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ABSTRACT

In response to the growing demand for better performance,
multicore platforms have become ubiquitous. A critical prob-
lem is that the diversity of hardware and software charac-
teristics is increasing, making it a great challenge for paral-
lel application developers to optimize performance and pre-
serve application portability. In addition, unknown work-
load compositions and run-time interferences make the ef-
fects of tuning parameter settings hard to predict. We tackle
this problem at its core and present Perpetuum, a novel
operating-system-based auto-tuner that is capable of tuning
applications cooperatively at run-time. Applications expose
tuning parameters and feedback measurements of a repeat-
edly executed section to the OS. As part of the OS, Per-
petuum monitors workloads and adapts tuning parameter
values of all running programs to improve performance. In
contrast to earlier approaches, this paper is the first to em-
ploy OS-based auto-tuning to improve system-wide perfor-
mance for simultaneously executing multithreaded applica-
tions — not just the partial performance of an isolated appli-
cation. The entire tuning process does not require any user
involvement, and applications are automatically re-tuned
while executing on new platforms. In addition, this is the
first paper to work out the details and present a fully func-
tional OS-integrated auto-tuner based on a modified Linux
kernel. We also present successful evaluations on multicore
platforms for different application types, such as multimedia
and compression.

1. INTRODUCTION

Many software developers are confronted with the devel-
opment of multithreaded applications in order to exploit the
potential of multicore hardware. Performance tuning is es-
pecially hard in this context for several reasons:

e Multicore platform characteristics are different, so pro-
gram optimizations working on one platform might not
work on another one.
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e The behavior of complex applications is difficult to pre-
dict.

e Applications may have many — possibly interdepen-
dent — tuning parameters that impact performance.

e The value ranges of tuning parameters and thus the
entire search space can be large.

e More than one application can be executed simultane-
ously, which means that even if performance parame-
ter values have been optimized for one application on a
particular platform, the same parameter configuration
might not have good performance if applied to several
simultaneously executing instances.

Because it is difficult to find a general analytical solu-
tion, in practice these problems force programmers to man-
ually try out application parameter configurations and check
which ones do improve performance and which ones do not.
Auto-tuning approaches have shown great potential to au-
tomate this process in a feedback loop. On the one hand,
offline tuning has been developed to execute an application,
gather run-time feedback, and use an algorithm to calcu-
late new tunable parameter values that are likely to improve
performance. However, most of the existing solutions have
drawbacks. For example, [1, 2, 3] work just for domain-
specific numerical programs (e.g. matrix-multiply or FFT);
they generate a set of programs on every platform, out of
which the best-performing one is picked. Unfortunately this
principle works only for a limited set of application domains.
Moreover, the tuning of an application in isolation does not
reflect today’s usage scenarios on multicore desktops and
servers, which requires online tuning. Long-running paral-
lel applications might have to be re-tuned while they are
executing; the environment may change when other appli-
cations are started, or when the operating system allocates
resources (e.g., threads, CPU, memory, etc.) in a different
way.

To tackle this problem, our paper makes several novel con-
tributions. This is the first paper to propose Perpetuum, an
auto-tuner for parallel applications that is integrated into
the operating system kernel. Its design gives us a unique
opportunity to tune several applications simultaneously and
hide the complexity of the tuning process from the user and
the developer. Our auto-tuner is capable of optimizing the
performance of shared-memory multithreaded applications
while they are running, assuming that applications expose
by default their performance-relevant tuning parameters and



the associated value ranges to the OS. If every OS inte-
grates an auto-tuner such as ours, then developers need to
worry less about performance portability; every application
would be re-tuned while it executes on another platform that
has different hardware characteristics. We demonstrate in
two extensive case studies that our tuning approach works
well and is generally applicable beyond numerical programs.
The first study focuses on a reengineering scenario for a
parallel compression application, whereas the second study
shows a parallel video processing application developed from
scratch. Both studies illustrate significant performance im-
provements in single-process and multi-process execution
scenarios. We remark that even though Perpetuum has been
developed for shared-memory multicore machines, it could
also be employed on cluster nodes to automatically improve
single-node multithreaded performance.

The paper is organized as follows. Section 2 discusses
principles and assumptions of our run-time auto-tuning ap-
proach. Section 3 introduces Perpetuum, our OS-based auto-
tuner, and discusses technical details. Section 4 presents a
detailed case study on parallel compression with several sce-
narios illustrating performance optimization in single-process
and multi-process contexts. Section 5 elaborates on similar
aspects for a parallel video-processing application. Section
6 discusses related work. Section 7 has an outlook on future
extensions. Section 8 provides a conclusion.

2. ONLINE TUNING

We now discuss some requirements for the structure of
online-tunable applications and illustrate how the optimiza-
tion cycle generally works.

2.1 Structure of Tunable Applications

We assume that every application tuned at run-time has
one compute-intensive “hot-spot”, i.e., a modular part of
code that is executed over and over again. The programmer
is responsible for developing his or her application with such
a hot-spot or identify one in existing code. The programmer
has to define tuning parameters that influence application
performance (but not the results) within a hot-spot. To close
the auto-tuning feedback loop, the programmer inserts mea-
surement probes that determine the execution time of the
parameterized hot-spot. We also assume that applications
have a longer run-time so that the auto-tuner gets a chance
to execute several iterations, adapt parameter values, and
observe the effects.

As an example, consider the following C code.

int threadCount = 1;

addParam(threadCount, 1, 16);

while (calculationRunning) {
startMeasurement () ;
doCalculation(threadCount) ;
stopMeasurement () ;

}

The hot-spot in the above example consists of a loop do-
ing some calculation. The tuning parameter threadCount
has been defined by the developer to control the level of
parallelism. It is well conceivable to have additional param-
eters that steer doCalculation(). The addParam() func-
tion registers the thread count variable and its ranges at
the auto-tuner. In future iterations, the auto-tuner will set

the variable’s values to a number between 1 to 16. Note
that it is the responsibility of the programmer that such
changes produce consistent results; we’ll show in our case
studies that it is not very difficult to do in practice. Fi-
nally, startMeasurement () and stopMeasurement () are the
probes telling the auto-tuner where to obtain feedback infor-
mation; they can be configured to use various metrics, e.g.,
wall-clock time. Using this information, the auto-tuner can
evaluate the impact of thread count changes on performance.

2.2 The Optimization Cycle

Figure 1 illustrates the general optimization cycle. The
tunable application is started in the execution phase and
the auto-tuner gathers all tuning parameters. Performance
optimization occurs in a loop. After executing one itera-
tion of the application’s tuning hot-spot, the auto-tuner col-
lects feedback information. Based on this information (e.g.,
elapsed execution time) it calculates for all tuning parame-
ters new values that are expected to improve performance.
The tuning parameters are assigned these values before the
next iteration begins. The optimization cycle repeats until
the application terminates.

Development Phase

Implement tuning parameters

4
Execution Phase

‘ Start application }—»‘ Gather tuning parameters ‘

Online-tunable section (hot-spot) |

v

Enter application’s
tuning hotspot

Get feedback

Optimization Cycle

Apply new tuning
parameter to application [©

Calculate new tuning
parameter values

A4

Terminate application

Figure 1: The optimization cycle for online tuning.

Note that the auto-tuner algorithm can adjust the tuning
parameters according to the overall system workload. When
two applications compete for example for cache or memory
I/0, the auto-tuner aims for a cross-process optimum, as
defined by the objective function of the tuning algorithm.
If one application terminates and releases its resources, an-
other application can be assigned additional resources that
become available.



Application Address Space

System Call Interface

Tuning Parameter

system call stubs

User Space

Kernel Space
system call handler

include/linux/syscalls.h

include/asm/unistd_{32|64}.h

Address Space

A

sys_exit()

| Auto-Tuner Syscalls

sys_optStartMeasure() | |sys_optStopMeasure()

sys_optAddParam()

Auto-Tuner

\ 4 Y

Y Y

Stop Measurement

Start Measurement get_NewParamValues()

Linux Process
Management

Add process
tuning parameter

apply_NewParamValues()

A

OS Kernel Module

Pluggable Tuning Algorithms

calculate NewParamValues() <

kernel /exit.c
Exit Handler
Tidy up auto-tuner data
Scheduler

Figure 2: Overview of Perpetuum’s system architecture.

3. PERPETUUM: A COOPERATIVE
ONLINE TUNER

We introduce Perpetuum’s details on how it’s integrated
into the Linux kernel, the feedback measurement mecha-
nisms, and the tuning algorithm used to optimize applica-
tion performance.

3.1 Architecture Overview

Figure 2 shows the overall system architecture of Per-
petuum and how it is integrated into the Linux OS kernel.
All tunable applications run in the user space. An exclusive
part of each tunable application’s address space is reserved
for the tuning parameter address space; this is used by Per-
petuum to store, read, and modify the values of the tuning
parameters associated with an application.

A tunable application communicates with the auto-tuner,
which is inside the OS kernel, via the system call interface.
Perpetuum introduces new system calls that on the one hand
allow an application to expose its tuning parameters to the
OS, and on the other hand communicate the feedback infor-
mation gathered from program-internal probes.

Why use system calls as a means for communication with
the kernel? In Linux, there are only few methods of commu-
nication between the kernel and an application: Hardware
interrupts, traps (i. e. software interrupts), and system calls.
The first two are inappropriate because they are typically
triggered by a hardware component or indicating a system
error, so it’s unreliable to use them for other types of com-
munication. System calls are better suited because they do
not interfere with other kernel communication.

The auto-tuner is an independent component in the Linux

kernel that reacts to three new systems calls received via
system call interface. Calling sys optAddParam() registers
a new tunable parameter, sys_optStartMeasure() may start a
clock counter to measure execution time, and
sys_optStopMeasure() may stop the clock counter. Values
in the tuning parameter address space can only be changed
during the sys optStopMeasure() call; this call blocks the
calling thread until all parameters are updated.

Tuning algorithms can be integrated into Perpetuum as
OS kernel modules. It is possible to extend the system with
additional plugins that implement new tuning algorithms.
The tuning algorithms access within the kernel all applica-
tion’s tuning parameter values and feedback information to
compute the new parameter values for the next iteration.
In addition, they may access OS-internal data about work-
loads and system state — Perpetuum is the first auto-tuner
to provide the means to use such information for tuning. A
tuning algorithm finally updates the tuning parameter val-
ues for the next iteration directly in the tuning parameter
address space of each application.

We remark that Perpetuum does not make any modifica-
tions to the Linux OS scheduler, which is part of the Linux
process management module. This design decision is based
on the fact that Perpetuum influences application tuning
knobs that are on a higher abstraction level [4]. By con-
trast, the scheduler influences low-level resource manage-
ment decisions such as on which core to execute a particular
thread. Perpetuum currently influences the scheduler just
indirectly; applications acting upon a parameter change ini-
tiated by Perpetuum may increase or reduce the number of
threads managed by the scheduler.



3.2 Feedback Measurement Mechanisms

Operating systems provide access to various kinds of data
that could be used for performance tuning, e.g.,:

e Wall-clock time: This is the time passing indepen-
dently of any activity. In practice, it’s the time a user
spends in front of the computer while waiting for a
task to finish.

e CPU time (ticks): This metric counts for an appli-
cation how much time has been actually spent using
the CPU and can differ from wall-clock time. For ex-
ample, CPU time can be less than wall-clock time if
an application has to wait for I/0.

e Hardware performance counters: Modern CPUs
are capable of counting certain hardware events, such
as cache misses or how many cycles the CPU spent in
a specific state.

Perpetuum uses wall-clock time as the default feedback
metric. We consider it the most appropriate for run-time op-
timizations in practical scenarios, because this is the amount
of time the user has to wait for an application to finish. Calls
to startMeasurement () and stopMeasurement () notify the
auto-tuner to collect feedback information.

3.3 Tuning Algorithm

Perpetuum’s tuning algorithm is based on the popular
simplex heuristic developed by Nelder and Mead [5]. Given
an n-dimensional search space, the basic idea is to generate
a simplex with n 4+ 1 points. In our case, n is the number of
application parameters to optimize. A concrete value config-
uration from the search space, i.e., a concrete starting value
for each parameter, is needed to initialize the simplex. The
simplex consists of the point of the starting configuration
and n more points that are generated by adding a constant
displacement to the initial values in each dimension.

The points of this simplex are iteratively moved around
to explore the search space for better configurations. Nelder
and Mead define specific rules and transformations (see [5]);
for example points can be “reflected”, moved to expand or
contract the simplex, or the entire simplex may be scaled
down to promising areas.

Our implementation has to take care of several technical
details. For example, our search space consists of discrete
integers, so we have to compute the closest feasible points
to the algorithm solutions. No floating point operations are
allowed within the Linux kernel, so all numbers have to be
mapped on integers.

4. CASE STUDIES ON PARALLEL
COMPRESSION

Application Description:

The Bzip2 program is a popular sequential file compres-
sion tool for everyday use [6]. The compression algorithm
divides a file stream into independent blocks that pass a
pipeline of algorithms. At the end of the pipeline, com-
pressed blocks are concatenated in the right order to a com-
pressed file.

We start with a parallel Bzip2 version presented in [7],
which has two command line parameters: The first parame-
ter specifies the number of threads ¢ that are used for parallel

compression, and the second parameter specifies the block
size b. Thread numbers can be chosen from an interval be-
tween 3 and 64 (a reasonable upper limit chosen for the
experiment), whereas blocks can have sizes of i * 100 kilo-
bytes with ¢ € {1,2,...,9}. The parallel Bzip2 application
has an option to compress all files in a given directory, so
it is a potentially long-running application. If it executes
for example on a server, it is realistic that several instances
work simultaneously to process different directories.

Application Reengineering for Online-Tuning:

This case study exemplifies how to modify an existing par-
allel application to enable it for online tuning. Conceptually,
the hot-spot is the compression code that executes for each
file. It is located in the handle_compress() function in the
bzlib.c file that encapsulates the core algorithm implemen-
tation. We added in this file two feedback information sys-
tem calls to the auto-tuner that measure the wall-clock time
of the hot-spot; the rest of the program has very minimal
performance impact. The parameters that influence com-
pression performance are t and b, and are defined as vari-
ables in the bzip2.c file. We added in that file two system
calls to inform Perpetuum that those variables are tunable.
In total, we added less than 10 lines of code.

If the application processes a directory of files, the hot-
spot is called over and over again until all files are com-
pressed. The reengineered parallel implementation can change
upon request the values for ¢ and b after finishing the com-
pression of the current file.

Experimental Environment:

We conduct the experiments with the parallel Bzip2 ap-
plication on an Intel Core 2 Quad Q6600 machine, clocked
at 2.40GHz. The machine runs our customized Linux kernel
version 2.6.34 with Perpetuum included.

Our experiments are carried out in a controlled environ-
ment; we deactivated the graphical user interface and any
other interfering applications. We use for all scenarios the
same collection of 50 files, each having a file size of 2MB, so
the reengineered Bzip2 will execute the hot-spot 50 times.
Having all files the same size is not a constraint of the auto-
tuner. This setup makes results comparable exposes sources
of bias.

Scenario 1: Tuning a Single Process:

This scenario evaluates that Perpetuum successfully tunes
a single application while that application is running. Per-
petuum controls parallel Bzip2’s t and b parameters in order
to reduce the run-time of the hot-spot.

First of all, the search space of this scenario is small
enough, so we could exhaustively benchmark all parame-
ter configurations for a single Bzip2 process without auto-
tuning. In total there are 9 x 61 = 558 configurations. The
execution time for each configuration was measured 3 times
to avoid bias.

Our exploration indicates that the block size b has a sig-
nificant performance impact. In addition, we made the fol-
lowing observations. For any given block size, ¢ < 5 may
slow down performance. The execution times tend to be
better than the median execution time if b < 5 and t > 5.
If b € {1,2} and t > 5, the execution time is within the best
20%. We thus expect Perpetuum to reduce the block size
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Figure 3: Online tuning of parallel Bzip2, scenario 1. Each column shows the results of one experiment with a
single Bzip process. The first row illustrates hot-spot execution times, the other rows the tunable parameter

values.

(ideally to b = 1) and increase thread count to ¢ > 5.

With the best configuration, the entire program executes
in 6.5 seconds, whereas the worst configuration takes 22.9
seconds. This is the range in which Perpetuum can optimize
the application’s execution time.

Three experiments. As Perpetuum needs a starting con-
figuration, we conduct three experiments with configura-
tions belonging to the median, upper quartile, and worst
case execution times (known by exhaustive search). The
results are illustrated in Figure 3. The Figure shows the ex-
ecution times of the hot-spot (which accounts for almost the
entire program execution time), the block size, and thread
count as they change among iterations. For visualization, we
also plot an exponential moving average of execution times
using

a; = 0.75a;_1 + (1 — 0-75)552'

aop = o,

where a; is the moving average value and z; the execution
time measured at the end of iteration i. Older values are
included with exponentially lower weight into the current
average value.

(1) Worst case performance: In Figure 3 column (a), the
tuner starts with the configuration b = 7 and ¢t = 3, which

has an execution time of 458ms. Without tuning, the ap-
plication would have taken 458ms x 50 = 22.9 seconds to
finish. Perpetuum reduces the average execution time to a
total of 8 seconds, which is 2.9x faster. Note that this is not
the classical speedup measure in comparison to the sequen-
tial program, but a performance boost in comparison to the
parallel program; speedup compared to the sequential time
of 24.5 seconds is even higher, namely 3.1. The final tuning
result is just 23% worse than the best attainable execution
time.

The tuning parameter graphs in the second and third row
illustrate how Perpetuum works. Both values increase at
first, but while the auto-tuner considered the direction of
change to be good for the thread count, it realizes that a
smaller block size is better to reduce execution time. The
block size quickly converges to 1, while other thread counts
are tried out. The step for t is doubled until iteration #8,
and ¢ finally converges to 9 threads after some oscillation.

Our exhaustive measurements exploring the search space
show that a configuration with a b = 1 and ¢t = 9 is within
the best 1% of all configurations.

(2) Median performance: The tuner starts in Figure 3 col-
umn (b) with the configuration b = 5 and ¢t = 20. Without
auto-tuning, finishing all iterations would have taken 8.6 sec-
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Figure 4: Online tuning of parallel Bzip2, scenario 2. Two instances of Bzip2 are started at the same time

and tuned simultaneously.

onds, whereas the auto-tuned version finishes in 7.2 seconds
— this is still 1.2x faster.

(3) Upper quartile performance: The experiment in Fig-
ure 3 column (c) has a starting configuration between the
median and worst case performance, with b = 7 and t =
28. Without auto-tuning, finishing all iterations would have
taken 10.4 seconds, whereas the auto-tuned version finishes
in 7.4 seconds, so the online-tuned version is 1.4x faster.

If the starting configuration has already good values, Per-
petuum tries to tune the application but is not able to sig-
nificantly improve performance, so we omit these graphs.

Scenario 2: Simultaneously Auto-tuning Two Pro-
cesses:

In this scenario we evaluate how Perpetuum simultane-
ously tunes two processes that are started at the same time.

The experiment executes two instances of the parallel Bzip2
application that work on individual copies of the file bench-
mark used in scenario 1. Each instance starts with the same
configuration b = 5 and ¢t = 3 which is within the worst 10%
of execution times. The graphs also show a higher execution
time variance with two processes, which is due to increased
system activity on CPU, RAM, and hard disk.

Without auto-tuning, starting both instances at the same

time and waiting for the last one to finish takes 26.5 seconds.
With auto-tuning, it takes just 13.5 seconds. This boosts
performance by a factor of 1.96.

Fig. 4 shows the execution time results for both Bzip pro-
cesses and how Perpetuum adapted block size and thread
count for each process. The auto-tuner reduces the block
size for both processes. Process 2 reaches b = 1, which was
the optimum in scenario 1. Process 1 also is assigned b =1
for some iterations, but the auto-tuner finds out that it can
reduce execution time by increasing block size to 3, which
differs from the single-process scenario. The sum of the mov-
ing averages of the two processes decreases, which shows that
Perpetuum indeed improves overall system performance.

Perpetuum automatically finds the critical point around
t = 5 after 10 iterations, which we manually identified our-
selves in the exhaustive exploration of the search space in
the single-process scenario (the single process was signifi-
cantly slower when ¢ < 4). As a result, Perpetuum increases
the thread counts for both processes. Process 1 converges
to t = 5 and process 2 to t = 24.
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tuned simultaneously.

Scenario 3: Simultaneously Auto-Tuning Two Pro-
cesses with a Time Lag:

This scenario is similar to scenario 2, except that the sec-
ond process is started 4 seconds after the first one. Figure 5
shows the timeline: The first process starts off solo, as in
scenario 1. The block size converges again quickly to b =1
while the thread count roughly converges to ¢ = 7. Then,
the second process starts. While the tuning parameters of
process 2 are modified as expected, the execution time of
process 1 increases due to interference with process 2. The
auto-tuner does not change the block size in both processes,
but assigns process 2 more threads, possibly to hide latency.
Apparently, this strategy improves overall performance, be-
cause the moving average sum decreases.

Lessons Learned from Scenarios 1-3:

The auto-tuner improves performance significantly in mul-
tiple application scenarios. Parameters such as the block
size, which had more impact on performance variance, were
adjusted earlier than the others. We remark that a heuristic
used by many programmers is to set the number of threads
to the number of cores. However, in all our scenarios, con-
figurations having 4 threads and any block size were in the
worst 10% performance interval. Perpetuum could not be

fooled into this false assumption and quickly converged to
better values within the first 10 iterations.

S. CASE STUDIES ON PARALLEL VIDEO
PROCESSING

Application Description:

This is an online-tunable application that is designed from
scratch [8]. It applies a parallel edge detection algorithm to
an input video stream, and produces an output video stream
of images that just show the edges of objects. This is an
important application in computer vision, as edge detection
is the basis for other algorithms that are used for example
to identify or track objects. A fast online-tunable version
can be employed in many areas, such as robotics, security,
or human-computer interaction.

In principle, the application has five multithreaded filters
in a pipeline. Each filter is a pipeline stage that works in
parallel on one frame of the video stream:

e Stage 1 (Gauss): Performs a Gaussian blur by applying
a convolution mask.

e Stage 2 (Gradient): Applies a Sobel mask to compute
the gradient strength and direction for each pixel.



e Stage 3 (Trace): Traces the edges based on the gradi-
ents computed in the previous stage.

e Stage 4 (Suppress): Suppresses pixels that haven’t
been identified to be on an edge.

e Stage 5 (Non-Max): Performs some clean-ups in the
picture by eliminating weaker edges that are parallel
to stronger ones.

The application uses Intel’s Threading Building Blocks
[9] and assigns a tunable number of threads to each pipeline
stage. For each stage, thread count can be set from 1 to 64.
The tunable hot-spot measures the execution time of every
10 frames passing the entire pipeline.

Experimental Environment:

The experiments are conducted on the same machine as
in the Bzip2 case study. As an input data set, we use the
first 720 frames of an open source movie [10]. Out input
file has an AVI format with MPEG-4 compression, 854x480
pixels resolution, 24 frames per second, and a total size of
roughly 12 MB.

Scenario 1: Tuning a Single Process:

The total search space with our five parameters consists
of 64° = 1,073, 741,824 configurations, which can hardly
be explored exhaustively. Instead, we run a few explorative
tests. It appears that the first two stages have more im-
pact on the overall application run-time than the last three
stages. We thus focus on exploring the first two stages with
thread counts between 1 and 16 for each stage. All measure-
ments are repeated 3 times. The best-performing configura-
tion have 11 threads for Gauss and 5 threads for Gradient,
with a total run-time of 116.3 seconds. However, the char-
acteristics of the distribution are interesting: The difference
between the 100 fastest configurations is at most 4.3 sec-
onds; the curve seems rather flat for at least 100 additional
configurations before it increases. We also find that intuitive
configurations such as assigning 1 thread per each stage end
up within the worst 10% performance. Configurations with
thread count of 1 for the Gauss stage are in the worst 5%
of all configurations. The worst configuration has threads
assigned to stages as follows: 1-16-1-1-1. The average run-
time without auto-tuner is 384.4 seconds. The Gauss thread
count parameter seems to have high sensitivity; when it in-
creases from 1 to 2, performance makes a surge. Perfor-
mance improvements are smaller if more than 2 threads are
assigned to this stage.

Our results with the auto-tuner are illustrated in Fig-
ure 6, which exemplifies how well Perpetuum performs on
the worst case in which the auto-tuner gets the start config-
uration 1-16-1-1-1 with bad performance. In the first itera-
tion, hot-spot execution time is about 5.2 seconds, but the
auto-tuner is able to finally reduce it to 2.7 seconds, which
is a 1.9x improvement. It is also remarkable that the auto-
tuner tries out tuning the thread count of the last stages but
quickly realizes that they don’t have much effect, so the val-
ues remain constant. By contrast, the thread counts in the
first stages are tuned more often, and the tuner automati-
cally detected what we had to find out manually: Increasing
thread count of Gauss above 1 significantly improves perfor-
mance.
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Figure 6: Omnline tuning of a single-process video
processing application, scenario 1. The graph illus-
trates hot-spot execution times, the other graphs
show the tunable parameter values.
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Figure 7: Online tuning of a video processing application, scenario 2. Two processes are started with a time

lag and tuned simultaneously.

The final configuration that Perpetuum converges to is
non-intuitive. The number of threads per stage is distributed
as follows: 2-15-1-1-1, so a total of 20 threads works best on
our 4-core machine!

Scenario 2: Simultaneously Tuning Two Processes
with a Time Lag:

In a similar way to the Bzip2 online tuning case study we
start two processes of the video processing application with
the configuration 1-16-1-1-1. Figure 7 shows that this tun-
ing scenario is more difficult. The first process is tuned in a
similar way to scenario 1; if the Gauss filter has more than
one thread, performance improves significantly. At iteration
25, the second process starts and interferes in the environ-
ment, which causes some disturbances in both graphs. The
performance of process two finally improves after the auto-
tuner has found that increasing the thread count of Gauss
is good. Note that even though process one’s run-time in-
creases until it terminates in iteration 88, the overall system
performance represented by the moving average sum still im-
proves. In addition, the hot-spot execution time is improved
for each process until the last iteration, in comparison to the
first iteration.

6. RELATED WORK

Cooperative auto-tuning with operating system support
has been welcomed as a new idea in the community [11].
Most of the related work, however, covers online tuning with
a different focus and with other techniques.

Orio [12] focuses mostly low-level performance optimiza-
tions on a particular code fragment annotated with specific
structured comments. It generates many tuned versions of
the same operation and empirically evaluates the alterna-
tives to select the best performing version for production
use.
MATE [13] provides dynamic tuning for MPI applications
and is designed for distributed architectures. The tuning
decisions are made according to performance models and
predefined tuning parameters.

An adaptive task scheduler for multitasked data-parallel
jobs is introduced in [14] for distributed systems. The sched-
uler has a continuous feedback loop that lets the scheduler
know about new processor requests.

The work of [15] uses hardware performance counters in a
multicore-aware operating system to gather fine-grained in-
formation about run-time application behavior. This infor-
mation is needed in a feedback loop that performs dynamic
program optimizations. The system aims to minimize cache



contention by clustering threads and assign dedicated cache
regions to threads.

The Contention Aware Execution Runtime (CAER) en-
vironment [16] provides a run-time solution that minimizes
cross-core interference due to contention, while maximizing
utilization. CAER leverages performance monitoring fea-
tures of multicore processors to infer and respond to con-
tention.

Active Harmony [17, 18, 19, 20] is a suite of compiler
and run-time tools to support parameter tuning of parallel
programs in heterogeneous distributed environments. We
measured the overhead of this approach on multicore to be
significantly higher than in Perpetuum. Moreover, our ap-
proach favors low response times over throughout, which
makes it more suitable for multicore desktops.

Scenario Based Optimization [21] combines static and dy-
namic optimization techniques for online tuning. In a static
phase, the system generates multiple versions of some pro-
gramming language function. Each version’s performance is
evaluated at run-time, and for future evaluations the control
flow is directed to the best-performing version.

In the compiler domain, [22] present a compiler frame-
work that can detect at run-time which code optimizations
to apply. The work of [23] employs machine learning to it-
eratively learn about program features and adapt compiler
optimizations accordingly.

7. OUTLOOK

The OS-based auto-tuner developed in this paper provides
a platform for novel research in auto-tuning to make the op-
timization process transparent for the user. Moreover, tun-
ing algorithm can efficiently access a variety of OS-internal
information about global system state.

A promising extension is to add semantics to the appli-
cation parameters that are exposed to the OS. If the auto-
tuner knows that a certain parameter represents for example
a number of threads or buffer sizes, it can make more sophis-
ticated tuning decisions.

We now have a working prototype, and future versions
of Perpetuum can provide more advanced means to gather
other run-time feedback information to detect congestions,
bandwidth overload, etc. This will help better identify and
factor out influences on application run-time and make tun-
ing decisions that lead to faster convergence to an optimum
run-time. Online tuning algorithms such as ours based on
Nelder-Mead need to be improved to escape local minima.

The combination of online tuning and offline tuning has
great potential. Perpetuum needs a starting configuration
for tuning, and it would be advantageous to store informa-
tion from earlier program runs, so when the same application
is started again, online tuning may draw upon insights from
historical executions.

8. CONCLUSION

Perpetuum is the first cooperative online auto-tuner that
is integrated into the Linux OS kernel. To our knowledge,
this is the first paper to present a working prototype of such
a system. Our case studies show that the performance of
multicore applications can be significantly improved while
they are running. The entire optimization process is trans-
parent for users and developers, thus relieving them of heavy
burdens of manual performance experiments and performance

portability issues. The platform we developed offers a very
fertile new ground for future research because performance
optimization can access global system state that is only vis-
ible within the OS. Our long-term vision is that every mul-
ticore application will be auto-tuned by default.
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