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Abstract

Crowdsourcing in form of human-based electronic services (people ser-
vices) provides a powerful way of outsourcing tasks to a large crowd of
remote workers over the Internet. Research has shown that multiple re-
dundant results delivered by different workers can be aggregated in order
to achieve a reliable result. However, existing implementations of this
approach are rather inefficient as they multiply the effort for task execu-
tion and are not able to guarantee a certain quality level. As a starting
point towards an integrated approach for quality management of people
services we have developed a quality management model that combines
elements of statistical quality control (SQC) with group decision theory.
The contributions of the workers are tracked and weighted individually
in order to minimize the quality management effort while guaranteing a
well-defined level of overall result quality. A quantitative analysis of the
approach based on an optical character recognition (OCR) scenario con-
firms the efficiency and reach of the approach.

Keywords: Crowdsourcing, human computation, statistical quality con-
trol, weighted majority vote

1 Introduction

The idea of human-based electronic services is that they look like Web services
but they are not performed by a computer, instead they use human workforce
out of a crowd of Internet users. The success of Amazon’s Mechanical Turk1

(MTurk) platform and the growing number of companies that build their busi-
ness model entirely on that platform demonstrate the potential of this approach.
The MTurk platform acts as a broker between requesters who publish human
intelligence tasks (HITs) and workers who work on those tasks in return for a
typically small monetary compensation. Kern et al. proposed the term people
services (pServices) for this type of human-based electronic services [10].

As there is limited control over the individual contributors, particular at-
tention has to be paid to the quality of the work results.One quality assurance

1www.mturk.com
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approach that is heavily used in practise and that can be applied to a broad
set of pServices scenarios is the majority vote (MV) approach which introduces
redundancy by passing the same task to multiple workers and aggregating the
results in order to compute the result with the highest probability for correct-
ness [9]. Existing applications of this approach typically apply a fixed level
of redundancy to each individual task, i.e. each task is performed by multi-
ple workers. From the perspective of quality management that means that the
quality of each individual task is validated. However, the concepts of statistical
quality control (SQC) teach us, that the quality management effort can usually
be drastically reduced by taking only samples rather than by performing a full
inspection of all individual items. [16]. Moreover, a fixed degree of redundancy is
both inefficient and incapable of assuring a certain level of result quality because
the level of agreement (and so the expected result quality) varies depending on
the error rates of the involved workers. For some tasks, the agreement might
be extremely high (e.g. all workers agree on exactly the same result), for others
the worker results might be at odds (e.g. half of the workers return result A,
while the other half returns B).

In this paper, a quality management (QM) approach for pServices is pro-
posed which improves the traditional MV approach in three ways:

1. It reduces the QM effort in horizontal direction by validating only a sample
of tasks rather than all tasks.

2. It reduces the QM effort in vertical direction by dynamically adjusting the
level of redundancy rather than working with a fixed level of redundancy.

3. It allows to guarantee a certain quality level by taking individual worker
error rates into account.

Within the multifaceted dimensions of quality, this paper concentrates on the
correctness dimension as the ability to return a minimum percentage of results
that are free of error [10]. According to Jurans definition of quality as fitness
for use [8], the paper assumes that the service requester can clearly categorize
a task result as correct or incorrect. The level of correctness is determined
by a comparison with the ideal result (gold standard) provided by the service
requester. After providing some fundamentals of SQC in section 2, the QM
approach for pServices is presented in section 3. It has been implemented as a
QM component on top of the MTurk platform and it has been evaluated using
an optical character recognition (OCR) scenario. The results are provided in
section 4. The paper closes with related work and a summary and outlook in
sections 5 and 6.

2 Fundamentals

This chapter describes some fundamentals about SQC which are required for
the considerations in section 3. Specifically, the paper leverages the concept of
sampling plans.
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2.1 Acceptance Sampling

Acceptance Sampling is the process to decide based on a sample whether a
set of units meets certain quality requirements or not. Acceptance sampling
determines the probability of a lot of units being within the specified quality
levels, and accepts or rejects lots based on its quality characteristics. A sampling
plan is a procedure where a sample of n units is drawn from a lot of size N. If the
number of defects in the sample is higher than the acceptance number c, the lot
is rejected. Otherwise it is accepted. If the units do not occur in batches, but
in a continuous production, such as in line assembly or in a service scenario, the
process has to be decomposed into artificial batches. However, before a whole
batch has been handled, quality levels for this batch cannot be guaranteed and
the results of this batch cannot be further processed. In order to overcome this
restriction, continuous sampling plans have been developed.

2.2 Continuous Sampling Plans

Continuous Sampling Plans (CSPs) control the inspection frequency and re-
placement of defects in such a way that a certain average outgoing quality
limit (AOQL) is not exceeded. Dodge developed the first continuous sampling
plan, the CSP-1. This plan has been further developed and adapted by Dodge
et. al and Lieberman et al. amongst others [4, 12]. The most celebrated and
most used continuous sampling plan still is the CSP-1. The reason is not only
its relative simplicity, but also its efficiency, which in few cases is exceeded by
other continuous sampling plans like the CSP-2 [5]. Dodge made the following
assumptions developing the CSP-1:

1. The process of incoming units is under statistical control and follows a
Bernoulli distribution.

2. Sample inspection is perfect.

3. Defective units are replaced by good ones.

The sampling plan is designed for attributes, thus quality parameters are cate-
gorized as either good or defective. This means that if the incoming process is
under statistical control i.e. the incoming fraction defective p does not change
over time, the process can be described by a Bernoulli process with defect prob-
ability p. As illustrated by figure 1, the sampling plan starts with 100% in-
spection. If i consecutive units are found free of defects, only a fraction f of
the units are inspected. If a unit is found to be defective, the model returns to
100% inspection and the process starts from the beginning. Defective units are
either reworked or replaced with good ones [16]. Important characteristics of
the CSP-1 are the average fraction inspected (AFI), the average outgoing quality
(AOQ) and the average outgoing quality limit (AOQL) [16].
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Figure 1: Procedure of the continuous sampling plan CSP-1

The average fraction inspected (AFI) depends on the parameters i and f
and on the incoming fraction defective p:

AFI(p|i; f) =
1

1 + ( 1
f − 1)(1− p)i

(1)

The average outgoing quality is equal to the average amount of defective units
passing through without being inspected.

AOQ(p|i; f) =
( 1
f − 1)p(1− p)i

1 + ( 1
f − 1)(1− p)i

(2)

The AOQ depends on the incoming fraction defective p. It is monotonically
increasing with p until reaching its maximum AOQL at pM . For values higher
than pM , AOQ is monotonically decreasing because CSP-1 is moving more and
more to full inspection and is thus detecting and replacing more of the defective
items. AOQL is called the average outgoing quality limit, it is the worst (highest)
value of AQL that can be reached depending on the incoming fraction defective
p. AOQL can be determined as:

AOQL =
(i + 1)pM − 1

i
(3)

There are multiple combinations of i and f which result in the same value
of AOQL. In order to guarantee the average outgoing quality limit AOQL with
minimum inspection effort, i and f must be determined in such a way that AFI
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is minimized. The optimal selection of i and f depends on the scenario, e.g.
on the overall number of units (run length). Several increments of the CSP-1
have been provided in order to adapt it to different scenarios. Two of them are
outlined in the following:

2.3 Imperfect inspection

In case of imperfect inspection, two major inspection errors can be made:

• E1: a good item can be classified as defective, also referred to as a type 1
inspection error.

• E2: a defective item can be classified as good, also referred to as a type 2
inspection error.

In the following, A refers to the event that an item is defective. The probability
of the event that an item is classified as defective (B) can be calculated as:

P (B) = P (A) ∗ P (¬E2) + P (¬A) ∗ P (E1) (4)

Wang and Chen have presented a model to calculate a minimal AFI under
the assumption of imperfect inspection [24]. According to them, under the
assumption that the optimal value for i = i∗ is already known, an optimal value
for f∗ can be calculated by

f∗ =
(1− P (B))i

∗
(1− AOQL

p̂ )

((1− P (B))i∗ − 1)(1− AOQL
p̂ ) + (1− P (E2))

(5)

where AOQL is the specified value for the average outgoing quality limit and p̂
is the incoming fraction defective.

2.4 Short production runs

Blackwell developed a Markov-chain model for the CSP-1 under short produc-
tion runs [1]. McShane and Turnbull extended his model to compute probabil-
ity limits on outgoing quality [15]. Although computationally expensive, their
model can be used to determine a CSP-1 with minimal inspection by iteratively
increasing i, determining the smallest value of f that meets the AOQL, and
finally calculating the AFI. The details model go beyond the scope of this paper
and can be found in [15].

3 Statistical Quality Control for People Services

3.1 Assumptions

Because of the nature of pServices as Web based software services that deliver
human intelligence, perception, or action to customers as massively scalable
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resources [10], it is obvious that pServices require some kind of Web platform.
Figure 2 gives an overview of the basic pService scenario which comprises three
roles: the pService requester, the pService platform and the workers who belong
to a worker pool. The pService platform acts as a mediator between the pService
requester who publishes pService tasks and pService workers who select tasks
and work on it in return for a typically small compensation. The paper makes
some additional assumptions about the underlying pService platform:

1. It allows for tracking individual workers based on an individual worker ID
which is returned to the requester for each result delivered by the worker.

2. It provides means for making specific tasks only available to a well-defined
group of workers, e.g. by performing qualification tests.

Figure 2: Scenario of basic pService platform

It is further assumed that there is a large number of equivalent tasks which
consist of the same task description but different task data. The task description
primarily contains the instructions for the workers how to perform the task as
well as information about the expected result quality. The task data is the
variable part which might represent different pictures to be annotated, different
addresses to be validated or different products to be classified. A task instance
represents a task for an individual item of the task data, e.g. for an individual
picture to be annotated.

3.2 Acceptance Sampling for pServices

The objective of the model described in this paper is to leverage acceptance
sampling in order to ensure that pService results are delivered within a certain
average outgoing quality limit AOQL, while the inspection costs in terms of
labor work are minimized. The model can be seen as a quality management
(QM) component on top of the basic pService platform described in the previous
section. The overall scenario is given by figure 3. The model assumes that for a
given task type there is an individual error rate px for each worker x (A). This
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error rate is the same for all tasks of the same type, but it may change over
time, since workers may learn and therefore improve their skills. Because the

Figure 3: Schematic overview of pService platform with QM component

error rates of individual workers are independent from each other, the sampling
has to be done at worker-level. The results are aggregated, and the same AOQL
is applied to all workers that work on this task type i.e. the same quality of
work results is requested from all participating workers. The QM component
uses continuous acceptance sampling in order to guarantee a certain long-run
average outgoing quality limit AOQL defined by the service requester.

The QM component consists of two functional parts: an acceptance sampling
component (B) and a sample inspection component (C). The acceptance sam-
pling component leverages the basic continuous sampling plan (CSP-1) with the
increment of imperfect inspection and replacement and the increment of limited
runtimes as presented in section 2. The CSP-1 leverages continuous sampling
of raw results (D) delivered by the workers and turns them into final results (E)
in order to guarantee an average outgoing quality limit AOQL that is defined
by the requester along with other quality requirements (F).

The CSP-1 requires a mechanism for sample inspection. For this purpose, a
weighted majority vote approach (WMV) was designed which will be described
in detail in section 3.4. The WMV dynamically increases the redundancy by
including additional workers in the MV decision until a predefined significance
ϕmin is reached. Because the inspection process performed by the WMV is not
perfect but only meets a quality level of ϕmin, Case et al.’s model for CSP-1 with
imperfect inspection is utilized in combination with Wang and Chen’s increment.
As some tasks may not conform to the specifications of that task type, e.g. they
are harder to solve than the others or the task description does not apply to
all individual tasks, they are escalated back to the requester (G) if a predefined
escalation limit εmax (F) is reached. That way, he can use this information to
improve task design and provide the correct results himself (H). As we assume a
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fixed payment per task, the QM costs can be minimized by minimizing the total
number of tasks. Because the WMV (as well as the traditional MV) appraoch
assumes that the raw results delivered by multiple workers can be compared to
each other or aggregated into a consolidated result, the mechanism works only
for deterministic tasks i.e. for tasks that have a certain well-defined optimal
result [9].

Additional parameters are administrated by the platform itself (I): The
Markov chain CSP-1 model developed by McShane and Turnbull (see section 2)
is used to take into account that some workers may contribute only few results.
It determines a starting value of i, considering the expected run length L∗. L∗

specifies the expected run length of a process per worker, that is the average
amount of tasks of the same task type each worker will work on.

The CSP-1 is implemented using an inspection status wx for each worker.
The initial value will be wx = i which will be reduced by 1 for each consecutive
result that the worker has been submitted and that has been classified as correct.
If wx = 0, only fractional inspection will take place. Once, a result submitted
by the worker is classified as incorrect, his inspection status will be reset to
wx = i.

The worker error rate px describes the expected error rate of worker x,
anticipated from historical values. Due to the nature of human work, px should
never completely reach 0.

3.3 Worker Pool Management.

A worker who constantly stays in full inspection mode leads to high costs, so
depending on the availability of workers and the costs for inspection, a decision
has to be made as to which workers are not profitable and should be removed
from the worker pool. Therefore, the maximum error rate e has been introduced.
If a worker’s error rate exceeds the maximum error rate px > e, he may not
participate.

3.4 Sample Inspection Process - The weighted majority
vote (WMV) approach

The weighted majority vote (WMV) is used for sample inspection. All raw
results that have to be inspected according to the CSP-1 for the respective
worker, are validated by passing redundant task assignments to other workers in
order to be able to come to a group decision which meets a minimum inspection
quality level ϕmin. The process of the WMV is explained based on figure 4.

The basic idea is to publish one additional (redundant) task assignment (2),
retrieve the result (3) and calculate based on his individual error rate whether
the required minimum inspection quality ϕmin has already been met (4). If
this is the case, the final result is returned (4). If the required quality has not
yet been met, it is checked in step (5), whether a quality improvement can be
expected by adding more workers. If that is not the case, the task is escalated
back to the requester. Otherwise, the process continues with step (2) where
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Figure 4: Detailed overview of pService platform with QM component

another redundant task assignment is published. The process is continued until
either the raw results delivered by several workers can be aggregated into a
reliable result (4) which is returned as the final result to the requester or until
the escalation limit is reached in step (5). Figure 5 provides an overview of the

Figure 5: The weighted majority vote (WMV) approach

WMV. Assuming each worker x has an individual failure rate px when working
on task y and returns raw result rxy, the process is the following:

1. Specify desired level of inspection quality ϕmin and escalation limit εmax.

2. Make one (more) redundant assignment for task y available to the workers.

3. Retrieve the worker result rxy and identify the result with the highest
probability of correctness ε as well as the actual escalation limit ε.
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4. If the ϕ exceeds the desired level inspection quality ϕmin, return the result
rc with the highest probability of correctness and update the qualification
values qx of all participating workers, where qx = 1− px.

5. Escalate the task back to the requester if the overall probability ε for
getting a result set Ry is lower or equal than the escalation limit εmax,
with Ry = {r(x1), r(x2), ..r(xk)}, x1, x2..xk being the IDs of the workers
who have worked on the task and k being the number of assignments for
the task.

Steps 2 to 5 are repeated until the final result is returned in step 4 or the task is
escalated in step 5. In step 3, the values ϕ and ε are calculated using equations
6, 7 and 8. Equation 6 determines the Bayes-conditional likelihood for result rc
being correct under the condition that the result set Ry was received.

ϕc = P (rc is correct|R = Ry) =
P (rc is correct ∩R = Ry)

P (R = Ry)
(6)

=

∏
∀ri=rc

rcqi
∏
∀ri 6=rc

pi∑k
j=1

∏
∀ri=rj

qi
∏
∀ri 6=rj

pi +
∏N

j=1 pj
(7)

εy = P (R = Ry) = (
k∑

j=1

∏
∀ri=rj

qi
∏
∀ri 6=rj

pi) +
N∏
j=1

pj (8)

4 Evaluation

4.1 Experimental design

The QM approach has been implemented as a QM component on top of MTurk,
accessing the platform through the SOAP interface available to service re-
questers. An optical character recognition (OCR) scenario was used for evalu-
ation, which consists of a dataset of 1176 handwritten words. In each of the
tasks, a worker was asked to type in a single handwritten word which was dis-
played as an image file (JPEG). The expected optimal result (gold standard)
was specified by the author of the handwriting himself. On February 1st, 10
instances (assignments) of each task were uploaded to the MTurk platform. It
was prohibited that a worker handles the exact same task more than once. The
task payment was $0.01 per task, with Amazon receiving a service charge of
$0.005 for each task. Consequently a total amount of 1, 176 × 10 = 11, 760
data sets has been collected during the evaluation leading to total expenses of
11, 760($0.01 + $0.005) = $176.40. The QM mechanism was simulated on the
raw results in order to be able to run multiple simulations at different parame-
ters and in order to have a baseline for comparing with the performance of the
traditional MV mechanism.
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4.2 Qualification testing

The MTurk platform provides means for limiting the access to tasks to those
workers who have successfully completed a so called qualification test. Such
a test can be designed individually for each type of task. The QM approach
described in this paper implicitly determines the error rates of the workers,
therefore there is typically no need to restrict the participation to those who
have passed a qualification test. However, as the actual test was only simulated
on a fixed number of instances (assignments) of each task, a qualification test
was used to reduce the overall cost of the experiment as it excludes spammers
and workers who submit bad quality right from the start. The test consisted
of a series of 10 simple OCR tasks (10 words). All of them had to be typed in
correctly in order to pass the test.

4.3 Execution performance

Probably the most astonishing result of the experiment was the speed with
which the results were submitted. In the first pre-tests, a batch of 3,528 tasks
was completed by 112 workers in less than 15 minutes at an execution rate
of 14,088 tasks per hour. During other experiments we even observed total
execution speeds up to 3 times as fast, because of more workers participating.
We assume that the execution speed besides the payment also depends on the
time of day, since most workers are U.S.- or Indian citizens [19]. Figure 6
illustrates the execution of the actual experiment in which 11,760 tasks have
been processed by 36 workers in about 2:40 hours. One can observe how workers
successively join the process. A similar chart is used by the crowdsourcing
provider crowdflower.com.

4.4 Full inspection

The first simulation was a full inspection by running the WMV for all tasks.
The CSP-1 was not used in this experiment. Running only the WMV leads
to remarkably good quality. The inspection quality goal of 0.99 was almost
perfectly met. Figure 7 shows the results of WMV compared to the traditional
MV approach. The traditional MV was simulated based on the same data as
the WMV by averaging all possible combinations of 2 to 9 answers within each
set of 10 available answers per task for the two-fold up to the 9-fold MV. For
each combination, the most occurring answer was chosen. If several answers
occur the same amount of times (tie), a random choice between the answers
occurring most was made, as suggested by Snow et al. [21].

We see that our WMV (98.36%) even outperforms the accuracy of a ninefold
traditional MV (97.76%). That is a remarkable result given that the WMV is
4 times more efficient as it requires only 2.25 workers per task compared to
9 workers per task for the basic ninefold MV approach. In other words: the
WMV approach has reduced the quality management effort by some 75 percent
compared to the traditional MV approach. Figure 8 illustrates this relation.
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Figure 6: worker participation

Figure 7: Comparison of the accuracy of different majority vote approaches

4.5 Acceptance Sampling

In a series of tests, the QM approach was used with CSP-1 for 3 different
quality goals i.e. three different values of AOQL. Figure 9 shows the results of
10 simulation runs with an AOQL of 0.05:

• AOQL = 0.05; i = 6; f = 0.249; ϕmin = 0.99; εmax = 0.01

A total of 1.52 assignments per HIT was observed on average, which is
a significant improvement even compared to the 100%-inspection with 2.25
assignments per HIT. A number of 1.91 percent of the HITs are escalated.
Some 39 percent of all tasks are inspected. Figure 10 illustrates the decrease of
the inspection rate over time, therefore a smaller inspection rate can be expected
in the long run. The AOQL value was achieved in 6 out of the 10 cases. It is
not surprising that in some runs the quality is slightly worse than the specified
AOQL because of the short run time of only 1176 tasks. When averaging over
several runs, we obtain a reliable outgoing fraction of 0.0491, which can be
considered optimal as the goal is to minimize the QM effort rather than to
overachieve the quality objective.
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Figure 8: Comparison of the accuracy of different majority vote approaches

Figure 9: Results of the acceptance sampling test for 10 simulations with AOQL=0.05

We further tested the quality model with different AOQL levels (Figure 9):

• AOQL = 0.025; i = 5; f = 0.582; ϕmin = 0.99; εmax = 0.01

• AOQL = 0.075; i = 1; f = 0.039; ϕmin = 0.99; εmax = 0.01

For AOQL=0.075 the quality is again precisely met. However, when in-
creasing the quality demands to AOQL=0.025, the model does not manage to
achieve the desired level anymore. The reason for that lies in the gap between
the gold standard and the majority decision of the workers: In several cases, the
majority of the workers identified a certain word (e.g. ”five”) even if the writer
(who represented the gold standard) had written a different word (e.g. ”fine”).

5 Related Work

The concept of majority vote is widely used in the context of pServices. Re-
dundant task execution is a basic feature for quality improvement provided by
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Figure 10: Decrease of the average fraction inspected (AFI) over time with
AOQL=0.05

Figure 11: Results of the acceptance sampling tests for different values of AOQL

platforms like MTurk. Sorokin and Forsyth as well as Snow et al. have analyzed
the effect of the approach based on annotation scenarios [22, 21]. Snow et al.
have investigated how many non-experts out of the crowd are needed in order to
achieve better results than one expert. Depending on the scenario, they report
a required number of non-experts between two and more than ten. Whitehill et
al. consider how to integrate labeler’s expertise into a majority vote mechanism
for image labeling [25]. They propose a probabilistic model and use it to simul-
taneously infer the label of each image, the expertise of each labeler, and the
difficulty of each image. Complementary approaches for quality management
of pServices include iterative work processes [13], review processes [9] and the
injection of gold standard tasks [22]. A maximum likelihood estimation can be
used to estimate worker error rates as well as the correct categories of the task
results [7, 9]. The approach leverages the EM algorithm dating back to Dawid
and Skene [3]. Raykar et al. propose a specific form of an EM algorithm which
is capable of generating a gold standard [17].

The validity of the majority vote model has been first mathematically proven
by Condorcet’s Jury Theorem [2]. Under the assumption that one of two out-
comes is correct and each decision maker has the independent probability p > 0.5
to make the right decision, the probability for a correct group decision is greater
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than the individual one. Latif-Shabgahi et al. have examined and classified a
large number of software voting algorithms used in safety-critical systems [11].
Surowiecki illustrated that the aggregation of group responses may lead to bet-
ter results than the information of any single group member - if the opinions are
diverse, independent, decentralized, and an appropriate aggregation mechanism
exists [23]. This phenomenon has been described as the wisdom of the crowds.
Typical applications that leverage crowd intelligence are prediction markets [6],
Delphi methods [20] and extensions of the traditional opinion poll. In the field
of machine learning, Littlestone and Warmuth developed a weighted majority
algorithm, that acts as a ”master algorithm” and aggregates the answers of sev-
eral prediction algorithms in order to determine the best prediction possible [14].
The aggregation mechanism is a vital part of each majority vote model. Revow
et al. compare five combination strategies (majority vote, Bayesian, logistic
regression, fuzzy integral, and neural network) and arrive at the conclusion that
majority vote is as effective as the other, more complicated schemes to improve
the recognition rate for the data set used [18].

6 Conclusion and Future Work

We have presented a statistical model for managing the correctness of human-
based electronic services (people services) which leverages continuous acceptance
sampling and group decision theory. The mechanism consists of two parts: The
continuous acceptance sampling plan CSP-1 is used to track the contributions
of each worker individually based on samples taken from their work results. A
weighted majority vote (WMV) approach was introduced for the inspection of
the samples which leverages a group decision of multiple workers. The number of
workers participating in that group decision is adjusted dynamically depending
on their individual error rates. By validating only a fraction of the tasks and
keeping the validation effort per task at a minimum, the model is capable of
guaranteeing a certain predefined level of result quality at minimum costs. An
evaluation on Amazon’s Mechanical Turk platform has shown a reduction of the
quality management effort of up to 75 percent compared to existing approaches.

In our ongoing research we are expanding the scope of our QM mechanism
to other aspects of quality like performance and availability. Furthermore, we
are investigating the effect of worker feedback on the result quality.
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