G̃1 and G̃2 are compact operators and they have dense range in
L2
�(∂B).

(e) The operator Re S1 can be written as Re S1 = C1 +K1 where K1 is
compact, C1 is self-adjoint and −C1 is coercive.

(f) The operator Re S2 can be written as Re S2 = C2 +K2 where K2 is
compact and C2 is self-adjoint and coercive.

(g) The operator Im S1 is non-negative on H
1
2� (∂Ω̃1) × H

1
2� (∂Ω2), and

the operator Im S2 is non-negative on H
1
2� (∂Ω1)× H

1
2� (∂Ω̃2).

(h) Im Sj is positive on the finite-dimensional nullspace of Re Sj (j =
1, 2).

These results yield that we can apply the F#-Factorization Method in the
form of the following theorem that is cited from [63].

Theorem 2.2.6. Let X ⊂ U ⊂ X∗ be a Gelfand triple with a Hilbert space U
and a reflexive Banach space X such that the imbedding is dense. Let H be a
second Hilbert space and let F : H → H,G : X∗ → H and S : X → X∗ be
linear and bounded operators with F = GSG∗ and

(a) G is one-to-one and compact with dense range in H,

(b) ReS = C +K where C (or −C) is coercive and K is compact,

(c) ImS is non-negative on X,

(d) S is injective or ImS is positive on the finite-dimensional nullspace of
ReS .
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Then F# := |ReF|+ ImF is positive definite and the ranges of G : X∗ → H

and F
1
2

# : H → H coincide.

For the corresponding proof we refer to [63]. As a result, we conclude
for our factorizations:

Corollary 2.2.7. The operators Λ#,1, Λ#,2 : L2
�(∂B)→ L2

�(∂B) defined by

Λ#,1 =
∣∣∣Re Λ−Λ0 + Re {ρ1}G̃(1)(G̃(1))∗

∣∣∣+ Im Λ + Im {ρ1}G̃(1)(G̃(1))∗,

Λ#,2 =
∣∣∣Re Λ−Λ0 + Re {ρ2}G̃(2)(G̃(2))∗

∣∣∣+ Im Λ + Im {ρ2}G̃(2)(G̃(2))∗,

are positive definite, and the ranges of G̃1 and Λ
1
2
#,1 as well as the ranges of G̃2

and Λ
1
2
#,2 coincide.

By means of the test functions ϕy defined in (2.12) we can again derive
a binary criterion to decide whether a point y lies inside an inclusion or
not. Therefore we first show a connection between the inclusions and the
ranges of G̃1 and G̃2.

Lemma 2.2.8. The inclusions Ω1, Ω2 can be characterized as follows:

a) Let y ∈ Ω̃1, then y ∈ Ω1 ⇔ ϕy ∈ R(G̃2).

b) Let y ∈ Ω̃2, then y ∈ Ω2 ⇔ ϕy ∈ R(G̃1).

Proof. We only prove assertion a). Under the assumption y ∈ Ω̃1 the
equivalence y ∈ Ω1 ⇔ y ∈ Ω1 ∪ Ω̃2 holds, since Ω̃1 and Ω̃2 are disjoint.
Additionally, we know that y ∈ Ω1 ∪ Ω̃2 ⇔ ϕy ∈ R(G̃2) since it is
the very same result as for the original Factorization method (compare
(2.13)).

Note that the assumptions y ∈ Ω̃j (j = 1, 2) are no restriction in the
present setting since in Assumption 2.2.1 we require that we a priori
know that the inclusions are located inside the corresponding covering
domains. By combination of Lemma 2.2.8 and Corollary 2.2.7 we obtain
a binary criterion that connects the data Λ#,1, Λ#,2 with the desired inclu-
sions Ω1, Ω2.
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Corollary 2.2.9. Let Ω1 be of type 1, let Ω2 be of type 2 and let Assumption
2.2.1 be satisfied.

a) Let y ∈ Ω̃1, then

y ∈ Ω1 ⇔
∞

∑
k=1

∣∣〈ϕy, ψk
〉∣∣2

λk
< ∞, (2.30)

where {λk, ψk : k ∈ N } is an eigensystem of Λ#,2.

b) Let y ∈ Ω̃2, then

y ∈ Ω2 ⇔
∞

∑
k=1

∣∣〈ϕy, ψk
〉∣∣2

λk
< ∞, (2.31)

where {λk, ψk : k ∈ N} is an eigensystem of Λ#,1.

These two binary criterions can now be used to reconstruct inclusions.
However, in contrast to the original Factorization method we now have
to implement two steps in order to identify both inclusions. In the first
step we use criterion (2.30) and reconstruct Ω1, while in the second step
we use criterion (2.31) to reconstruct Ω2.

The new method can also be interpreted as follows: for the reconstruc-
tion of Ω1 we use the parameter ρ2 to synthesize a type 1 inclusion Ω̃2
that covers the perturbing type 2 inclusion Ω2. On the other hand, we
cover Ω1 by an artificial type 2 inclusion that is produced by ρ1 in order
to identify Ω2.

2.2.2 Insulating and Perfectly Conducting Inclusions

In our statements above perfectly conducting as well as insulating inclu-
sions have been excluded since we assumed the absolute conductivity
Re γ to be strictly positive and essentially bounded. In this section we
show that these two special cases also fit in our setting. In particular,
we show that for insulating inclusions the middle operator of the factor-
ization is coercive, while for perfectly conducting inclusions the middle
operator is negatively coercive.

At first we consider the factorization for the case of an insulating in-
clusion and and no other inclusions. If Ω is an insulating inclusion, then
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there is no current flux across its boundary, i.e. the direct problem is to

find a solution u ∈ H1(B \Ω) with u|∂B ∈ H
1
2� (∂B) to∫∫

B\Ω

γ0∇u · ∇ψ dx =
∫
∂B

f ψ ds for all ψ ∈ H1(B \Ω),

where f ∈ L2
�(∂B) is the injected current pattern. This weak formulation

corresponds to the following Neumann boundary value problem

div (γ0∇u) = 0 in B \Ω,
∂γ0 u = 0 on ∂Ω,
∂γ0 u = f on ∂B.

The homogeneous Neumann boundary condition at ∂Ω yields that

(Λ−Λ0) f = G
(
− ∂γ0 u0|+

)
,

where u0 ∈ H1
�(B) solves the background direct problem. Now we can

define the operator L : L2
�(∂B) → H−

1
2� (∂Ω), f 7→ ∂γ0 u0|∂Ω for which

the identity Λ−Λ0 = GL holds. Using the second Green identity it can

be shown that the adjoint L∗ : H
1
2� (∂Ω) → L2

�(∂B) is such that it maps
h 7→ w0|∂B, where w0 solves (2.3) in the weak sense for the background
case γ ≡ γ0:

〈L f , h〉 =
∫

∂Ω

∂γ0 u0(w0|+ − w0|−)− u0(∂γ0 w0|+ − ∂γ0 w0|−︸ ︷︷ ︸
=0

) ds

=
∫
∂B

w0∂γ0 u0 − u0 ∂γ0 w0︸ ︷︷ ︸
=0

ds = 〈 f , L∗h〉 .

Now we observe that L∗ = −GT0 and thus that L = −T0G∗. On the
whole, we obtain the following factorization for Ω being an insulator:

Λ−Λ0 = G(−T0)G∗.

The desired coercivity property for the middle operator −T0 can now

be shown as follows. Let h ∈ H
1
2� (∂Ω) and let w0 ∈ H1(B \ Ω) be the
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corresponding weak solution of (2.3) for γ ≡ γ0, then

〈−T0h, h〉∂Ω = −
∫

∂Ω

∂γ0 w0|+
(

w0|+ − w0|−
)

ds

=
∫∫

B\Ω

γ0 |∇w0|2 dx−
∫
∂B

w0 ∂γ0 w0 ds +
∫∫
Ω

γ0 |∇w0|2 dx

=
∫∫
B

γ0 |∇w0|2 dx ≥ c0

∫∫
B

|∇w0|2 dx,

where c0 > 0 is the lower bound for γ0 from Assumption 2.1.2. Now
we can argue as in the proof of Theorem 2.3 in [53] to obtain that there is
c > 0 such that

〈−T0h, h〉∂Ω ≥ c ‖h‖2

H
1
2 (∂Ω)

for all h ∈ H
1
2� (∂Ω).

Since the middle operator is positively coercive we know that an insulat-
ing inclusion can be treated in our covering method exactly the same as
an inclusion of type 1.

Now we consider the second case. Let Ω be a perfect conductor which
is roughly described by γ|Ω = ∞. For the sake of simplicity we restrict
ourselves to the case in which the perfectly conducting inclusion Ω con-
sists of only one component. For the case of several components we refer
to [2] or [8]. A perfect conductor Ω is modeled by the claim that the
electric potential inside Ω has to be constant. The direct problem for a
given current pattern f ∈ L2

�(∂B) is then to find u ∈ H1(B \ Ω) with

u|∂B ∈ H
1
2� (∂B) satisfying u = const on ∂Ω and∫∫

B\Ω

γ0∇u · ∇ψ dx =
∫
∂B

f ψ ds

for all ψ ∈ H1(B \Ω) such that ψ|∂Ω = const. The corresponding classi-
cal formulation is

div (γ0∇u) = 0 in B \Ω,
∂γ0 u = f on ∂B,

u = const on ∂Ω.
(2.32)
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Remark 2.2.10. The constant in the boundary condition u|∂Ω = const is

determined uniquely by the claim that u|∂B ∈ H
1
2� (∂B). We could alter-

natively formulate a well-posed direct problem for u ∈ H1(B \Ω) using
the homogeneous Dirichlet boundary condition u|∂Ω = 0. However,
since we wish to find a factorization for the difference operator Λ−Λ0,

it is desirable to have u|∂B ∈ H
1
2� (∂B).

As in the insulator case above we now derive a factorization of Λ−Λ0
and show negative coercivity of the middle operator. From the direct
problem we observe that the identity Λ = GL̂ holds with the operator L̂ :

L2
�(∂B)→ H−

1
2� (∂Ω) that maps f 7→ ∂γ0 u|∂Ω, where u ∈ H1(B \Ω) with

u|∂B ∈ H
1
2� (∂B) solves (2.32) in the weak sense. The adjoint of L̂ is given

by L̂∗ : H
1
2� (∂Ω) → L2

�(∂B) mad maps h 7→ w|∂B, where w ∈ H1(B \Ω)

with w|∂B ∈ H
1
2� (∂B) is the weak solution to

div (γ0∇w) = 0 in B \Ω,
∂γ0 w = 0 on ∂B,

w = h + const on ∂Ω.

The proof that L̂, L̂∗ are adjoint to each other is again based on the second
Green identity:〈

L̂ f , h
〉

=
∫

∂Ω

w∂γ0 u ds−
∫

∂Ω

u∂γ0 w ds

︸ ︷︷ ︸
=0

=
∫
∂B

w∂γ0 u− u ∂γ0 w︸ ︷︷ ︸
=0

ds =
〈

f , L̂∗h
〉

.

Now we define the operator T̂ : H
1
2� (∂Ω) → H−

1
2� (∂Ω) by setting h 7→

∂γ0 w|∂Ω, and the factorization

Λ−Λ0 = G(T̂ − T0)G∗

is shown.
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In order to show negative coercivity of the middle operator we use the
first Green identity:〈

T̂h, h
〉

∂Ω =
∫

∂Ω

w ∂γ0 w− const ∂γ0 w ds

=
∫
∂B

w ∂γ0 w ds−
∫∫

B\Ω

γ0 |∇w|2 dx = −
∫∫

B\Ω

γ0 |∇w|2 dx

and thus〈
(T0 − T̂)h, h

〉
∂Ω =

∫∫
B\Ω

γ0 |∇w|2 dx−
∫∫
B

γ0 |∇w0|2 dx.

We extend w to a function w ∈ H1(B \ ∂Ω) by setting w = const inside Ω
and obtain〈

(T0 − T̂)h, h
〉

∂Ω =
∫∫
B

γ0 |∇w|2 − γ0 |∇w0|2 dx

= −2
∫∫
B

γ0∇w0 · (∇w0 −∇w) dx

+
∫∫
B

γ0 |∇w0|2 − 2γ0∇w0 · ∇w + γ0 |∇w|2 dx.

Here the first integral vanishes which can be seen by setting ψ = w0 − w
in (2.2) for the background case γ = γ0. Hence we can estimate

〈(T0 − T)h, h〉∂Ω =
∫∫

B\Ω

γ0 |∇w0 −∇w|2 dx +
∫∫
Ω

γ0 |∇w0|2 dx

≥
∫∫
Ω

γ0 |∇w0|2 dx.

Again we can argue as in the proof of Theorem 2.3 in [53] to show
coercivity of T0 − T̂. Hence we can treat Ω in the same manner as a type
2 inclusion in our covering method.

Altogether we have shown in this section that for the covering method
we can subsume all type 1 inclusions together with the insulators and
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cover it by an a priori known covering domain Ω̃1. Analogously, we can
subsume all the type 2 inclusions together with the perfect conductors
and cover them by Ω̃2. We can detect the type 1 inclusions and insu-
lators using the binary criterion from part b) of Corollary 2.2.9, and we
can detect all type 2 inclusions and perfect conductors using part a) of
Corollary 2.2.9, respectively.

2.3 Numerical Experiments

In this section we present some results of numerical experiments with
our new method. We compare the results to those obtained using the
original Factorization method and investigate its performance depend-
ing on the parameters ρ1, ρ2 as well as the covering domains Ω̃1, Ω̃2.

2.3.1 The Original Factorization Method

In all our examples the domain B is the unit disc in R2 and the back-
ground conductivity is γ0 ≡ 1. In the upper half of B there is a type 1
inclusion Ω1, while in the lower half of B there is a type 2 inclusion Ω2.
The conductivity in B is as follows:

γ(x) =


0.5, x ∈ Ω1,
2, x ∈ Ω2,
1, x ∈ B \Ω.

We consider two examples with different locations and shapes of the
inclusions Ω1 and Ω2. In the first example Ω1 is kite-shaped and lies
in the upper half of B, while Ω2 is a small ellipse and is located in the
bottom right of B. In the second example both Ω1 and Ω2 are peanut-
shaped and are located in the center of the upper and lower halves of B.
In Figure 2.6 these two examples are illustrated.

Since B is the unit disc, the dipole test function ϕy can be represented
explicitly by

ϕy(x) =
1

2π

(y− x) · â
|y− x|2 ,

where â is a fixed unit vector that represents the dipole axis (see e.g. [53]).
As an orthonormal basis for the current patterns as well as the boundary
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Ω1

Ω2
B

(a) test model 1

Ω1

Ω2
B

(b) test model 2

Figure 2.6: The two test models and with the inclusions Ω1, Ω2

potentials we use the trigonometric functions{
1√
π

cos(kθ),
1√
π

sin(kθ) : k = 1, 2, . . .
}

, (2.33)

where θ denotes the argument of points on the boundary ∂B in polar
coordinates.

In order to obtain discrete approximations of Λ and Λ0 we solve the
direct problem with and without the inclusions for the basis current pat-
terns up to an end index N ∈ N using a standard finite element method.

For the reconstruction of the inclusions, we evaluate the functions

Wj(y) =

 N

∑
k=1

〈
ϕy, ψ

(j)
k

〉2

λ
(j)
k


−1

(j = 1, 2)

on a mesh of points y in B. As stated in Corollary 2.2.9, we obtain the
reconstruction of Ω1 by evaluation of W2, where {λ(2)

k , ψ
(2)
k : k ∈ N }

is an eigensystem of Λ#,2. On the other hand, we can reconstruct Ω2 by
evaluating W1 on a mesh, where {λ(1)

k , ψ
(1)
k : k ∈ N } is an eigensystem
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(a) No noise (b) 1% noise

Figure 2.7: Reconstruction for test model 1 using the standard Factorization
method

of Λ#,1. In [61] a justification for the truncation of the Picard series at the
index N can be found.

For our first reconstructions we set ρ1 = ρ2 = 0, which implies that
Λ#,1 = Λ#,2 and thus W1 = W2. This corresponds to the standard Factor-
ization method for EIT which is not proven to work for the present exam-
ples. Figure 2.7 shows the reconstruction for Example 1, for the noiseless
case (left picture) and for 1% of white noise added to our discrete approx-
imation of Λ − Λ0. In Figure 2.8 the corresponding reconstructions for
Example 2 are shown.

From these examples we observe that even the standard Factorization
method seems to be capable of reconstructing inclusions in the mixed
case. This observation was also made in Figure 7 in [46] and, for scatter-
ing problems, in [37].

2.3.2 Different Parameters and Noise Levels

The experience from scattering theory (see e.g. [37]) also suggests that
the original Factorization method produces better reconstructions than
the covering method although it is not proven to work in the case of
mixed obstacles.

Furthermore, the larger the absolute values of the parameters ρ1, ρ2
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(a) No noise (b) 1% noise

Figure 2.8: Reconstruction for test model 2 using the standard Factorization
method

get, the more they might influence the reconstruction as we can see in our
theory: the larger |ρj| is (j = 1, 2) the larger the contrast of the artificial
covering inclusion to the background gets, and the Factorization method
emphasizes this synthetic inclusion rather than the one that we wish to
identify. This can also be observed in the representations (2.26), (2.27)
of the middle operator. The information about the desired inclusion lies
inside the first part

Q̃1
(
T − T0

)
Q̃∗1 or Q̃2

(
T − T0

)
Q̃∗2 ,

respectively, while the second part

ρ1

(
I K∗1

K1 K1K∗1

)
or ρ2

(
K2K∗2 K2

K∗2 I

)
,

respectively, contains information about the covering domains Ω̃1, Ω̃2
and carries more weight as |ρj| (j = 1, 2) gets larger.

In the following numerical examples we verify these expectations for
our new method where we carried out both reconstructions using differ-
ent values of the parameters ρ1, ρ2.

For the first examples with the covering method the covering domains
Ω̃1, Ω̃2 are circles as shown in Figure 2.9. The domains in which we eval-
uate the indicator functions Wj (j = 1, 2) are ellipses as indicated by the
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Ω̃1

Ω̃2

(a) test model 1

Ω̃1

Ω̃2

(b) test model 2

Figure 2.9: Covering domains for the test models

white dotted lines in the reconstructions. We start by the reconstructions
in the noiseless case and different values of ρ1 and ρ2.

Figures 2.10 and 2.11 show the corresponding reconstructions. We
observe that the inclusions are localized properly by our method but
the reconstructions are not as focused as with the original Factorization
method (compare Figures 2.7 and 2.8). The absolute value of the param-
eters ρ1, ρ2 also has the expected influence on the reconstruction qual-
ity: the results for ρ1 = 10−3(−1 + i) and ρ2 = 10−3(1 + i) (parts a)
and c) of the Figures 2.10 and 2.11) are considerably better than those for
ρ1 = 10−2(−1 + i) and ρ2 = 10−2(1 + i) (parts b) and d) of Figures 2.10
and 2.11).

We proceed with the same examples for noisy data. In the Figures
2.12 and 2.13 the results of the very same experiment are shown but with
1% white noise added to Λ− Λ0. The reconstructions are slightly more
blurred compared to the noiseless case. However, the observations con-
cerning the absolute value of ρ1, ρ2 as well as the quality compared to the
standard Factorization method are the same.
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(a) ρ2 = 10−3(1 + i) (b) ρ2 = 10−2(1 + i)

(c) ρ1 = 10−3(−1 + i) (d) ρ1 = 10−2(−1 + i)

Figure 2.10: Reconstruction for test model 1 using the covering method
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(a) ρ2 = 10−3(1 + i) (b) ρ2 = 10−2(1 + i)

(c) ρ1 = 10−3(−1 + i) (d) ρ1 = 10−2(−1 + i)

Figure 2.11: Reconstruction for test model 2 using the covering method
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(a) ρ2 = 10−3(1 + i) (b) ρ2 = 10−2(1 + i)

(c) ρ1 = 10−3(−1 + i) (d) ρ1 = 10−2(−1 + i)

Figure 2.12: Reconstruction for test model 1 using the covering method; 1% white
noise added to Λ−Λ0
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(a) ρ2 = 10−3(1 + i) (b) ρ2 = 10−2(1 + i)

(c) ρ1 = 10−3(−1 + i) (d) ρ1 = 10−2(−1 + i)

Figure 2.13: Reconstruction for test model 2 using the covering method; 1% white
noise added to Λ−Λ0
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Ω̃1

Ω̃2

Figure 2.14: Large covering domains for test model 1

2.3.3 Different Covering Domains

Now we investigate the influence of the size of the covering domains
Ω̃1, Ω̃2 on our reconstructions. In the examples from above they were
chosen relatively small, hence we now choose larger coverings as they
are illustrated in Figure 2.14. For the following examples we restrict to
the test model 1 since the results for the test model 2 are very similar.

We observe that they are noticeably worse than the corresponding re-
constructions for the same values of ρ1, ρ2 and the previous smaller cov-
ering domains. This observation can be explained as follows: since the
synthetic inclusion caused by the covering method is now larger than be-
fore it is more disturbing for the localization of the desired inclusion. It
is thus recommended to choose the coverings as small as possible.

Our last experiment deals with the case in which the covering domains
do not cover the inclusions properly, i.e. the assumed a priori informa-
tion is incorrect. For the choice of the covering domains Ω̃1, Ω̃1 compare
Figure 2.16.

The reconstructions for this case are shown in Figure 2.17. They are
slightly worse than the reconstructions in Figure 2.10 but still have an
edge on the ones in Figure 2.15 where the coverings were larger. This
observation is in some sense plausible since the unions Ω̃j ∪Ωj (j = 1, 2)
are only slightly larger than the coverings in Figure 2.10 but still much
smaller than the elliptic coverings before. However, we have to empha-
size that this case is not dealt with by our theory.
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(a) ρ2 = 10−3(1 + i) (b) ρ2 = 10−2(1 + i)

(c) ρ1 = 10−3(−1 + i) (d) ρ1 = 10−2(−1 + i)

Figure 2.15: Reconstruction for test model 1 using the covering method and large
ellipses as covering domains
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Ω̃1

Ω̃2

Figure 2.16: Improper covering domains for the test model 1
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(a) ρ2 = 10−3(1 + i) (b) ρ2 = 10−2(1 + i)

(c) ρ1 = 10−3(−1 + i) (d) ρ1 = 10−2(−1 + i)

Figure 2.17: Reconstruction for test model 1 using the covering method and im-
proper covering domains



3 Determination of the
Conductivity Inside Anomalies

The Factorization method for EIT is a very successful method for the lo-
calization of anomalies. However, one possible drawback of this method
is that the conductivity inside the inclusions remains unknown. The aim
of this chapter is to derive a method for approximating the conductivity
inside inclusions after they have been identified by a qualitative method,
such as e.g. the Factorization method. This plan is comparable to the con-
siderations in [12], [14] and [13], where the authors present methods of
approximating the surface impedance or the index of refraction of a scat-
terer whose shape has been determined before by a qualitative method.

The main idea of our method is to make use of a factorization of Λ−Λ0
that appears in a new version of the Factorization method which has been
derived by Kirsch in [55]. Our method of determining the conductivity
is –in contrast to the assumptions in Chapter 2– restricted to the case of
piecewise constant conductivities. Furthermore, we emphasize that this
problem is still an ill-posed problem.

In Section 3.1 we present the new factorization and show substantial
properties of the appearing operators. In Section 3.2 we focus on the
middle operator T of the factorization and especially its spectrum that
is closely related to the conductivity inside the inclusions. Afterwards,
in Section 3.3, we show how this spectrum and the conductivity can be
computed numerically and in Section 3.4 we present some numerical re-
sults with this new method.

3.1 A new Version of the Factorization Method

Our assumptions on the domain B and the inclusion Ω from the previous
chapter are still valid, i.e. B is a simply connected C2-domain, Ω is a C2-
domain such that Ω ⊂ B and B \Ω is connected. For the conductivity
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distribution we restrict ourselves to piecewise constant and real-valued
conductivities, i.e. γ(x) = γ0 + qχΩ(x) (x ∈ B), and γ0, q ∈ R are such
that γ(x) > 0 in B and q 6= 0. In Section 1.2.1 we noticed that the
mean value of the absolute conductivity in B is equal to 1. Hence we
can assume that γ0 = 1 without loss of generality. Later we will extend
our results to complex-valued q as well as several conductivity contrasts
q1, . . . , qn on N mutually disjoint inclusions Ω1, . . . , Ωn.

We proceed by defining the operators that will appear in our new fac-
torization and start with the operator A : L2

�(∂B) → L2(Ω, Rd), defined
by f 7→ ∇u0|Ω, where u0 ∈ H1

�(B) solves∫∫
B

∇u0 · ∇ψ dx =
∫
∂B

f ψ ds for all ψ ∈ H1
�(B). (3.1)

This weak formulation corresponds to the classical formulation

∆u0 = 0 in B, ∂νu0 = f on ∂B. (3.2)

The term ∂ν is a short notation for the normal derivative ∂
∂ν . Hence A is

defined via the background direct problem. A∗ : L2(Ω, Rd) → L2
�(∂B) is

given by h 7→ w|∂B where w ∈ H1
�(B) solves∫∫

B

∇w · ∇ψ dx =
∫∫
Ω

h · ∇ψ dx for all ψ ∈ H1
�(B). (3.3)

A and A∗ are adjoint to each other since the first Green identity yields
together with (3.3) that

〈A f , h〉L2(Ω,Rd) =
∫∫
Ω

∇u0 · h dx =
∫∫
B

∇u0 · ∇w dx = 〈 f ,A∗h〉L2(∂B)

holds for arbitrary f ∈ L2
�(∂B), h ∈ L2(Ω, Rd). Using the unique continu-

ation principle for harmonic functions it can be shown that A is injective
which also implies that A∗ has dense range in L2

�(∂B).
In the following lemma we show representations for the closure of the

range of A and the nullspace of its adjoint A∗. We therefore need to
declare what we mean by ∆v = 0 in Ω for a function v ∈ H1(Ω), namely:∫∫

Ω

∇v · ∇ψ dx = 0 for all ψ ∈ H1
0(Ω). (3.4)
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Lemma 3.1.1. The operatorsA,A∗ defined above have the following properties:

(a) The nullspace N (A∗) consists of all h ∈ L2(Ω, Rd) such that there is a
solution w ∈ H1(Ω) to∫∫

Ω

∇w · ∇ψ dx =
∫∫
Ω

h · ∇ψ dx for all ψ ∈ H1(Ω) (3.5)

satisfying w = 0 on ∂Ω.

(b)
R(A) =

{
∇u : u ∈ H1(Ω), ∆u = 0 in Ω

}
. (3.6)

Proof. Part a): Let h ∈ N (A∗). Then there is w ∈ H1(B) that solves
(3.3) and w = 0 on ∂B. This implies that w has zero Cauchy values on
∂B and thus w ≡ 0 in B \Ω by the unique continuation principle. For
such a w (3.3) is equivalent to (3.5). Furthermore, since w ∈ H1(B), it is
continuous across ∂Ω and therefore w|∂Ω = 0.

Let h ∈ L2(Ω, Rd) be such that there is a solution w ∈ H1(Ω) to (3.5)
and w|∂Ω = 0. Then we can extend w to w ∈ H1

�(B) by setting w ≡ 0 in
B \Ω. Now w is a solution to (3.3), and w|∂B = 0. Hence h ∈ N (A∗).

Part b): Define M :=
{
∇u : u ∈ H1(Ω), ∆u = 0 in Ω

}
. From the defi-

nition ofAwe obtainR(A) ⊂ M. From (3.4) it follows immediately that
M is a closed subspace of H1(Ω) and thus thatR(A) ⊂ M.

Let∇v ∈ M and let h ∈ N (A∗). Then we know from part a) that there
exists w ∈ H1(Ω) that solves (3.5) and w|∂Ω = 0. Hence we obtain using
(3.5) and (3.4) that∫∫

Ω

∇v · h dx =
∫∫
Ω

∇v · ∇w dx = 0.

This implies that M ⊂ (N (A∗))⊥ = R(A), which completes the proof.

Remark 3.1.2. (a) The classical formulation for the variational prob-
lem (3.5) is to find w ∈ H1(Ω) that solves ∆w = div h in Ω, w = 0
on ∂Ω and ∂νw = h · ν on ∂Ω.
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(b) Lemma 3.1.1 implies in particular that A∗ is not one-to-one. For
instance, let us fix some arbitrary point x̂ inside Ω and and choose
ε > 0 such that dist(x̂, ∂Ω) > ε. Then we define

w(x) :=

exp
(

1− ε2

ε2−|x−x̂|2

)
, |x− x̂| < ε,

0, otherwise.

We observe that w ∈ C∞(Ω) and that w has zero Cauchy values
at ∂Ω. Then w obviously solves (3.5) with h = ∇w, and therefore
0 6= h ∈ N (A∗).

For h ∈ R(A) we can find the classical formulation of (3.3) using the
fact that h = ∇v for some v ∈ H1(B) and ∆v = 0. As a result we obtain
the following transmission problem: find w ∈ H1

�(B) such that

∆w = 0 in B \ ∂Ω,
∂νw = 0 on ∂B,

∂νw|− − ∂νw|+ = ν · h on ∂Ω.
(3.7)

Remark 3.1.3. The operator A∗A is also very similar to the operator
LΩL∗Ω in [26] that is used to construct so-called localized potentials. Both
operators map from L2

�(∂B) to L2
�(∂B), and A∗A f = w|∂B, where w

solves (3.3) with h = ∇u0|Ω, while for LΩL∗Ω f = ṽ|∂B, where ṽ solves∫∫
B

γ∇ṽ · ∇ψ dx =
∫∫
Ω

h · ∇ψ dx for all ψ ∈ H1
�(B),

where h = ∇u|Ω, and u solves (1.3). Hence the only difference is that for
A∗A we use the the background conductivity γ0 = 1, while for LΩL∗Ω
the actual conductivity γ is used.

In addition, the operator T : L2(Ω, Rd) → L2(Ω, Rd) is defined by
h 7→ q (h−∇w), where w ∈ H1

�(B) solves∫∫
B

(1 + qχΩ)∇w · ∇ψ dx =
∫∫
Ω

q h · ∇ψ dx for all ψ ∈ H1
�(B). (3.8)
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Again, for h ∈ R(A) we can formulate this as a transmission problem:
find w ∈ H1

�(B) such that

∆w = 0 in B \ ∂Ω,
∂νw = 0 on ∂B,

(1 + q) ∂νw|− − ∂νw|+ = q (ν · h) on ∂Ω.
(3.9)

Throughout this chapter we restrict T to R(A), and we observe that T :
R(A) → R(A) since q is constant and the potential w that solves the
transmission problem (3.9) satisfies ∇w|Ω ∈ R(A). In addition, it is
easy to show that T is self-adjoint.

By construction of the appearing operators the following factorization
can be shown as it is done in [55].

Lemma 3.1.4. Let A, T be defined as above. Then:

Λ0 −Λ = A∗T A. (3.10)

Proof. The weak formulation for the solution u ∈ H1
�(B) of the direct

problem for a given current pattern f ∈ L2
�(∂B) is∫∫

B

(1 + qχΩ)∇u · ∇ψ dx =
∫
∂B

f ψ ds for all ψ ∈ H1
�(B),

while the weak formulation for the solution u0 ∈ H1
�(B) of the back-

ground direct problem is (3.1). By subtraction we obtain∫∫
B

(1 + qχΩ)∇(u0 − u) · ∇ψ dx =
∫∫
Ω

q∇u0 · ∇ψ dx for all ψ ∈ H1
�(B).

From this representation we observe that (Λ0 −Λ) f = GA f , where the
operator G : L2(Ω, Rd)→ L2

�(∂B) maps h to w|∂B, and w ∈ H1
�(B) solves

(3.8). This newly introduced operator G can now be decomposed as fol-
lows. We rewrite (3.8) to obtain∫∫

B

∇w · ∇ψ dx =
∫∫
Ω

q(h−∇w) · ∇ψ dx for all ψ ∈ H1
�(B).
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-

-
?

6

L2
�(∂B)

L2(Ω, Rd)

L2
�(∂B)

L2(Ω, Rd)

Λ−Λ0

T

A∗A

Figure 3.1: Diagram of operators and spaces for the factorization (3.10)

From this representation it is clear that the composition G = A∗T holds,
which completes the proof.

Figure 3.1 illustrates this new factorization schematically. Moreover,
this factorization can be used to derive a new version of the Factorization
method as it is done in [55]. This derivation is based on the coercivity
of T (or of −T , respectively) which follows immediately from Lemma

3.2.1. This coercivity admits the decomposition |T | = |T |
1
2 |T |

1
2 , where

|T |
1
2 : R(A) → R(A) is boundedly invertible. This result will also be

used in Section 3.3.1.

The main idea of our method to determine the conductivity inside Ω is
to make use of the factorization (3.10). The operators A,A∗ only contain
information about the inclusion’s boundary, hence they are known after
the inclusion has been located. The information about the conductivity
inside Ω lies inside the middle operator T .

In the next section we take a closer look at T and especially its spec-
trum, while afterwards we show how the knowledge about this spectrum
can be used to compute the conductivity contrast q.
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3.2 The Spectrum of the Middle Operator

In this section we show some important properties of the operator T and
its spectrum σ(T ). We start our considerations by a simple example in
which basic properties of the spectrum σ(T ) can be observed.

3.2.1 A Radially Symmetric Example

We assume that B is the unit disc in R2 and the inclusion Ω is a concentric
circle, i.e. Ω = B(0, R) with radius R < 1. The conductivity in B is then
as follows:

γ(x) =

{
1, |x| > R,
1 + q, |x| < R,

and q is a constant such that 1 + q > 0 and q 6= 0. Let h ∈ R(A), i.e.
there is u ∈ H1(Ω) such that h = ∇u and ∆u = 0 in Ω. Now the jump
condition for the normal derivative on ∂Ω in the transmission problem
(3.9) is as follows:

(1 + q) ∂νw|− − ∂νw|+ = q ∂νu on ∂Ω. (3.11)

By separation of variables we can represent u and w in polar coordi-
nates:

u(r, φ) = a0 +
∞

∑
n=1

(an cos(nφ) + bn sin(nφ)) rn, r < R,

w(r, φ) =


c−0 +

∞
∑

n=1
(c−n cos(nφ) + d−n sin(nφ)) rn, r < R,

c+
0 +

∞
∑

n=−∞
n 6=0

(c+
n cos(nφ) + d+

n sin(nφ)) rn, r > R.

The partial derivatives with respect to r are

∂u
∂r

(r, φ) =
∞

∑
n=1

n (an cos(nφ) + bn sin(nφ)) rn−1, r < R,
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∂w
∂r

(r, φ) =


∞
∑

n=1
n (c−n cos(nφ) + d−n sin(nφ)) rn−1, r < R,

∞
∑

n=−∞
n 6=0

n (c+
n cos(nφ) + d+

n sin(nφ)) rn−1, r > R.

First we make use of the homogeneous Neumann boundary condition
∂w
∂r = 0 at ∂B which implies that

∞

∑
n=−∞

n 6=0

n
(
c+

n cos(nφ) + d+
n sin(nφ)

)
= 0 for all φ ∈ [0, 2π) .

From symmetry properties of the trigonometric functions we can deduce
c+
−n = c+

n , d+
−n = −d+

n (n ∈ N) and thus

w(r, φ) =


c−0 +

∞
∑

n=1
(c−n cos(nφ) + d−n sin(nφ)) rn, r < R,

c+
0 +

∞
∑

n=1
(c+

n cos(nφ) + d+
n sin(nφ)) (rn + r−n), r > R.

Now we apply the continuity condition w|+ = w|− at ∂Ω and obtain

c−0 +
∞

∑
n=1

(
c−n cos(nφ) + d−n sin(nφ)

)
Rn

= c+
0 +

∞

∑
n=1

(
c+

n cos(nφ) + d+
n sin(nφ)

)
(Rn + R−n).

By comparison of the coefficients it follows that c−0 = c+
0 , c+

n = Rn

Rn+R−n c−n
and d+

n = Rn

Rn+R−n d−n (n ∈ N). In order to keep our notations simple we
denote c0 := c−0 , cn := c−n , dn := d−n (n ∈ N) and rewrite w as

w(r, φ) =


c0 +

∞
∑

n=1
(cn cos(nφ) + dn sin(nφ)) rn, r < R,

c0 +
∞
∑

n=1

Rn

Rn+R−n (cn cos(nφ) + dn sin(nφ)) (rn + r−n),

r > R.
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The partial derivative of w with respect to r now is

∂w
∂r

(r, φ) =



∞
∑

n=1
n (cn cos(nφ) + dn sin(nφ)) rn−1, r < R,

∞
∑

n=1

nRn

Rn+R−n (cn cos(nφ) + dn sin(nφ)) (rn−1 − r−n−1),

r > R,

and we can apply the transmission condition (3.11) which means that

(1 + q)
∞

∑
n=1

n (cn cos(nφ) + dn sin(nφ)) Rn−1

−
∞

∑
n=1

nRn

Rn + R−n (cn cos(nφ) + dn sin(nφ)) (Rn−1 − R−n−1)

= q
∞

∑
n=1

n (an cos(nφ) + bn sin(nφ)) Rn−1.

For the coefficients we deduce

(1 + q)n cnRn−1 − nRn

Rn + R−n cn(Rn−1 − R−n−1) = q n anRn−1,

(1 + q)n dnRn−1 − nRn

Rn + R−n dn(Rn−1 − R−n−1) = q n bnRn−1,

and with a simple computation we obtain for n ∈ N

cn =
q(R2n + 1)

2 + q(R2n + 1)
an, dn =

q(R2n + 1)
2 + q(R2n + 1)

bn.

Now we observe that the auxiliary operator T̃ that maps ∇u to ∇w
has an eigensystem {ηn, ψn : n ∈ N} with eigenvalues

ηn =
q(R2n + 1)

2 + q(R2n + 1)

converging to q
2+q as n tends to infinity with corresponding eigenfunc-

tions
ψ

(1)
n (r, φ) = cos(nφ)rn, ψ

(2)
n (r, φ) = sin(nφ)rn.
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Remembering that the operator T itself was defined as T = q(I − T̃ )
(compare page 64) we realize that T also has an eigensystem with the
very same eigenfunctions ψ

(1)
n , ψ

(2)
n (n ∈ N). The eigenvalues are

λn = q(1− ηn) =
2q

2 + q (R2n + 1)
,

and they converge towards λ∗ := 2q
2+q as n tends to infinity.

During the next section we will show that also for arbitrary shapes of
B and Ω the eigenvalues of T form a convergent sequence and that the
spectrum of T consists only of this sequence of eigenvalues λn and its
limit point λ∗. Furthermore, these considerations lead to the supposition
that a representation T = λ∗ I + K with a compact operator K holds and
thus that T is a Fredholm operator. This Fredholm property will also be
proven in the following section.

3.2.2 Constant Conductivity Contrast

Returning to the more general case, i.e. B and Ω satisfy the assumptions
from Section 3.1, we assume again that the conductivity is such that γ =
1 + qχΩ, where q 6= 0 is real-valued constant and 1 + q > 0. We start our
considerations by giving bounds for σ(T ).

Lemma 3.2.1. If λ ∈ σ(T ) then λ ≥ q
1+q and λ < q.

Proof. Since T is a bounded self-adjoint operator, σ(T ) is a compact set
in R. Furthermore, it is a well-known fact that

σ(T ) ⊂
{
〈T h, h〉 : h ∈ L2(Ω, Rd) ‖h‖ = 1

}
.

For the upper bound we use the weak formulation (3.8) and obtain for
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h ∈ L2(Ω, Rd) with ‖h‖ = 1

〈T h, h〉 =
∫∫
Ω

q (h−∇w) · h dx

=
∫∫
Ω

q |h|2 dx−
∫∫
Ω

q (∇w · h) dx

= q−
∫∫
B

(1 + qχΩ) |∇w|2 dx < q.

Equality would imply that ∇w ≡ 0 in B from which we can easily con-
clude that h = 0, in contradiction to ‖h‖ = 1. Now it remains to show
the lower bound where we again assume ‖h‖ = 1. Using (3.8) we obtain

〈T h, h〉 =
∫∫
Ω

q (h−∇w) · h dx

=
∫∫
Ω

q |h−∇w|2 dx +
∫∫
Ω

q (h−∇w) · ∇w dx

=
∫∫
Ω

q |h−∇w|2 dx +
∫∫
B

|∇w|2 dx

≥
∫∫
Ω

(
q |h|2 − 2q (h · ∇w) + (1 + q) |∇w|2

)
dx

=
∫∫
Ω

∣∣∣∣∣√1 + q∇w− q√
1 + q

h

∣∣∣∣∣
2

+
q

1 + q
|h|2

 dx ≥ q
1 + q

.

Remark 3.2.2. Note that the assertion of Lemma 3.2.1 holds for both q >
0 and q < 0 and in particular that q

1+q < q holds independently of the
sign of q. If q > 0, then T is coercive and σ(T ) lies on the positive real
axis, while in the case q < 0 the operator−T is coercive and σ(T ) is part
of the negative real axis.

From now on we restrict T to T : R(A) → R(A). Soon we will
see that T is closely related to certain boundary integral operators. We



72 Determination of the Conductivity

therefore proceed by investigating some properties of these boundary
integral operators. For a detailed introduction into boundary integral
equation methods we refer to [66], [19] or [20].

Let N be the Neumann function that is defined in (2.11) and let SL :

H−
1
2� (∂Ω)→ H1(B) be the single layer potential. i.e.

SLϕ(x) =
∫

∂Ω

N(x, y)ϕ(y)ds(y), x ∈ B \ ∂Ω.

In the following lemma we characterize the range of SL and show that
on this range it is a boundedly invertible operator. In the corresponding

proof the double layer potential DL : H
1
2� (∂B)→ H1(B \ ∂Ω),

DLϕ(x) =
∫

∂Ω

∂ν(y)N(x, y)ϕ(y)ds(y), x ∈ B \ ∂Ω

will also appear. The assumption ∆w = 0 for w ∈ H1(B \ ∂Ω) has to be
understood in the sense of Remark 3.2.4.

Lemma 3.2.3. Consider the space

X :=
{

w ∈ H1
�(B) : ∆w = 0 in B \ ∂Ω, ∂νw = 0 on ∂B

}
,

equipped with the H1-norm, then SL is a bijective operator from H−
1
2� (∂Ω) onto

X and the inverse SL−1 : X → H−
1
2� (∂Ω) is bounded.

Proof. Let w = SLϕ for ϕ ∈ H−
1
2� (∂Ω), then ∆w = 0 in B \ ∂Ω. Using

the properties of the Neumann function (see (2.11)) we obtain for ϕ ∈
C2
�(∂Ω) that

∂νSLϕ|∂B =
∫

∂Ω

∂νN(·, y)ϕ(y) ds(y)

∣∣∣∣∣∣
∂B

= |∂B|−1
∫

∂Ω

ϕ ds = 0.

From the denseness of C2
�(∂Ω) in H−

1
2� (∂Ω) and continuity of the trace

operator we obtain that SLϕ has zero Neumann values on ∂B for all ϕ ∈
H−

1
2� (∂B).
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Furthermore, for ϕ ∈ C2
�(∂B) we obtain∫

∂B

SLϕ ds =
∫
∂B

∫
∂Ω

N(x, y)ϕ(y) ds(y) ds(x)

=
∫

∂Ω

ϕ(y)
∫
∂B

N(x, y) ds(x) ds(y) = 0,

and by the same denseness argument as before it follows that
∫
∂B

SLϕ ds =

0 for all ϕ ∈ H−
1
2� (∂Ω). We have thus shown thatR(SL) ⊂ X.

Assume that SLϕ = 0 for some ϕ ∈ H−
1
2� (∂Ω). Then the jump con-

ditions on ∂Ω (see e.g. Theorem 6.11 in [66]) imply ϕ = ∂νSLϕ|− −
∂νSLϕ|+ = 0.

Now let u ∈ X, x ∈ B \ ∂Ω, then we use the third Green identity in the
form of Theorem 6.10 in [66] to show

SL
(

∂νu|− − ∂νu|+
)
(x)

=SL
(

∂νu|− − ∂νu|+
)
(x)− DL

(
u|− − u|+

)
(x)

=u(x),

and hence u = SLϕ with ϕ = ∂νu|− − ∂νu|+ ∈ H−
1
2� (∂Ω). This shows

that SL is an isomorphism between the spaces H−
1
2� (∂Ω) and X.

In addition, X is a closed subspace of H1(B), which follows directily
from the variational formulation for X (see Remark 3.2.4), and the open

mapping theorem asserts that SL−1 : X → H−
1
2� (∂Ω) is bounded.

Remark 3.2.4. A variational formulation for elements of the space X from
Lemma 3.2.3 is given by

X =

w ∈ H1
�(B) :

∫∫
Ω

∇w · ∇ψ dx = 0 ∀ψ ∈ H1
0(Ω),

∫∫
B\Ω

∇w · ∇ψ dx = 0 ∀ψ ∈ H1(B \Ω) : ψ|∂Ω = 0

 .



74 Determination of the Conductivity

We proceed by considering boundary integral operators and define S :
C2(∂Ω)→ L2(∂Ω) by

Sϕ(x) =
∫

∂Ω

N(x, y)ϕ(y)ds(y), x ∈ ∂Ω.

Theorem 7.1 in [66] asserts that there is a bounded extension of S to
H−

1
2 (∂Ω) and that the range of S is contained in H

1
2 (∂Ω). In addition, S

is a self-adjoint operator (compare Chapter 7 of [66]).
Furthermore, we have to define D : C2(∂Ω)→ L2(∂Ω) by

Dϕ(x) =
∫

∂Ω

∂νy N(x, y)ϕ(y)ds(y), x ∈ ∂Ω.

Theorem 7.1 in [66] asserts that D has a bounded extension to H
1
2 (∂Ω)

and that the range of D is contained in H
1
2 (∂Ω). Since we assumed the

inclusion boundary ∂Ω to be of class C2, we can apply Theorem 2.14
from [49] to show that D maps continuously from H

1
2 (∂Ω) into H1(∂Ω).

Hence D : H
1
2 (∂Ω)→ H

1
2 (∂Ω) is a compact operator.

Let us consider its adjoint D∗ : H−
1
2 (∂Ω) → H−

1
2 (∂Ω) which is for

ϕ ∈ C2(∂Ω) given by

D∗ϕ(x) =
∫

∂Ω

∂νx N(x, y)ϕ(y)ds(y), x ∈ ∂Ω.

It can easily be shown that D∗ is also well-defined as D∗ : H−
1
2� (∂Ω)→

H−
1
2� (∂Ω): let ϕ ∈ H−

1
2� (∂Ω), then we have

〈D∗ϕ, 1〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

= 〈ϕ, D1〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

.

From the jump relations (see Theorem 6.11 in [66]) we obtain D1 = 1
2 +

DL1|−. Using the second Green identity yields that DL1|− = 0 which
implies D1 = const and thus that 〈D∗ϕ, 1〉 = 0.

Furthermore, since we assumed Ω to be a domain of class C2, D∗ is a
compact operator, hence its spectrum consists at most of a sequence of
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eigenvalues and zero. In the following lemma we give bounds for the
spectrum of D∗. The proof is based on the considerations in [59] where
the derivations are carried out for the Dirichlet problem instead of the
present Neumann problem. In addition, in [59] D∗ is considered a map
from the space of continuous functions on ∂Ω to itself, while we extend

the assertion to H−
1
2� (∂Ω).

Lemma 3.2.5. All eigenvalues of D∗ : H−
1
2� (∂Ω)→ H−

1
2� (∂Ω) have absolute

value less than or equal to 1
2 . Furthermore, 1

2 is not an eigenvalue of D∗ but − 1
2

is.

Proof. Define (·, ·) : H−
1
2� (∂Ω)× H−

1
2� (∂Ω)→ R by

(ϕ, ψ) = 〈ϕ, Sψ〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

.

(·, ·) is a well-defined bilinear form, since the boundary integral operator

S maps from H−
1
2� (∂Ω) to H

1
2 (∂Ω). It is symmetric since S is self-adjoint.

Furthermore, we show that (·, ·) is positive definite on H−
1
2� (∂Ω) using

the first Green identity:

(ϕ, ϕ) = 〈ϕ, Sψ〉 =
〈

∂ν(SLϕ)|− − ∂ν(SLϕ)|+ , Sψ
〉

=
∫∫
Ω

∇(SLϕ) · ∇(SLψ) dx +
∫∫

B\Ω

∇(SLϕ) · ∇(SLψ) dx ≥ 0,

and from this representation it is easy to see that (ϕ, ϕ) = 0 implies
∇SLϕ = 0 in B \ ∂Ω and thus ϕ = 0.

We now show that D∗ is symmetric with respect to this newly defined
scalar product:

(D∗ϕ, ψ) =
1
2
〈

∂ν(SLϕ)|− + ∂ν(SLϕ)|+ , Sψ
〉

=
1
2

∫∫
Ω

∇(SLϕ) · ∇(SLψ) dx− 1
2

∫∫
B\Ω

∇(SLϕ) · ∇(SLψ) dx.

This expression is symmetric with respect to ϕ and ψ, hence (D∗ϕ, ψ) =
(ϕ, D∗ψ). Altogether we have shown that σ(D∗) is a compact subset of
R.
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Now define R, R̂ : X → R≥0 by

R(u) =
∫∫
Ω

|∇u|2 dx, R̂(u) =
∫∫

B\Ω

|∇u|2 dx,

where the space X is defined as in Lemma 3.2.3. Using the considerations
from above we now derive a connection between σ(D∗) and R, R̂:

sup{σ(D∗)} = sup
{

(D∗ϕ, ϕ)
(ϕ, ϕ)

: ϕ ∈ H−
1
2� (∂Ω), ϕ 6= 0

}
= sup

{
1
2

R(SLϕ)− R̂(SLϕ)
R(SLϕ) + R̂(SLϕ)

: ϕ ∈ H−
1
2� (∂Ω), ϕ 6= 0

}
Since the range of SL coincides with X by Lemma 3.2.3, this implies that

sup{σ(D∗)} = sup
{

1
2

R(u)− R̂(u)
R(u) + R̂(u)

: u ∈ X, u 6= 0
}

,

and in the same way it can be shown that

inf{σ(D∗)} = inf
{

1
2

R(u)− R̂(u)
R(u) + R̂(u)

: u ∈ X, u 6= 0
}

.

From these bounds we conclude that σ(D∗) ⊂
[
− 1

2 , 1
2

]
. Assume that

µ = 1
2 is an eigenvalue of D∗. Then there is u ∈ X, u 6= 0 such that

R̂(u) = 0, which implies that∇u ≡ 0 in B \Ω. We know that u ∈ H1
�(B),

hence u ≡ 0 in B \Ω, and since u is continuous across ∂Ω we deduce that
u|− = 0. Uniqueness of the Dirichlet problem for the Laplace equation
in Ω now implies u ≡ 0 in Ω, a contradiction to the assumption.

Let u ∈ H1(B) be such that u ≡ 1 in Ω and ∂νu = 0 ob ∂B. Such an u
exists if there is a weak solution ũ ∈ H1(B \Ω) to ∆ũ = 0 in B \Ω, ũ|∂Ω =
1, ∂νũ|∂B = 0. The corresponding homogeneous problem is almost the
same but with a zero Dirichlet boundary condition at ∂Ω. Hence its weak
formulation is as follows: find ũ0 ∈ H1(B \Ω) that solves∫∫

B\Ω

∇ũ0 · ∇ψ = 0 for all ψ ∈ H1(B \Ω) : ψ|∂Ω = 0 (3.12)
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and ũ0|∂Ω = 0. Choosing ψ = ũ0 in (3.12) yields ũ0 = const in B \Ω, and
the homogeneous Dirichlet boundary condition implies ũ0 = 0. This
shows that the homogeneous mixed boundary value problem (3.12) has
only the trivial solution, and Theorem 4.10 in [66] asserts that there is a
unique ũ as required and thus that there is u ∈ H1(B) as stated above.
Now we define û ∈ H1(B) by û = u + C, where the constant C is chosen

such that û|∂B ∈ H
1
2� (∂B) and observe that û|Ω ≡ 1 + C and that û ∈ X.

Now for û we deduce that R(û)−R̂(û)
R(û)+R̂(û)

= −1, and using Lemma 3.2.3

yields that there is ϕ ∈ H−
1
2� (∂Ω) such that SLϕ = û. In addition, ϕ is an

eigenfunction of D∗ for the eigenvalue µ = − 1
2 , which follows immedi-

ately from the jump conditions for the single layer potential.

We proceed by deriving a connection between T and D∗ in order to
characterize the spectrum of T . In Lemma 3.2.1 we have already shown
that σ(T ) ⊂

[
q

1+q , q
)

which allows us to restrict our considerations to
this interval.

Theorem 3.2.6. λ is an eigenvalue of T if and only if µ = − 2+q
2q + 1

λ is an

eigenvalue of D∗ and µ 6= − 1
2 .

Proof. “=⇒”: Let λ ∈
[

q
1+q , q

)
be an eigenvalue of T , i.e. there exists

h ∈ R(A), h 6= 0 such that T h = λh and h = ∇u for some u ∈ H1(Ω)
satisfying ∆u = 0 in Ω. From the definition of T we obtain

q(∇u−∇w) = λ∇u in Ω, (3.13)

where w is the weak solution of the transmission boundary value prob-
lem (3.9). From (3.13) we obtain (q− λ)∇u = q∇w and thus u = q

q−λ w +
c with some constant c (λ 6= q by assumption). The transmission condi-
tion in (3.9) can now be written in terms of w:(

1 + q− q2

(q− λ)

)
︸ ︷︷ ︸

:=ρ

∂νw|− − ∂νw|+ = 0 on ∂Ω. (3.14)
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Since w ∈ X, w can be represented by a single layer potential w = SLϕ

with a density ϕ ∈ H−
1
2� (∂Ω). Using the jump relations for the single

layer potential and (3.14), leads to the the integral equation

ρ

(
1
2

ϕ + D∗ϕ

)
−
(
−1

2
ϕ + D∗ϕ

)
= 0

on ∂Ω which can be simplified to

1
2

ρ + 1
ρ− 1

ϕ + D∗ϕ = 0, (3.15)

since ρ = 1 would imply λ = 0, a contradiction to σ(T ) ⊂
[

q
1+q , q

)
.

Equation (3.15) has a nontrivial solution if and only if µ := − 1
2

ρ+1
ρ−1 is an

eigenvalue of D∗. It remains to show that − 1
2

ρ+1
ρ−1 = − 2+q

2q + 1
λ which is

a simple computation. In addition, µ 6= − 1
2 since in this case we have

λ = q, another contradiction to σ(T ) ⊂
[

q
1+q , q

)
.

“⇐=”: Now let µ ∈
(
− 1

2 , 1
2

)
be an eigenvalue of D∗. Then the integral

equation
−µϕ + D∗ϕ = 0

has a nontrivial solution ϕ ∈ H−
1
2� (∂Ω), and the single layer ansatz w =

SLϕ provides w ∈ H1
�(B) such that ∆w = 0 in B \ ∂Ω, and ∂νw = 0 on

∂B. Defining ρ := 2µ−1
2µ+1 , we realize that (3.14) holds. Define λ := q(1−ρ)

(1−ρ)+q

and u := q
q−λ w + c with a constant c, then w solves (3.9) with∇u instead

of h, and we obtain q(∇u−∇w) = λ∇u in Ω. Since µ 6= − 1
2 we know

from the jump relations that ∂νw|− 6= 0 and thus w, u are non-constant
in Ω.

Remark 3.2.7. In our proof we had to exclude µ = − 1
2 which corre-

sponds to λ = q, the upper bound for σ(T ) from Lemma 3.2.1 that is not
attained by σ(T ). Since 1

2 is not an eigenvalue of D∗ we now even know
from the correspondence µ = − 2+q

2q + 1
λ that q

1+q is no eigenvalue of T .
This can also be observed in the example from Section 3.2.1 where the



3.2 The Spectrum of the Middle Operator 79

eigenvalues are λn = 2q
2+q(R2n+1) (n ∈ N). Since n = 0 is excluded, there

is no eigenvalue equal to q
q+1 .

In the following corollary and theorem we use this correspondence be-
tween T and the integral operator D∗ and similar techniques as in the
proof of Theorem 3.2.6 to obtain further results about the structure of
σ(T ). Afterwards, in Theorem 3.2.10, we will show that T is a Fred-
holm operator which yields, together with the spectral theorem for com-
pact, self-adjoint operators, an explicit characterization of σ(T ) which is
a stronger result than the following two assertions.

Corollary 3.2.8. If there is an infinite sequence of eigenvalues λn of T , then
they converge towards λ∗ := 2q

2+q .

Proof. Let (λn)n∈N be a sequence of eigenvalues of T . Define µn :=
− 2+q

2q + 1
λn

(n ∈ N). Then Theorem 3.2.6 states that (µn)n∈N is a se-
quence of eigenvalues of D∗. Since D∗ is compact, the only possible ac-
cumulation point of its eigenvalues is zero, which implies that λn → 2q

2+q
(n→ ∞).

Theorem 3.2.9. If λ ∈ σ(T ), then λ is an eigenvalue of T or λ = λ∗, where
λ∗ = 2q

2+q .

Proof. Assume that λ ∈
(

q
1+q , q

)
with λ 6= λ∗ is not an eigenvalue of T .

Then T − λI : R(A)→ R(A) is one-to-one. If we can show that T − λI
is also onto, then we know by the open mapping theorem that it has a
bounded inverse and thus that λ /∈ σ(T ).

In order to show surjectivity we assume that g ∈ R(A), i.e. g = ∇v
for some v ∈ H1(Ω) such that ∆v = 0 in Ω, and we construct h ∈ R(A)
satisfying (T − λI)h = g. To this end we first consider an equivalent

boundary integral equation: find ϕ ∈ H−
1
2� (∂Ω) that solves

− µϕ + D∗ϕ = − 1
λ

∂νv|− (3.16)
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with µ := − 2+q
2q + 1

λ . Since λ is neither an eigenvalue of T nor equal to
λ∗ we deduce from Theorem 3.2.6 that µ 6= 0 and µ is not an eigenvalue

of D∗ and thus that (3.16) has a unique solution ϕ ∈ H−
1
2� (∂Ω). Using

this solution we now define w ∈ X by w := SLϕ, where X denotes the
space defined in Lemma 3.2.3. Using the jump conditions for the single
layer potential we observe after a short computation that w satisfies the
following jump condition:(

1 + q− q2

q− λ

)
∂νw|− − ∂νw|+ =

q
q− λ

∂νv|− ,

which can be converted to

(1 + q) ∂νw|− − ∂νw|+ =
q2

q− λ
∂νw|− +

q
q− λ

∂νv|− . (3.17)

Now we define h ∈ R(A) by h := 1
q−λ∇v + q

q−λ∇w, and by comparison
of (3.17) with the jump condition in (3.9) we obtain that T h = q(h−∇w)
and thus that

(T − λI) h = (q− λ)h− q∇w = ∇v + q∇w− q∇w = ∇v.

This shows that (T − λI)h = g, and the proof is complete.

The next theorem states that T is a Fredholm operator with index zero.

Theorem 3.2.10. Let λ∗ = 2q
2+q , then the operator K : R(A)→ R(A) defined

by K := T − λ∗ I is compact.

Proof. Let∇u ∈ R(A), then K∇u = q (∇u−∇w)− 2q
2+q∇u = q2

2+q∇u−
q∇w, and w ∈ H1

�(B) is the unique solution to (3.8) for h = ∇u. Since q is

constant we can define v ∈ H1(Ω) with ∇v ∈ R(A) by v := q2

2+q u− qw.
Our aim is to decompose the map K : ∇u 7→ ∇v into several bounded

operators out of which one is compact and start with (3.8):∫∫
B

(1 + qχΩ)∇w · ∇ψdx =
∫∫
Ω

q∇u · ∇ψ dx for all ψ ∈ H1
�(B),
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and obtain using q∇u = 2+q
q ∇v + (2 + q)∇w that

∫∫
B\Ω

∇w · ∇ψ dx +
∫∫
Ω

∇w · ∇ψ dx +
∫∫
Ω

q∇w · ∇ψ dx

=
∫∫
Ω

2 + q
q
∇v · ∇ψ dx +

∫∫
Ω

(2 + q)∇w · ∇ψ dx,

which can be transformed to∫∫
B\Ω

∇w · ∇ψ dx−
∫∫
Ω

∇w · ∇ψ dx =
∫∫
Ω

2 + q
q
∇v · ∇ψ dx (3.18)

for all ψ ∈ H1
�(B). This weak formulation formulation for w and some

given v with ∇v ∈ R(A) corresponds to the transmission problem to
find w ∈ X where the space X is defined in Lemma 3.2.3 and

− ∂νw|+ − ∂νw|− =
2 + q

q
∂νv|− on ∂Ω.

As already done in the preceding proofs, we represent w by a single layer

potential w = SLϕ with a density ϕ ∈ H−
1
2� (∂Ω) that solves the integral

equation

−
(

1
2

ϕ + D∗ϕ

)
−
(
−1

2
ϕ + D∗ϕ

)
=

2 + q
q

∂νv|− ,

which can be simplified to

−2D∗ϕ =
2 + q

q
∂νv|− .

Now we return to the operator K : R(A) → R(A), ∇u 7→ ∇v and
show that it is a composition of several bounded operators out of which
at least one is compact. Let the space X ⊂ H1(B) be defined as in Lemma
3.2.3. In addition, let the auxiliary operator T̃ : R(A) → X be defined
by ∇u 7→ w, then the considered composition of operators is as follows:
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K : ∇u T̃7−→ w SL−1
7−→ ϕ

D∗7−→ −2 + q
2q

∂νv|− 7−→∇v.

The map T̃ is a bounded operator. The single layer potential SL :

H−
1
2� (∂Ω) → X is bounded, bijective and has a bounded inverse SL−1 :

X → H−
1
2� (∂Ω) (see Lemma 3.2.3), thus the map w 7→ ϕ is also bounded.

Since ∂Ω is of class C2, D∗ : H−
1
2� (∂Ω) → H−

1
2� (∂Ω) is a compact opera-

tor. The operator that maps the Neumann boundary value 2+q
2q ∂νv|− ∈

H−
1
2� (∂Ω) to the corresponding weak solution v ∈ H1

�(Ω) of the Laplace
equation in Ω as well as the weak derivative v 7→ ∇v ∈ R(A) are again
bounded, which completes the proof.

The last conclusions in the proof show in particular that K is one-to-one
because it is a composition of injective operators. Since T is self-adjoint
we conclude that K is also self-adjoint. The spectral theorem for compact,
self-adjoint operators applied to K yields the following corollary.

Corollary 3.2.11. There is an orthonormal system of eigenfunctions of T in
R(A) with corresponding eigenvalues λn (n ∈ N) converging towards λ∗.
The spectrum σ(T ) consists of these eigenvalues λn (n ∈ N) and their limit
point λ∗.

As already mentioned above, this result also implies the assertions
from Corollary 3.2.8 and Theorem 3.2.9.

3.2.3 Several Conductivity Contrasts

In the previous section we assumed that there is only one inclusion hav-
ing a constant conductivity. The next further development of our consid-
erations is the case in which there are N inclusions. This problem setting
is formulated in the following assumption.

Assumption 3.2.12. Let Ω1, . . . , ΩN be N separated C2-domains in B, i.e.
Ωi ∩Ωj = ∅ (i, j = 1, . . . , N, i 6= j). Let the conductivity distribution γ
satisfy

γ(x) =

{
1 + qj, x ∈ Ωj (j = 1, . . . , N),
1, otherwise.
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The constants qj are such that 1 + qj > 0 for all j = 1, . . . , N. By Ω we
denote the union Ω = Ω1 ∪ · · · ∪ΩN , while we denote γ− 1|Ω by q. We
also assume without loss of generality that the conductivity contrasts are
mutually different from each other since for qj = qk we can subsume Ωj

and Ωk under one inclusion. As before, B \Ω is assumed to be connected.

The operators of our factorization of Λ0 − Λ now have the following
mapping properties:

A : L2
�(∂B)→ L2(Ω1, R2)× · · · × L2(ΩN , R2)

f 7→
(
∇u0|Ω1

, . . . , ∇u0|ΩN

)>
,

where u0 ∈ H1
�(B) solves the background direct problem (3.2). For the

adjoint A∗ we obtain

A∗ : L2(Ω1, R2)× · · · × L2(ΩN , R2)→ L2
�(∂B),

(h1, . . . , hN)> 7→ v|∂B ,

and v ∈ H1
�(B) is the solution to

∫∫
B

∇v · ∇ψ dx =
N

∑
j=1

∫∫
Ωj

hj · ∇ψ dx for all ψ ∈ H1
�(B).

For the middle operator we obtain

T :L2(Ω1, R2)× · · · × L2(ΩN , R2)→ L2(Ω1, R2)× · · · × L2(ΩN , R2)

(h1, . . . , hN)> 7→
(

q1

(
h1 − ∇w|Ω1

)
, . . . , qN

(
hN − ∇w|ΩN

))>
,

where w ∈ H1
�(B) solves

∫∫
B

∇w · ∇ψ dx +
N

∑
j=1

∫∫
Ωj

qj∇w · ∇ψ dx =
N

∑
j=1

∫∫
Ωj

qjhj · ∇ψ dx (3.19)

for all ψ ∈ H1
�(B). As in the previous section we start our considerations

by giving bounds for σ(T ) and adapt Lemma 3.2.1 to the present case.
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Lemma 3.2.13. If λ ∈ σ(T ), then λ ≥ qmin
1+qmin

and λ < qmax, where qmin =
min {q1, . . . , qN} and qmax = max {q1, . . . , qN}.

Proof. Analogously to the proof of Lemma 3.2.1 we show for λ ∈ σ(T )
that λ < qmax and λ ≥ min

{ qj
1+qj

: j = 1, . . . , N
}

. It remains to show

that
qj

1+qj
≥ qmin

1+qmin
for j = 1, . . . , N, which can be obtained from the

equality
qj

1+qj
= 1− 1

1+qj
.

Remark 3.2.14. If we assume that all the conductivity contrasts qj (j =
1, . . . , N) are positive, then Lemma 3.2.13 yields injectivity of the operator
T . The same holds if q1, . . . , qN are negative, respectively. However, T
is injective even if the contrasts qj (j = 1, . . . , N) have different signs.
This assertion correspronds to Lemma 2.1.5 but for the new factorization
(3.10) instead of (2.5). However, the proof for the new factorization (3.10)
is more elementary:

Assume that there is h ∈ L2(Ω, Rd) such that T h = 0, then, since none
of the qj is zero, we have that ∇w = h in the whole of Ω. Using this
equality, (3.19) reduces to∫∫

B

∇w · ∇ψ dx = 0 for all ψ ∈ H1
�(B).

Setting ψ = w and yields that w = const in B and thus h = 0 in Ω.

It is easy to check that the assertions of Lemma 3.1.1 hold here as well,
and in particular thatR(A) has the representation (3.6).

Furthermore, we now restrict T to T : R(A) → R(A) as we did in
Section 3.2.2 in order to derive further results about σ(T ) in the case of
N different conductivity contrasts.

We start by formulating an assertion corresponding to Theorem 3.2.6
for which we have to introduce some notations for the appearing bound-

ary integral operators. The single layer potential SLj : H−
1
2� (∂Ωj) →

H1
�(B) that corresponds to the particular inclusion boundary ∂Ωj is for

j = 1, . . . , N defined as the usual single layer potential SL but restricted
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to ∂Ωj:

SLj ϕ(x) =
∫

∂Ωj

N(x, y)ϕ(y) ds(y) (x ∈ B \ ∂Ωj).

The boundary integral operators D∗j : H−
1
2� (∂Ωj) → H

1
2� (∂Ωj) (j =

1, . . . , N) are for densities ϕ ∈ C2
�(∂Ωj) defined by

D∗j ϕj(x) =
∫

∂Ωj

∂ν(x)N(x, y)ϕj(y)ds(y) (x ∈ ∂Ωj),

and as in Section 3.2.2 we use their bounded extensions to H−
1
2� (∂Ωj).

The operators D∗j→k (j, k = 1, . . . , N, j 6= k) are defined by the same
integral, but evaluated on ∂Ωk instead of ∂Ωj. This means in particular
that D∗j→k is the normal derivative of SLj at the boundary ∂Ωk.

Theorem 3.2.15. Let Ω1, . . . , ΩN be the inclusions with corresponding con-
ductivity contrasts q1, . . . , qN . Then λ ∈ R is an eigenvalue of T if and only
if there are µ1, . . . , µN ∈ R such that there is a solution 0 6= (ϕ1, . . . , ϕN)> ∈
H−

1
2� (∂Ω1)× · · · × H−

1
2� (∂ΩN) to the system of integral equations

(
−µj I + D∗j

)
ϕj +

N

∑
k=1
k 6=j

D∗k→j ϕk = 0, (j = 1, . . . , N), (3.20)

such that the term
2qj

2µjqj+2+qj
is identical for all j = 1, . . . , N. In this case

λ =
2qj

2µjqj+2+qj
(j = 1, . . . , N).

Proof. “=⇒”: Let λ be an eigenvalue of T , i.e. there is ∇u ∈ R(A) such
that T ∇u|Ωj

= qj (∇u−∇w)|Ωj
= λ ∇u|Ωj

for all j = 1, . . . , N, and w
solves (3.19) with h = ∇u. We distinguish between two different cases.

Case 1: λ 6= qj for all j = 1, . . . , N. In this case we proceed as in the
proof of Theorem 3.2.6 and express u in terms of w by u|Ωj

=
qj

qj−λ w|Ωj
+
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cj (j = 1, . . . , N) and obtain the transmission conditions(
1 + qj −

q2
j

qj − λ

)
︸ ︷︷ ︸

:=ρj

∂νw|− − ∂νw|+ = 0 on ∂Ωj (j = 1, . . . , N). (3.21)

Hence w can be represented by a sum of single layer potentials w =
N
∑

k=1
SLk ϕk with densities ϕk ∈ H−

1
2� (∂Ωk) (k = 1, . . . , N). Using the jump

relations for the single layer potential the normal derivatives of w on ∂Ωj
are as follows:

∂νw|− =
1
2

ϕj + D∗j ϕj +
N

∑
k=1
k 6=j

D∗k→j ϕk on ∂Ωj,

∂νw|+ = −1
2

ϕj + D∗j ϕj +
N

∑
k=1
k 6=j

D∗k→j ϕk on ∂Ωj.

The transmission condition (3.21) implies that the densities ϕ1, . . . , ϕN
solve the system of integral equations

1
2

ρj + 1
ρj − 1︸ ︷︷ ︸
:=−µj

ϕj + D∗j ϕj +
N

∑
k=1
k 6=j

D∗k→j ϕk = 0 on ∂Ωj (j = 1, . . . , N),

since ρj = 1 would imply λ = 0, a contradiction to injectivity of T (see
Remark 3.2.14).

Case 2: λ = ql for some l ∈ {1, . . . , N}. Then ∇w|Ωl
= 0 and u|Ωj

=
qj

qj−λ w|Ωj
+ cj for j 6= l as in case 1. The potential w now has to satisfy the

condition (3.21) on the boundary of each inclusion Ωj except for Ωl and
∂νw|− = 0 on ∂Ωl . As in the first case we can represent w by the sum of

single layer potentials w =
N
∑

k=1
SLk ϕk, and the densities ϕ1, . . . , ϕN solve

(
−µj I + D∗j

)
ϕj +

N

∑
k=1
k 6=j

D∗k→j ϕk = 0 on ∂Ωj (j = 1, . . . , N),
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where for j 6= l the parameter µj is defined as in the first case and µl =
− 1

2 .

In both cases a simple computation shows that λ =
2qj

2µjqj+2+qj
(j =

1, . . . , N) and thus that the term
2qj

2µjqj+2+qj
is independent of j. Further-

more, we know that (ϕ1, . . . , ϕN)> 6= (0, . . . , 0)> holds since otherwise
∇w = ∇u = 0.

“⇐=”: Let now µ1, . . . , µN ∈ R such that there is a nontrivial solution

to (3.20) and the term
2qj

2µjqj+2+qj
is identical for all j = 1, . . . , N. As in the

first part we distinguish between two different cases. Case 1: µj 6= − 1
2 for

all j = 1, . . . , N. Define w ∈ H1
�(B) by w =

N
∑

k=1
SLk ϕk, then w solves ∆w =

0 in B \ ∂Ω, ∂νw = 0 on ∂B and the jump condition (3.21) with ρj =
2µj−1
2µj+1

for all j = 1, . . . , N. By assumption we can define λ =
2qj

2µjqj+2+qj
for some

j ∈ {1, . . . , N} which is independent of the choice of j, and u ∈ H1(Ω)
can be defined by u|Ωj

=
qj

qj−λ w|Ωj
since λ 6= qj (j = 1, . . . , N). Now we

observe that ∇u ∈ R(A), T ∇u = λ∇u and u is non-constant.
Case 2: µl = − 1

2 for some l ∈ {1, . . . , N}. Now by assumption we

can define λ := ql . As before define w =
N
∑

k=1
SLk ϕk, then w ∈ H1

�(B)

solves ∆w = 0 in B \ ∂Ω, ∂νw = 0 on ∂B and the jump condition (3.21)

for ρj =
2µj−1
2µj+1 and j 6= l. Furthermore, ∂νw|− = 0 on ∂Ωl which implies

∇w|Ωl
= 0. We define u ∈ H1(Ω) by u|Ωj

=
qj

qj−λ w|Ωj
(j = 1, . . . , N, j 6=

l) and u|Ωl
such that ∆u = 0 in Ωl and ∂νu = − 1

ql
∂νw|+ on ∂Ωl . Now

we observe that ∇u ∈ R(A), u is non-constant on Ω and T ∇u = λ∇u,
which completes the proof.

Remark 3.2.16. In Assumption 3.2.12 it is required that the conductivity
contrasts qj (j = 1, . . . , N) are mutually disjoint from each other. From

the correspondence λ =
2qj

2µjqj+2+qj
(j = 1, . . . , N) it is easy to see that

µi = µj is equivalent to qi = qj. In order to avoid equality of conduc-
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tivity contrasts strictly, the claim µi 6= µj for all i, j = 1, . . . , N such that
i 6= j should be included in the formulation of Theorem 3.2.15, while the
present formulation of the theorem admits equality of conductivity con-
trasts. However, in order to keep the assertion simple we omitted this
additional condition.

We will also present an assertion according to Theorem 3.2.10 in the
case of several inclusions. To this end, the next step is to decouple T
according to the different inclusions, i.e. to find a representation for T of
the type

T =

T
(11) . . . T (1N)

...
. . .

...
T (N1) . . . T (NN)


such that T (ij) : L2(Ωj, Rd) → L2(Ωi, Rd). It is easy to check that T (ii)

is defined by hi 7→ qi (h−∇wi)|Ωi
and that T (ij) for i 6= j is defined

by hj 7→ −qi ∇wj
∣∣
Ωi

. Here, for hj ∈ L2(Ωj, Rd) and j = 1, . . . , N the

potential wj ∈ H1
�(B) is defined as the solution of

∫∫
B

∇wj · ∇ψ dx +
N

∑
k=1

∫∫
Ωk

qk∇wj · ∇ψ dx =
∫∫
Ωj

qjhj · ∇ψ dx (3.22)

for all ψ ∈ H1
�(B) (compare the arguments from Section 2.1.2). The fol-

lowing lemma shows a connection to the previously considered case of
only one inclusion. We therefore define T (i) : L2(Ωi, Rd) → L2(Ωi, Rd)
as the operator T that corresponds to the case of only a single inclusion
Ωi, i.e. T (i) : hi 7→ qi(hi − ∇w̃i|Ωi

), and w̃i ∈ H1
�(B) solves∫∫

B

∇w̃i · ∇ψ dx +
∫∫
Ωi

qi∇w̃i · ∇ψ dx =
∫∫
Ωi

qihi · ∇ψ dx (3.23)

for all ψ ∈ H1
�(B).

Lemma 3.2.17. Let the operators T (ij) and T (i) be defined as above for i, j =
1, . . . , N, then:

(a) for i 6= j the operator T (ij) is compact (i, j = 1, . . . , N),
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(b) the operator S(i) := T (ii) − T (i) is compact (i = 1, . . . , N).

Proof. Part a): The proof of this assertion follows along the same argu-
ments as the proof of Lemma 2.1.8. T (ij) maps hj 7→ −qi ∇wj

∣∣
Ωi

, where

wj is the solution of (3.22). Let Ω̃i ⊂ B be a simply connected C2-domain

such that Ωi ⊂ Ω̃i and Ω̃i ∩Ωj = ∅ for all j 6= i. Then we can decompose

T (ij) into T (ij) = −qiS̃ ◦ Ŝ where Ŝ : L2(Ωj, R2)→ H−
1
2� (∂Ω̃i) maps hj to

the trace ∂νwj
∣∣
∂Ω̃i

. S̃ : H−
1
2� (∂Ω̃i) → L2(Ωi, R2) maps g 7→ ∇v|Ωi

where

v ∈ H1
�(Ω̃i) solves

∆v = 0 in , Ω̃i \ ∂Ωi,

∂νv = g on ∂Ω̃i,
(1 + qi) ∂νv|+ − ∂νv|− = 0 on ∂Ωi

in the weak sense. Both partial operators are bounded and Ŝ is compact
since ∂νw|∂Ω̃i

∈ H
1
2 (∂Ω̃i) (compare the proof of Lemma 2.1.8) which

proves the first assertion.
Part b): The weak formulation for wi is (3.22), while the weak formu-

lation for w̃i corresponding to T (i), i.e. for the case of the only inclusion
Ωi is (3.23). Setting vi := wi − w̃i we deduce that vi solves∫∫

B

∇vi · ∇ψ dx +
∫∫
Ωi

qi∇vi · ∇ψ dx = −
N

∑
k=1
k 6=i

∫∫
Ωk

qk∇wi · ∇ψ dx

for all ψ ∈ H1
�(B). The map S(i) may now be decomposed as follows:

h|Ωi
7→ ∇wi|Ω\Ωi

7→ ∇vi|Ωi
7→ −qi ∇vi|Ωi

,

where we can show analogously to part a) that the first map in this de-
composition is compact. Furthermore, it is easy to see that the other maps
are bounded.

Lemma 3.2.17 now yields the following representation:

T =

T
(1) 0

. . .
0 T (N)

+ K,
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with a compact and self-adjoint operator K. This representation is similar
to Corollary 2.1.9 but for the new factorization (3.10) instead of (2.5).

Furthermore, this representation can now be used to investigate the
spectrum of T as it is done in the following theorem.

Theorem 3.2.18. In the case of N inclusions Ω1, . . . , ΩN with conductivity
contrasts q1, . . . , qN the spectrum of T consists of a countable set of eigenvalues
and the points λ∗1 , . . . , λ∗N that are defined by λ∗j =

2qj
2+qj

(j = 1, . . . , N). The

points λ∗j (j = 1, . . . , N) are the only possible accumulation points in σ(T ).

Proof. From Theorem 3.2.10 we know that T (i) = λ∗i I + Ki (i = 1, . . . , N),
and the Ki are self-adjoint and compact operators. Hence we can repre-
sent T as

T =

λ∗1 I 0
. . .

0 λ∗N I

+ K̃, (3.24)

and K̃ is a compact operator.
Now we make use of the concept of the essential spectrum (see [48]

or [69]). The essential spectrum consists of all λ for which T − λI is not
semi-Fredholm, i.e. for these λ neither the nullspace N (T − λI) nor the
defectR(A)�R(T − λI) is finite-dimensional.

This definition implies immediately that the first part in representation
(3.24), namely the operator

T̃ :=

λ∗1 I 0
. . .

0 λ∗N I

 ,

has the essential spectrum
{

λ∗1 , . . . λ∗N
}

. Theorem 5.35 in Chapter IV of
[48] states that the compact perturbation K̃ has no effect on the essential
spectrum and thus that σess(T ) =

{
λ∗1 , . . . λ∗N

}
.

From Theorem 5.33 in Chapter IV of [48] we now obtain that σ(T )
consists of σess(T ) and a countable set of eigenvalues. In addition, these
eigenvalues are isolated eigenvalues, i.e. none of them is an accumula-
tion point in σ(T ).
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Remark 3.2.19. It can even be shown that if λ∗j is an isolated point of
σ(T ), i.e. there is no sequence of eigenvalues converging to λ∗j , then λ∗j
is itself an eigenvalue of T with infinite multiplicity (compare Section 3.5
of Chapter V in [48]).

3.2.4 Complex-valued Conductivities

In this section we show that that the previous considerations also apply
to complex-valued q. We start by the case of a constant conductivity
contrast and assume that q ∈ C such that Re q 6= 0 and Im q ≤ 0. Note
that this assumption on q is also consistent with Assumption 2.1.2.

For complex-valued conductivities the middle operator T is no longer
self-adjoint and its spectrum σ(T ) is part of the complex plane. In fact,
T : L2(Ω, Rd) → L2(Ω, Rd) is given by h 7→ q(h − ∇w) where w ∈
H1
�(B) solves∫∫

B

(1 + qχΩ)∇w · ∇ψ dx =
∫∫
Ω

qh · ∇ψ dx for all ψ ∈ H1
�(B). (3.25)

As it is the case for the factorization (2.5) in Chapter 2, the adjoint of the
middle operator is given via the complex conjugate of the conductivity.

Lemma 3.2.20. The adjoint T ∗ : L2(Ω, Rd) → L2(Ω, Rd) of T is given by
h̃ 7→ q(h̃−∇w̃), where w̃ ∈ H1

�(B) solves∫∫
B

(1 + qχΩ)∇w̃ · ∇ψ dx =
∫∫
Ω

qh̃ · ∇ψ dx for all ψ ∈ H1
�(B). (3.26)

Proof. Let h, h̃ ∈ L2(Ω, Rd), and let w, w̃ ∈ H1
�(B) be the corresponding

solutions of (3.25) and (3.26), respectively. Then:〈
T h, h̃

〉
L2(Ω,Rd) =

∫∫
Ω

q(h−∇w) · h̃ dx

=
∫∫
Ω

qh · h̃ dx−
∫∫
B

(1 + qχΩ)∇w̃ · ∇w dx

=
∫∫
Ω

qh ·
(

h̃−∇w̃
)

dx =
〈

h, T ∗ h̃
〉

L2(Ω,Rd) .
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In the following lemma we give bounds for the complex spectrum of
T as in Lemma 3.2.1. These bounds show in particular that the operator
Re T is bounded and either positively or negatively coercive.

Lemma 3.2.21. Let the conductivity contrast q ∈ C be such that |Im q| <

|Re q| and either Re q ≥ 1 or Re q < 1 and |Im q| < |Re q|
√

1+Re q
1−Re q . Then for

λ ∈ σ(T ) it follows that Re λ ∈
[

Re q
1+Re q , Re q

)
.

Proof. As in the proof of Lemma 3.2.1 we derive two representations for
〈T h, h〉 and ‖h‖ = 1:

〈T h, h〉 =
∫∫
Ω

q (h−∇w) · h dx

=
∫∫
Ω

q |h|2 dx−
∫∫
Ω

q
(
∇w · h

)
dx

= q−
∫∫
B

q
q
(1 + qχΩ) |∇w|2 dx

(3.27)

and

〈T h, h〉 =
∫∫
Ω

q |h−∇w|2 dx +
∫∫
B

|∇w|2 dx. (3.28)

The second representation can be derived completely analogously to the
proof of Lemma 3.2.1. From (3.27) we deduce

Re 〈T h, h〉 = Re q−
∫∫
B

Re
{

q
q
(1 + qχΩ)

}
|∇w|2 dx,

and it is easy to check that under the above assumptions on q the real part
of q

q (1 + qχΩ) is positive in the whole of B and thus that Re 〈T h, h〉 <
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Figure 3.2: Upper bound for |Im q| depending on Re q

Re q. The remaining bound is derived from (3.28). For ‖h‖ = 1 we obtain

Re 〈T h, h〉 ≥
∫∫
Ω

(
Re q |h|2 − 2Re q Re (h · ∇w) + (1 + Re q) |∇w|2

)
dx

=
∫∫
Ω

∣∣∣∣∣√1 + Re q∇w− Re q√
1 + Re q

h

∣∣∣∣∣
2

+
(

Re q− (Re q)2

1 + Re q

)
|h|2dx

≥
∫∫
Ω

(
Re q− (Re q)2

1 + Re q

)
|h|2dx =

Re q
1 + Re q

.

Remark 3.2.22. The assumption |Im q| ≤ |Re q| and either Re q ≥ 1 or

Re q < 1 and |Im q| ≤ |Re q|
√

1+Re q
1−Re q is no severe restriction since in

real applications the imaginary part of a complex-valued conductivity is
much smaller than the real part. In Figure 3.2 the upper bound for |Im q|
depending on Re q for Re q < 0.5 is illustrated.

From (3.28) it can easily be seen that Im 〈T h, h〉 ≤ 0 since Im q ≤ 0
and thus that all elements of σ(T ) have a non-positive imaginary part.
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In addition, since T is a bounded operator, there has to be a lower bound
for the imaginary part of σ(T ).

If we look once more at Theorem 3.2.6 and its proof we observe that
it doesn’t rely on the assumption that q is real-valued. Hence we still
have the one-to-one correspondence between the eigenvalues λ of T and
the eigenvalues µ of the boundary integral operator D∗ via the formula
µ = − 2+q

2q + 1
λ . This means in particular that even for complex-valued q

existence of eigenvalues of T is assured (see Lemma 3.2.5).
The same holds for Theorem 3.2.10 and complex-valued q since the

proof also doesn’t rely on real-valued conductivities. This means that
T = λ∗ I + K with a compact operator K and the spectrum of T consists
at most of λ∗ = 2q

2+q and a countable set of eigenvalues with the only
possible accumulation point λ∗.

Additionally, the theory from Section 3.2.3 for the case N disjoint in-
clusions Ω1, . . . , ΩN can be adapted to complex-valued conductivities.
Theorem 3.2.15 and Theorem 3.2.18 may therefore also be applied here.

3.3 Determination of the Conductivity

In this section we explain how the spectrum of T can be obtained from
the knowledge of Λ0−Λ andA and show how it can be used to compute
the conductivity contrast q.

We present two different methods to obtain an approximation of σ(T )
out of which the first one provides a one-to-one connection between
σ(T ) and the spectrum of an operator that can be constructed from mea-
sured data. The proof of this connection is closely related to the proof that
the Factorization method works and therefore it relies on the coercivity
of T .

The second method is based on projection on finite-dimensional sub-
spaces and provides only an asymptotic result for eigenvalues of the
finite-dimensional problem. However, it doesn’t rely on coercivity of T
and can therefore even be applied to the mixed problem from Chapter 2.
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3.3.1 Approximation of the Spectrum

Our first method to obtain the spectrum σ(T ) is based on the factoriza-
tion (3.10), and it relies on the following assumption.

Assumption 3.3.1. Assume that that q is is constant and real-valued or,
for N inclusions, either qj > 0 for all j = 1, . . . , N or qj < 0 for all j =
1, . . . , N.

In this case we know that either Λ0 − Λ is either positive definite or
negative definite which implies that the operator |Λ0 −Λ| : L2

�(∂B) →
L2
�(∂B) is positive definite and self-adjoint. This implies the existence

of the square root operator |Λ0 −Λ|
1
2 : L2

�(∂B) → L2
�(∂B). In addi-

tion, the main result of the Factorization method is the range identity

R(|Λ0 −Λ|
1
2 ) = R(A∗) (see [55]). We denote this range by Y and note

that it is a dense subspace of L2
�(∂B).

As a motivation of our procedure consider the generalized eigenvalue
problem

|Λ0 −Λ| f = λA∗A f (3.29)

for f ∈ L2
�(∂B). Using the factorization (3.10), (3.29) can be rewritten as

A∗ (|T | − λI)A f = 0.

Now we observe that there is an eigenpair {λ, f } of (3.29) if and only if
λ is an eigenvalue of |T | and at least one corresponding eigenfunction
h is contained in R(A). The existence of solutions to the generalized
eigenvalue problem is not clear since we only investigated σ(T ) on the
closed spaceR(A), and even if there are such generalized eigenvalues λ
we cannot hope to find all eigenvalues of T using (3.29).

In the following considerations we derive a new representation of the
generalized eigenvalue problem that yields a one-to-one connection to

σ(T ). Using the substitution g := |Λ0 −Λ|
1
2 f and applying |Λ0 −Λ|−

1
2

to (3.29), we obtain

1
λ

g = |Λ0 −Λ|−
1
2 A∗A |Λ0 −Λ|−

1
2 g,

which is an ordinary eigenvalue problem. Nevertheless, g has to be con-
tained in Y and existence of eigenvalues is still not assured. In the fol-
lowing we thus extend this new eigenvalue problem to L2

�(∂B).
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Let us define the operator B : Y → R(A) by

B = A |Λ0 −Λ|−
1
2

as well as the operator B̃ : R(A)→ L2
�(∂B) by

B̃ = |Λ0 −Λ|−
1
2 A∗.

Using these operators we derive a connection to the spectrum of T .
However, we first have to show some properties of B and B̃. By con-
struction of B and B̃ it is easy to see that

B̃ |T | B = |Λ0 −Λ|−
1
2 A∗ |T | A |Λ0 −Λ|−

1
2 = IY (3.30)

holds. In the following lemma we show that B, B̃ are boundedly invert-
ible and adjoint to each other.

Lemma 3.3.2. Let Assumption 3.3.1 hold. Then the operators B, B̃ have the
following properties:

(a) B has a bounded extension B : L2
�(∂B)→ R(A).

(b) B̃ : R(A)→ L2
�(∂B) is also bounded.

(c) B and B̃ are adjoint to each other.

(d) B : L2
�(∂B) → R(A) and B̃ : R(A) → L2

�(∂B) are boundedly invert-
ible and B̃ |T | B = IL2�(∂B).

Proof. For arbitrary x ∈ Y and h ∈ R(A) we have that

〈Bx, h〉L2(Ω,Rd) =
〈
A |Λ0 −Λ|−

1
2 x, h

〉
L2(Ω,Rd)

=
〈
|Λ0 −Λ|−

1
2 x,A∗h

〉
L2(∂B)

=
〈

x, |Λ0 −Λ|−
1
2 A∗h

〉
L2(∂B)

=
〈

x, B̃h
〉

L2(∂B) .

(3.31)

However, it is not yet shown that B̃,B are adjoint to each other since Bx
is only defined for x ∈ Y.
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The operator |T | : R(A) → R(A) is bounded, self-adjoint and coer-
cive, i.e. there are constants c1, c2 > 0 such that

c1 ‖h‖2
L2(Ω,Rd) ≤ 〈|T | h, h〉 ≤ c2 ‖h‖2

L2(Ω,Rd) for all h ∈ R(A).

Now let x ∈ Y such that ‖x‖ = 1 then we know from (3.30) that

1 =
〈
B̃ |T | Bx, x

〉
L2(∂B) = 〈|T | Bx,Bx〉L2(Ω,Rd) ≥ c1 ‖Bx‖2

L2(∂B) .

We have thus proven that B is bounded on Y, which also implies that
B has a bounded extension B : L2

�(∂B) → R(A). Furthermore, (3.31)
holds for all x ∈ L2

�(∂B) and thus B, B̃ are adjoint to each other. This
implies that B̃ is also bounded on R(A) and (3.30) can be extended to
B̃ |T | B = IL2�(∂B).

This equality can now be rewritten as B̃ |T |
1
2 |T |

1
2 B = IL2�(∂B) which

implies
(
|T |

1
2 B
)∗ (
|T |

1
2 B
)

= IL2�(∂B). This implies that
(
|T |

1
2 B
)

is

one-to-one and that
(
|T |

1
2 B
)∗

is onto. By construction B has dense

range in R(A), and |T |
1
2 : R(A) → R(A) is an isomorphism. Hence(

|T |
1
2 B
)

has dense range and
(
|T |

1
2 B
)∗

is also one-to-one. This proves

that
(
|T |

1
2 B
)∗

is boundedly invertible, and the same holds for |T |
1
2 B.

Since |T |
1
2 is boundedly invertible, B is also boundedly invertible and

the same holds for B̃.

Now we return to the investigation of the spectrum of T and show a
connection to the operators B and B̃.

Corollary 3.3.3. Let λ ∈ R, then λ ∈ σ(|T |) if and only if 1
λ ∈ σ(B̃B).

Proof. Since both |T | and B̃B are boundedly invertible operators, their
spectra don’t contain 0. Let 0 6= µ be in the resolvent set $(B̃B), i.e. the
operator R := µI − B̃B is boundedly invertible. From Lemma 3.3.2 we
know that

R = µB̃ |T | B − B̃B = B̃(µ |T | − I)B.
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Hence R is boundedly invertible if and only if λ := 1
µ ∈ $(|T |), since

B, B̃ are boundedly invertible as well. This also implies that the spectra
σ(B̃B) and σ(|T |) are connected via the relation µ = 1

λ .

The operator B̃B can principally be obtained from measured data and
a priori information and its spectrum can therefore be used to compute
the spectrum of T .

The second possibility to compute an approximation to σ(T ) is to
make use of the generalized eigenvalue problem (3.29). We show that
for a discrete version of (3.29) existence of solutions is assured and that
a subsequence of those generalized eigenvalues converges towards an
eigenvalue of T or an accumulation point in σ(T ). This method can be
used independently of whether Assumption 3.3.1 holds or not.

Let Yn be an n-dimensional subspace of L2
�(∂B) and let Xn = A(Yn).

Xn is also n-dimensional since A is injective. We define the maps Pn :
L2
�(∂B) → Yn, Qn : L2(Ω, Rd) → Xn as the corresponding orthogonal

projections. From the factorization (3.10) we obtain its finite-dimensional
counterpart by orthogonal projection:

Pn(Λ0 −Λ)|Yn
= PnA∗T A|Yn

.

Now we regard the generalized eigenvalue problem

Pn(Λ0 −Λ) fn = λnPnA∗A fn ( fn ∈ Yn), (3.32)

which has a set of n possibly complex-valued eigenvalues λ
(1)
n , . . . , λ

(n)
n

and corresponding eigenfunctions f (1)
n , . . . , f (n)

n , since injectivity ofA im-
plies injectivity of PnA∗A|Yn

. If γ is real-valued then Λ0 − Λ is self-
adjoint which also implies self-adjointness of Pn(Λ0 −Λ)|Yn

. The oper-
ator PnA∗A|Yn

is self-adjoint and positive definite independently of the
conductivity. Hence the eigenvalues according to (3.32) are real-valued
if γ is real-valued.

We consider the behavior of λ
(j)
n and f (j)

n for n → ∞ and arbitrary
j ∈ N. In order to keep our notations simple we only write λn, fn instead
of λ

(j)
n and f (j)

n , where λn denotes λ
(j)
n for some j ∈ N.

In the following lemmas we show that the discrete eigenvalue problem
(3.32) can be used to approximate the spectrum of T . We distinguish
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between the case of a constant conductivity contrast as in Section 3.2.2
and the case of N different contrasts q1, . . . , qN as in Section 3.2.3. In
particular, in the second case we don’t need Assumption 3.3.1 to hold
which makes this method especially attractive in the mixed case from
Chapter 2. However, we first consider the case of a single conductivity
contrast q and we denote λ∗ = 2q

2+q as in Section 3.2.2.

Lemma 3.3.4. Let q be constant and let λn be eigenvalues according to the
discrete generalized eigenvalue problem (3.32) for n ∈ N. Then there exists a
convergent subsequence

(
λnk

)
k∈N

with limit λ that is an eigenvalue of T or
equal to λ∗.

In addition, if the sequence (λn)n∈N itself converges to some λ, then the limit
λ is an eigenvalue of T or equal to λ∗.

Proof. We first derive an equivalent formulation to the eigenvalue prob-
lem (3.32) that can be used to show convergence of eigenvalues towards
eigenvalues of T and the connection to the infinite-dimensional case. By
the factorization of (3.10) and Theorem 3.2.10, (3.32) can be written as

λ∗PnA∗A fn + PnA∗KA fn = λnPnA∗A fn.

Setting gn := A fn and assuming without loss of generality that ‖gn‖ = 1
we write

(λ∗ − λn)PnA∗gn + PnA∗Kgn = 0.

This means that we have

〈(λ∗ − λn)A∗gn, ψn〉L2(∂B) + 〈A∗Kgn, ψn〉L2(∂B) = 0

for all ψn ∈ Yn. Using the duality of A and A∗ we obtain

〈(λ∗ − λn) gn,Aψn〉L2(Ω,Rd) + 〈Kgn,Aψn〉L2(Ω,Rd) = 0

for all ψn ∈ Yn and thus

〈(λ∗ − λn) gn, φn〉L2(Ω,Rd) + 〈Kgn, φn〉L2(Ω,Rd) = 0

for all φn ∈ Xn. Using the orthogonal projection Qn we obtain

(λ∗ − λn) gn + QnKgn = 0. (3.33)
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Let λn, gn be eigenpairs according to (3.33) for n ∈ N. Since the gn
are uniformly bounded there is a subsequence gnk that converges weakly
towards some g ∈ L2(Ω, Rd) for k → ∞. We know by compactness of
K that Qnk Kgnk → Kg (k → ∞). This means that

(
λ∗ − λnk

)
gnk → −Kg

(k→ ∞) and thus〈(
λ∗ − λnk

)
gnk , φ

〉
L2(Ω,Rd) → −〈Kg, φ〉L2(Ω,Rd) (k→ ∞).

for all φ ∈ L2(Ω, Rd).
We first assume that g 6= 0, then the weak convergence yields that〈

gnk , φ
〉

L2(Ω,Rd) → 〈g, φ〉L2(Ω,Rd) for all φ ∈ L2(Ω, Rd) and thus

λnk

〈
gnk , φ

〉
L2(Ω,Rd) → λ∗ 〈g, φ〉L2(Ω,Rd) + 〈Kg, φ〉L2(Ω,Rd)

= 〈T g, φ〉L2(Ω,Rd) .

By setting φ = g and using g 6= 0 we obtain λnk → λ (k → ∞) for some
λ ∈ R, which implies T g = λg, i.e. λ is an eigenvalue of T .

Now assume that g = 0, hence Kg = 0 and
(
λ∗ − λnk

)
gnk → 0

(k → ∞). If λnk 9 λ∗, then for a subsequence gnkl
we have gnkl

→ 0,
in contradiction to ‖gn‖ = 1. Hence λnk → λ∗ (k→ ∞).

For the second assertion, assume that λn → λ (n → ∞) and λ 6= λ∗.
As before, there is a weakly convergent subsequence gnk ⇀ g of the cor-
responding generalized eigenfunctions according to (3.33). From (3.33)
we deduce that Qnk Kgnk → Kg and hence T g = λg and g 6= 0 as shown
above, which completes the proof.

This result means that for sufficiently large n at least some of the gen-
eralized eigenvalues λn of the discrete eigenvalue problem (3.32) lie ar-
bitrarily close to eigenvalues of T or to λ∗. In particular, we observe that
they accumulate in λ∗.

An optimal result in this context would be that for n sufficiently large
all the eigenvalues from (3.29) are lying in a neighborhood of elements
of σ(T ) and that every element of σ(T ) is approximated by eigenvalues
from (3.29). However, this question will be subject to future work.

We proceed by applying the projection method to the case of N in-
clusions. As before, let Yn be an n-dimensional subspace of L2

�(∂B) and
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Xn = A(Yn). The orthogonal projections Pn, Qn are defined as in the case
of only one inclusion, and we denote λ∗i = 2qi

2+qi
for (i = 1, . . . , N) as is

Section 3.2.3.

Lemma 3.3.5. Let q1, . . . , qN be as in Section 3.2.3 and let λn be eigenval-
ues according to the discrete generalized eigenvalue problem (3.32) for n ∈ N.
Then there exists a convergent subsequence

(
λnk

)
k∈N

with limit λ that is an
eigenvalue of T or equal to λ∗j for some j ∈ {1, . . . , N}.

In addition, if the sequence (λn)n∈N itself converges to some λ, then the limit
λ is an eigenvalue of T or equal to λ∗j for some j ∈ {1, . . . , N}.

Proof. The proof is very similar to the proof of Lemma 3.3.4. Our starting
point is again the discrete generalized eigenvalue problem (3.32) which
is equivalent to

PnA∗


(
λ∗1 − λn

)
I 0

. . .
0

(
λ∗N − λn

)
I

A fn + PnA∗KA fn = 0,

where we used (3.10) and the proof of Theorem 3.2.18. This problem can
be transformed the same way as we did for Lemma 3.3.4 to the problem

(
λ∗1 − λn

)
I 0

. . .
0

(
λ∗N − λn

)
I

 gn + QnKgn = 0, (3.34)

where we set gn = A fn and ‖gn‖ = 1 without loss of generality.
Let λn be eigenvalues according to (3.34) for n ∈ N and let gnk ⇀ g

be a weakly convergent subsequence of the corresponding generalized
eigenfunctions gn. Then Qnk Kgnk → Kg and

(
λ∗1 − λnk

)
I 0

. . .
0

(
λ∗N − λnk

)
I

 gnk → −Kg (k→ ∞).

In the present case gnk consists of N components g(1)
nk , . . . , g(N)

nk corre-
sponding to the inclusions Ω1, . . . , ΩN . As before we have to consider
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the two different cases g 6= 0 and g = 0. First assume that g 6= 0. We
know that

N

∑
i=1

〈(
λ∗i − λnk

)
g(i)

nk , φ(i)
〉

L2(Ωi ,Rd)
→ −〈Kg, φ〉L2(∂B) (k→ ∞)

with φ(i) = φ|Ωi
(i = 1, . . . , N) holds for all φ ∈ L2(Ω, Rd). From the

convergence
〈

gnk , φ
〉

L2(Ω,Rd) → 〈g, φ〉L2(Ω,Rd) for all φ ∈ L2(Ω, Rd) we
obtain

λnk

〈
gnk , φ

〉
L2(Ω,Rd) →

N

∑
i=1

〈
λ∗i g(i), φ(i)

〉
L2(Ω,Rd)

+ 〈Kg, φ〉L2(Ω,Rd)

= 〈T g, φ〉L2(Ω,Rd) .

By setting φ = g and using g 6= 0 we obtain λnk → λ (k → ∞) for some
λ ∈ R which implies T g = λg and λ is an eigenvalue of T .

Now assume that g = 0, hence Kg = 0 and(
λ∗i − λnk

)
g(i)

nk → 0 (i = 1, . . . , N).

If λnk 9 λ∗i for all i ∈ {1, . . . , N} then there is a subsequence gnkl
→ 0

(l → ∞), a contradiction to ‖gn‖ = 1. Hence λnk → λ∗i for some i ∈
{1, . . . , N}.

In addition, we can show that if a sequence (λn)n∈N of the generalized
eigenvalues converges to some λ, then λ is an eigenvalue of T or equal
to one of the accumulation points λ∗i . The corresponding proof is also
analogous to the case of one inclusion.

These results show that the discrete generalized eigenvalue problem
(3.32) may be used to approximate σ(T ). However, we have not shown
that this method provides all eigenvalues of T as n tends to infinity. One
advantage of this method is that it also works for mixed inclusions, i.e.
for the case in which we have both inclusions with a lower and inclusions
with a higher conductivity than the background. In this case T is no
longer positively or negative coercive, and the proof of Lemma 3.3.2 does
not work.
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3.3.2 Approximation of the Conductivity

Once the spectrum of T is obtained, the next step is to compute the con-
ductivity contrast q (the contrasts q1, . . . , qN in the case of N inclusions,
respectively). There are several methods for this problem, and we start
by explaining the most obvious ones.

First of all, we know from Lemma 3.2.1 that an upper bound and and a
lower bound for the spectrum of T . From these we can obtain bounds for
the conductivity contrast q (for q1, . . . , qN , respectively) using the largest
and the smallest eigenvalue of T . Analogously, we can use Lemma 3.2.13
to obtain bounds for N different conductivity contrasts q1, . . . , qN . If γ is
also complex-valued, we can make use of Lemma 3.2.21. However, this
method doesn’t give exact values for the conductivities and we therefore
turn to more exact methods.

In Theorem 3.2.10 we have proven that in the case of a constant con-
ductivity contrast q the eigenvalues of T exhibit exactly one accumula-
tion point, namely λ∗ = 2q

2+q . We thus have to identify this limit point
in the numerically approximated spectrum of T and to compute q from
this value. In the case of N disjoint inclusions σ(T ) has N possible accu-
mulation points λ∗1 , . . . , λ∗N (compare Theorem 3.2.18), and we can com-

pute the conductivity contrasts q1, . . . , qN using the relation λ∗j =
2qj

2+qj

(j = 1, . . . , N).
For constant q this method is recommendable since it is fast and ac-

curate. However, for several inclusions with different conductivity con-
trasts q1, . . . , qN it remains open which conductivity contrast belongs to
which inclusion. In some applications this assignment may be available
from a priori information, but otherwise we have so solve the direct prob-
lem in order to find the correct conductivity assignment.

In Corollary 3.2.11 we showed a direct connection between the spec-
trum of T and the spectrum of the boundary integral operator D∗. This
connection provides another method to compute q since D∗ and its eigen-
values µj (j ∈ N) can be computed from the knowledge about the inclu-
sion boundary ∂Ω and hence without the knowledge of q. Having found
the eigenvalues λj (j ∈ N) of T , we can compute q from the correspon-

dence µj = − 2+q
2q + 1

λj
.

However, we cannot use this procedure in the case of N inclusions.
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The reason is that according to Theorem 3.2.15 we have to find µ1, . . . , µN
such that (3.20) has a nontrivial solution under the additional condition
that the value of the term

2qj
2µjqj+2+qj

doesn’t depend on j for j = 1, . . . , N.
Without this condition there is in general an uncountable set of tuples
µ1, . . . , µN such that the integral equation system (3.20) has nontrivial so-

lutions. But the condition that
2qj

2µjqj+2+qj
= const is obviously depending

on the unknowns q1, . . . , qN .

3.4 Numerical Experiments

In this section we show some numerical examples with our new method
to approximate the conductivity inside anomalies. We first explain how
the operators Λ0 − Λ and A∗A are computed numerically and discuss
several possibilities to obtain approximations of σ(T ) and q. Afterwards
we present some examples concerning exact and inexact data Λ0 −Λ as
well as exact and inexact inclusion boundaries.

3.4.1 Numerical Solution of the Direct Problem

As in Section 2.3, in all our examples the domain B is the unit disc in
R2. At first we need to compute discrete versions of Λ0−Λ and ofA∗A.
Since we restrict ourselves to piecewise constant conductivities these op-
erators can be computed easily using boundary integral equation meth-
ods.

Let us fix some arbitrary current pattern f ∈ L2
�(∂B). Now define

v ∈ H1
�(B) by v := u0 − u where u ∈ H1

�(B) solves the direct problem
(1.5) with the conductivity γ(x) = 1 + qχΩ(x) and u0 ∈ H1

�(B) solves
(3.2). Then for v we obtain the transmission problem

∆v = 0 in B \ ∂Ω,
∂νv = 0 on ∂B,

(1 + q) ∂νv|− − ∂νv|+ = q ∂νu0 on ∂Ω.
(3.35)

For B being the unit disc, u0 may be calculated explicitly, and (3.35) can be
transformed to a boundary integral equation of second type. By setting
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v = SLϕ we obtain the following integral equation on ∂Ω for the density

ϕ ∈ H−
1
2� (∂Ω): (

1 +
q
2

)
ϕ + qD∗ϕ = q ∂νu0.

For A∗A the corresponding transmission problem is (3.7) with h = ∇u0.
Here it is not even necessary to solve a boundary integral equation as for
Λ0 −Λ but it is sufficient to define v = SLψ with ψ = ∂νu0|∂Ω.

Using these integral equation methods for n orthogonal current pat-
terns as in (2.33) we obtain the discrete versions Ln := Pn(Λ0 −Λ)|Yn
and An := PnA∗A|Yn

of Λ0−Λ andA∗A, where Yn is the n-dimensional
subspace of L2

�(∂B) spanned by the basis of current patterns.

3.4.2 Approximation of Spectrum and Conductivity

We use two different test models, where in the first test model there is an
elliptic inclusion Ω in the upper right part of B having the conductivity
contrast q = 1. In the second test model there are two inclusions: Ω1 is
the same inclusion as Ω in the first model, i.e. also with q1 = 1, while Ω2
is a circle located in the lower left part of B with q2 = −0.5. This means in
particular that test model 2 corresponds to the case of mixed inclusions
from Chapter 2. The inclusions are illustrated in Figure 3.3.

As described in Section 3.3.1, there are two possibilities to calculate
σ(T ) numerically. The first one is to compute a discrete version Bn of the
operator B̃B, to conduct an eigenvalue decomposition of Bn and to invert
these eigenvalues (compare Corollary 3.3.3). For the discrete version Bn

of B̃B we use the composition Bn = L−
1
2

n AnL−
1
2

n .
The second possibility is to make use of the generalized eigenvalue

problem (3.32) that can be rewritten as

Ln fn = λn An fn ( fn ∈ Yn) . (3.36)

Such a generalized eigenvalue problem can be solved using the Cholesky
factorization (see e.g. [74]). Since the conductivity is real-valued in both
test models the operator Λ0 − Λ is self-adjoint. This implies that the
operators Ln and An are also self-adjoint und hence that the eigenvalues
according to (3.36) are real-valued.

Our first numerical example consists of a comparison between these
two methods. Figure 3.4 shows the approximated spectrum of T for both
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Figure 3.3: The two test models with corresponding inclusions
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Figure 3.4: Approximation of σ(T ) for both test models. blue ‘×’: generalized
eigenvalue problem (3.36), red ‘◦’: use of Bn, continuous line: the
limit point λ∗ (the accumulation points λ∗1 , λ∗2 , respectively), dashed
lines: upper and lower bound for σ(T )
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test models. The blue ‘×’ indicate the eigenvalues obtained from (3.36)
while the red ‘◦’ correspond to the inverses of the eigenvalues of Bn.

For test model 1 and both methods the approximated eigenvalues ac-
cumulate in λ∗ which is indicated by the continuous black line. We ob-
serve that the eigenvalues from (3.36) are all lying between the bounds
for σ(T ) that are indicated by dashed black lines (compare Lemmas 3.2.1
and 3.2.13), while there are several eigenvalues computed from Bn that
lie outside these bounds.

For test model 2 the eigenvalues obtained from (3.36) accumulate in
λ∗1 and λ∗2 that are indicated by continuous lines, and they lie between
the bounds for σ(T ) (dashed lines). However, the eigenvalues obtained
from Bn don’t exhibit any clear accumulation point and some of them
are also lying outside the bounds for σ(T ). We therefore suggest to use
the generalized eigenvalue problem (3.36) instead of Bn to approximate
σ(T ). This observation for test model 2 is not very surprising since our
proof of Lemma 3.3.2 relies on Assumption 3.3.1 which is not valid for
test model 2.

The next step is to calculate an approximation of q (of q1, q2, respec-
tively) using the approximated eigenvalues of T . We now restrict to the
eigenvalues obtained from (3.36) and compare two methods to compute
the conductivity contrast. Since we clearly observed that the eigenvalues
have the correct accumulation points we can compute q from

λ∗ =
2q

2 + q
, (3.37)

for test model 1 and q1, q2 from λ∗j =
2qj

2+qj
(j = 1, 2) for test model 2,

respectively.
For test model 1 we can also make use of the correspondence between

σ(T ) and σ(D∗) shown in Theorem 3.2.6. To this end we also compute
the eigenvalues of a discrete version of D∗ and compute q from the for-
mula µ = − 2+q

2q + 1
λ . In Section 3.3.2 we have seen that this method

doesn’t apply to the case of several conductivity contrasts and thus not
to test model 2.

In Figure 3.5 the resulting approximations of q, q1, q2 are illustrated.
In the plot for test model 1 we observe that the approximations using
(3.37) (blue‘×’) and those using the correspondence between σ(T ) and
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Figure 3.5: Approximation of q for both test models. blue ‘×’: q (or q1, q2) com-
puted from (3.37), green ‘◦’: use of correspondence to σ(D∗), black
line: exact value of q (of q1, q2, respectively)

σ(D∗) (green ‘◦’) don’t differ substantially from each other. Altogether
we obtain quite accurate approximations for the exact value of q which
is indicated by the continuous black line. The same holds for the second
test model where the we only used the formula (3.37).

3.4.3 Inexact Data

The previous tests were conducted for unperturbed data Λ0−Λ and un-
der the assumption that the inclusion boundaries are known exactly. In
this section we show some numerical examples for perturbed Λ0 −Λ as
well as for perturbed inclusion boundaries. We start by computing the
approximation of the conductivity contrasts where Λ0 − Λ is perturbed
by 1% of white noise.

Figures 3.6 and 3.7 show the corresponding results for both test mod-
els. We observe that for both test models there are only few computed
eigenvalues lying in the neighborhood of λ∗ (of λ∗1 and λ∗2 , respectively),
while the others have very large absolute values. This affects the approx-
imations of q as well. In addition, we can only obtain an estimate of q (of
q1, q2 respectively) from the right hand sides of the Figures 3.6, 3.7 since
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Figure 3.6: Approximation of σ(T ) and q for test model 1 for 1% noise added to
Λ0 −Λ
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Figure 3.7: Approximation of σ(T ) and q for test model 2 for 1% noise added to
Λ0 −Λ
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there are no distinct accumulation points as in the previous noiseless ex-
amples.

These results show that our method is quite sensitive to noise which
can also be observed in the generalized eigenvalue problem (3.36): both
Λ0 − Λ and A∗A are compact operators and thus Ln and An are ill-
conditioned. The algorithm we used to solve the generalized eigenvalue
problem (3.36) performs a Cholesky factorization of An: An = CnC>n ,
where Cn is a lower triangular matrix. Now (3.36) is transformed to an
ordinary eigenvalue problem by multiplication with the inverses of the
ill-conditioned matrices Cn and C>n on both sides.

We therefore show one more example using three different methods in
order to improve the numerical stability of the solution of the generalized
eigenvalue problem. In the first method we we add εI to An before we
perform the Cholesky factorization. The second method is inspired by
Tikhonov regularization (see e.g. [50]): instead of solving (3.36) we use
an eigenvalue decomposition of the operator

(
A2

n + εI
)−1 AnLn. In the

third method we conduct a spectral cut-off of An before solving (3.36),
i.e. all eigenvalues of An with absolute values less than a tolerance level
tol are set to zero. Now the matrix on the right hand side of (3.36) is
singular, and the generalized eigenvalue problem is solved using the QZ
algorithm (see e.g. [31]). As concrete values we used ε = 10−4 and
tol = 10−8.

The corresponding results are illustrated in Figures 3.8 and 3.9. They
show that the eigenvalues obtained with An + εI instead of An (red ‘◦’)
and those obtained with the spectral cut-off (pink ‘O’) are almost the
same as the original ones (blue ‘×’). Those obtained from the Tikhonov-
like method (green ‘∗’) are slightly more focused around the expected ac-
cumulation points λ∗, λ∗1 , λ∗2 . However, none of the three methods yields
a substantial improvement of the results for the approximated spectrum
of T and the conductivity contrast q.

In the following test we investigate the effect of an inexactly known
inclusion boundary ∂Ω on the approximations of σ(T ) and q. Figure 3.10
shows the exact boundary of ∂Ω (black lines) as well as the perturbed
boundary (red lines).

In Figures 3.11 and 3.12 the corresponding approximations of σ(T )
and q are shown, where we used (3.36) without any of the three afore-
mentioned methods to improve numerical stability. We observe that the
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Figure 3.8: Approximation of σ(T ) and q for test model 1 for 1% noise added to
Ln. blue ‘×’: use of (3.36), red ‘◦’: An + εI instead of An in (3.36),
green ‘∗’: Tikhonov-like method, pink ‘O’: spectral cut-off of An

5 10 15 20 25 30

−1

−0.6667

0

0.6667

1

(a) Approximation of σ(T )

5 10 15 20 25 30

−0.75

−0.5

0

1

1.25

(b) Approximation of q

Figure 3.9: Approximation of σ(T ) and q for test model 2 for 1% noise added to
Ln. blue ‘×’: use of (3.36), red ‘◦’: An + εI instead of An in (3.36),
green ‘∗’: Tikhonov-like method, pink ‘O’: spectral cut-off of An
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Figure 3.10: The two test models (black lines) and perturbed boundaries ∂Ω (red
lines)
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Figure 3.11: Approximation of σ(T ) and q for test model 1 and perturbed inclu-
sion boundary ∂Ω
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Figure 3.12: Approximation of σ(T ) and q for test model 2 and perturbed inclu-
sion boundary ∂Ω

approximated eigenvalues don’t exhibit any clear accumulation points.
The same holds for the approximations of q. However, for test model 1
we can read out a rough estimate of q, and for test model 2 we observe
that there are two distinct values of q1 and q2 whose values can be read
out roughly.

The above results show that our method of approximating q via the
spectrum of T works quite well in the case of exact data. In the case
where Λ0 − Λ is perturbed we can still obtain a rough estimate of the
conductivity contrast. The same holds for the case of an imperfectly
known boundary of Ω. However, in order to improve the stability of
our method towards errors in the data, it would be desirable to find a
reasonable regularization strategy for generalized eigenvalue problems
of the type

Mx = µNx,

where both M and N are ill-conditioned matrices that may be perturbed
by noise as it is the case in (3.36).
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3.4.4 An Alternative Approach

Since the numerical stability of our new method seems to be rather sub-
optimal so far, we now present an alternative approach to determine the
conductivity contrast q of a previously located inclusion Ω. This ap-
proach is based on boundary integral equation methods for a Cauchy
problem.

Therefore let f ∈ L2
�(∂B) be an arbitrary current pattern, let u ∈ H1

�(B)
be the corresponding solution to the direct problem (1.5) and let u0 ∈
H1
�(B) be the solution to (3.2). Then the difference v := u0 − u solves the

transmission boundary value problem (3.35).
Since we know the Neumann-to-Dirichlet operators Λ0 and Λ, we

know the corresponding boundary potential v|∂B =: g ∈ L2
�(∂B) for ev-

ery current pattern f ∈ L2
�(∂B). The potential v can be represented by a

single layer ansatz of the type

v = SLϕ,

where SL denotes the single layer potential with the Neumann function
as kernel as it is introduced in Section 3.2.2. In order to satisfy the Dirich-

let boundary condition v|∂B =: g, the density ϕ ∈ H−
1
2� (∂Ω) has to solve

the integral equation
SL∂Ω→∂B ϕ = g, (3.38)

where the operator SL∂Ω→∂B is the evaluation of the single layer poten-
tial at the outer boundary ∂B. This ill-posed equation is solved using
Tikhonov regularization with a fixed regularization parameter α.

After ϕ has been determined the conductivity contrast q can be ob-
tained using the jump condition in the normal derivative of v at ∂Ω:

(1 + q) ∂νv|− − ∂νv|+ = q ∂νu0.

Using the jump relations for the single layer potential we deduce

q
(

1
2

ϕ + D∗ϕ− ∂νu0

)
= −ϕ,

from which we obtain q e.g. by division of the maximal values of −ϕ by
the term in parentheses.
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Figure 3.13: Approximated values for q for 10 different current patterns and and
regularization parameter α = 10−6; exact data

We performed this procedure for test model 1 from the previous sec-
tion (see Figure 3.3) for exact data Λ0 −Λ and ∂Ω, for perturbed Λ0 −Λ
and for an inexactly known inclusion boundary ∂Ω. As a basis of cur-
rent patterns we used the trigonometric basis (2.33) up to the end index
N = 5.

The operator Ln that approximates Λ0 − Λ is computed just as in the
previous section, while the integral equation (3.38) is solved on a coarser
mesh.

For our first example we used exact measurement data Λ0 −Λ as well
as the exact inclusion boundary ∂Ω. For the regularization parameter
we chose α = 10−6. Figure 3.13 shows the approximations for q, where
each marker corresponds to the value obtained from one current pattern
f and its corresponding image g = (Λ0 − Λ) f . We observe that most
of the values lie relatively close to the exact value q = 1, while there
are some values lying further away from q = 1. This indicates that the
approximation is strongly dependend on the specific current pattern.

In our next example the measurement data Λ0 −Λ is perturbed by 1%
of white noise but we still use the exact inclusion boundary ∂Ω. Figure
3.14 shows the corresponding results. We observe that we have to use
the larger regularization parameter α = 10−5 and that the approximated
values for q differ slightly more from q = 1 than for the case of exact
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Figure 3.14: Approximated values for q for 10 different current patterns and and
regularization parameter α = 10−5; 1% white noise added to Λ0−Λ

measurement data. However, the approximations are noticeably better
than those in Figure 3.6 where we there were only few values lying in
the neighborhood of q.

Or last example deals with an imperfectly known inclusion boundary
∂Ω, and we used the example with rotated boundary as it is illustrated
in Figure 3.10. The results are shown in Figure 3.15. Again, they are no-
ticeably worse than for the exact data case but still better than the results
from Figure 3.11.

These observations indicate that the method to obtain the value of
q that is presented in this section might be an alternative to our new
method from the previous sections. Our numerical examples only serve
as a proof of concept, and one has to conduct a much wider range of tests
in order to evaluate the potential of both methods.

However, since there is a variety of regularization techniques for the
solution of an integral equation of the first kind as in (3.38), numeri-
cal stability towards perturbations in the data can be established for the
present method. In contrast, our new method from the previous sections
is based on the solution of the generalized eigenvalue problem (3.36)
with ill-conditioned operators on both sides for which we have no regu-
larization strategies so far.
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Figure 3.15: Approximated values for q for 10 different current patterns and and
regularization parameter α = 10−6; perturbed inclusion boundary
∂Ω





4 Conclusions

The considerations in Chapter 2 show that our modified version of the
Factorization method for EIT is capable of detecting inclusions in the
mixed case, i.e. the case in which there are inclusions with a lower abso-
lute conductivity than the background as well as inclusions with a higher
absolute conductivity than the background. Furthermore, we showed
that the problem setting can even be extended to insulating and perfectly
conducting inclusions.

In our numerical tests we showed that using this new method we can
detect both inclusion types using a two-step algorithm. However, we ob-
served that the reconstruction quality is dependent on the choice of the
parameters ρ1, ρ2 as well as the size of the covering domains Ω̃1, Ω̃2. We
therefore suggest to choose the absolute values of ρ1, ρ2 very small com-
pared to the largest eigenvalues of the operator |Re Λ−Λ0|+ Im Λ. In
addition, we suggest to choose the covering domains Ω̃1, Ω̃2 as small as
it is admitted by the available a priori information about the inclusions’
locations.

The comparisons to the original Factorization method for EIT showed
that the reconstructions obtained with the original Factorization method
are noticeably better than those obtained with our new method. How-
ever, if the parameters and the covering domains in our new method are
chosen reasonably as described above, then it is also capable of recon-
structing both types of inclusions for exact data as well as for noisy data.
Nevertheless, a proof that the original Factorization method works even
in the mixed case would be the optimal solution to this problem. How-
ever, to our knowledge, there is no such proof so far.

In future work one could also introduce a third type of inclusions
which involves conductivities with strictly negative imaginary parts and
extend the covering method to these.

Moreover, in Chapter 3 we presented a new version of the Factoriza-
tion method for EIT that is based on the factorization of the operator
Λ0−Λ in three operators that are different from those used in e.g. Chap-
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ter 2. The main advantage of this new factorization is that the middle
operator is a bounded linear operator from the space L2(Ω, Rd) to itself
which implies that its spectrum is a compact set in R (or in C, respec-
tively).

We showed that this spectrum is closely related to the conductivity in-
side the inclusions and presented a method to compute this spectrum
and the conductivity contrast numerically. The numerical experiments
with this method show that it works quite well for exact data but lacks
numerical stability for perturbed data. However, this observation is not
surprising since the determination of the conductivity contrast from the
knowledge of the Neumann-to-Dirichlet map is still an ill-posed prob-
lem.

The main reason for this instability lies in the generalized eigenvalue
problem (3.29) that has compact operators on both sides. We tried to
apply some regularization strategies to the operator on the right hand
side of this generalized eigenvalue problem which didn’t improve the
results substantially. It would be therefore desirable to have regulariza-
tion strategies for such generalized eigenvalues.

In Section 3.4.4 we presented an alternative method to determine the
conductivity contrast that is based on a boundary integral equation of
the first kind. To this integral equation we can apply well-known regu-
larization strategies to handle noisy data.

Our considerations in Chapter 3 are based on the assumption of piece-
wise constant conductivities. In future work one could try to extend this
assumption to e.g. piecewise continuous conductivities and investigate
the structure of the spectrum of the middle operator in this case. In ad-
dition, another obvious extension of this work is to apply the covering
method from Chapter 2 to the new factorization from Chapter 3 since for
the new factorization the middle operator also fails to be coercive in the
case of mixed inclusions.
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