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Zusammenfassung

Moderne Produktionsanlagen sind geprägt von einer Vielzahl automatisierter
Prozesse. Trotz des hohen Grades an Automatisierung existieren hingegen
auch viele Fälle in denen der Einsatz von menschlichen Arbeitskräften auf-
grund ihrer Flexibilität gegenüber maschinellen Produktionskomponenten
von Vorteil ist. Der Trend in Richtung intelligenter Fabriken, die in der
Lage sind die Produktion selbstständig zu steuern, macht es wiederum er-
forderlich, dass menschliche Arbeiter (auch Werker genannt) in vollautoma-
tisch gesteuerte Fertigungsprozesse nahtlos eingebunden werden können.
Die nahtlose Integration von Werkern in vollautomatisch gesteuerte Ferti-
gungsprozesse erfordert eine Mensch-Maschine Schnittstelle, die sowohl
Rückmeldungen und Kommandos des Werkers an das Produktionssystem als
auch automatisch menschliche Tätigkeiten erkennt.
Die vorliegende Arbeit behandelt eine Mensch-Maschine Schnittstelle, die
diese Funktionalitäten bietet und in Hinsicht auf mögliche Anwendungen aus
flexiblen und wieder verwendbaren Komponenten besteht.

Die Schätzung der Position beliebiger mit der Werkertätigkeit verbundener
Objekte stellt einen Grundbaustein zur Erkennung von Tätigkeiten im vorge-
stellten Schnittstellenkonzept dar. Das Positionserkennungssystem basiert
auf einer Inertialnavigationslösung, die Daten einer inertialen Messeinheit
und eines markenbasierten Videotrackingsystems mittels eines erweiterten
Kalmanfilters fusioniert. Durch die Kombination dieser Art von Sensoren
ist es möglich, die Vorteile der hohen Abtastrate der Inertialsensoren und
der absoluten Positioniergenauigkeit des Videotrackingsystems zu verbinden.
Des Weiteren erlaubt das Positionserkennungssystem die Kompensation von
durch Verdeckungen hervorgerufenen kurzfristigen Ausfällen des Videotrack-



ingsystems und bietet eine gewisse Skalierbarkeit in Bezug auf den Arbeits-
raum.

Die automatische Erkennung der Werkertätigkeiten basiert auf einem Konzept,
das auf der Modellierung von Aufgaben als Sequenzen aus sowohl sicheren
als auch unsicheren Informationen über Handlungsprimitiven beruht. Dazu
werden zunächst Ortsinformationen aus Positionsschätzungen und elementare
Handlungen aus Inertialsensordaten mittels maschineller Lernverfahren klas-
sifiziert. Aus den Klassifikationsergebnissen werden in einem weiteren Schritt
Handlungsprimitiven abgeleitet. Die auf diese Weise gewonnen Informa-
tionen über Handlungsprimitiven werden in einem übergeordnetem Prozess
unter Einbezug von Kontextwissen verarbeitet, um ausgeführte Werkertätig-
keiten zu erkennen.

Eine natürliche und komfortable Kommunikation zwischen Werker und Pro-
duktionssystem wird durch Rückmeldungen und Kommandos über Hand-
gesten, die über Beschleunigungssensoren erfasst werden, ermöglicht. Das
entwickelte Gestenerkennungsverfahren basiert auf einem elastischen Ver-
gleichsmaß für Zeitreihen und ist somit in der Lage Gesten unabhängig von
deren Ausführungsgeschwindigkeit zu erkennen. Ein wichtiger Bestandteil
dieses Verfahrens ist die Gewinnung von Vergleichsmustern, die als Repräsen-
tanten für Gestenklassen dienen. Diese erfolgt über ein neuartiges Opti-
mierverfahren, das die Klassentrennbarkeit der Vergleichsmuster maximiert.

Die Funktionsweise der Mensch-Maschine Schnittstelle wird anhand von
zwei verschiedenen Szenarien aus dem industriellen Umfeld demonstriert.
Das erste Szenario behandelt die Erkennung von Werkertätigkeiten beim
Schweißen mit einer Handschweißzange. Ein weiteres Szenario, in dem die
Montage eines elektrischen Gerätes behandelt wird, dient zur Demonstration
der Erkennung von Handmontagetätigkeiten. Durch die behandelten Szena-
rien wird die industrielle Anwendungstauglichkeit der vorgestellten Mensch-
Maschine Schnittstelle gezeigt, sowie die flexible Verwendung der Kompo-
nenten demonstriert.
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1. Introduction

Nowadays, computers are omnipresent and serve as facilitation of our daily
work and life. An advancement to the use of common desktop computers
is the vision of ubiquitous computing or pervasive computing. The term
ubiquitous computing refers mainly to microcomputers and intelligent sys-
tems, which are integrated into objects that are used by humans. Ubiquitous
systems should be able to assist and facilitate human activities without the
need of active usage or even without that the user is aware of ubiquitous de-
vices. For bridging the gap between the world of humans and the world of
machines, intelligent human-machine interfaces are required. Therefore, in-
telligent human-machine interfaces can be seen as important components for
ubiquitous computing systems.
In this work, an intelligent human-machine interface for human worker ac-
tivity recognition in industrial environments is presented. The interface is
able to recognize task-related worker activities and provides the capability of
human-computer interaction via gestures. By means of the presented human-
machine interface, workers can be integrated in software-controlled produc-
tion or in an intelligent manufacturing system.

1.1. Background and Motivation

Advances in manufacturing have always been associated with improvements
in product quality and efficiency of production. In times of free market econ-
omy, efficient production systems and a good manufacturing quality are fac-
tors of particular importance for manufacturers in order to stay competitive.
Since the age of mass production, the efficiency of manufacturing technology
has been increased by automation. As a result, modern automated production
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sites allow fast and cost-effective manufacturing of products in large num-
bers.
However, automated production is not the one and only solution to efficient
production and competitive manufacturing systems. One of the major draw-
backs of highly automated manufacturing sites is their inflexibility. This
drawback has a crucial influence on efficiency in situations where flexible and
reconfigurable manufacturing systems are required. The following conditions
are examples for the problem of inflexibility in highly automated manufac-
turing sites:

• Small lot sizes: Because of the fact that automated production systems
are focused on the production of a specific product, they occasion con-
siderable reconfiguration costs, if adaptations are needed for manufac-
turing a new product. Furthermore, manufacturing of multiple product
variants at a time is often not or hardly possible. Therefore, a high de-
gree of automation is only feasible if the product to be manufactured
exceeds a certain lot size.

• Product changes: Sometimes it happens that the design of a product
has to be changed due to several reasons after going into production.
Because sudden product changes require new machine configurations
they cause machine idle times, which cost a lot of efficiency.

• Malfunctions in assembly lines: Due to the stiff organization of the pro-
duction flow in assembly lines, a malfunction in one part of the assem-
bly line causes a breakdown of the complete assembly line until the
malfunction is fixed. Thus, larger repairs are very cost-intensive.

For these reasons, finding a trade-off between a high degree of automation
and flexibility is important for efficient manufacturing systems.
A lot of research in the field of manufacturing technology goes into the direc-
tion of intelligent manufacturing systems, which should be able to provide a
solution for flexible manufacturing. Approaches for intelligent manufactur-
ing systems exist for instance in form of agent-based manufacturing systems
[67, 93] or holonic manufacturing systems [14]. Based on autonomous and
cooperating intelligent production units (also called agents), a distributed and
flexible concept for intelligent manufacturing is offered by these approaches.
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An important issue, which has to be regarded for intelligent manufacturing
systems, is that not only machines, but also workers are present in factories.
Because of their flexibility, human workers play an important role in manu-
facturing systems of the future. However, a problem which arises in here is
that in contrast to machines, workers need particular interfaces, if they should
be integrated in intelligent or software-controlled manufacturing. Therefore,
human-machine interfaces are needed for intelligent manufacturing systems
in the future.
An example for the integration of human workers in an intelligent manufac-
turing system is given by the EU project XPRESS [23]. The ideas of XPRESS
and the general need for the integration of human workers into software-
controlled manufacturing have been the main intention for this work. Thus,
the presented work demonstrates the integration of human workers into the
concept of XPRESS and constitutes a realization for the recognition of hu-
man worker activities in industrial environments.

1.2. Objectives

The general objective of this work is to provide a human-machine interface
for the integration of human workers in intelligent manufacturing systems.
Basically, interfaces are devices or methods that allow interactive communi-
cation, which means a bidirectional flow of information.
The flow of information from the manufacturing system to the worker can
be realized by means of standard human-computer interface methods, e.g.
graphical output on a computer monitor (GUI). Because of that, this direc-
tion of communication is not considered as part of this work, although the
field of visualization methods comprises also sophisticated techniques, such
as augmented reality.
A complex issue is constituted by the realization of the flow of information
from the worker to the manufacturing system if seamless integration of hu-
man workers in the intelligent manufacturing environment is desired. In this
case, information about the status of the task executed by the worker is needed
for production control purposes. For this reason, standard human-computer
interface methods (e.g. mouse and keyboard) are very impractical, because
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they require active reporting from the worker. Furthermore, standard methods
for active human-computer interaction are inconvenient for working persons,
because they are based on access via computer terminals.
Because of these needs, the goal of this work is to realize an unidirectional
human-machine interface with the following capabilities:

• Automatic recognition of performed worker tasks: For the seamless in-
tegration of human workers in an intelligent manufacturing system, it is
required that the interface is able to provide information about the status
of tasks executed by the worker. This incorporates the automatic recog-
nition of activities related to tasks and reasoning about the task status
from recognized activities. Furthermore, the choice of adequate sensor
systems and signal processing methods for obtaining physical informa-
tion as a basis for activity recognition is required.

• Gesture recognition for worker feedback: Besides the automatic recog-
nition of executed tasks, it is necessary that a worker has a possibility for
active communication with a superordinate framework. This comprises
a comfortable method for giving feedback (e.g. issuing commands for
navigation through a help menu) without leaving the workplace. Since
speech, which is the most common and natural way of human communi-
cation, is inconvenient for usage in noisy industrial environments, hand
gestures constitute a more adequate communication method. Therefore,
a gesture recognition system is needed, which should be based on ade-
quate sensing techniques.

• Application independence by means of flexible and reusable compo-
nents: Another important aspect in the development of a human-machine
interface for intelligent manufacturing is the degree of reusability. Since
the manufacturing system should be flexible with respect to the manu-
facturing task, the interface has to be able to cover different production
scenarios. Thus, the developed components should not focus on a par-
ticular use case, but have the capability to be adapted to new production
scenarios.
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1.3. Contributions

Based on the objectives, which have been mentioned in the previous sec-
tion, an intelligent human-machine interface for worker activity recognition
in industrial environments has been developed. By means of this work the
following contributions are made:

• Robust and scalable indoor object position estimation: As a basic sens-
ing technique, a system has been developed for 3D position tracking
of arbitrary objects in industrial environments. The tracking system
utilizes an approach similar to an inertial navigation system, based on
marker-based video-tracking, inertial sensors and a Kalman filter for
data fusion. By making use of the complimentary properties of video
sensors and inertial sensors, the system can be used for precise indoor
position tracking on different scales and is able to provide high sampling
rates.

• Recognition of worker activities and tasks with a flexible approach: The
presented activity recognition approach is based on a concept for de-
signing an interface with reusable components. The approach comprises
the recognition of manufacturing tasks with state-based methods, which
model the interdependencies of low-level worker activities. For task
recognition both certain input information and uncertain input informa-
tion have been considered. Low-level activities are, in turn, recognized
with standard machine learning classifiers from position information,
such as signals from wearable sensors that indicate actions. It is demon-
strated that the investigated application scenarios are compliant with this
concept.

• Gesture recognition for comfortable interaction with a superordinate
framework: For the recognition of gestures from sensor signals, an on-
line time series template matching approach is presented. The recog-
nition method utilizes a technique called dynamic time warping and is
able to recognize temporarily and spatially distorted time series patterns.
Representative templates for classes of gestures are found by means of
a novel prototype optimization approach. For the human-machine inter-
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face, the method is applied to accelerometer signals in order to recognize
hand gestures.

• Sample demonstration of the activity recognition approach by means of
representative scenarios: In order to validate the task recognition ca-
pability of the human-machine interface, the whole system is tested by
means of two realistic manufacturing scenarios in the form of real-time
demonstrations. The first scenario is a simple spot-welding scenario
of the automotive industry, which finds application within the scope of
XPRESS. The second scenario is of higher complexity. It contains the
recognition of worker activities during a manual assembly task, in which
a worker assembles an electronic device. This scenario is also part of
the results of XPRESS.
Furthermore, the capability of comfortable interaction during task exe-
cution is demonstrated by means of hand gesture recognition.

It is not known to the authors that a human-machine interface for worker
activity recognition in industrial environments is existing, which offers the
complete above mentioned functionality in order to provide the capabilities of
section 1.2. Thus, the presented human-machine interface constitutes a novel
approach to the integration of human workers into intelligent manufacturing
systems.

1.4. Thesis Outline

The thesis is organized as follows.
In Chapter 2 related work about human activity recognition in general is re-
viewed and use cases for the recognition of human activities in industrial
environments are identified. Furthermore, the two scenarios that are used
for the evaluation, demonstration and application of the achievements of this
work are introduced. Based on the use cases, a conceptual approach for the
development of worker activity recognition systems is presented. Finally, an
overview about the human-machine interface and its components, which have
been developed in this work, is given.
In chapter 3 a robust and scalable system for indoor position estimation of
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arbitrary objects is proposed. The position estimation system is based on
marker-based video-tracking and uses measurements from inertial sensors
such as an extended Kalman filter for increasing the sampling rate and for
providing robustness to short outages. The performance of the position esti-
mation system is evaluated in experiments with simulated and real data.
In Chapter 4 techniques for the recognition of low-level activities are pre-
sented. The presented activity recognition approach is based on action and
location information and utilizes statistical learning methods for the classifi-
cation of worker activities. All proposed methods of this chapter are evalu-
ated and compared in real data experiments with a PC assembly scenario.
In chapter 5 an approach for task level activity recognition is described. By
utilizing a statechart model and a hidden Markov model such as a dynamic
Bayesian network, tasks can be recognized not only from certain, but also
from uncertain low-level activity results. The recognition performance of the
hidden Markov model and the dynamic Bayesian network is evaluated and
compared in experiments with the PC assembly scenario.
In Chapter 6 an online gesture recognition approach based on an elastic time
series distance measure, called dynamic time warping, is presented. The ges-
ture recognition approach utilizes a novel optimization technique for finding
time series templates that aims at maximal class separability. For template
optimization an evolution strategy and different target functions measuring
class separability are proposed. The optimization method and the gesture
recognition performance are analyzed and evaluated with a set of recorded
hand gestures.
The functionality of the human-machine interface components is finally demon-
strated as a complete realtime system in chapter 7. The demonstration con-
sists of experiments with a spot welding scenario and the PC assembly sce-
nario.
In Chapter 8 the work of the thesis is summarized and concluded.





2. Human Worker Activity Recognition

This chapter introduces the topic of human worker activity recognition and
gives an overview about the presented activity recognition approach. At first,
related work about human activity recognition applications is reviewed. Af-
ter that, use cases for activity recognition in industrial environments are sug-
gested and scenarios, which have been chosen for demonstration, are intro-
duced. Furthermore, our solution concept for the worker activity recognition
system is proposed, and finally, an overview about the developed human-
machine interface is given.

2.1. Related Work

The topic of human activity recognition is related to different fields of re-
search and several scenarios are existing, in which activity recognition ap-
plications are demonstrated. However, it has to be mentioned that many of
the approaches that are presented in literature are prototype systems and did
not yet reach the level of maturity that is necessary for large scale applica-
tion. This is mainly because of the fact that, due to the diversity of human
behavior, the recognition of human activities is a problem of high complexity.

Industry and Manual Assembly

An interesting example for the research on wearable computing in work-
ing environments is given by the EU project WearIT@work [63]. Within
this project, human workers and experts are assisted in their work by wear-
able computing devices that are able to track performed activities. Sample
demonstrations cover scenarios in the sectors of aircraft maintenance, car
production, healthcare and emergency response. The work of [100], which
is related to the WearIT@work project, is about activity spotting in industrial
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environments with wearable sensors. The spotting approach is demonstrated
by means of two scenarios. The first scenario is a maintenance scenario, in
which activities during the execution of a bicycle repair task are detected. The
second scenario is an example for quality assurance in the automotive indus-
try. In this scenario the steps of a car inspection task are recognized. In [30]
a vision based system is presented for the recognition of manual assembly
tasks. The method of this work is demonstrated by means of a fictive man-
ual assembly scenario, in which screw and put actions are detected. Another
approach for the recognition of manual assembly tasks is given in [5]. This
work is based on activity recognition with sensors attached to workpieces
and is demonstrated by means of a furniture assembly task. In [9] a system
is presented for the detection of dangerous situations that may occur when
human workers operate industrial machines. The system is demonstrated in
an application where accidents with circular saws are avoided.

Medical Applications and ADL Recognition

Besides industrial applications and manual assembly tasks, medical purposes
and health care scenarios form an important category for applications of as-
sisting activity recognition systems. In [8] activities of people working in
hospitals are recognized in order to provide context information for assis-
tance. Other applications in the medical area deal with activity recognition
in homes for elderly care [102, 123] or the detection of alert situations [12].
The recognition of activities of daily living (ADL) in general is a popular
topic in the field of human activity recognition and is often related to medical
applications. Many of these applications utilize wearable sensors for ADL
recognition, which is e.g. shown in [7]. A general work about the topic of
human activity recognition with wearable sensors is presented in [42]. The
techniques, which have been developed in this work, do not only treat the
recognition of low-level activities (e.g. sitting, walking, standing, etc.), but
also considers high-level activities (such as shopping, doing housework or
commuting). High-level activities are modeled in here as a composition of
sub-activities.
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Surveillance Systems

Another area of research on human activity recognition are surveillance sys-
tems. In [6] human behavior in office environments is monitored with video
cameras. The monitored behavior comprises the recognition of office work
activities for an automated surveillance system. A more general approach for
the recognition of office activities is presented in [72]. In this work, human
behavior is modeled on different levels of abstraction. Within the European
project Prometheus [4], a general framework for the interpretation of human
behavior for no specific application has been developed. A different example
for the usage of surveillance systems is the work of [77]. Here, an approach
for the analysis of shopping behavior for product selling strategies is pre-
sented.

Consumer Electronics and Social Applications

Recognition of human activities plays also a role in future human computer
interaction or assisting technologies, which are able to understand social hu-
man behavior [73]. The recognition of social activities is of interest for con-
sumer electronics, such as mobile phones with integrated assisting technolo-
gies. An example for that is given by the work of [76], in which social behav-
ior is modeled in form of interaction networks. A similar work is presented in
[22], where mobile phones are utilized for analyzing social behavior. By the
analysis of social behavior it is demonstrated that information like social re-
lationships or daily user activity can be inferred from recorded mobile phone
data. Another example for work about understanding social human behavior
is given in [50], where the affect state of children is recognized while they
perform a learning activity on the computer.

The above mentioned work gives a broad overview about the topic of human
activity recognition and its applications. Basically, there has been much work
published in this field of research of which components are transferable for
application to particular industrial activity recognition problems. However,
there is no system existing, which is able to satisfy our needs of a human-
machine interface for the recognition of activities, gestures and tasks, which
is flexible and appropriate for application in industrial environments.
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2.2. Scenarios for Activity Recognition in Indus-
trial Environments

Before developing an approach for a worker activity recognition system,
which is able to serve as a human-machine interface for industrial environ-
ments, use cases have to be defined. This step is of particular importance, if
the system should not only be designed for a specific application, but should
consist of reusable components that may also be used in other scenarios.
Based on our experience and the applications that can be found in litera-
ture, possible use cases have been divided into groups of tasks, which are
performed by humans in industrial environments. The result is the following
categorization of task-related use cases:

• Handling task: Common tasks for workers in industrial environments
comprise the usage of tools, the operation of machines or handling of
workpieces (e.g. material supply to machines). Characteristic for tasks
of this group is that they contain a small number of simple steps, which
are often repeated. Furthermore, process information can often be ob-
tained from information about the internal machine state. In case of tool
usage (such as welding guns, rivet guns, glue guns or nut runners), the
tool pose provides useful clues for the status of the task, as well.

• Assembly or maintenance task: Assembly and maintenance tasks form
another category of worker tasks. Tasks belonging to this category are
usually of a higher complexity than handling tasks. During an assem-
bly task, a product is assembled from workpieces in a logic sequential
manner. Similar to this, maintenances are performed stepwise accord-
ing to a maintenance plan. Because modern working environments are
highly structured, it is characteristic for tasks of this category that they
are executed as a sequence of predefined steps.

• Non-deterministic expert task: The category of non-deterministic ex-
pert tasks comprises tasks that are based on the occurrence of an unpre-
dictable event and that are executed in a way, which depends on the
occurred event. Examples for this are repair tasks (which deal with
unidentified problems) or the supervision of processes. Since these tasks
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are highly non-deterministic, the particular execution of the task is not
known in advance. Therefore, tasks of this type are relatively com-
plex and usually constitute intractable problems for task-related activity
recognition.

The human-machine interface, which is presented in this work, aims at cov-
ering the recognition of tasks of the first two categories mentioned above.
Because of the non-deterministic properties of tasks of the third class, activ-
ity recognition seems to be of minor use in here. However, this only refers to
the (automatic) recognition of activities of the complexity of tasks and does
not mean that the presented human-machine interface can not be of any help
for use cases of this category. A helpful feature of a human-machine inter-
face for non-deterministic expert tasks would be for instance the possibility
of interaction with a superordinate framework in order to get work assistance
or information.
Besides the recognition of performed tasks, the capability of comfortable in-
teraction with a superordinate framework should generally be provided by a
human-machine interface. Comfortable interaction means in this sense that a
user can actively communicate (e.g. by issuing commands) via the interface
without having to leave his workplace. An alternative to speech (which can
be inconvenient in industrial environments because of noise) are gestures as a
natural way of human communication. Thus, the recognition of human ges-
tures is another use case to be considered.
For the demonstration of the task recognition results of this work, one rep-
resentative scenario from each of the categories handling task and assembly
or maintenance task have been chosen. Furthermore, comfortable interaction
via hand gestures is additionally considered. The chosen scenarios are ex-
plained in the following.
It has to be noted that our activity recognition approach is demonstrated by
means of these scenarios but is generally not limited to them. Because of the
flexible solution concept, the system and its components can also be used in
other scenarios of the treated task categories.
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2.2.1. Spot Welding Scenario

A representative scenario for a handling task in the automotive industry is
the spot welding scenario. In the scenario, a so-called hand welding gun
is utilized, which is an industrial tool for manual resistance spot welding.
The worker task in this scenario comprises activities such as positioning of
the welding gun tip by alignment to a specific spot position or the execution
of the welding process. The scenario finds application within the scope of
XPRESS and is part of a demonstration where a human worker takes up the
task of a welding robot after the occurrence of a malfunction in the robot.

2.2.2. Personal Computer Assembly Scenario

The personal computer (PC) assembly scenario is representative for worker
tasks in the electrical industry of the category assembly or maintenance task.
Since electronic devices are industrial products that are usually manufactured
by manual assembly, the assembly of a PC constitutes a typical task of this
category. The scenario consists of task steps, in which computer components
(e.g. the mainboard or a drive) are built into the computer case. These task
steps contain in turn activities, which are relevant for the execution of the
task, such as picking up particular screws, placing and fastening a screw at
the correct position, etc. By means of the PC assembly scenario a worker
task of higher complexity than the spot welding task is treated. As part of a
study in the XPRESS project, the scenario is exemplified in a laboratory test
environment that is similar to a manual assembly workplace in the industry.

2.2.3. Hand Gesture Recognition

The recognition of hand gestures provides the possibility of comfortable in-
teraction to the worker in order to get work assistance or task related infor-
mation from a superordinate framework. In this scenario a limited number
of predefined hand gestures are to be recognized. Because of the fact that
interaction can also happen during the execution of a task, this scenario must
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not necessarily be treated in a stand-alone demonstration, but may also be
integrated into one of the task recognition scenarios mentioned before.

2.3. Solution Concept

Based on the use cases and the scenarios of the previous section, a concep-
tual approach for the development of worker activity recognition systems has
been defined. The solution concept utilizes a hierarchical model, which is
depicted in figure 2.1. The hierarchical model describes the worker activ-
ity recognition process on four different levels of abstraction that range from
sensor measurements up to reasoning about worker behavior of the complex-
ity of tasks. By developing an activity recognition solution that is conform
with this hierarchical model and by directing the development process in a
top down manner, possible reutilization of components for new scenarios is
facilitated.
For the description of the worker behavior, the following terminology is used:

Action

By actions, atomic worker behavior is described that is recognized from a
source of processed sensor signals. A characteristic property of actions is
that they are location invariant. Examples for actions are, for instance, a
grasp that is recognized from a wearable sensor mounted to the hand of the
worker or the execution of a weld, which is recognized from a welding gun
trigger that has been pulled.

Activity

Similar to actions, activities (or low-level activities) represent atomic worker
behavior, as well. However, activities are fused from detected actions and
additional position information, and therefore, are not location invariant. The
incorporation of location information in the activity recognition process is
useful in particular, since in the structured environment of a factory, location
information constitutes a valuable cue to currently performed activities. An
example for an activity would be grasping a screw located in a particular box,
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Figure 2.1: Hierarchical model describing the worker activity recognition process.

or in other words, a grasp action in combination with the worker hand being
at the location of a screw box.

Task and subtasks

A task (or task level activity) describes worker behavior that is composed of
several (low-level) activities or actions. Behavior that is recognized on the
task level may also be a subtask, that is a certain part of a task. A worker task
could be for instance the manual assembly of a PC and contain task steps,
such as building in the mainboard.

The process levels of the hierarchical activity recognition model are explained
in the following from the top to the bottom level.
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2.3.1. Task Recognition Level

The task recognition level constitutes the highest level of abstraction. Since
the execution of a worker task can generally be seen as a sequence of low-
level activities or actions, activities and actions are treated as states or state
transitions in a state-based task model. The first step in deriving the task
model is to define the states by the decomposition of the task into a num-
ber of activities and actions, which are crucial for the completion of the task.
The second step for deriving the task model is then to chose an adequate mod-
elling method (e.g. a state machine) and to model the interrelations between
the states. By means of modelling executed tasks as sequences of interrelated
states we are able to make use of context knowledge [19] for task recogni-
tion. In the case if recognized activities or actions are uncertain (e.g. because
they are affected by classification inaccuracies), a probabilistic task model
would be able to recognize tasks from noisy inputs by making use of context
information in form of interrelations between states.

2.3.2. Activity Recognition Level

On the activity recognition level, low-level activities are recognized by fus-
ing information from recognized actions and location information that is de-
rived from specific object positions. For action recognition, usually machine
learning methods are utilized, which are trained to recognize actions from
processed sensor data. In the design process, activities and actions that have
to be recognized are defined by the needs of the task recognition level. How-
ever, for the choice of activity and action recognition methods the character-
istics and availability of input information from the lower levels have to be
considered.

2.3.3. Signal Processing Level

The signal processing level is an intermediate level for further processing of
information from sensor measurements. Since raw data from sensors can of-
ten not directly be used as input information for activity recognition, signal
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processing is necessary to derive information, which is not directly available
(e.g. object positions from images). Moreover, data from multiple sensor
sources might be fused in order to increase the quality of obtained informa-
tion [64]. Because of that, methods of the signal processing level and sensor
devices often constitute combined systems and have to be chosen in depen-
dence of each other in the design process.

2.3.4. Sensor Data Level

The sensor data level constitutes the link to the physical world. Besides the
acquisition of sensor measurements, hardware design issues such as times-
tamp synchronization of different sensor sources have to be considered on
this level. In the design phase of an interface, appropriate sensor devices are
chosen for providing the information that is needed on higher levels of ab-
straction. However, it has to be considered that sensor device properties such
as performance, price, size and availability limit the feasibility of the whole
activity recognition system.

2.4. Human-Machine Interface Overview

An overview about the main components of the human-machine interface
that has been developed in this work is depicted in figure 2.2. The human-
machine interface has been developed according to the solution concept of
the previous section and covers the scenarios from section 2.2. For having
an overview about the human-machine interface and its components, a brief
description is given in this section. The components of the interface and their
design issues are explained in detail in the following chapters of the thesis.
For modelling and recognizing of task level activities from reliable activity

recognition results a statechart model has been utilized. However, if activ-
ity recognition results are affected by uncertainty (e.g. possible classification
errors) tasks are recognized by probabilistic methods. For probabilistic mod-
elling of tasks, a hidden Markov model (HMM) has been used.
On the activity recognition level in figure 2.2, activities are derived by fus-
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Figure 2.2: Overview about the main components of the human-machine interface.

ing location information (location classification) and actions detected from
wearable sensor devices (action classification). Thus, the activity recognition
approach does not only consider that an action is happening, but also takes
into account where a particular action is happening. Similar to action classi-
fication, the location classification component utilizes machine learning for
relating position areas to activities. Since the recognition of gestures is not
involved in the task recognition process, gestures are treated as actions that
are recognized separately. Because of the fact that gestures have significant
temporal characteristics, a time series analysis method is utilized for gesture
recognition.
On the signal processing level, features are extracted from sensor raw data for
the gesture recognition component and the action classification component.
Furthermore, position information is derived from a marker-based video-
tracking system. Because of the fact that outages (e.g. caused by occlu-
sions) can occur with vision-based position tracking, video-tracking results
are fused with measurements from inertial sensors in order to derive better
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position estimation results.
Utilized sensors on the sensor level are industrial cameras for position track-
ing such as inertial measurement units (IMU) for measuring the motion of
specific objects (e.g. worker hands or tools) and for improving position
tracking results. Optionally, the incorporation of additional binary state in-
formation of industrial tools (e.g. the welding gun trigger in the spot welding
scenario) is considered. Since this type of sensor information contains no
uncertainty it can directly be provided to the task recognition level.



3. Position Estimation System

All modern factories are characterized by structured working environments.
Due to this fact, the execution of most of the activities is linked to particu-
lar locations. Therefore, information about the current position of moving
objects, which are involved in the working process, contain a lot of valuable
clues for reasoning about executed activities. These moving objects can be
parts of the worker’s body (e.g. hands), tools or even workpieces. Because of
this reason, position estimation of objects in 3D space constitutes an impor-
tant component in our activity recognition approach.
Depending on the application scenario, the recognition of human worker ac-
tivities requires that a position estimation system is able to yield a certain
accuracy, provide data at an adequate sampling rate and should be robust to
disturbing environmental influences. This means that for being flexible with
respect to the application scenario, positions should be measured in dimen-
sions ranging from the order of meters for detecting the presence of humans
at a workplace up to a few centimeters for recognizing the assembly of small
pieces. For being able to capture quick motions such as hand movements,
sampling rates of much more than 10 Hz should be provided. Concerning the
robustness, it has to be regarded that an industrial environment can be rough
with a lot of disturbances from machines or structures.
In this chapter, a system for indoor position estimation in industrial environ-
ments is presented. The system is able to provide position information of
arbitrary objects by means of a marker-based video-tracking (VT) system.
Depending on the setup, measurement accuracies in the order of centimeters
or even millimeters at a sampling rate of several Hz can be achieved. Sam-
pling rate and robustness to short outages are increased by means of an iner-
tial navigation solution, which utilizes a small size MEMS (Micro-Electro-
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Mechanical Systems) inertial measurement unit (IMU) and an extended Kalman
filter.
The components of the approach, which is explained in the following sec-
tions, are depicted in figure 3.1. These components can also be found in
the overview about the human-machine interface in figure 2.2. Parts of the
presented position estimation approach can also be found in our publications
[38] and [37].
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Figure 3.1: Components of the position estimation approach: IMU, video camera, VT sys-
tem and position estimation with an extended Kalman filter.

3.1. Indoor Position Estimation Technology

In principle, indoor object positioning is possible with a variety of differ-
ent sensors and a lot of different processing methods for estimating positions
from sensor data are used for several types of applications. However, avail-
able techniques differ in accuracy, robustness, size and other important prop-
erties. Because of that, the choice of appropriate sensor devices and position
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estimation methods is crucial and should be done with the focus on the appli-
cation. In order to give an overview about existing methods, commonly used
sensing techniques for indoor positioning or pose estimation are listed in the
following.

Range Measurement Techniques

Range measurement sensors measure distances from the sensor device to a
measuring point by means of radio signals, optical signals or ultrasonic sig-
nals. Based on the measured distance, the position of the measuring point
is usually determined either by incorporation of the direction, in which the
sensor signal has been emitted, or by triangulation techniques (e.g. with mul-
tiple sensors of the same type). Depending on the application, sensor devices
can be mounted on the object and detect known locations in the environment
or are placed at known positions in the environment from which the object
can be detected. A disadvantage of all range measurement techniques is that
they are prone to errors from environmental influences such as occlusions,
reflections or being out of range of the known or observed area.
A common technique for indoor position estimation by range measurements
is the utilization of radio signals. Positioning systems based on radio signals
estimate object positions by means of the travel time of radio signals (ToA,
time of arrival). More accurate estimations can be achieved by so-called fin-
gerprinting methods, which compare the current signal strength at the object
to signal strengths at known locations. Among radio signal based techniques,
Wi-Fi (Wireless Fidelity, synonymously used for Wireless Local Area Net-
works) systems are quite popular [84], due to the fact that more and more
buildings are equipped with Wi-Fi access points. However, the positioning
accuracy of these systems is limited and usually a resolution of not more than
approximately a meter can be achieved [84].
A simple way to make use of radio signals is the utilization of the RFID
(Radio Frequency Identification) technology. Utilization of defined objects
[102] or proximity to specific locations can be detected by attaching an RFID
reader to the object to be tracked and by marking the locations of interest with
RFID tags. An inconvenience of this easy to use and cheap method is that
location detection only works for a limited number of predefined positions.
The principle of distance calculations based on time of arrival measurements
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can also be applied to ultrasonic signals. Analogous to radio signal tech-
niques, ultrasonic emitters and receivers are placed on an object and in the
environment at known locations and in a specific arrangement in order to es-
timate the current object position. State of the art systems are able to yield an
accuracy in the range of several centimeters [97, 111]. However, ultrasonic
systems can suffer from reflection problems.
Besides the above mentioned techniques, other methods for indoor position
estimation are existing, such as radar or laser scanners. Although the accu-
racy of these types of sensors can compete with others, their drawbacks are
that they are expensive and comparably heavy. Therefore, they are rather
suitable for mobile robot platforms than for human-machine interfaces.

Video Sensors

Similar to range measurement techniques, video-based positioning methods
determine the position of an object by measuring the distance to fixed po-
sition references in the environment. However, since camera images only
provide information of the appearance of an object in a scene, distances or
position information have to be derived indirectly by means of image process-
ing methods. Basically, two different approaches are existing for 3D position
estimation with imaging sensors. The first one is to use a stereo or multi cam-
era system and an object model for object identification. 3D positioning can
then be done by optical triangulation. An alternative are marker-based VT
systems, which utilize fiducial markers that have to be attached to an object
or be placed at known positions in the environment. The markers facilitate
object identification and some allow 3D position estimation with a single
camera.
Vision-based systems are very common for indoor position estimation, espe-
cially in applications related to the analysis or tracking of human movements
[3, 32, 66, 113]. A very useful advantage of vision-based object tracking sys-
tems is that their accuracy depends on the measurement setup (e.g. resolution
of the camera and object size). Therefore, they are flexible in usage and can
be used for object tracking in spaces with small dimensions, but also for large
scale applications. However, a drawback of vision-based position estimation
is that complex image processing methods with comparable high computing
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costs are required. Another disadvantage of camera sensors is that line of
sight and illumination problems may occur.

Inertial Sensors

Inertial sensors measure motion related physical quantities in form of acceler-
ations and angular rates, which occur directly at the sensor device. Assuming
that initial position and attitude are known, the current sensor position can
be derived from these measurements by means of dead reckoning methods.
Therefore, inertial sensors are mounted on a moving object and theoretically
need no specific setup or location references in the environment for position
estimation. The development of small and affordable inertial sensors based
on MEMS technology allows it to utilize inertial sensors in a broad field of
applications.
In contrast to remote sensing techniques, inertial sensing techniques are al-
ways able to provide position estimations, because they are not influenced by
outage producing environmental disturbances. However, a major drawback
of inertial sensing techniques are drift problems, which are caused by biased
sensor signals and cumulated dead reckoning errors. Therefore, position esti-
mations based on inertial sensors alone can only be accurate for short periods
of time and need to be aided by other sensing techniques.
Long-term drift free attitude estimations are possible by incorporating accel-
eration measurements as vertical reference [83]. Besides the usage of aiding
sensor techniques for position estimations, drift problems can be mitigated by
incorporation of movement models in filter methods, which indicate particu-
lar movement states, such as zero velocity updates for pedestrian navigation
[71] [10]. Alternatively, the pose of the human body (or of other joint like ob-
jects) can be estimated by utilizing attitude estimations and a model of limbs
and joints [128].

Multisensor Techniques

For some applications, position estimations based on a single type of sensor
device are not able to meet the requirements of the desired system. Therefore,
it makes sense to take advantage of the complimentary properties of several
types of sensors and to gain better estimates by sensor fusion [64]. This prin-
ciple is widely used in inertial navigation systems (INS) [105]. An example
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on the large scale is that INS based on measurements from high-grade IMUs
are often aided by measurements from a global positioning system (GPS) for
aircraft navigation.
On the small scale, different indoor applications have been developed in re-
cent years, which utilize inertial sensors (such as MEMS IMUs) together with
other sensing technologies for position estimation. A lot of applications favor
the combination of inertial sensors and vision-based methods [16] for com-
pensation of inertial sensor drift with long term accurate measurements from
video sensors. Applications cover fields of research like augmented reality
[91, 125], navigation for micro flyers [89], medical engineering [104] or in-
dustrial tool tracking [75]. While inertial sensors always have to be mounted
on the object to be tracked, cameras do not necessarily have to be attached
to the object as well. Placing cameras at locations in the environment for
tracking the object and aiding the inertial navigation solution with position
estimates [74] works analogous to the GPS-based solution. The alternative
is to attach the camera to the object in order to observe the environment for
landmarks or location cues [29, 41]. [28] even incorporates both methods in
a tracking solution for achieving higher positioning accuracies.
Besides position estimation systems based on inertial sensors and vision-
based methods, other multi-sensor solutions are existing, such as the com-
bination of inertial sensors with ultrasonic sensors [111].

For our application of estimating object positions in industrial environments,
we decided for a system based on a marker-based VT system and inertial sen-
sors. This combination of sensors has complementary benefits and appears
to be most appropriate for our application.
Important advantages of marker-based VT are that this solution is scalable
and, compared with other vision-based methods, independent of the applica-
tion, since no object depending model is required. Furthermore, video sen-
sors have no problems with common influences of industrial environments
like reflections from metal structures, electromagnetic fields from electric
drives, noise, etc. Regarding the requirement that the system should be able to
estimate positions of arbitrary objects at different position ranges, this tech-
nique seemed to be the best choice. For dealing with outages and limited
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sampling rates of the VT system, VT measurements are fused with data from
a MEMS IMU by means of an extended Kalman filter.

3.2. Sensor Hardware and Video-Tracking System

This section explains the sensor hardware components and the VT system
component of the position estimation system in figure 3.1. The sensor hard-
ware consists of MEMS IMUs mounted on connector boards, providing a PC
interface and hardware synchronization, such as triggerable video cameras.

3.2.1. Inertial Sensors and Hardware Synchronization

For measuring accelerations and angular rates of objects in 3D space, iner-
tial measurement units are utilized, which are mounted on each object to be
tracked. The utilized IMUs (type ADIS16350 from Analog Devices [107])
contain 3 orthogonal accelerometers and 3 orthogonal gyroscopes and are
configured to provide measurements at a sampling rate of 407 Hz. This sam-
pling rate is high enough to capture even very fast motions of human body
parts or used tools. The characteristic noise of the sampled signals has stan-
dard deviations of 0.4◦/s for gyroscopes and 0.05m/s2 for accelerometers.
Calibration of the IMU without professional equipment can be done by a
procedure described in [25]. However, calibration of IMU biases, which are
the main source of error in EKF estimations, is unhelpful, since biases are
only stable for short periods of time. Thus, they can only be determined by
estimation in the EKF model (as explained in section 3.3).

Hardware Synchronization

In order to provide measurements with correctly assigned timestamps, uti-
lized sensor devices have to be hardware synchronized. Therefore, all sen-
sors are operated in a sensor network containing microcontroller connector
boards, on which the IMUs are mounted. Each connector board assigns
timestamps to sampled IMU measurements and transmits the measured data
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to a PC via an UART interface. As depicted in figure 3.2, the hardware syn-
chronization in the sensor network is realized by a master board, which syn-
chronizes microcontroller timers of other connector boards, if more than one
object is tracked. Furthermore, camera sensors are triggered by the master
board. This makes it possible that timestamps are taken when camera images
are triggered. Image timestamps are sent from the master board to the PC
where they can be assigned to arriving images.

PC:sensor
hardware

VT system &
Kalman FilterIMU1

camcameras

trigger

IMU2
µC board

(Slave)

sync

…

µC board
(Master)

UART

fire
wire

Figure 3.2: Scheme for hardware synchronization of IMUs and cameras. Synchronization is
done by means of microcontroller (µC) connector boards. Camera images are
triggered and µC clocks are synchronized by means of a master controller.

3.2.2. Video Cameras and Camera Calibration

The marker-based VT system processes the images of video cameras, which
are placed in the environment for the detection of VT markers in the work-
place region. In our system, triggerable industrial cameras (type DBK21BF04
from the company The Imaging Source [109]) are used, which are connected
to a PC via firewire (IEEE1394). In order to have a broad field of view, the
cameras have been equipped with wide-angle lenses.
As explained in the previous section, timestamps of camera images are ac-
quired by means of hardware synchronization. Timestamp inaccuracies caused
by latencies introduced by the exposure time are kept small by choosing short
exposure times (typically 1/1000s). Because of that, it has to be taken care
in measurement setups that the workplace is well-illuminated.

Camera Calibration

Before being able to use a camera with the VT system, the intrinsic parame-
ters of the camera model have to be determined. The camera model describes
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the projection of points in the camera coordinate system ~pc = (x,y,z,1)T 1

to pixel coordinates of the image plane ~pi = (u,v,1)T . Parameters of this
model are the intrinsic camera parameters, which comprise lens distortion
coefficients, the focal length f , the principal point (xc,yc), the image format
(sx,sy) and the skew coefficient γ .
Lens distortion occurs especially with wide-angle lenses, that is lenses with a
small focal length. Therefore, the lens distortion model has to be considered
for avoiding the introduction of additional errors in the tracking result by the
utilized wide-angle lenses. Lens distortions are described by a parametric
model, which can be found in [13]. The model incorporates radial and tan-
gential lens distortion by means of the following equation, which relates the
camera coordinates ~pc to the distorted projection point ~pd = (xd,yd,1)

T :(
xd

yd

)
=

(
x+ x̃

(
k1r2 + k2r4 + k3r6 + . . .

)
y+ ỹ

(
k1r2 + k2r4 + k3r6 + . . .

) )

+

( (
p1
(
r2 +2x̃2)+2p2x̃ỹ

)(
1+ p3r2 + . . .

)(
p2
(
r2 +2ỹ2)+2p1x̃ỹ

)(
1+ p3r2 + . . .

) ) , (3.1)

where x̃ = x− xc, ỹ = y− yc and r =
√

x̃2 + ỹ2. The distortion coefficients
(k1,k2, . . .) and (p1, p2, . . .) in equation (3.1) are to be found by a camera cal-
ibration routine and describe the radial and tangential lens distortion.
The other intrinsic parameters of the camera model relate the distorted pro-
jection point ~pd to pixel coordinates ~pi by the camera matrix:

~pi = K~pd =

 α γ xc

0 β yc

0 0 1

~pd. (3.2)

By means of the coefficients α and β in equation (3.2), the focal length is
related to pixels in each image direction according to α = sx f and β = sy f .
Different tools and libraries are available for camera calibration. A widely
used tool is the Camera Calibration Toolbox for Matlab [108], which partially
bases on the work of Zhang [127]. The video cameras that are utilized in this
work are calibrated with this calibration software.

1The notation utilized in here is called homogeneous coordinates. Homogeneous coordinates allow the ex-
pression of a coordinate system transformation of a position vector by means of only one matrix multipli-
cation.



30 3 Position Estimation System

3.2.3. Video-Tracking System

The utilized VT system is based on a modified version of the ARToolKitPlus
[112] library. ARToolKitPlus is an extension of the augmented reality library
ARToolKit [52]. By means of the ARToolKitPlus library, 6 degrees of free-
dom (DOF), that is position and orientation, of a fiducial marker can be mea-
sured in 3D space with a single camera. Fiducial markers are 2-dimensional
square patterns of known size, which are attached to objects to be tracked. An
example for a marker can be seen in the box of the VT component in figure
3.1. The marker pattern consists of a 6× 6 BCH code, which allows robust
detection of 4096 different rotation invariant markers. Thus, several markers
can be used at the same time in a redundant way to increase the detection
robustness of a single object and for tracking multiple objects.
The eventual objective of the VT system is the estimation of object position
~pv

vb,V T = (xV T ,yV T ,zV T )
T and attitude ~ΨV T = (φ ,θ ,ψ)T (here given in Eu-

ler angles - see also section 3.3.1 for the Euler angle representation) in VT
coordinates. In our application, the VT coordinate system coincides with
the world coordinate system, which constitutes the workplace environment.
The functionality of ARToolKit allows the estimation of the extrinsic camera
parameters, that is to determine the camera position and orientation in the
marker coordinate system. Thus, a point ~pb given in an object coordinate
system can be related to a point in camera coordinates ~pc by means of the
following equation:

~pc = T c
b ~p

b =

(
Rc

b ~tcb

(0 0 0) 1

)
~pb, (3.3)

in which Rc
b and ~tcb constitute the rotational and translational components of

the relation between camera and object.
The relation of the object to be tracked to the video coordinate system can
now be determined with the transformation matrix T c

v according to:

T v
b = (T c

v )
−1 T c

b . (3.4)

The object position ~pv
vb,V T and attitude ~ΨV T in VT coordinates are then given

by the rotational and translational components of T v
b .

Equation (3.4) bases on the knowledge of the relation between camera coor-
dinates and VT coordinates T c

v . Therefore, the transformation matrix T c
v has
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to be determined by means of a calibration procedure, which has to be applied
once for each new measurement setup, in which the VT system is used. The
VT system setup calibration works in the same way as the extrinsic camera
parameters are measured. T c

v can simply be determined, if a marker object is
placed in the origin of the VT coordinate system.
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Figure 3.3: Left: Flow chart of the ARToolKit pose estimation algorithm. Right: Illustration
of the pose estimation process. A marker in the camera field of view is projected
on the image plane. With the knowledge of the intrinsic camera parameters
and the marker geometry, the extrinsic camera parameters are determined by
the ARToolKit algorithm. From the extrinsic camera parameters and the known
transformation of camera coordinates to video coordinates, the object pose in the
Video coordinate system is determined.

On the left of figure 3.3, a flow chart of the most important processing steps
of the ARToolKit pose estimation process is shown. In the first step, quadran-
gles are detected from intersecting edges in the camera image. Each detected
quadrangle is treated as a marker candidate, which has to be identified in the
second step. In the second step, the quadrangles are rectified and scaled to
patterns of 6×6 pixels. After binarization of the extracted patterns, it can be
checked, whether a pattern corresponds to a marker ID or not. In the 6DOF
pose estimation step, the extrinsic camera parameters are determined. An il-
lustration of mappings in the pose estimation process can be found in the box
on the right of figure 3.3. The extrinsic camera parameters Rc

b and ~tcb are de-
termined from the projected points on the image plane, which correspond to
known corner point positions of the marker in the object coordinate system.
Determining the 6DOF object pose is possible with a single camera by incor-
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poration of knowledge about the intrinsic camera parameters and the marker
size.
The modified version of ARToolKitPlus utilized in the VT system provides
better illumination robustness and allows subpixel-accurate marker detection.
Another feature of this modified version is that multiple cameras can be uti-
lized for increasing the field of view and improving the pose estimation result.

3.3. Inertial Navigation Solution for Position Track-
ing

The concept of the position estimation system is based on measurements from
two complementary types of sensor systems, an IMU and a VT system. Es-
timating fused positions and attitudes with this sensor combination can be
realized by means of an inertial navigation system solution [34, 105]. The
calculation of position and attitude from IMU measurements is achieved in
the INS by integration with a so-called strapdown algorithm. Due to the fact
that IMU measurements are affected by errors, such as biases and noise, in-
tegrated errors lead to a drift, which increases with time. The drift can be
mitigated by fusing results of the strapdown algorithm with measurements of
the VT system. As a result, fused position and attitude estimations combine
the advantages of accurate and scalable pose measurements of the VT sys-
tem and an increased sampling rate such as compensation of short outages by
means of integrated IMU measurements.
For solving an inertial navigation problem, different types of stochastic fil-
ters may be utilized [116]. One of the most commonly used filter types is
the Kalman filter (KF) [49]. Because of the fact that the KF is designed to
solve linear problems, the extended Kalman filter (EKF) constitutes a better
choice for nonlinear problems. This must not be the case, if the INS design
is based on an error-state model. The error-state model approach estimates
navigation errors with a linearized model, which is convenient for embedded
systems on small platforms with low computing power. However, in [45] it
has been shown that a total state space filter (which can be realized by using
the EKF) is able to yield a better estimation performance. The unscented KF
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or the particle filter are filter alternatives suitable for highly nonlinear filtering
problems. However, a drawback is that they consume much more computing
time than the EKF [116]. Since the VT system already consumes much com-
puting time, utilization of an unscented KF or a particle filter would reverse
one of the desired benefits of the INS solution. Therefore, an EKF is used for
the position estimation system.

3.3.1. Attitude Representations and Strapdown Model

For the mathematical description of a navigation system, different coordinate
systems are needed [105]. The presented position estimation system utilizes
two different coordinate systems. IMU measurements are taken in the object
coordinate system or b-frame and are denoted with ()b. The b-frame is fixed
to the tracked object. VT measurements are taken in the VT coordinate sys-
tem or v-frame, which is fixed to the workplace environment. State variables
or measurements in the VT coordinate system are denoted with ()v.

Attitude Representations

The transformation of a vector from one coordinate system representation
into another coordinate system representation contains a rotational and a
translational component. However, the translational component can be omit-
ted, either if the coordinate systems have the same origins or if the trans-
formed vector is merely a direction vector and no position vector. The lat-
ter case is for attitude representations in INS. This fact allows it to express
coordinate transformations by means of a 3× 3 rotation matrix, also called
direction cosine matrix. For instance, accelerations given in the b-frame are
transformed into the v-frame by:

~av
vb =Cv

b~a
b
vb. (3.5)

A more comprehensible attitude representation is given by the Euler angles
~Ψ = (φ ,θ ,ψ)T . Euler angles represent rotations about the coordinate system
axes, which are performed after another. In the convention used for INS, the
first rotation is around the z-axis by yaw ψ . The second and third rotations
are around the new y-axis by pitch θ and around the resulting x-axis by roll φ ,
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respectively. The rotation matrix is expressed by Euler angles in the following
way:

Cv
b =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

 . (3.6)

In equation (3.6), the trigonometric functions sin() and cos() are abbreviated
with s and c.
Attitude changes resulting from angular rates ~ωb

vb are described by means of
the following differential equations:

φ̇ =
(

ω
b
vb,ysinφ +ω

b
vb,zcosφ

)
tanθ +ω

b
vb,x, (3.7)

θ̇ = ω
b
vb,ycosφ −ω

b
vb,zsinφ , (3.8)

ψ̇ =
(

ω
b
vb,ysinφ +ω

b
vb,zcosφ

)
secθ . (3.9)

A disadvantage of Euler angles is a singularity, which occurs at θ = ±90◦.
Solutions of equations (3.7) and (3.9) are not defined at this singularity.
Another way to express rotations is the utilization of a rotation vector ~σ =

(σx,σy,σz)
T . The components of the rotation vector constitute a rotation axis

in space about which a coordinate system is rotated. The length of the ro-
tation vector |~σ | specifies the magnitude of the rotation. Rotation axis and
magnitude of the rotation can be used as components of a normalized quater-
nion:

~q =


a
b
c
d

=


cos(|~σ |/2)

(σx/ |~σ |)sin(|~σ |/2)
(σy/ |~σ |)sin(|~σ |/2)
(σz/ |~σ |)sin(|~σ |/2)

 . (3.10)

The propagation of attitude given in the quaternion representation is expressed
by the differential equation

~̇qv
b =

1
2
~qv

b •

(
0
~ωb

vb

)
. (3.11)

The change of the attitude~qv
b in equation (3.11) is proportional to the quater-

nion product of the attitude quaternion and measured angular rates. For a
more detailed explanation of the quaternion product operator • and quater-
nion mathematics see also [105] or [116].
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An advantage of the quaternion notation over Euler angles is that there is
no singularity, at which the update differential equation becomes indeter-
minable. The rotation matrix Cv

b can be expressed by the quaternion elements
as:

Cv
b =

 a2 +b2− c2−d2 2(bc−ad) 2(bd +ac)
2(bc+ad) a2−b2 + c2−d2 2(cd−ab)
2(bd−ac) 2(cd +ab) a2−b2− c2 +d2

 . (3.12)

Strapdown Equations

By means of the strapdown algorithm, the current position, velocity and at-
titude are calculated from their initial values and IMU measurements, which
are measured over a certain period of time. A block diagram of the strapdown
model is depicted in figure 3.4.
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v
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b
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b
vba v
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∫ ∫

Figure 3.4: Block diagram of the strapdown model.

Assuming that the attitude Cv
b is known, accelerations measured in the b-

frame are transformed to the v-frame in the strapdown model. After this
transformation, we are able to correct the influence of the local gravity ~gv

in measured accelerations. The resulting acceleration~av
vb then constitutes the

change of velocity relative to the v-frame. The following differential equation
describes the dynamics of the object velocity:

~̇vv
vb =~av

vb +~gv =Cv
b~a

b
vb +~gv. (3.13)

Deriving the current position is then straightforward:

~̇pv
vb =~vv

vb. (3.14)

It has to be noted that the utilized inertial sensors in the MEMS IMU are not
sensitive enough to measure the turn rate of the earth. Because of that and
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because of the fact that a workplace has limited dimensions, turn rate of the
earth, such as transport rate, can be neglected. Furthermore, since comparable
small velocities occur with human motion, Coriolis effects can be neglected
as well.
The equations utilized in the strapdown algorithm are the discrete solutions
to the differential equations, which describe the continuous strapdown model.
For the propagation of estimated quantities in time, it is assumed that IMU
measurements remain (nearly) constant over the sampling intervals ∆T .
The differential equations describing the propagation of Euler angles given
in equations (3.7)-(3.9) can be expressed by the following discrete solution:

~Ψk+1 = ~Ψk +


(

ωb
vb,ysφ +ωb

vb,zcφ

)
tanθ +ωb

vb,x

ωb
vb,ycφ −ωb

vb,zsφ(
ωb

vb,ysφ +ωb
vb,zcφ

)
secθ


k

∆T. (3.15)

If the quaternion attitude representation is utilized, the new attitude ~qv
b,k+1 is

calculated by a quaternion multiplication of the old attitude ~qv
b,k with an up-

date quaternion~rb
b, which is the solution to the quaternion differential equa-

tion (3.11):
~qv

b,k+1 =~qv
b,k •~r

b
b. (3.16)

The update quaternion in equation (3.16) can be derived from equation (3.10)
and the rotation vector:

~σ = ~ωb
vb∆T. (3.17)

Velocities are propagated in time by the solution of equation (3.13):

~vv
vb,k+1 =~vv

vb,k +∆T
(

Cv
b~a

b
vb,k +~gv

)
. (3.18)

Finally, the following equation contains the discrete solution of the position
differential equation (3.14):

~pv
vb,k+1 = ~pv

vb,k +~vv
vb,k∆T +

1
2

∆T 2
(

Cv
b~a

b
vb,k +~gv

)
. (3.19)

3.3.2. Kalman Filter Models

For estimating positions and attitudes from IMU measurements and VT re-
sults with the KF component in figure 3.1, a total state space KF is used. The
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utilized EKF model estimates the 9-dimensional state vector

~xk =
(
~Ψk

T , ~pv
vb,k

T , ~vv
vb,k

T
)T

, (3.20)

which consists of the following states:

• attitude in Euler angles ~Ψ = (φ ,θ ,ψ)T ,

• position ~pv
vb = (x,y,z)T ,

• velocity~vv
vb = (vx,vy,vz)

T .

Because of the fact that biases in IMU measurements are not stable, they
cannot adequately be removed by calibration. Therefore, the sensor biases are
incorporated in an alternative system model based on 15 states and resulting
in the state vector:

~xk =
(
~Ψk

T , ~pv
vb,k

T , ~vv
vb,k

T , ~bω,k
T , ~ba,k

T
)T

. (3.21)

The state vector in equation (3.21) contains the following bias states:

• angular rate sensor bias~bω = (bωx,bωy,bωz)
T ,

• accelerometer bias~ba = (bax,bay,baz)
T .

The state vectors in equations (3.20) and (3.21) constitute the basis of two
different filter models. Both EKF models exist also for the quaternion attitude
representation. In this case, Euler angles ~Ψ are substituted by the quaternion
~qv

b = (a,b,c,d)T in the state vector, which increases its dimension to 10 or 16
states, respectively.
The propagation of the state vector in each model is described by a nonlinear
system model function ~f (~xk,~uk,~wk) according to:

~xk+1 = ~f (~xk,~uk,~wk) . (3.22)

Equation (3.22) contains the strapdown equations (3.19), (3.18) and (3.15)
(which is substituted with equation (3.16) if the quaternion representation is
used).
For the alternative filter model, additional equations are used in the system
model function in order to describe the propagation of biases:

~bω,k+1 =~bω,k, (3.23)

~ba,k+1 =~ba,k. (3.24)
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Since the IMU biases change rather slowly with time, they are assumed to be
constant in equations (3.23) and (3.24).
The input vector ~uk consists of the accelerometer readings ~ab

vb,IMU,k and the
angular rate sensor readings ~ωb

vb,IMU,k of the IMU:

~uk =
(
~ωb

vb,IMU,k
T , ~ab

vb,IMU,k
T
)

T . (3.25)

Accelerometers and angular rate sensors are modeled by means of sensor
models, which are given in the following equations:

~ωb
vb,IMU = ~ωb

vb +
~bω +~wω , (3.26)

~ab
vb,IMU =~ab

vb +
~ba +~wa. (3.27)

In equations (3.26) and (3.27), the dominant error characteristics of the IMU
sensors are described as biases~bω ,~ba and noise ~wω , ~wa. The utilized sensor
models are a reduced form of precise sensor models of high quality IMUs,
which can be found in [105]. The sensor noise ~w is assumed to be normally
distributed and zero mean.
Measurement updates from the VT system are considered by means of the
measurement model

~zk =~h(~xk,~vk) . (3.28)

For compensation of the drift of position and velocity estimates in the strap-
down model, position updates have to be utilized. Furthermore, the yaw angle
is not observable with the described EKF models, if the tracked object is not
moving (see also [116]). Therefore, it should be considered for updates, as
well. Incorporation of the other attitude measurements from the VT system
is only advisable if multiple markers are used for VT attitude estimations.
Otherwise, attitude estimations with the VT system are usually not very ac-
curate. Thus, the measurement vector~zk contains VT position and yaw angle
measurements:

~zk =
(

ψV T , ~pv
vb,V T

T
)
. (3.29)

The measurement function~h(~x,~v) then consists of the estimated yaw angle
and the estimated position vector, such as the normally distributed measure-
ment noise~v:

~h(~x,~v) =

(
ψ

~pv
vb

)
+~v. (3.30)



3.3 Inertial Navigation Solution for Position Tracking 39

If a quaternion attitude representation is used, ψ has to be substituted in equa-
tion (3.30) by the respective quaternion expression.
With the system model function in equation (3.22) and the measurement
function in equation (3.30) we are now able to determine the filter matrices
of the EKF as the Jacobian matrices given in the following equations:

Φk =
∂~f
∂~x

(~xk,~uk,0) , (3.31)

Wk =
∂~f
∂~w

(~xk,~uk,0) , (3.32)

Hk =
∂~h
∂~x

(~xk,0) , (3.33)

Vk =
∂~h
∂~v

(~xk,0) . (3.34)

The EKF algorithm consists of a prediction step and correction step. In the
prediction step, the system state vector is propagated by means of the input
information from IMU measurements~uk:

~x−k+1 =
~f
(
~x+k ,~uk,0

)
. (3.35)

The system covariance is propagated in the prediction step based on the co-
variance matrix of the IMU measurement noise Qk:

P−k+1 = ΦkP+
k Φ

T
k +WkQkW T

k . (3.36)

The correction step is executed, when new VT system measurements~zk are
available. System state and system covariance are updated with these mea-
surements according to the following equations:

Kk = P−k HT
k
(
HkP−k HT

k +VkRkV T
k
)−1

, (3.37)

~x+k =~x−k +Kk

(
~zk−~h

(
~x−k ,0

))
, (3.38)

P+
k = (I−KkHk)P−k , (3.39)

in which Rk is the covariance matrix of the measurement noise.
Qk and Rk may also be used as filter tuning parameters.
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3.4. Experiments and Results

In this section, results from experiments with the proposed position estima-
tion system are shown. The experiments have been conducted for evaluating
the performance of the inertial navigation solution with a simulated dataset
and with data from a realistic scenario. Additionally, an account of the posi-
tioning accuracy of the VT system is given for the realistic scenario.

3.4.1. Experiments with Simulated Data

For evaluation of the INS solution under ideal conditions, tests have been
conducted with a set of simulated trajectories. The advantage of tests with
simulated data is that erroneous influences on measurements, such as noise,
biases, synchronization errors or outages, can be evaluated depending on their
specification. Furthermore, the simulated dataset contains the ground truth of
all estimated states, which can be used as an exactly known reference. In all
tests, EKF models based on the Euler angle representation have been used for
obtaining a comprehensible account of attitude estimation results.

Simulated Dataset

Simulated motion data has been created by defining a course of accelerations
and angular rates of a fictive movement in 3D space of 40s duration. The cor-
responding trajectories of velocity, position and attitude have been derived
from the motion data by application of a strapdown algorithm. The calcu-
lated trajectories constitute the ground truth data, which has been used as a
reference for EKF estimation results.
Simulated IMU input data has been generated by adding normally distributed
noise to simulated accelerations and angular rates. Furthermore, constant
offset values have been added to the input data in order to simulate biased
IMU signals. Update measurements of the VT system have been simulated
by sampling the ground truth data at a reduced and constant sampling rate.
After sampling, normally distributed measurement noise has been added to
simulated VT data.
All sampling rates, biases and noise characteristics have been chosen in a
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Figure 3.5: VT measurements (attitudes and positions) of a simulated test run with outages.
Ground truth data is represented by lines and sampling points of simulated VT
measurements by dots.

range of values, which is typical for the hardware in section 3.2. By means
of this procedure, a set of simulated measurements has been created in 10
runs with the same underlying movement, but randomly varying superim-
posed noise. Furthermore, the set has been extended by 10 series that have
been created by simulating 5 outages of 2s duration in each of the previously
simulated series. For giving an example, the simulated VT measurements of
a test run with outages are depicted in figure 3.5.

EKF Model without Biases

In a first experiment, the simulated dataset has been processed with the 9-state
EKF model from section 3.3.2. A typical result for a sequence of simulated
data with outages is shown in figure 3.6. The result in the figure is displayed
as estimation errors for all estimated states, which have been calculated by
taking the difference between filter result and ground truth. After an initial-
ization phase, small deviations in position and attitude can be perceived in the
estimation result of the filter. However, due to the drift caused by biased IMU
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Figure 3.6: Estimation errors of the 9-state EKF model after application to a sequence of
simulated data with outages.

measurements, velocity errors and resulting position errors become large dur-
ing each outage period (position errors in the figure are up to more than half
a meter).
The overall performance of the 9-state filter model in all sequences of sim-
ulated data is given in table 3.1 in the “EKF without bias” column. The
statistical evaluation in the table shows the average and maximal deviations
of the filter result to the ground truth over all 10 normal test runs. Addition-
ally, estimation errors calculated over the 10 test runs with simulated outages
are shown, as well. Here only the deviation of the last estimation before an
outage has been considered for calculating average and maximal deviations.
In order to ensure that errors from filter initialization are excluded, the re-
sults have been obtained by only considering estimations after 20s in each
sequence. The results show that attitude errors are in the range of a few de-
grees (even after outages). Position errors are typically in the range of several
millimeters on average, but can be up to more than 60 centimetres after an
outage.
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Table 3.1: Performance of the two EKF models in tests with simulated data: Attitude, posi-
tion and velocity errors. All results are calculated over 10 simulation runs (initial-
ization time of 20s has been considered in each run). The highest values in each
row are marked with bold letters.

Filter model EKF without bias EKF with bias

Euler angle error [◦] φ θ ψ φ θ ψ

average 1.0462 0.5267 1.9290 0.0895 0.0569 0.4509
normal

max 3.8752 1.2704 4.3171 0.4407 0.5174 2.5397

average 2.4352 0.8056 2.9096 0.1064 0.0718 0.6638
outages 2s

max 6.0773 1.7151 5.8252 0.4200 0.4756 2.6313

Position error [m] x y z x y z

average 0.0033 0.0031 0.0048 0.0017 0.0015 0.0017
normal

max 0.0221 0.0210 0.0235 0.0086 0.0074 0.0165

average 0.3418 0.3912 0.3724 0.0240 0.0183 0.0250
outages 2s

max 0.6567 0.6206 0.6151 0.0956 0.0546 0.1601

Velocity error [m/s] vx vy vz vx vy vz

average 0.0231 0.0225 0.0407 0.0047 0.0038 0.0045
normal

max 0.1227 0.1028 0.1097 0.0429 0.0236 0.0464

average 0.3960 0.4497 0.3619 0.0224 0.0166 0.0199
outages 2s

max 0.6676 0.6442 0.5671 0.0946 0.0588 0.1183

EKF Model with Biases

In the second experiment, the 15-state EKF model from section 3.3.2 has
been applied to the simulated dataset. Estimation errors of the filter result
are shown in figure 3.7 for the same series, which has been processed with
the 9-state EKF model in figure 3.6. Compared to the 9-state EKF model,
the 15-state EKF model is able to yield a smoother result, which has signif-
icantly smaller velocity and position drifts in regions of VT outages. The
better performance results from the incorporation of bias estimations in the
filter models. Angular rate sensor (or gyro) and accelerometer sensor bias
estimation errors are shown in figure figure 3.8. In tests with simulated data,
bias estimations correctly converge to the simulated offset values (which are
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Figure 3.7: Estimation errors of the 15-state EKF model after application to a sequence of
simulated data with outages: Attitude, position and velocity.

0.72, 0.15, -0.51◦/s for gyros and 0.055, 0.21, -0.17m/s2 for accelerometers
in the simulation).
A statistical overview about the performance of the 15-state EKF model on
the simulated dataset is given in the “EKF with bias” column in table 3.1. The
evaluation has been conducted after the same manner as with the 9-state EKF
model. A comparison of the results shows that the 15-state EKF model is
able to yield improved estimation results. Especially, the position error after
outages has been reduced to a maximal error of 16 centimeters and average
errors in the range of about 2 centimetres (in comparison to more than 30
centimetres for the 9-state EKF model).
The statistical account of bias estimation errors of the 15-state EKF model
can be found in table 3.2. Maximal bias estimation errors in the simulation
are 0.1◦/s and 0.1m/s2.
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Figure 3.8: Estimation errors of the 15-state EKF model after application to a sequence of
simulated data with outages: Gyro and accelerometer biases.

Effect of Synchronization Errors on the EKF Estimation Result

In a third test that has been conducted with simulated data, the influence of
synchronization errors on the EKF estimation result has been tested. Syn-
chronization errors can occur, if measurements from the VT system are not
correctly synchronized with IMU signals. For the simulation of synchroniza-
tion effects, a latency of 100 milliseconds has been added to timestamps of
the simulated VT measurements. The result after application of the 15-state
EKF model to the sequence in figure 3.7 can be seen in figure 3.9. The com-
parison of the results in figure 3.7 and in figure 3.9 show that the simulated
synchronization error has a significant influence on velocity and position es-
timations. Further tests that have been conducted have shown that a synchro-
nization error in the order of one or two milliseconds (which can be achieved
with the hardware synchronization in section 3.2) has no noticeable influence
on the EKF estimation result.
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Table 3.2: Performance of the 15-state EKF model in tests with simulated data: Gyro and
accelerometer bias. All results are calculated over 10 simulation runs (initializa-
tion time of 20s has been considered in each run). The highest values in each row
are marked with bold letters.

Filter model EKF with bias

Gyro bias error [◦/s] bωx bωy bωz

average 0.0093 0.0093 0.0177
normal

max 0.0604 0.0192 0.0936

average 0.0104 0.0099 0.0195
outages 2s

max 0.0605 0.0206 0.0902

Accelerometer bias error [m/s2] bax bay baz

average 0.0095 0.0037 0.0082
normal

max 0.0914 0.0155 0.0264

average 0.0122 0.0036 0.0085
outages 2s

max 0.0903 0.0151 0.0264

3.4.2. Experiments with Real Data

For testing the position estimation approach with realistic data, experiments
have been conducted with a test setup. The workplace dimensions of the test
setup are typical for a manual assembly scenario (in the experiments a cube
of approximately 1m side length has been considered). In the following, the
test setup is described and an account of the VT system performance in this
scenario is given. After that, the improvement of position estimations by
means of the inertial navigation solution are shown.

Test Setup and Real Dataset

The test setup for recording realistic data is depicted in figure 3.10. In the test
setup, the sensor bracelet depicted in figure 3.10 a) is used for tracking the
hands of a test person. By means of the sensor bracelet, the IMU is attached
to the wrist. For tracking the hand position, VT markers are mounted on
the sensor bracelet at known positions in the object coordinate system. The
position of the camera in the test setup is illustrated in figure 3.10 b). For
testing the position estimation system, a single camera has been placed at
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Figure 3.9: Estimation errors of the 15-state EKF model after application to a sequence of
simulated data with outages and a synchronization error between IMU and VT
data of 100ms: Attitude, position and velocity.

a position from which the working environment could be observed. Before
recording, the camera has been calibrated in order to determine the intrinsic
and extrinsic camera parameters. Thus, position and orientation of the camera
in the world coordinate system are given by the extrinsic camera parameters.
The test setup described above has been used for recording 6 sequences of
test data, each of 5 minutes duration. All test sequences contain IMU and
VT system measurements, which have been recorded while a test person was
performing arbitrary hand movements.

VT Performance Tests

When using the VT system for positioning or for updating estimations of the
INS solution, it has to be regarded that position measurements are not always
available because of outages. Occasional outages result from occlusions, the
object being out of the field of view or detection errors of the VT algorithm.
Table 3.3 gives an account of the availability of VT measurements in the test
data. The results in the table contain information about average sampling
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a) b)

VT 
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IMU

video
camera

Figure 3.10: Setup for real data tests with the position estimation system: a) Sensor bracelet
with IMU and VT markers. b) Camera position for recording hand movements.

rate and quantify outage occurrences in the test sequences. It should be noted
that the VT system software achieves maximal frame rates of 8-9 frames per
second (fps) on the utilized test PC (Intel core 2 duo, 2.4Ghz, 3.4GB RAM)
with a single camera.

Because of the lacking ground truth, the precision of VT measurements
could not be evaluated with the test data from arbitrary movements. There-
fore, another test has been conducted, in which VT data has been recorded
with a single marker that has been moved along paths parallel to the axes of
the world coordinate system without performing rotations. The deviations
of VT measurements from these known paths, such as deviations of attitude
measurements, are shown in table 3.4. In the table it appears that ψ-angle
measurements are more precise than measurements of other angles and that
z-measurements are more noisy than x- and y-measurements. The reason for
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Table 3.3: Availability of VT measurements in the test dataset: Resulting average sampling
rate, longest outage and number of outages of long duration.

VT measurements sampling
rate 1)

outage
max 2)

#outages
>1s 3)

test sequence 1 6.01 2.42 26

test sequence 2 5.86 2.23 18

test sequence 3 6.47 1.62 9

test sequence 4 6.35 2.05 7

test sequence 5 4.42 3.19 49

test sequence 6 5.83 1.94 20

overall 5.8229 2.2405 21.5
1) average sampling rate in test sequence [fps]

2) longest outage in test sequence [s]
3) number of outages >1s in test sequence

this lies in the geometry of the test setup, in which the z-axis of the world co-
ordinate system is parallel to the optical axis of the camera. This causes less
noise in ψ-angle measurements and reduces the accuracy of z-measurements.
In the utilized setup, the VT system is able to yield position estimations of
an accuracy in the range of a few millimeters up to some centimeters in z-
direction. The deviation of ψ-angle measurements is usually in the order of
a few degrees.

Table 3.4: VT system measurement precision in the test scenario.

Position deviations [m] x y z

average deviation 0.0021 0.0019 0.0191

maximal deviation 0.0122 0.0124 0.1200

Euler angle deviations [◦] φ θ ψ

average deviation 12.8147 9.0126 1.7489

maximal deviation 62.2740 42.5978 11.2660
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EKF Model without Biases

An example for position deviations, resulting from the application of the 9-
state EKF model to one of the sequences in the test dataset, is depicted in
figure 3.11. Because of the non-availability of a ground truth in tests with
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Figure 3.11: EKF result for a real data test sequence: Position deviation of estimations with
the 9-state model to VT system measurements at the end of each outage.

real data, VT system measurements have been used as an approximate refer-
ence. The position deviations in the figure have been obtained by calculating
the difference between the last predicted position before an update and the
VT position update. Thus, every point in the figure represents the position
drift at the end of an outage.
A statistical overview about all position deviations in the test dataset is given
in the “EKF without bias” column in table 3.5. For calculation of the devia-
tions in the table, only position estimation results after 60s have been consid-
ered in order to exclude possible errors from filter initialization. The results
in the table show that average position deviations are around one centimeter.
It should be noted that average z-axis deviations are in the order of average
VT z-measurement accuracies. Therefore, no clear statement can be made
about average z-axis deviations. Maximal deviations of EKF results to VT
results can be up to more than half a meter.
A case that exemplifies the particular usefulness of the INS solution is shown
in the cutout of a sequence result in figure 3.12. In the areas, which are
marked with dashed circles, fast oscillating movements have been performed.
Although the VT system was not able to sample these movements correctly,
the original movement has been retrieved to the most extent by means of the
INS solution.
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Figure 3.12: Example for lacking VT system position measurements, which are retrieved by
the 9-state EKF model. Relevant areas are marked with dashed circles.

EKF Model with Biases

Figure 3.13 shows the deviations of position estimation results from the 15-
state EKF model to VT position measurements for the same series, which has
been used in figure 3.11. In contrast to the 9-state EKF model, the 15-state
EKF model takes about a minute for initialization (which can be seen in the
instable deviations at the beginning of the plot). However, the 15-state EKF
model seems to be more accurate, because its position deviations appear to
be smaller than the deviations of the 9-state EKF model.
The statistical evaluation in the “EKF with bias” column in table 3.5 gives

an account of all position deviations of the 15-state EKF model applied to the
test dataset. Compared to the results of the 9-state EKF model, the 15-state
EKF model is able to yield better results for average and maximal deviation.
Average and maximal z-axis deviations of the 15-state EKF model are in the
order of VT deviations. As in the case of average deviations of the 9-state
EKF model, no clear statement can be made for these results.
Figure 3.14 shows the position result of the 15-state EKF model for the same
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Table 3.5: Position deviations of EKF estimations to VT results in the real data test. Results
from sequences after an initialization phase of 60s have been considered.

Filter model EKF without bias EKF with bias

average deviation to VT [m] x y z x y z

test sequence 1 0.0094 0.0122 0.0202 0.0063 0.0075 0.0167

test sequence 2 0.0101 0.0126 0.0199 0.0075 0.0082 0.0137

test sequence 3 0.0090 0.0106 0.0187 0.0069 0.0067 0.0163

test sequence 4 0.0095 0.0096 0.0197 0.0072 0.0064 0.0130

test sequence 5 0.0132 0.0156 0.0269 0.0096 0.0099 0.0221

test sequence 6 0.0110 0.0116 0.0227 0.0078 0.0076 0.0168

overall average deviation 0.0104 0.0120 0.0213 0.0075 0.0077 0.0164

maximal deviation to VT [m] x y z x y z

test sequence 1 0.2021 0.5644 0.5108 0.0747 0.1054 0.1434

test sequence 2 0.3304 0.4557 0.6623 0.1123 0.0846 0.1066

test sequence 3 0.3859 0.2887 0.2454 0.0964 0.1167 0.0890

test sequence 4 0.3278 0.2075 0.8685 0.0884 0.1390 0.0811

test sequence 5 0.4005 0.2411 0.6586 0.1408 0.1778 0.1489

test sequence 6 0.5630 0.2535 0.4258 0.1540 0.1093 0.0998

overall maximal deviation 0.5630 0.5644 0.8685 0.1540 0.1778 0.1489
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Figure 3.13: EKF result for a real data test sequence: Position deviation of estimations with
the 15-state model to VT system measurements at the end of each outage.

sequence part, which has been used in figure 3.12. When comparing the filter
results in the figures, it appears that the filter result in figure 3.14 is smoother
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than in figure 3.12. This indicates that the 15-state EKF model is able to
yield better estimations for missing position information in VT outages than
the 9-state EKF model.
The bias estimations of the 15-state EKF model for the sequence in figure
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Figure 3.14: Example for lacking VT system position measurements, which are retrieved by
the 15-state EKF model. Relevant areas are marked with dashed circles.

3.13 are shown in figure 3.15. After filter initialization, the bias estimations
appear to be relatively stable, which indicates a converging behavior.
A final comparison of the maximal filter deviations in table 3.5 and the maxi-
mal position errors after outages in table 3.1 reveals that for both filter types,
simulation errors are smaller than filter deviations in tests with real data.
However, it has to be considered that the VT results (which are used to cal-
culate the deviations in table 3.5) are only an approximate reference and that
outages in real data sometimes exceed 2s (see table 3.3). Thus given, the
findings from simulation appear to be similar to real data test results.
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Figure 3.15: Bias estimations of the 15-state EKF model for a sequence of the real dataset.
After an initialization time of about a minute, the filter provides a stable result
for bias estimations.

3.5. Summary

In this section, a position estimation system has been presented, which is
able to determine 3D positions of arbitrary objects in indoor environments.
By means of the combination of marker-based VT and inertial navigation,
the system has been designed to cover different worker activity recognition
scenarios.
The utilization of marker-based VT is appropriate for industrial applications
and allows scalability with respect to the dimensions of the tracking area.
This means that position tracking can be realized for large scale environ-
ments, such as as room-level applications, but also that applications can be
covered, which require high tracking accuracy in areas with small dimen-
sions.
Because of the fact, that the position estimation system provides information
to activity recognition methods, a gapless tracking result is desirable. There-
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fore, the drawbacks of outages and limited sampling rates of the VT system
have been tackled by utilization of an inertial navigation solution, which is
based on a small MEMS IMU and an EKF.

Video-Tracking System

Tests with the marker-based VT system have shown that it is able to yield
position estimations with an accuracy up to the order of millimeters in our
scenario. Average VT sampling rates basically depend on image frame rates
and computing power, but are in practice reduced by outage occurrences.
Typical average sampling rates for tracking of hand movements are in the
order of 5-6fps.

Inertial Navigation Solution

The presented INS solution utilizes MEMS IMU’s and triggerable industrial
video cameras, which are operated in a sensor network that provides mea-
surements with synchronized timestamp information. In order to estimate
positions from IMU and VT system measurements, two different EKF mod-
els have been proposed. The techniques of the INS approach have been tested
in a simulation, which allows evaluation of the theoretical performance with
respect to an exactly known ground truth. Furthermore, the importance of
synchronization and the effect of synchronization errors have been demon-
strated in the simulation.
In tests with a realistic scenario it has been shown that the achieved position
estimation performance is comparable to simulated results. Short VT outages
have been compensated and fast movements have been captured by means of
the increased sampling rate that is provided by the INS solution. A compar-
ison of the filter models has shown that the 15-state EKF model takes longer
initialization time than the 9-state EKF model. However, the 15-state EKF
model is able to yield more accurate results.





4. Low-Level Activity Recognition

In this chapter, our approach for the recognition of low-level activities per-
formed by human workers in industrial environments is presented. As de-
scribed in section 2.3, the activity recognition approach is partially based on
location information of objects involved in the manufacturing process (such
as tools or parts of the human body) and cues about performed actions (e.g.
fastening a screw). In the component overview of figure 2.2, the techniques
of this chapter are represented by the components windowed features gener-
ation, action classification, location classification and activity fusion.
After a brief review of sensor devices and processing techniques, which are
used in state of the art activity recognition approaches, the utilized feature ex-
traction and action classification methods are explained. Furthermore, an ap-
proach for classifying activity related locations and the activity fusion method
are presented. Finally, an account of the performance of the presented activ-
ity recognition approach is given by an evaluation of experiments with the
PC scenario, which has been introduced in section 2.2.

4.1. Introduction

Because of the fact that the recognition of human activities is a wide area
of research with different approaches and applications, a variation of sensor
devices and processing methods for the recognition of worker activities is ex-
isting. In the following, an overview about commonly used sensor devices
and activity recognition methods is given and the choice of sensors and pro-
cessing methods for the worker activity recognition approach of this work is
explained.
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Sensor Devices

An important category of sensor devices for utilization in activity recognition
applications are vision-based systems. Since optical sensors are common for
the analysis of human motion [66], vision-based techniques are used in a va-
riety of activity recognition applications, such as the surveillance of office
environments [70] or the recognition of sports activities [85]. However, the
major drawbacks of vision-based approaches are line of sight problems and
the computational complexity of image processing methods.
An alternative to vision-based techniques are wearable sensing techniques. A
very popular type of wearable sensors are accelerometer devices, which are
utilized for instance in [7] for the recognition of everyday activities. In [99],
an assembly task scenario is presented, in which the recognition of worker
activities is based on an IMU, force sensitive resistors and an RFID sensor
that are attached to the arm of the working person. Over the years, wearable
techniques have drawn a lot of interest within the activity recognition com-
munity, which led to the development of several sensor platforms. In [62], a
miniaturized wearable sensor platform is utilized, which contains accelerom-
eters, light sensors, and microphones. Another wearable sensor platform is
presented in [110]. This platform contains accelerometers and tilt switches
that are utilized for motion based activity recognition. Physiological informa-
tion in form of galvanic skin response, skin temperature, near-body ambient
temperature and accelerations can be measured with the wearable sensor plat-
form in [55].
Besides the activity recognition approaches that are based on monitoring per-
sons or attaching sensors to persons, an alternative strategy is to attach sensor
devices to objects, which are used in activity recognition scenarios. This is
for instance demonstrated in the manual assembly scenario of [5], where in-
ertial sensors are attached to workpieces. Another example is the work of
[102], which utilizes a combination of worn accelerometers and RFIDs at-
tached to used objects for ADL recognition. A network of distributed binary
sensors for the detection of household activities has been utilized in [51]. Al-
though being an approach for simple acquisition of object use information, it
has to be mentioned that the attachment of sensors to workpieces or to a large
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number locations might be inconvenient for a flexible activity recognition ap-
proach.
The combination of position measurements and information from wearable
devices is an approach to increase the performance of activity recognition
applications, in which locations are related to activities. An example for this
is given by the work of [103], where information from different wearable
devices is utilized in combination with position information from GPS mea-
surements for activity recognition in outdoor environments. In [97] an ap-
proach for indoor recognition of maintenance activities is presented, which is
based on an ultrasonic position tracking system and inertial sensors.

Activity Recognition Methods

A widely used technique for the recognition of activities in sequences of sen-
sor data is to calculate particular features (neglecting the phase relations)
from segments of windowed raw data and to apply a pattern recognition
method [44] in order to classify performed activities from calculated features.
Thus, generalized information is derived from the spatio-temporal content
(e.g. the course of a trajectory) of the signal segment in each window. In [7]
this approach has been demonstrated with accelerometer signals. After fea-
ture calculation from raw data in a sliding window, a decision table method,
a nearest neighbor classifier, a decision tree and a naive Bayes classifier have
been applied and the results have been compared. Due to the popularity of
this approach, a number of similar applications can be found in literature.
For instance the work of [81], in which the performances of several base-
level classifiers and meta-level classifiers are compared.
For activity recognition with vision-based sensors, often generative models
are utilized [15]. One of the most commonly used generative modelling
method for vision-based activity recognition are hidden Markov models (HMM)
[70, 72]. However, HMMs find also application in activity recognition with
wearable sensors [48, 126]. The application of HMMs to activity recognition
is useful if activities can be modeled as time series patterns, which are for
instance present in gestures. Therefore, this approach is to some extent in
contrast to the generalizing sliding window method. Another approach for
the classification of activities with underlying trajectory information is the
usage of template matching methods, e.g. as demnonstrated in [98].
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There are also activity recognition approaches existing, in which the results
from sliding window techniques and generative models are combined. An
example for this is given in [115], where a hidden Markov model is applied
to accelerometer readings and sound information is classified with a linear
discriminant analysis from microphone data.

As shown in the component overview in figure 2.2, the activity recognition
approach presented in this work is based on the recognition of worker actions
and on object location information. Location information constitutes a useful
cue with respect to performed activities, which has also been demonstrated
in other work (e.g. in [103]). This is especially the case for the structured
working environments of modern factories. For acquiring position informa-
tion about objects that are involved in the manufacturing process, the system
for indoor position estimation in industrial environments that has been pre-
sented in chapter 3 is utilized.
The recognition of actions is based on motion data from IMU measurements
(which is an already existing component of the position estimation system).
The inertial sensors of a small MEMS IMU have various advantages, which
makes them suitable for our approach. Inertial sensors have proven to provide
useful physical information for activity recognition in several applications.
Furthermore, they are of a relatively small size and can be attached to tools
or clothing. Finally, inertial sensors are robust to external disturbances and
are therefore adequate for industrial environments.
For the recognition of activities a combined approach is used, which is based
on action classification with a sliding window technique and density based
location classification. This approach is explained in detail in the following
sections.

4.2. Action Classification with Wearable Sensors

Since it can not be expected that worker actions are generally performed in
a way that they show well defined temporal patterns, an approach based on
the generalizing sliding window method proposed in [7] is utilized for action
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Figure 4.1: Classification of actions from sensor signals based on a sliding window. Top:
Segmentation of recorded sensor data by means of a sliding window. Bottom:
Classification of extracted segments.

classification in this work. The generalizing effect is able to cope with vari-
ations in the execution of actions within the sensor data of a single subject
such as between sensor data from multiple subjects.
The approach for action classification based on sliding a window is depicted

in figure 4.1. Assuming that we are receiving a sequence of data from one or
more sensor devices that are attached to particular positions at the worker or
at an object used by the worker, signal parts Sn are extracted for every sensor
by means of the sliding window illustrated at the top of figure 4.1:

Sn = (s1,s2 . . .sL). (4.1)
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The length in sampling points L and the displacement of extracted informa-
tion result from the window size and the window spacing parameters, which
are to be chosen according to the duration of performed actions or the dura-
tion of characteristic action parts. From extracted signal parts, features (e.g.
average value or signal energy) are calculated resulting in a feature vector~xn,
as shown at the bottom of figure 4.1. Since calculated features are often of a
high dimension, it is recommendable to apply a feature extraction method in
order to obtain a feature vector of reduced dimensionality~x′n containing most
of the relevant information of ~xn. The extracted feature vector ~x′n can then
be used as input information for the classification of action classes ci with an
adequate classification method.
Basically, a variety of statistical learning methods are existing [21, 57, 86,
119], which are suitable for solving different types of classification prob-
lems. However, since the performance of a classifier always depends on the
type of the classification problem (e.g. distribution of the data, size of train-
ing dataset, etc.) and since our intention is to stay flexible with respect to the
application, two standard methods have been chosen, which find application
in many activity recognition applications. The first choice was for the naive
Bayes method, because it is a very common classification technique and is
often used as benchmark for other classifiers. As an alternative method, the
k-nearest neighbor (k-NN) algorithm has been chosen, since it usually yields
good results in activity recognition problems. Furthermore, with the naive
Bayes and the k-NN method a parametric and a non-parametric classification
technique have been selected.

4.2.1. Feature Calculation

The selection of adequate features is crucial to the performance of a classifi-
cation method in every classification problem. In [42] a study on the selection
of features from accelerometer signals for activity recognition has been un-
dertaken, which concluded with the fact that the appropriateness of features
generally varies with the utilized scenario. This means that, theoretically,
with every change of application parameters, such as the actions to be recog-
nized or the placement of sensor devices, a different combination of features
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can lead to good classification performances. However, since a careful selec-
tion of appropriate features in every scenario stands in contrast with a flexible
approach, exhaustive feature studies are not feasible for the purpose of this
work.
The approach in this work is based on the selection of a number of initial
features that are commonly used in state of the art activity recognition sys-
tems reviewed in section 4.1. After the calculation of these initial features,
relevant features are derived in a post processing step by means of a feature
extraction method. For the recognition of actions with angular rate sensors
and accelerometers the following initial features have been used:

• mean: Calculating the sample mean mean(Sn) =
1
L
∑L

l=1 sl of a win-
dowed signal is one of the most commonly used features, since it is
utilized for action classification in almost every wearable sensor appli-
cation (see [7, 42, 62, 81, 115]). This feature contains the static compo-
nent of the signal part in the extraction window.

• median: Although the median constitutes a measure that is similar to the
mean value, it is used as an additional feature in this work because of it
robustness to outliers.

• local extrema: Local extrema are determined by taking the minimum
min(Sn) and the maximum max(Sn) of the extracted signal part (e.g.
used in [110]). Thus, these features contain information about the max-
imal intensity of a signal.

• variance: The sample variance 1
L−1

∑L
l=1 (sl−mean(Sn))

2 is a feature
for measuring the dynamic content of a signal part. In some publications
(e.g. in [7, 42, 62, 81]) the signal energy is used for measuring the
dynamics of actions. However, it has to be noted that the variance is
proportional to the signal energy if the DC component (i.e. the mean) is
removed in the calculation of energy.

• frequency domain entropy: The frequency domain entropy (used in [7]
or [42]) is a measure for the average information content of the signal
in the frequency domain. This means that it can be used to discrim-
inate actions with similar signal energy, but different energy spectra.
The frequency domain entropy can be calculated from the signal in the
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frequency domain s f according to −
∑N

f=1 s f · ld
(
s f
)
.

• correlation: A method to determine the similarity of different signals is
the correlation measure. The correlation of the two signals Sn,1 and Sn,2

is calculated by E((Sn,1−E(Sn,1))(Sn,2−E(Sn,2)))
std(Sn,1)std(Sn,2)

, where E () is the expected
value and std () is the standard deviation. Applied to 3D accelerometers
(or angular rate sensors), the similarity of 3 pairs of axis signals (x,y,
x,z and y,z) can be determined [7, 42, 81].

All initial features are calculated for each sensor signal of the utilized IMU.
Considering that the IMU provides measurements from 3 orthogonal ac-
celerometers and 3 orthogonal angular rate sensors the total sum of calculated
features is 42.

4.2.2. Feature Extraction

A problem of high feature dimensions is that they can cause overfitting prob-
lems in classifier training if the available training data is limited. On the other
hand, it is usually the case that not every feature contains the same amount
of information in a classification problem. Thus, one approach to reduce the
feature dimensionality is to combine features that contain similar informa-
tion. This approach is also referred to as feature extraction.
In this work a principal component analysis (PCA) has been used for reduc-
ing the dimensionality by linear combination of redundant features. The PCA
is a widely used method for feature extraction and reduces the feature dimen-
sion by finding the principal components in the input data, that is the axes in
the d-dimensional feature space, which optimally represent a set of data in
a least-squares sense. The dimension of the input data can then be reduced
by projection on the d′ principal components (with d′ < d), which represent
most of the information. This principle is exemplified for two dimensions in
figure 4.2. It can be seen in the example of the figure that most of the infor-
mation of the distribution is represented by the principal component indicated
by the green arrow.
Given a set of input data in the form of N samples of feature vectors~xn of di-
mension d, the principal components can be found by determining the eigen-
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Figure 4.2: Principal components (displayed as arrows) of a set of data: an example with 2
feature dimensions.

vectors~ek and the eigenvalues of the scatter matrix ([21]):

S =

N∑
n=1

(~xn−~m)(~xn−~m)T , (4.2)

where ~m is the sample mean of the dataset. The new feature vectors ~x′n of
reduced dimension d′ can then be calculated by the projection

~x′n = ~m+
d′∑

k=1

akn~ek. (4.3)

The coefficients akn in equation (4.3) are given by:

akn =~eT
k (~xn−~m) . (4.4)

For the reduction of the feature dimension only the eigenvectors with the d′

highest eigenvalues are utilized in equation (4.3).

4.2.3. Naive Bayes Classifier

The naive Bayes method is a statistical classification approach, which is
based on the assumption that a mathematical model of the decision problem
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in form of probabilities and probability densities is existing. In the following,
the naive Bayes approach should briefly be explained (for further information
on Bayesian decision theory and naive Bayes classification see also [21] or
[57]).
A typical target in classification problems is to obtain the posterior P(ci|~x),
which represents the probability that a measured feature vector ~x belongs to
a certain class. The posterior can be used for classification after the maxi-
mum a posteriori (MAP) method, which is to decide for the class with the
highest posterior. However, since the posterior can usually not be determined
directly, it is calculated in Bayesian decision theory by making use of the
Bayes formula:

P(ci|~x) =
p(~x|ci)P(ci)

p(~x)
. (4.5)

Besides the evidence p(~x), the Bayes formula in equation (4.5) contains the
likelihood p(~x|ci) and the prior P(ci). According to the naive Bayes ap-
proach, the likelihood can be determined from the feature probability densi-
ties p(xk|ci) according to

p(~x|ci) =

d∏
k=1

p(xk|ci) , (4.6)

if the features are conditionally independent. The prior in equation (4.5) can
be derived from knowledge about the occurrence of classes, for instance from
a set of training data.
Disregarding the evidence p(~x), which is independent of the class, the MAP
decision rule, the Bayes formula and equation (4.6) lead to the following
decision rule:

cNB = argmax
i

(
d∏

k=1

p(xk|ci)P(ci)

)
. (4.7)

In practical applications it is often assumed that the feature probability den-
sities are normally distributed. In this case, they can be estimated by calcula-
tion of the sample mean and the sample variance of the feature from a set of
training data. This feature model is also used for naive Bayes classification
in this work.
It should be mentioned that the naive Bayes method is known to yield good



4.2 Action Classification with Wearable Sensors 67

classification results even if the features are not conditionally independent
[21].

4.2.4. k-Nearest Neighbor Classifier

In contrast to the naive Bayes method, the k-NN approach makes no basic
assumptions about the nature of the distribution of features. The idea be-
hind the k-NN method is a quite simple one. Assuming that a set of training
data is given that contains enough training samples (or instances) to describe
the class distributions in the feature space, the class membership of a test
instance is determined from the dominating class of the training samples in
the neighborhood of the test instance. The neighborhood is represented by
the k closest training instances according to a chosen distance measure. As
distance measure between two point vectors ~p1 and ~p2 often a metric of the
class of Lk norms is used:

Lk (~p1,~p2) =

(
d∑

i=1

|~p1−~p2|k
)1/k

. (4.8)

In this work a k-NN classifier is used, which is based on the L2 or Euclidean
norm.
An example for the k-NN classification principle is given in figure 4.3. For

k=1, the closest instance is of class 2. Therefore, we would decide in this
case that the test point belongs to class 2. However, the instance close to the
test point could also be an outlier, since the density of class 2 is quite sparse
in this area. This potential misclassification can be avoided by choosing k>1.
If k is chosen to be 3, the 3 closest instances to the test point are determined
and the class affiliation of the test point is assigned according to the class
with the highest occurrence (which would in this case be class 1). Potential
class ambiguities can be resolved by additional incorporation of the average
distance.
As previously mentioned, one of the advantages of the k-NN method is that
no specifications of the class distributions in the feature space have to be
made. This can be helpful if the class distributions vary with performed
actions or the number of test persons. Despite of its simplicity, the k-NN
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Figure 4.3: Nearest neighbor classification example with 2-dimensional features. The circles
around the test point mark the distances that are considered for classification if
k = 1 and k = 3 when utilizing the Euclidean norm.

method is able to yield a high classification quality [21]. A drawback of
the k-NN method is that its computational costs increase with the number
of instances in the training data, although there are efficient search strategies
existing (see also [21] and [119]).

4.3. Position Based Location Classification

The intention for the incorporation of location information in the worker ac-
tivity recognition process is that the presence of particular objects (e.g. a
human hand or a tool) at defined locations is linked to the execution of ac-
tivities. For obtaining location information, a classification approach is re-
quired, which relates position measurements to locations that are relevant for
performed activities.
Our general approach to this problem is to treat locations as position densi-
ties, which can be derived from a set of training data. As an example, a set of
hand position measurements is given in figure 4.4. The measurements have
been taken with the VT system from section 3.2.3 while a test person was
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Figure 4.4: Hand position measurements recorded during the execution of three different
activities of a manual assembly task. The position measurements appear as point
clouds belonging to different location classes, which are indicated by the colors
red, green and blue.

performing three different activities of a manual assembly task. The activity
locations are represented by point clouds of position samples.
Similar to the action classification techniques in section 4.2, a parametric and

a nonparametric approach for location classification based on position densi-
ties are proposed. The parametric approach is based on maximum likelihood
classification by modelling point clouds as multivariate normal distributions.
The nonparametric alternative for being independent from assumptions about
underlying distributions is the instance-based k-NN classification method.
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4.3.1. Maximum Likelihood Approach

A natural approach to the location classification problem is presented in [97],
where a threshold method based on the Mahalanobis distance is used to clas-
sify locations. The approach utilized in our work is more general in the way
that location classes c j are related to positions ~p=(x,y,z)T by means of prob-
ability distributions p

(
~p|c j

)
. Thus, the location class of a position measure-

ment can be classified after the maximum likelihood (ML) method according
to:

cML = argmax
j

(
p
(
~p|c j

))
. (4.9)

In this work, the normal distribution is used to model the probability distri-
butions of positions ~p in 3D space:

p
(
~p|c j

)
=

1

(2π)3/2
√∣∣Σ j

∣∣e−1
2(~p−~µ j)

T
Σ
−1
j (~p−~µ j). (4.10)

After the determination of the distribution parameters µ j and Σ j from a set
of training data by means of the sample mean and the sample covariance, the
following formula can be used for location classification:

cML = argmax
j

 1

(2π)3/2
√∣∣Σ j

∣∣e−1
2(~p−~µ j)

T
Σ
−1
j (~p−~µ j)

 . (4.11)

However, when using the ML approach for location classification it has to be
considered that also position measurements, which are far away from the po-
sition distribution centers are assigned to location classes. In order to avoid
these unrealistic assignments, a position measurement is assigned to a null
class, if the probability for each class is below a threshold value. This thresh-
old value can automatically be determined by calculating the density value at
the multiple of a standard deviation σ around the normal distribution center.
An illustration of possible thresholds in form of 2-dimensional projections of
hyperellipses around the distribution centers onto the x− y, x− z and y− z
planes is given in figure 4.5 for the position measurements of figure 4.4. The
ellipses in the figure represent the 1σ , 2σ , 3σ isolines.
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Figure 4.5: 2-dimensional projections of the position measurements of figure 4.4 onto the
x−y, x−z and y−z planes. The 1σ , 2σ , 3σ ellipses enclose possible confidence
areas.

4.3.2. k-Nearest Neighbor Approach

Although the assumption that locations are related to normally distributed
position measurements represents usually a good approximation, this must
not be the case for every activity. An example for this would be an activity, in
which movements occur in the form of trajectories that are not conform with
the normal distribution. Furthermore, it happens occasionally that activities
are executed by different workers in different manners, e.g. because they hold
a tool in another way.
The idea to tackle this problem is to make use of the instance-based learning
principle of the k-NN method that has been described earlier in section 4.2.4.
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The location class of a position ~p is then classified after the mostly occurring
class among the k closest position instances given by a set of training data.

4.4. Activity Fusion

Since the recognition of activities is based on action and location informa-
tion, the results from the action and location classification methods have to
be fused in order to derive activities. Therefore, detected actions and location
information first have to be temporally aligned and then fused by an adequate
classifier fusion technique for online activity recognition.
For temporal alignment, pairs of location classification and action classifi-
cation results are created by taking each classified location and determining
the temporally closest action classification result. Depending on the utilized
task recognition technique, the aligned classification results are either fused
in order to derive activities or passed directly to the task recognition level (for
task level activity recognition see chapter 5).
For the fusion of classification results different methods are existing. How-
ever, the applicability of classifier fusion techniques mainly depends on the
type of the output information that is produced by the classification methods.
According to [87], the type of a classifier output can be divided into crisp
labels (i.e. only the classified class), class rankings and soft outputs (e.g. a
score value for each class). Depending on utilized action and location classi-
fication techniques, either soft outputs (naive Bayes and ML method) or crisp
labels (k-NN method) are available for fusion. In order to cover all types of
output information that may be produced by classification, a majority voting
technique has been utilized, which is similar to the plurality voting method
used in [81]. This means for the fusion of action and location classification
results that an activity is considered as detected if both results correspond to
the respective activity and otherwise a null class is assigned.
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4.5. Experiments and Results

In this section an account of the performance of the presented worker activ-
ity recognition approach is given by means of evaluations that are based on
experiments with a PC assembly scenario. After a description of the scenario
and the experiments, evaluation results for action and location classification
such as activity recognition are shown and compared in the following.

4.5.1. PC Scenario

The PC scenario, which has briefly been introduced in section 2.2, represents
typical manual assembly tasks of the electrical industry. It consists of a test
setup in the form of a laboratory workplace environment, in which a worker
assembles a PC from several components.

Workplace Environment and Worker Task Description

An overview about the laboratory workplace environment is given in the im-
age on the left of figure 4.6. This test environment represents a structured
industrial workplace, in which workpieces and components are located at de-
fined storage places. The storage places of the mainboard, the CD drive and
the screws are indicated in the image at the top right of figure 4.6. The PC
case in the middle of the image is placed at a defined position as well, which
is not changed during the execution of a task.
The worker task consists of 4 different (sub-)tasks that represent the main
steps in the PC assembly. These tasks are opening the case by removing the
cover plates, assembling the CD drive and assembling the mainboard in the
empty case shown at the bottom right of figure 4.6, such as connecting the
power and data connectors.
In the development phase of the activity recognition system, a number of ac-
tivities that are essential for the recognition of each worker task have been
identified. These activities are listed together with their corresponding loca-
tions and actions in table 4.1. The result of the assembled components after
the completion of the whole worker task and some of the locations, at which
activities are performed are illustrated in figure 4.7.
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Table 4.1: PC scenario: List of tasks and activities with corresponding locations and ac-
tions. Activities are listed in the order of their execution (CD = CD drive, MB =
mainboard).

task activity location action

# description # description # description # description

1 remove 1 remove screw 1 1 case cover screw 1 1 use screwdriver

cover plates 2 remove cover 1 2 case cover 1 2 pull up

from case 3 remove screw 2 3 case cover screw 2 1 use screwdriver

4 remove cover 2 4 case cover 2 2 pull up

2 assemble 5 pick up CD 5 CD storage place 3 grasp

CD drive 6 pick up CD screw 6 CD screw box 3 grasp

7 fasten CD screw 1 7 CD screw 1 1 use screwdriver

6 pick up CD screw 6 CD screw box 3 grasp

8 fasten CD screw 2 8 CD screw 2 1 use screwdriver

6 pick up CD screw 6 CD screw box 3 grasp

9 fasten CD screw 3 9 CD screw 3 1 use screwdriver

6 pick up CD screw 6 CD screw box 3 grasp

10 fasten CD screw 4 10 CD screw 4 1 use screwdriver

3 assemble 11 pick up MB 11 MB storage place 3 grasp

mainboard 12 pick up MB screw 12 MB screw box 3 grasp

13 fasten MB screw 1 13 MB screw 1 1 use screwdriver

12 pick up MB screw 12 MB screw box 3 grasp

14 fasten MB screw 2 14 MB screw 2 1 use screwdriver

12 pick up MB screw 12 MB screw box 3 grasp

15 fasten MB screw 3 15 MB screw 3 1 use screwdriver

12 pick up MB screw 12 MB screw box 3 grasp

16 fasten MB screw 4 16 MB screw 4 1 use screwdriver

12 pick up MB screw 12 MB screw box 3 grasp

17 fasten MB screw 5 17 MB screw 5 1 use screwdriver

4 plug in 18 connect CD data 18 CD data connector 4 plug in

connectors 19 connect CD power 19 CD power connector 4 plug in

20 connect MB power 20 MB power connector 4 plug in
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Figure 4.6: PC scenario: Left: Laboratory workplace environment overview. Right (top):
PC case position and storage places of the mainboard, the CD drive and the
screws. Right (bottom): Empty PC case

Since motion and position of the worker’s hands constitute the most impor-
tant source of information in manual assembly, position and IMU measure-
ments that are taken with the sensor bracelet from section 3.4.2 provide the
physical input data to activity recognition in the PC scenario. The VT sys-
tem setup consists of two video cameras, which have been placed above the
workplace (see also the left image of figure 4.6). Although the marker-based
position tracking system needs only one camera for measuring 3D positions,



76 4 Low-Level Activity Recognition

mainboard 
screws

CD drive 
screws

electrical 
connectors

Figure 4.7: PC scenario: PC case with assembled components and locations of mainboard
screws (screw 1-5), CD drive screws (screw 1+2 only, screw 3+4 are on the other
side) and electrical connections (CD data connector is behind the CD power
connector).

two cameras are used in this scenario for increasing the tracking accuracy and
for a better observation of the workplace environment.

Test Dataset and Evaluation Procedure

As a basis for evaluation, a test dataset has been recorded with 6 participants.
The dataset consists of sequences, in which a participant is performing the
assembly tasks that are listed in table 4.1. The 4 tasks have been performed 6
times by all participants. Thus, 36 sequence instances consisting of data from
6 participants have been recorded for each task. During the performance of
assembly tasks, position data and IMU measurements have been recorded
with the sensor devices and ground truth (GT) labels, which mark the start
and the end of each executed activity, have been assigned manually. For sim-
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plification of the labelling and evaluation processes, all activities have been
performed primarily with the right hand (the left hand has only been used for
supporting the right hand). However, it should be noted that the system setup
and the proposed techniques are generally not restricted to the recognition of
activities that are performed with one hand only.
The described action and location classification methods have been trained
with samples that have automatically been cut out from recorded data by us-
ing the GT labels as a reference. After training, the methods for the recogni-
tion of actions, locations and activities have been applied to the sequence data
and the results have been evaluated with the GT information. All tests have
been conducted by means of a threefold cross validation (CV) with mixed
data from all participants. This means that for each task 24 sequence in-
stances have been used for training and the remaining 12 for testing. In order
to test all 36 sequence instances, this procedure has been repeated three times.
An example for the results from action and location classification and activ-
ity recognition is given in figure 4.8. Since a sliding window technique is
used for action classification, detected actions appear in the figure as areas
spanning a length of the window width. Location and activity detections are
marked as points and occur at the time of the corresponding position mea-
surement. For the evaluation of the produced test results, true positives (TP)
and false positives (FP) are counted under consideration of the GT according
to:

• TPs are defined as detections that overlap with the GT area of the re-
spective class. For location and activity detections a tolerance of half a
second is added to the start and the end of manually assigned labels and
detections, which occur directly before and after a TP of the same class
are disregarded. Multiple detections at the same GT label are considered
as one TP and are not treated specifically.

• Detections that remain after the identification of TPs are counted as FPs.
Multiple action detections overlapping with a FP of the same class are
disregarded. Multiple location and activity FPs that occur directly be-
fore and after a FP of the same class are disregarded, as well.
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Figure 4.8: Result examples for action classification (top), location classification (bottom
left) and activity fusion (bottom right). The test sequence, which has been used
in this example, is of task class number 2.

Based on TP and FP detections the precision rate

precision =
T P

T P+FP
(4.12)

and the recall rate

recall =
T P

T P+FN
(4.13)

are determined as measures for evaluation. It should be noted that in this
work good recall rates are more desirable than good precision rates for low-
level activity recognition. The reason for this is that low-level activities form
the input for task recognition, as shown in figure 2.2. Thus, false alarms can
be reduced on the task recognition level to some extent by the incorporation
of context knowledge. However, missing detections cannot be retrieved in
any further step.
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Figure 4.9: Action classification results of the naive Bayes (NB) and the k-NN classifier (for
k=3,5 and 7) in the PC scenario (recognition rates are averaged over all classes).

4.5.2. Action Classification with Wearable Sensors

Figure 4.9 shows the results from action classification with the naive Bayes
(NB) and the k-NN methods applied to the IMU test sequences of the PC
scenario. In all tests, a window size of 1024 sampling points (about 2.5 s)
and a window spacing of 512 sampling points (about 1.25 s) have been used,
which yield comparatively good results for this data set. Before classification,
a PCA has been applied for feature extraction.

The results show that, compared to the NB method, the k-NN classifiers
yield slightly reduced recall rates but significantly better precision rates. A
possible explanation for this is that the execution of actions often varied from
participant to participant, which has been observed during recording. Thus,
the instance based k-NN method is able to yield better results, because the
assumption of the utilized NB model that the features are normally distributed
is not always correct. Furthermore, it can be observed that for increasing
numbers of k, precision increases while recall decreases.
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Figure 4.10: Location classification results of the maximum likelihood (ML) and the k-NN
classifier (for k=3 and 5) in the PC scenario (recognition rates are averaged
over all classes). Additionally, results of ML location classification applied to
Kalman filtered data is shown for the 9-state (KF) and the 15-state (bias KF)
EKF models.

4.5.3. Location Classification

Results from location classification based on VT measurements are depicted
in figure 4.10. In the figure the performances of the ML method and two dif-
ferent k-NN classifiers are compared. The threshold value for the null class
has been determined for ML classification by calculating the density values
at 3 standard deviations around the normal distribution centers.
The comparison of the ML method and the k-NN classifiers shows that the
k-NN classifiers yield better precision rates. However, the low recall rates of
the k-NN classifiers also indicate that many locations have not been detected.
Therefore, only the ML classification results are used in further experiments.
In another experiment the VT position data and the IMU measurements has
been fused with the 9-state and the 15-state EKF models before application
of the ML location classification method. The result shows that both methods
are able to increase the number of detected locations due to their capability to
compensate short VT outages. On the other hand, they also increase the num-
ber of FP’s. An explanation for this is that the KF increases the sampling rate,
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Figure 4.11: Comparison of activity fusion results by majority voting applied to different
combinations of location and action classification methods.

which in turn leads to an increased number of false detections. Furthermore,
besides several VT outages, comparatively fast rotational movements occur
in this scenario. Some of these rotations are off the range of the angular rate
sensors. This effect produces outliers in the KF results. Since reinitialization
takes less time for the 9-state EKF than for the 15-state EKF, the 9-state EKF
is producing less outliers in these situations and therefore yields a slightly
better recognition performance. Because of that the 9-state EKF should be
preferred to the 15-state EKF in this scenario.

4.5.4. Activity Fusion

Figure 4.11 shows a comparison of activity fusion results that have been ob-
tained by applying the majority voting method to different combinations of
location and action classification results. The first two results in the figure
show that the KF also increases the number of TPs and FPs in the activity
fusion result. The three results for which different action classification meth-
ods have been used (result 2-4) show again that the k-NN classifiers produce
slightly reduced recall rates and better precision rates.
A class-wise account of the majority fusion result for the second action and
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Figure 4.12: Class-wise activity recognition rates after activity fusion with majority voting.

location classifier combination is depicted in figure 4.12. It can be seen in the
figure that half of the activities are recognized with recall rates of more than
95% and that only two activities are hard to detect with recall rates below
50%. On the other hand, the rates of false detections are relatively high for
all classes (only two classes exist with a precision rate of more than 50%).
Compared to the result produced by location classification alone, many FP
detections are cleared away after fusion of location and action recognition
results. This can also be observed in the example of figure 4.8.

4.6. Summary

In this chapter, techniques for the online recognition of actions, locations
and (low-level) activities from inertial sensor and position data has been pre-
sented. The information derived on this process level constitutes the decision
input for task level activity recognition. Basically, all utilized methods are
not restricted to any specific application and can also be used in other scenar-
ios after recording of a new set of training data.
The proposed methods have been evaluated with test data from the PC sce-
nario. In the tests, the nonparametric k-NN action classification method has
shown that it is able to yield better results than the naive Bayes approach.
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However, for location classification the assumption of normally distributed
positions proved to be more useful for achieving good recall rates than the
nonparametric method. The utilization of Kalman filtered position data fur-
ther improved recall rates at the cost of precision. The activity recognition
result after the application of majority voting typically yields good detection
rates, but still contains a lot of false alarms caused by confusions. How-
ever, because of the fact that low-level activity recognition results are used
as input information for the recognition of task level activities, false rejec-
tions produce more costs than false detections. Therefore, in a scenario with
complex worker behavior, low-level activity recognition constitutes a tech-
nique for obtaining input information for the recognition of task level worker
activities with methods that are able to deal with uncertainty.





5. Task Level Activity Recognition

Task level activity recognition comprises the recognition of human behav-
ior of the complexity of worker tasks. According to the solution concept in
section 2.3, tasks can be modeled as sequences of low-level activities. This
means that on the task recognition process level additional information in the
form of context knowledge is incorporated in the activity recognition process.
Besides the recognition of worker tasks, the utilization of context knowledge
also allows to reexamine sequences of detected activities in order to produce
an enhanced activity recognition result.
In the following, the methods that are utilized in this work for task level ac-
tivity recognition are described and an evaluation of task level activity recog-
nition results based on experiments with the PC scenario is presented. The
techniques that are utilized in this chapter are represented by the state-based
task recognition component in the human-machine interface overview in fig-
ure 2.2.

5.1. Introduction

In the view of our worker activity recognition concept, the recognition of
worker tasks or subtasks constitutes a superordinate process level to low-
level activity recognition. Thus, for the recognition of worker tasks, low-
level activity information is processed on a higher level of abstraction by
means of models that incorporate the interrelations between low-level activi-
ties. Since worker tasks in industrial environments are almost always defined
as sequences of task steps (or activities), state-based task models are appro-
priate methods for the description of worker tasks.
A commonly used model for the description of human behavior is the finite
state machine (FSM). An example for the utilization of a FSM as a formal
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model for the description of human task performing processes for computer-
ized manufacturing systems is given in [94]. In [101] a FSM based on inputs
from processed wearable sensor signals is used to model a car production
task. Another example is given by the work of [6], in which detections from
vision-based office activity recognition are used as inputs in a state machine
model for the recognition of human behavior in an office environment.
An important drawback of FSMs is that they assume that the input infor-
mation is correct. This means that if detection results from low-level activ-
ity recognition are used as inputs they may not be affected with uncertainty.
Therefore, an alternative approach that allows to incorporate uncertain detec-
tion results in high-level activity models are generative models. In [85] and
[120] hidden Markov models (HMM) are used for the recognition of human
behavior from probabilistic input information. Similarly, [70] uses an ex-
tension of a HMM to recognize high-level behaviors for vision-based office
surveillance. In [121] household activities are recognized from RFID sensor
signals and processed video data by means of probabilistic reasoning with a
dynamic Bayesian network (DBN).
In this work statecharts are considered for comfortable task modelling in ap-
plications where it is possible to recognize low-level activities without any
noise or uncertainty. Furthermore, since generative models are adequate tech-
niques for the description of the sequential nature of worker tasks, a HMM
and a DBN approach are compared for online task recognition with uncertain
input information.

5.2. Task Modelling with Statecharts

Finite state machines are a common method for the deterministic descrip-
tion of worker tasks. However, as mentioned before, FSMs are based on
the assumption that the input information is not affected with uncertainty.
Therefore, the utilization of FSMs is limited to scenarios where reliable in-
formation about performed activities is available. Examples for this type of
input information are accurate position tracking results, binary information
(e.g. from binary switches or RFIDs) or internal data from utilized industrial
tools or machines.



5.3 Task Recognition with Hidden Markov Models 87

FSMs can formally be described by state diagrams that are based on tu-
ples containing the input alphabet, the set of states, the start state, the state-
transition function, such as the set of final states or the output function and
the output alphabet. A drawback of conventional state diagrams is that the
number of states increases with the number of possible parameter combina-
tions and thus tends to become unmanageably large for many descriptions
of behavior. To overcome this problem, an extended formalism called state-
charts or Harel statecharts [35] has been introduced for describing complex
behavior. Statecharts have become part of the Unified Modeling Language
(UML) and extend state diagrams with hierarchies, concurrencies and com-
munication features.
A statechart model is utilized for the recognition of worker tasks from reliable
input information in real time experiments with the spot welding scenario in
chapter 7.

5.3. Task Recognition with Hidden Markov Mod-
els

The HMM is a technique to model state-based processes, of which the cur-
rent state is not known, but measurements that are related to the current state
can be observed. Since HMMs are probabilistic models, they are able to deal
with uncertainties or noise in measured observations. Originally HMMs have
been utilized in the field of speech recognition. However, over the years they
have successfully been applied to many other pattern recognition problems,
such as activity recognition, gesture recognition or the analysis of peptide se-
quences.
In the following, a brief introduction into HMMs is given and our approach
for the application of HMMs to the recognition of worker tasks is explained.
For further reading on the theory of HMMs [79], [27] and [21] are recom-
mended.
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5.3.1. First Order Hidden Markov Models

For the first order HMM it is assumed that the propagation of the hidden state
of an observed system follows a first order Markov chain. This means that at
each step in time the state Si of the system changes into a subsequent state S j

with the transition probability ai j, which only depends on Si and no preceding
state earlier in time. The transition probabilities of a first order HMM with N
hidden states can be expressed by the transition matrix:

A =


a11 a12 · · · a1N

a21 a22 a2N
... . . .

aN1 aN2 aNN

 , (5.1)

in which the transition probabilities of each row have to be normalized in
order to meet the conditions of a probability distribution:

N∑
j=1

ai j = 1; ∀ i. (5.2)

Furthermore, it is assumed that at each step in time a (discrete) HMM emits
one out of M observations Ok that is related to the current state S j with the
probability b jk. The observation probabilities are expressed by the observa-
tion matrix:

B =


b11 b12 · · · b1M

b21 b22 b2M
... . . .

bN1 bN2 bNM

 . (5.3)

As in equation (5.2) the observation probabilities in each row of B have to be
normalized according to:

M∑
k=1

b jk = 1; ∀ j. (5.4)

Thus given, a HMM is fully described by the notation

λ = (~π,A,B) , (5.5)

which contains the transition and the observation matrices A and B, such as
the initial state probability distribution ~π .
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Figure 5.1: HMM Example with three hidden states S and four observations O.

Figure 5.1 depicts an example of a HMM, in which the hidden Markov pro-
cess and the visible observations are indicated by the red and the green box.

5.3.2. Basic Hidden Markov Model Problems

When a HMM is applied to a pattern recognition problem, three different
issues are of interest. These issues are also called the basic HMM problems.

Evaluation Problem

Given a sequence of observations O and a HMM λ , a common problem is
to determine the probability P(O|λ ) that the observation sequence has been
emitted by the model. The calculation of P(O|λ ) can be solved by means
of the forward-backward algorithm. In HMM applications, P(O|λ ) is often
utilized as a score value that indicates how well a sequence O and a model λ

match.
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Figure 5.2: Left-to-right HMM example that allows only transitions to the current or the next
state.

Decoding Problem

Besides the evaluation problem, another issue is to determine a state sequence
S that corresponds to a given sequence of observations O, which has been
produced by a known HMM λ . For finding the best fitting sequence S in
an efficient way the Viterbi algorithm is used. Thus, the hidden state of the
underlying Markov process can be estimated.

Learning Problem

Finally, as with other machine learning techniques a HMM has to be adapted
to a recognition problem by parameter estimation. The learning problem
constitutes the training of the HMM, that is to adapt the HMM parameters ~π ,
A and B to a set of training data by maximization of P(O|λ ). The learning
problem is solved with the Baum-Welch algorithm.

5.3.3. Hidden Markov Model Topologies

The HMM topology describes possible state-transitions of the underlying
Markov process. Often the fully connected HMM (for an example of a fully
connected HMM see figure 5.1) contains transitions that are unrealistic in
practical applications. Therefore, possible transitions in a HMM should be
restricted before training by setting unwanted transitions in the transition ma-
trix to 0.
The left-to-right HMM is a HMM topology, in which no prior state can be
reached from a current state. This property is used for instance to describe
word models in speech recognition applications. In our HMM task recogni-
tion approach, tasks are modeled with left-to-right models, in which the states
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Figure 5.3: Online task and activity recognition with uncertain input data. In the first step
task candidate regions are extracted from sequences of uncertain input data.
Found candidates are examined in a second step in order to recognize tasks and
task related activities.

correspond to worker activities. The used left-to-right HMMs are restricted
to allow only transitions to the current or the next state, that is:

ai j = 0; i f j < i or j > i+1. (5.6)

An example of such a restricted left-to-right model is given in figure 5.2.

5.3.4. Online Hidden Markov Model

For the online recognition of tasks and activities in sequences of uncertain
low-level activity recognition data with HMMs a two step approach is utilized
that first identifies task candidate regions and then validates found candidates
in a second step (see also figure 5.3 for an illustration). Each worker task is
represented in this process by a single HMM that contains worker activities as
HMM states. Since abrupt transitions from one activity to another are unreal-
istic in real-world applications, null class states are inserted between activity
states and at the start and the end of each task model. As observations the
activity class results from majority fusion are used, which are related to the
respective task HMM.
In the task candidate identification step in figure 5.3 the HMMs of all tasks
are applied in parallel to sequences of detected activities in order to iden-
tify regions of task candidates. Since the recognition process is performed
online, extraction windows of a fixed length are used to extract observation
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sequences for each HMM. The length of the extraction windows is the max-
imal assumed duration of the respective task. By analyzing the Viterbi path
task candidate regions can be identified with their exact start and end points
in the extraction window.
In the task and activity recognition step in figure 5.3 the HMM is applied
again to identified candidate regions in order to determine the likelihood
P(O|λ ) only for the observation sequence part of a candidate region. The
task candidate is classified as a detection of a performed task if a threshold
comparison of the likelihood yields a positive result and if the activity states
in the Viterbi path have been generated to a certain percentage from non-null
observations. The Viterbi path of a correctly detected task then contains the
HMM activity results.

5.4. Task Recognition with Dynamic Bayesian Net-
works

A limitation of HMMs is that the hidden state of a modeled system is directly
linked to a set of observations. Because of this limitation, only fused activ-
ities can be used as observations. Otherwise, the set of observations would
become large if observations are generated by using all possible combina-
tions of action classification and location classification results. However, a
large set of observations is not desirable for the HMM, since it would cause
overfitting problems, if the set of training data is limited. Therefore, activity
fusion is essential for the practical application of the HMM in order to keep
the number of observations reasonably small. On the other hand, activity
fusion on the low-level activity recognition level means that the information
content is reduced without being able to utilize context information.
A method to overcome this problem is to model the task recognition process
with a DBN, which is able to incorporate distributed input information, such
as action classification and location classification results. Because of the fact
that the HMM can be seen as a special case of a DBN, the utilization of DBNs
instead of HMMs does not mean a change to the basic idea of the probabilis-
tic task recognition approach.
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In the following sections, the DBN theory is briefly explained and an online
task recognition procedure with DBNs is introduced.

5.4.1. Bayesian Networks

In this section a brief introduction into Bayesian networks (BN) is given for
providing a basic understanding of DBNs. More detailed information on
BNs and DBNs can be found in textbooks or publications such as [46], [33]
or [86].
A BN is a directed acyclic graph (DAG), which contains random variables as
nodes and dependencies between random variables as edges. In a BN, a node
is called parent of another node, denoted as child, if there exists a directed
edge from the parent node to the child node. It is assumed in a conventional
BN model that for each child node the conditional probabilities of the node
(i.e. the random variable) are given depending on its parent nodes (e.g. in the
form of probability tables). For nodes in the network that have no parents the
prior probabilities are given instead.

D-Separation

A method to determine if two variables in a network are independent is the
d-separation rule. The d-separation rule depends on the evidence about vari-
ables that lie on paths between the variables for which independence is to be
determined, whereas evidence about a random variable means that the state of
the variable is known. The d-separation rule further depends on how variables
are connected. Figure 5.4 shows an example of a BN that contains 3 different
types of possible connections between variables: the serial connection, the
diverging connection and the converging connection. A connection between
A and D is called serial connection. In this case, A and D are d-separated, if
the state of B is known, since the state of A then has no more influence on D.
A diverging connection can be described as a parent node with two or more
child nodes. An example for this connection type is the connection between
D, E and F . E and F are d-separated if the state of D is known. Finally, the
connection between B, C and D is denoted as converging connection. In this
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Figure 5.4: Example of a Bayesian network with the 6 variables A, B, C, D, E and F .

connection the variable B is independent of C if D is not known. Thus, B and
C are d-separated if the state of D (and the state of potential descendants of
D) is not known.
In summary, the d-separation rule can be formulated as [46]: Two variables
A and B in a BN are d-separated if there is an intermediate variable V on
the path between A and B and either V is known and the connection is serial
or diverging or V and its descendants are not known and the connection is
diverging.

Parameter Learning

Given a set of training data and the structure of a BN the parameters of the
BN (i.e. the probability tables) can be determined. A common technique to
learn the probability tables of a BN is to use a maximum likelihood estimation
method. By means of this method the probabilities of the states of a variable
are calculated depending on the states of its parents by regarding the ratios of
state occurrences in the training data instances. The following equation gives
an example for the calculation of the conditional probabilities of the variable
D in figure 5.4:

P
(
D = di|B = b j,C = ck

)
=

N
(
D = di,B = b j,C = ck

)
N
(
B = b j,C = ck

) . (5.7)

In equation (5.7), the probability P
(
D = di|B = b j,C = ck

)
of D being in

state di in dependence of B being in state b j and C being in state ck is deter-
mined by calculating the ratio of the numbers N of training data instances,
in which the respective states of the involved variables occur. Application
of equation (5.7) to all combinations of states of D, B and C yields all con-
ditional probabilities of the probability table. A drawback of the maximum
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likelihood estimation method is that conditional probabilities may be deter-
mined as 0 if the set of training data is small or not representative. A method
to avoid this is to incorporate initial probabilities in the estimation procedure,
e.g. in the form of a uniform distribution.

Inference

In applications of BN it is often of interest to determine the probability of the
state of a variable xi given the states of other variables, denoted as evidence
E. This probability is given by the following equation :

P(xi|E) =
P(xi,E)

P(E)
. (5.8)

For obtaining P(xi|E) in equation (5.8), P(xi,E) has to be determined first.
Assuming that we can calculate the probability over all variables (also called
the universe) in a BN P(U), we are able to determine the probability of a
subset of all variables by marginalization. For instance, P(E,A) in the BN of
figure 5.4 can be determined as

P(E,A) =
∑

B,C,D,F

P(U) =
∑

B,C,D,F

P(A,B,C,D,E,F) . (5.9)

Thus, the probability of E given the evidence A = ai would then be given by
P(E,A = ai).
The probability over all variables of a BN with N nodes can be determined
by means of the chain rule

P(U) =
N∏

n=1

P(Xn|pa(Xn)) , (5.10)

where pa(Xn) denotes the parents of Xn.
A drawback of the above mentioned procedure is that the calculation of P(U)

leads to a probability table that grows exponentially with the number of vari-
ables in the network. Therefore, it is advisable to avoid extreme computing
costs by utilization of an efficient algorithm (such as the junction tree algo-
rithm) for determining probabilities in large BNs.
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Figure 5.5: DBN for modelling a task as a progress of activities. The activities are nodes in
the BNs that model the dependencies between activities, actions and locations,
such as classification results.

5.4.2. Dynamic Bayesian Networks

DBNs constitute an extension of the idea of BNs by incorporation of a tem-
poral aspect. DBNs are composed of BNs that exist at discrete points in time,
called time slices. Usually it is assumed that the same BN is used at every
time slice. The BNs of the different time slices are connected by edges that
are directed towards future time slices. This leads to a large network that
allows to include evidences at certain points in time and to calculate the state
of variables at different points in time. Thus, a DBN offers the possibility
to model the temporal behavior of a system of variables with probabilistic
dependencies.
Figure 5.5 shows the DBN, which is used for modeling a task as a progress
of activities depending on actions and locations. In the figure two time slices
of the task recognition DBN are depicted. Each time slice consists of a BN,
in which the dependencies between activities, actions and locations are mod-
eled. The nodes ActionClass and LocationClass represent the results from
action and location classification. For these variables, evidences are available
if the task DBN is applied to sequences of classified actions and locations.
Since it must not be the case that classified actions and locations are cor-
rect, they are not directly connected with the activity nodes, but through the
mediating variables action and location.
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5.4.3. Online Dynamic Bayesian Network

The DBN online recognition procedure utilized in this work is similar to the
online HMM process. As shown in figure 5.3 task candidates are identified
in a first step and performed tasks and activities are recognized in a second
one. However, since the DBN is able to process information from distributed
sources, action and location results are used as DBN evidences instead of the
result from activity fusion. Another difference to the online HMM process
is that a single DBN is used for the recognition of all tasks. This can be
achieved by modelling the activity probability table in a way that is similar to
the transition matrix of a task HMM and by including all tasks and activities.
After the identification of the exact start and end points of task candidates
in the first step, the DBN is applied again to found candidate regions. A
candidate region is then classified as executed task if the respective activities
of the task could be recognized to a minimum percentage.

5.5. Experiments and Results

The task level activity recognition approach has been evaluated with the
dataset that has been recorded in the PC scenario experiment described in
section 4.5.1. The evaluation has been conducted with the same evaluation
method (threefold cross-validation and TP/FP counting method for activity
recognition results) as explained in section 4.5.1. Since the low-level activ-
ity recognition results are affected with uncertainty in all PC scenario ex-
periments, the statechart method is not adequate for application to the PC
scenario dataset and a probabilistic method is required. Therefore, the eval-
uation contains a comparison of the HMM and the DBN approach (results
from experiments with the statechart method and spot welding scenario are
shown in chapter 7).

5.5.1. Activity Recognition Results

In figure 5.6 an example for activity recognition results produced with the
HMM and the DBN is given. Since the HMM uses the activity fusion result
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Figure 5.6: Result example for activity recognition with the HMM (left) and the DBN
(right). Additionally, the majority voting result (MJ) is shown in the left plot
as a basis for comparison. The test sequence, which has been used in this exam-
ple, is of task class number 2.

from majority voting as input, these results are additionally shown in the left
plot. It can be seen in this plot that the HMM is able to eliminate several false
detections of the majority fusion result by means of the incorporated context
knowledge. However, missing the detections after activity fusion cannot be
recovered. Therefore, some detections of class 6 for which no activity result
has been available do not overlap with the GT (they have been inserted arbi-
trarily by the HMM). The result plot for the DBN on the right of the figure
shows a similar result. However, since the DBN uses the unprocessed classi-
fication results as inputs, it has more input information for decision making.
This explains that the activities of class six have been recognized more accu-
rately with the DBN.
A statistical evaluation (averaged over all activities and participants) of ex-
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Figure 5.7: Comparison of activity recognition results. All tests are based on the detec-
tions from maximum likelihood location classification (with and without KF)
and 3-NN action classification. For the HMM experiments location and action
classification results have been fused by majority voting.

periments with all test sequences of the PC scenario dataset is shown in figure
5.7. For a better comparison, the majority voting result from section 4.5.4 that
has been created with detections from maximum likelihood location classi-
fication (with Kalman filtered positions) and 3-NN action classification is
shown on the left of the figure. The comparison with the majority voting re-
sult shows that the recall rate is slightly reduced if the HMM is applied, but
it can also be observed that the precision rate is significantly improved in the
HMM result. It can further be observed that the DBN is able to significantly
improve the recognition rates. Besides that it can again be seen that the KF
improves the recognition rates.

5.5.2. Task Recognition Results

Figure 5.8 shows an example of HMM and the DBN results that have been
generated with a sequence of input data containing all tasks of the PC sce-
nario. In the figure the complete activity recognition result is shown on the
top and the task recognition result is shown on the bottom. It can be observed
that the HMM and the DBN show a similar behavior as in the experiment of
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Figure 5.8: Result example for activity (top) and task (bottom) recognition with the HMM
(left) and the DBN (right). The processed sequence contains all tasks of the PC
scenario.

figure 5.6, in which the results of the subsequence of task number two in fig-
ure 5.8 had been depicted. Having a look at the task recognition result at the
bottom of figure 5.8, we can see that the recognized tasks match accurately
with the GT for both methods.
Figure 5.9 shows a statistical evaluation (averaged over all tasks and partic-
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Figure 5.9: Comparison of online task recognition results based on sequences containing all
tasks. All tests are based on the detections from maximum likelihood location
classification (with and without KF) and 3-NN action classification. For the
HMM experiments location and action classification results have been fused by
majority voting.

ipants) of the task recognition results for sequences of the PC dataset con-
taining all 4 tasks. In the evaluation, detected tasks that overlap with the GT
have been counted as TPs and otherwise FPs. The result in the figure shows
that all results yield high recognition rates and differ not significantly if the
HMM or the DBN is applied. Therefore it can be said that both, the HMM
and the DBN yield high task recognition results. However, it has to be noted
that the DBN tends to produce more accurate results in the sense that start
and endpoints of detected tasks match better with the GT than HMM results
in some cases. The reason for this is the better activity recognition capability
of the DBN.
Another issue, which should be regarded for practical applications is the con-
sumption of computing time. The complexity of the DBN causes long pro-
cessing times compared to the HMM. For instance, the DBN needed 110s on
our test PC for processing a sequence of 389s length in reality. In contrast
to that, the online HMM approach needed less than 0.6s for processing the
whole sequence.
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5.6. Summary

In this chapter three different methods for the recognition of worker behav-
ior on the task level have been presented. By means of the task level ac-
tivity recognition methods, activities and tasks can be recognized from low-
level activities (or action and location information) by making use of context
knowledge.
For the recognition of tasks from reliable input data, which means that the
data is not affected with uncertainty, a statechart model has been proposed.
As an alternative, task level activity recognition with uncertain input data
is possible by using probabilistic state-based models. The proposed online
HMM and online DBN approaches have both proven their usefulness by
yielding high task recognition rates in experiments with the PC scenario with
precision and recall rates that are far above 95%. Both methods are also
able to yield significantly better activity recognition results than the major-
ity fusion method, which does not incorporate context knowledge. The best
activity recognition results have been produced by utilizing the DBN (with
location input data from Kalman filtered positions). However, because of the
complexity of the DBN comparably much computing time is necessary to
process data with this model.
Finally it can be said from our point of view that the incorporation of context
knowledge is essential for solving worker activity recognition problems that
are of a complexity of the chosen PC scenario.



6. Gesture Recognition System

In this chapter, our system for online human gesture recognition is presented.
The gesture recognition system is represented by the gesture recognition and
the (time series representation) feature extraction components of the human-
machine interface in figure 2.2. The term online refers to the detection of
gestures in streams of sensor data (i.e from the IMU in figure 2.2). Thus,
our goal is not to classify isolated gesture templates, but to spot and classify
gestures, which are present in unsegmented time series of undefined length.
The purpose of the gesture recognition system is to provide the possibility of
comfortable communication with a superordinate framework to the worker.
This comprises the recognition of a small number (in the order of 5-10)
of hand gestures for interactive communication. Because performing ges-
tures means to mimic predefined movements, repeated gestures show higher
spatio-temporal similarities than task related human behavior, which con-
centrates on fulfilling certain task goals rather than on executing a task in a
certain manner. Thus, spatio-temporal similarities within classes of gestures
are an important issue to be considered for the gesture recognition system.
The developed system may not only be used for human gesture recognition,
but also for the recognition of human behavior with spatio-temporal features
in general (which makes it a flexible component in particular).
In the following sections an online template matching method and an opti-
mization method for finding representative gesture templates, called proto-
types, are described. The presented approaches and parts of the results can
also be found in our publications [39] and [36].
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6.1. Introduction

The first design factor of a gesture recognition system is the choice of ap-
propriate sensors. Since a lot of work has been done in the field of gesture
recognition with the focus on a variety of applications, different types of sen-
sors have been utilized.
Data gloves are expensive, but offer the observation of many degrees of free-
dom of a human hand. Therefore, they have primarily been used for sign
language recognition [40, 58, 60].
Camera based systems have been utilized for recognizing sign language [96]
or gestures [59, 118]. However, vision-based systems suffer from external
influences and disturbances, such as bad illumination and occlusions. Fur-
thermore, they require complex image processing methods in order to detect
hands or other parts of the body [114].
In recent years, inertial sensors (especially accelerometers) have been gather-
ing more and more interest in different gesture recognition applications, such
as human computer interaction [11, 90], or human machine interaction [106].
Advantages of using inertial sensors are their insensitiveness to disturbing ex-
ternal influences and reasonable costs. For these reasons and because of the
fact that they are already an existing component of our system, accelerome-
ters are used for our gesture recognition system.
Another important development issue in the gesture recognition system de-
sign is the choice of the technique with which the sensor signals are pro-
cessed. In contrast to human activity recognition, where rather generaliz-
ing approaches are used, gestures can be described as human behavior with
strong spatio-temporal similarities within each class of gesture signals. As
an example, figure 6.1 shows three instances of a gesture of the same class,
which have been recorded with a triaxial accelerometer. From the figure it
can be observed that all instances have a very characteristic shape (disregard-
ing spatial and temporal variations). This explains why in current research
usually techniques are utilized, which model gestures as time series focusing
on spatio-temporal information in the signal.
Because of the similarity of problems in the research fields of speech recog-
nition and gesture recognition, time series models from the field of speech
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Figure 6.1: Gesture signals recorded with a triaxial accelerometer: The three instances of the
gesture resemble each other in shape, but show spatial and temporal variabilities.

recognition are often used for recognizing gestures. Commonly used types
of time series models can be roughly divided into probabilistic methods and
template matching techniques. Among probabilistic models Hidden Markov
Models (HMM’s) are very popular for gesture recognition [18, 53, 90]. Tem-
plate matching approaches consist of a time series representation and a dis-
tance measure. The results of an experimental comparison in [20] show that
common representations differ not significantly in performance. For this rea-
son, we use median-filtered accelerometer signals, which is similar to the
Piecewise Aggregate Approximation (PAA) representation. However, it is
also shown that the choice of elastic distance measures improve classifica-
tion performance for small training sets. The term “elastic” means in this
context that the distance measure is able to cope with temporal variations in
measured signals. This is a very important issue, since gestures are usually
not repeated at exactly the same speed (this can also be observed from fig-
ure 6.1). A commonly used elastic time series distance measure for gesture
recognition applications is dynamic time warping (DTW) [17, 54, 61].

Because of user-dependent variabilities in the execution of gestures, user-
dependent systems yield better performance than user-independent systems.
But we also have to consider that for our application a gesture recognition
system is needed that offers a certain flexibility by means of the ability of
easy adaptation to new conditions. Therefore it is important to keep the size
of the training set low in order to avoid exhaustive recording and to stay flex-
ible. Since HMM’s require larger sets of training data and DTW is able to
compete with HMM’s in gesture recognition [54, 61], we decided to utilize
DTW as distance measure.
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A key problem in the application of time series recognition techniques is that
they require representative templates, also called prototypes or motifs. A lot
of work has been published, in which different approaches for the selection
or generation of prototypes for time series template matching in different ap-
plications such as handwriting recognition [80], speech recognition [117],
visual pattern recognition [122] or general time series analysis applications
[65, 68] are described. However, many published approaches are restricted in
their applicability to distance measures with particular properties (i.e. metrics
or measures, which fulfill the triangle inequality [26, 69]) or are adapted to
specific techniques [31]. Furthermore, motif finding techniques usually focus
on templates, which yield a good representation of a certain class [95]. How-
ever, separability of prototypes from other classes of templates is often not
considered. In this work a novel approach for finding time series prototypes
is presented, which is not restricted to specific distance measures and aims at
maximal class separability.

6.2. Dynamic Time Warping for Gesture Recogni-
tion

The basic principle of time series template matching is to determine how well
a given test template T matches with a prototype template C in order to find
out whether T belongs to the class of C.
DTW is a template matching technique, which is able to cope with temporal
variations in signals. Because of the fact that spoken language varies in speed,
the method has originally been applied to the field of speech recognition [88].
Since similar effects occur when human gestures have to be recognized the
method can be found in gesture recognition applications as well [54].

6.2.1. Dynamic Time Warping Algorithm

The DTW algorithm is a template matching method that measures the simi-
larity between time series templates with temporal variations by employing a
dynamic programming technique.
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Let us assume that we are given two time series templates:

C = (c1 . . .cN) (6.1)

and
T = (t1 . . . tM). (6.2)

C and T may resemble each other in general appearance, but are not tempo-
rally aligned to each other with respect to their sampling points cn and tm and
have different lengths N and M. Because of that a direct pointwise compari-
son (e.g. using Euclidean distance) would possibly not yield a good match.
The basic idea of DTW is to calculate the matching score from best-fitting
pairs of sampling points (cn, tm). Therefore, a so-called warping path

W = [(wc(1),wt(1)) . . .(wc(L),wt(L))] (6.3)

has to be found, in which the element pairs wc(l) and wt(l) contain the indices
of the sampling point pairs from which pointwise distances are calculated.
The warping path result of the DTW algorithm can then be understood as the
solution to the optimization problem that minimizes the sum over all pairwise
distances d(cn, tm). Thus, the DTW distance (or DTW score) is given by:

DTW (C,T ) = min
W

(
L∑

l=1

d(cwc(l), twt(l))

)
. (6.4)

Because of the fact that there is no standard implementation of the DTW
algorithm, different implementations can be found in literature. Typical im-
plementation considerations and algorithm variants, which may be used in
practical applications, are listed in the following.

Point distance measure

As distance measure d( ·) for the sampling point pairs (cn, tm) in equation
(6.4) usually the Euclidean distance is used, however using other (positive)
distance measure or norm is possible as well.
Because of the penalizing effect on outliers, the squared Euclidean distance
measure is used in our DTW implementation. The Euclidean distance be-
tween two points~x and~y in a F-dimensional feature space is defined as:

d(~x,~y) =
F∑

f=1

(
x f − y f

)2
. (6.5)
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Path constraints

Since allowing arbitrary combinations of sampling point pairs would lead to
warping paths with no practical relevance, some restrictions have to be made
depending on the application. Therefore, W has to be restricted to realistic
solutions, which is typically achieved by using the following constraints [24]:

• Monotonicity: Warping path indices are monotonically increasing (go-
ing back in time is not allowed): wc(l)≥ wc(l−1) and wt(l)≥ wt(l−
1).

• Continuity: Limitation of the increment between successive elements (if
limited to 1 index increment no jumps are allowed): wc(l)−wc(l−1)≤
1 and wt(l)−wt(l−1)≤ 1.

• Boundaries: The warping path of two templates C and T begins at their
first elements and ends at their last elements, respectively: wc(1) = 1
and wt(1) = 1 such as wc(L) = N and wt(L) = M.

Besides these commonly used constraints additional variations for calculat-
ing DTW paths are existing.
In [88] and [78] several path weights are proposed for normalizing warping
paths with respect to their length.
Furthermore, the search space for warping paths can be restricted by utilizing
band restrictions such as the Sakoe-Chiba band [88] or the Itakura parallelo-
gram [43]. Because band restrictions limit possible combinations of sampling
point pairs (cn, tm) to realistic subsets, extremely shifted match solutions of
C and T are avoided and computing time is reduced.
Our DTW implementation uses no special path constraint variations, besides
the common path constraints and a Sakoe-Chiba band.

Variable start and endpoints

In some applications (such as word recognition [78] or gesture recognition
[54]) it may occur that time series C and T contain non-relevant information
(e.g. noise) at their starts and ends. In this case the warping path can not be
constrained to start at the first and end at the last template elements (boundary
constraint). Thus, W may start at template elements wc(1) = Sc, wt(1) = St

and end at template elements wc(L) = Ec, wt(L) = Et with 1≤ Sc < Ec ≤ N
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and 1≤ St < Et ≤M.
Utilizing variable end points is necessary for our application, as it will be
explained later in section 6.2.3.

Another important issue to mention is that since DTW is basically a distance
measure for time series, prototype dependent thresholds have to be deter-
mined if DTW is used for classification of time series. The threshold can
be determined empirically from a set of training data (e.g. by evaluating the
typical distances from the prototype to templates of the same class).

6.2.2. Range Normalization

In some gesture recognition applications, measured sensor signals do not only
vary in their temporal appearance, but show also spatial variations. These
spatial variations result either from sensor characteristics (e.g. biased sig-
nals) or from gestures that are repeated in a different way and cause varying
amplitudes in the quantity to be measured. The latter occurs especially with
gesture signals that are recorded with accelerometers (which can be seen in
figure 6.1). Varying amplitudes in gesture signals from accelerometers are
caused by two effects. The first is that accelerometer readings are influenced
by gravity and that this influence depends on the attitude of the body part
with which the gesture is performed. And, secondly, acceleration amplitudes
differ within a class of gestures, because humans usually do not repeat ges-
tures at exactly the same speed. These effects lead to templates, which appear
biased or scaled to each other.
Typical implementations of the DTW algorithm allow to cope with temporal
variations in time series signals, however variations in the spatial signal con-
tent can not be handled. In order to allow comparisons of biased or scaled
templates, time series are normalized to the same range of values in our DTW
implementation. A one-dimensional time series A = (a1 . . .aN) can be nor-
malized to the [0,1] range via:

Anorm =
A−min(A)

max(A)−min(A)
. (6.6)
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The normalization is applied to both templates C and T before calculating the
DTW distance DTW (C,T ). However, in order to avoid unrealistic scalings,
the ratio between the scaling factors

rRN_scal =
max(C)−min(C)

max(T )−min(T )
(6.7)

is limited in our approach. Without the scaling limit, templates of a certain
class could be confused with random noise. Maximal scaling factors are de-
termined by maximal scaling ratios in the training data set.
In case of multidimensional time series comparisons, range normalization is
applied to every time series component of multidimensional templates inde-
pendently.

6.2.3. Online Gesture Recognition

In an online gesture recognition system, gestures have to be recognized from
a stream of sensor data. This makes it necessary that templates are extracted
from the data stream, before template matching can be applied. In some ap-
plications segmentation of the data stream is possible by motion detection.
However, this is not possible in an industrial environment, since a worker is
not only moving for performing interactive gestures. Furthermore, the prob-
lem of variable start and endpoints has to be considered.
In our online implementation, raw data measured from accelerometers is first
processed with a median filter in order to obtain data in an appropriate (sub-
sampled and noise-filtered) time series representation. Then, templates in
form of signal parts are extracted from the filtered data stream by means of
a sliding window in order to determine the DTW distance to a prototype for
threshold classification.
Since we utilize a prototype optimization method (see section 6.3), it can be
assumed that the prototypes do not contain non-relevant information. Be-
cause of that the problem of variable start and endpoints can only affect the
time series templates, which are extracted from the data stream. Further-
more, considering that templates are extracted with a sliding window, variable
start points can be neglected as well, if window spacings are narrow enough.
Therefore, we only have to consider that templates in the extraction window
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have variable end points, depending on the length of the gesture. This can be
achieved by allowing the warping path to end in the region E1≤wt(L)≤ E2.
The parameters E1 and E2 can be determined for each prototype from the
minimal and maximal length of templates of the relevant class in training set.
The online DTW algorithm works then as described as follows. A sliding
window spanning a length of E2 points from a start sampling point n to n+E2
is slided with a spacing of one or more points over the stream of filtered data.
After that, the DTW distance from the prototype C to the template T ex-
tracted by the window is calculated. By means of the sliding window and by
incorporating the variable end region between n+E1 and n+E2, matching
gestures of variable length can be found in the data stream.
Usually, multiple gestures are to be recognized in one datastream. This makes
it necessary to execute the online DTW procedure in parallel for each used
prototype. As exemplified in figure 6.2, for each gesture class one sliding
window of a prototype depending length E2 is used. Gestures are then de-
tected, if the match score in a window falls below the threshold of the respec-
tive prototype.

6.2.4. Ambiguity Resolution

The presented sliding window method for online gesture recognition can lead
to overlapping detections. These ambiguities can occur either as overlapping
detections of one specific prototype or as overlapping detections of different
prototypes in the multiclass case. Depending on the spacing of the sliding
window, overlaps of one specific prototype usually occur around the area of
a gesture match. These kinds of ambiguities can easily be resolved by tak-
ing the detection with the lowest DTW distance and eliminating all overlaps.
A problem arises when ambiguities are caused by detections from different
prototypes, because due to prototype depending thresholds the DTW results
are not directly comparable. In order to solve this problem we introduce a
relative score value by modelling DTW distances from a class prototype Ci

to other templates of class i as probability distributions. Assuming an under-
lying normal distribution, DTW distances can be normalized for obtaining a
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Figure 6.2: Online gesture recognition with multiple time series prototypes. Templates are
extracted in parallel from an input data stream for distance calculations to each
class prototype. Depending on the prototype, sliding windows with prototype
depending lengths (E2) are utilized.

relative DTW distance DTWrelat(Ci,T ) according to:

DTWrelat(Ci,T ) =
DTW (Ci,T )−µi

σi
. (6.8)

Mean value µi and standard deviation σi in equation (6.8) can be determined
from a set of training templates for each prototype.
Since the relative DTW distance offers a measure to directly compare detec-
tions from different prototypes, ambiguities from overlapping detections of
different classes can now be resolved by taking the detection with the lowest
relative DTW distance.

6.3. Prototype Optimization

The general idea behind template matching is that a class of templates is rep-
resented by one or more prototype templates. Because of that, the choice of
appropriate prototypes is essential for the performance of a template match-
ing method.
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It has to be noted here that we focus on finding one representative prototype
for each class of gestures in order to keep the amount of templates manage-
able. Thus, representation of a class by multiple prototypes is not considered
in our application.

As mentioned in section 6.1, there has already some work been published
about the selection or generation of time series prototypes from a set of train-
ing templates. Typically used methods for DTW prototype selection are to
chose the template with the best recognition performance or the smallest dis-
tance to all other templates within a class of templates [54] or to use cluster-
ing methods [78]. Instead of prototype selection, new DTW templates can be
generated by temporal alignment and averaging of all templates of a partic-
ular class ([1], [54]). Alternatively, other approaches from the field of time
series motif mining can be utilized for choosing DTW prototypes, if their
preconditions are met by the DTW distance measure.
The above mentioned methods for DTW prototype selection and generation
such as many other approaches for finding time series prototypes have in
common that representative prototypes are chosen by their distance to tem-
plates of the same class. In contrast to that, our understanding of a represen-
tative prototype is based on the separability of time series classes. Therefore,
besides distances of a prototype to templates of the own class, distances of
a prototype to templates of other (known) classes are additionally incorpo-
rated in our measure of representativeness. In the following, the distance of a
prototype to a template of its own class is named intraclass distance and the
distance of a prototype to a template of a different class is named interclass
distance.

Figure 6.3 depicts a schematic example, in which DTW distances from three
prototypes of class C to templates of classes C and T ) are shown as point
distributions. If we now have a look at the the intraclass distances (marked
as blue circles) it appears that on average prototype 1 has smaller interclass
distances than the other prototypes. However, for obtaining a measure of
class separability, we also have to consider the interclass distances (marked
as red x). In the figure it appears that the class separability between intraclass
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Figure 6.3: Distance distributions of DTW score values. The distance distributions of the

prototypes to templates of classes C and T differ depending on the prototype.
Prototype 3 achieves the best separation between the distributions.

and interclass distance distributions increases from prototype 1 to 3. Thus,
prototype 3 would be a the best choice according to our definition of a repre-
sentative prototype.
In [124] an approach for finding prototypes in subseries of time series se-
quences has been presented, which is based on information gain. However,
although somewhat similar to our idea, the approach in this work utilizes
symmetric and non-elastic distance measures.
Besides the definition of a measure for the representativeness of a prototype,

another important issue is how to select or generate prototypes from a set of
training templates. In common gesture recognition applications, gesture tem-
plates are usually cut out from recorded gesture data either by visual inspec-
tion or by making use of labels, which have been assigned during recording.
This means that start and end of a gesture are defined manually in order to
obtain a set of templates. However, because of the fact that manual labelling
usually contains inaccuracies, it can not be guaranteed that cut out templates
contain exactly the signal content of a gesture. Furthermore, due to varia-
tions in parts of gesture signals, the representative content may be found in
the subseries of a gesture template. For these reasons, a representative proto-
type must not necessarily be the whole time series of a (cut out) template, but
is often found in template subseries. A practical solution to this problem is
to extract templates from manually labeled data with an additional tolerance
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in a first step in order to avoid potential loss of relevant information. Then,
representative prototypes can be found in the subseries of these templates by
using a search or optimization method.

Expressed in formal terms, the problem for choosing a representative proto-
type Copt for a certain class of templates C can be described as the following
optimization problem:
Assuming that we are given a set of time series templates containing I in-
stances of a particular class

Ci = (ci,1 . . .ci,Ni) ; i = 1 . . . I (6.9)

and J instances of other known template classes

Tj = (t j,1 . . . t j,M j) ; j = 1 . . .J, (6.10)

our target is now to find a prototype

Copt = (ci,α . . .ci,β ) ;1≤ α < β α < β ≤ Ni (6.11)

in the subseries of templates Ci, which optimally represents class C in the
sense that it yields the best separation between the distance distributions of
classes C and T . Our definition of class separability is based on the intraclass
and the interclass time series distances and can be described in form of target
functions, which will be explained in more detail in section 6.3.1. Since rel-
evant gesture signal contents are present in subseries of templates of classes
C and T , flexible start and endpoints have to be regarded in all distance cal-
culations. Template subseries, which yield the best fit to the prototype Copt

are denoted as C′i and T ′j . The parameters α and β span a search space, in
which the solution of the optimization problem Copt can be found by means
of a search procedure or an optimization method (see section 6.3.2).
Although DTW is used as a distance measure for gesture time series in this
work, the presented prototype optimization approach is not limited to this
particular distance measure, but can be used with any other time series dis-
tance measure.
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6.3.1. Target Functions

The formulation of choosing representative prototypes as an optimization
problem makes it necessary to define a target function as a measure of class
representativeness. As mentioned in the previous section, our definition of
representativeness is based on the class separability, that is the maximization
of the spread between intraclass and interclass distance distributions of tem-
plate classes as depicted in figure 6.3. Since there exists no general target
function model for this problem, we defined four target functions of differ-
ent complexity, which are explained in the following. These target func-
tions measure the class separability of a (candidate) prototype Copt based on
a training set of templates of the prototype class C and other classes Tk. It
has to be noted that all defined target functions measure class separability
by considering absolute class distances. Absolute class distances are more
expressive than relative measures such as entropy or information gain (e.g.
used in [124]).
In order to obtain a decision criterion for classification, a prototype depend-
ing distance threshold τ has to be determined for each found prototype. The
determination of this threshold depends on the utilized target function model
and is explained in this section, as well.

Minimal Interclass to Maximal Intraclass Distance (min_max)

A straightforward approach for measuring class separability is to take the
difference between the minimal interclass distance and the maximal intraclass
distance. At the top of figure 6.4 an illustration for this measure is given,
which is described by the min_max target function:

fmin_max (Copt) = min
j,k

(DTW (Copt ,T ′j,k))−max
i

(
DTW (Copt ,C′i)

)
. (6.12)

Although simple to use and conservative in the sense that this measure incor-
porates the worst case distance difference of a template dataset, a disadvan-
tage of the min_max target function is that it is prone to outliers.
The classification threshold τmin_max for a found prototype can be determined
according to figure 6.4 by calculating the average between minimal interclass
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distance and maximal intraclass distance:

τmin_max (Copt) = max
i

(
DTW (Copt ,C′i)

)
+

min j,k(DTW (Copt ,T ′j,k))−maxi (DTW (Copt ,C′i))

2
.

(6.13)

Center Point Distance (CP_dist)

Another approach for a target function that measures class separability is to
calculate the distance between the center points of intraclass and interclass
distance distributions, as indicated in the middle of figure 6.4. Given a pro-
totype Copt and the template training set, the center point of the intraclass
distance distribution is calculated as

µcc =
1
I

I∑
i=1

DTW (Copt ,C′i) (6.14)

and the center points of the interclass distance distributions are calculated as

µct,k =
1
J

J∑
j=1

DTW (Copt ,T ′j,k). (6.15)
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Based on the center points given in equations (6.14) and (6.15) the CP_dist
target function can then be formulated according to:

fCP_dist (Copt) =
1
K

K∑
k=1

log(µct,k)− log(µcc). (6.16)

The logarithm in equation (6.16) attenuates potential overweighting influ-
ences, which is necessary in case if there are classes among the K classes
of templates Tk with comparable high distances. Compared to the min_max
target function, the CP_dist target function is a more generalizing measure
and robust to outliers, because of the averaging effect of the mean value cal-
culation.
Classification thresholds τCP_dist for found prototypes are calculated analo-
gous to equation (6.13):

τCP_dist (Copt) = µcc +
mink

(
µct,k

)
−µcc

2
. (6.17)

Kullback-Leibler Divergence (KL_div)

The min_max and the CP_dist target functions are based on information from
interclass and intraclass distance distributions, resulting from a prototype
Copt . However, both measures do not include the whole distribution infor-
mation, because not all distribution characteristics are considered.
A measure of the difference between two probability distributions p1 (~x) and
p2 (~x) that includes all distribution characteristics is the Kullback-Leibler di-
vergence [56]:

DKL 1,2 (p1 (~x) , p2 (~x)) =

∞∫
−∞

p1 (~x) ln
p1 (~x)
p2 (~x)

d~x. (6.18)

Assuming that the intraclass and interclass distances are normally distributed,
we define the target function based on the Kullback-Leibler divergence (KL_div)
as follows (see appendix A for the derivation of the symmetric divergence
formula):

fKL_div (Copt) =
1
K

K∑
k=1

sgn
(
µct,k−µcc

)
· log

(
1
2

(
σ2

ct,k

σ2
cc

+
σ2

cc

σ2
ct,k
−2

)

+
1
2
(µcc−µct,k)

2

(
1

σ2
cc
+

1
σ2

ct,k

))
, (6.19)
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in which the intraclass and interclass standard deviations σcc and σct,k are
given by:

σcc =
1

I−1

√√√√ I∑
i=1

(
DTW (Copt ,C′i)−µcc

)2 (6.20)

and

σct,k =
1

J−1

√√√√ J∑
j=1

(
DTW (Copt ,T ′j,k)−µct,k

)2
. (6.21)

Similarly to equation (6.16), results from outlying classes are attenuated in
equation (6.19) by means of taking the logarithm.
Assuming that the time series distances are class-wise normally distributed,
an appropriate threshold for separating two classes can be determined by cal-
culating the intersection point between the center points of their distributions.
This threshold, which minimizes the classification error, is illustrated at the
bottom of figure 6.4. Because of the fact that two normal distributions have
two intersection points s1 and s2 (unless they have the same standard de-
viation) with s1 < s2, the following case differentiation has to be made to
determine the relevant intersection point:

τk =

{
s1, if σcc > σct,k

s2, if σcc < σct,k
, (6.22)

Since the threshold τk in equation (6.22) separates class C from Tk, k threshold
results exist if k > 1. Therefore, we decide for the smallest threshold value in
the multiclass case:

τmin (Copt) = min
k

(τk) . (6.23)

It has to be noted that for determining the prototype threshold τmin, only
thresholds τk are considered in equation (6.23) for which µct,k ≤ µcc.

Error Function Integral (erf_int)

A direct approach to measure the separability of normal distributions is based
on the integral over the distribution functions. In the example in figure 6.4,
this can be achieved by calculating the integral of the intraclass distribution
over [−∞,τ] and the integral of the intraclass distribution over [τ,∞]. Theo-
retically, the result is then inversely proportional to the threshold classifica-
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tion error, which can be expected if the preconditions are fulfilled and the
training set is representative.
Since the Kullback-Leibler divergence measures solely the dissimilarity be-
tween probability densities, this target function is a more exact measure for
separability. However, for the integration over normal distribution function,
the Gauss error function [2] has to be utilized, which increases the complexity
of the target function:

er f (x) =
2√
π

x∫
0

e−t2
dt. (6.24)

The cumulative normal distribution function F (x) can then be expressed by
[47]:

F (x) =
1
2
+

1
2

er f
(

x−µ√
2σ

)
. (6.25)

If we now first determine the classification threshold according to equation
(6.23), the erf_int target function score is then calculated with the distribu-
tion characteristics from equations (6.14), (6.15), (6.20) and (6.21) after the
following formula:

fer f _int (Copt) = Fcc (τmin)+
1
N

N∑
n=1

(1−Fct,n (τmin))

=
1
2
+

1
2

er f
(

τmin−µcc√
2σcc

)
+

1
N

N∑
n=1

(
1
2
− 1

2
er f

(
τmin−µct,n√

2σct,n

))
. (6.26)

Equation (6.26) contains the intraclass distribution integral and the averaged
interclass distributions integrals over the area of correct classifications. In
order to additionally penalize bad separations, interclass distribution integral
results are set to 0 if µct ≤ µcc in equation (6.26).

6.3.2. Optimization Methods

After having defined several target functions for measuring the representa-
tiveness of a prototype, a method has to be chosen in order to find represen-
tative prototypes Copt in the subseries of a training template set. This makes
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it necessary to define the parameters of a search space and to decide for an
appropriate optimization method for performing a parameter search.
Based on a set of templates of class C and the prototype definition in equation
(6.11), the search space is spanned up by the template index i and the param-
eters α and β , which represent start and end of the subseries of a template
Ci. Since templates in a training set have different lengths and are not tem-
porarily aligned to each other, there is no logical link between their sampling
points. This makes it inevitable to perform the search independently for each
template Ci on the set of their subseries.
Thus, for each template Ci a representative prototype candidate Copt,i has to
be found in the search space spanned up by the parameters α and β :

ftarget (Copt,i) = ftarget (α,β )−→ max. (6.27)

Based on the target function scores ftarget (Copt,i), found prototype candidates
can then be compared in order to chose the most representative prototype

Copt = argmin
i
( ftarget (Copt,i)) . (6.28)

In the following, two different methods are presented, which have been uti-
lized for performing the parameter search.

Brute Force Search

The most straightforward method to perform a search in a (discrete) search
space is a brute force search. Brute force search means to search the space
spanned up by α and β by testing every point (α,β ) with the target function
in order to find the maximum.
The advantage of the brute force search is that it is guaranteed to find the opti-
mal solution, which makes it appropriate for using it as benchmark. However,
brute force search is inefficient, because of its trivial strategy it consumes the
maximal possible computing time. This makes it not applicable for large sets
of data.

Evolution Strategy

Since a brute force search can be time consuming, a more efficient search
method has to be applied in case of large datasets. The first step for choosing
an appropriate search method is to determine the category of the optimization
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problem. Having a closer look at the target functions in section 6.3.1 shows
us that we are dealing with a nonlinear optimization problem. Furthermore,
it can not be excluded that there exists more than one maximum in the search
space, which means that our optimization problem is not local. Because of
theses facts, we decided to use an evolution strategy (ES) to tackle this com-
plex optimization problem.
The evolution strategy [92] is a heuristic optimization technique, which be-
longs to the class of evolutionary algorithms. It has been developed by
Rechenberg [82] in the 1960s and is based on a natural understanding of
the optimization problem. The general approach of the ES is to have a popu-
lation of µ arbitrary points in the search space, which produces a number λ

of randomly generated descendants over some iterations. According to Dar-
win’s law “survival of the fittest”, only the best solutions survive over time
and are able to generate descendants. The resulting effect is that the fitness
(i.e. the target scores) of individuals in the population increases over time
until a satisfying solution is found.
Figure 6.5 shows a flow chart of the ES algorithm, which contains the fol-
lowing process steps and mechanisms:

Initialization

The algorithm is initialized with a population of µ individuals, which are
generated arbitrarily. In order to make sure that the ES yields a solution that
is at least as good as the original template Ci, our initial population always
contains this template as an individual. Furthermore, an initial step length is
set in this step. The step length is a parameter, which controls the variation
of the parameters in the mutation step.

Mutation

In the mutation step, the population is augmented by creation of a number
of λ new individuals. Being descendants of the µ old individuals, new indi-
viduals are created by random variation of parameters of their parents. The
parameter variation is normally distributed with zero mean and a standard
deviation of the current step length σ . Adapted to our problem, parameter
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Figure 6.5: Flow chart of the evolution strategy algorithm.

variation is described as follows:(
αdescendant

βdescendant

)
=

(
αparent

βparent

)
+

(
zα

zβ

)
, (6.29)

with zα ∼N
(
0,σ2

α

)
and zβ ∼N

(
0,σ2

β

)
.

Step length control

The step length control is an adaptive mechanism for controlling the parame-
ter variation in the mutation step. Although parameter variation happens ran-
domly, the average variation can be controlled by means of the current step
length σ . Step length control is important, because due to regional differ-
ences of target function values in the search space, larger (e.g. in flat regions)
or smaller steps (e.g. in steep regions) are effective.
In [92] the 1/5 success rule is proposed, which is applied after a certain
number of iterations. By means of this rule, the step length is decreased or
increased if less or more than 1/5 of the mutations are successful. A success-
ful mutation means in this context that a descendant has a better target score
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value than its parent. The proposed rate with which the step length σ should
be increased or decreased is a factor of 0.85.

Selection

After the creation of new individuals in the mutation step, the population is
reduced to a number of µ individuals in the selection step in order to keep
the population constant. Since the goal of optimization is to find the global
extremum, the selected individuals are the ones with the best target scores
(i.e. the fittest ones). Depending on the search strategy, different rules are
existing for the selection of individuals. In the comma strategy ((µ,λ ) with
λ > µ), the µ surviving individuals are selected out of the λ descendants,
which leads to the effect that an individual only lasts for one generation.
In contrast to this, all individuals of the current population are considered
for selection in the plus strategy (µ +λ ). Since we want to make sure that
already found solutions may persist, a plus strategy is used in this work.

Convergence criterion

At the end of an iteration, found solutions are checked if they fulfill a conver-
gence criterion. If the criterion is fulfilled the algorithm terminates and the
individual with the best target score out of the current µ individuals is taken
as solution to the optimization problem. Otherwise, the current µ individuals
form the next generation and the process is repeated with the mutation step.
Checking for convergence must not necessarily be done for each generation,
but also after a certain number of iterations.
There are different rules existing for the decision about convergence. Conver-
gence criteria can be to test the step length or the distance of the parameters
(∆α,∆β ) from iteration to iteration in order to check if they fall below certain
thresholds. Also, the change of the target function (∆ f (Copt)) can be taken as
measure for convergence. In order to limit the processing time and to have a
simple rule for convergence (which does not require to determine thresholds
depending on target functions), we decided to use a fixed number of iterations
as abort criterion.
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It has to be noted that since the ES is a heuristic optimization method, solu-
tions are in principle not reproducible. Furthermore, found solutions may be
not the exact minimum or maximum, but are usually close to an extremum.
On the other hand there are a lot of important advantages over other opti-
mization methods, which are the reasons why we decided to use the ES.
Most important advantages are that the ES is able to tackle nonlinear opti-
mization problems and that the problem of getting stuck in a local extremum
is unlikely. Other advantages are that the method is time efficient and to
some extent generic, which means that there is no detailed knowledge of the
problem required.

6.4. Gesture Recognition Process

In practical applications, the presented gesture recognition methods are ap-
plied according to the scheme depicted in figure 6.6. The process is split up
into two parts, an offline training phase and a test or online gesture recogni-
tion phase.

6.4.1. Training phase

In the offline process part, representative prototypes are found and DTW pa-
rameters are determined. Based on a set of training data, which contains
labeled time series sequences (in our application recorded with accelerom-
eters), the training process starts with the extraction of templates belonging
to different classes of gestures. After that, the templates are subsampled or
filtered in order to obtain an appropriate time series representation. With this
set of training templates, one representative prototype for each class is found
by prototype optimization. Furthermore, DTW parameters are determined
for each prototype, which are the classification threshold τ , the end region
parameters E1 and E2, such as the maximal scaling factors for range normal-
ization.
Excepting data recording and labelling, the training process runs fully auto-
matically.
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Figure 6.6: Scheme of the gesture recognition process. Class prototypes are extracted offline
from training data in the training phase. Gesture recognition is applied in the
online test phase to sequences of input data and is based on distance calculations
to the class prototypes.

6.4.2. Online gesture recognition phase

The second part of the process constitutes the actual online gesture recogni-
tion process. After filtering of the incoming stream of sensor data by utiliz-
ing the same technique as in the training phase, the online DTW algorithm
is executed in parallel in order to obtain the distances of the prototypes to
segments of the stream as described in section 6.2. The gesture recognition
result is then obtained by threshold classification of the calculated distances
and eventual application of ambiguity resolution in case of the occurrence of
ambiguous results. Online gesture recognition results exist in form of seg-
ments in the data stream, which match to the respective gesture template.
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6.5. Experiments and Results

In order to validate the presented gesture recognition system, several tests
have been performed with recorded gesture data. In this section, an outline
of the test conditions is given and results from tests with online gesture recog-
nition are presented.
It has to be noted that all tests have been performed with user-dependent data,
since we have decided to use user-dependent gesture recognition in our ap-
plication in order to have an adapted system with reliable performance rates.
However, the fact that we utilize a template matching method keeps the re-
quired amount of training data in reasonable dimensions.

6.5.1. Dataset and Testing Procedure

Since gesture recognition is applied in this work in order to detect hand ges-
tures for user interaction with a superordinate framework, a gesture dataset
has been recorded with the sensor bracelet from section 3.4.2.
The gesture dataset as well as the testing and evaluation procedure are ex-
plained in the following.

Gesture dataset

For recording the test dataset, 9 different hand gestures have been defined as
possible commands for user interaction. An instruction on how the gestures
should be performed, which was given to test subjects, is depicted in figure
6.7 a). All gestures have been performed with a single hand while accelera-
tions have been recorded with the sensor bracelet.

The test dataset contains data of 7 participants (5 male, 2 female) in form
of sequences, in which the 9 gestures are performed after another. With each
person, 15 gesture sequences have been recorded and start and endpoints of
gestures have been labeled manually. Thus, time series segments, in which
gestures occur, are marked with the label data in the gesture sequences. By
means of the manually assigned labels isolated templates have been cut out
automatically from sequence data for training. Furthermore, the label data
serves as ground truth for evaluation of online gesture recognition. However,
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Figure 6.7: Gestures utilized in DTW tests: a) Gesture descriptions (arm movements). b)
Accelerometer signals of the respective gestures.

it has to be considered that the occurrence timing inaccuracies in the label
data is unavoidable. In total, the gesture dataset consists of 105 gesture se-
quences (each containing 9 gestures) from which 945 instances of isolated
gesture templates can be extracted.
The sequences of raw accelerometer data have been recorded with the 3 or-
thogonal accelerometer channels of the ADIS16350 IMU at a sampling rate
of 407 Hz (an example for the isolated templates of all gestures is given in
figure 6.7 b)). In all tests a median filter has been applied to the raw sen-
sor data for filtering and subsampling. The used median filter had a window
width of 16 sampling points and a window spacing of 8 sampling points.

Testing and evaluation procedures

In all tests for evaluating prototype optimization and gesture recognition per-
formances, the online DTW algorithm has been utilized. Prototype depend-
ing DTW parameters (i.e. end region parameters E1 and E3 such as maximal
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scaling factors for range normalization) have been determined in each test
by means of the particular training data. The window spacings in the online
DTW algorithm were set to 1 sampling point.
The tests have been conducted in form of a (user-dependent) threefold cross
validation (CV), which allows to use the whole dataset for testing without
having overlapping sets of training and test data in a single test run. This
means that in a single test run, 10 isolated template instances have been used
for the optimization of DTW prototypes (according to the training phase on
the left of figure 6.6) of each class of gestures. Testing (i.e. online DTW pro-
cessing) has then been done with each prototype and the 5 sequence instances
that do not contain the templates, which have been used in the training. These
single test runs were conducted three times with the data of each participant
for processing all 15 sequence instances.
As a basis for evaluation, true positives and false positives have been counted
in tests in order to calculate the statistical measures precision and recall
(which have been defined in equations (4.12) and (4.13)). We define true
and false positives in online time series recognition experiments according
to:

• True positives (TP) are detected segments, which overlap with the ground
truth (GT) of the respective class. Multiple detections overlapping with
one GT segment are considered as one TP and are not treated specifi-
cally.

• False positives (FP) are detected segments, which do not overlap with
any GT segment or only with the GT segment of the wrong class. Anal-
ogous to multiple TP detections, FP segments that overlap with already
counted FP’s are not treated specifically as well.

As an example, figure 6.8 a) shows the detection result after application of the
online DTW algorithm (using a prototype of the gesture class that is marked
in the sequence with the GT) to the accelerometer data shown in figure 6.8 b).
Detections of the DTW algorithm in figure 6.8 a) occur when the DTW score
value (blue line) falls below the DTW threshold of the prototype (red line).
By incorporating the length of detected DTW templates, result segments are
marked with the magenta colored boxes.
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Figure 6.8: Online DTW applied to a gesture sequence (utilizing a prototype of class number
9): a) Online DTW score value, GT (black dashed line) and detections (one true
positive overlapping with the GT and one false detection). b) Accelerometer
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6.5.2. Prototype Optimization Results

The prototype optimization approach has been tested and evaluated with the
gesture dataset and testing procedure from the previous section. Conducted
tests concentrate on two issues. The first issue is a comparison of the BFS
and the ES search strategies with respect to efficiency and applicability. Sec-
ondly, performance of optimization with the different target functions, i.e.
their influence on the classification result has been tested and evaluated.
In the optimization tests a 5+5 ES has been used, which has been terminated
after 15 iterations in order to have a deterministic processing time limit (these
parameters have turned out to be practicable in prior experiments). These pa-
rameters have been determined experimentally by checking if the target func-
tion values show a converging behavior after the 15 iterations in performed
tests. Initial ES populations contained the original template and 4 subseries
for which the parameters α and β have been chosen randomly.
For all prototype optimization tests, online DTW with range normalization
and no ambiguity resolution was used.
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Comparison of BFS and ES

For comparison of the applicability of BFS and the ES optimization meth-
ods to prototype optimization, processing time and optimization performance
tests have been conducted. All tests have been performed on a test PC with
an Intel Core 2 Duo E8400 CPU and 2GB DDR2 RAM. Both optimization
methods have been implemented in C++ and the test software has been run
under Windows XP.
Because of the fact that BFS optimization is very time-consuming, tests have
only been performed with the min_max and the erf_int target functions for
optimizing templates of the randomly chosen classes 1 and 9 (utilizing the
templates of CV sets 1 and 2, respectively). Since solutions found with ES
optimization are non-deterministic, ES tests have been performed 10 times.
Figure 6.9 shows a comparison of BFS and average ES processing times mea-
sured in the tests. As expected, the BFS takes much more computing time
than the ES (e.g. about 50h for the BFS and less than one hour for the ES in
the min_max target function test with class 1 and CV set 1). Furthermore, it
can be observed that the differences between minimal and maximal process-
ing times of the 10 ES runs, which are shown by the error bars, are negligible
small. The processing time differences between min_max and erf_int target
functions appear to be minor, as well.

In figure 6.10, the progress of the target function values after each ES it-
eration is illustrated for each test run. At each step the maximal function
result of all templates belonging to the optimized class and all µ individu-
als is displayed, which constitutes the optimization solution. Since the BFS
optimization method searches the whole target space for the global target
function maximum and the initial population of the ES contains the original
templates, target function values of ES solutions range between the original
result (green line) and the BFS maximum (red line).
It can be seen in the figure that in most of the test runs the ES optimization
result shows a converging behavior after round about 10 iterations. This in-
dicates that the choice of 15 ES iterations is sufficient for this problem. In
almost all test runs, the ES result is close to the BFS result, which shows that
the ES is able to find satisfying solutions.
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Figure 6.9: BFS and ES processing times. ES results are shown as averaged results over 10
runs (the error bars indicate the minimal and maximal processing time). Tests
have been conducted with min_max (MM) and erf_int (EI) target functions for
classes 1 and 9 (utilizing cross validation sets 1 and 2, respectively)

Target function performance

Figure 6.11 shows the results averaged over all classes of a comparison test
with ES optimization and all target functions from section 6.3.1. Since tem-
plates obtained from manually assigned labels are potentially inaccurate, a
tolerance of 500 sampling points (which is equal to 1.25 s) has been added to
start and endpoints of the labels for template extraction out of the sequence
data before filtering. Thus, potential loss of relevant information is avoided
in the optimization test.
In order to attenuate possible outlying results caused by accidental initial pop-
ulations, every ES test has been executed 3 times independently. The mean
results from these 3 independent tests are shown as bar chart in figure 6.11,
in which the error bars indicate the minimal and maximal results. It can be
concluded from these results that the min_max and the erf_int target func-
tions yield high precision and good recall rates and that their performance
differs only slightly between independent test runs (which is shown by the
error bars).
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Figure 6.10: Progress of the target function values in several tests with different target func-
tions and classes (blue lines). The results for the best original template are
shown by the green lines and the results for the best BFS prototype by the red
lines.

Figure 6.12 shows a comparison of ES target function results to a test with
prototypes chosen from original templates. The test results are averaged over
all classes and participants. Original template prototypes have been chosen
by selecting the one with the smallest average distance to all other templates
of the same class in the training set. This common method for choosing
prototypes is referred to as minimum selection in [54]. Thresholds for mini-
mum selection have been determined by taking the average distance plus two
standard deviations. In contrast to ES tests, adding a tolerance to labels for
template extraction is not advisable here, because it rather corrupts relevant
template information than being of advantage (this has been confirmed in
other tests, which are not shown here).
In the figure it can be seen that precision is improved by utilizing templates
optimized with the min_max, the KL_div or the erf_int target function. Re-
call rates have been improved with the min_max and the mean_div target



134 6 Gesture Recognition System

classification perfom
ance com

parison w
ith ES optim

ized prototypes

50 55 60 65 70 75 80 85 90 95

100
P1 MM

P1 KL

P2 CP

P2 EI

P3 MM

P3 KL

P4 CP

P4 EI

P5 MM

P5 KL

P6 CP

P6 EI

P7 MM

P7 KL

average CP

average EI

participant and target function

%

precision

recall

Figure 6.11: Online DTW classification results of a target function performance comparison
test with ES optimized prototypes. Results are averaged over all classes and
shown for each participant (P1-P7) and target function (MM = min_max, CP
= CP_dist, KL = KL_div, EI = erf_int). The error bars indicate maximal and
minimal results of 3 independent test runs.
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Figure 6.12: Comparison of online DTW results from prototypes optimized with the ES and
(original) prototypes chosen by minimum selection. Results are averaged over
all participants and classes.

function, while an equal result is achieved with the erf_int target function.
The experiments have shown that prototypes optimized with the min_max
and the erf_int target functions yield better results than original prototypes
(with clear improvements especially for precision rates).

6.5.3. DTW Gesture Recognition Results

In this section, the performance of our online DTW implementation for ges-
ture recognition is evaluated based on tests performed with the test dataset.
In the following experiments, the usefulness of range normalization and am-
biguity resolution are shown. Furthermore, results from a comparison test of
online DTW to gesture recognition with common activity recognition meth-
ods are presented.

Effect of range normalization on DTW results

In order to have an account of the effect of the range normalization method, a
comparison test has been conducted, in which online DTW with and without
range normalization is compared. For this test original template prototypes
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Figure 6.13: Online DTW test results with and without range normalization (RN) utilizing
original templates. The test shows the influence of range normalization on the
classification result. Results are averaged over all classes.

have been utilized, which have been generated by minimum selection as ex-
plained in the previous section.
The test results for each participant are shown in figure 6.13. While range
normalization has only a small influence on recall with no clear tendency of
improvement, the test has shown that the application of range normalization
yields significantly higher precision values for most of the participants. Av-
eraged over all participants the utilization of range normalization has brought
an improvement of 20 percent to precision.

Online DTW with ambiguity resolution

Due to the parallel execution of DTW, online DTW results may contain over-
lapping detections if more than one prototype is used. Therefore, ambiguity
resolution (section 6.2.4) has to be applied in order to obtain the final online
gesture recognition result in case if more than one prototype is used.
Figure 6.14 shows an online DTW result before and after ambiguity resolu-
tion. In this test the online DTW result from the previous section has been
used, which has been produced by utilizing prototypes that have been opti-
mized with the ES and the erf_int target function. Due to the fact that few
ambiguities existed in the online DTW result because of the good recogni-
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Figure 6.14: Results from online DTW utilizing prototypes optimized with the ES and the
erf_int target function before and after the application of ambiguity resolution
(AR). Results are averaged over all classes.

tion performance, only slightly different recognition rates resulted in this test
after ambiguity resolution. However, in the figure it can be seen that am-
biguity resolution leads to an increase of precision and a slight decrease of
recall. These effects result from the elimination of false positives (increase of
precision) and from a few true positives that have falsely been cleared away
(decrease of recall).

Comparison of DTW to standard classifiers

Finally, the results of online DTW have been compared with the sliding win-
dow based classification methods that have been utilized for action recog-
nition in section 4.2. This test has been performed in order to prove that
the template matching approach with online DTW is more useful for gesture
recognition than the generalizing sliding window classification approach.
Figure 6.15 shows the results of a k-nearest neighbor (k-NN) and a Naive
Bayes classifier in comparison with the DTW online result. The DTW re-
sults in the figure are the same as in the previous test (in which templates
have been generated with the ES and the erf_int target function and ambi-
guity resolution has been utilized). Classifier results have been produced by
utilizing PCA feature extraction, a window size of 1024 sampling points (or



138 6 Gesture Recognition System

k-NN and NB classification vs. DTW

0
10
20
30
40
50
60
70
80
90

100

P1
_k

N
N

_1
02

4_
PC

A

P1
_N

B
_1

02
4_

PC
A

P1
 E

I+
A

R

P2
_k

N
N

_1
02

4_
PC

A

P2
_N

B
_1

02
4_

PC
A

P2
 E

I+
A

R

P3
_k

N
N

_1
02

4_
PC

A

P3
_N

B
_1

02
4_

PC
A

P3
 E

I+
A

R

P4
_k

N
N

_1
02

4_
PC

A

P4
_N

B
_1

02
4_

PC
A

P4
 E

I+
A

R

P5
_k

N
N

_1
02

4_
PC

A

P5
_N

B
_1

02
4_

PC
A

P5
 E

I+
A

R

P6
_k

N
N

_1
02

4_
PC

A

P6
_N

B
_1

02
4_

PC
A

P6
 E

I+
A

R

P7
_k

N
N

_1
02

4_
PC

A

P7
_N

B
_1

02
4_

PC
A

P7
 E

I+
A

R

ov
er

al
l a

ve
ra

ge
 k

N
N

ov
er

al
l a

ve
ra

ge
 N

B

ov
er

al
l a

ve
ra

ge
 D

TW

participant and classification method

%

precision
recall

Figure 6.15: Comparison of the classification performance of online DTW with sliding win-
dow classification methods. Sliding window classification has been performed
with a Naive Bayes (NB) classifier and a k-nearest neighbor classifier (kNN).
Results are averaged over all classes.

2.5 s) and a window spacing of 512 sampling points (or 1.25 s). For k-NN
classification k has been set to k=3.
Although the k-NN classifier yields a very good recall performance it pro-
duces many false positives, which results in poor precision rates. In compar-
ison with the Naive Bayes classifier result, online DTW has better precision
rates in most single participant tests and yields a better performance on aver-
age (+11.8% precision and +3.2 recall%).

6.6. Summary

The gesture recognition system, which has been presented in this chapter,
constitutes a solution that enables the worker to communicate with a super-
ordinate framework at his workplace in a comfortable way via gestures. Be-
cause of the fact that the system is based on accelerometers, it is more robust
to disturbances than systems based on remote sensing techniques (such as
cameras). The small size of accelerometer devices makes them integrable in
a working glove or a bracelet.
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Gesture recognition and prototype optimization

For the recognition of gestures in streams of sensor data, an online gesture
recognition method has been developed that is based on DTW. A problem of
the online DTW algorithm is that ambiguities caused by overlapping detec-
tions may occur if more than one prototype is used. However, this problem
can be treated with the presented ambiguity resolution solution. Since range
normalization is applied to templates before distance calculations, spatial
variations (which are present in templates that are recorded with accelerome-
ters) are compensated. Thus, the online DTW approach in combination with
range normalization is able to deal with gesture templates that vary in length
and amplitude.
Time series prototypes representing classes of gestures are generated in our
system by means of a novel prototype optimization approach. In this ap-
proach, the task of finding prototypes has been formulated as an optimization
problem, which aims at the maximization of class separability of time series
prototypes. The optimization problem has been described with four different
target functions. Optimization techniques for searching the target space have
been proposed in form of a brute force search and an evolution strategy. By
defining the target space as the set of all subseries of the original time series
templates, the problem of inaccurately labeled start and endpoints can be cir-
cumvented.

Performance

Although optimization with the BFS guarantees to find the target function
maximum, the BFS is rather not applicable to most template datasets, because
of the massive consumption of computing time. In performed comparison
tests, the ES has proven to be much more efficient for prototype optimiza-
tion, since it is able to find good solutions in reasonable time.
The result of the comparison test with the different target functions has shown
that the erf_int target function yields good classification results and the best
precision rates. For our application, high precision rates are even more desir-
able than high recall rates, because repeating a gesture is not as inconvenient
as commands that are issued unwittingly by false or confused detections. The
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classification performance of prototypes optimized with the min_max target
function is satisfying as well. Prototypes from both target functions yield
clearly better results than original templates chosen by minimum selection.
Classification with prototypes from the CP_dist and the Kl_div target func-
tions show no clear improvement. The CP_dist target function seems to be a
too imprecise measure for class separability and the Kullback-Leibler diver-
gence is basically a good measure for dissimilarity but this must not be the
same for class separability.
As expected, the positive effect of range normalization on online DTW has
been proven to be useful for gestures recorded with accelerometers and shows
a strong improvement of the precision rate.
The application of ambiguity resolution to a multiclass DTW problem has
shown that FP’s overlapping with TP’s are usually cleared away, which has a
positive effect on precision. However, occasionally the opposite case occurs
and recall rates are slightly reduced.
The comparison test of online DTW with windowed classification methods
has shown that DTW yields better results for gesture recognition than win-
dowed classification. This result underlines the assumption that regarding the
temporal signal content is of particular importance for gesture recognition.
In summary, the tests have shown that the presented gesture recognition sys-
tem works very precisely and yields good recognition rates. When utilizing
prototypes optimized with the ES and the erf_int target function, the overall
(averaged over the 9 classes and the 7 participants) recognition performance
for online DTW after ambiguity resolution is 85.86 % recall and 97.35 %
precision.



7. Realtime Experiments

In this chapter the functionality of the developed human-machine interface
approach is demonstrated as a complete system for online activity recognition
in realtime experiments. The experiments have been conducted with two
demonstrators, one for the spot welding scenario and another one for the
PC assembly scenario and hand gesture recognition. Both demonstrators are
based on the human-machine interface solution from section 2.4 and utilize
the components for the recognition of human activities, tasks and gestures
that have been presented in the previous chapters. The methods of the human-
machine interface components that have been used in the experiments have
been chosen depending on the respective scenario.

7.1. Spot Welding Experiment

The spot welding experiment has been conducted with the spot welding sce-
nario, which has briefly been introduced in section 2.2. In the following, a
detailed description of the scenario and the demonstrator is given and results
of the realtime experiment are presented. The presented spot welding exper-
iment can also be found in our publication [38].

7.1.1. Spot Welding Scenario

The spot welding scenario constitutes an environment for demonstrating the
recognition of human worker activities of a handling task under realistic in-
dustrial conditions and finds application within the scope of XPRESS.
In the spot welding scenario a human worker performs spot welding tasks
with the hand welding gun shown at the bottom of figure 7.1. The workpiece
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in this scenario is represented by the car door, which is depicted at the top
of figure 7.1. For the execution of the welding task it is assumed that the car
door is clamped in a fixture and that the positions of the welding spots are
known.
The chosen demonstration task comprises 4 welds at defined positions (in-

dicated as welding spots in figure 7.1). The welding gun has to be removed
from a storage position at the beginning of the task and is returned to it when
the spots have been welded. For modelling the worker task with a state-based
approach, the following states have been identified:

1. Gun in storage: It is assumed that the welding gun is in a storage position
at the beginning of each task. This state is indicated by a storage switch
at the welding gun.

2. Tool moving: After picking up the welding gun from the storage posi-
tion or after the execution of a weld, the worker is moving the welding
gun in the work environment.

3. Aligned to spot number n: Before executing a weld, the worker has to
move the welding gun tip to a spot position.

4. Ready to weld spot number n: After moving to a spot position, the weld-
ing gun has to be kept still in order to ensure that a weld is of an accept-
able quality. This means that remaining motion (e.g. shaking) should be
minimized.

5. Welding spot number n: A weld is executed by pulling the welding gun
trigger.

6. Task completion: The task is considered as completed if all 4 spots have
been welded and if the welding gun has been returned to the storage
position.

7. Task error: Besides the recognition of the welding task it is also desired
to detect and avoid the occurrence of task execution errors. A task ex-
ecution error occurs when the worker tries to weld at a wrong position
or at the position of an already welded spot. Furthermore, it has to be
avoided that the welding gun is still in motion when a weld is executed.
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welding

 spots

Figure 7.1: Car door (top) and hand welding gun (bottom).

7.1.2. Spot Welding Demonstrator

The experimental setup of the spot welding demonstrator is illustrated in fig-
ure 7.2. For robust tracking of the welding gun tip position with the VT
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IMU
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Figure 7.2: Experimental setup of the spot welding demonstrator with welding gun and car
door. The locations of the video cameras and the IMU are indicated.

system, several fiducial markers have been attached to the welding gun and
two (low cost) video cameras have been installed for observation of the work
environment. Additionally, an IMU has been attached to the welding gun. By
means of the IMU, welding gun motions can be detected more accurately and
faster than with the VT system. The application of a KF is not necessary for
this scenario, since occlusions and fast motions do not occur because of the
size of the tool. Furthermore, tool state information about the welding gun
is available in the form of the welding gun trigger and the storage position
switch.
Based on the sensor components and the VT system, locations and actions
are recognized. For the classification of spot locations, the deviation of the
welding gun tip position ~pV T from a spot reference position ~pre f ,n is needed:

dspot,n = ||~pV T −~pre f ,n||. (7.1)
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Figure 7.3: Statechart model of the spot welding task. Transitions between task states are
modeled as actions and locations (storage = storage switch, weld = welding
gun trigger, alignedn = below position threshold of spot n, mov = above mo-
tion threshold).

Because of the fact that reference positions are exactly known in this scenario,
thresholding of the spot deviations is sufficient for deriving location informa-
tion. For the experiment, the threshold has been set to allow a deviation tol-
erance of 15mm around each welding spot. Information about performed ac-
tions is obtained directly from the welding gun trigger and the storage switch.
Additionally, motions of the welding gun are recognized by thresholding of
the absolute value of measured accelerations ||~a|| and measured angular rates
~ω .
Since the spot welding scenario allows to derive location and action informa-
tion that is not affected with uncertainty, a statechart model has been utilized
for modelling the welding task. The statechart model of the spot welding
task described in the previous section is given in figure 7.3. As shown in the
figure, transitions between task states are represented by action and location
changes. Furthermore, guard conditions are used to model the condition that
every spot should be welded once (if a guard condition is set to “false”, the
respective transition is inhibited).
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For the spot welding demonstrator all above mentioned software components
have been implemented in C++.

7.1.3. Experiment

The spot welding experiment contains two tests, in which the recognition of
the spot welding task has been demonstrated in realtime. For both tests a
mockup of a welding gun has been used. The reason for this was to avoid
wear of workpiece material and welding equipment. However, it has to be
noted that the mockup has similar dimensions as the real welding gun and
that the results with the mockup are exactly the same as in official project
demonstrations, in which the real welding gun has been used.
In the first test, the worker has welded the 4 welding spots after another in
a correct manner. The interface outputs that have been recorded during the
execution of the task are shown in figure 7.4. Disregarding a few temporal
inconsistencies that result from the manually recorded GT, it can be seen in
the figure that the statechart states match with the GT. This shows that the
task has been recognized successfully.
The second test exemplifies the detection of task errors. For this test the
worker executed the spot welding task in an incorrect manner, as shown in
figure 7.5. The incorrect task execution shown in the plot started with a cor-
rect weld of spot number 2. After that, the worker pulled the welding gun
trigger without having aligned the welding gun tip to a welding spot, which
caused the first task error. The second task error occurred when the worker
aligned the welding gun to spot number 3 and pulled the welding gun trigger
while the welding gun was shaking. Finally, the worker aligned the welding
gun to the already welded spot number 2 and pulled the welding gun trigger.
In demonstrations with the real welding gun, the execution of a weld was
inhibited if a task error had been detected. Thus, the incorrect execution of a
task can be avoided when task errors occur.
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Figure 7.4: Recognition results of a correctly executed spot welding task. The plot shows
detected actions and locations such as the resulting statechart states (0 = gun in
storage, 1 = gun moving, 2 = gun at spot position, 3 = gun stable at spot position,
4 = welding of spot, 5 = returned to storage, -1 = task error). The GT refers to
the statechart state and has been recorded manually.

7.2. PC Assembly and Gesture Recognition Exper-
iment

The second realtime experiment has been conducted with the PC assembly
scenario, which has been introduced in section 4.5.1. Additionally, the paral-
lel recognition of hand gestures is demonstrated in this experiment. The PC
scenario is of a higher complexity than the spot welding scenario and consti-
tutes a study of the XPRESS project for the recognition of manual assembly
tasks in a laboratory test environment that is similar to a human workplace in
the industry.
The following sections contain a description of the PC assembly demonstra-
tor and the results of the realtime experiment conducted with the demon-
strator. Furthermore, an account of the computation costs of the developed
system components is given.
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Figure 7.5: Recognition results of an incorrectly executed spot welding task. For the plot
the same class indices have been used as in figure 7.4.

7.2.1. PC Assembly Demonstrator

The PC assembly demonstrator utilizes the experimental setup of the scenario
description from section 4.5.1. For the demonstrator, the sensor bracelet with
the IMU and the industrial cameras are utilized as sensor components. The
sensor data is processed with the VT system and the KF in order to provide
robust hand position estimations for the location classification component.
For action and location classification, the 3-NN classifier and the ML clas-
sification methods are used, since this combination proved to be most useful
in the PC scenario evaluation. Classified locations and actions are fused by
majority voting and are further processed with the (computing time efficient)
online HMM in order to recognize activities and tasks.
The recognition of hand gestures is demonstrated with the online DTW ap-
proach from chapter 6 and utilizes optimized prototypes of 4 gestures of the
gesture recognition dataset from section 6.5.1.
As in the spot welding demonstrator, all software components of the PC as-
sembly demonstrator are implemented in C++.
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7.2.2. Experiment

The realtime functionality of the PC assembly demonstrator has been shown
in an experiment, in which all 4 assembly tasks have been performed by a test
participant while acquired sensor data has been processed with the demon-
strator. As a part of the experiment, the 4 different gestures used for the
demonstrator have been performed randomly by the participant between and
during task execution. Figures 7.6, 7.7, 7.8 and 7.9 show the recognition
results for gestures, activities and tasks that have been recorded from the out-
puts of the human-machine interface while the experiment was running.

From the results of experiment parts 1–4 shown in figures 7.6–7.9 it can be
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Figure 7.6: Recognition results of the PC assembly and gesture recognition experiment part
1. The results have been recorded during the execution of gestures 1–3 and task
number 1.

observed that all detections of the DTW gesture recognition method match
with the GT . It can further be observed that the HMM is able to correctly
recognize activities and tasks from the uncertain majority voting (MJ) results
in figures 7.6–7.8 (occasional temporal inaccuracies result from manually as-
signed labels and can be neglected). Even in figure 7.9 the performed task
could be detected in spite of the poor majority voting result.
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Figure 7.7: Recognition results of the PC assembly and gesture recognition experiment part
2. The results have been recorded during the execution of gestures 2 and 1 and
task number 2.
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Figure 7.8: Recognition results of the PC assembly and gesture recognition experiment part
3. The results have been recorded during the execution of task number 3.

7.2.3. Computation Costs of Components

In this section an account of the computation costs of the components devel-
oped for the PC assembly demonstrator is given. The processing times of
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Figure 7.9: Recognition results of the PC assembly and gesture recognition experiment part
4. The results have been recorded during the execution of gestures 4, 2, and 1 (2
times) and task number 4.

the spot welding demonstrator have not been analyzed in particular, since the
computation costs of the techniques that differ from the PC assembly demon-
strator are comparably low. Figure 7.10 shows a processing time comparison
of the software components utilized for the PC assembly demonstrator. The
processing times have been measured during the performance of tasks and
gestures of the PC assembly scenario. It has to be noted that the VT com-
ponent is running parallel to the other components of our implementation in
order to produce as many position estimations as the available computing re-
sources allow. Therefore, the processing time of the VT component has not
been considered in the figure. The processing times have been measured on
our test PC (Intel Core 2 Duo E8400 CPU and 2GB DDR2 RAM) with the
VT component and the components of the test running on different cores. All
processing times listed in the figure have been calculated by taking the av-
erage processing time that each component needed to process the input data
obtained from the IMU and the VT system during a cycle of one second in
reality.
In the figure it can be seen that the whole processing cycle takes less than
50ms for processing all input data measured during 1s.
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Figure 7.10: Processing time comparison of the components of the PC assembly demonstra-
tor for input data measured during 1s in reality (KF = Kalman filter position
classification, LC = location classification, DTW = online DTW gesture recog-
nition, AC = action classification, MJ = activity recognition by majority voting,
HMM = online HMM, cycle = complete processing cycle).

7.3. Summary

In this chapter the recognition of activities, tasks and gestures performed by
human workers has been demonstrated by means of two demonstrators that
are able to process data in realtime.
The first realtime experiment has been conducted with the spot welding demon-
strator. By means of the spot welding experiment the recognition of a han-
dling task performed with an industrial tool has been demonstrated. Since
the spot welding scenario allows to detect activities that are not affected with
uncertainty, spot welding tasks can be modeled in this scenario with the state-
chart technique. Thus, not only tasks can be recognized but also the detection
of task errors is possible.
The second realtime experiment has been conducted with the PC assembly
demonstrator, which is able to recognize activities and tasks of a manual as-
sembly scenario, such as gestures for interaction. In the PC assembly and
gesture recognition experiment the recognition of tasks and activities from
uncertain input information and the recognition of gestures performed paral-
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lel to the execution of tasks have been demonstrated in realtime.
Additionally, it has been shown that the human-machine interface is suffi-
ciently fast enough to recognize performed tasks and gestures with a standard
PC in realtime.
Since both demonstrators are based on the human-machine interface solution
from section 2.4, they have been developed after the same concept. There-
fore, it is possible that both demonstrators partially utilize the same compo-
nents. This demonstrates the flexibility of our worker activity recognition
approach with respect to reusability of components.





8. Conclusion

The main objective of this work was to develop a novel human-machine in-
terface for the seamless integration of human workers in software-controlled
manufacturing systems. The interface should provide the capability to au-
tomatically recognize tasks and activities performed by human workers and
should provide a possibility for communication with a superordinate frame-
work via hand gestures. Furthermore, the interface should be flexible with
respect to the application by being composed of reusable components, which
are able to cover different production scenarios. As a result of this work,
an industrial human-machine interface has been developed that provides the
above mentioned functionality.
For the development of worker activity recognition systems a conceptual ap-
proach has been defined, which describes the worker activity recognition pro-
cess on 4 levels of abstraction. Based on this concept, a human-machine in-
terface has been developed with components that are not focused on a specific
application, but can be utilized in different scenarios. The activity recogni-
tion approach of the human-machine interface is based on the general idea
to acquire information about what is happening and where something is hap-
pening. Thus, both location and action information are incorporated in the
activity recognition process. Furthermore, not only low-level activities but
also tasks are considered in the worker activity recognition approach, which
are modeled as sequences of low-level activities. The concept and the human-
machine interface approach provide flexibility with respect to applications,
since the defined components are designed to cover different scenarios.
Since the presented activity recognition approach is partially based on loca-
tion information, a system has been developed that is able to estimate 3D
positions of arbitrary objects. The position estimation system utilizes an in-
ertial navigation approach with an extended Kalman filter, which is based
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on measurements of a small size IMU and marker-based video-tracking. In
order to provide measurements with accurate timestamps, the IMU and the
utilized industrial cameras have been synchronized in hardware. The navi-
gation approach has been tested and evaluated with real data. Furthermore,
the performance of the approach has been analyzed in a simulation, by which
it was possible to compare the results with an exactly known reference. In
the simulation it has been shown that the accuracy of position estimations is
improved by hardware synchronized sensors and the incorporation of bias es-
timations in the Kalman filter model. In comparison to the VT system alone,
the INS solution provides a higher sampling rate and is able to compensate
short outages. This allows to capture fast motions and to overcome occlusion
problems of short duration. The presented position estimation approach is
scalable, since position tracking is possible in dimensions ranging from sev-
eral meters to a few millimeters.
For the recognition of actions from inertial sensors, a sliding window ap-
proach has been utilized. The issue of choosing appropriate features has
been regarded by calculation of a variation of features that are commonly
used in different activity recognition applications in a first step. In a second
step appropriate features are extracted from the features of the first step by
application of a principal component analysis. Thus, only relevant features
are utilized and the dimensionality of the feature vector is reduced in order
to avoid overfitting problems. For the classification of actions from calcu-
lated features, a naive Bayes and a k-nearest neighbor classifier have been
compared. In tests with real data from a PC assembly scenario it has been
shown that a 3-NN yields the best action classification performance. For the
classification of locations from position data a density based approach has
been proposed. In this approach two different techniques for modelling posi-
tion densities and classification of locations have been compared, a maximum
likelihood method and a nearest neighbor method. An evaluation of the tech-
niques with the PC assembly scenario has shown that the combination of the
ML method with Kalman filtered position estimations yields the best recog-
nition results for further processing. Finally, it has been shown that activities
can be derived from classified actions and locations by majority voting. This
classifier fusion technique has the advantage that it is independent of the clas-
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sifier output type and achieves good results in the PC assembly scenario.
In this work not only the recognition of low-level activities, but also the
recognition of complex worker behavior in the form of tasks has been con-
sidered. The task level activity recognition approach is based on the idea to
model tasks as sequences of low-level activities or actions and distinguishes
between certain and uncertain input information. In the case of certain in-
put information it is possible to describe worker tasks with a deterministic
statechart model. For the recognition of tasks from uncertain input infor-
mation two probabilistic modelling methods have been compared, a hidden
Markov model and a dynamic Bayesian network. Besides the online recog-
nition of tasks, the proposed methods are also able to significantly improve
uncertain activity recognition results. The performance of the probabilistic
models have been compared in an evaluation with data from the PC scenario,
which has been processed with the low-level activity recognition approach.
In this experiment it has been shown that both methods are able to recognize
tasks from uncertain low-level activity information and to yield high recog-
nition rates that are well above 95% precision and recall. While the DBN
yields a higher accuracy for the recognition of the start and the end of a task
and better activity recognition results, the HMM is more efficient with re-
spect to the consumption of computing time. Furthermore, it has again been
shown that the utilization of Kalman filtered position estimation improves the
activity recognition results. By means of the task level activity recognition
approach it has been demonstrated that the incorporation of context knowl-
edge is essential for task recognition from uncertain inputs.
The communication capability via hand gestures of the human-machine in-
terface has been realized by utilizing a time series analysis approach that is
based on dynamic time warping. For the approach an online dynamic time
warping algorithm has been proposed, which is able to recognize multiple
gestures in parallel and resolves ambiguous detections. In order to provide
gapless gesture recognition results, accelerometer measurements from the
IMU are utilized. The important issue of finding representative prototype
templates has been tackled with a novel prototype optimization technique,
which is based on an evolution strategy. This optimization approach aims
at maximizing the class separability of time series templates. In experiments
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with a recorded gesture dataset, the performances of different target functions
for the mathematical description of the class separability have been compared
and an account of the recognition performance of the online gesture recog-
nition system has been given. The proposed approach constitutes a gesture
recognition technique that needs comparable few training data, achieves good
detection results with an average recall rate of over 85% and works accurately
with an average precision rate of more than 97%.
Finally, the developed human-machine interface approach has been demon-
strated in realtime experiments with two demonstrators. These demonstrators
cover the recognition of a handling task and a manual assembly task in form
of a spot welding scenario and the PC assembly scenario. In the spot weld-
ing experiment the recognition of the execution of an industrial spot welding
task has been demonstrated with the statechart task model and certain input
information. Besides that the realtime recognition of tasks and activities from
uncertain input information has been demonstrated in an experiment with the
PC scenario. Furthermore, the recognition of hand gestures, which are per-
formed parallel to the worker task, have been demonstrated in the PC scenario
experiment.
In summary, it has been shown that the developed human-machine interface
allows the seamless integration of human workers in an automatically con-
trolled production system. Although the recognition of human behavior con-
stitutes a problem of high complexity, high task and activity recognition rates
have been achieved by utilizing task recognition models, which incorporate
context knowledge about performed worker activities. Furthermore, not only
the recognition of performed tasks but also the possibility for comfortable
interactive communication has been provided by means of the gesture recog-
nition system. It has also been demonstrated that the presented approach is
able to cover different scenarios and thus constitutes a solution that offers
flexibility with respect to the application.



A. Derivation of the Kullback-Leibler
Divergence for Normal Distributions

The Kl_div target function that is used in chapter 6 for prototype optimiza-
tion is based on the symmetric Kullback-Leibler divergence formula assum-
ing underlying normal distributions. In this chapter the symmetric divergence
formula for normal distributions is derived.

The symmetric Kullback-Leibler divergence is expressed by the Kullback-
Leibler divergence from equation (6.18) according to:

d1,2 = DKL 1,2 +DKL 2,1 =

∞∫
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(p(x|c1)− p(x|c2)) ln
p(x|c1)
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dx. (A.1)

After insertion of the normal distribution formula for p(x|c1) and p(x|c2) we
obtain:
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Rearrangement of equation (A.2) leads to:

d1,2 = ln
σ2

σ1

 ∞∫
−∞

1√
2πσ1

e
−(x−µ1)

2

2σ2
1 dx−

∞∫
−∞

1√
2πσ2

e
−(x−µ2)

2

2σ2
2 dx


+

∞∫
−∞

 1√
2πσ1

e
−(x−µ1)

2

2σ2
1 − 1√

2πσ2
e
−(x−µ2)

2

2σ2
2


·

(
(x−µ2)

2

2σ2
2
− (x−µ1)

2

2σ2
1

)
dx, (A.3)

in which the term in the first brackets sums up to zero (the integrals in the
brackets equal to 1). Then we can write:

d1,2 =

∞∫
−∞

1√
2πσ1

e
−(x−µ1)

2

2σ2
1

(x−µ2)
2

2σ2
2
−

∞∫
−∞

1√
2πσ1

e
−(x−µ1)

2

2σ2
1

(x−µ1)
2

2σ2
1

−
∞∫
−∞

1√
2πσ2

e
−(x−µ2)

2

2σ2
2

(x−µ2)
2

2σ2
2

dx+

∞∫
−∞

1√
2πσ2

e
−(x−µ2)

2

2σ2
2

(x−µ1)
2

2σ2
1

dx.

(A.4)

In order to solve the first and the last integral in equation (A.4) we need an
auxiliary calculation. At first, we obtain the following solution:
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By insertion of equation (A.5) the first and the last integral expressions of
equation (A.4) can be written as:
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Finally, after insertion of equation (A.6) in equation (A.4) we derive:
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Human Worker 

Activity Recognition 

in Industrial Environments

Die Integration von menschlichen Arbeitskräften (auch Werker ge-
nannt) in vollautomatisch gesteuerte Fertigungsprozesse erfordert 
eine Mensch-Maschine Schnittstelle, die sowohl Rückmeldungen 
und Kommandos des Werkers an das Produktionssystem, als auch 
von Menschen ausgeführte Tätigkeiten automatisch erkennt.

In dieser Arbeit wird eine intelligente Mensch-Maschine Schnitt-
stelle vorgestellt, die diese Funktionalitäten bietet und auf einem 
Schnittstellenkonzept beruht, das flexible und wieder verwend-
bare Komponenten vorsieht und somit verschiedene Szenarien 
für mögliche Anwendungen abzudecken vermag. 
Kernpunkte dieser Mensch-Maschine Schnittstelle sind ein Posit-
ionserkennungssystem zur genauen und robusten Bestimmung von  
Positionen beliebiger Objekte in Innenräumen, die automatische 
Erkennung von menschlichen Tätigkeiten, sowie ein Verfahren zur 
Erkennung von Handgesten.

Die Funktionsweise der Mensch-Maschine Schnittstelle wird an-
hand von zwei verschiedenen Szenarien aus dem industriellen 
Umfeld demonstriert, die die Arbeitsbereiche Handmontage und 
die Bedienung industrieller Werkzeuge abdecken.
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