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Abstract

Today’s development and improvement of ferroelectric materials is mainly based on experimen-
tal approaches. In order to significantly reduce development time and costs in the future, there
is a demand for a virtual material development. The primary objective of this thesis is applying
phase-field modeling in a knowledge based multi-scale simulation approach for the ferroelec-
tric polycrystalline ceramics lead titanate (PTO) and lead zirconate titanate (PZT). Within this
approach, phase-field modeling bridges the gap between predictive atomistic methods on one
side and micromechanical modeling methods on the other side. Therefore, two interfaces in this
multi-scale simulation chain have been developed and established in this work.
In order to link the atomic level to the meso-scale, results from first-principles calculations and
atomistic shell-model simulations are employed as input parameters for the phase-field model.
The core of a phase-field model is its thermodynamical free energy function, containing all
crystallographic and domain wall information of the ferroelectric material. Based on a sensitiv-
ity analysis of the coefficients of the free energy function, a novel adjustment method has been
developed for these coefficients that solely requires input parameters from atomistic calcula-
tions and thereby is completely knowledge based. Furthermore, the free energy function of the
phase-field model has been improved by introducing a new elastic energy term: It allows for a
separate adjustment of the cubic and tetragonal elastic properties for PTO and PZT, as well as
an independent fitting of the spontaneous strains and the piezoelectric coefficients.
Typical ferroelectric domain configurations have been identified and investigated under elec-
tromechanical loading. The obtained domain effective small-signal and large-signal parameters
serve as input for micromechanical modeling methods, thereby bridging the gap between the
meso- and the micro-scale in the simulation chain. Therefore, the adjusted phase-field model
has been implemented into a finite-element formulation. By investigating the monodomain
state, the 90◦ domain stack as well as multidomain configurations, and taking defect mecha-
nisms such as electrically charged point defects and grain boundaries into account, reversible
domain wall motion and bending have been identified as governing processes on the meso-scale
influencing the small-signal behavior. Furthermore, a clear correlation between the complexity
of a domain structure and the resulting coercive field strength for initiating irreversible switch-
ing processes has been illustrated by the performed large-signal analysis.
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Zusammenfassung

Herkömmliche Ansätze zur Weiterentwicklung und Verbesserung ferroelektrischer Materialien
beruhen hauptsächlich auf experimentellen Vorgehensweisen. Um zukünftig den Zeit- und
Kostenaufwand für die Optimierung von Werkstoffen deutlich senken zu können, bedarf es
einer Methodik zur virtuellen Werkstoffentwicklung. Das vorrangige Ziel dieser Arbeit be-
stand darin, die Methodik der Phasenfeldmodellierung in einem wissensbasierten Multiskalen-
simulationsansatz für die ferroelektrischen polykristallinen Werkstoffe Blei-Titanat (PTO) und
Blei-Zirkonat-Titanat (PZT) zu etablieren. Hierzu wurden zwei Schnittstellen in der Multi-
skalensimulationskette entwickelt.
Ergebnisse aus prädiktiven quantenmechanischen ab-initio Rechnungen und atomistischen Si-
mulationen wurden als Eingangswerte für das Phasenfeldmodell verwendet, um die atomare
Ebene mit der Mesoskala zu verbinden. Die thermodynamisch motivierte Freie Energiefunk-
tion, die sämtliche kristallographischen und Grenzflächeninformationen des Ferroelektrikums
enthält, stellt das Herzstück eines Phasenfeldmodells dar. Auf der Grundlage einer Sensi-
tivitätsstudie der Freien Energiefunktion wurde eine neuartige Anpassungsmethode für deren
Koeffizienten entwickelt, die ausschließlich Eingangswerte aus atomistischen Berechnungen
benötigt und somit komplett wissensbasiert ist. Des Weiteren wurde die bestehende Energiefunk-
tion um einen neuen Energieterm höherer Ordnung zur Beschreibung der elastischen Energie
erweitert. Dieser ermöglicht nun für PTO und PZT eine getrennte Anpassung der elastischen
Eigenschaften in der kubischen und in der tetragonalen Phase sowie eine unabhängige Anpas-
sung der spontanen Verzerrungen und der piezoelektrischen Koeffizienten.
Typische ferroelektrische Domänenkonfigurationen wurden identifiziert und unter elektromech-
anischer Belastung untersucht. Die so ermittelten domänen-effektiven Kleinsignal- und Großsig-
nalparameter stellen Eingangwerte für mikromechanische Modellierungsmethodiken, womit
in der Multiskalensimulationskette die Lücke zwischen der Mesoskala und der Mikroskala
geschlossen werden kann. Um ferroelektrische Domänenkonfigurationen auf der Mesoskala un-
tersuchen zu können, wurde das zuvor an Ergebnisse atomistischer Berechnungen angepasste
Phasenfeldmodell in die Finite-Element-Formulierung implementiert. Anschließend wurden
verschiedene Domänenzustände untersucht: die Monodomäne, der ideale 90◦-Domänenstapel
sowie verschiedene Multidomänenkonfigurationen. Darüber hinaus wurden Defektmechanis-
men, beispielsweise elektrisch geladene Punktdefekte und Korngrenzen, in den Modellen berück-
sichtigt. Auf der Ebene der Mesoskala wurden reversible Domänenwandbewegungen sowie
das Durchbiegen von Domänenwänden als maßgebliche extrinsische Einflussfaktoren auf die
Kleinsignalwerte identifiziert. Im Rahmen einer Großsignalanalyse wurde die Koerzitivfeld-
stärke (bei der irreversibles Domänenschalten einsetzt) in Abhängigkeit von der Komplexität
von Domänenstrukturen betrachtet. Dabei wurde ein eindeutiger Zusammenhang zwischen
steigender Komplexität der Domänenstruktur und einem Abnehmen der resultierenden Koerzi-
tivfeldstärke festgestellt.
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Preface

Piezoelectricity, which is the generation of electric polarity in a material by application of stress,
was discovered by J. Curie and P. Curie in 1880 when systematically studying the effect of
inducing electric charge under pressure in crystals, such as tourmaline, quartz and other min-
erals [54]. About 40 years later, in 1921, Valasek recognized a reorientable electric moment in
Rochelle salt [73]. Since experiments on the dielectric properties showed many aspects similar
to the nature of ferromagnetism in iron, the group of materials exhibiting permanent internal
dipol moments became known as ferroelectrics. In retrospect, the late discovery of ferroelec-
tricity when compared to ferromagnetism might be explained by the fact that the spontaneous
polarization within a ferroelectric material is shielded by electric charges on the surface, thereby
impeding its detection. During World War II, ferroelectric materials were used in first appli-
cations: Capacitors made of barium titanate gained in importance due to its high dielectric
constant [32]. This man-made ferroelectric ceramic exhibits piezoelectric properties that sig-
nificantly exceed those found in natural materials. A first phenomenological theory of barium
titanate was introduced by Devonshire in 1949. In the following years the technical exploita-
tion of ferroelectric ceramics began, certainly boosted by the development of lead zirconate
titanate (PZT) in the mid-1950s, which became today’s most widely commercially used ferro-
electric ceramic. Striking reasons for employing ferroelectrics for piezoelectric applications are
their unique properties, such as a high dielectric permittivity, high pyroelectric coefficients and
the high piezoelectric effect found in these materials, leading to an efficient electromechanical
conversion of energy and signal. Furthermore, ferroelectrics can be poled: After processing
of the ferroelectric ceramic, the remnant polarization can be oriented in the desired direction
by application of an external electric field. The result is a macroscopic unipolar imprint in the
material [82].
Nowadays, various commercial applications are available, and ferroelectric materials are used
as sensors and actuators, for instance in ultrasonic medical imaging, in fuel injectors of high-
performance common rail diesel engines, in precise positioning systems, in active vibration
damping systems as well as in energy harvesting applications. Moreover, in the last years
ferroelectric materials became increasingly interesting for a broad range of applications down
to micro- or even nanosystems, and ferroelectric thin films are employed in Micro-Electro-
Mechanical Systems (MEMS) as well as for information storage in nonvolatile memory appli-
cations [17, 66, 68].
When further improving and developing ferroelectric materials, companies in today’s auto-
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motive and electrical industry are confronted with enormous challenges: high cost pressure,
decreasing product cycles, increasing system complexity of the products and a high demand
on the material’s performance at the same time. Therefore, the common empiric approach in
developing new materials based primarily on experiments is no longer sufficient. Instead, meth-
ods and tools of virtual material development are to be applied in order to significantly reduce
development time and costs in the future.

For increasing the performance of ferroelectric materials and allowing for a cost-efficient design
of performant materials for specific purposes, it is of great importance to understand the funda-
mental physics of this multicomponent material system and to be able to predict the behavior of
the material. The complex properties of ferroelectric polycrystalline ceramics originate over a
wide range of length and time scales: While the ceramic consists of differently oriented grains
on the micro-scale, each of these grains exhibits a substructure of ferroelectric domains on the
meso-scale. On the nano-scale, each domain in turn consists of atoms arranged in distorted per-
ovskite unit cells. Therefore, the understanding of the microstructure is not possible by using a
single theory or method. Moreover, the complexity of the PZT microstructure does not allow
an understanding of all mechanisms on a purely experimental basis.

Hence, a knowledge based multi-scale modeling approach is needed. Within the scope of the
project COMFEM1, such a multi-scale simulation chain is developed for polycrystalline ferro-
electric ceramics. Following the basic concept of multi-scale material modeling approaches,
material properties are calculated on one simulation level while using input parameters and
methods of other levels. When applied to ferroelectrics, the multi-scale approach has to cover
all physically involved scales from the atomistic level over the meso-scale up to the micro-scale,
utilizing methods of computational physics.

Here, the thermodynamically motivated phase-field method can provide the critical link be-
tween calculations and simulations on the atomistic level on one side and micromechanical
modeling methods on the other side. Based on the fundamental principles of thermodynamics,
phase-field modeling is capable of describing microstructure evolution on the meso-scale. In
this continuum theory, thermodynamic energies are formulated with respect to well-defined or-
der parameters. Landau theory, which describes a system near a phase transition, employs the
spontaneous polarization as the order parameter for the paraelectric-ferroelectric phase transi-
tion. The ferroelectric polarization is zero in the high-symmetry cubic phase and changes to a
finite value once the symmetry is lowered [10]. Temporal and spatial evolution of the polar-
ization order parameter take place in order to reduce the total free energy. This is predicted
by the time-dependent Ginzburg-Landau equation [9, 60]. The thermodynamical free energy
functions containing all crystallographic information of the material can be approximated by
series expansions in terms of the order parameter. It is common to obtain the coefficients of the

1as part of the BMBF program WING, project Code 03X0510: www.bmbf.de/de/3780.php
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energy functions from experiments in a phenomenological approach, as shown e.g. in the work
of Devonshire [18, 20] who first applied Landau’s theory of phase transitions to ferroelectrics.
In the scope of this work, the necessary interfaces for employing the phase-field methodology
in a knowledge based multi-scale approach for polycrystalline ferroelectric ceramics will be
developed and established. Therefore, results from first-principles calculations and atomistic
shell-model simulations on the nano-scale will be used for adjusting the thermodynamical free
energy functions of the phase-field model. This represents a novel completely knowledge based
modeling approach for the class of ferroelectrics, since all existing phase-field models found
in literature for this class of material are at least partially adjusted to empirical input param-
eters. Similar multi-scale approaches combining first-principles and phase-field methodology
have only been demonstrated for other classes of materials, e.g. for the problem of θ ′-Al2Cu
precipitates in Al [12, 72] or for modeling the dendritic solidification in highly undercooled
melts [6]. Furthermore, the formulation of the thermodynamical free energy function of the
phase-field model will be extended by an elastic energy part that has not appeared in litera-
ture before, allowing for a more precise and realistic adjustment of the elastic properties. In
order to establish the interface between phase-field modeling and micromechanical modeling
methods, typical ferroelectric domain configurations on the meso-scale will be investigated us-
ing the adjusted phase-field model. By gradually increasing the complexity of the considered
domain configurations and taking defect mechanisms such as charged point defects and grain
boundaries into account, governing processes on the meso-scale will be identified that influence
the small-signal and large-signal behavior of ferroelectric domain configurations. The obtained
results then provide domain effective input parameters for micromechanical modeling meth-
ods, thereby bridging the gap between atomistic methods and micromechanical methods in the
multi-scale simulation chain.
The outline of this thesis is as follows: An overview of the theoretical background of ferro-
electrics and piezoelectrics is given in Chapter 1, regarding their thermodynamics, their phe-
nomenological description as well as phase-field modeling approaches. In Chapter 2, the inter-
face for linking the atomic level to the meso-scale is defined and developed. The introduction
of a novel elastic energy term of the phase-field model’s free energy as well as consequential
further developments of this interface are shown in Chapter 3. In order to prepare the second
interface in the multi-scale approach, Chapter 4 shows the finite-element implementation of the
phase-field theory into COMSOL Multiphysics. Various typical ferroelectric domain configu-
rations of increasing complexity are investigated under electromechanical loading in Chapter 5,
yielding an understanding of mechanisms and processes taking place in ferroelectric domain
patterns on the meso-scale. Thereby, domain-effective small-signal and large-signal parameters
are obtained that can serve as input for micromechanical modeling methods. Concluding this
work, the essential results are summarized in Chapter 6.
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List of abbreviations

Symbol Meaning
Latin symbols
ai Landau energy coefficients
A surface
bi electromechanical coupling energy coefficients
ci elastic energy coefficients
ci j elastic stiffness tensor (Voigt Notation)
ccub,i j cubic elastic stiffness tensor (Voigt Notation)
ctetr,i j tetragonal elastic stiffness tensor (Voigt Notation)
ci jkl elastic stiffness tensor
Ci j elastic energy coefficients
di j piezoelectric coefficients (Voigt Notation)
di jk piezoelectric coefficients
Di dielectric displacement
e‖ spont. strain parallel to P0

e⊥ spont. strain perpendicular to P0

ei jk piezoelectric coefficients
Ei electric field
EC coercive electric field strength
EC90 coercive electric field for 90◦ switching
EC180 coercive electric field 180◦ switching
fi elastic energy coefficients
gi electromechanical coupling coefficients
G Gibbs free energy
G1 elastic Gibbs free energy
Gi j gradient energy coefficients
hi elastic energy coefficients
hi jk piezoelectric coefficients
H Helmholtz free energy
ni surface normal
Pi electric polarization
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P0 spontaneous polarization
P+

i , P−i ferroelectric domain types
q electric charge density
qi j electrostrictive coefficients
Qi j electromechanical coupling energy coefficients
Q heat
ri position
si jkl elastic compliance tensor
S entropy
S̃i j global strain in periodic boundary conditions
t time
ti surface traction
T temperature
T0 transition temperature
TC Curie temperature
ui mechanical displacement
U internal energy
V volume
W work
xi cartesian coordinate

Greek symbols
αi, αi j, αi jk Landau energy coefficients
βi j inverse mobility tensor
γi external body micro-force
γ90 90◦ domain wall energy
γ180 180◦ domain wall energy
εi j mechanical strain tensor
h electric enthalpy
κ0 vacuum permittivity
κi j dielectric permittivity
ν domain fraction
ξi j micro-stress tensor
ξ90 90◦ domain wall thickness
ξ180 180◦ domain wall thickness
πi internal body micro-force
ρ mass density
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σi j stress tensor
φ electric potential
χi j reciprocal dielectric permittivity
Ψ total Helmholtz free energy density
ψcoup electrostrictive coupling energy density
ψelec electric energy density
ψelast elastic energy density
ψES elastic strain energy density
ψgrad gradient energy density
ψLandau Landau energy density
ω surface charge density
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1. Theory

1.1. Basic description of ferroelectrics

Ferroelectric and piezoelectric materials belong to the broader class of dielectrics, which are
defined as electrically isolating materials that can be polarized by an external electric field.
Unlike conductors, where free electric charges drift through the material when an electric field
is applied, the electrons in dielectrics are bound to the charged ions, so that practically no
electric current flows. Instead, the differently charged ions in the material shift from their
average thermal equilibrium position: Positive charges are displaced in the direction of the
electric field, whereas negative charges are displaced in the opposite direction. This separation
of charges results in an electric polarization, which lowers the electric field inside the dielectric.
The overall charge neutrality of matter is expressed by

~D = κ0~E +~P, (1.1)

consisting of a vacuum contribution κ0~E and the electric polarization ~P (defined as the value of
electric dipole moment per unit volume) in the material. Here, ~D is the dielectric displacement,
~E the externally applied electric field and κ0 the vacuum permittivity. This relation is generally
valid regardless of the nature of polarization, which could e.g. be pyroelectric, piezoelectric or
dielectric [44].

Piezoelectrics are classified as materials that can be polarized not only by an electric field, but
also by application of mechanical stress. Whether a specific material shows polar properties
depends on the symmetry of its crystallographic structure. Out of the 32 crystallographic point
groups describing all crystalline systems, 12 groups are not in possession of piezoelectric or
polar properties because of their centrosymmetric structure (exception: group 432, which is
cubic), while 20 point groups exhibit an electric polarization when subject to mechanical stress
and are termed piezoelectric. Similarly, by application of an electric field a linear strain re-
sponse is induced in these crystals. Of the 20 piezoelectric groups, 10 show a uniquely polar
axis, i.e. they exhibit a spontaneous polarization parallel to the polar axis in the absence of
an electric field and are termed pyroelectric or polar. In analogy to ferromagnetism, mate-
rials are called ferroelectric if it is possible to switch this spontaneous polarization between
crystallographically equivalent configurations by appyling an external electric field. Thus, a
ferroelectric material not only has to possess a spontaneous polarization, but it also has to be

1



1. Theory

All crystalline systems

Piezoelectric

Polar, pyroelectric

Ferroelectric
e.g.
quartz

e.g.
AlN
ZnO

e.g.
BaTiO3

PbTiO3

Figure 1.1.: Crystallographic groups classified by their electrical properties (after [7])

possible to reorient this spontaneous polarization by applying an external electric field. Fig-
ure 1.1 shows this classification of crystallographic groups by their electrical properties. In
this work, ferroelectric materials of the oxygen octahedral ABO3 crystal class are considered.
Ceramics based on this perovskite microstructure are of special importance, because they are
already widely used in applications like capacitors, PTC (positive temperature coefficient) re-
sistors, sensors or actuators. Therefore, broad experience of mass production and reliability is
available [82]. Barium titanate and lead zirconate titanate (PZT) are the most prominent rep-
resentatives of the ferroelectric perovskite-type polycrystalline ceramics due to their profound
scientific examination and commercial availability. PZT is the abbreviation for the solid solu-
tions of the Pb(ZrxTi1−x)O3 (0<x<1) binary system. Considering the microstructure of PZT,
Pb2+ cations are located at the corners of the perovskite unit cell on the A sites, and O2− anions
at the face center positions. On the B sites at the center of the unit cell, octahedrally coordi-
nated Zr4+ or Ti4+ cations are located, depending on the composition of the PbZrO3-PbTiO3

system (Fig. 1.3). Determined by temperature and composition, PZT adopts distorted versions
of the perovskite structure. From the phase diagram (Fig. 1.2) can be seen that above the Curie
temperature TC the unit cell is cubic. In this paraelectric phase, the central Zr4+ (or Ti4+) cation
constitutes an inversion center of the unit cell so that a spontaneous polarization is not pos-
sible. On cooling below the Curie temperature, the crystal structure changes to a phase of
lower symmetry, which can be tetragonal, rhombohedral or orthorhombic. Table 1.1 gives an
overview of the symmetry properties and possible polarization directions of these perovskite
phases [61]. Considering the case of a tetragonal crystal phase, it becomes energetically more
favorable for the Zr4+ (or Ti4+) cation to shift from its central position in one of the six possible
directions along the [100]-axis [24]. Therefore, the positively charged lead and zirconium (or
titanium) cations are displaced with respect to the negatively charged oxygen anions, resulting
in the formation of a polar axis with a spontaneous polarization and a tetragonal deformation of
the perovskite unit cell (Fig. 1.3). Compared to the cubic state, the tetragonal unit cell elongates

2



1.1. Basic description of ferroelectrics

Figure 1.2.: Phase diagram of the Pb(ZrxTi1−x)O3 solid solutions system. Depending on temperature and
composition, the unit cell of PZT can show cubic, tetragonal, rhombohedral or orthorhombic
symmetry (after [45]).

Pb2+

O2-

Zr4+ / Ti4+

T < TCT > TC

P0

a
a

c

a0

Figure 1.3.: Perovskite structure of PZT. Left: Above the Curie temperature TC the unit cell is cubic.
Right: Below TC, the central ion is shifted along the polar [100] axis causing a tetragonally
distorted unit cell. Since the centers of positive and negative charge no longer coincide, the
unit cell shows a spontaneous polarization.

3



1. Theory

Table 1.1.: Possible crystalline phases of perovskite ferroelectrics
crystal symmetry point group polar axis number of equivalent directions
cubic m3m - -
tetragonal 4mm [100] 6
rhombohedral 3m [111] 8
orthorhombic mm2 [110] 12

along the c-axis and contracts along the perpendicular a-axes. The relative deformation is called
spontaneous strain and is found to be up to a few per cent. Starting with PbTiO3 (PTO) in the
PZT solid solutions system (cf. Fig. 1.2), a successive substitution of Zr4+ for Ti4+ reduces the
tetragonal distortion and finally causes the appearence of a rhombohedral ferroelectric phase,
which divides into a low- and a high-temperature phase. The orthorhombic phase near PbZrO3

(PZO) shows an antiferroelectric distortion in which the polarization is cancelled on a unit cell
level [7, 45]. Of special technological interest is the vicinity of the so-called morphotropic phase
boundary (MPB): Due to the co-existing tetragonal and rhombohedral phases, the material has
a large number of possible polarization directions (six from the tetragonal phase, eight from
the rhombohedral phase) and therefore shows strong maxima of the dielectric and piezoelectric
properties nearly independent of temperature at this composition [7].

When the material undergoes the phase transition from the non-polar paraelectric to the ferro-
electric state, the perovskite unit cell is distorted, and a spontaneous polarization P0 arises. The
non-compensated polarization charges lead to the formation of a surface charge, which produces
an electric field oppositely oriented to P0 called depolarization field. Additionally, mechanical
stresses occur in the material after the phase transition originating from the spontaneous strain
of the unit cell and the induced interaction of differently oriented and strained grains in the poly-
crystal ceramic. The resulting electric depolarization field energy and the elastic energy can be
reduced by the formation of differently oriented ferroelectric domains (schematically shown in
Fig. 1.4). These regions with a uniform orientation of polarization are separated by transition

Figure 1.4.: Formation of oppositely oriented ferroelectric domains reduces the depolarization field en-
ergy (after [7]).
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zones – so-called domain walls, in which the polarization changes over a short distance but
gradually between the orientations in the two adjacent domains. Because of the six equivalent
polar axes, only two types of domain walls exist in a tetragonal ferroelectric. Domains of op-
positely oriented polarization are separated by 180◦ domain walls, whereas 90◦ domain walls
separate domains which are perpendicular to each other. While both types of domain walls can
reduce the depolarization field, only the 90◦ domain wall can lower the elastic energy evoked by
the spontaneous strain [17]. In the rhombohedral ferroelectric phase with eight equivalent polar
axes, three types of domain walls exist: 71◦ and 109◦ domain walls that are strain-producing,
as well as the non-strain-producing 180◦ domain wall [32].

The outstanding dielectric and piezoelectric properties of ferroelectrics originate from their
ability to switch spontaneous polarization and strain. This happens by shifts of domain walls,
allowing the currently preferred ferroelectric domains to grow at the expense of energetically
less favorable domains. Macroscopic switching of domains can be achieved by applying an
external electric field that exceeds the so-called coercive field strength EC, causing irreversible
switching processes in the material and a hysteresis behavior. After reversing the electric field,
the domain walls remain in their new equilibrium position, and the material therefore shows
an altered domain structure and macroscopic net polarization. In addition to these polarization
reversal processes, domain walls can move reversibly under weak or moderate sub-switching
external fields, either by vibration or bending around an equilibrium position or by small jumps
into a new equilibrium state. This reversible domain wall motion has a significant influence on
the dielectric, mechanical and piezoelectric properties of the ferroelectric and is called extrinsic
(nonlattice) contribution [17].

In order to summarize the basic properties of ferroelectrics, the structure of a perovskite poly-
crystalline ferroelectric ceramic is shown schematically in Fig. 1.5. On the nano-scale, the
atoms are arranged in distorted perovskite unit cells, forming a single crystal which exhibits a
spontaneous polarization and strain. The resulting depolarization field energy and elastic en-
ergy cause the formation of ferroelectric domains on the meso-scale: Each grain of the ceramic
can be considered a single crystal and is split into a system of domains. Finally, on the micro-
scale, the polycrystalline ceramic consists of a structure of mutually interacting grains. Fig. 1.5
also shows exemplary microscope images of the respective scales: The nano-scale can be de-
picted by transmission electron microscopy (TEM) or X-ray diffraction (XRD). To measure the
ferroelectric domain structure on the meso-scale, methods of piezoresponse force microscopy
(PFM) or atomic force microscopy (AFM) can be applied, whereas the grain structure on the
micro-scale can be displayed using scanning electron microscopy (SEM) or optical microscopy
methods.

Real ferroelectrics always contain electrical and elastic imperfections that interfere with domain
walls and the polarization within domains. By grain boundaries, dopants as well as point de-
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Figure 1.5.: Schematical structure of a polycrystalline ferroelectric ceramic: On the micro-scale, the ce-
ramic consists of differently oriented grains. Each of these grains exhibits a substructure
of ferroelectric domains on the meso-scale. On the nano-scale, each domain consists of
atoms arranged in distorted perovskite unit cells. For all length scales, the corresponding
experimentally measured microstructure is shown by exemplary images using different mi-
croscopical techniques: TEM (nano-scale), PFM (meso-scale) and SEM (micro-scale).

fects and defect complexes, the domain walls can be pinned or clamped. This constrains both
reversible domain wall motion and irreversible switching, leading to dielectric, mechanical and
piezoelectric losses in the material. Since the grains and the lattice orientations within the grains
are randomly distributed, the piezoelectric and ferroelectric contribution of all domains cancel
each other out on the macroscopic scale. To imprint a unipolar direction in the material, the
ferroelectric ceramic is poled after processing by applying a strong external electric field above
the coercive field EC. Domains in the material are reorientated, resulting in a remnant polariza-
tion and strain in the desired direction. Due to the polycrystalline character of the material, the
remnant properties are always lower than the spontaneous properties of a single crystal [17].

In order to increase the performance of ferroelectrics and allow for a cost-efficient design of per-
formant materials for specific purposes, it is of great importance to understand the fundamental
physics of this complex multicomponent material system on all involved scales and predict the
behavior of the material. The complexity of the microstructure does not allow an understanding
of all mechanisms on a purely experimental basis. This is especially the case for PZT, which has
not been processed in the form of a single crystal up to today. Therefore, ferroelectrics are ex-
tensively studied using methods of computational physics. Since processes within ferroelectric
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1.2. Thermodynamics of piezoelectric materials

ceramics take place over a wide range of length and time scales, it is not possible to describe all
effects by a single theory or method. Instead, there is a need for a multi-scale approach covering
all scales involved: On the atomistic nano-scale, first-principles density function theory (DFT)
calculations and classical atomistic calculations can be employed to predict the single crystal
properties, whereas micromechanical modeling methods are used for calculating the electrical
and mechanical properties of the polycrystal on the micro-scale. In between, phase-field model-
ing is capable of closing the gap between atomistic methods and micromechanical constitutive
modeling by describing the microstructure evolution of the ferroelectric domain system on the
meso-scale.

The emphasis of this work is to develop and establish the interfaces in the described multi-scale
simulation chain for ferroelectric materials. Results from atomistic calculations will be used to
adjust a phase-field model. Based on this model, phase-field simulations of ferroelectric domain
systems will be performed, providing input parameters that can be used for micromechanical
modeling methods. Within the phase-field methodology, the ferroelectric will be described
by a phenomenological theory, where the material is treated as a continuum and the underlying
atomistic structure is not regarded. Therefore, fields are postulated to describe the thermal, elas-
tic and dielectric properties of the macroscopic ensemble, and the laws of thermodynamic and
classical mechanics are used to relate these fields [54]. Hence, the thermodynamics of piezo-
electric materials are discussed in the next chapter, providing a fundament for the subsequently
following phenomenological description of ferroelectrics.

1.2. Thermodynamics of piezoelectric materials

Linear relations

The properties of a piezoelectric material are governed by the coupling of its mechanical, elec-
trical and thermal parameters. Mechanical strain in a piezoelectric material can be induced by an
external mechanical stress, an electric field and a temperature change, according to Hooke’s law
of elasticity, the converse piezoelectric effect and thermal expansion, respectively. Likewise, in
a polar material electric charge can be induced by application of mechanical stress, electric field
or a temperature change, described by the dielectric susceptibility, the direct piezoelectric effect
and the pyroelectric effect [17, 43]. These mechanisms are illustrated in the Heckmann Diagram
(Fig. 1.6). To relate the thermal, elastic and electrical parameters, a thermodynamic approach
can be used. Following the work of Lines and Glass [54], it can be assumed that the thermal,
elastic and dielectric properties of a piezoelectric or ferroelectric material are described by a set
of the six parameters temperature T , entropy S, stress σ , strain ε , electric field ~E and dielectric
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Figure 1.6.: Heckmann Diagram relating mechanical, thermal and electrical variables (after [61]). The
outer triangle (blue) contains the intensive variables, which do not depend on the size of the
described system, whereas the inner triangle (red) contains the extensive variables, which
are directly proportional to the system size.

displacement ~D. The strain

εi j =
1
2

(
∂ui

∂ r j
+

∂u j

∂ ri

)
(1.2)

in a solid is a measure of how the displacement ~u varies with position ~r. This symmetrical
3×3 matrix has in general six independent components. In linear-elastic materials, the strain is
generally related to the tensile stress by Hooke’s law of elasticity

σi j = ci jkl · εkl, (1.3)

where ci jkl is the elastic stiffness tensor. Since there are three independent components of the
electric field, the dielectric displacement as well as six independent stress and strain compo-
nents, a total of 20 thermodynamic co-ordinates describes the system. From the first law of
thermodynamics, the change in the internal energy U is given by

dU = dQ+dW, (1.4)

where dQ is an infinitesimal amount of heat recieved by the piezoelectric and dW is an applied
work by electric or mechanical forces. Under the assumption of a quasi-static transformation
and reversibility, the second law of thermodynamics can be written as dQ = T dS. Thus, for a
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1.2. Thermodynamics of piezoelectric materials

uniform increment of strain and electric displacement, the internal energy (1.4) can be trans-
formed into

dU = T dS+σi jdεi j +EidDi. (1.5)

In its simplest form, the internal energy U is described by the independent or natural variables
S, εi j and Di. Hence, the state variables T , σi j and Ei of the thermodynamic system can be
calculated as

T =

(
∂U
∂S

)
εi j,Di

, σi j =

(
∂U
∂εi j

)
S,Di

, Ei =

(
∂U
∂Di

)
S,εi j

, (1.6)

where the subscripts indicate variables that are kept constant. Consequently, all thermodynamic
properties of the system can be determined by partial differentiation of the internal energy U .
The three equations (1.6) are referred to as the calorimetric, elastic and dielectric equation of
state. To choose a different set of independent variables, additional thermodynamic potentials
have to be determined. Two of the eight possible combinations of the conjugate pairs (T , S),
(σi j, εi j) and (Ei, Di) are the Helmholtz free energy H and the Gibbs free energy G, defined as

H = U−T S (1.7)

G = U−T S−σi jεi j−EiDi, (1.8)

and its associated differential forms, describing infinitesimal changes:

dH = −SdT +σi jdεi j +EidDi (1.9)

dG = −SdT − εi jdσi j−DidEi. (1.10)

Under equilibrium conditions, these thermodynamic potentials are stationary functions with
respect to virtual displacements of the unconstrained or state variables. In a non-equilibrium

configuration, where a particular set of independent variables is held constant, irreversible pro-
cesses will take place and the system will strive towards its thermodynamical equilibrium by
minimizing the free energy. If there is more than one locally stable state in the system for the
same set of constraints, the state of lowest free energy is called absolutely stable, while all
others are called metastable.

When choosing temperature, strain and dielectric displacement as natural variables, the Helmholtz
free energy H is used to describe the system. The corresponding equations of state are obtained
from (1.9) as

−S =

(
∂H
∂T

)
εi j,Di

, σi j =

(
∂H
∂εi j

)
T,Di

, Ei =

(
∂H
∂Di

)
T,εi j

. (1.11)
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In an analogous manner, for choosing temperature, stress and electric field as independent vari-
ables, the equations of state of the Gibbs free energy G from (1.10) are

−S =

(
∂G
∂T

)
σi j,Ei

, −εi j =

(
∂G
∂σi j

)
T,Ei

, −Di =

(
∂G
∂Ei

)
T,σi j

. (1.12)

For the Gibbs free energy G, the linear differentials of the equations of state are

dS =

(
∂S
∂T

)
σi j,Ei

dT +

(
∂S

∂σi j

)
T,Ei

dσi j +

(
∂S
∂Ei

)
T,σi j

dEi (1.13)

dεi j =

(
∂εi j

∂T

)
σi j,Ei

dT +

(
∂εi j

∂σi j

)
T,Ei

dσi j +

(
∂εi j

∂Ei

)
T,σi j

dEi

dDi =

(
∂Di

∂T

)
σi j,Ei

dT +

(
∂Di

∂σi j

)
T,Ei

dσi j +

(
∂Di

∂Ei

)
T,σi j

dEi,

and their coefficients are called compliances. They are functions of the unpertubated inde-
pendent variables and quantitatively describe the coupling between fields in the ferroelectric
material. The compliances of most common use are those relating stress to strain (elastic com-
pliance), dielectric displacement to electric field (dielectric constant or permittivity), stress or
strain to dielectric displacement or electric field (piezoelectric compliance), dielectric displace-
ment to temperature (pyroelectric compliance) and strain to temperature (thermal expansion).
Assuming isothermal conditions (dT = 0) and taking equations (1.12, 1.13) leads to the consti-

tutive piezoelectric equations

dεi j = sEi
i jkldσkl +d†

i jkdEk (1.14)

dDi = di jkdσ jk +κ
σi j
i j dE j. (1.15)

Proceeding the same way with equation (1.12) results in another set of linear piezoelectric
equations, now based on the Helmholtz free energy with strain and dielectric displacement as
natural variables:

dσi j = cDi
i jkldεkl−h†

i jkdDk (1.16)

dEi = −hi jkdε jk +χ
εi j
i j dD j. (1.17)

Here, the elastic compliance si jkl and the elastic stiffness ci jkl are fourth-rank tensors, while the
dielectric permittivity κi j and its reciprocal χi j (also referred to as dielectric susceptibility) are of
second rank. The third-rank tensors describing the piezoelectric effect are denoted di jk and hi jk,
whereas d†

i jk and h†
i jk are the piezoelectric tensors of the converse piezoelectric effect. These

compliances can be derived directly from a thermodynamical potential by partial differentiation:
The isothermal elastic compliance at constant electric field sEi,T

i jkl and the elastic stiffness at
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1.2. Thermodynamics of piezoelectric materials

constant dielectric displacement cDi,T
i jkl are given as

sEi,T
i jkl =

(
∂εi j

∂σi j

)
Ei,T

=−

(
∂ 2G
∂σ2

i j

)
Ei,T

, cDi,T
i jkl =

(
∂σi j

∂εkl

)
Di,T

=

(
∂ 2H

∂εi j∂εkl

)
Di,T

(1.18)

whereas the isothermal permittivity κ
σi j,T
i j and its reciprocal χ

εi j,T
i j are

κ
σi j,T
i j =

(
∂Di

∂Ei

)
σi j,T

=−
(

∂ 2G
∂E2

i

)
σi j,T

, χ
εi j,T
i j =

(
∂Ei

∂Di

)
εi j,T

=−
(

∂ 2H
∂D2

i

)
σi j,T

(1.19)

and the isothermal linear piezoelectric compliances di jk and hi jk are

di jk =

(
∂Di

∂σ jk

)
T,Ei

=−
(

∂ 2G
∂σ jk∂Ei

)
T
=

(
∂ε jk

∂Ei

)
T,σi j

= d†
ki j (1.20)

h†
i jk = −

(
∂σi j

∂Di

)
T,εi j

=−
(

∂ 2H
∂εi j∂Dk

)
T
=−

(
∂Ek

∂εi j

)
T,Di

= hki j. (1.21)

The last two equations demonstrate the thermodynamic equivalence of the direct and the con-
verse piezoelectric effect. For the case of small dielectric displacements and strains, as in ferro-
electrics close to the Curie temperature, the thermodynamic potential is commonly defined as a
linear or low-order Taylor series expansion in Di and εi j around the equilibrium prototype state
Di = εi j = 0. For example, the Helmholtz free energy H with the independent variables Di and
εi j up to quadratic terms can be expressed as

H = H0 +

(
∂H
∂εi j

)
εi j +

(
∂H
∂Di

)
Di +

(
∂ 2H

∂εi j∂εkl

)
εi jεkl (1.22)

+

(
∂ 2H

∂Di∂D j

)
DiD j +

(
∂ 2H

∂Di∂ε jk

)
Diε jk. (1.23)

Note that for the components of the compliance tensors several conditions are imposed by the
symmetry of the material. Some of the elements have to be zero, while others are required to
be interrelated. In this work, ferroelectrics with a paraelectric cubic and a polarized phase of
tetragonal symmetry are considered. Using Voigt’s notation (cf. section 5.2.2), the compliances
exhibit the structure shown in appendix A.1.

Non-linear relations

To this point, only linear material behavior has been taken into account, valid for small ap-
plied fields and deformations. However, some characteristic properties of dielectrics and fer-
roelectrics have been experimentally observed that can not be described using a linear material
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model. One phenomenon that can not be explained by the linear approach is electrostriction:
An electric field applied to a material of arbitrary symmetry generally shifts the ions from their
equilibrium position, leading to a deformation of the unit cell. This effect, called electrostric-
tion, is even observed in totally isotropic materials and therefore has to be of different nature
than the inverse piezoelectric effect. Considering a material with a centrosymmetric, non-polar
unit cell, the centers of positive and negative charges are situated at the same position in the
absence of an external electric field. If an electric field is applied, the centers of charges are
separated and the unit cell is elongated. Upon reversal of the electric field, the elongation of
the unit cell will be exactly the same, while the polarization is now inverted. Since this electri-
cally induced deformation is independent of the sign of the applied electric field, the effect is
assumed to be quadratic. Electrostriction is a higher order effect and dominated by the linear
piezoelectric effect in materials possessing a polar unit cell. For strong non-linear materials,
such as ferroelectrics, the linear approach is also not sufficient since it does not yield the ob-
served hysteresis behavior of the polarization.

Therefore, an extension of the differential equation of state to higher orders is necessary. A
common assumption is that the strains in the material are small, so only strain terms of the order
εi jεkl and εi jDkDl are taken into account (all other lower order strain terms are symetrically
incompatible). Thus, the non-linear Helmholtz free energy takes the form

H(Di,εi j) =
1
2

α i jDiD j +
1
2

ci jklεi jεkl +
1
2

qi jklDiD jεkl + (1.24)

+
1
4

α i jklDiD jDkDl +
1
6

α i jklmnDiD jDkDlDmDn,

where the coefficients α , α and α are the Devonshire coefficients for constant stress that depend
on the material composition and the temperature. Under the assumption that the free energy
function describes both the polar and the non-polar phase, there are several restrictions to these
coefficients. For crystals with a cubic non-polar prototype phase, all odd-ranked tensors in
the thermodynamic potential vanish. Further, there are only one independent component of α

(termed α1), two components of α (α11, α12) and three components of α (α111,α112,α123). The
resulting elastic non-linear equation of state

σi j = ci jklεkl +
1
2

qi jklDkDl (1.25)

shows that the strains are of the same order of smallness as D2
i , justifying the expansion (1.24)

since the terms retained are consistently of lower order than those neglected. Likewise, the non-
linear Gibbs free energy can be obtained. The now following phenomenological description
of ferroelectrics will be based on this free energy function and the shown thermodynamical
considerations.
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1.3. Phenomenological description of ferroelectrics

In a phenomenological approach, empirical observations are related to one another using a mini-
mum set of input parameters [11]. Although the approach has to be consistent with fundamental
physical theories, it does not have to be derived directly from them. The set of input parame-
ters can be obtained either from experiments or from calculations, e.g. on the atomistic level.
Maybe the most prominent example of a phenomenological approach is the Ginzburg-Landau
theory of superconductivity [29]. Based on macroscopic observations and thermodynamic con-
siderations, the theory predicts essential properties of superconductivity without regarding the
underlying microscopic mechanisms, which were unknown by the time the theory was pro-
posed.

The phenomenological approach is also well suited to characterize the behavior of ferroelectric
materials on the mesoscale. Landau’s general theory of second-order phase transitions is needed
as a fundament of the approach. This theory descibes the behavior of physical entities – so-
called order parameters – in the vicinity of a phase transition. It relies solely on symmetry
considerations and on the assumption that the free energy of the system is an analytical function.

Landau’s theory was first applied to ferroelectris by Devonshire in order to phenomenologically
describe this class of materials. The Landau-Devonshire theory is well suited to characterize
uniformly poled bulk systems near the ferroelectric phase transition. For systems containing
a spatially non-uniform polarization, e.g. domains of differently orientated polarization that
occur naturally in ferroelectrics caused by the minimization of electrostatic energy, the theory
has to be extended to take polarization-polarization interaction into account. This is considered
in the Landau-Ginzburg theory by an extension of the free energy density that allows not only
the description of ferroelectric bulk systems with a spatial polarization gradient, but also, by
applying boundary conditions, that of ferroelectric thin films.

1.3.1. General Landau theory of phase transitions

In his 1937 work, Landau shows a phenomenological approach to describe second-order phase
transitions in a general way [51]. As mentioned above, his theory is based solely on symmetry
considerations and the presumption of an analytical free energy function that describes the
equilibrium behavior of the system near the regarded phase transition. It is especially well suited
for systems with long-range1 interactions and a high coordination number, like superconductors
and ferroelectrics.

Landau’s theory (LT) is based on the observation that a system cannot change smoothly between
two phases of different symmetry. Since the two phases must have the same symmetry at a

1On the contrary to e.g. magnetic systems, where couplings are predominantly short range: While in con-
ventional ferromagnetic systems the dipolar interactions play a role in determining the domain structure, the
analogous dipolar couplings in ferroelectrics are important on essentially all length scales [11].
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shared transition line, one phase has to be of higher symmetry than the other. This fact is
used to introduce a so-called order parameter – a physical quantity serving as a measure of
the degree of order in the system and characterizing the phase transition. Once the symmetry is
broken during a phase transition from a high-symmetry phase to a phase of lower symmetry, one
or more additional parameters are needed to completely describe the system. This is achieved
by the introduced order parameter, which is zero in the high-symmetry phase and changes
(continuously for a second-order phase transition) to a finite value in the low-symmetry phase.
The order parameter can be scalar, complex or vectorial, depending on the phase transition to
be characterized and the physics involved. In the phenomenological Ginzburg-Landau theory
of superconductivity for example, a complex order parameter indicates how deep the system is
in the superconducting phase.

The free energy function containing all information about the system can be expressed in terms
of a Taylor series expansion of the order parameter in the vicinity of the phase transition. Here,
only symmetry compatible terms of the order parameter are retained. Under the assumption that
the system will always strive towards its state of lowest free energy, the thermal equilibrium
value of the order parameter can be obtained by minimizing the free energy function. For LT to
be valid, it is essential for fluctuations of the order parameter to be small compared to the order
parameter itself [11].

1.3.2. Thermodynamics of ferroelectric phase transitions

Before applying LT to ferroelectrics, it is important to get a proper insight into the thermody-
namics of ferroelectric phase transitions. The behavior of the substance near the transition is
characterized by its free energy which can be expressed by different sets of independent vari-
ables. For the description of ferroelectric phase transitions it is most convenient to choose the
elastic Gibbs free energy

G1 =U−T S−σi jεi j, (1.26)

which is expressed as a function of temperature, stress and dielectric displacement, as can be
seen from its associated differential form:

dG1 =−SdT − εi jdσi j +EidDi, (1.27)

This polynomial thermodynamic potential is expanded in terms of the deviation from the proto-
type state with the fewest possible number of terms that can still completely describe the system.
We consider the simplest conceivable theoretical situation of a stress-free system with a cen-
trosymmetric non-polar phase and a polarization directed only along one of the crystallographic
axes in the uniformly polarized phase. The approach can be extended to the three-dimensional
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case in a straight forward manner without loss of generality. Choosing the origin of the unpo-
larized elastic Gibbs free energy density G1 to be zero, it can be written as

G1(D) =
1
2

aD2 +
1
4

bD4 +
1
6

cD6 (1.28)

where a, b, and c are material coefficients that generally depend on the temperature. However,
first- and second order transitions can be described with only coefficient a depending on the
temperature. Of the two temperature-independent coefficients, c always has to be positive in
order to fulfill the stability criterion

lim
D→±∞

G1(D) = +∞, (1.29)

and the sign of b defines the order of the phase transition. The non-linear terms in the free
energy function allow possible divergencies in the dielectric response, like the experimentally
found anomaly of the dielectric constant showing a strong maximum near the Curie point [70]
or hysteresis behavior. The dielectric equation of state can be computed by differentiation of
(1.28), directly relating the electric field E parallel to the polarization direction and the dielectric
displacement D:

∂G1

∂D
= E = aD+bD3 + cD5. (1.30)

Further, from the definition (1.19) of the reciprocal dielectric permittivity χ follows

∂E
∂D

= χ = a+3bD2 +5cD4. (1.31)

Phase transitions are classified by the Ehrenfest scheme: In this basic thermodynamic classifi-
cation, the thermodynamic potential as well as its derivatives at the phase transition are consid-
ered. If first derivations of the thermodynamic potential exhibit jump singularities, the phase
transition is denoted first order, whereas continuous first derivatives and discontinuous second
derivatives indicate a second order phase transition [5, 27]. For temperature-driven phase tran-
sitions in ferroelectrics in the absence of external stresses and electric fields, the behavior of
the dielectric displacement D at the transitions temperature characterizes the phase transition:
For a first order phase transition, D exhibits a jump singularity at the phase transition temper-
ature, whereas D is continuous for a second order phase transition. Since both types of phase
transitions are relevant for ferroelectrics, their properties are discussed below.
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Second order ferroelectric phase transition

For a second order phase transition with continuous a continuous dielectric displacement D,
parameter b in the elastic Gibbs free energy function (1.28) has to be positive. Without loss of
generality, c is set to zero, since the stability criterion (1.29) is fulfilled when the coefficient of
the highest-order term is positive. The sign of the temperature dependent coefficient a defines
the phase: For a > 0, the elastic Gibbs free energy G1 has only one minimum at D = 0 (non-
polar paraelectric phase), whereas it has two symmetrical minima for a< 0 corresponding to the
spontaneous polarization D = ±P0. The phase transition takes place at the Curie-temperature
T = TC for a = 0. From (1.31) follows that the reciprocal dielectric permittivity χ = a in the
paraelectric non-polar phase (D = 0). Thus, a possible linear approach for a is

a = χ
T>TC = β (T −TC), (1.32)

where β is a positive constant. Also known as the Curie-Weiss form, this behavior is confirmed
by experiments [45] and mean-field statistical models [54]. The elastic Gibbs free energy G1 is
plotted in Figure 1.7a for various temperatures.

- 1.0 - 0.5 0.0 0.5 1.0
polarization a.u.

fre
e

en
er

gy
G

a.
u.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

temperature T TC

po
la

riz
at

io
n

a.
u.

[     ]

[  
   

]

[  
   

 ]

T>TC

T<TC

T=TC

/

TC

a) b)

1

Figure 1.7.: a) Qualitative temperature dependence of the elastic Gibbs free energy G1 plotted versus the
polarization. Above the Curie point TC, the minimum at D= 0 corresponds to the paraelectric
phase, whereas below TC the energy has two equivalent minima at the spontaneous polarized
states. (b) Spontaneous polarization versus temperature, dropping continuously to zero at
the Curie temperature.

By finding the absolute minimum of the free energy, the spontaneous polarization

P0 =

√
β (TC−T )

b
, (1.33)

is computed from equation (1.30) for E = 0. Finally, the reciprocal permittivity of the ferro-
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1.3. Phenomenological description of ferroelectrics

electric phase χT<TC is found by substituting equations (1.32) and (1.33) in (1.31), yielding

χ
T<TC = β (T −TC)+3bD2 =−2β (T −TC). (1.34)

Figure 1.8.: Temperature dependence of the dielectric permittivity κ and its reciprocal χ for a second or-
der phase transition. At the transition temperature (TC), the reciprocal permittivity becomes
zero, causing the divergence of the dielectric permittivity.

Qualitative sketches in Figures 1.7b and 1.8 show the temperature dependence of the sponta-
neous polarization P0(T ), the dielectric permittivity κ(T ) and its reciprocal χ(T ). The con-
tinuity of the energy function’s first derivatives (e.g. P0) – classifying a second-order phase
transition – can be seen, as well as the divergence of the dielectric permittivity near the Curie
point caused by the reciprocal permittivity becoming zero. Note that the slope of the recipro-
cal permittivity in the polarized phase is negative and twice as big as in the paraelectric phase
above TC.

First order ferroelectric phase transition

A first order ferroelectric phase transition is characterized by a discontinuous jump of the di-
electric displacement D. When choosing the coefficients b < 0 and c > 0, the elastic Gibbs free
energy G1 has energetically equal minima for D= 0 and D=±P0 at a certain temperature T0. At
this temperature T0, denoted as transition temperature, the phase transition from the non-polar
paraelectric phase to the polarized phase takes place. Contrary to the case of a second order
phase transition, where the transition temperature T0 coincides with the Curie temperature TC

(for which according to the Curie-Weiss law (1.32) the dielectric permittivity becomes zero),
the transition temperature T0 exceeds the Curie temperature TC for the case of a first order phase
transition.
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1. Theory

Figure 1.9 a qualitatively shows the elastic Gibbs free energy G1 for various temperatures: For
T < T0, i.e. in the paraelectric phase, the free energy may now have subsidiary local minima for
non-zero dielectric displacements D. As the temperature is decreased, these minima drop and
become energetically more favorable at the transition temperature T = T0. Thus, the transition
takes place when the elastic Gibbs free energy G1 and its first derivative with respect to D both
vanish for a finite value of D. For temperatures below T0, the free energy has two symmetrical
minima located at D = ±P0, corresponding to the ferroelectric phase. In the absence of an
electric field, combining (1.28) and (1.30) leads to the transition temperature and spontaneous
polarization

T0 = TC +
3

16
b2

βc
(1.35)

P0(T ) =
1
2

√
−3b+

√
9b2 +48cβ (−T +TC)

c
,T < T0. (1.36)
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Figure 1.9.: a) Qualitative temperature dependence of the elastic Gibbs free energy plotted versus the
polarization. Contrary to the case of a second order phase transition, the free energy now
can have subsidiary (local) minima above the transition temperature T0. (b) Temperature
dependence of the spontaneous polarization. The first order phase transition takes place
at the transition temperature T0 higher than the Curie temperature TC. Note that the big
difference between T0 and TC in this schematical illustration was chosen in order to enhance
the visibility of the properties of a first order phase transition. For instance for BaTiO3, the
difference T0−TC is experimentally found to be in the range of 10K [18].

In like manner as for the second order phase transition, the temperature dependent reciprocal
dielectric permittivity χ at D =±P0(T ) is computed with eqn. (1.31):

χ = β (T −TC)+3bP0(T )2 +5cP0(T )4 (1.37)
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1.3. Phenomenological description of ferroelectrics

The temperature dependence of both the spontaneous polarization and the dielectric permittivity
for a first order phase transition are sketched in Figures 1.9b and 1.10, respectively. Contrary
to a second order phase transition, the polarization shows a discontinuity at the transition tem-
perature, while the dielectric permittivity κ no longer diverges because its reciprocal χ is now
non-zero at T0. Extrapolating the reciprocal permittivity of the high-temperature to tempera-
tures below T0 yields the Curie temperature TC, which is by definition the intersection of the
dielectric permittivity with the zero-line (cf. eqn. 1.32). Here, the difference to a second or-
der phase transition becomes obvious, for which the transition temperature T0 and the Curie
temperature TC coincide, i.e. the phase transition takes place at the Curie temperature.

TC T0

Figure 1.10.: Temperature dependence of the dielectric permittivity κ and its reciprocal χ for a first order
phase transition.

1.3.3. Landau-Devonshire theory of ferroelectrics

Since long-range dipole-dipole interactions are dominating in ferroelectrics, LT of phase tran-
sitions is well-suited to describe this class of materials in the vicinity of the ferroelectric phase
transition. Devonshire was the first to apply LT to ferroelectrics by taking the dielectric polariza-
tion vector as the order parameter to characterize the paraelectric-ferroelectric phase transition.
Starting in the high-symmetric prototype phase and cooling the system down, the phase transi-
tion takes place at the transition temperature T0, and the order parameter changes from zero in
the high-symmetric unpolarized paraelectric phase to a finite value in the polarized ferroelectric
phase of lower symmetry. Whether this change of polarization is continuous or discontinuous
depends on the nature of the phase transition, which can be of first or second order. In its sim-
plest form, the order parameter is completely uniform in the whole system, with no spatial or
temporal fluctuations. This is considered by the Landau-Devonshire theory (LDT), which is
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appropriate to describe uniformly poled bulk systems [18, 19, 20].

Landau’s and Devonshire’s key assumption is that a system in the vicinity of a phase transition
can be expressed by a thermodynamical potential (e.g. the Helmholtz free energy) in terms of
the order parameter. The substance is considered a strained cubic crystal. This approximation
is legitimate, since all changes from the cubic symmetry prototype phase are small. With the
electric polarization as the order parameter and admitting both first and second order phase
transitions, the non-linear Helmholtz free energy is expanded in terms of the polarization and
can be written as

HLD(Pi) = α1(P2
1 +P2

2 +P2
3 )+α11(P4

1 +P4
2 +P4

3 )+α12(P2
1 P2

2 +P2
2 P2

3 +P2
1 P2

3 )+

+ α111(P6
1 +P6

2 +P6
3 )+α112(P4

1 (P
2
2 +P2

3 )+P4
2 (P

2
1 +P2

3 )+P4
3 (P

2
1 +P2

2 ))+

+ α123(P2
1 P2

2 P2
3 ), (1.38)

describing a stress-free, uniformly poled bulk system. This energy function depends solely
on the polarization and is referred to as Landau energy. All dielectric information about the
ferroelectric material is encoded in the so-called Landau coefficients (α1−α123). Within the
phenomenological approach of Devonshire, these coefficients are fitted to experimental results
in the vicinity of the phase transition.

Following Devonshire’s 1949 work [18], the fitting-procedure to a first order phase transition
for the Landau coefficients is shown here. In this early work, the coefficients α112 and α123 are
not present yet. Though all coefficients generally are allowed to be dependent on temperature,
the previous considerations of first and second order phase transitions have shown that only α1

depending on temperature is sufficient while all other coefficients are considered temperature-
independent. To fulfill the Curie-Weiss law in the paraelectric cubic phase, the coefficient α1

has to pass through a zero value at the Curie temperature and be a linear function of temperature,
as found experimentally. Since α1 is the reciprocal dielectric permittivity for zero polarization
(see Eqn. 1.31), χ

T0
exp can be obtained from experiment directly above the transition temperature,

where the polarization is zero for zero field, leading to:

α1(T ) = χ
T0
exp

T −TC

T0−TC
. (1.39)

This guarantees HLD to have only one minimum at P = 0 above the transition temperature,
whereas below the transition temperature the minimum values of HLD correspond to a finite
polarization. Further requirements for HLD at T0 are

∂HLD(P0(T0))

∂P
= 0 and HLD(P0(T0)) = 0, (1.40)

so that the Landau energy has minima at the spontaneous polarization state P0 and these minima
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1.3. Phenomenological description of ferroelectrics

are energetically equivalent to the non-polar minimum at P = 0. Solving these equations with
respect to α11 and α111 yields the temperature-independent Landau coefficients

α11 =−
4χ

T0
exp

P2
0 (T0)

, α111 =
3χ

T0
exp

P4
0 (T0)

. (1.41)

Hence, for fitting the Landau coefficients, the characteristical parameters of a phase transition
have to be known from experiment: the transition temperature T0, the Curie-Weiss-temperature
TC as well as the dielectric permittivity χ

T0
exp at the transition temperature and the spontaneous

polarization P0(T ) at any temperature in the tetragonal region. The remaining Landau coeffi-
cient α12 has to be fitted to other phase transitions within the Devonshire approach.

Up to this point, only the polarization in the material has been taken into account as degree of
freedom. In order to also consider the electromechanical coupling between strain and polar-
ization as well as linear elastic behavior, strain- or stress-dependent terms have to be added to
the free energy function (1.38). These additional terms have to contain the physics of Hooke’s
law and electrostriction. Within Devonshire’s cubic symmetry approximation, the leading order
terms for the strain-polarization and strain-strain coupling take the form

Hcoup(Pi,εi j) =
1
2

C11(ε
2
11 + ε

2
22 + ε

2
33)+C12(ε11ε22 + ε11ε33 + ε22ε33)+

+ 2C44(ε
2
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2
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23)+
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+ q12(ε11(P2
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3 )+ ε22(P2
1 +P2

3 )+ ε33(P2
1 +P2

2 )). (1.42)

The equations of state (eqn. 1.11) yield the six components of the elastic stress. By taking for
example the stress component

σ33 =
∂ (HLD +Hcoup)

∂ε33
=C11ε33 +C12(ε11 + ε22)+q11P2

3 +q12(P2
1 +P2

2 ), (1.43)

two limits can be discussed that show the properties of the added terms. First, for zero polariza-
tion, equation (1.43) yields Hooke’s law of elasticity, so that the coefficients Ci j in the energy
function are directly identified as components of the elastic stiffness tensor ci jkl . Second, when
no external stresses are applied (σi j = 0), the tetragonal strains occur proportionally to the
square of the spontaneous polarization. The coefficients qi j are therefore called electrostrictive
constants for constant stress. In the Devonshire approach, they are calculated taking the spon-
taneous strains, the spontaneous polarization and the elastic stiffness from experiment [18].

This phenomenological approach by Devonshire is the commonly accepted way of obtaining
the Helmholtz energy coefficients for BaTiO3 solely based on experimental observations. In a
modified way, the Devonshire approach was applied to the PZT system by Amin et. al. [3]. In
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order to describe the simple proper phases in PZT, it was necessary to add the higher order terms
α112 and α123 in HLD. The coefficients of the extended Gibbs energy function were determined
in a series of steps for different parts of the phase diagram, using indirect methods. Especially
the polarization interaction terms were fitted to the morphotropic phase boundary and then ex-
trapolated across the phase diagram to PZO and PTO. For a more complete phenomenological
theory of PTO, Haun et. al. [38] developed an approach similar to those of Devonshire and
Amin, based on unit cell parameters from high-temperature x-ray diffraction measurements.
Due to a lack of single-crystal data, all coefficients of the Gibbs free energy were again deter-
mined using indirect methods. Later, this approach was applied to the PZT-system, and a free
energy function was developed that takes all phases in PZT properly into account, including
also the tilting of the oxygen octahedra in the low-temperature rhombohedral phase by intro-
ducing the tilt angle as an additional order parameter [34, 35, 36, 37, 39, 40]. Note that all
described approaches to determine the energy function’s coefficients are based on experimental
results only.

1.3.4. Landau-Ginzburg-Devonshire theory

The Landau-Devonshire theory is well suited to describe a poled bulk ferroelectric with a spa-
tially homogeneous polarization near its phase transition. However, in real ferroelectrics the
polarization will not be spatially uniform, caused e.g. by the presence of ferroelectric domains
or grain boundaries. Hence, the existing theory has to be extented with respect to fluctuations
of the polarization. This is the subject of the Landau-Ginzburg theory: Small spatial variations
of the order parameter are incorporated into the Landau-Devonshire theory with assumptions
originally used by Ornstein-Zernike [11].

Spatial variations of the polarization within the material lead to an additional contribution in
the free energy. In order to take this polarization-polarization interaction into account as well,
additional terms have to be introduced that depend only on the gradient of the polarization.
Based on symmetry considerations, the isotropic polarization gradient energy term takes the
quadratic form

Hgrad(Pi, j) =
1
2

G0(P2
1,1 +P2

2,2 +P2
3,3), (1.44)

where the coefficient G0 is a constant. Hgrad represents the additional free energy cost for non-
parallel polarization at neighboring positions and penalizes a non-uniform polarization, leading
for instance to localized domain walls. In conclusion, the total free energy density describing
the ferroelectric,

Htotal(Pi,εi j,Pi, j) = HLD(Pi)+Hcoup(Pi,εi j)+Hgrad(Pi, j), (1.45)
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1.4. Phase-field modeling for ferroelectrics

now includes the Landau terms, strain-strain coupling, strain-polarization coupling as well as
polarization-polarization coupling. For a system with a spatial polarization distribution ~P(~r)

and strain distribution ε(~r), the total energy Htotal can be calculated as

Htotal =
∫ (

HLD(~P(~r))+Hcoup(~P(~r),ε(~r))+Hgrad(O~P(~r))
)

d3~r (1.46)

by integrating the total free energy density over the volume. Under the assumption that the
system will be in a state of minimal energy in equilibrium, the total energy as a functional
of the polarization field has to be minimized with respect to the order parameter. Following
the work of Cao et. al. [9] and Nambu et. al. [60], the temporal and spatial evolution of
the non-conserved polarization order parameter can be obtained by solving the time-dependent
Ginzburg-Landau (TDGL) equation

∂Pi(~r, t)
∂ t

=−L
δHtotal

δPi(~r, t)
(1.47)

where L is the kinetic coefficient related to the domain wall mobility and δHtotal/δPi(~r, t) repre-
sents the thermodynamic driving force. One way of solving this dynamic equation that describes
the pattern formation of ferroelectric domains is based on the assumption that the relaxation of
the polarization field is much slower than that of the elastic field, which instantaneously relaxes
for a given polarization configuration [60]. In this adiabatic approximation, the elastic field
can be eliminated from the total free energy functional (1.46). Another approach is solving
the TDGL equation numerically in the Fourier space, using the semi-implicit Fourier-spectral
method [13, 42, 79]. Concluding the Landau-Ginzburg theory, any evolution of the ferroelectric
domain structure is always driven by a minimization of the total energy of the system.

1.4. Phase-field modeling for ferroelectrics

The emphasis of the previous chapters was to discuss the definition of ferroelectrics and the
physical behavior of single crystals. Only the Landau-Ginzburg theory admitted inhomogenities
in the spatial distribution of the polarization and dynamic processes. However, the macroscopic
properties of ferroelectrics are mainly governed by the behavior of ferroelectric domains on the
mesoscale. It is therefore very important to gain insight into the mechanisms of microstructure
formation and evolution [58]. This chapter will focus on general techniques to predict the
evolution of the domain structure in ferroelectrics. Here, the phase-field method is of special
interest, since it provides a versatile technique to simulate heterogeneous systems consisting of
different phases (e.g. ferroelectric domains) on the mesoscale.
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1.4.1. Phase-field modeling

Generally speaking, phase-field modeling is a mathematical method for solving interfacial prob-
lems. It has emerged as a powerful computational approach to describe the often complex
and non-linear morphological and microstructure evolution of materials taking place on the
mesoscale to reduce the total free energy. The following discussion of the phase-field method is
based on the works of Chen [12], Moelans et. al. [58] and Gonzáles-Cinca et. al. [30] that give
a detailed overview of the phase-field method for microstructure evolution including various
applications.

Most materials are not homogeneous on the meso-scale. Instead, the microstructure consists
of spatially distributed coexisting phases that differ in structure, orientation or chemical com-
position. Examples are grains of different crystal orientation, domains of different electrical or
magnetic orientation or domains of different structural variants.

If one is interested in the dynamic evolution of these phases (and hence the microstructure), not
only the distribution of the governing fields in the material has to be considered, but also how
these fields cause the evolution of the phases. Therefore, the problem falls into the broader class
of free-boundary problems: The location of interfaces, i.e. the regions separating the different
phases, always has to be determined as part of the solution.

The traditional way to model microstructure evolution is the so-called sharp-interface method:
Here, interfaces are treated as mathematically sharp, and their local velocity is determined by
driving forces for interface motion, interface mobility or as part of the boundary conditions.
Thus, the position of the interfaces has to be tracked explicitly by means of mathematical equa-
tions. This interface-tracking approach can be sucessfully applied to one- or two-dimensional
systems, but becomes impractical for complicated three-dimensional configurations. Also, the
approach is restricted to connected interfaces.

In contrast to the sharp-interface formulation, the phase-field method is based on a diffuse-
interface description developed by van der Waals [74] and independently by Cahn & Hill-
iard [8]. Mathematically, the moving boundary problem of the sharp-interface approach is
converted into a set of partial differential equations. In a phase-field model, an additional pa-
rameter is introduced which takes distinct constant values in each phase and is continuous in
space. At the interface region between two adjacent phases, this parameter changes steadily,
forming a transition layer of finite thickness. The evolution of this parameter (and hence the
microstructure) is described by the Cahn-Hilliard nonlinear diffusion equation and the Allan-
Cahn equation.

Basically, two general types of phase-field models exist. The aim of the first type is simply to
avoid tracking of the interface. Therefore, field-variables (so-called phase-fields) are introduced
to distinguish the coexisting phases of different structure. These phase-fields are phenomeno-
logical variables and indicate which phase is present at a particular position in the system.
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1.4. Phase-field modeling for ferroelectrics

Essentially solidification can be described by this kind of phase-field model. The input param-
eters for the model are chosen to match the conventional parameters of a sharp-interface model
through asymptotic analyses. Another application for this kind of model are solid-state phase
transformations, like the austenite to ferrite phase transformation in steel.

The second type of phase-field model is based on an introduced well-defined physical order
parameter, such as long-range order parameters for order-disorder transformations or displacive
transformations. The concept of the order parameter originates from Landau’s theory of phase
transformations involving symmetry reduction and has been discussed before in section 1.3.1.
Here, all thermodynamic and kinetic coefficients are related to microscopic parameters. This
kind of model has been applied sucessfully to material processes like grain growth and coarsen-
ing, crack propagation or ferroelectric domain evolution and will be used in the present work.

In both kinds of phase-field models, a thermodynamical free energy F is formulated in terms of
the phase-field or the order parameter. Conserved fields that have to satisfy local conservation
conditions (e.g. molar concentrations) and non-conserved fields (e.g. crystal orientations) are
distinguished. The evolution of the microstructure is predicted by the Cahn-Hilliard and Allan-
Cahn equations

∂ci(~r, t))
∂ t

= OMi jO
δF

δc j(~r, t))
(1.48)

∂ηp(~r, t))
∂ t

=−Lpq
δF

δηq(~r, t))
, (1.49)

respectively. Here, Mi j and Lpq are atom or interface mobilities, ci are conserved fields and ηi

are non-conserved fields. It can be seen that the previously discussed time-dependent Ginzburg-
Landau equation (1.47) corresponds to the generalized Allan-Cahn equation for a phase-field
model with the non-conserved polarization as order parameter.

1.4.2. Continuum thermodynamics approach for domain evolution

The phase-field equations discussed above are based on a set of simple, physically justifiable
assumptions. Although the traditional derivation of the Cahn-Hilliard and Allan-Cahn equa-
tions [8] is physically sound, it obscures the modern continuum physics distinction between
fundamental balance laws, which are general and hold for a broad class of materials (e.g. laws
for mass, force, etc.), and constitutive equations, which are only valid for a specific material. In
order to separate the balance laws from the constitutive equations, Fried and Gurtin [25, 26, 31]
developed a general continuum mechanics approach based on the introduction of a new bal-
ance law for microforces associated with the order parameter. Su and Landis [71] adopted this
approach and applied it to the evolution of ferroelectric domains. Within this continuum ther-
modynamics framework, constitutive relations for the introduced microforces are developed and
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applied within the second law of thermodynamics, yielding a generalized form of the Ginzburg-
Landau equation. In the following, this approach will be discussed in detail, closely following
the works (and terminology) of Gurtin [31] as well as Su and Landis [71].

First of all, the fundamental balance laws and kinematic relations governing the electromechan-
ical fields will be described for the theory of linear piezoelectricity. Under the assumption of
small deformations and rotations, the balances of linear and angular momentum in any arbitrary
volume V and its bounding surface S are

σ ji, j +bi = ρ üi in V, (1.50)

σi j = σ ji in V, (1.51)

σ jin j = ti on S, (1.52)

where σi j represents Cartesian components of the Cauchy stress, bi components of a body
force (per unit volume), ρ the density of mass, ti components of traction applied to the surface
and ni components of a unit vector perpendicular to the surface. For linear kinematics, the
strain components εi j are related to the mechanical displacements ui as shown in equation (1.2).
Furthermore, assuming quasi-static electromagnetic fields that vary slowly with respect to the
speed of light in the material, Maxwell’s equations [44] take the form

Di,i−q = 0 in V, (1.53)

Dini =−ω on S, (1.54)

Ei =−φ,i in V, (1.55)

with the volume charge density q, the surface charge density ω and the electric potential φ .
The relation between polarization Pi, electric field Ei and dielectric displacement Di is given in
equation (1.1). Note that the Maxwell equations not only describe the material, but also include
regions of free space occupied by the material.

For the phase-field method, the free energy of the considered system has to be expanded so that
it depends also on the order parameter and its gradient. The introduction of the order parameter
as a new independent variable motivates postulating a new system of so-called "micro-forces".
These postulated micro-forces are work conjugate to the order parameter, which is now a con-
figurational quantitiy. Hence, the working of the micro-force system accompanies changes of
the order parameter. The microforce system is characterized by a micro-stress tensor ξ ji as well
as the body forces πi and γi representing internal and external micro-forces distributed over the
volume V . To get a better insight in how these fields can expend power, it is convenient to con-
sider the body of the material as a lattice with atoms being able to move microscopically within
this lattice. As a subregion, this body contains an arbitrary control volume R with surface ∂R
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and the outward unit vector ni normal to ∂R. Then, the system of micro-forces is presumed
consistent with the micro-force balance law∫

∂R
ξ jin j dS+

∫
R

πi dV +
∫

R
γi dV = 0, (1.56)

and this integral balance of the set of configurational forces leads to the micro-force balance
law in differential form,

ξ ji, j +πi + γi = 0 in V. (1.57)

Thus, (ξ jin j)Ṗi represents the power density expended across the surface ∂R by neighboring
configurations exterior to R. Furthermore, πiṖi is the power density expended on the atoms by
the lattice, e.g. by ordering of atoms in unit cells of the lattice. This internally expended power
density also accounts for dissipation in the material. Finally, γiṖi describes the power density
expended on the atoms of the body by external sources. Apart from the strain and the dielectric
displacement, the expanded Helmholtz free energy ψ = ψ(εi j,Di,Pi,Pi, j, Ṗi) for the phase-field
model depends also on the polarization (order parameter), its gradient and its time derivative, to
remain as general as possible. For the shown approach, only isothermal processes will be taken
into account. Nevertheless, the framework allows for the extension to spatially homogeneous
temperature dependence by adjusting the material properties to a given temperature. In contrast,
the permission of a spatially inhomogeneous behavior would require to introduce also temper-
ature and entropy as additional field variables. Under the assumption of isothermal processes,
the second law of thermodynamics asserts that the rate of energy increase cannot exceed the
expended power. This law can be delineated as the Clausius-Duhem inequality∫

V
ψ̇ dV +

d
dt

∫
V

1
2

ρ u̇iu̇i dV ≤
∫

V
(biu̇i +φ q̇+ γiṖi) dV +

∫
S
(tiu̇i +ω q̇+ξ jin jṖi) dS, (1.58)

where the left-hand side represents the rate term and the right-hand side the expended power
from external sources on the body. The rate term consists of two parts: the change of energy
stored in the material as well as the change of the system’s kinetic energy. No contribution to the
external power term is assumed to come from the internal micro-force πi. By substituting the
fundamental balance laws (1.50) - (1.55) and the micro-force balance law (1.57) into equation
(1.58) and applying Gauss’ theorem, the Clausius-Duhem inequality can be transformed into

∫
V

(
∂ψ

∂εi j
ε̇i j +

∂ψ

∂Di
Ḋi +

∂ψ

∂Pi
Ṗi +

∂ψ

∂Pi, j
Ṗi, j +

∂ψ

∂ Ṗi
P̈i

)
dV ≤∫

V

(
σ jiε̇i j +EiḊi +ξ jiṖi, j−πiṖi

)
dV. (1.59)

In general, the Cauchy stress σi j, electric field Ei, micro-force stress ξ ji and internal micro-force
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πi are allowed to depend on εi j,Di,Pi,Pi, j and Ṗi, since the free energy ψ also depends on all
these quantities. Because the internal micro-force πi can depend on Ṗi, all other thermodynamic
forces must also be allowed to depend on Ṗi, as shown by Coleman and Noll [15]. However,
a dependence on Ṗi is incompatible with the second law of thermodynamics: By controlling
the external sources, it must be possible for ε̇i j, Ḋi, Ṗi, Ṗi, j and P̈i to adopt arbitrary levels for
a given thermodynamic state. This request can only be fulfilled if (∂ψ/∂ Ṗi) vanishes in the
Clausius-Duhem inequation (1.59), and ultimately only the internal micro-force πi is allowed
to depend on Ṗi. Furthermore, the Helmholtz free energy takes the form ψ(εi j,Di,Pi,Pi, j), and
the dissipation inequation yields the equations of state

σ ji =
∂ψ

∂εi j
, Ei =

∂ψ

∂Di
, ξ ji =

∂ψ

∂Pi, j
. (1.60)

Comparing the remaining parts of the Clausius-Duhem inequality and defining ηi ≡ (∂ψ/∂ Ṗi)

leads to ∫
V

ηiṖi dV ≤
∫

V
−πiṖi dV

⇒ ηiṖi ≤ −πiṖi

⇒ πi = ηi−βi jṖj , (1.61)

where βi j(εi j,Di,Pi,Pi, j, Ṗi), called the inverse mobility tensor, has to be non-negative definite.
For systems with a high-temperature phase of cubic symmetry, this tensor is constant and takes
the form βi j = βδi j with β ≥ 0. Substituting equation (1.61) into the micro-force balance
law (1.57) yields

ξ ji, j−ηi−βi jṖj + γi = 0, (1.62)

and finally, after resubstituting the equations of state (1.60), a generalized form of the Ginzburg-
Landau equation (

∂ψ

∂Pi, j

)
j
− ∂ψ

∂Pi
+ γi = βi jṖj (1.63)

characterizing the spatial and temporal evolution of the polarization order parameter in a fer-
roelectric material. Hence, the postulated system of micro-forces as well as the micro-force
balance law can be justified by the fact that their existence implies the well-established form of
the phase-field equations.

Since its publication in 2007, this continuum thermodynamics framework by Su and Landis
[71] has been applied to simulate a broad range of systems containing ferroelectric domain
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1.4. Phase-field modeling for ferroelectrics

structures, e.g. nanodots [59, 77], nanotubes [78, 88] and thin films [49], as well as the effect
of cracks [81], defects [71] and dislocations [48] on domain walls. It will also be employed in
this work for investigating periodic bulk domain structures under electromechanical loading.

1.4.3. Free energy for phase-field modeling

The heart of a phase-field model is its free energy density, an analytical thermodynamic poten-
tial containing all information on the described ferroelectric system: dielectric, piezoelectric and
elastic properties, spontaneous parameters (polarization and strain) as well as energy and thick-
ness of the occurring domain walls. In sections 1.3.3 and 1.3.4, an approach for a Helmholtz
free energy has been shown in the context of the Landau-Ginzburg-Devonshire theory. This ap-
proach will now be extended in a more general way. The structure and physical meaning of all
parts of the energy function are to be discussed in detail. Especially for the electromechanical
coupling energy, a differently motivated derivation than before will be shown. The structure of
the eventually developed energy density will then be used throughout this work.

Under consideration of the continuum thermodynamics framework discussed in the previous
section, the Helmholtz free energy depends on the independent variables Pi, Pi, j, εi j and Di.
It consists of five basic parts: the Landau energy ψLandau, the gradient energy ψgrad, the elec-
trostrictive coupling energy ψcoup, the elastic energy ψelast and the electric energy ψelec:

Ψ(Pi,Pi, j,εi j,Di) = ψLandau(Pi)+ψgrad(Pi, j)+ψcoup(Pi,εi j)+ψelast(εi j)+ψelec(Pi,Di) (1.64)

Landau energy

The Landau potential ψLandau depends on the polarization order parameter only. By taking a
sixth order Taylor series at Pi = 0 and retaining all symmetrical compatible terms, it can be
expressed as

ψLandau(Pi) = α1(P2
1 +P2

2 +P2
3 )+α11(P4

1 +P4
2 +P4

3 ) (1.65)

+ α12(P2
1 P2

2 +P2
1 P2

3 +P2
2 P2

3 )+α111(P6
1 +P6

2 +P6
3 )

+ α112(P4
1 (P

2
2 +P2

3 )+P4
2 (P

2
1 +P2

3 )+P4
3 (P

2
1 +P2

2 ))+α123(P2
1 P2

2 P2
3 ).

It describes a non-convex energy landscape with a certain number of energetically equivalent
global minima. These global minima define the spontaneous polarization states, and their sym-
metry specifies the phase of the material. For a tetragonal polarized ferroelectric like PTO,
there are six equivalent global minima located along the 〈100〉 crystal axes, as illustrated in
figure 1.11. By adjusting the set of Landau coefficients αi jk, rhombohedral or orthorhombic
symmetry is also possible, with an orientation of the global minima as shown in table 1.1. The
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Landau energy represents bulk material behavior in the absence of mechancial stress, electrome-
chanical coupling and domain walls.
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Figure 1.11.: Three-dimensional representation (left) and contour plot (right) of a two-dimensional Lan-
dau free energy density ψLandau for a tetragonal polarized ferroelectric material. Four equiv-
alent minima located along the 〈100〉 axes define the possible states of the spontaneous
polarization in the x-y-plane.

Gradient energy

Depending only on the gradient of the polarization, the second part of the free energy is the
anisotropic gradient energy

ψgrad(Pi, j) =
1
2

G11(P2
1,1 +P2

2,2 +P2
3,3)+G12(P1,1P2,2 +P1,1P3,3 +P2,2P3,3)

+
1
2

G44((P1,2 +P2,1)
2 +(P1,3 +P3,1)

2 +(P2,3 +P3,2)
2).

(1.66)

Here, all terms for cubic symmetry are considered, so that there are three independent gradient
coefficients G11, G12 and G44. The gradient energy part only contributes when the polarization
changes spatially, e.g. in domain walls. Hence, it penalizes large gradients of the polarization
order parameter and enforces the formation of domain walls as localized regions with spatially
changing polarization.

Elastic energy and electromechanical coupling energy

The elastic energy ψelast and the electromechanical coupling energy ψcoup form the third and
fourth part of the free energy and are here discussed together. Following [52], the total strain εi j
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1.4. Phase-field modeling for ferroelectrics

consists of two portions (figure 1.12): the elastic strain εelas
i j , induced e.g. by external mechani-

cal loading, and the stress-free electrostrictive strain εstrict
i j , caused by the polarization field:

εi j = ε
elas
i j + ε

strict
i j (1.67)

Assuming a quadratic coupling between strain and polarization, the electrostrictive strains εstrict
i j

can be expressed as

ε
strict
11 = Q11P2

1 +Q12(P2
2 +P2

3 ) (1.68)

ε
strict
22 = Q11P2

2 +Q12(P2
1 +P2

3 )

ε
strict
33 = Q11P2

3 +Q12(P2
1 +P2

2 )

ε
strict
12 = εstrict

21 = Q44P1P2

ε
strict
13 = εstrict

31 = Q44P1P3

ε
strict
23 = εstrict

32 = Q44P2P3

where Qi j are the electrostrictive constants [20]. The elastic strain energy density can be written
as

ψES =
1
2

ci jklε
elas
i j ε

elas
kl =

1
2

ci jkl

(
εi j− ε

strict
i j

)(
εkl− ε

strict
kl

)
(1.69)

where ci jkl is the elastic stiffness tensor. Inserting decomposition (1.67), the elastic strain energy
density ψES can be divided into the pure elastic energy density ψelast, which depends on the
strains only, and the electrostrictive coupling energy density ψcoup:

ψES(Pi,εi j) = ψelast(εi j)+ψcoup(Pi,εi j) (1.70)

For a cubic material, the elastic stiffness tensor in Voigt’s notation has the three independent
components C11, C12 and C44. Substituting equations (1.67) and (1.68) into (1.69) and applying
(1.70) subsequently yields the elastic energy density

ψelast(εi j) =
1
2

C11(ε
2
11 + ε

2
22 + ε

2
33)+C12(ε11ε22 + ε11ε33 + ε22ε33)+2C44(ε

2
12 + ε

2
13 + ε

2
23)

(1.71)
as well as the coupling energy density

ψcoup(Pi,εi j) = q11(ε11P2
1 + ε22P2

2 + ε33P2
3 )+

+ q12(ε11(P2
2 +P2

3 )+ ε22(P2
1 +P2

3 )+ ε33(P2
1 +P2

2 ))

+ q44(P1P2ε12 +P1P3ε13 +P2P3ε23)+

+ β1(P4
1 +P4

2 +P4
3 )+β2(P2

1 P2
2 +P2

1 P2
3 +P2

2 P2
3 ) (1.72)
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with

q11 = −C11Q11−2C12Q12

q12 = −C12(Q11 +Q12)−C11Q12

q44 = −4C44Q44

β1 =
C11Q2

11
2

+2C12Q11Q12 +C11Q2
12 +C12Q2

12

β2 = C11Q12(2Q11 +Q12)+C12(Q2
11 +2Q11Q12 +3Q2

12)+2C44Q2
44.

a0
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Figure 1.12.: Schematic illustration of the strains in equation (1.67): No spontaneous strains occur in
the cubic phase (left) above TC. Due to the spontaneous polarization below TC (middle),
the coupling between strain and polarization evokes electrostrictive strains εstrict

i j , called
spontaneous strains. Applying external mechanical stress σi j (right) leads to additional
elastic strains εelas

i j .

Concluding the elastic and electromechanical coupling terms of the free energy, two cases have
to be discussed. In the cubic phase, i.e. in the absence of a spontaneous polarization, the elec-
trostrictive strains εstrict

i j and, as a consequence, the spontaneous strains vanish. Therefore, the
elastic strain energy ψES, the elastic energy ψelast(εi j) and the electrostrictive coupling energy
ψcoup(Pi,εi j) are zero when no mechanical field is applied. In the tetragonal polarized phase,
ψelast(εi j) and ψcoup(Pi,εi j) are non-zero, since the material now exhibits a spontaneous polar-
ization and strain. From equation (1.69) can be seen that the elastic strain energy density ψES

32



1.4. Phase-field modeling for ferroelectrics

only contributes when an elastic strain εelas
i j is induced externally, e.g. by an applied mechanical

stress. Hence, in a homogeneously polarized material under equilibrium condition, i.e. without
any external mechanical or electrical loading, the elastic energy density ψelast and the coupling
energy density ψcoup are of the same size but different signs and cancel each other out. So, the
coupling energy ψcoup – caused by the electrostrictive interaction between spontaneous polar-
ization and strain – and the counteracting elastic energy are in equilibrium. In this case, the
electrostrictive strains εstrict

i j are the spontaneous strains and can be found from equations (1.68)
for P = P0.
The β1- and β2-terms of the coupling energy ψcoup(Pi,εi j) take the effect of mechanical loading
on the spontaneous polarization into account. Since β1 and β2 are of the same polynomial order
as the Landau energy coefficients α11 and α12, they directly influence the Landau energy and
therefore the spontaneous polarization. Thus, in some works the β1/β2 and α11/α12 coefficients
are combined and called relaxed Landau coefficients [9, 60, 41]. The Landau energy then
already contains the electromechancial coupling between the spontaneous polarization and the
spontaneous strains.

Electric field energy

The last remaining part of the free energy to be discussed is

ψelec(Pi,Di) =
1

2κ0
((D1−P1)

2 +(D2−P2)
2 +(D3−P3)

2), (1.73)

representing the electric field energy which is stored in the free space that is occupied by the
material. Here, κ0 is the vacuum permittivity. This part considers the relationship Di = κ0Ei+Pi

between the material polarization, the electric field and the dielectric displacement.
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2. Interface between atomistic and phase-field methods

Within a knowledge based multi-scale simulation chain for ferroelectric materials, phase-field
modeling is capable of bridging the gap between atomistic methods and micromechanical meth-
ods. This chapter deals with the definition and development of an interface between atomistic
and phase-field methods as illustrated in figure 2.1:

meso-scalenano-scale micro-scale

atomistic methods phase-field methods micromechanical methods

knowledge based multi-scale simulation chain

Figure 2.1.: An interface has to be developed in order to close the gap between atomistic and phase-field
methods within the knowledge based multi-scale simulation chain for ferroelectrics.

As discussed in section 1.4.3, the core of a phase-field model is its free energy, and the co-
efficients of this thermodynamical potential contain all information about the material on the
phase-field level. The interface to be developed is based on the idea that results from atomistic
calculations are transferred into the phase-field model, where they are used as input parameters.
Therefore, the coefficients of the free energy have to be adjusted to single crystal data from
atomistic calculations.
Before describing the development of the interface, it will be clarified which parameters are
available from first-principles calculations and atomistic simulations, and a short overview of
these methods will be given. After that, a sensitivity study of the free energy is performed,
providing the basis for the development of a strategy to adjust the coefficients of the free energy
solely based on atomistic results. Finally, the limits of the shown interface between the nano-
scale and the meso-scale will be discussed.
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2. Interface between atomistic and phase-field methods

2.1. Atomistic calculations

In order to provide input parameters for the phase-field model, first-principles calculations and
atomistic simulations have been performed in the scope of the BMBF project COMFEM by
P. Marton and C. Elsässer (Fraunhofer IWM Freiburg). In the following sections, a short
overview is given concerning the considered materials, the computational methods used by
Marton and Elsässer and their obtained results. Further information on this topic can be found
in [76].

Considered material

Two different compositions of the Pb(ZrxTi1−x)O3 (0<x<1) binary system are considered in
this work, and therefore input parameters from atomistic calculations are needed for these two
materials: PTO, where all B sites of the perovskite ABO3 unit cell are occupied by Ti ions,
and PZT with equal fractions of Zr and Ti ions on the B sites (Pb(Zr0.5Ti0.5)O3). For atomistic
calculations, the specific arrangement of the Zr and Ti ions has an impact on the properties of
the material, as shown by Sághi-Szabó et. al. and Kitamura et. al. [65, 47]. Since there is
no evidence for a B cation ordering [23], Marton and Elsässer adopted an alternative approach
and treated the Zr and Ti ions as one single atom with statistically averaged properties of both
constituents within a virtual crystal approximation (VCA). Furthermore, tetragonality of PZT is
assumed in agreement with the PZT phase-diagram (see figure 1.2), in which Pb(Zr0.5Ti0.5)O3 is
on the tetragonal side of the morphotropic phase boundary [45]. All atomistic calculations and
simulations yielding input parameters for the phase-field model take place at zero temperature.

First-principles calculations

The first-principles density functional theory (DFT) is a computational electronic-structure
based approach in materials science, which is capable of providing predictive results without
the need of any experimental input. First-principles calculations were employed to explain the
phenomenon of ferroelectricity in perovskites [14]. Since then, the density functional theory
has been used to determine structural properties, spontaneous ferroelectric polarization, elastic
and piezoelectric tensors, phonon frequencies, etc. [87, 65, 4, 47, 28]. Some of these intrinsic
properties in complicated materials are extremely difficult to investigate experimentally in PZT,
which has so far not been produced in the form of a monocrystal. With increasing computational
power it has become possible to use first-principles calculations for the study of different types
of defects and spatial inhomogenities in ferroelectrics, such as point defects and ferroelectric
domain walls [22, 57]. Nevertheless, because of the high demand on computational resources,
DFT calculations are still limited to relatively small model atomic arrangements relevant for a
particular studied phenomenon. Issues concerning domain wall mobility under an electric field

36



2.1. Atomistic calculations

or mechanical stress, formation of domain patterns, or interaction of different types of domain
walls between themselves or with grain boundaries are certainly beyond the scope of the DFT
calculations.

Marton and Elsässer applied first-principles total energy calculations based on the density func-
tional theory (DFT) with the local-density approximation (LDA) to determine the intrinsic and
extrinsic parameters for PTO and PZT: lattice parameters, spontaneous ferroelectric polarization
and deformation, elasticity and piezoelectricity tensors as well as domain wall properties. De-
tails of the DFT calculations setup can be found in [76]. In the course of the study it was found
that the ground state of PZT within the virtual crystal approximation is not exactly tetragonal,
but slightly monoclinic (in agreement with experimenal observations [23, 62, 63]). Therefore,
some properties of PZT required for the development of the phase-field model could not be
obtained directly from first-principles calculations. These are, e.g., some components of the
tetragonal material tensor showing the symmetry of the monoclinic phase, or properties of the
90◦ domain wall where the tetragonal symmetry is broken. In order to overcome this difficulty,
Marton and Elsässer used the first-principles data to develop a classical empirical shell-model,
discussed in the following.

Classical atomistic simulations

The simplification of interatomic interactions allows atomistic simulations of larger structures
compared to DFT calculations. Sepliarsky et. al. [67] and Kitamura et. al. [47] recently carried
out atomistic simulations for ferroelectrics using empirical potentials. These empirical shell-
model potentials for PTO were fitted to first-principles data and were shown to be capable of
reproducing important intrinsic properties of PTO as well as properties of domain walls in the
tetragonal phase [69]. Such classical atomistic models allow to deal with domain walls and
defects in ferroelectrics, while preserving important features of the atomic structure and energy.

In order to get the remaining input parameters necessary for the phase-field model that could not
be obtained from DFT calculations, Marton and Elsässer applied classical atomistic simulations
based on a shell-model potential (SMP). Details of the SMP simulations setup can also be found
in [76]. For PTO, the shell-model potential by Shimada et al. [69] was fitted to first-principles
target data and is therefore suitable for the combined DFT atomistic approach. Moreover, this
parametrization proved to yield properties of domain walls, such as thickness and planar energy,
close to the DFT predictions. For PZT, Marton and Elsässer used a modification of the shell-
model potential for PTO [69], which mainly consisted of an adjustment of the lattice parameters.
The shell-model potential was fitted to the PZT-VCA first-principles data, and therefore the Zr
and Ti atoms were treated as a single species as well.

These classical atomistic SMP simulations yielded 90◦ and 180◦ domain wall properties for
PTO and PZT. Contrary to DFT calculations, the SMP simulations of PZT showed a strictly
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tetragonal equilibrium ground state.

Ferroelectric properties from atomistic calculations

In Table 2.1, the atomistic calculations for PTO and PZT performed by Marton and Elsässer
are summarized. All computed ferroelectric properties are shown, and it is indicated whether
they were obtained from DFT calculations or SMP simulations. The elastic stiffness tensor and

Table 2.1.: Compilation of the ferroelectric properties calculated by Marton and Elsässer using first-
principles DFT calculations and atomistic SMP simulations. Results from atomistic calcula-
tions are tagged by a hat (throughout this work).

ferroelectric property phase symbol PTO PTO PZT PZT
(DFT) (SMP) (DFT) (SMP)

elastic stiffness cub. ĉcub,i jkl x - x -
elastic stiffness tetr. ĉtetr,i jkl x - x -
lattice parameters cub. âcub x - x -
lattice parameters tetr. âtetr, ĉtetr x - x -
piezoelectricity tensor tetr. d̂i jk x - x -
spontaneous polarization tetr. P̂0 x - x -
dielectric permittivity tetr. κ̂i j - x - x
180◦/ 90◦ domain wall width (DWW) tetr. ξ̂90/180 x x - x
180◦/ 90◦ domain wall width (DWE) tetr. γ̂90/180 x x - x

the lattice parameters of the perovskite unit cell were calculated for both the paraelectric cubic
phase and the tetragonally polarized phase, whereas all other parameters were only derived
for the tetragonal phase. From the tetragonal lattice constants âtetr, ĉtetr and the cubic lattice
constant âcub, the spontaneous strains

ê⊥ =
âtetr− âcub

âcub
, ê‖ =

ĉtetr− âcub

âcub
(2.1)

can be computed, where ê‖ and ê⊥ are the spontaneous strains parallel and perpendicular to the
spontaneous polarization, respectively. Note that throughout this work results from atomistic
calculations are labelled by a hat symbol.
Before the results from DFT and SMP calculations can be transferred into the phase-field model,
a thorough study of the free energy function is necessary. Therefore, a sensitivity analysis will
be performed in the following in order to identify the parameters of the phase-field model.

2.2. Sensitivity analysis

The free energy function (1.64) depends on 15 parameters (αi jk, Qi j, Ci j, Gi j) that have to
be adjusted to physical properties obtained by first-principles DFT calculations and empirical
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SMP simulations. These physical properties are the so-called small signal parameters of the
ferroelectric near the equilibrium state, which are piezoelectric, dielectric and elastic behavior
as well as information about the spontaneous polarization and the spontaneous strain. The small
signal parameters of the ferroelectric are encoded in the energy function. As a preparation for
the parameter identification, a sensitivity analysis has been performed in which all parameters
of the energy function are systematically varied in order to determine the effect on the physical
properties.

First of all, the small signal parameters have to be determined from the energy function. Ob-
taining the state variables as partial derivatives with respect to the natural variables yields the
following system of equations:

σi j =
∂

∂εi j
Ψ(Pi,Pi, j,εi j,Di) Ei =

∂

∂Di
Ψ(Pi,Pi, j,εi j,Di) ηi =

∂

∂Pi
Ψ(Pi,Pi, j,εi j,Di)

(2.2)
Here, σi j are the mechanical stresses, Ei is the electric field and ηi are the micro-forces as
discussed in section 1.4.2. The global minimum of the energy function defines the state in
which the system is in equilibrium. Assuming a single crystal with uniform polarization in
x3-direction, the gradient of the polarization Pi, j vanishes. Furthermore, with no electric and
mechanical loading applied (Ei = 0, σ ji = 0, ηi = 0), solving the system of equations (2.2)
yields the spontaneous polarization P3 = P0 as well as the spontaneous strains ε33 = e‖ parallel
and ε11 = ε22 = e⊥ perpendicular to the direction of polarization, respectively.

The elastic stiffness ci jkl can also be computed analytically by considering a single crystal
homogeneously polarized in x3-direction in the vicinity of its equilibrium state according to

ci jkl =
∂

∂εkl
σi j =

∂

∂εkl

(
∂

∂εi j
Ψ(P3 = P0,ε11 = ε22 = e⊥,ε33 = e‖,D3 = P0)

)
, (2.3)

with all other natural variables Pi, Pi, j, εi j and Di taken to be zero. In order to determine the
dielectric and piezoelectric small signal parameters directly, small perturbations in the form
of a small mechanical or electrical load about the equilibrium state are applied to the energy
function of a single domain to carry out a numerical differentiation. Solving the system of
equations (2.2) for a small perturbation and fitting to the slope near the origin, the piezoelectric
coefficients di jk and the dielectric permittivities κi j can be calculated, respectively:

di jk =
∂Di

∂σ jk

∣∣∣∣
σ=0

κi j =
∂Di

∂E j

∣∣∣∣
E=0

(2.4)

Another characteristic feature encoded in the energy function are the properties of the domain
walls. For a tetragonal polarized material, 180◦ and 90◦ domain walls exist. The energy barriers
between the minima of the energy function define the properties of 90◦ and 180◦ domain walls.
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Figure 2.2.: Profile of the polarization in a 180◦ domain wall. The thickness ξ180 is marked as defined in
eqn.(2.5)

As shown in Figure 2.2 for the case of a 180◦ domain wall, the thickness of a domain wall
ξ90/180 is defined by the intersection of the linear slope in the middle of the domain wall and
the spontaneous polarization,

ξ90/180 =
2P0

∂

∂x1
P(x1)

∣∣∣∣∣
x1=0

, (2.5)

where P(x1) denotes the profile of the polarization perpendicular to the domain wall and x1 = 0
is the center of the domain wall. The surface energy density γ90/180 of a domain wall can be
obtained from the integral

γ90/180 =
∫

∞

−∞

(
Ψ(Pi(x1),Pi, j(x1),εi j(x1),Di(x1))−Ψbulk(∞)

)
dx1 (2.6)

where Ψbulk(∞) is the equilibrium bulk energy density.

Table 2.2 shows the results of the sensitivity analysis. The columns contain all coefficients of the
energy function, whereas the rows represent the physical properties: ferroelectric small signal
behavior and spontaneous parameters of a single domain as well as the domain wall properties.
Each coefficient of the energy function is separately increased by 10%. If the change of the
coefficient causes a variation of the small signal properties, the positive or negative magnitude
of this variation is indicated in per cent. For example, by raising the coefficient α1 by 10%, the
spontaneous polarization P0 is increased by 3.4%, whereas the piezoelectric coefficient d33 is
decreased by 7.1% at the same time. The sensitivity analysis shows a nonlinear behavior and
a strong coupling between each energy function coefficient and numerous system properties.
A linear dependence can be observed for the elastic stiffness as well as for the influence of
the electrostrictive coefficients Q11, Q12 on the spontaneous strains and the piezoelectric coef-
ficients. In the gradient term, only the coefficient G44 influences the properties of 180◦ domain
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Table 2.2.: Sensitivity analysis for all coefficients of a 6th order Helmholtz free energy function. The elas-
tic stiffness ci j as well as the piezoelectric coefficients di j are given in Voigt’s notation. Since
it has no influence on any of the shown material properties, the Landau coefficient α123 was
left out. The analysis is based on free energy coefficients of PTO taken from literature [52].

α1 α11 α111 α12 α112 Q11 Q12 Q44 C11 C12 C44 G11 G12 G44

P0 3.4 -2.0 -1.4
e⊥ 6.9 -4.0 -2.8 10.0
e‖ 6.9 -4.0 -2.8 10.0
κ11 12.6 -12.6 -6.2 -0.4 -0.2
κ33 3.7 -5.8 -6.9
c11 10.0
c33 10.0
c12 10.0
c13 10.0
c44 10.0
c66 10.0
d33 -7.1 0.3 -2.5 10.0
d31 -7.1 0.3 -2.5 10.0
d15 -4.5 10.2 7.0 -12.8 -6.3 10.0
ξ180 -2.5 0.1 -0.2 -2.2 -3.4 1.1 5.0
γ180 6.6 -2.5 -1.4 -2.6 3.3 -1.1 4.9
ξ90 -3.4 4.3 2.3 -4.9 -1.8 0.9 -0.1 -0.4 -0.2 -0.6 2.3 -2.4 5.7
γ90 9.3 -6.9 -4.3 4.7 1.7 -3.4 0.6 0.4 0.2 0.6 2.2 -2.2 4.8

walls, while the properties of 90◦ domain walls are dependent on all three gradient coefficients.
The dielectric coefficients κ11 and κ33 are mainly determined by the Landau energy coefficients
αi jk. The sensitivity study also shows the limits of the Helmholtz energy function (eqn. 1.64)
employed here: Firstly, only cubic adjustment of the elastic stiffness and the piezoelectric co-
efficients is possible. For example, c11 and c33 depend on the same coefficient in the energy
function only and cannot be tuned separately. Secondly, the number of coefficients in the en-
ergy function is not sufficient to adjust both spontaneous strains and piezoelectric coefficients
independently. The sensitivity analysis provides a basis for the following fitting process of the
Helmholtz energy function coefficients to results of atomistic calculations.

2.3. Adjustment process

In the phase-field model, the coefficients of the free energy function contain all information on
the considered material. Usually these coefficients are adjusted to experimental data follow-
ing Devonshire’s phenomenological approach as discussed in section 1.3.3. Necessary input
parameters for Devonshire’s adjustment method are (among others) the transition temperature
T0, the Curie temperature TC, and the dielectric permittivity χ(T0) at the transition tempera-
ture. However, the atomistic calculations, performed at zero temperature, do not yield these
parameters. In order to enable a completely knowledge based multi-scale simulation chain for
ferroelectrics, a new type of adjustment method for the coefficients of the free energy has been
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2. Interface between atomistic and phase-field methods

developed which is solely based on the available input parameters from DFT calculations and
SMP simulations compiled in Table 2.1.
This adjustment process, shown in the following, consists of five major steps. Throughout the
process, a homogeneous polarization in x3-direction is assumed, unless stated otherwise.

Step 1: Elastic properties First of all, the coefficients of the elastic energy term (1.71)
are determined. In section 1.3.3, these coefficients have already been identified as components
of the elasticity tensor. Additionally, the sensitivity study showed that the elastic constants are
completely decoupled from the rest of the energy function, so that the elastic stiffness of the
paraelectric phase obtained from DFT calculations can directly be transferred into the phase-
field model:

Ci j = ĉcub,i j (2.7)

Step 2: Electromechanical coupling The electromechanical coupling term (1.72) de-
scribes the interaction between polarization and the crystal’s distortion in a homogeneously
polarized state. The adjustment of the electrostrictive coefficients Qi j follows the work of De-
vonshire [20]. Under equilibrium, stress-free conditions, the tetragonally polarized material
exhibits the spontaneous strains e‖ and e⊥ parallel and perpendicular to the direction of po-
larization, respectively. Using the system of equations (1.68) as well as ê‖, ê⊥ and P̂0 from
first-principles DFT calculations, the electrostrictive constants can be determined as

Q11 =
ê‖
P̂2

0
Q12 =

ê⊥
P̂2

0
. (2.8)

Step 3: Landau energy The Landau energy term described in (1.65) contains information
about the spontaneous polarization, the dielectric properties, as well as the phase of the material,
i.e. whether the polarized material has a tetragonal, rhombohedral or orthorhombic crystal
structure. Figure 1.11 shows a plot of an equilibrium two-dimensional Landau energy density.
While the positions of the global minima in the plot correspond to the spontaneous polarization
states, the curvature of the energy function at its minima defines the dielectric permittivities κ11

and κ33 [18]:

∂ 2

∂P2
3

Ψ(Pi,Pi, j,εi j,Di) =
1

κ33
,

∂ 2

∂P2
1

Ψ(Pi,Pi, j,εi j,Di) =
1

κ11
(2.9)

The energy barriers between neighboring minima determine the properties of 90◦ and 180◦

domain walls. The crystallographic phase is determined by the direction in which the global
minima are located: For a tetragonally polarized and distorted material, the global minima are
along the 〈100〉 crystal directions, whereas they are located in 〈110〉 directions for an orthorom-
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2.3. Adjustment process

bic polarization and in 〈111〉 directions for a rhombohedral polarization. Under equilibrium
conditions, i.e. in the absence of mechanical stresses and electric fields, the free energy function
(1.64) for a homogeneously polarized state can be expressed as a function Ψequil(Pi) depending
only on the polarization order parameter. Therefore, the equilibrium strains ε

equil
i j are calculated

for the stress- and field-free state and substituted in (1.64):

∂Ψ(Pi,0,εi j,Pi)

∂εi j
= σi j(Pi,εi j) = 0

⇒ ε
equil
i j (Pi)

⇒ Ψ
equil(Pi) = Ψ(Pi,0,ε

equil
i j (Pi),Pi) (2.10)

For the adjustment of the Landau energy coefficients, the equilibrium energy function Ψequil(Pi)

is used. The information on the spontaneous polarization P̂0 and the dielectric permittivities κ̂11

and κ̂33 from DFT calculations and SMP simulations yields the three equations

∂Ψequil(0,0, P̂0)

∂P3
= 2P̂0(α1 +2P̂2

0 α11 +3P̂4
0 α111) = 0 (2.11)

∂ 2Ψequil(0,0, P̂0)

∂P2
3

= 2(α1 +6P̂2
0 α11 +15P̂4

0 α111) =
1

κ̂33
(2.12)

∂ 2Ψequil(0,0, P̂0)

∂P2
1

= 2(α1 + P̂2
0 α12 + P̂4

0 α112 +2C44Q2
44P̂2

0 ) =
1

κ̂11
, (2.13)

where the first equation defines a minimum of the equilibrium free energy at P = P0, and the
second and third equation define the curvature of the free energy at the spontaneous polarization
state and hence the (anisotropic) dielectric permittivity. These equations can be solved with
respect to α1, α111 and α112,

α1 = −P̂2
0 α11−

1
8κ̂33

(2.14)

α111 =
1−8P̂2

0 α11κ̂33

24P̂4
0 κ̂33

(2.15)

α112 =
−16C44P̂2

0 Q2
44 +8P̂2

0 (α11−α12)+
4

κ̂11
+ 1

κ̂33

8P̂4
0

, (2.16)

where the coefficients α1, α111 and α112 still depend on the remaining Landau energy coef-
ficients α11 and α12. Especially the ratio Ω = α11/α12 is crucial for adjusting the phase of
the material, because it changes the properties of the free energy in 〈110〉 and 〈111〉 directions
while having no influence on the properties in 〈100〉 direction. Also the Landau coefficient α123

affects the material’s phase, but unlike Ω it only influences the properties of the free energy in
〈111〉 direction. The impact of Ω and α123 is illustrated in figure 2.3: The free energy can be
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2. Interface between atomistic and phase-field methods

Figure 2.3.: By variation of Ω and α123, the Landau energy can be tuned from a purely rhombohedral state
(left) to a purely tetragonal state (right). The upper part shows diagrams of the Landau en-
ergy plotted versus the polarization for different crystallographic directions 〈100〉 , 〈110〉 and
〈111〉 . In each case the crystallographic direction of the global minima defines the phase of
the material. For a certain set of Ω and α123, the minima in 〈111〉 and 〈100〉 direction co-
incide, and the energy function switches from rhombohedral to tetragonal (middle). In the
lower part, equipotential plots of the Landau energy for three energy levels (indicated 1, 2
and 3) are illustrated, three-dimensionally showing the form of the Landau energy and the
configuration of the global minima.
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2.3. Adjustment process

tuned from a purely tetragonal polarization state to a purely rhombohedral polarization state by
variation of parameters Ω and α123 only. With equivalent minima in 〈100〉 and 〈111〉 crystal
direction, the transition state describes the morphotropic phase boundary in PZT. This phase
adjustment makes it possible to describe the complete PZT system within a single formulation
of the free energy function.
The remaining Landau coefficients are derived in the following two adjustment steps by fitting
the Helmholtz free energy function to the properties of 180◦ and 90◦ domain walls.

Step 4: 180◦ domain wall properties For a single 180◦ domain wall in a perfect, infinite
and stress-free crystal, there is a one-dimensional analytical solution as can be found in [9].
Assuming the 180◦ domain wall is located in the x2-x3-plane, the polarization P3(x1) changes
from P3(x1→−∞) = P0 to P3(x1→ ∞) =−P0, while P1 = P2 = 0 (cf. figure 2.2). Considering
the symmetry of the infinitely expanded problem, the strains in x2- and x3-direction are set to
ε22 = e⊥ and ε33 = e‖, and only the strain ε11(x1) varies in x1-direction. Furthermore, it is
assumed that there are no shear strains in the complete system: εi j = 0 for i 6= j. With all these
assumptions, the polarization P3(x1) across the domain wall depends on both the parameters
α11 and G44:

P3(x1) =
P̂0 sinh( x1

η(α11,G44)
)√

A(α11)+ sinh2( x1
η(α11,G44)

)
(2.17)

with

α
+
11 = α11−

q2
12

2C11
, (2.18)

A(α11) =
3α111P̂2

0 +α
+
11

2α111P̂2
0 +α

+
11
, (2.19)

η(α11,G44) =

√
G44

P̂0

√
6α111P̂2

0 +2α
+
11

. (2.20)

This is consistent with the previous sensitivity analysis (Table 2.2): Out of the three gradient
energy coefficients, only G44 shows an influence on the 180◦ DWW and DWE. While a change
of G44 has a similar impact on both the DWW and the DWE, the Landau energy coefficient
α11 mainly influences the domain wall energy. In figure 2.4, the impact of G44 and α11 on the
DWW and the DWE is illustrated.

Taking the analytical solution P3(x1) of the polarization across a domain wall as well as the
180◦ domain wall thickness ξ̂180 and energy γ̂180 from DFT calculations or empirical SMP
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Figure 2.4.: Influence of the coefficients G44 and α11 on the 180◦ DWW and DWE. Left: Polarization
P3 in a 180◦ domain wall for different gradient coefficients G44, showing the impact on
the domain wall thickness ξ180. Right: Domain wall energy γ180 depending on the Landau
coefficient α11, again for different G44. Negative values of γ180 indicate that the 180◦ domain
wall becomes energetically favorable and is therefore stable.

simulations and substituting in (2.5) and (2.6) yields the two nonlinear algebraic equations

ξ̂180 =
2P̂0

∂

∂x1
P3(x1)

∣∣∣∣∣
x1=0

, (2.21)

γ̂180 =
∫

∞

−∞

(Ψ(P3(x1),P3,1(x1),ε11(x1))−Ψbulk(∞))dx1 (2.22)

which can be solved iteratively with respect to the Landau energy coefficient α11 and the gradi-
ent energy coefficient G44.

Step 5: 90◦ domain wall properties Beside the 180◦ domain wall, the second type of
twin structure present in a ferroelectric’s tetragonal phase is the 90◦ domain wall. Contrary to
the 180◦ domain wall, there is no general analytical solution for a 90◦ domain wall. The 90◦

domain wall is oriented in [110], and only the charge neutral head-to-tail configuration is stable.

To compute an equilibrium one-dimensional 90◦ domain wall, the coordinate system (x1,x2,x3)
of the material properties as well as the Helmholtz free energy function is rotated by 45◦ about
x3. In the new coordinate system (s,r,x3), the equilibrium polarization far away from the domain
wall is

lim
s→−∞

~P = (
P0√

2
,

P0√
2
,0) lim

s→∞

~P = (
P0√

2
,− P0√

2
,0), (2.23)
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Figure 2.5.: Profile of the polarization in a 90◦ domain wall. Ps(s) and Pr(s) denote the components of
the polarization perpendicular and parallel to the domain wall, respectively. The thickness
of the domain wall ξ90 is marked as defined in eqn. (2.5).

as can be seen from figure 2.5. Furthermore, a perfect crystal is assumed, and both the applied
stress and the electric field far away from the domain wall are zero. In order to obtain the
remaining coefficients of the energy function, the phase-field model was implemented in a finite
element formulation (this implementation will be discussed in detail in chapter 4). As nodal
degrees of freedom, the components of the polarization Pi, the mechanical displacement ui

and the electric potential φ are used. The polarization components Ps(s) and Pr(s) in a one-
dimensional 90◦ domain wall were computed as shown in Figure 2.5. Using equations (2.5)
and (2.6), the domain wall thickness and energy can be calculated numerically:

ξ̂90 =
2
√

P̂0
2

∂

∂ sPs(s)

∣∣∣∣∣∣
s=0

, (2.24)

γ̂90 =
∫

∞

−∞

(Ψ(Ps(s),Pr(s),Ps,s(s),Pr,s(s),εss(s),εrs(s),φ(s))−Ψbulk(∞))ds (2.25)

The properties of the 90◦ domain wall depend on the energy coefficients α12, G11 and G12. Since
the coefficient α12 influences the terms PiPj in the Landau energy, it determines the height of the
energy barrier between two neighboring minima. As can be seen from the previous sensitivity
analysis, the coefficient α12 alters the ratio between the DWW and the DWE, while the gradient
coefficients G11 and G12 can be used to shift both the thickness and the energy of a 90◦ domain
wall.
Now, the coefficients α12, G11 and G12 are systematically varied, and the respective polarization
curves Ps(s) and Pr(s) are calculated. Then, for each set of the coefficients α12, G11 and G12

both the 90◦ domain wall thickness and energy are obtained. This is iterated until a set is found
that matches the atomistic calculations predictions for the 90◦ DWW and DWE.
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2. Interface between atomistic and phase-field methods

The last remaining Landau energy coefficient α123 has no influence on the tetragonal (or or-
thorhombic) material properties at all. It influences the energy barrier by shifting the height of
the Landau energy function’s saddle point in 〈111〉 direction. This is demonstrated in Figure 2.6:
The equilibrium energy function (2.10) is plotted in the 〈100〉 (tetragonal), 〈110〉 (orthorhom-
bic) and 〈111〉 (rhombohedral) crystal directions. A lowest minimum in 〈100〉 direction means
that the material exhibits a tetragonally polarized phase. The other minima in the plot indicate
the energy barriers between neighboring (global) minima and are actually saddle points in the
energy landscape. For α123 = 0, the height of the energy barriers differs (Figure 2.6a). Vari-
ation of α123 only shifts the energy barrier in 〈111〉 direction. Thus, for a purely tetragonally
polarized material like PTO, the coefficient α123 is chosen in a way that the height of the energy
barriers in 〈110〉 and 〈111〉 direction coincide (Figure 2.6b).

Figure 2.6.: Helmholtz free energy density plotted in 〈100〉 , 〈110〉 and 〈111〉 crystal directions for dif-
ferent values of the Landau energy coefficient α123. The lowest minima in 〈100〉 directions
determine the tetragonal phase of the material, while the other minima are saddle points
in the energy landscape and describe the switching barriers between equivalent tetrago-
nal states. Left: For α123 = 0, the switching barriers have different heights in 〈110〉 and
〈111〉 directions. Right: α123 as chosen in the adjustment process so that the saddle points
in 〈110〉 and 〈111〉 direction coincide. The coefficient α123 only affects the height of the
〈111〉minima.

Finally, the coupling energy coefficient Q44 is adjusted. Throughout the adjustment process, it
has been set to the isotropic symmetry approximation Q44 = 2(Q11−Q12) [19, 56] as an initial
condition. As can be seen from the sensitivity analysis (Table 2.2), Q44 increases the piezoelec-
tric coefficient d121 directly, so that Q44 can easily be set to match the DFT result for d121. Since
Q44 also has a slight influence on the 90◦ domain wall properties, it may become necessary to
repeat step 5 and obtain Q44 in an iterative approach. Concluding this section, Figure 2.7 il-
lustrates the complete adjustment process for all coefficients of the free energy in a flow chart.
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Figure 2.7.: Flow chart of the adjustment process for the coefficients of the free energy.

2.4. Discussion

2.4.1. Adjustment process for PTO and PZT input parameters

As shown in sections 2.1 and 2.1, the input parameters for the phase-field model were deter-
mined from first-principles DFT-LDA calculations and classical atomistic SMP simulations. In
general, the predictive power of DFT calculations is higher than that of atomistic simulations,
which are themselves fitted to DFT calculations. For both PTO and PZT, the set of calculated
input parameters is presented in the left columns of Table 2.3. DFT calculations yielded the
intrinsic parameters: spontaneous polarization and strain, elastic constants, dielectric permittiv-
ities and the piezoelectric constants for PTO and PZT. Note that the spontaneous strains ê‖ and
ê⊥ are computed from the cubic and tetragonal lattice parameters âcub, âtetr and ĉtetr.
For PTO, the domain wall properties (thickness ξ and energy γ) were obtained both from
DFT calculations (denoted ξDFT90/180,γDFT90/180) and SMP simulations (denoted ξSMP90/180,
γSMP90/180). When calculating the domain wall properties of PZT, it was found that DFT cal-
culations yielded a slightly monoclinic ground state once the tetragonal symmetry was broken
when computing a 90◦ domain wall configuration (for the case of the 180◦ domain wall in PZT,
DFT calculations retained tetragonal symmetry). The 90◦ domain wall properties were then
obtained from atomistic SMP simulations.
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2. Interface between atomistic and phase-field methods

Table 2.3.: Atomistic target data compared to the adjusted phase-field model for PTO and PZT. The input
parameters (in each case left column) were computed using first-principles DFT calculations
and atomistic SMP simulations. Based on these input parameters, a phase-field model was
adjusted, the properties of which are shown in the right column, respectively. The spontaneous
deformations denoted by a superscript star are calculated from the cubic and tetragonal lattice
parameters using eqns. (2.1).

PTO PZT
unit first-principles data phase-field model first-principles data phase-field model

(input) (adjusted) (input) (adjusted)

P0 [C/m2] 0.88 0.88 0.58 0.58
âcub [Å] 3.8845 - 4.0119 -
âtetr [Å] 3.8558 - 4.0047 -
ĉtetr [Å] 4.0480 - 4.0602 -
e‖ 0.04209∗ 0.04209 0.012039∗ 0.012039
e⊥ −0.007388∗ −0.007388 −0.0017946∗ −0.0017946
κ33 17κ0 17κ0 18κ0 18κ0
κ11 54κ0 54κ0 76κ0 76κ0
c11 [Pa] 342×109 342×109 361×109 361×109

c12 [Pa] 131×109 131×109 115×109 115×109

c44 [Pa] 108×109 108×109 91×109 91×109

d33 [C/m] 2.46×10−11 1.42×10−11 1.57×10−11 6.58×10−12

d31 [C/m] −8.04×10−12 −2.52×10−12 −4.32×10−12 −9.87×10−13

d15 [C/m] 1.72×10−11 1.72×10−11 1.53×10−12 1.53×10−12

γDFT,180 [mJ/m2] 112 173 96 96
γDFT,90 [mJ/m2] 24 71 - -
ξDFT,180 [m] 4.5×10−10 4.5×10−10 6.7×10−10 6.7×10−10

ξDFT,90 [m] 5.4×10−10 5.4×10−10 - -
γSMP,180 [mJ/m2] 156 156 - -
γSMP,90 [mJ/m2] 64 64 36 36
ξSMP,180 [m] 3.9×10−10 3.9×10−10 - -
ξSMP,90 [m] 4.9×10−10 4.9×10−10 6.6×10−10 6.6×10−10

Based on the input parameters from Table 2.3, the adjustment process for the phase-field model
as described in section 2.3 was applied for PTO and PZT. Three cases were considered:

1. PTO with domain wall properties from DFT calculations (denoted PTO-DFT)

2. PTO with domain wall properties from SMP simulations (denoted PTO-SMP)

3. PZT with 180◦ domain wall properties from DFT calculations and 90◦ domain wall prop-
erties from SMP simulations (denoted PZT)

The three corresponding sets of adjusted coefficients of the Helmholtz free energy function
are presented in Table 2.4. From the now adjusted phase-field models, the resulting material
properties were computed as shown in section 2.2. Table 2.3 shows these properties of the
adjusted phase-field models (PTO and PZT) in comparision to the input parameters from first
principles DFT calculations and atomistic SMP simulations.
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Table 2.4.: Adjusted coefficients of the Helmholtz free energy based on input parameters from atomistic
calculations. In the first case (PTO-DFT), domain wall properties for PTO are taken from first
principles calculations, while in the second case (PTO-SMP) they are derived from atomistic
SMP simulations. In the case of PZT, the 180◦ domain wall properties are obtained from DFT
calculations and the 90◦ domain wall properties from SMP simulations.

coefficient PTO-DFT PTO-SMP PZT

α1 −3.253×108JmC−2 −4.268×108JmC−2 −8.499×108JmC−2

α11 −6.58×108Jm5C−4 −5.27×108Jm5C−4 1.950×108Jm5C−4

α12 −3.29×109Jm5C−4 −3.211×109Jm5C−4 −9.750×108Jm5C−4

α111 7.473×108Jm9C−6 6.909×108Jm9C−6 2.117×109Jm9C−6

α112 6.489×109Jm9C−6 6.557×109Jm9C−6 1.687×1010Jm9C−6

α123 1.55×1010Jm9C−6 1.68×1010Jm9C−6 4.823×109Jm9C−6

Q11 5.435×10−2m4C−2 5.435×10−2m4C−2 3.579×10−2m4C−2

Q12 −9.540×10−3m4C−2 −9.540×10−3m4C−2 −5.335×10−3m4C−2

Q44 1.987×10−2m4C−2 1.987×10−2m4C−2 1.923×10−2m4C−2

C11 342×109Jm−3 342×109Jm−3 361×109Jm−3

C12 131×109Jm−3 131×109Jm−3 115×109Jm−3

C44 108×109Jm−3 108×109Jm−3 91×109Jm−3

G11 5.6×10−11Jm3C−2 4.51×10−11Jm3C−2 2.9×10−11Jm3C−2

G12 5.6×10−11Jm3C−2 4.65×10−11Jm3C−2 6.95×10−11Jm3C−2

G44 3.4×10−11Jm3C−2 2.82×10−11Jm3C−2 6.95×10−11Jm3C−2

Furthermore, the adjusted free energy functions Ψequil(Pi) for PTO-DFT, PTO-SMP and PZT
are illustrated in Figure 2.8 for the stress- and field-free state. The plots in the first row show the
free energy for different crystallographic directions. As expected for a tetragonal ground state,
the minima of the free energy are located along the 〈100〉 crystal directions in all three cases. In
the second and third rows, contour plots depict cuts through the free energy function in the [100]
and [110] crystallographic planes, respectively. Here, the [100] contour plots exhibit the four
equivalent minima in 〈100〉 directions. In the [110] contour plots, also possible local minima
of the free energy in 〈111〉 or 〈110〉 direction can be depicted. While the free energies of PTO-
DFT and PTO-SMP have equivalent saddle points in 〈111〉 and 〈110〉 direction, the case of PZT
shows slightly developed local minima in 〈111〉 direction that are energetically lower than the
saddle points in 〈110〉 direction. This can also be seen from the three-dimensional equipotential
plots of the free energy, shown in the fourth row.

2.4.2. Discussion

When comparing the atomic-level input parameters and the corresponding properties of the
adjusted phase-field models in Table 2.3, a high level of agreement can be noticed, especially
for the spontaneous parameters P0, e‖, e⊥, the dielectric permittivity κi j as well as for the elastic
stiffness ci jkl . Due to their analytical adjustment, the transfer of these quantities into the phase-
field model will always be sucessfull, since the adjustment method is designed and optimized for
materials exhibiting tetragonal symmetry. Because of the high non-linearity of the adjustment
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Figure 2.8.: Adjusted free energy functions for the three considered cases PTO-DFT (1st column), PTO-
SMP (2nd column) and PZT (3rd column) in the absence of an electric field and mechanical
stresses. The first row shows the free energies along different crystallographic directions, the
second row contour plots of the free energies in the [100] plane, the third row contour plots
in the [110] plane and the fourth row equipotential plots.
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problem and additional physical requirements as will be discussed below, other properties have
to be within a certain range for an exact adjustment of the phase-field model to the properties
calculated at the atomistic level. This is the case for the domain wall thicknesses ξ90/180 and
energies γ90/180 and is below illustrated for PTO:

b)

Figure 2.9.: Adjustment of the domain wall properties for PTO. a) 180◦ domain wall properties: By varia-
tion of the coefficients 5×10−12≤G44≤ 2×10−10 and−1×109≤α11≤ 1×109, the region
of ξ180/γ180-ratio between the two dashed lines can be accessed. b) 90◦ domain wall prop-
erties: The reachable range of the ξ90/γ90-ratio is shown for a variation of the coefficients
5×10−12 ≤G11 ≤ 2×10−10, 5×10−12 ≤G12 ≤ 2×10−10 and 1.3×109 ≤ α12 ≤ 3.3×109.
While in both cases the phase-field model can be fitted exactly to results from atomistic SMP
simulations (SMP), the predictions from first-principles DFT calculations are beyond the ad-
justable range.

In Figure 2.9a, the 180◦ domain wall energy γ180 is plotted vs. the domain wall thickness ξ180

for various combinations of the only Helmholtz energy coefficients that influence these quan-
tities, G44 and α11. All other coefficients are either determined by the prior adjustment to the
intrinsic material properties or show no influence on the 180◦ domain wall properties (cf. Ta-
ble 2.2). Only the region of ξ180/γ180 ratio between the two dashed lines is accessible, since
some additional requirements have to be satisfied. It has to be ensured that the Helmholtz free
energy function goes to positive infinity for big polarizations in all crystal directions. Further-
more, to guarantee that the Helmholtz energy function only has minima at the spontaneous
polarized states of tetragonal symmetry, the Landau energy coefficient α1 has to be negative.
Since the energy coefficient α11 that is used to adjust the 180◦ domain wall properties is directly
related to α1 (see eqn. 2.14), it has to fulfill the condition

α11 ≥−
1

8P0κ33
. (2.26)

Otherwise, for a positive α1, an additional minimum appears at P = 0 resulting in a metastable
phase of cubic symmetry. With these requirements, it can be seen from Figures 2.9 a and b
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Table 2.5.: Comparison of elasticity tensor components for the following cases: cubic input-parameters
from DFT-calculations, monodomain properties of the adjusted phase-field model and results
of DFT-calculations for the tetragonal phase that could not be used in the adjustment process
due to cubic symmetry of the elastic part ψelast of the used Helmholtz free energy density. Al-
though the phase-field model was fitted to input parameters of cubic symmetry, the considered
monodomain state clearly shows a tetragonal symmetry.

unit c11 c12 c13 c33 c44 c66

PTO
DFT - cubic (input) [GPa] 342 131 131 342 108 108
Phase-field (monodomain) [GPa] 339.8 117.0 116.9 256.0 101.4 108
DFT - tetragonal [GPa] 285 119 88 91 65 108

PZT
DFT - cubic (input) [GPa] 361 115 115 361 91 91
Phase-field (monodomain) [GPa] 361.9 114.7 111.2 333.5 88.3 91
DFT - tetragonal [GPa] 327 110 107 178 73 92

that for PTO, the domain wall properties of the phase-field model can be adjusted properly
to the input parameters from empirical potential simulations. However, for the case of input
parameters from DFT calculations, neither the 180◦ nor the 90◦ domain wall properties lie
within the accessible region and cannot be fitted exactly into the phase-field model. For domain
wall input parameters outside the accessible region, eqns. (2.21) cannot be solved, so the 180◦

domain wall properties have to be adjusted numerically in a similar way as the 90◦ domain
wall properties by solving a one-dimensional 180◦ domain wall, systematically varying the
Helmholtz energy coefficients G44 and α11 and taking a best possible approximation. Hence,
in this work the domain wall thickness was fitted exactly, while the domain wall energy was
adjusted as well as possible.

The considered elastic energy function as shown in eqn. (1.69) contains the elastic information
of the material and is adjusted here to a state of cubic symmetry. Nevertheless, when taking
a phase-field model containing an energy function adjusted to cubic atomistic parameters and
modeling a homogeneously polarized monodomain state in the absence of any domain walls,
the phase-field model shows tetragonal symmetry. In a two-dimensional phase-field model, an
initially stress- and field-free monodomain state polarized along the x3-direction was loaded
mechanically in all directions, and the elastic stiffness tensor of this monodomain state was ob-
tained. The short-circuited electrical boundary condition allows the polarization order parame-
ter to vary when the monodomain is loaded mechanically, causing electromechanical coupling.
Table 2.5 shows a comparison of the cubic input elastic stiffness from first-principles DFT cal-
culations and the elastic stiffness obtained from the phase field model. Here, the tetragonal
character of the phase-field results can be seen: For instance, the elastic stiffness c33 parallel to
the polarization is smaller than c11 perpendicular to the polarization. This mechanical softening
behavior in the direction of polarization is expected and experimentally confirmed for ferro-
electrics exhibiting a tetragonally distorted perovskite crystal structure [53, 46].
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2.4. Discussion

The described transfer of parameters from the atomistic level to phase-field modeling is sub-
ject to certain restrictions. First of all, for the energy function of sixth order in polarization as
described in eqn. (1.64), not enough degrees of freedom are provided to fit all available param-
eters from first-principles calculations into the phase-field model. Especially for the adjustment
of all three piezoelectric coefficients the used energy function is insufficient: For fitting the
spontaneous strains e‖, e⊥ and the piezoelectric coefficients d33, d31, d15, only the three cou-
pling energy coefficients Q11, Q12, Q44 are available. Thus, either the spontaneous strains or
the piezoelectric coefficients in the phase-field model can be adjusted correctly, but not all of
them simultaneously. In the present work, the spontaneous strains and d15 are fitted exactly to
DFT results, while the piezoelectric coefficients d33 and d31 differ from the DFT prediction (cf.
Table 2.3).
A possibilty to allow the exact fit to all piezoelectric coefficients is to increase the number
of degrees of freedom in the free energy function. As introduced in [71] in a free energy
function for BaTiO3, this can be done by adding higher order terms to the energy function’s
series expansion, also taking a completely tetragonal behavior of all material properties into
account.
In the next chapter, this expansion of the free energy to higher order terms will be performed
for PTO and PZT, and an improved adjustment process will be shown. Although this improved
adjustment process will show a higher fitting accuracy, the numerical effort for solving the
Ginzburg-Landau equation using the expanded free energy will rise significantly due to the
higher order terms. Therefore, to keep the numerical effort manageable, the free energy dis-
cussed in this chapter and its adjusted coefficients will provide the basis for the development of
the interface between phase-field modeling and micromechanical methods, following in chap-
ter 4.
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3. Further development of the phase-field model’s free energy

In the previous chapter, an approach has been discussed for transferring results from atomistic
calculations into a phase-field model. The free energy of the phase-field model was success-
fully fitted to input parameters from DFT calculations and SMP simulations, and it was possible
to achieve a high level of agreement between the atomistic target parameters and the adjusted
phase-field model. As discussed above, the adjustment method was subject to two main restric-
tions, caused by a too small number of degrees of freedom in the free energy of the phase-field
model: The elastic stiffness could only be fitted to cubic symmetry, and the piezoelectric coef-
ficients could not be adjusted independently of the spontaneous strains.

These restrictions can be eliminated by extending the free energy, strictly speaking the elastic
part and the electromechanical part, with higher order terms, as will be shown in this chapter.
After motivating and discussing the extensions of the free energy function, a sensitivity study
is performed to examine the impact of the added free energy coefficients on the properties of
the phase-field model. After that, the adjustment process shown in the previous chapter will be
expanded in order to adjust the coefficients of the free energy to results of atomistic calculations.
Finally, the adjusted free energy and the benefit of the introduced extensions will be discussed.

3.1. Extension of the free energy

Up to this point, the free energy used in the phase-field model was of the form shown in equa-
tion (1.64), with a Landau term up to sixth order in polarization, an elastic term of second order
in strain, an electromechanical coupling term of order εi jP2

i and a gradient term of second order
in Pi, j. This basic form of the free energy is well-established and has been applied in a variety
of ferroelectricity phase-field models [42, 79, 80]. As discussed above, this basic form does not
permit tetragonal elastic behavior and provides too little degrees of freedom, so that the spon-
taneous strains and the piezoelectric coefficients cannot be adjusted independently. In order to
eliminate these restrictions, the basic form of the free energy can be expanded, increasing the
disposable number of degrees of freedom: By expanding the elastic part of the free energy,
elastic behavior of tetragonal symmetry can be taken into account, whereas an expansion of
the electromechancial coupling term enables a decoupling of the spontaneous strains and the
piezoelectric coefficients in the free energy. In order to avoid confusion with the coefficients of
the basic form of the free energy (eqn. 1.64) used in chapter 2, and because the coefficients will
be adjusted in a different way than before, the nomenclature of the coefficients in the Landau
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3. Further development of the phase-field model’s free energy

energy, the elastic energy and the electromechanical coupling energy will be changed in this
chapter.

For the elastic energy term to allow elastic behavior of tetragonal symmetry, it has to be ex-
panded. In the basic form of the free energy, the elastic energy

ψelast(εi j) =
1
2

C11(ε
2
11 + ε

2
22 + ε

2
33)+

+ C12(ε11ε22 + ε11ε33 + ε22ε33)+

+ 2C44(ε
2
12 + ε

2
13 + ε

2
23) (3.1)

is of cubic symmetry: The elastic properties in the direction of polarization and perpendicular
to the polarization are the same. This also becomes apparent from the sensitivity study in Ta-
ble (2.2), where for instance a change of the elastic energy coefficient C11 has the same impact
on the elasticity tensor components c11 and c33, inhibiting a separate adjustment. When expand-
ing the free energy in order to allow for tetragonal elastic behavior, the general requirement for
the free energy to describe both the high-symmetry paraelectric cubic state and the polarized
state of lower symmetry also has to be taken into account: Since atomistic calculations predict
different elastic properties for the cubic and the tetragonal phase, the elastic properties of both
the paraelectric cubic phase and the polarized tetragonal phase have to be included in the free
energy.

One possible way of including the elastic properties of tetragonal symmetry in the free energy
while still describing both the cubic and the tetragonal phase in a single analytical function
is rendering the elastic energy coefficients Ci j in the basic form of the free energy (eqn. 3.1)
dependent on the polarization:

C(P) = c0 + f P2. (3.2)

This approach is illustrated schematically in Figure 3.1. In the basic form of the free energy, the
elastic energy coefficients (and hence the components of the elastic stiffness, as identified in the
sensitivity study in section 2.2) are independent of the polarization, as depicted in Figure 3.1a.
However, as shown in Figure 3.1b, choosing the approach of equation (3.6) for the elastic coeffi-
cients renders the possibility of separately adjusting the elastic stiffness of the paraelectric cubic
phase (P = 0) and the spontaneously polarized tetragonal phase (P = P0). Regarding the tetrag-
onal symmetry of the polarized state, the extension of the elastic energy takes the following
form:

ψ
extended
elast (εi j,Pi) =

c1

2
(ε2

11 + ε
2
22 + ε

2
33)+ c2(ε11ε22 + ε11ε33 + ε22ε33)+

+
c3

2
(ε2

12 + ε
2
21 + ε

2
13 + ε

2
31 + ε

2
23 + ε

2
32)
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Figure 3.1.: Schematical illustration of the polarization-dependent elastic stiffness. (a) In the basic form
of the free energy (without f-term), the elastic stiffness does not depend on the polariza-
tion. (b) Expanding the elastic part of the free energy as shown in eqn. (3.3) results in a
polarization-dependence of the elastic stiffness components, enabling a separate adjustment
of the elastic behavior in the cubic and the tetragonal phase.
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For the case Pi = 0, the extended elastic energy ψextended
elast takes the form of the basic elastic

energy ψelast, hence representing the elastic properties of the cubic paraelectric phase. Thus,
the three coefficients ci can be adjusted to the elastic properties of the cubic phase, whereas the
six additional coefficients fi can be fitted to the six independent components of the tetragonal
elasticity tensor.

In order to increase the number of degrees of freedom in the free energy to allow for an indepen-
dent adjustment of the piezoelectric coefficients, the electromechanical coupling term (of order
εi jP2) has to be expanded. Proceeding in the same manner as for the elastic energy, the elec-
tromechanical coupling coefficients qi j of the basic form of the free energy (equation (1.64))
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3. Further development of the phase-field model’s free energy

are assumed to depend on the polarization:

q(P) = b0 +gP2. (3.4)

Considering the tetragonal symmetry of the polarized phase, this approach yields the following
expansion of the electromechanical coupling energy:

ψ
extended
coup (Pi,εi j) =

b1

2
(ε11P2

1 + ε22P2
2 + ε33P2

3 )+

+
b2

2
((ε22 + ε33)P2

1 +(ε11 + ε33)P2
2 +(ε11 + ε22)P2

3 )+

+ b3 ((ε12 + ε21)P1P2 +(ε13 + ε31)P1P3 +(ε23 + ε32)P2P3)+

+
(g1

4
ε11 +

g2

4
(ε22ε33)

)
P4

1 +
g3

4
(ε12 + ε21)(P1P3

2 +P2P3
1 )+

+
(g1

4
ε22 +

g2

4
(ε11ε33)

)
P4

2 +
g3

4
(ε23 + ε32)(P2P3

3 +P3P3
2 )+

+
(g1

4
ε33 +

g2

4
(ε11ε22)

)
P4

3 +
g3

4
(ε13 + ε31)(P1P3

3 +P3P3
1 ). (3.5)

Here, the coefficients bi take the role of the electromechanical coupling coefficients qi j in the
basic form of the free energy, whereas the three new coefficients gi provide additional degrees
of freedom. With a total of six electromechanical coefficients, the two spontaneous strains and
three independent components of the piezoelectricity tensor can now be fitted independently –
the system is even over-determined.

The described expansion of the elastic energy (f-terms) and the electromechanical coupling
energy (g-terms) was first introduced in 2007 by Su and Landis [71] for a free energy function
describing BaTiO3. It works fine, provided that the components of the tetragonal elastic stiffness
Ctetr

i j are greater than the respective components of the cubic elastic stiffness Ccub
i j : For instance,

both Ctetr
11 and Ctetr

33 have to be greater than Ccub
11 . If this is not the case and Ccub > Ctetr, the

polarization-dependent elastic stiffness is a strictly monotonically decreasing function and will
be zero for a certain critical polarization Pcrit. This is illustrated in Figure 3.2a. For the critical
polarization Pcrit, the elastic stiffness vanishes, causing a divergence of the equilibrium strain
and therefore a divergence of the free energy, as sketched below:

Ψ(P,ε) = q(P)εP2 +C(P)ε2 +F(P)

σ =
∂Ψ(P,ε)

∂ε
= q(P)P2 +2C(P)ε !

= 0

⇒ ε
equil(P) =

−q(P)P2

2C(P)

⇒ lim
P→Pcrit

ε
equil(P) = ∞

⇒ lim
P→Pcrit

Ψ(P,εequil(P)) = ∞
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Figure 3.2.: (a) Considering the free energy expanded by the f-term, the polarization-dependent elastic
stiffness is a monotonically decreasing function for Ccub >Ctetr and will become zero for a
certain polarization Pcrit, causing a divergence of the free energy. Therefore, the f-term is not
sufficient for the case Ccub > Ctetr. (b) By taking a further expansion of the elastic energy
(h-term) into account, the polarization-dependent elastic stiffness remains positive for all
polarizations while still enabling a separate adjustment of the elastic behavior in the cubic
and the tetragonal phase for the case Ccub >Ctetr.

Although the system will always be near the spontaneous polarization state and will only vary
in a range between +P0 and −P0 (e.g. in a domain wall), this divergence of the free energy
causes an instability in the phase-field model and also makes an adjustment of the coefficients
impossible. For the developement of their free energy describing BaTiO3 , Su and Landis [71]
used a set of input elastic parameters that fulfill the condition Ccub <Ctetr. Hence, for BaTiO3

the introduced f- and g-terms are sufficient to take tetragonal elastic behavior as well as an in-
dependent adjustment of the spontaneous strains and the piezoelectric coefficients into account.
However, DFT predictions for PTO and PZT yield the set of elastic parameters presented in
Table 3.1. Note that almost all tetragonal components of the elasticity tensor are smaller than
the respective cubic components. Thus, for reasons discussed above, the expansion of the free

Table 3.1.: Elastic properties of the cubic and tetragonal phase for PTO and PZT resulting from first-
principles DFT calculations performed by Marton and Elsässer [76]. These components of
the elastic stiffness tensor are to be used as input parameters for adjusting the respective
phase-field models.

unit Ĉ11 Ĉ12 Ĉ13 Ĉ33 Ĉ44 Ĉ66

PTO
DFT - cubic [GPa] 342 131 131 342 108 108
DFT - tetragonal [GPa] 285 119 88 91 65 108

PZT
DFT - cubic [GPa] 361 115 115 361 91 91
DFT - tetragonal [GPa] 327 110 107 178 73 92
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3. Further development of the phase-field model’s free energy

energy consisting of the f-term and g-term is insufficient for PTO and PZT. Here, a solution for
this problem is suggested by introducing a further expansion of the approach of the polarization-
dependent elastic stiffness

C(P) = c0 + f P2 +hP4, (3.6)

consisting of the next higher symmetry compatible order and denoted h-term. Considering the
tetragonal symmetry of the polarized state, this approach results in the following additional
terms:

ψ
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This extension has not appeared in previous literature. As illustrated in figure 3.2 b, the six
additional coefficients hi are employed to ensure that the polarization-dependent elastic stiff-
ness C(P) will not become zero and still has the required properties C(P = 0) =Ccub and
C(P = P0) =Ctetr for describing both the elastic properties of the paraelectric cubic and the
polarized tetragonal state.

Finally, the Landau energy term of the free energy is extended by introducing two polarization
terms of eighth order for the purpose of improving the adjustment of the domain wall properties:

ψ
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Here, the a8-term renders an additional degree of freedom for fitting the 180◦ domain wall prop-
erties, while the a5-term only has an impact on the free energy’s saddle point in 〈110〉 direction
and therefore influences the 90◦ domain wall properties. The a5-term was first introduced by
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3.2. Sensitivity analysis for the expanded free energy

Zhang and Bhattacharya [85, 86] in order to allow for a independent adjustment of the dielec-
tric properties and the 90◦ switching barrier in BaTiO3. The two remaining parts of the free
energy – the gradient energy ψgrad (eqn. 1.66) and the electric field energy ψelec (eqn. 1.73) –
are not modified. Therefore, the expanded total free energy is given as

Ψ
extended(Pi,Pi, j,εi j,Di) = ψgrad(Pi, j)+ψ

extended
Landau (Pi)+ψ

extended
coup (Pi,εi j)+

+ ψ
extended
elast (εi j,Pi)+ψ

h−term
elast (εi j,Pi)+ψelec(Pi,Di). (3.9)

For reasons of clarity, the full form of this expanded free energy are provided in Appendix A.2.
Proceeding in the same manner as in chapter 2, all coefficients of the extended form of the free
energy will be identified in the following.

3.2. Sensitivity analysis for the expanded free energy

Due to the additional energy terms introduced in the last section, the number of coefficients
has increased from 15 in the basic form of the free energy (eqn. 1.64) to 32 in its expanded
form. Furthermore, the nonlinearity of the free energy function has grown significantly. In or-
der to prepare the challenging adjustment process of these coefficients to results from atomistic
calculations, their impact on the properties of the phase-field model has been investigated in a
sensitivity analysis. Closely following the methodology demonstrated in section 2.2, the small
signal parameters (piezoelectric, dielectric and elastic coefficients), the spontaneous parameters
(P0, e‖ and e⊥) as well as the domain wall properties were obtained from the expanded form
of the free energy. Then, each coefficient of the free energy was separately increased by 10%,
and the effect on the properties of the phase-field model was determined. Table 3.2 presents the
results of this sensitivity analysis. The columns contain the physical properties of the phase-
field model, whereas the rows represent the coefficient of the expanded free energy Ψextended.
If the variation by 10% of a coefficient causes a change in one of the physical properties, the
positive or negative magnitude of this change is indicated in per cent. Comparing Table 2.2
and Table 3.2 reveals a significant increase of the free energy’s nonlinearity. While in the basic
form of the free energy a 10% change of one coefficient caused at most a 12.6% reaction in one
physical property (e.g. effect of coefficient α12 on d15), the same variation of the coefficients
of the expanded form of the free energy induces changes of up to 175% in the physical prop-
erties of the phase-field model (e.g. effect of coeffient a8 on d33). From the sensitivity study,
also the benefit of the additional energy terms becomes apparent. With the f-terms and the h-
terms, a completely tetragonal adjustment of the elastic properties can be achieved, since all six
tetragonal components of the elasticity tensor can be varied independently. Furthermore, the
g-term provides three additional degrees of freedom influencing all three independent compo-
nents of the piezoelectricity tensor. As anticipated, the a5 coefficient allows for an adjustment
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3. Further development of the phase-field model’s free energy

Table 3.2.: Sensitivity analysis for all coefficients of the expanded form of the free energy Ψextended.
Each coefficient (rows) is increased separately by 10%, and the impact of this change on the
physical properties (columns) of the free energy is indicated in per cent. Due to the strong
nonlinearity of the free energy, the effort of investigating the coefficients’ influence on the
domain wall properties has risen significantly, so that only those coefficients relevant for the
adjustment of the domain wall properties have been investigated. The analysis is based on
PTO input parameters (Table A.1).

P0 e^ eí κ11 κ33 C11 C33 C12 C13 C44 C66 d33 d31 d15 ξ180 γ180 ξ90 γ90

a1 1,3 5,9 3,6 4,7 1,4 -21,7 -16,2 -1,5 -3,0 7,1

a2 -0,5 -2,4 -1,5 -1,5 8,9 6,4 2,3 -0,3 0,2

a3 -3,5 -3,6 0,7 0,3

a4 -2,3 -10,7 -7,1 -9,9 36,6 25,3 10,3 -0,3 -2,9

a5 -1,5 -14,0

a6 -12,5 -12,7

a8 -7,9 -52,6 -30,6 -32,9 175 118 61,1 2,2 -1,7

b1 1,9 19,7 15,3 4,5 -2,7 -31,3 -25,1 -4,4

b2 -1,2 -18,7 -7,6 1,4 -1,8 18,3 9,3 6,8

b3 11,2

c1 -7,0 -65,0 -49,6 -13,0 8,7 11,5 34,5 35,2 16,9 17,9

c2 2,3 47,9 24,8 8,2 -3,8 11,6 15,9 -31,8 -21,7 -2,2

c3 9,3 22,5 -18,6

f1 13,5 155 123 8,3 42,1 -49,1 -140 -117 -17,6

f2 0,2 4,6 1,8 2,5 1,4 -3,0 -1,1 2,6 1,4

f3 -2,1 -29,8 -15,0 -3,6 -5,7 -11,8 10,7 -6,9 5,7

f4 0,1 1,8 0,7 -0,2 0,5 -3,2 -0,4 1,0 -0,6

f5 -25,0 34,1

f6 0,7

g1 0,3 2,1 1,5 0,4 0,6 -3,2 -2,4 -0,7

g2 1,4 19,0 7,7 1,1 7,1 -15,1 -4,0 -4,9

g3 -0,9

h1 -6,1 -47,7 -37,3 -10,8 -12,0 24,5 0,8 -3,5 17,6

h2 -0,1 -2,2 -0,9 -0,1 -1,1 1,5 0,1 -2,1 0,5

h3 1,6 23,1 11,7 2,5 12,2 5,9 -6,0 6,5 -4,5

h4 -0,1 -0,9 -0,4 -0,1 -0,5 1,6 -0,9 0,2

h5 12,5 -11,3

h6 2,0

G11 12,7 12,7

G12 -14,6 -14,6

G44 5,0 4,9
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3.3. Expanded adjustment process

of the 90◦ domain wall properties while having no influence on any other material property, and
the a8 coefficient provides a further degree of freedom for fitting the 180◦ domain wall prop-
erties. It also becomes apparent that a direct adjustment of the spontaneous strains using the
electromechancial coupling coefficients is no longer possible: While for the basic form of the
free energy the spontaneous strains e‖ and e⊥ were linearly dependent on the electromechanical
coupling coefficients Q11 and Q12, this is no longer the case for the coefficients b1 and b2 of the
expanded form of the free energy.
Concluding the sensitivity study, the basic structure of the adjustment process for the free energy
coefficients as shown in section 2.3 can be retained, but has to be amended at several stages.
In a first step, the ci, fi and hi coefficients will be adjusted simultaneously to the cubic and
tetragonal elastic properties. After that, the bi and gi coefficients are employed to adjust the
spontaneous strains and the piezoelectric coefficients. Finally, the Landau energy coefficients
ai and the gradient energy coefficients Gi j are fitted to the dielectric and domain wall properties.
In the following, this expanded adjustment process will be discussed in full detail.

3.3. Expanded adjustment process

Step 1: Cubic and tetragonal elastic properties In the same manner as in the adjust-
ment process for the basic form of the free energy, the elasic energy part consisting of the c-,
f- and h-terms is adjusted first. Considering the expanded form of the free energy Ψextended, the
c-term is the only part that does not depend on the polarization. This part is of cubic symmetry,
and since the free energy function has to be valid for both the cubic phase (with P = 0) and
the spontaneous polarization state (with P = P0), the coefficients c1, c2 and c3 can directly be
identified as the components of the high-symmetry phase elasticity tensor components Ccub

11 ,
Ccub

12 and Ccub
44 , because all other (polarization-dependent) terms of the free energy vanish in the

cubic phase. Therefore, the ci coefficients can directly be adjusted using the three independent
components of the cubic elasticity tensor from DFT calculations:

c1 = Ĉcub
11 , c2 = Ĉcub

12 , c3 = Ĉcub
44 . (3.10)

Next, the f-term and the h-term are adjusted in order to take tetragonal elastic behavior into
account. From the sensitivity study (Table 3.2) it can be seen that the six fi coefficients are
suitable for adjusting the free energy to the six independent components of the tetragonal elas-
ticity tensor. According to equation (2.3), the elastic stiffness Ci j can be computed analytically
from the free energy. This yields the following linear set of equations, ensuring that the elastic
stiffness Ctetr

i j of the spontaneously polarized state P = P0 agrees with the DFT prediction Ĉtetr
i j :

Ctetr
11 =Ctetr

22 =
∂ 2

∂ε2
11

Ψ
extended(P3 = P0)

!
= Ĉtetr

11 (3.11)
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Ctetr
33 =

∂ 2

∂ε2
33

Ψ
extended(P3 = P0)

!
= Ĉtetr

33 (3.12)

Ctetr
12 =

∂ 2

∂ε11∂ε22
Ψ

extended(P3 = P0)
!
= Ĉtetr

12 (3.13)

Ctetr
13 =Ctetr

23 =
∂ 2

∂ε11∂ε33
Ψ

extended(P3 = P0)
!
= Ĉtetr

13 (3.14)

Ctetr
44 =Ctetr

55 =
∂ 2

∂ε2
13

Ψ
extended(P3 = P0)

!
= Ĉtetr

44 (3.15)

Ctetr
66 =

∂ 2

∂ε2
12

Ψ
extended(P3 = P0)

!
= Ĉtetr

66 (3.16)

Finally, the remaining coefficients hi have to be determined. These coefficients do not have
an explicit physical meaning. Nevertheless, they can be justified because they ensure that the
elastic stiffness, which depends on the polarization in the expanded form of the free energy,
cannot become negative. The hi coefficients have to be employed in the following cases:

h1 : necessary if Ĉcub
11 > Ĉtetr

11

h2 : necessary if Ĉcub
11 > Ĉtetr

33

h3 : necessary if Ĉcub
12 > Ĉtetr

12

h4 : necessary if Ĉcub
12 > Ĉtetr

13

h5 : necessary if Ĉcub
44 > Ĉtetr

44

h6 : necessary if Ĉcub
44 > Ĉtetr

66

In the approach suggested here, the coefficients hi are chosen in such a way that the polarization-
dependent components of the elastic stiffness Ctetr

i j (P) exhibit minima at the spontaneous polar-
ization state P = P0 (see also Figure 3.2 b). If all hi coefficients are required, this yields a set of
six linear equations

∂Ctetr
11

∂P3
=

∂ 3

∂ε2
11∂P3

Ψ
extended(P3 = P0)

!
= 0 (if h1 required) (3.17)

∂Ctetr
33

∂P3
=

∂ 3

∂ε2
33∂P3

Ψ
extended(P3 = P0)

!
= 0 (if h2 required) (3.18)

∂Ctetr
12

∂P3
=

∂ 3

∂ε11∂ε22∂P3
Ψ

extended(P3 = P0)
!
= 0 (if h3 required) (3.19)

∂Ctetr
13

∂P3
=

∂ 3

∂ε11∂ε33∂P3
Ψ

extended(P3 = P0)
!
= 0 (if h4 required) (3.20)

∂Ctetr
44

∂P3
=

∂ 3

∂ε2
13∂P3

Ψ
extended(P3 = P0)

!
= 0 (if h5 required) (3.21)
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∂Ctetr
66

∂P3
=

∂ 3

∂ε2
12∂P3

Ψ
extended(P3 = P0)

!
= 0 (if h6 required). (3.22)

The six fi coefficients as well as the six hi coefficients can then be determined by solving the
set of 12 linear equations (3.11-3.22). If one of the hi coefficients is not required following the
above-mentioned condition, it is set zero, and the respective linear equation from (3.17-3.22)
is no longer regarded. In this way, the adjustment approach remains as general as possible and
is also suitable for BaTiO3, where the h-terms are not required at all [71]. Note that the way
of adjusting the hi coefficients was chosen arbitrarily: It is not necessary for the polarization-
dependent components of the elastic stiffness Ctetr

i j (P) to have minima at P = P0. Any other
analytical approach ensuring Ctetr

i j (P) to remain greater than zero would also be possible.

Step 2: Electromechanical coupling energy terms Next, the b- and g-terms of the
expanded free energy Ψextended(Pi,Pi, j,εi j,Di) are to be adjusted. Considering an equilibrium
monodomain state polarized in 〈001〉 direction, the free energy can be reduced to the form
Ψextended

mono (P3,ε11,ε22,ε33), and the equilibrium strains depending on polarization ε
equil
i j (P3) can

be determined by solving the set of equations

∂

∂ε11
Ψextended

mono (P3,ε11,ε22,ε33) = σ11
!
= 0

∂

∂ε22
Ψextended

mono (P3,ε11,ε22,ε33) = σ22
!
= 0

∂

∂ε33
Ψextended

mono (P3,ε11,ε22,ε33) = σ33
!
= 0


ε

equil
11 (P3)

ε
equil
22 (P3)

ε
equil
33 (P3).

(3.23)

Then, the coefficients b1 and b2 can be computed from the equilibrium strains, which have to
correspond to the spontaneous strains ê⊥ and ê‖ from DFT calculations for P = P0:

ε
equil
11 (P3 = P0)

!
= ê⊥

ε
equil
33 (P3 = P0)

!
= ê‖

 b1(g1,g2)

b2(g1,g2)
(3.24)

The coefficients b1(g1,g2) and b2(g1,g2) depend on both g1 and g2. They ensure that the
spontaneous strains e⊥ and e‖ encoded in the free energy hold for any arbitrary combination of
g1 and g2, therefore decoupling the b-term and the g-term. Now the coefficients g1 and g2 can
be adjusted using the piezoelectric coefficients d33 and d31. From the sensitivity analysis (Table
2.2) it becomes apparent that the Landau coefficients ai influence the piezoelectric coefficients
di j significantly, while the coefficients g1 and g2 have an impact on P0, κ11 and κ33, which
are in turn target parameters of the Landau coefficients. Therefore, an independent adjustment
of P0, κ11, κ33, d33 and d31 is not possible, making an iterative approach necessary. Before
formulating the conditions for the Landau coefficients, g1 and g2 (as well as b3 and g3) can be
set to any arbitrary values at this point.
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3. Further development of the phase-field model’s free energy

Step 3: Landau energy term The Landau coefficients ai are determined closely following
the adjustment method presented in section 2.3, and only minor extensions are necessary to take
the additional a5- and a8-terms into account. Using the equilibrium energy function as defined
in equation (2.10) as well as information on the spontaneous polarization P̂0 and the dielectric
permittivities κ̂11 and κ̂33 from DFT calculations and SMP simulations yields the set of three
equations

∂

∂P3
Ψequil(0,0, P̂0) = 0

∂ 2

∂P2
3

Ψequil(0,0, P̂0) =
1

κ̂33

∂ 2

∂P2
1

Ψequil(0,0, P̂0) =
1

κ̂11


a1(a2,a8)

a4(a2,a8)

a6(a2,a3,a8),

(3.25)

which can be solved with respect to the Landau coefficients a1, a4 and a6. As expected from
the sensitivity analysis (Table 2.2), they are independent of a5. The four remaining Landau
coefficients a2, a3, a5 and a8 are now completely decoupled and are available for adjusting
the 180◦ and 90◦ domain wall properties. However, the g-term has to be adjusted first to the
piezoelectric coefficients d̂33, d̂31 and d̂15. Since all Landau coefficients are now determined or
decoupled, arbitrary values for g1 and g2 can be chosen, and after repeating Step 3, the piezo-
electric properties d33 and d31 of the free energy (obtained by eqn. 2.4) can be checked against
the DFT prediction. This iterative approach has to be repeated until the free energys piezoelec-
tric properties coincide with the DFT results. In principle, the g1 and g2 coefficients could be
varied randomly in this approach until a matching set is found. However, caused by the high
nonlinearity of the expanded form of the free energy, the computational effort for proceeding
this way would be immense. Since it turned out that the piezoelectric properties d33 and d31

depend almost linearly on g1 and g2, an alternative approach has proven very useful: Both co-
efficients g1 and g2 are increased by a certain step width three times each, resulting in a (3x3)
array of g1/g2 combinations. For each of these nine sets, the piezoelectric properties of the free
energy are determined. Figure 3.3 shows the dependence of d33 and d31 on the coefficients g1

and g2. Calculating the mean slope and offset of the straight lines in Figure 3.3 by means of
linear regression yields two linear equations for the piezoelectric coefficients d33(g1,g2) and
d31(g1,g2). Together with the DFT prediction d̂33 and d̂31, these equations can be solved with
respect to g1 and g2:

d33(g1,g2)
!
= d̂33

d31(g1,g2)
!
= d̂31

 ⇒ g1, g2 (3.26)

At the same time, the remaining coefficients g3 and b3 can be determined: Since both these co-
efficients solely have an influence on d15, the adjustment to the DFT prediction d̂15 is straight-
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Figure 3.3.: Dependence of the piezoelectric properties d33 (left) and d31 (right) on the coefficients g1 and
g2 for PTO input parameters. Both diagrams show the respective piezoelectric coefficient
plotted versus the free energy coefficient g2 for three different values of g1.

forward. Theoretically, one of the coefficients can be chosen zero while the other one is tuned
until d15(g3,b3) matches d̂15. Due to the significantly higher impact of b3 compared to g3 (see
Table 2.2), in this work the coefficient b3 was used for a rough approximation of d15, while g3

allowed for a fine tuning.

Step 4: Domain wall properties For the expanded form of the free energy (eqn. 3.9)
containing polarization terms up to the 8th order, an analytical solution is available neither for
the 180◦ nor for the 90◦ domain wall. Therefore, the domain wall properties have to be ad-
justed numerically, using the same procedure as discussed in sections 2.3 and 2.4.2. From the
sensitivity analysis in Table 2.2 it becomes apparent that the coefficients a2, a8 and G44 can
be used to adjust the properties of the 180◦ domain wall, whereas the coefficients a3, a5, G11

and G12 are available for adjusting the 90◦ domain wall properties. Although the system is
under-determined, all additional energy coefficients are necessary in order to increase the range
of accessible γ/ξ ratio as will be shown in section 3.4.2. Hence, the coefficients a2, a8 and
G44 are varied iteratively until a set is found for which the 180◦ domain wall thickness ξ180 and
energy γ180 of the phase-field model coincide with the respective predictions from atomistic
calculations. Next, the coefficients a3, a5, G11 and G12 are adjusted in the same manner to the
90◦ domain wall thickness ξ̂90 and energy γ̂90 obtained from DFT calculations or SMP simula-
tions. Finally, the Landau coefficient a7 is chosen in such a way that the saddle points of the free
energy in 〈110〉 and 〈111〉 crystal direction are on the same energetical level. Concluding the
adjustment process of the expanded form of the free energy, Figure 3.4 illustrates its structure
in a flow chart.
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start

a7

cubic elastic properties (c1, c2, c3)

h-term necessary?

tetragonal elastic properties (f1-f6)
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end

Figure 3.4.: Flow chart illustrating the structure of the adjustment process for the coefficients of the
expanded form of the free energy.
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3.4. Results and discussion

3.4.1. Application of the adjustment process for PTO and PZT

In order to determine the coefficients of the free energy in its expanded form, the improved
adjustment process developed in the last section has been applied to input parameters of two
materials: PTO and PZT. As before in section 2.4.1, DFT calculations and SMP simulations
provided the necessary input parameters, shown in the left columns of Table 3.3. DFT cal-
culations yielded all the intrinsic parameters: spontaneous polarization and strain, dielectric
permittivities, piezoelectric coefficients, components of the cubic elastic stiffness tensor Ccub

i j

and the now regarded components of the tetragonal stiffness tensor Ctetr
i j . In the case of PTO,

all domain wall properties used in the adjustment process were obtained from DFT calcula-
tions1, whereas for PZT the 180◦ domain wall properties stem from DFT calculations and the
90◦ domain wall properties from SMP simulations.

After applying the adjustment process to both sets of input parameters, the properties of the now
adjusted free energy functions were computed as shown in the sensitivity study in section 2.2 in
order to verify the adjustment process. The right columns of Table 3.3 show these properties for
PTO and PZT in comparision with the input parameters from first-principles DFT calculations
and SMP simulations. Finally, the 32 adjusted coefficients of the expanded form of the free
energy for both PZT and PTO can be found in the appendix in Table A.1.

3.4.2. Discussion

When introducing the additional terms of the free energy discussed in section 3.1, the motivation
was to find an improved form of the free energy that can also take tetragonal elastic behavior
and the independent adjustment of the piezoelectric coefficients into account. The success of
this approach becomes apparent from Table 3.3, comparing the atomistic target data and the
properties of the adjusted phase-field models for PTO and PZT. For all intrinsic parameters, a
full agreement between the atomistic input data and the adjusted free energy has been achieved.
Compared to the adjustment process of the basic form of the free energy shown in Table 2.3,
this represents a significant improvement. The benefit of the additional energy terms becomes
clearly visible: A complete adjustment of the tetragonal elastic properties was accomplished
as well as an independent adjustment of the spontaneous strains and all piezoelectric coeffi-
cients. Furthermore, the adjustment approach turned out powerful enough to ensure that also
the spontaneous polarization, the dielectric permittivities and the elastic properties of the cubic
high-temperature phase can be adjusted to match the DFT predictions exactly.

Aroused by the introduction of the 8th order polarization terms to the Landau energy, the range
of adjustable γ/ξ (domain wall energy to domain wall thickness) ratio could be increased con-

1Since PTO-DFT can now be adjusted almost completely, the case of PTO-SMP is no longer considered.
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3. Further development of the phase-field model’s free energy

Table 3.3.: Atomistic target data compared to the adjusted phase-field models for PTO and PZT. All
input parameters for the phase-field models were obtained by Marton and Elsässer [76] using
DFT calculations, with the exception of the 90◦ domain wall properties of PZT (marked with
a † symbol), stemming from SMP simulations.

PTO PZT
unit first-principles data phase-field model first-principles data phase-field model

(input) (adjusted) (input) (adjusted)

P0 [C/m2] 0.88 0.88 0.58 0.58
âcub [Å] 3.8845 - 4.0119 -
âtetr [Å] 3.8558 - 4.0047 -
ĉtetr [Å] 4.0480 - 4.0602 -
e‖ 0.04209 0.04209 0.012039 0.012039
e⊥ −0.007388 −0.007388 −0.0017946 −0.0017946
κ33 17κ0 17κ0 18κ0 18κ0
κ11 54κ0 54κ0 76κ0 76κ0
Ccub

11 [Pa] 342×109 342×109 361×109 361×109

Ccub
12 [Pa] 131×109 131×109 115×109 115×109

Ccub
44 [Pa] 108×109 108×109 91×109 91×109

Ctetr
11 [Pa] 285×109 285×109 327×109 327×109

Ctetr
33 [Pa] 91×109 91×109 178×109 178×109

Ctetr
12 [Pa] 119×109 119×109 110×109 110×109

Ctetr
13 [Pa] 88×109 88×109 107×109 107×109

Ctetr
44 [Pa] 65×109 65×109 73×109 73×109

Ctetr
66 [Pa] 108×109 108×109 92×109 92×109

d33 [C/m] 2.46×10−11 2.46×10−11 1.57×10−11 1.57×10−11

d31 [C/m] −8.04×10−12 −8.04×10−12 −4.32×10−12 −4.32×10−12

d15 [C/m] 1.72×10−11 1.72×10−11 1.53×10−12 1.53×10−12

γ180 [mJ/m2] 112 208 96 96
γ90 [mJ/m2] 24 24 (36)† 36
ξ180 [m] 4.5×10−10 4.5×10−10 6.7×10−10 6.7×10−10

ξ90 [m] 5.4×10−10 5.4×10−10 (4.9×10−10)† 4.9×10−10

siderably for both the 180◦ and the 90◦ domain wall, as can be seen from Figure 3.5: When
adjusting the 90◦ domain wall properties, the Landau coefficient a5 allows for phase-field mod-
els with a relatively high domain wall thickness and a small domain wall energy at the same
time. This was required in particular to match the DFT predictions of the 90◦ domain wall
properties for PTO, as illustrated in Figure 2.9 b. Note that the coefficient a5 only influences the
90◦ domain wall properties and has no influence on any other system parameters at all. There-
fore, the γ90/ξ90 ratio in the complete lower part of Figure 3.5 b can be accessed, and the 90◦

domain wall properties for PTO (and also PZT) could be adjusted exactly to the DFT and SMP
predictions.

In the case of the 180◦ domain wall, the additional Landau coefficient a8 also allowed for the
adjustment of the free energy to a broader range of γ180/ξ180 ratio. The 180◦ domain wall prop-
erties of PZT could be fitted to results of DFT calculations without any problems. However,
in the case of PTO even with the additional a8 term the domain wall input parameters lie out-
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a) b)

Figure 3.5.: Adjustment of the domain wall properties, exemplarily shown for PTO. In both cases, the
mentioned coefficients of the free energy were varied and the respective domain wall thick-
ness and energy calculated. The atomistic DFT and SMP predictions for the domain wall
thickness and energy are marked in both diagrams (a) 180◦ domain wall properties: The ben-
efit of the additional a8-term in the Landau energy is evident. Nevertheless, for PTO the free
energy could not be fitted exactly to the DFT or SMP predictions for ˆγ180. (b) 90◦ domain
wall properties: Caused by the additional a5-term in the Landau energy, the complete range
of γ90/ξ90 in the lower part of the diagram can be accessed, so that the free energy could be
fitted exactly to the atomistic DFT or SMP predictions.

side the accessible region of the γ180/ξ180 ratio and can not be fitted exactly into the phase-field
model. When comparing the domain wall adjustment of the basic form of the free energy (Fig-
ure 2.9) to that of the expanded form of the free energy (Figure 3.5) it can be seen that the
additional terms evoke a shift of the accessible γ/ξ ratio. This shift is caused by the altered
elastic behavior of the expanded form of the free energy, which in turn influences the domain
wall properties. Introducing even higher order polarization terms, e.g. a 10th order polarization
term in the Landau energy, would not solve this problem: The condition a1 > 0 also has to
be fulfilled, guaranteeing that the free energy has minima only at the spontaneous polarization
states. Since a1 already depends linearly on a2 and a8 (and would also depend on any addi-
tionally introduced higher order polarization term), a limit of adjusting the free energy has been
reached here.

The success of the newly introduced h-term is illustrated in Figure 3.6. For the case of PTO,
all six independent tetragonal components of the elastic stiffness Ci j(P) are plotted versus the
polarization. All polarization-dependent components of the elasticity tensor show minima for
P = P0, corresponding to the state of spontaneous polarization, and go towards positive infin-
ity for big polarizations. The h-term prevents the elastic stiffness from becoming zero (given
that Ccub > Ctetr, and C(P) is a strictly monotonically decreasing function of the polarization),
which would cause a divergence of the free energy. Figure 3.6 also reveals that the expanded
form of the free energy describes the elastic properties of both the high and the low symmetry
ferroelectric phase: For instance, C11(P) and C33(P) coincide for P = 0, which corresponds
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to the cubic high-symmetry phase, and show different values for P = P0, as demanded in the
tetragonal low-symmetry phase.

2 1 0 1 2
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3 1011
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P0

C12C13
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Figure 3.6.: In the expanded form of the free energy, the additional f- and h-terms induce a polarization-
dependence of the components of the elastic stiffness tensor. For the case of the adjusted free
energy of PTO, this polarization-dependence of all six independent components is shown
here: As required, the elastic properties of the cubic and tetragonal phase are adjusted seper-
ately, and all components of the elastic stiffness tensor cannot become zero because of the
h-term.

The considerably higher non-linearity caused by the additional energy terms becomes obvious
when plotting the polarization-dependent stress-free strains ε11(P) and ε33(P), computed as

∂Ψ(Pi,εi j,)

∂εi j
= σi j(Pi,εi j)

!
= 0 (3.27)

⇒ εi j(Pi), (3.28)

for both the basic form and the expanded form of the free energy. For the example of PZT,
this is illutrated in Figure 3.7. The stress-free strains obtained from the basic form of the free
energy exhibit a quadratic behavior (dashed lines), whereas the respective strains obtained from
the expanded form of the free energy (solid lines) show a significantly non-linear behavior. This
highly non-linear behavior can be explained when solving the set of equations (3.27) for the ex-
panded form of the free energy. Assuming a one-dimensional configuration with a spontaneous
polarization along the x3-axis, the strains ε11 and ε33 take the schematic forms

ε11(P3) ∝ P2
3

(
P2

3 +P4
3 + · · ·+P22

3

P2
3 +P4

3 + · · ·+P22
3

)
and ε33(P3) ∝ P2

3

(
P2

3 +P4
3 + · · ·+P14

3

P2
3 +P4

3 + · · ·+P14
3

)
, (3.29)
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Figure 3.7.: Comparison of the polarization-dependent stress-free strains ε11(P) and ε33(P) calculated
from the basic form (dashed lines) and the expanded form (solid lines) of the free energy.
For the basic form, the strains show a quadratic behavior, whereas the strains obtained from
the expanded form of the free energy exhibit a high non-linearity.

where all constant coefficients have been omitted for reasons of clarity and from which the
highly non-linear behavior becomes cleary visible. These higher order polarization terms (up
to the 22nd order!) make the adjustment process numerically very challenging. Note that for
obtaining the equilibrium free energy needed to adjust the Landau coefficients as shown in
(3.25), the stress-free strains are substituted in the expanded form of the free energy, causing
polarization terms of even higher order. From the diagrams in Figure 3.7, also the spontaneous
strains e‖ and e⊥ can be read for P = P0. Here, the polarization-dependent strains of the basic
and the expanded form of the free energy intersect as required.

Finally, plots of the adjusted free energy for PZT are shown in Figure 3.8. The notation is
the same as in Figure 2.8 for the adjusted basic form of the free energy. In Figure 3.8 a, the
expanded form of the free energy is plotted versus the polarization in different crystallographic
directions. Compared to the respective plot of the basic form of the free energy in Figure 2.8,
a much higher tetragonal behavior can be found. This also becomes apparent from the contour
plots in Figure 3.8 b and c, showing the expanded form of the free energy in the [100] and the
[110] planes, respectively. It can be explained by the fact that in the expanded form of the free
energy the elastic behavior is fully tetragonal due to the f-term, while in the basic form of the
free energy only cubic elastic behavior could be taken into account. Note that while developing
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the adjustment method it has been found that the g-term, introduced to allow for an adjustment
of the piezoelectric coefficients, only becomes effective when also the f-term is regarded in the
free energy. In the abscense of the f-term, a non-vanishing g-term always leads to an instability
of the free energy, since the free energy then tends towards negative infinity for big polarizations
in any crystallographic direction. On the other hand, the f-term can exist without the g-term.

Figure 3.8.: Plots of adjusted free energy in the expanded form for PZT. (a) Free energy versus polariza-
tion for different crystallographic directions. The absolute minima in 〈100〉 direction define
the tetragonal phase. (b) Contour plot of the free energy in the [100] plane showing the four
equivalent tetragonal minima in 〈100〉 direction. (c) Contour plot of the free energy in the
[110] plane.

Summarizing the expanded form of the free energy and the improved adjustment process dis-
cussed in this chapter, it can be found that the extensions of the free energy made it possible to
fully take tetragonal elastic behavior into account and to adjust all piezoelectric coefficients in-
dependently from the spontaneous strains. It has been shown that the f- and g-terms, which were
adopted from literature [71] for BaTiO3, are not sufficient for describing the elastic properties
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of PTO and PZT predicted from first-principles DFT calculations. Therefore, the free energy
has been extended by a new energy term, denoted h-term, that has not appeared in literature
before. Together with adding 8th order polarization terms to the Landau energy, the free energy
for PZT could be adjusted to exactly match the atomistic target parameters used as input for
the adjustment process. In the adjusted free energy of PTO, only the 180◦ domain wall energy
could not be fitted exactly and was higher than the DFT prediction, while for all other adjusted
intrinsic and extrinsic ferroelectric properties a full accordance with the DFT input parameters
was achieved. Hence, the first interface in the multi-scale simulation chain for ferroelectrics has
been successfully established.
However, the additional energy terms discussed in this chapter also significantly raise the nu-
merical complexity of the phase-field model. Since the increased non-linearity of the phase-field
model multiplies the numerical effort for solving the Ginzburg-Landau equation, the basic form
of the adjusted free energy as discussed in chapter 2 will be used for the now following de-
velopment of the second interface in the simulation chain between phase-field modeling and
micromechanical modeling.
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4. Interface between phase-field and micromechanical methods

In the previous chapters, the first interface of the knowledge based multi-scale simulation chain
has successfully been developed, linking atomistic methods and phase-field modeling. In order
to completely bridge the remaining gap between phase-field methods and micromechanical
modeling, a second interface will be developed in the following, as illustrated in Figure 4.1:

meso-scalenano-scale micro-scale

atomistic methods phase-field methods micromechanical methods

knowledge based multi-scale simulation chain

Figure 4.1.: In order to link phase-field and micromechanical methods within the knowledge based multi-
scale simulation chain for ferroelectrics, a second interface has to be developed.

The concept of the second interface is to use phase-field simulations in order to analyse typical
ferroelectric domain structures under electromechancial loading. These calculations are sup-
posed to yield domain-effective material parameters, which can subsequently be used as input
for micromechanical models. As described in chapter 2, the employed phase-field model has
been adjusted to atomistic input parameters before, allowing for a completely knowledge based
transfer of ferroelectric properties from the atomistic to the micromechanical level.
This chapter deals with the numeric implementation of the phase-field theory. Using the finite-
element platform COMSOL Multiphysics, the governing equations of the phase-field method
will be implemented in the weak formulation for one-, two-, and three-dimensional configura-
tions. In order to enable the computation of bulk material behavior, periodic boundary condi-
tions will also be implemented in COMSOL Multiphysics, as well as formulations to investigate
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4. Interface between phase-field and micromechanical methods

point defects and grain boundaries. The numeric implementation will be verified by calculating
a domain configuration that also has an analytical solution, and comparing both. Finally, a mesh
study for the finite-element mesh will be performed, showing the mesh densitiy necessary for
investigating ferroelectric domain structures.

4.1. Finite-element implementation: Basic principles

4.1.1. Weak formulation of the phase-field theory

In order to solve the governing equations (1.1), (1.2), (1.50)-(1.55), (1.57), (1.60), (1.61), and
(1.63) of the phase-field model numerically, the finite-element formulation introduced by Su
and Landis [71] is used to implement the phase-field theory into the finite-element platform
COMSOL Multiphysics. As for the conventional finite-element approach in electromechanics,
the three components of the mechanical displacement ui and the electric potential φ are choosen
as nodal degrees of freedom [2]. Additionally, the three components of the polarization Pi, de-
noting the order parameter of the phase-field model, have to be taken into account, resulting in a
total of seven degrees of freedom per node. From them, the strain components εi j, the polariza-
tion gradient components Pi, j and the electric field components Ei can be derived, respectively.
In this case, the constitutive equations have to take Pi, Pi, j, εi j and Ei as independent variables.
However, since the Helmholtz free energy Ψ as introduced in equation (1.64) depends on Pi,
Pi, j, εi j and Di, a Legendre transformation has to be applied in order to replace Di by Ei, yielding
the electric enthalpy h:

h(Pi,Pi, j,εi j,Ei) = Ψ(Pi,Pi, j,εi j,Di)−EiDi =

= ψLandau(Pi)+ψgrad(Pi, j)+ψcoup(Pi,εi j)+ψelast(εi j)−
1
2

κ0EiEi−EiPi.

(4.1)

From the electric enthalpy h, the stresses σi j, the dielectric displacements Di and the micro-
forces ξi j and ηi are computed by partial derivation with respect to the independent variables:

σi j =
∂h

∂εi j
, Di =−

∂h

∂Ei
, ξi j =

∂h

∂Pi, j
, and ηi =

∂h

∂Pi
. (4.2)

Following the work of Su and Landis [71], the variational statement∫
V

βi jṖjδPidV +
∫

V
ρ üiδuidV +

∫
V

σ jiδεi j−DiδEi +ηiδPi +ξ jiδPi, jdV =

=
∫

V
biδui−qδφ + γiδPidV +

∫
S

tiδui−ωδφ +ξ jin jδPidS (4.3)
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describes the governing phase-field equations in the weak formulation. This principle of virtual
work builds the foundation of the finite-element implementation, where the nodal degrees of
freedom ui, Pi and φ are computed within the elements, and the state variables σi j, Di, ξi j and
ηi are derived using equations (4.1) and (4.2).

4.1.2. Implementation in COMSOL Multiphysics

The finite-element platform COMSOL Multiphysics provides the possibility of directly imple-
menting finite-element problems in the so-called weak form. This mathematically weak formu-
lation is more flexible than the strong partial differential equation (PDE) formulation of a spe-
cific problem. It is especially suited for solving strongly nonlinear models and takes the form
of a variational principle under certain conditions. Therefore, equations derived from energy
principles can be entered in a very compact and convenient form in COMSOL Multiphysics.

In a volume Ω confined by a boundary ∂Ω, the general form of the weak formulation in COM-
SOL Multiphysics can be written as0 =

∫
Ω
(∇νlΓl +νlFl)dV +

∫
∂Ω

νlGldA

0 = Rm on ∂Ω,
(4.4)

where νl are arbitrary functions on Ω called test functions, and Γl , Fl , Gl and Rm are functions
of the dependent variables ul , which in turn depend on the independent variables of the system.
Here, functions ul are to be found that hold for all test functions νl and satisfy the boundary
condition Rm = 0 on ∂Ω. If the energy of the considered system is given as an integral of some
expression involving ul , then the stationary condition of the solution, i.e. the state of lowest
energy is precisely the weak formulation shown above. When comparing equation (4.4) with
equation (4.3) it becomes obvious that the governing equations of the phase-field theory formu-
lated in the form of a variational statement can directly be entered into the general formulation
of the weak form in COMSOL Multiphysics. Provided that the system is stationary, i.e. Ṗi = 0
and neglecting the inertia of the material, i.e. assuming mechanically quasi-static conditions
üi = 0, it can be seen that Γl = 0. Furthermore, the quantities σi j, Di, ηi, ξi j, bi, q and γi from
equation (4.3) are directly identified as Fl in equation (4.4), and the quantities ti, ω and ξi jni are
identified as Gl .

The implementation in COMSOL Multiphysics is carried out in the following way: As dis-
cussed above, the nodal degrees of freedom ux, uy, uz, Px, Py, Pz, and phi are the components
of the mechanical displacement ui, the components of the polarization Pi and the electric poten-
tial φ , respectively. Partial derivatives in the COMSOL Multiphysics environment are described
as follows: uxx denotes the derivative of ux with respect to the coordinate x, whereas uxy is the
spatial derivative of ux with respect to the coordinate y. Then, as illustrated in Figure 4.2, the
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volume terms of equation (4.4) can be entered into the weak edit field of Ω in the Subdomain

Settings dialog box of COMSOL Multiphysics as

sigmaxx*test(uxx)+sigmayy*test(uyy)+...-Dx*test(-phix)-Dy*test(-phiy)-

...+etax*test(Px)+etay*test(Py)+...+xixx*test(Pxx)+xiyy*test(Pyy)+...,

where sigmaxx= σ11, sigmayy= σ22, etax= η1, etay= η2, Dx= D1, Dy= D2, xixx= ξ11,
xiyy= ξ22 etc., and test(..) denotes the test functions depending on the nodal degrees of
freedom. Additionally, all expressions Fl have to be entered into the Scalar Expressions dialog
box.

Figure 4.2.: Implementation of the weak formulation of the phase-field theory in COMSOL Multi-
physics: entering the volume terms of equation (4.4) in the Subdomain Settings dialog box.

4.2. Boundary conditions

4.2.1. Weak and strong boundary constraints

The next step in the finite-element implementation of the phase-field theory is the definition
of the boundary conditions. In a three-dimensional model, there are surface, edge and point
boundaries present. However, for reasons of clarity a two-dimensional configuration will be
considered in the following, containing only edge and point boundaries.

Two different kinds of boundary conditions can be distinguished: strong constraints, where the
independent variables of the system, i.e. the nodal degrees of freedom are directly defined on
the boundary, and weak constraints, where only Gl , i.e. functions of the dependent variables
in equation (4.4) are defined on the boundary, while the independent variables remain free. In
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4.2. Boundary conditions

Figure 4.3, these two types of boundary conditions and their implementation in COMSOL Mul-
tiphysics are shown exemplarily. Boundary conditions in COMSOL Multiphysics are entered

a) b)

Figure 4.3.: Implementation of boundary conditions in COMSOL Multiphysics. (a) Strong constraints
on a point boundary: The components of the mechanical displacements ux, uy, uz as well
as the electric potential phi are set to zero using the Point Settings dialog box. (b) Weak
boundary constraints applied to an edge boundary, entered in the Boundary Settings dialog
box: surface traction tractionxx in x-direction and surface charge density omega.

in the form 0 = Rm, where Rm can be a function of the dependent variables in the case of a
weak constraint or the nodal degrees of freedom for a strong constraint. An example for strong
boundary constraints on a point boundary in the model, e.g. a corner of the geometry, is shown
in Figure 4.3 a: Here, the components of the mechanical displacements as well as the electric
potential are set to zero on the selected point "1" in the Point Settings dialog box:

0=phi
0=ux
0=uy
0=uz

Such a boundary condition can for example be used for defining a reference point in the model.
On the contrary, Figure 4.3 b shows an example of a weak boundary condition on an edge
boundary of the model. Following eqn. (4.4), such boundary conditions can take external load-
ing of the model into account, which are then to be entered in the Boundary Settings dialog box
as weak terms, e.g.:

• traction tx applied to surface "1" in x-direction: 0=tractionxx*test(ux)

• electric charges density ω on surface "1" : 0=omega*test(phi).
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4.2.2. Periodic boundary conditions

In order to investigate the volume behavior (or bulk behavior) of a system, the application of
so-called periodic boundary conditions is a common approach. By periodically replicating the
simulation box in all considered space dimensions, a system of virtually infinite size without
any surface is generated. This is especially useful when the investigated system is of small size
and therefore the surface-to-volume ratio is big, so that the system without periodic boundary
conditions would almost exclusively show a surface behavior. In general, periodic boundary
conditions are applied for computing large systems, far away from any edges and edge effects.
Hence, they allow for investigating the bulk part of a system with no surface present, and no
knowledge of the surface is necessary. In the following, periodic boundary conditions for the
mechanic displacements, the polarization and the electric potential as well as their implementa-
tion in COMSOL Multiphysics will be discussed in detail.

4.2.3. Electric periodic boundary conditions

Of course, periodic boundary conditions have to be applied for all considered nodal degrees
of freedom. In Figure 4.4, the implementation of periodic boundary conditions is illustrated
schematically for the electric potential φ as well as for the components of the polarization Pi.
This two-dimensional example can be extended to higher or lower dimensions without loss
of generality. The source boundary "1" is to be continued periodically by replicating it on
the destination boundary "3" (and also the source boundary "2" on the destination boundary
"4", respectively). Therefore, the value of the degrees of freedom Px, Py, Pz and φ on each
source boundary node of the finite element mesh has to be copied to the respective node of the
destination boundary.

In COMSOL Multiphysics this can be realized by using the Periodic Boundary Conditions

dialog box: For each nodal degree of freedom, a constraint name is defined on the source
boundary. In the next step, this constraint is linked to the respective degree of freedom on the
destination boundary. Finally, the start and end vertices both on the source and destination
boundary are appointed to ensure the direction of rotation in which the periodic continuation
is applied and the boundaries are linked. This option would also allow for introducing a point
symmetry into the model. By adding the offsets Vi to the electric potential between the source
and the destination boundary, an electric voltage Vi and therefore an electric field can be applied
to the periodically continued model.

4.2.4. Mechanical periodic boundary conditions

As the simulation box is allowed to deform, periodic boundary conditions for the components
of the mechanical displacement ui ensure a form closure between adjacent simulation boxes
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Figure 4.4.: Schematic illustration of the periodic boundary conditions for the components of the polar-
ization Pi and the electric potential φ .

of the periodically continued configuration. Since the mechanical displacements are obtained
from summing up the mechanical strains over the size of the simulation box, the components of
the mechanical displacements cannot be replicated on the boundary to be continued, as shown
above for the electric potential and the components of the polarization. In Figure 4.5, the basic
principles of the implementation of periodic boundary conditions for the mechanical displace-
ments ui are illustrated schematically. In a first step, a reference node on the source boundary
located at an arbitrary position xref,scr

i as well as a reference node located at xref,dst
i on the desti-

nation boundary are defined. The components of the mechanical displacement on these nodes
are uref,src

i (xref,src
i ) for the node on the source boundary and uref,dst

i (xref,dst
i ) for the node on the

destination boundary. The distance between the two nodes is ∆Θi = xref,dst
i − xref,src

i . Then, the
strain

S̃i j =
uref,dst

i (xref,dst
i )−uref,src

i (xref,src
i )

∆Θ j
(4.5)
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source boundary

destination boundary

source boundary

destination boundary

Figure 4.5.: Implementation of periodic boundary conditions for the components of the mechanical dis-
placements ui. Once the source and destination boundary are connected, the boundaries are
allowed to deform while still ensuring form closure between adjacent simulation boxes, as
illustrated schematically in the lower part of the figure.

between the reference node on the source boundary and the reference node on the destination
boundary can be calculated. In order to mechancially connect all remaining nodes on the desti-
nation boundary to their corresponding nodes on the source boundary, the following relation is
applied:

urepl
i (xrepl

i ) = ucorr
i (xcorr

i )+ S̃i j∆x j. (4.6)

Here, urepl
i (xrepl

i ) are the replicated components of the mechanical displacement on the destina-
tion boundary, ucorr

i (xcorr
i ) are the corresponding components of the mechancial displacement

on the source boundary, and ∆xi = xrepl
i − xcorr

i is the distance between the pair of nodes that
is to be linked. Hence, for each of the linked node pairs, the mechancial displacement of the
replicated node on the destination boundary is obtained by taking the mechanical displacement
of the node on the source boundary and adding a global displacement S̃i j∆x j. Therefore, the
boundary problem has been decreased to one remaining degree of freedom, which is the global

86



4.3. Different orientations: rotation of energy function

strain S̃i j between the source and destination boundaries.

The only problem of this approach is that the reference node pair allegorizes distinguished
points in the periodically continued system. While this does not matter when a completely
homogeneous polarization state is considered, problems arise once the domain state is inho-
mogeneous and contains domain walls. If the position of a domain wall randomly coincides
with the locations xref,scr

i or xref,dst
i of the reference nodes on the source or destination boundary,

the local mechanical strains within the domain wall are projected in the form of a global strain
S̃i j on all other boundary nodes, resulting in a divergence of the calculation. An appropriate
way of avoiding this problem is to define the global strain S̃i j in a more general way. Instead of
choosing a pair of reference nodes on the source and destination boundaries that is subsequently
used to calculate the global strain, the mean mechanical displacements 〈usrc

i 〉 and 〈udst
i 〉 on the

source and destination boundary are computed by averaging the components of the mechanical
displacement on all boundary nodes. After that, a mean strain

〈S̃i j〉=
〈udst

i 〉−〈usrc
i 〉

〈∆Θ j〉
(4.7)

is defined with 〈Θi〉 being the mean distance between source and destination boundary. Subse-
quently this global strain is applied in a similar manner as shown in eqn. (4.6) in order to link
the nodes on the source and destination boundaries periodically:

urepl
i (xrepl

i ) = ucorr
i (xcorr

i )+ 〈S̃i j〉∆x j. (4.8)

In COMSOL Multiphysics this can be realized by integrating the components of the mechanical
displacements using Boundary Integration Coupling Variables: For all boundaries that are to
be continued periodically, the components of the mechanical displacements ui are integrated
and divided by the length of the respective boundaries, yielding mean mechanical displace-
ments 〈ui〉 of all boundaries. These mean mechanical displacements are then taken to compute
the mean strains in the Global Expressions environment as shown in eqn. (4.7). Finally, source
and destination boundaries are connected using the Periodic Boundary Conditions dialog box
following eqn. (4.8). Summarizing the implementation of periodic boundary conditions, Fig-
ure 4.6 shows a deformation plot of a periodically continued domain configuration. A form
closure between adjacent simulation boxes as well as a periodically continued domain pattern
have been achieved.

4.3. Different orientations: rotation of energy function

Within the FE-implementation of the phase-field theory, the crystallographic orientation of the
considered model is determined by the free energy used, strictly speaking by the direction of the
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Figure 4.6.: Periodically continued domain configuration: the deformation illustrates the mechancial dis-
placements ui whereas both the color coding and the arrows depict the polarization Pi.

free energy’s minima that define the spontaneously polarized state. For the energy function as
shown in eqn. (4.1), the spontaneous polarization is oriented along the 〈100〉 axes, and therefore
the crystallographic orientation coincides with the coordinate system of the simulation box in
COMSOL Multiphysics.

In order to investigate e.g. grain boundaries or pure 90◦ domain wall systems using periodic
boundary conditions, it has to be possible to vary the crystallographic orientation of the model
with respect to the orientation of the COMSOL Multiphysics simulation box, or that the simula-
tion box contains several subdomains of different crystallographic orientation. For this reason,
the employed free energy containing all material information in the phase-field model has to be
rotated spatially. This is shown in the approach below.

Two coordinate systems are considered in the following, as illustrated in Figure 4.7: In the crys-
tallographic coordinate system (xcrys

1 , xcrys
2 , xcrys

3 ), the electric enthalpy used for the FE-imple-
mentation is denoted hcrys(Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i ). The independent variables are the compo-
nents of the polarization Pcrys

i , the gradient of the polarization Pcrys
i, j , the mechanical strains ε

crys
i j

and the electric field Ecrys
i , whereas the dependent variables are the components of the mechan-

ical stresses σ
crys
i j , the dielectric displacement Dcrys

i as well as the microforces η
crys
i and ξ

crys
i j .

In the coordinate system of the simulation box in COMSOL Multiphysics (xcoms
1 , xcoms

2 , xcoms
3 )

– referred to as COMSOL coordinate system – all quantities are denoted in like manner.

In a first step, the rotation matrix is to be chosen. Throughout this work, only rotations around
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COMSOL coordinate system

simulation box

crystallographic 
coordinate system

Figure 4.7.: Illustration of the two considered coordinate systems: the crystallographic coordinate system
(xcrys

1 , xcrys
2 , xcrys

3 ) and the COMSOL coordinate system (xcoms
1 , xcoms

2 , xcoms
3 ).

the x3 axis will be performed. Therefore, the rotation matrix

Mcoms→crys
i j (θrot) =

cos(θrot) −sin(θrot) 0
sin(θrot) cos(θrot) 0

0 0 1

 (4.9)

is sufficient, rotating points and vectors from the COMSOL coordinate system to the crystallo-
graphic coordinate system counterclockwise in the x1-x2 plane through an angle θrot.

In the crystallographic coordinate system, the dependent variables can be obtained by partial
derivation of the electric enthalpy with respect to the independent variables, and in general the
dependent variables are functions of all independent variables:

η
crys
i (Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i ) =
∂hcrys(Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i )

∂Pcrys
i

(4.10)

ξ
crys
i j (Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i ) =
∂hcrys(Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i )

∂Pcrys
i, j

(4.11)

σ
crys
i j (Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i ) =
∂hcrys(Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i )

∂ε
crys
i j

(4.12)

Dcrys
i (Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i ) = −
∂hcrys(Pcrys

i ,Pcrys
i, j ,ε

crys
i j ,Ecrys

i )

∂Ecrys
i

. (4.13)

Then, the independent variables in the crystallographic coordinate system can be expressed
in terms of the independent variables in the COMSOL coordinate system by performing the
rotation operations

Pcrys
j (Pcoms

i ) = Mcoms→crys
i j (θrot) ·Pcoms

i (4.14)
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Pcrys
k,l (Pcoms

i, j ) = Mcoms→crys
ki (θrot) ·Mcoms→crys

l j (θrot) ·Pcoms
i, j (4.15)

ε
crys
kl (εcoms

i j ) = Mcoms→crys
ki (θrot) ·Mcoms→crys

l j (θrot) · εcoms
i j (4.16)

Ecrys
j (Ecoms

i ) = Mcoms→crys
i j (θrot) ·Ecoms

i . (4.17)

Substituting the independent variables in equations (4.10-4.13) with the expressions from (4.14-
4.17) yields a set of dependent variables in the crystallographic coordinate system that depend
on the independent variables expressed in the COMSOL coordinate system:

η
crys
i (Pcoms

i ,Pcoms
i, j ,εcoms

i j ,Ecoms
i ) (4.18)

ξ
crys
i j (Pcoms

i ,Pcoms
i, j ,εcoms

i j ,Ecoms
i ) (4.19)

σ
crys
i j (Pcoms

i ,Pcoms
i, j ,εcoms

i j ,Ecoms
i ) (4.20)

Dcrys
i (Pcoms

i ,Pcoms
i, j ,εcoms

i j ,Ecoms
i ). (4.21)

Finally, the dependent variables in the COMSOL coordinate system can be computed by per-
forming a rotation operation on the dependent variables in the crystallographic coordinate sys-
tem depending on the independent variables in the COMSOL coordinate system:

η
coms
j = Mcoms→crys

i j (θrot) ·ηcrys
i (Pcoms

i ,Pcoms
i, j ,εcoms

i j ,Ecoms
i ) (4.22)

ξ
coms
kl = Mcoms→crys

ki (θrot) ·Mcoms→crys
l j (θrot) ·ξ crys

i j (Pcoms
i ,Pcoms

i, j ,εcoms
i j ,Ecoms

i ) (4.23)

σ
coms
kl = Mcoms→crys

ki (θrot) ·Mcoms→crys
l j (θrot) ·σ crys

i j (Pcoms
i ,Pcoms

i, j ,εcoms
i j ,Ecoms

i ) (4.24)

Dcoms
j = Mcoms→crys

i j (θrot) ·Dcrys
i (Pcoms

i ,Pcoms
i, j ,εcoms

i j ,Ecoms
i ). (4.25)

This set of the dependent variables ηcoms
i , ξ coms

i j , σ coms
i j and Dcoms

i in the COMSOL coordi-
nate system depends on the independent variables Pcoms

i , Pcoms
i, j , εcoms

i j and Ecoms
i that are also

expressed in the COMSOL coordinate system. Equations (4.22-4.25) constitute the core of
the weak formulation (cf. eqn. 4.3) and can therefore directly be implemented in COMSOL
Multiphysics as shown in chapter 4.1.2. In summary, the approach shown above allows for
arbitrary rotations of the crystallographic coordinate system with respect to the COMSOL co-
ordinate system in the x1-x2-plane. Note that the rotation operations of the free energy were
performed in MATHEMATICA, and a tool was developed for directly transfering the results
into COMSOL Multiphysics.

4.4. FE-implementation for one-, two- and three-dimensional configurations

The finite-element implementation of the phase-field theory in COMSOL Multiphysics as shown
in section 4.1.2 has been performed for one-, two- and three-dimensional configurations. Af-
ter verifying the FE-implementation by comparing an analytical one-dimensional solution to
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a numerically computed solution, the two-dimensional FE-implementation used in chapter 5
in order to investigate typical domain structures will be discussed in detail. Finally, the three-
dimensional FE-implementation will be shown exemplarily.

4.4.1. One-dimensional FE-implementation

As discussed in section 2.3, Cao and Cross [9] found an analytical solution for the one-dimen-
sional 180◦ domain wall in a perfect, infinite and stress-free monocrystal. This analytical so-
lution, based on a free energy function of 6th order in terms of the polarization, can be used in
order to verify the FE-implementation by comparing it to a numerically obtained solution of a
180◦ domain wall under the same conditions as assumed for the analytical solution. For a one-
dimensional 180◦ domain wall located in the x2-x3-plane, the polarization component P3(x1)

changes in x1-direction from P3(x1→−∞) = P0 to P3(x1→∞) =−P0, while P1 = P2 = 0. Con-
sidering the symmetry of the infinitely expanded problem, the strains in x2- and x3-direction are
set to ε22 = e⊥ and ε33 = e‖, and only the strain ε11(x1) varies in x1-direction. Furthermore, it
is assumed that there are no shear strains. Following Cao and Cross [9], the analytical solution
of the polarization P3(x1) across the domain wall is given as

P3(x1) =
P0 sinh(x1

η
)√

A+ sinh2(x1
η
)

(4.26)

and the strain ε11(x1) across the domain wall as

ε11(x1) = e‖−
q12

C11

P2
0

1+A−1 sinh2(x1
η
)
, (4.27)

where A and η are constants as defined in equations (2.19-2.20). Then, the gradient of the
polarization component P3(x1) in x1-direction is calculated as

P3,1(x1) =
∂P3(x1)

∂x1
(4.28)

by taking the partial derivative of equation (4.26) with respect to x1. Finally, an expression of the
free energy Ψ(x1) across the 180◦ domain wall is found by substituting equations (4.26-4.28)
in (1.64), yielding

Ψ(P3(x),P3,1(x),ε11(x)). (4.29)

In order to numerically compute the 180◦ domain wall, the polarization component P3, the
mechanical displacement component u1 as well as the electric potential φ are taken as nodal
degrees of freedom in the one-dimensional FE-implementation. The considered model has a
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length of 4nm, and as a strong boundary constraint the electric potential φ is set to zero at both
ends of the configuration so that no electric field is applied. At one end of the configuration
the mechanical displacement is fixed (u1 = 0) while at the other end u1 remains free so that
the configuration is stress-free in x1-direction. In Figure 4.8 a comparison between the analyt-
ical solution and the numerical solution of the 180◦ domain wall is shown. A high degree of
agreement between both solutions can be seen, verifying the FE-implementation.

Figure 4.8.: Comparison between the analytical solution of a one-dimensional 180◦ domain wall
and the respective numerical solution obtained from the FE-implemention in COMSOL
Multiphysics. The high degree of agreement between both solutions verifies the FE-
implementation.

4.4.2. Two-dimensional FE-implementation

In order to investigate ferroelectric domain structures under electromechanical loading, a two-
dimensional FE-model will be employed in the course of this work. As the seven nodal degrees
of freedom, the three components of the polarization P1, P2, P3, the three components of the me-
chanical displacement u1, u2, u3, as well as the electric potential φ are chosen. Components in
x3-direction are also considered, although the model is spatially confined to the two-dimensional
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x1-x2-plane. Therefore, all derivatives with respect to x3 have to be set to zero: P1,3 = 0, P2,3 = 0,
P3,3 = 0, u1,3 = 0, u2,3 = 0. For all nodal degrees of freedom, periodic boundary conditions are
applied in the x1-x2-plane.
In a system confined by periodic boundary conditions and containing only one crystallographic
orientation, the state of lowest total energy is a monodomain, as long as no external electric
fields or mechanical strains are applied. Hence, such a system will always strive towards a state
that is completely polarized in one direction and does not contain any domain walls. In order to
investigate ferroelectric domain patterns, a way of stabilizing the domain configuration has to
be found. One approach is controlling the global strain in at least one dimension of the system.
If the global strain is chosen appropriately, a stable domain configuration can be obtained that
can then be further investigated, e.g. by electromechanical loading. This global strain can be
entered into the mechanical periodic boundary conditions as discussed in section 4.2.4.
Below, the concept of controlling the global strain in order to stabilize a domain configuration
is illustrated by the example of a 90◦ domain stack. Such a configuration consists of two types
of ferroelectric domains, which are separated by equidistant 90◦ domain walls. Figure 4.9 a
schematically shows a 90◦ domain stack containing two domains of orientation (P1,0) and
(0,−P2). Within the domain (P1,0), the (spontaneous) equilibrium strain has the components

(P1,0)

(P1,0)

(0,-P2)

(0,-P2)

a) b)

x1

x2

(P1,0):  50%

(0,-P2): 50%

Figure 4.9.: (a) Schematical illustration of a 90◦ domain stack consisting of the two domain types (P1,0)
and (0,−P2) (b) FE-solution of the 90◦ domain stack: The surface color and the arrows
indicate the direction of the polarization, while the deformation illustrates the mechanical
displacements in the x1-x2-plane. Note that the deformation is magnified by a factor of 4 in
order to enhance visibility.

ε11 = e‖ and ε22 = e⊥, whereas the strain in the domain (0,−P2) is inverted: ε11 = e⊥ and ε22 =

e‖. Therefore, the global strains S̃11 and S̃22 of the configuration are chosen as a combination of
the strains in both types of domains, weighted by the fraction of the respective domains. Since
both considered domains are equally represented in a 90◦ domain stack, the global strains are
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calculated as

S̃11 = 0.5 · e‖+0.5 · e⊥ = S̃22 (4.30)

and can subsequently be implemented into the mechanical periodic boundary conditions using
equation (4.6). Figure 4.9 b shows the numerical solution of a 90◦ domain stack that is stabilized
by applying global strains. From the deformation plot it can be seen that the boundaries of the
configuration are allowed to deform while the configuration can still be continued periodically.
Within the domains both the polarization and the strains almost reach their spontaneous values,
indicating that the global strains S̃11 and S̃22 were chosen adequately. An explanation for the de-
viation of about 1-2% from the equilibrium spontaneous values are the domain walls present in
the configuration and their internal strains, which were not considered in the calculation (4.30)
of the global strains. The concept of controlling the global strain can be motivated physically
by the fact that bulk domain structures in a real ferroelectric ceramic are always strained and
affected by their surroundings, e.g. by neighboring grains. Hence, controlling the strain in the
configuration can be considered as an appropriate way of stabilizing ferroelectric bulk domain
configurations when periodic boundary conditions are applied.

Within the two-dimensional FE-implementation, two conditions for the mechanical displace-
ment in x3-direction are possible: the state of plain strain and the state of plain stress. In the
case of a plain strain state, a uniform strain ε33 = u3,3 is applied to all nodes of the configura-
tion. In contrast to the periodically continued x1-x2-plane where the strains can vary spatially
and only the global (averaged) strains are controlled, all nodes experience the same strain in
x3-direction. The strain chosen in x3-direction shows a significant impact on the ferroelec-
tric domain pattern, especially on the polarization P3 in x3-direction: If for instance the strain
ε33 = u3,3 = e⊥, the prevailing polarization components in the configuration are P1 and P2, while
fractions of P3 only arise in the proximity of head-to-head or tail-to-tail polarization configu-
rations in the x1-x2-plane. This behavior is illustrated in Figure 4.11: The three polarization
components of a domain configuration with a plain strain state in x3-direction are shown sep-
arately, and contributions of P3 can only be found at positions where 180◦ domain walls and
90◦ domain walls collide and interact. At these positions the depolarization fields caused by
head-to-head or tail-to-tail configurations force the polarization out of the x1-x2-plane, yielding
P3 contributions.

In the case of a plain stress state in x3-direction, a uniform stress σ33 is applied to all nodes,
whereas the strain ε33 = u3,3 is now free. By controlling the stress, for instance a stress-free
state in x3-direction can be realized. In order to implement the state of plain stress, a Legendre
transformation has to be performed for replacing ε33 with σ33 in the electric enthalpy:

∂h(Pi,Pi, j,εi j,Ei)

∂ε33
= σ33 ⇒ ε33(σ33) ⇒ h̃(Pi,Pi, j,ε11,ε22,σ33, ...,Ei) (4.31)
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P1 P2

P3

0 0.9 -0.9 0.9

0 0.65

Figure 4.10.: Two-dimensional FE-model containing a ferroelectric domain configuration. The three
components of the polarization are plotted separately, with the color coding indicating the
respective polarization in C/m2. In x3-direction a state of plain strain is assumed.

Because the strain in x3-direction is allowed to vary spatially, the plain stress state has less
impact on the polarization component P3. However, since the focus of this work is on the
investigation of ferroelectric bulk domain structures stabilized by a global strain control in the
periodically continued x1-x2-plane, the plain stress state will not be used in order to avoid a
mixture of stress and strain control in the configuration.

In summary, a two-dimensional FE-implementation is available that is periodically continued
in the x1-x2-plane and contains degrees of freedom for the polarization and the mechanical
displacement in x3-direction. Domain configurations can be stabilized by controlling the global
strain in the x1-x2-plane, and a plain strain state is applied in x3-direction. Therefore, a three-
dimensional electromechanical loading of the configuration is possible.

4.4.3. Three-dimensional FE-implementation

In the progress of this work, also a three-dimensional FE-implementation of the phase-field
theory in COMSOL Multiphysics has been performed. In doing so, the same nodal degrees
of freedom as for the two-dimensional FE-implementation discussed in the previous section
were used. An example of a three-dimensional ferroelectric domain structure is illustrated in
Figure 4.11: The size of the configuration is 24×16×1nm, and periodic boundary conditions are
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applied for all nodal degrees of freedom in all spatial directions. In order to stabilize the domain
pattern, the global strain is controlled in the configuration. The major difference between the
two-dimensional and the three-dimensional implementation arises in x3-direction, which is no
longer confined by the state of plain strain: The domain configuration is now allowed to deform
out of the x1-x2-plane.

P1 P2 P3

3D deformation u1, u2, u3 deformation u1, u2, u3

x1-x2 plane x1-x3 planepolarization [C/m²]

-1 0 1

Figure 4.11.: Three-dimensional FE-implementation: The dimensions of the example are 24×16×1nm,
and the periodically continued domain configuration is stabilized by a global strain control.

While the three-dimensional FE-implementation would be the most natural model for investi-
gating ferroelectric bulk behavior, it could not be used in this work due to the massive computa-
tional effort necessary to solve it. For instance, computing the configuration shown in Fig. 4.11
took a computation time of 70 hours on a 2.67GHz quad core CPU using 42GB of main mem-
ory. Although the height of the configuration is only 1nm, it already consists of 7,680 elements,
resulting in a total of about 121,000 degrees of freedom. This corresponds to a mesh density
of only 2 nodes/nm, but, as will be shown in section 4.6, a mesh density of at least 7 nodes/nm
would be necessary in order to investigate the ferroelectric small-signal behavior. Therefore,
the computation and investigation of real three-dimensional models with comparable dimen-
sions in all three spatial directions is not possible with the currently available computational
power, and the two-dimensional FE-implementation discussed in the previous section will be
used throughout this work.
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4.5. Implementation of defects

Real ferroelectric ceramics are never free from defects, which are an important aspect since
they can significantly influence the ferroelectric behavior by interacting with the domain struc-
ture. Effects of charged defects [71] and dislocations [49] on individual domain walls have been
studied before using phase-field modeling. The focus of this work is investigating the effects
of charged defects on the small-signal and large-signal behavior of ferroelectric domain con-
figurations. Therefore, charged defects are included in the form of positive or negative charges
at specific points of the configuration. In the weak formulation of the phase-field theory, point
charges are taken into account as the part∫

V
−qδφdV (4.32)

of the variational statement (4.3), where q is the charge of the point defect. In COMSOL
Multiphysics, charged defects can be implemented by defining the location of the defect as a
geometric point and entering q*test(phi) into the weak edit field of the Point settings dialog
box. Note that in a two-dimensional model (x1-x2-plane) a point defect becomes a line defect,
and q is a charge per length continuously spread in x3-direction. For periodically continued con-
figurations it is of utmost importance to maintain charge neutrality: Positive charges have to be
compensated by negative charges so that eqn. (4.32) becomes zero, otherwise the configuration
charges up infinitely.

4.6. FE-mesh studies

A main aspect of the finite-element method is the mesh discretization: The geometry of the
considered problem is discretized into a number of sub-domains, the so-called elements. The
size of these finite elements, and therefore the mesh density substantially influences the accuracy
of the finite-element approximate computation. On the one hand the mesh density is to be
chosen as coarse as possible in order to reduce the necessary computational resources and time,
but on the other hand as fine as necessary to avoid artefacts caused by a too coarse mesh.

When calculating small signal parameters of domain configurations, external loads are applied
and their effect on the domain structure is determined. In chapter 5 it will be found that a
considerable effect on the small-signal parameters is caused by the displacement of the domain
structure, i.e. by the movement of domain walls. Hence, it is very important that domain walls
do not interact with the FE-mesh and that their movement is not influenced by the FE-mesh
in any way. Two kinds of artefacts can occur if domain walls are pinned by a too coarse FE-
mesh: Firstly, the domain pattern might not represent the configuration of lowest total energy,
i.e. domain walls can be pinned and thereby prevented from taking their equilibrium position.
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Secondly, even if the FE-mesh is fine enough for the domain walls to reach their equilibrium
position, they might still get pinned by the FE-mesh if the configuration is loaded externally
by small fields. In this case, the determined small signal parameters would not contain the
contribution of domain wall movements and therefore show a systematical error.

In order to find an optimum mesh density that takes all the above-mentioned requirements into
account, a mesh study has been performed. A well-known domain configuration has been
meshed with different mesh densities, and to each of these configurations an external load has
been applied. Then, the resulting change of the system parameters was determined and com-
pared.

One of the most elementary configurations that can be found is the ideal, periodically continued
90◦ domain stack. It consists of a succession of domains tilted to each other by an angle of
90◦ and separated by 90◦ domain walls. Considering a periodically continued configuration
stabilized by a global strain control, the domain walls are arranged equidistantly for the state
of lowest total energy, i.e. in equilbrium without any applied external fields. Figure 4.12 illus-
trates the testing configuration with a length of 24nm, and therefore a domain width (distance
between domain walls) of 12nm. Since the 90◦ domain stack can practically be treated as a
one-dimensional configuration, the size of the model in x2-direction is only 0.5nm.

x1

x2

equilibrium domain wall position

initial domain wall position

0.5nm

5.5nm 5.5nm13nm

6nm 6nm12nm

Figure 4.12.: Testing configuration for the FE-mesh study showing the initial and equilibrium domain
wall positions of the investigated perfect 90◦ domain stack.

For the testing configuration, a rectangular FE-mesh was chosen. In the x2-direction, the mesh
contains two elements, whereas the model is meshed with densities from 2 nodes/nm up to
7 nodes/nm in x1-direction. As an initial condition for the FE-computation, the domain walls
are shifted 0.5nm from their equilibrium condition, so that the initial domain widths in the sim-
ulation box are 11nm and 13nm, respectively (cf. Fig. 4.12). For each of these configurations,
first the equilibrium state without any applied external loadings is computed. Subsequently, an
electric field in x2-direction is applied to this solution.

Figure 4.13 shows the results of the FE-mesh study: For all considered mesh densities, the
variation of the dielectric displacement ∆D2 = D2−D0

2 is plotted versus the applied electric
field E2 in x2-direction, where D0

2 denotes the equilibrium value of the dielectric displacement.
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Figure 4.13.: Results of the FE-mesh study: deviation of the dielectric displacement D2 from its equilib-
rium value plotted versus the applied electric field E2 for different mesh densitites. A linear
dependence is not achieved until a mesh density of 7 nodes/nm.

Therefore, the slope of the curves depicts a component of the dielectric permittivity tensor and
is one of the domain effective small signals to be determined in chapter 5. For a mesh densitiy of
three and less nodes/nm, the system is not able to relax from the initial condition (domain widths
11nm/13nm) into its equilibrium state (two domains of width 12nm). This can be explained by
a massive pinning of the domain walls by the FE-mesh. For high enough applied electric fields,
the domain wall tears off the FE-mesh and jumps to the next node in the FE-mesh where it is
pinned again, as can be seen from the slope of the curve that is approximately the same before
and after the jump. This behavior is a completely artificial artefact solely caused by the too
coarse FE-mesh. For a mesh density of four nodes/nm, the configuration is able to relax into
the equilibrium state when no external field is applied. Nevertheless, the FE-mesh still prevents
the domain wall from moving freely, as can be seen from the occurring jump as well as from
the slope of the curve, which is similar to that of configurations having a coarser FE-mesh and
much smaller than that of configurations having a higher mesh density. It is not until a mesh
density of 7 nodes/nm that an approximately linear dependence of ∆D2(E2) can be observed.
This corresponds to a mesh density of 2-3 nodes on the slope of the domain wall as illustrated
in Figure 4.14 b. In summary, a mesh density of 7 nodes/nm in the vicinity of domain walls
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is necessary in order to avoid artefacts from a too coarse FE-mesh like the pinning of domain
walls and will therefore be used throughout this work.

a) b)2 nodes / nm 7 nodes / nm

11

2 2

Figure 4.14.: Profile of the polarization component P2 in a 90◦ domain wall for two mesh densities.
The red circles indicate the nodes of the FE-mesh. While the polarization profile of the
coarsely meshed (2 nodes/nm) domain wall shows bucklings and kinks, it is smooth in the
fine meshed configuration (7 nodes/nm). In order to avoid artefacts like mesh pinning of
domain walls, a FE-mesh containing 2-3 nodes on the slope of the domain wall as illustrated
in (b) has to be used.
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Investigation of domain structures

After adjusting the free energy function of the phase-field model to atomistic input parame-
ters (chapter 2) and fully implementing the phase-field theory into the FE-Platform COMSOL
Multiphysics (chapter 4), a basis is established for bridging the gap between phase-field meth-
ods and micromechanical modeling in the aspired multi-scale simulation chain for ferroelectric
materials (Fig. 4.1). The aim of this chapter is to investigate various ferroelectric bulk domain
structures under electromechancial loading, providing domain effective input parameters for
micromechanical modeling.
First of all, typical domain structures occurring in ferroelectric ceramics are identified and dis-
cussed as well as methods for analyzing and investigating them. For micromechanical modeling
methods, the so-called small-signal and large-signal parameters of domain structures are of in-
terest. In order to determine small-signal parameters, small electric and mechanical loads are
applied to domain configurations, and the linear response of the system is examined. For such
small loads all processes in the material are reversible, so that upon unloading the initial do-
main configuration is restored. When applying higher loads, irreversible switching processes
take place, yielding the large-signal parameters, i.e. critical electrical and mechanical loads
that are necessary for initiating an irreversible reorientation of ferroelectric domains. Here, the
initial state is not restored again after unloading, so that a hysteresis behavior can be observed.
Various domain structures of increasing complexity will be investigated, also taking domain-
wall interactions as well as effects of charged defects and grain boundaries into account. Trends
will be shown regarding the development of the small-signal parameters and critical switching
fields with respect to the complexity of the domain structure. Finally, the results of this chapter
will be discussed and validated in the context of the multi-scale simulation chain.

5.1. Typical domain structures in ferroelectric ceramics

In ferroelectric ceramics like PZT or PTO, a variety of ferroelectric domain patterns is found on
the meso-scale. Figure 5.1 shows a microscope image of a tetragonal PZT (Pb(Zr0.5Ti0.5)O3)
ceramic1 obtained by piezoresponse force microscopy (PFM) [21]. Several structures typically
occurring on the meso-scale are schematically sketched into the image: regions of perfect struc-
ture, 90◦ domain walls, 180◦ domain walls, as well as imperfections and grain boundaries.

1PZT samples by PI Ceramic GmbH and CeramTec AG, produced in the scope of the BMBF project COMFEM
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Figure 5.1.: Microscopic PFM-image showing typical bulk domain structures in PZT (PFM-image: R.P.
Fernandes and G. Schneider, TU Hamburg-Harburg. Illustration: Pavel Marton, IWM
Freiburg)

In between domain walls, regions of perfect structure can be found, only consisting of the
perfect polarized crystal lattice and forming single domains. Therefore, such regions are also
referred to as monodomains. Since they contain no domain walls, these regions show a purely
intrinsic behavior, where only the crystal lattice contributes to the piezoelectric effect.

The most prominent and frequently recurring domain structure found in tetragonal ferroelec-
tric ceramics is the 90◦ domain stack. This fishbone-like structure consists of a sequence of
domains tilted by an angle of 90◦ towards each other, in which the polarization direction is
arranged head-to-tail. The 90◦ domain walls run parallelly and show a high regularity. This is
caused by the fact that curved 90◦ domain walls would charge up electrically due to resulting
depolarization fields. Since the crystallographic lattices of the two adjacent domains separated
by a 90◦ domain wall are mechanically incompatible, shear strains arise within the domain
stack, so that equidistant domain walls become energetically favorable. On the contrary, the
crystal lattices of two domains separated by a 180◦ domain wall are mechanically compatible,
allowing them to be curved and appearing mainly irregularly in the domain structure.

Also a number of defect mechanisms exist in real ferroelectric ceramics that can interfere with
the domain structures described above. Imperfections like charged and neutral defects as well
as dopants cannot be resolved using piezoresponce force microscopy and are therefore only
schematically illustrated in Figure 5.1. Nevertheless they are always present in real ferroelec-
tric ceramics and can significantly influence the piezoelectric and ferroelectric behavior. At
grain boundaries, the crystal lattice orientation mismatch of the adjacent grains evokes internal
mechanical stresses and depolarization fields, which can in turn induce electric charges at the
grain boundary, showing an influence on the domain structure.
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As mentioned above, the aim of this work is investigating the described domain formations and
their interaction with the listed defect mechanisms. However, if one tried to exactly replicate the
experimentally observed ferroelectric domain pattern of a whole grain using a FE-model and
taking all the described effects into account at the same time, certain difficulties would arise.
No knowledge is available about the boundary conditions inside the ferroelectric ceramic, i.e.
what mechanical stress and electric field distributions are caused for instance by neighboring
grains. This knowledge is essential for a numeric FE-model, since the domain configuration
in such a model has to be stabilized using boundary conditions. But even if this information
were available, it would still have to be possible to interpret the obtained solution physically,
which cannot be ensured when all effects are considered simultaneously due to the information
overflow caused by their complex mutual interaction.

Therefore, the following approach has been chosen in this work: The experimentally found typ-
ical domain structures described above will be investigated separately, and defect mechanisms
will be added to the numeric model step by step. Starting with a defect-free monodomain state,
the complexity of the domain structure will be increased by considering the perfect 90◦ domain
stack as well as bulk multidomain configurations in single crystals, i.e. inside one grain of the
ceramic. Furthermore, the interaction of charged defects and grain boundaries with different
domain configurations will be examined in detail.

5.2. Determination of small-signal parameters from domain structures

5.2.1. Basics of a small-signal analysis

An important input quantity for micromechanical modeling methods are the so-called small-
signal parameters, characterizing the linear behavior of a ferroelectric material under small
electrical or mechanical loading. When determined from a phase-field model, the small-signal
parameters not only contain the intrinsic material behavior caused by the crystal lattice, but also
extrinsic non-lattice contributions caused by the ferroelectric domain pattern on the meso-scale,
like for instance reversible domain wall motion. Therefore, using phase-field modeling in order
to investigate ferroelectric domain structures yields domain effective small-signal parameters,
averaged over the entire domain configuration.

In order to determine domain effective small-signal parameters, the FE-model developed in
section 4.4.2 is utilized to apply small electrical and mechanical loads to ferroelectric domain
structures. These loads have to be small enough for the system to remain in the linear regime,
and all processes in the material must be completely reversible upon unloading of the FE-
model. Electrical loads are applied by controlling the electric field Ei in the simulation box as
described in section 4.2.3, whereas mechanical loads are applied by varying the global strains
that stabilize the periodically continued domain configuration (cf. section 4.2.4). Note that the
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loading process is quasistatic: Starting from an initial equilibrium configuration in the abscence
of any applied electric or mechanical fields, a first loading step will be applied. The equilibrium
solution of the first loading step will then be taken as the initial configuration of the next loading
step, and so forth. All loading steps therefore represent equilibrium states.

5.2.2. Evaluation of the small-signal analysis

As mentioned above, the small-signal parameters are quantities averaged over the entire domain
configuration. The average value 〈Xi〉 of any (dependent of independent) variable Xi can be
obtained from the FE-solution as

〈Xi〉=
1

A0

∫
Xi(x1,x2)dx1dx2, (5.1)

where A0 is the geometrical area of the investigated two-dimensional configuration in the x1-
x2-plane. Since the electric field Ei and the mechanical strains εi j are the independent variables
and controlled for loading the domain configuraion electrically and mechanically, the (averaged)
dependent variables 〈Di〉 and 〈σi j〉 are the system parameters of interest for the evaluation of
the small-signal analysis. For this combination of dependent and independent variables, the
constitutive piezoelectric equations take the form

〈σi j〉 = cE
i jkl〈εkl〉− eikl〈Ei〉 (5.2)

〈Di〉 = eikl〈εkl〉+κ
ε
ik〈Ek〉, (5.3)

where cE
i jkl are the components of the elastic stiffness tensor for a constant electric field, eikl

are the components of the piezoelectricity tensor, and κε
ik are the components of the dielectric

permittivity tensor for a constant mechanical strain. These are the requested domain effec-
tive small-signal parameters. Loading the domain configuration electrically while keeping the
global strain constant yields

κ
ε
i j =

∂ 〈Di〉
∂ 〈E j〉

(5.4)

eikl = −∂ 〈σkl〉
∂ 〈Ei〉

, (5.5)

whereas applying a mechanical load at a constant electric field yields

cE
i jkl =

∂ 〈σi j〉
∂ 〈εkl〉

(5.6)

eikl =
∂ 〈Di〉
∂ 〈εkl〉

. (5.7)
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In order to numerically determine the small-signal parameters cE
i jkl , eikl and κε

ik from the FE-
solution, the respective dependent variables are plotted versus the independent variable for each
loading case. Then, according to equations (5.4-5.7), the small-signal parameters are obtained
by linear regression from the slopes of those curves. To illustrate the resulting domain effec-
tive elasticity and piezoelectricity tensors in the form of matrix arrays, the compressed matrix
notation (also denoted as Voigt notation) is used, following the IEEE Standard 176-1987 [1].
Therefore, the identities

cE
i jkl ≡ cE

pq, eikl ≡ eip, (5.8)

are defined, and the indices i, j,k, l are replaced by p,q as shown in Table 5.1.

Table 5.1.: Index replacement for the compressed matrix notation according to the IEEE standard on
piezoelectricity [1]

i j or kl p or q

11 1
22 2
33 3

23 or 32 4
13 or 31 5
12 or 21 6

5.3. Determination of domain portions

The small-signal parameters discussed in the previous section represent the averaged behavior
of the domain structure. For micromechanical modeling methods, information about the exact
domain fractions of the domain configuration is also of importance. In a monocrystalline model
of a tetragonally polarized ferroelectric material, the vector of the spontaneous polarization can
point in any of the six equivalent 〈100〉 crystalline directions, resulting in the following domain
types:

P+
1 =

+P0

0
0

 P+
2 =

 0
+P0

0

 P+
3 =

 0
0

+P0



P−1 =

−P0

0
0

 P−2 =

 0
−P0

0

 P−3 =

 0
0
−P0

 . (5.9)
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When loading ferroelectric domain configurations in the phase-field model in order to determine
small-signal (or large-signal) parameters, the fraction of each of the domain types found in
the domain configuration is of interest as an input parameter for the micromechanical model.
Therefore, the FE-solution of the phase-field model has to be analyzed with respect to the
domain portions: The solution is discretized by a grid, and every grid point is assigned to
one of the domain types. However, when considering ferroelectric domain structures consisting
of multiple domains, no sharp segmentation of the domain types as shown in (5.9) is possible,
since the equilibrium polarization in large parts of the domain configuration will deviate from
its exact spontaneous value P0 due to domain walls as well as internal electric and mechanical
fields affecting the polarization. Instead, a certain interval for the polarization vector is assigned
to each domain type:

P+
1 =

+P0,dec±0.5∆P0,dec

±0.5∆P0,dec

±0.5∆P0,dec

 P−1 =

−P0,dec±0.5∆P0,dec

±0.5∆P0,dec

±0.5∆P0,dec



P+
2 =

 ±0.5∆P0,dec

+P0,dec±0.5∆P0,dec

±0.5∆P0,dec

 P−2 =

 ±0.5∆P0,dec

−P0,dec±0.5∆P0,dec

±0.5∆P0,dec



P+
3 =

 ±0.5∆P0,dec

±0.5∆P0,dec

+P0,dec±0.5∆P0,dec

 P−3 =

 ±0.5∆P0,dec

±0.5∆P0,dec

−P0,dec±0.5∆P0,dec

 . (5.10)

P0,dec and ∆P0,dec are two parameters defining the intervals, as schematically illustrated in Figure
5.2 for a two-dimensional example. After assigning all grid points to their respective domain
type, the domain fractions ν can be defined, indicating the percentage of each domain type in
the domain configuration. The domain fractions ν have to satisfy the condition

ν(P+
1 )+ν(P−1 )+ν(P+

2 )+ν(P−2 )+ν(P+
3 )+ν(P−3 )+ν(DW ) = 1, (5.11)

where ν(DW ) is the percentage that is unassigned according to (5.10) and represents the frac-
tion of domain walls. Finally, a relation for the parameters P0,dec and ∆P0,dec has to be found. By
defining the size of the decision interval for the polarization in (5.10), they control the fraction
of unassigned domains. For a specific set of the parameters P0,dec and ∆P0,dec, a total approxi-
mate polarization of the configuration based on the obtained domain fractions can be calculated
by multiplying all domain fractions with their respective (monodomain) polarization vectors
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5.3. Determination of domain portions

2D: four domain types

Figure 5.2.: In order to assign the domain types in domain structures as shown in (5.10), intervals are
defined by the parameters P0,dec and ∆P0,dec: If the polarization vector of a grid point lies
within one of these interval, it is assigned to the respective domain type. Here, the intervals
associated with the four domain types of the two-dimensional example are schematically
illustrated, together with a contour plot of the free energy. Within the domains, the polar-
ization will be near the minima of the free energy and inside the intervals. Only at domain
walls the polarization will be outside the intervals.

from (5.9):

ν(P+
1 )

+P0

0
0

+ν(P−1 )

−P0

0
0

+ · · ·+ν(DW )

0
0
0

=

Pcalc
1

Pcalc
2

Pcalc
3

 (5.12)

This polarization Pcalc
i represents an approximation for the total polarization of the considered

domain structure, where every grid point inside a domain is weighted by its respective spon-
taneous polarization, and unassigned grid points, i.e. areas of domain walls are weighted with
zero polarization. By making use of eqn. (5.1), the actual average polarization 〈Pi〉 of the do-
main configuration can be determined and compared with the approximation Pcalc

i . Now, the
parameters P0,dec and ∆P0,dec can be chosen so that the total deviation

∆total =
√
(Pcalc

1 −〈P1〉)2 +(Pcalc
2 −〈P2〉)2 +(Pcalc

3 −〈P3〉)2 (5.13)

reaches its minimum, indicating that the segmentation of the domain configuration in the re-
spective domain types has been performed in an appropriate way. Figure 5.3 shows the total
deviation ∆total between Pcalc

i and 〈Pi〉 in dependence of the parameters P0,dec and ∆P0,dec for
an exemplary domain configuration. Here, a total deviation of ∆total = 1.1% was achieved for
a certain set of the parameters P0,dec and ∆P0,dec. In Figure 5.4, an example of an analyzed
domain configuration is illustrated: The two-dimensional model has a size of 35×20nm and
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Figure 5.3.: Total deviation ∆total between Pcalc
i and 〈Pi〉 according to equation (5.13) for an exemplary

domain configuration. For P0,dec = 0.88 and ∆P0,dec = 0.34 a minimum of ∆total is reached.

22 21

45

8
4

P1+ P1- P2+ P2- DW

Figure 5.4.: Evaluation of the domain fractions of an exemplary domain structure. On the left side,
contour plots of the polarization components P1 and P2 are shown. The dimensions of the
domain configuration are 35×20nm, and it has been discretized by a grid of 140×80 grid
points as illustrated on the right side. Also the domain fractions in per cent are depicted in a
bar diagram.
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is discretized by a grid of 140×80 points. Also the calculated domain fractions are shown:
Condition (5.11) is fulfilled, and a domain wall fraction of 4% is a typical value for domain
configurations of this size.

The evaluation of the domain fractions has been realized technically by making use of the inter-
face between MATLAB and COMSOL Multiphysics: The FE-solution obtained with COMSOL
Multiphysics is transferred to MATLAB, where it is then discretized and the domain fractions
are assigned.

5.4. Investigation of typical bulk domain structures

In the following, the small-signal and large-signal behavior of typical ferroelectric bulk domain
structures as discussed in section 5.1 will be investigated in detail. The utilized phase-field
model is based on the free energy function (1.64), and the coefficients of this free energy have
been adjusted to input parameters from atomistic calculations as shown in chapter 2. Domain
configurations for both PTO and PZT will be considered subsequently, and the respective sets
of free energy coefficients can be found in Table 2.4. For the case of PTO the PTO-SMP
coefficients will be employed, since for them a more precise adjustment to the input parameters
from atomistic calculations had been achieved when compared to the PTO-DFT coefficients.
All numerical calculations will be performed using the two-dimensional FE-Model discussed
in section 4.4.2.

5.4.1. Monodomain

The first ferroelectric domain configuration to be considered is the monodomain. This perfect
structure contains no domain walls or imperfections and is entirely polarized in one of the six
equivalent tetragonal crystallographic directions. Since the monodomain is completely homo-
geneous in all directions, the size of the simulation box has no influence on the investigation
at all. Therefore, the size of the simulation box has been chosen as 10×10nm, and the config-
uration is completely polarized in x3-direction. In the absence of any electrical or mechanical
fields, a monodomain describes the energetically lowest possible state, since only the Landau
energy term ψLandau contributes to the free energy. Hence, a monodomain configuration does
not have to be stabilized by a global strain control. Nevertheless, in order to enable a com-
parision with the small-signal parameters obtained from more complex domain structures, the
global strain in the model is controlled as follows:

S̃11 = S̃22 = e⊥, S̃33 = e‖. (5.14)

From this configuration, small-signal parameters have been obtained for PTO and PZT. An ex-
ample of the small-signal analysis is illustrated in Figure 5.5: By applying an electric field in
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x2-direction, i.e. perpendicular to the direction of the spontaneous polarization, the dielectric
permittivity tensor component κε

22 for constant strain can be obtained according to eqn. (5.4)
by determining the slope of the resulting change of the dielectric displacement D2. Likewise,
the component e311 of the piezoelectricity tensor can be obtained by loading the monodomain
mechanically and determining the slope of the dielectric displacement D3 as described by equa-
tion (5.7).

Figure 5.5.: Exemplary determination of the small-signal parameters κε
22 and e311 from a PZT mon-

odomain state homogeneously polarized in x3-direction.

Proceeding as described in section 5.2.2, the monodomain has been loaded electrically and
mechanically in all directions, yielding the following set of small-signal parameters for PTO
that are expressed in the compressed matrix notation:

κ
ε
i j(PTO) =

53.1 0 0
0 53.1 0
0 0 12.2

κ0 (5.15)

ei j(PTO) =

 0 0 0 0 1.74 0
0 0 0 1.74 0 0

0.497 0.497 3.06 0 0 0

C/m2 (5.16)
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cE
i j(PTO) =



339.8 128.2 113.3 0 0 0
128.8 339.8 117.0 0 0 0
113.3 117.0 232.8 0 0 0

0 0 0 101.4 0 0
0 0 0 0 101.4 0
0 0 0 0 0 108.0


GPa (5.17)

Here, κ0 = 8.854× 10−12F/m denotes the vacuum permittivity constant. The obtained small-
signal parameters can be used for verifying the FE-implementation by comparing them to small-
signal parameters determined from the employed electric enthalpy h, which has been fitted to
atomistic monodomain input parameters before. Below, this is illustrated exemplarily for the
dielectric permittivity tensor component κε

33: Proceeding in a similar manner as described in
eqn. (2.9), κ33 can be determined from the electric enthalpy h as

∂ 2

∂P2
3
h(P3 = P0,ε11 = ε22 = e⊥,ε33 = e‖,Ei = 0) =

1
κε

33

⇒ κ
ε
33 = 12.23κ0,

corresponding to the input κ̂ε
33 from DFT calculations. All strains in the free energy have been

assigned to the respective spontaneous strains in order to allow for a direct comparison with κε
33

that was calculated using the FE-model with a global strain control. A good agreement can be
seen, approving the sucessfull FE-implementation.

For PZT, the following monodomain small-signal parameters have been determined:

κ
ε
i j(PZT) =

75.9 0 0
0 75.9 0
0 0 17.5

κ0 (5.18)

ei j(PZT) =

 0 0 0 0 1.35 0
0 0 0 1.35 0 0

0.268 0.268 1.99 0 0 0

C/m2 (5.19)

111



5. Interface between phase-field and micromechanical methods - Investigation of domain structures

cE
i j(PZT) =



360.5 114.5 111.4 0 0 0
114.5 360.5 111.2 0 0 0
111.4 111.2 332.9 0 0 0

0 0 0 88.3 0 0
0 0 0 0 88.3 0
0 0 0 0 0 91.0


GPa (5.20)

Also the large-signal behavior of PTO and PZT monodomains has been examined. For deter-
mining large-signal parameters, i.e. characteristic electric fields causing irreversible domain
switching processes, the boundary conditions of the FE-model are chosen in a way that en-
sures that the model is mechanically stress-free (σi j = 0), i.e. the strains εi j are not controlled.
Starting with a monodomain configuration completely polarized in x3-direction, an electric field

a) b)

Figure 5.6.: Large-signal behavior of PTO and PZT monodomains: In both cases ferroelectric domains
that are initially entirely polarized in x3-direction are loaded electrically in x1-direction,
yielding the coercive field strengths EC90 and EC180.

E1 is applied in x1-direction as illustrated in Figure 5.6. For a certain electric field E1 the po-
larization switches by 90◦ from domain type P+

3 to P+
1 . This coercive field strength is denoted

EC90. Upon reaching this coercive field strength, the polarization of the entire system switches
simultaneously to the domain type orientated in the direction of the applied electric field, de-
scribing a characterisic behavior of monodomains. This homogeneous switching is caused for
instance by a lack of imperfections in the model that could act as nucleation centers for new
domains. When the electric field is reversed and reduced to zero, the configuration remains
in the P+

1 state, indicating an irreversible switching process. By applying an electric field in
negative x1-direction, i.e. contrarily to the direction of the spontaneous polarization, the second
characteristic coercive field strength EC180 can be obtained, for which the polarization of the
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5.4. Investigation of typical bulk domain structures

whole system switches simultaneously from P+
1 to P−1 . Note that the electric field required for

180◦ switching processes exceeds the coercive field for 90◦ switching processes. In Table 5.2,
the determined coercive switching fields EC180 and EC90 for PTO and PZT monodomains are
listed, and in Figure 5.6 the respective hysteresis curves are shown.

Table 5.2.: Coercive field strengths of PTO and PZT monodomains that were determined as illustrated in
Figure 5.6.

PTO PZT

EC90 [V/m] 2.43×108 1.58×108

EC180 [V/m] 6.63×108 5.02×108

5.4.2. Monodomain containing charged defects

A monodomain that contains an electrically charged defect is the next domain configuration to
be considered, with the aim of examining the influence of charged defects on the small-signal
and large-signal behavior of monodomains. The testing configuration utilized is similar to the
one described in the previous chapter: As illustrated in Figure 5.7, it consists of a 10×10nm
monodomain containing a defect of charge q in its center. This electrically charged defect is
incorporated into the FE-model as described in section 4.5. At one corner of the configuration
the electric potential is grounded (φ = 0), so that a mirror charge −q of opposite polarity is
induced in this place. Since the configuration is periodically continued in the x1-x2-plane, the
mirror charge appears at all four corners of the simulation box, ensuring charge neutrality in the
model.

+

+ +

+

-

10nm

10nm

Figure 5.7.: Schematical illustration of the monodomain setup containing a defect of charge q located
in its center. The periodically continued model is grounded at the corners, where mirror
charges −q arise due to electrostatic induction.
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First, the influence of electrically charged defects on the large-signal behavior of a monodomain
is regarded. Proceeding in like manner as for the pure monodomain state, a configuration ini-
tially entirely polarized in x3-direction (P+

3 ) is loaded by applying an electric field E1 in positive
x1-direction until the coercive field strength EC90 is reached and the polarization switches to P+

1 .
Then, the electric field is reversed and the configuration is loaded in negative x1-direction, yield-
ing the coercive field strength EC180 at which point the polarization switches by 180◦ to a P−1
polarization state. This approach is illustrated in Figure 5.8 for different electric defect charges
q. Note that an electric point charge in a two-dimensional model is actually a line charge, with
the electric charge continuously spread in x3-direction. The (line) charge densities q considered
in the following range from 0.8×10−10C/m to 8×10−10C/m. Assuming a unit cell size of about
4Å as found for PZT (cf. Table 2.3), this corresponds to a line charge density of 0.2-2 elementary
charges per unit cell.

The incorporated electrically charged defect causes a variety of effects on the behavior of the
monodomain under electric loading that can be seen from Figure 5.8. For an increasing charge
density q of the defect, both coercive field strengths EC90 and EC180 are reduced significantly.
When loading the initial domain configuration in x1-direction, a small jump in the dielectric dis-
placement D1 occurs for charge densities bigger than 2×10−10C/m before EC90 is reached. As
the charge density q increases, the threshold for this jump in D1 shifts to smaller applied elec-
tric fields E1. Finally, for charge densities exceeding 6.5×10−10C/m, even the unloaded equi-
librium configuration (E1 = 0) obtains an initial dielectric displacement D1 of about 0.03C/m
(which is small compared to the spontaneous polarization P3=0.58C/m in x3-direction). A sim-
ilar small jump of the dielectric displacement D1 can be observed before reaching the coercive
field strength EC180 for charge densities of 6.5×10−10C/m and higher. The dependence of the
coercive fields EC90 and EC180 on the electric charge density of the incorporated defect is illus-
trated in Figure 5.9. The coercive field EC180 is affected considerably more by the defect than
EC90, and with an increasing charge density the coercive fields EC180 and EC90 for 180◦ and 90◦

switching processes converge more and more.

All effects described above can be explained by the nucleation of ferroelectric domains at the
site of the charged defect, as illustrated exemplarily in Figure 5.10 for a charge density of
6.5×10−10C/m. In the initial unloaded configuration, only the close vicinity of the defect in
the center of the configuration is affected by its electric charge (and also the vicinity of the
mirror charges of opposite polarity at the corners of the configuration). Upon applying a small
electric field E1, a new domain is nucleated between the charged defect and the mirror charge
at the corner of the configuration. This domain is tilted by an angle of 90◦ with respect to
the poling direction of the monodomain and oriented in the direction of the applied electric
field. It initiates the 90◦ switching process of the polarization when the electric field E1 is
increased further and therefore lowers the coercive field strength EC90 compared to the case of
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Figure 5.8.: Large-signal behavior investigation of the PZT monodomain state depicted in Figure 5.7.
The diagram shows the component of the dielectric displacement D1 versus the applied elec-
tric field E1. Increasing (line) charge densities of the incorporated electrically charged defect
show a significant effect on the coercive field strengths EC90 and EC180, and kinks in the di-
electric displacement indicate the nucleation of domains as will be discussed in Figure 5.10.

Figure 5.9.: Influence of the defect’s charge density on the coercive fields EC180 and EC90 of a mon-
odomain: With increasing charge density, EC180 and EC90 converge.
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a defect-free monodomain. When the configuration is subsequently loaded in the negative x1-
direction, i.e. oppositely to the polarization direction P+

1 of the monodomain, two new domains
P+

2 and P−2 arise in the configuration. Both new domains are oriented perpendicular to the
monodomain. As the electric field in negative x1-direction is raised further, a second effect of
the electrically charged defect becomes obvious: The 180◦ switching process is separated into
two 90◦ switching processes caused by the nucleated domains P+

2 and P−2 . This would not be
possible in a defect-free monodomain state and explains the converging fields EC180 and EC90

when an electrically charged defect is present.

The influence of electrically charged defects on the small-signal behavior of monodomains is il-
lustrated in Figure 5.11: An electric field E1 that is small compared to the coercive field strength
is applied to a monodomain configuration polarized in x3-direction, and the change of the di-
electric displacement is plotted for a variety of defect charge densities. Therefore, the slope
of these curves corresponds to the dielectric permittivity tensor component κσ

11 for constant
stress. For defect charge densities of 2×10−10C/m and lower there is almost no influence on
the small-signal parameter. However, as the charge densitiy is raised, a domain nucleates at the
charged defect (cf. Figure 5.10), leading to a notable increase of κσ

11 just before the new domain
nucleates. For high enough defect charge densities, i.e. when nucleated domains are present
in the configuration, κσ

11 is increased consistently by about 15% compared to the defect-free
monodomain configuration. The reason for this are the domain walls now present in the system
that can shift reversibly, so that the small-signal parameters not only imply the intrinsic material
behavior, but also extrinsic contributions as will be discussed in the next sections.

In summary, electrically charged imperfections show a strong impact on the large-signal be-
havior of monodomains. Even small defect charge densities can influence the coercive field
strength EC180 as illustrated in Figure 5.9. An explanation has been shown for this behavior:
Ferroelectric domains nucleate at the site of electrically charged defects, so that the spatial
homogeneity of the monodomain state is broken. Nucleated domains are able to initiate 90◦

switching processes as well as to separate 180◦ switching processes into two successive 90◦

switching processes.

5.4.3. Perfect 90◦ domain stack

After the monodomain state, which consists of only one domain type, the next more complex
ferroelectric domain configuration is the ideal 90◦ domain stack as depicted in Figure 5.12: It
consist of a periodically continued regular array of two domain types separated by 90◦ domain
walls. For investigating the ideal 90◦ domain stack it is most convenient to rotate the crystal-
lographic coordinate system by an angle of 45◦ with respect to the simulation box coordinate
system as shown in section 4.3. Hence, the 90◦ domain walls always run parallel to the x2-
x3-plane of the simulation box coordinate system, causing a homogeneous behavior in x2- and
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Figure 5.10.: Domain nucleation initiated by a charged defect in a monodomain state: For a charge
density of q=6.5×10−10C/m, the hysteresis curve is shown, along with plots of the domain
structure at certain loading steps. Domains nucleate from the charged defect in the center
of the configuration as well as from the mirror charges at the corners, showing a strong
influence on the large-signal behavior.

Figure 5.11.: Influence of charged defects on the small-signal behavior of a PZT monodomain state:
Thus, the linear regime of Figure 5.8 is considered. The numbers in the diagram indicate
the slopes and therefore the component κσ

11 of the dielectric permittivity tensor.
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Figure 5.12.: Equilibrium solution of the investigated ideal 90◦ domain stack. The crystallographic coor-
dinate system has been rotated in the x1-x2-plane by 45◦ with respect to the simulation box
coordinate system, and the color coding depicts the polarization component P2.

x3-direction. Typical domain widths (i.e. the distance between domain walls in x1-direction) of
approximately 100nm were determined from PFM experiments2, so that the dimensions of the
simulation box were chosen as 200×0.5nm. In order to mechanically stabilize the periodically
continued domain configuration, a global strain

S̃11 = S̃22 =
e‖+ e⊥

2
(5.21)

is applied in the x1-x2-plane, and a plain strain state ε33 = e⊥ is deployed in x3-direction. Basic
properties of the 90◦ domain stack are depicted in Figure 5.13: While the polarization com-
ponent P2 changes across the domain wall at x1=50nm from +

√
P0
2 to -

√
P0
2 , the polarization

component P1 remains unaltered except for a small spike at the center of the domain wall. As
expected the electric potential rises steeply within the domain walls and exhibits the same value
on both sides of the configuration since no electric field E1 is applied in the example. While the
strain ε11 remains the same in both domain types involved, the equilibrium shear strain ε21 is
positive in the (+

√
P0
2 ,+

√
P0
2 ,0) domain and negative, but yet of same value in the (+

√
P0
2 ,-

√
P0
2 ,0)

domain. However, when averaged over the entire configuration, the shear strain ε21 adds up to
zero as requested by the global strain control. Due to the non-zero equilibrium shear strains
in both domains, the ideal 90◦ domain stack would not be stable if periodically continued: If
the fraction of one of the two involved domains becomes (e.g. by a fluctuation) slightly bigger
compared to the other, a global shear strain arises in the configuration. Due to this global shear
strain, the domain type of bigger fraction would become energetically favorable compared to the
other, and it would grow on the expense of the smaller domain until reaching a monodomain
state. Therefore, the ideal periodically continued 90◦ domain stack can only be investigated

2COMFEM report by R.P. Fernandes and G.A. Schneider, TU Hamburg-Harburg
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Figure 5.13.: Basic properties of the investigated 90◦ domain stack: Along with the polarization com-
ponents P1 and P2 within the domain walls, the strains u1,1 = ε11 and u2,1 = ε21 as well as
the electric potential in x1-direction of the 90◦ domain stack are illustrated. Note that ε21
changes its sign for the present domain types. The strong rising of the electric potential
indicates internal electric fields within the 90◦ domain walls.

when it is mechanically stabilized.

The domain stack has been loaded electromechanically along the axes of the simulation box,
yielding the following set of small-signal parameters for PTO:

κ
ε
i j(PTO) =

33.0 0 0
0 182 0
0 0 67.3

κ0 (5.22)

ei j(PTO) =

2.62 0.21 0.40 0 0 0
0 0 0 0 0 13.5
0 0 0 0 1.58 0

C/m2 (5.23)
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cE
i j(PTO) =



304.2 100.8 121.5 0 0 0
100.8 303.3 121.4 0 0 0
121.5 121.4 339.3 0 0 0

0 0 0 104.8 0 0
0 0 0 0 103.8 0
0 0 0 0 0 → 0


GPa (5.24)

Analogously, the small-signal parameters for PZT were obtained:

κ
ε
i j(PZT) =

45.1 0 0
0 801 0
0 0 84.8

κ0 (5.25)

ei j(PZT) =

1.73 0.12 0.19 0 0 0
0 0 0 0 0 29.3
0 0 0 0 1.08 0

C/m2 (5.26)

cE
i j(PZT) =



317.3 140.7 112.7 0 0 0
140.7 317.2 112.8 0 0 0
112.7 112.8 360.5 0 0 0

0 0 0 89.7 0 0
0 0 0 0 89.4 0
0 0 0 0 0 → 0


GPa (5.27)

For both PTO and PZT, the obtained small-signal parameters show a similar behavior. From
the structure of the piezoelectricity tensors ei j, the net polarization of the 90◦ domain stack in
x1-direction can be seen. The components κε

22 of the dielectric permittivity tensor and e26 of the
piezoelectricity tensor are anomalously high, while the component c66 of the elasticity tensor
becomes zero. Therefore, the ideal 90◦ domain stack responds very sensitively to electric fields
applied in x2-direction and to shear strains ε12 applied in the x1-x2-plane.

This behavior can not be explained when only the intrinsic material behavior of both involved
domain types is considered. Instead, the motion of the domain walls in the configuration has
to be taken into account: As the 90◦ domain stack is loaded by an electric field E2, a domain
wall shift in x1-direction becomes energetically favorable for the system so that domain type
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energy of the system by converting it into elastic energy. In like manner, the elastic energy of the
90◦ domain stack can be reduced and converted into electrostatic energy by moving the domain
wall once a shear strain ε12 in the x1-x2-plane is applied to the configuration. This domain
wall motion under shearing in the x1-x2-plane becomes evident from Figure 5.14: Once a shear
strain ε12 is applied, the domain walls shift, and no shear stress σ12 arises in the configuration.
Therefore, the ideal 90◦ domain stack shows a completely soft response under shearing in the
x1-x2-plane, explaining cE

66 to become zero.

Figure 5.14.: The diagrams show the total shear stress σ12 in a 90◦ domain stack as depicted in Fig-
ure 5.13 as well as the domain wall position under an applied shear strain ε12, respectively.
As the external shear strain is increased, the domain wall shifts (reversibly), so that no shear
stress σ12 arises and the configuration shows an ideally soft behavior.

An important issue is the complete reversibility of the described domain wall motion: Upon
unloading, the configuration returns to its initial state. Therefore, the reversible domain wall
motion in the linear small-signal behavior regime is not to be confused with irreversible fer-
roelectric switching. Although the domain walls are only shifted by small distances typically
below 1nm, the reversible domain wall motion has a significant effect on the small-signal pa-
rameters. This shall be illustrated by a small example: A 0.5nm shift of both domain walls to-
wards each other in a configuration as depicted in Figure 5.12 evoked by an applied electric field
E2=1.6×105V/m results in a change ∆D2=1.16×10−3C/m2 averaged over the complete system.
On the contrary, when considering a monodomain state without domain walls, an electric field
of E2=2.8×106V/m would be necessary to evoke a similar change of D2 in the configuration.
An investigation of the large-signal behavior of the 90◦ domain stack shows the high idealization
of this domain structure: For instance, upon loading the configuration by applying an electric
field E2, the domain walls shift towards each other until one domain type is extincted and a
monodomain state is reached. When the load on the system is increased further, it exhibits a
pure monodomain behavior. Since there are no imperfections in the material where domains
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could nucleate, the system remains in the monodomain state when the applied load is reversed.
Therefore, no representative coercive field strength can be determined for the 90◦ domain stack,
since the electric field required to switch the configuration to a monodomain state just represents
the electric field necessary to overcome the externally applied mechanical strain and is therefore
predefined by the boundary conditions.

Although the regarded 90◦ domain stack represents a highly idealized system and therefore
shows artificial behavior like for instance the completely soft response under shearing in the
x1-x2-plane, it is very well suited for understanding the effect of reversible domain wall mo-
tion. This effect will turn out to be the governing process on domain effective small-signal
parameters.

5.4.4. 90◦ domain stack containing charged defects

In the previous section, the idealized 90◦ domain stack without any imperfections has been
considered. In the next step, electrically charged defects as they occur in real ferroelectric
ceramics will be taken into account additionally. Their interactions with 90◦ domain walls will
be investigated as well as the influence of electrically charged defects on the small-signal and
large-signal behavior of the 90◦ domain stack.

For this, basically the same configuration as for investigating the ideal 90◦ domain stack is em-
ployed, except for two charged defects of different polarity located at the center of the equilib-
rium domain walls that are added to the configuration. Due to the incorporated charged defects,
the periodically continued configuration is no longer homogeneous in x2- and x3-direction as it
was for the ideal 90◦ domain stack, since the dimension of the simulation box in x2-direction
now defines the distance between neighboring charged defects in x2-direction. The dimensions
of the simulation box are chosen 25×60nm, representing the biggest possible configuration3

that still allows for a mesh-density of seven nodes per nanometer in the surrounding of the
domain walls as requested by the meshing study performed in section 4.6. In Figure 5.15 the
structure and the equilibrium solution of the considered 90◦ domain stack are plotted, showing
the impact of the oppositely charged defects on the shape of the domain wall.

Proceeding in the same manner as for the ideal 90◦ domain stack, a configuration containing
defects charged by q=±5×10−10C/m has been loaded electrically and mechanically along the
axes of the simulation box, yielding the following set of small-signal parameters for PTO:

κ
ε
i j(PTO) =

33.7 0 0
0 64.2 0
0 0 61.3

κ0 (5.28)

3regarding the available computational resources
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x1

x2

x3

25nm

60nm

charged defects

Figure 5.15.: Equilibrium solution of the investigated 90◦ domain stack containing two defects electri-
cally charged by q=±5×10−10C/m. The color coding illustrates the polarization compo-
nent P2. It can be seen that the electrically charged defects affect the shape of the 90◦ do-
main walls.

ei j(PTO) =

2.66 0.23 0.41 0 0 0
0 0 0 0 0 4.53
0 0 0 0 1.38 0

C/m2 (5.29)

cE
i j(PTO) =



303.9 100.8 121.5 0 0 0
100.8 303.6 121.4 0 0 0
121.5 121.4 339.3 0 0 0

0 0 0 104.7 0 0
0 0 0 0 104.3 0
0 0 0 0 0 67.2


GPa (5.30)

Due to the same loading and boundary conditions, these small-signal parameters can directly
be compared to those obtained from the ideal 90◦ domain stack. The main difference arises
for the elasticity tensor component cE

66: It is non-zero for the 90◦ domain stack containing
charged defects, implying that this configuration no longer exhibits a completely soft response
to applied shear strains ε12 in the x1-x2-plane. This indicates an interaction of the electrically
charged defect with the 90◦ domain wall: The charged defects obviously pin the domain walls
and thereby hinder them from moving freely as found for the ideal 90◦ domain stack. The effect
of domain wall pinning by electrically charged defects also explains the significantly lowered
dielectric permittivity tensor component κε

22 (35% of its original value) as well as the piezoelec-
tricity tensor component e26 (34%) compared to the respective values obtained from the ideal
90◦ domain stack. However, the respective small-signal parameters for an applied electric field
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in x2-direction as well as for applied shear strains ε12 in the x1-x2-plane are elevated with respect
to the monodomain values, indicating that the domain walls are in fact pinned by the electrically
charged defects, but allowed to bend in between and therefore contributing to the small-signal
parameters. The effect of domain wall bending becomes evident from Figure 5.16: The domain
configuration as shown in Figure 5.15 containing charged defects of q=±5×10−10C/m is loaded
electrically in x2-direction. The diagram illustrates the polarization profile P2 along a path in
x2-direction at the equilibrium domain wall position, i.e. for x1=15nm. The sharp spike of P2 at
the center indicates the position of the charged defect in the domain wall. For the unloaded case,
i.e. E2=0, the polarization P2 becomes zero at the edges, implying that the center of the domain
wall is located exactly at x1=15nm. As the electric field E2 is increased, the domain wall moves
in x1-direction at the edges of the configuration while it is still pinned to the charged defect
at the center, and a bending of the domain wall can be observed. For E2=2.5×107V/m, the
polarization P2 reaches its spontaneous value P0√

2
in wide parts of the considered path: Hence,

the domain wall that is still pinned to the charged defect has passed the position x1=15nm by
bending. Like the domain wall motion observed for the ideal 90◦ domain stack, the domain wall
bending under small electrical or mechanical loading is a completely reversible phenomenom.

The large-signal behavior of a 90◦ domain stack that contains electrically charged defects is
illustrated in Figure 5.17: The configuration is loaded electrically in x2-direction for two differ-
ently charged defects pinning the 90◦ domain walls. For a critical electric field E2, the domain
wall can tear off the charged defect. This critical field depends on the charge density of the
defect. Once the domain wall has separated from the defect, it behaves like a free domain wall
in an ideal 90◦ domain stack. Note that the small deviations from the ideal 90◦ domain stack
originate from perturbed regions in the close vicinity of the charged defects.

5.4.5. Monocrystalline multidomain configurations

So far, the behavior of monodomains as well as elementary domain structures has been dis-
cussed. In order to further increase the complexity towards realistic ferroelectric bulk domain
structures, the next step is considering multidomain structures consisting of a combination of
the domain patterns investigated in the previous sections. At first, configurations are treated that
contain no imperfections and are monocrystalline, i.e. do not contain grain boundaries.

Figure 5.18 illustrates such a PZT multidomain configuration. The domain structure in the
two-dimensional FE-model (cf. section 4.4.2) is stabilized in the x1-x2-plane by controlling the
global strains

S̃11 = S̃22 =
e‖+ e⊥

2
, (5.31)

while in x3-direction a state of plain strain ε33 = e⊥ is deployed. A random polarization dis-
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yx2

x1
0

x1=15nm

Figure 5.16.: A 90◦ domain stack containing electrically charged defects (q=±5×10−10C/m) is loaded
by an applied electric field E2. For different loading steps, the profile of the normalized
polarization P2(y) along the path y as depicted in the schematical inset is plotted. While the
domain wall is pinned by the charged defect (polarization spike at y=12.5nm), the polariza-
tion profile indicates a growing domain wall bending as the electric field E2 is increased.

Figure 5.17.: Large-signal behavior of the 90◦ domain stack containing charged defects: For a critical
electric field, the pinned domain walls can tear off the charged defect and afterwards show
the behavior of free domain walls. The numbers in the plot indicate the respective dielectric
permittivity components κ22ε when the domain is pinned and after it is torn off the charged
defect.
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tribution has been chosen as an initial condition for the 25×40nm sized configuration. The
resulting domain pattern exhibits a net polarization of

~Pnet =

 0.33
−0.17
0.01

C/m2 (5.32)

and consists of five of the six possible tetragonal domain types. Due to the plain strain condition
in x3-direction the polarization is mainly oriented in the x1-x2-plane, and it is only at locations
where different domain walls intersect that the polarization fractions P+

3 and P−3 arise. Electrical
and mechanical loading along the axes of the simulation box yields the following set of small-
signal parameters:

x1

x2

x3

25nm

40nm

dom
ain orientation

P1+

P1-

P2+

P2-

DW

P3+

P3-

Figure 5.18.: Monocrystalline PZT multidomain structure: The 25×40nm sized configuration contains
five different domain types.

κ
ε
i j(PZT) =

 536 345 −15.7
345 401 −9.2
−16.4 −9.7 123

κ0 (5.33)

ei j(PZT) =

 26.2 −24.2 −0.67 0 0 −0.34
16.4 −16.5 −0.58 0 0 1.27
−0.89 0.44 0.40 −0.45 0.93 0

C/m2 (5.34)
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cE
i j(PZT) =



200.9 250.9 117.3 0 0 0
250.6 211.6 110.2 0 0 0
117.3 110.2 358.5 0 0 0

0 0 0 89.6 0 0
0 0 0 0 89.3 0
0 0 0 0 0 88.2


GPa (5.35)

An exact interpretation of all components of the small-signal parameter tensors obtained from
multidomain configurations is complicated due to the fact that they represent superpositions of
various effects: In addition to the intrinsic behavior of all involved domains they contain ex-
trinsic contributions from reversible domain wall motion and bending as well as interactions
between different domain walls. Nevertheless, some conclusions can be drawn based on the
small-signal parameters: For instance, the off-diagonal components of the dielectric permittiv-
ity tensor must originate from extrinsic effects like reversible domain wall motion since they
cannot be explained by a linear combination of the intrinsic properties of the tetragonal domain
types. Negative off-diagonal components of the dielectric permittivity tensor indicate growing
domains in the direction of the applied electric field at the expense of perpendicularly oriented
ones. In order to analyze and interpret single components of the small-signal parameter ten-
sors, the information about the present domain fractions and their development under the spe-
cific loading condition is essential, as will be shown exemplarily for the component e22 of the
piezoelectricity tensor: The relatively high value (compared e.g. to the monodomain) indicates
extrinsic contributions like the reversible domain wall motion. An analysis of the domain types
present in the configuration is shown in Figure 5.19a. For e22, the development of the domain
types P+

2 and P−2 under an applied strain ε22 is of interest (Fig. 5.19b): While P−2 increases
by 0.09% under the applied strain, P+

2 grows by only 0.4% at the same time, decreasing the
net polarization P2 in the configuration and thereby causing a negative e22. This example re-
veals the necessity of tracking the domain fractions in the system while obtaining small-signal
parameters in order to allow for a proper interpretation of the results.
For the purpose of attaining input parameters for micromechanical modeling methods, various
multidomain configurations for both PTO and PZT have been investigated concerning small-
signal parameters and domain fractions under electromechanical loading. Several parameters
can be varied in the phase-field model and show implications on the resulting domain structure:

• The size of the simulation box defines the periodicity of the occurring domain pattern and
therefore the maximum allowed size of individual domains in the system.

• The aspect ratio between the x1-dimension and the x2-dimension of the simulation box
is an important issue affecting the resulting domain structure since the polarization, the
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Figure 5.19.: (a) Domain fractions of the monocrystalline multidomain configuration shown in Fig-
ure 5.18 (b) Influence of an applied strain ε22 on the resulting development of the domain
fractions P+

2 and P−2 .

electric potential and the mechanical strains are periodically continued at the edges of
the structure. For instance, when the axes of the simulation box coincide with the crys-
tallographic orientation, a perfect 90◦ domain stack is only possible for a whole-number
aspect ratio, whereas other aspect ratios enforce a domain structure consisting of at least
three different domain types.

• In order to mechanically stabilize the domain configuration, a global strain is applied
in the x1-x2-plane as a boundary condition, showing an impact on the resulting domain
structure, and especially on the development of polarization fractions in x3-direction.

• For a specific set of parameters for the configuration size, the aspect ratio and the global
strain boundary condition, more than one domain configuration can evolve. Therefore,
different (random) initial conditions for the polarization distribution are taken into ac-
count, yielding different domain patterns. This is caused by the underlying free energy
landscape which can exhibit more than one stable minimum due to the respective bound-
ary conditions.

In Appendix A.3, a compilation of all investigated monocrystal multidomain configurations
for PTO and PZT is shown. For all configurations the obtained domain effective small-signal
parameters as well as the domain fractions were transferred to the COMFEM project partners
und served as input parameters for micromechanical modeling methods. A detailed evaluation
of the considered monocrystalline multidomain configurations can be found in [50].

5.4.6. Monocrystalline domain configuration containing charged defects

The influence of defects on the monodomain and the 90◦ domain stack has already been dis-
cussed in sections 5.4.2 and 5.4.4. In the following, electrically charged (line) defects in
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monocrystalline multidomain configurations are taken into account in order to investigate their
impact on the resulting domain structure and their influence on the small-signal behavior. In
Figure 5.20 the considered PTO multidomain configuration is illustrated. The same boundary

x1
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x3

16nm

28nm

+

-

+

-

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

P2 [C/m²]

Figure 5.20.: Monocrystalline PTO multidomain configuration containing four electrically charged de-
fects, which are randomly distributed. All charged defects are located within 90◦ and
180◦ domain walls, which is remarkable since a random polarization distribution had been
chosen as initial condition for the FE-calculation.

conditions as in the previous section are applied to the 16x28nm sized simulation box, which
now contains four randomly distributed electrically charged defects: Two defects are positively
charged by q=5×10−10C/m and two are negatively charged by q=-5×10−10C/m, thereby ensur-
ing the neutrality of charges in the configuration.

A random distribution of the polarization served as the initial condition for the FE-calculation,
yielding the ferroelectric domain structure depicted. It consists of three domain types and ex-
hibits a net polarization of

~Pnet =

0.47
0.24

0

C/m2. (5.36)

A remarkable effect of charged defects on multidomain configurations becomes evident from
the resulting domain structure: All defects are located within the domain walls. In other
words, it becomes energetically favorable for both 90◦ and 180◦ domain walls to agglomer-
ate at immobile electrically charged defects in a ferroelectric multidomain configuration. The
FE-calculation has been repeated for several randomly chosen polarization distributions, every
time yielding domain configurations for which the charged defects coincide with the domain
walls. Furthermore, kinks in the domain walls are observed at the sites of the charged defects
as already found before in the 90◦ domain stack containing charged defects (cf. Figure 5.15).

129



5. Interface between phase-field and micromechanical methods - Investigation of domain structures

The shape of these kinks in the domain walls depends on the polarity of the charged defect,
indicating an electrical interaction between the defect and the domain wall.

In order to describe this interaction quantitatively, the permittivity tensor κ
ε,q=5E−10
i j for the con-

figuration shown in Figure 5.20 has been evaluated. Additionally, the same configuration has
been computed in the absence of charged defects: Taking the equilibrium solution of the mul-
tidomain configuration that contains charged defects as initial configuration, a FE-calculation
has been performed omitting the electrically charged defects. From the resulting defect-free do-
main structure that exhibits approximately the same domain fractions as the configuration with
defects, the permittivity tensor κ

ε,q=0E−10
i j was obtained. Both permittivity tensors can now be

compared directly by computing the relative difference κ
ε,diff
i j between them:

κ
ε,q=0E−10
i j =


219 −135 0

−135 204 0

0 0 62

κ0

κ
ε,q=5E−10
i j =


178 −132 0

−120 217 0

0 0 62

κ0


κ

ε,diff
i j =

−19% −1% 0
−12% +7% 0

0 0 0

 (5.37)

A clear influence of the electrically charged defects on the dielectric permittivity in the x1-x2-
plane can be seen. Since the domain configurations exhibit no polarization in x3-direction, the
permittivity component κ33 remains unaffected by the charged line defects. It can be assumed
that the decline of some components of the permittivity tensor is caused by the same mech-
anisms as discussed for the 90◦ domain stack containing charged defects (cf. section 5.4.4):
Domain walls become pinned by their interaction with electrically charged defects so that the
reversible domain wall motion for small applied loads is restricted. However, a main differ-
ence becomes obvious: Although the multidomain system is clamped by the charged defects,
their influence on the permittivity is much lower than that of the 90◦ domain stack. This is
caused by the multiple domains available in the configuration and by interactions between 90◦

and 180◦ domain wall systems, providing more flexibility for the configuration to respond to
external loads. Therefore, by clamping certain domain types while not affecting others, charged
defects can even enhance single components of the dielectric permittivity tensor as found for κ22

while decreasing other components at the same time.

5.4.7. Polycrystalline multidomain configurations

Up to this point, only domain configurations in monocrystals have been taken into account.
However, ferroelectric ceramics like PTO and PZT exhibit a polycrystalline structure on the
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micro-scale and grain boundaries, i.e. interface regions between grains of different crystal-
lographic orientation that represent an essential part of such polycrystalline structures. The
influence of grain boundaries on the small-signal and large-signal behavior of ferroelectric mul-
tidomain configurations is the subject of the following investigation.

In order to take grain boundaries in the FE phase-field model into account, a configuration
needs to be found that contains several regions of different crystallographic orientation while
still providing the possibility of being continued periodically. A honeycomb-like structure as
depicted in Figure 5.21a turned out to fulfill those requirements: The unit cell of this structure
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a 0

a) c)
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Figure 5.21.: Polycrystalline multidomain configuration: (a) Unit cell (i.e. simulation box) of the
honeycomb-like configuration. (b) Periodically continued unit cells, yielding an infinitely
expanded honeycomb structure consisting of four distinguished regions. (c) & (d) Differ-
ent crystallographic orientations are assigned to the hexagons in the unit cell, resulting in a
configuration of 18 available domain types: four domain types in the x1-x2-plane for each
crystallographic orientation plus two domain types in x3-direction. (e) Resulting polycrys-
talline PZT multidomain configuration (a0=10nm) containing 15 different domain types.

consists of a regular hexagon at the center and parts of its six next neighbors. As the unit cell,
i.e. the simulation box, is continued periodically, an infinitely expanded regular honeycomb
structure arises that consists of four different regions (Fig. 5.21b): They represent the regions
of different crystallographic orientation in the polycrystal model. The edges of the regular
hexagons represent a basic length a0. Thus, as depicted in Figure 5.21d, the dimensions of the
unit cell (and therefore the simulation box) become 3a0 in x1-direction and 2×

√
3a0 = 3.46a0

in x2-direction.

For the subsequent investigation of the small-signal behavior, a PZT configuration with a0=10nm
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will be considered, resulting in a 30×34.6nm sized simulation box. In the four regions of dif-
ferent crystallographic orientation, the crystallographic coordinate system is rotated in the x1-
x2-plane with respect to the simulation box coordinate system by angles of 0◦, 15◦, 30◦ and 45◦,
respectively, as illustrated in Figure 5.21d. Therefore the directions of polarization as classified
in Figure 5.21c are possible in the x1-x2-plane. In combination with the two available domain
orientations in x3-directions this makes a total of 18 available domain types in the configura-
tion. Taking a random polarization distribution as initial condition yields the polycrystalline
multidomain configuration illustrated in Figure 5.21e. It consists of 15 different domain types
(out of 18 available) and exhibits a net polarization of

~Pnet =

−0.278
0.242
−0.003

C/m2. (5.38)

It has been discussed before that periodically continued monocrystalline domain configurations
require a mechanical domain stabilization, in order to keep them from striving towards a mon-
odomain state when the periodically continued configuration is held globally stress-free. As
it turns out, this is no longer necessary for polycrystalline configurations as depicted in Fig-
ure 5.21: The mismatch of the differently oriented regions and the resulting inhomogenities in
the honeycomb structure supress the developement of a pure monodomain state, and even in the
abscence of a global strain control a stable multidomain configuration arises in the x1-x2-plane.
However, in order to ensure comparability with previously calculated small-signal parameters,
the same global strain control as for the monocrystalline multidomain configuration is applied
in the x1-x2-plane (cf. eqn. 5.31), and a state of plain strain ε33 = e⊥ is employed in x3-direction.

Proceeding in the same manner as for the monocrystalline multidomain configurations, elec-
trical and mechanical loading along the axes of the simulation box yields the following set of
small-signal parameters:

κ
ε
i j(PZT) =

212 172 1.9
116 501 10.8
4.2 14.8 142

κ0 (5.39)

ei j(PZT) =

−8.47 6.12 −0.11 0.04 −0.01 −3.08
−14.9 11.6 −0.45 0.09 −0.06 −13.8
−0.27 0.25 −0.03 0.93 −0.94 −0.134

C/m2 (5.40)
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cE
i j(PZT) =



299.7 157.2 113.4 0 0 0
157.7 309.8 114.6 0 0 0
113.2 114.5 358.0 0 0 0

0 0 0 89.3 0 0
0 0 0 0 89.3 0
0 0 0 0 0 74.0


GPa (5.41)

These small-signal parameters not only represent a superposition of the intrinsic and extrinsic
behavior of different domain types as was the case for monocrystalline multidomain structures,
but also a superposition of various crystallographically oriented regions. Although this com-
plicates an exact interpretation of all components of the small-signal tensors, certain trends
become obvious. For instance, the plain strain condition in x3-direction becomes apparent from
the components κε

33 and cE
33 which are similar to their counterparts from the investigation of

monocrystalline multidomain configurations. The configuration shows a high sensitivity to
electrical loads in x2-direction and to applied shear strains in the x1-x2-plane, as can be seen
from the relatively high κε

22 and e26 as well as a relatively low cE
66. This indicates a similarity

to the 90◦ domain stacks discussed in sections 5.4.3 and 5.4.4. Indeed, as can be found from
Figure 5.21e, the domain pattern within the grains mainly consists of 90◦ domain walls and it
partially shows the behavior of a 90◦ domain stack as expected. When comparing the small-
signal parameters of the polycrystalline multidomain configuration to those obtained from a
monocrystalline configuration, most components are found to be smaller. This denotes an inter-
action between the domain walls and the grain boundaries: The lattice mismatch, and therefore
the polarization mismatch, evokes internal electric fields at grain boundaries, which in turn
may influence domain walls as well as mechanisms like the reversible domain wall motion and
bending, and consequently influence the dielectric, piezoelectric and elastic sensitivity. Note
that domain walls in the discussed configurations are able to intersect grain boundaries.

In order to investigate the large-signal behavior of polycrystalline multidomain structures, a
PTO configuration with a0=5nm, i.e. a 15×17.3nm sized simulation box, has been considered,
exhibiting an initial net polarization of (-0.58 / 0.27 / 0) C/m2. First, an electrical load E1 is
applied to the configuration in positive x1-direction as illustrated in Figure 5.22. The domain
walls start shifting from their equilibrium positions, and domains exhibiting an energetically
favorable orientation with respect to the applied electric field grow at the expense of others. In
this regime, all processes are reversible, and unloading the configuration would yield the ini-
tial state again. For a critical electric field (corresponding to approx. 0.2EC180), macroscopic
domain switching in the configuration is initiated, leading to a completely different domain
structure that now shows a net polarization in positive x1-direction. Note that the spontaneously
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Figure 5.22.: Investigating the large-signal behavior of polycrystalline PTO multidomain configurations:
Starting with an initial configuration (1), an electric field E1 is applied in x1-direction,
initiating irreversible switching (2→3). Upon unloading a hysteresis behavior is found,
so that the initial configuration cannot be restored. For one loading case (6) the electric
potential within the configuration is plotted, showing internal fields caused by domain walls
and grain boundaries.

initiated switching is caused by the quasistatic loading of the configuration. As the electric field
is raised further, only minor switching processes take place, poling the configuration increas-
ingly in the direction of the applied field. Upon unloading the electric field, the configuration
relaxes, and new domain types nucleate at grain boundaries. This back-switching is indicated
by small steps in the unloading polarization curves. The domain configuration of the field-free
state significantly differs from the initial domain state, indicating irreversible switching pro-
cesses and a hysteresis behavior. For an exemplary loading step in negative x1-direction, the
electric potential within the polycrystalline domain structure is illustrated in Figure 5.22: The
internal inhomogeneity of the system caused by grain boundaries and domain walls becomes
cleary visible.
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5.4. Investigation of typical bulk domain structures

Furthermore, as shown in Figure 5.23, the polycrystalline multidomain structure was electrically
loaded in x2-direction, starting with the same initial condition as before. Here, the development
of the domain fractions under electric loading is depicted additionally. In contrast to the loading
in x1-direction, the first occurring irreversible switching process (2→3) does not cause a reori-
entation of the whole domain configuration, but only the extinction of one certain domain type.
Nevertheless this represents an irreversible process, so that unloading the configuration would
not restore the initial state. As the electric field E2 is further increased, a second irreversible

0.0 5.0x107 1.0x108 1.5x108 2.0x108 2.5x108
0

2

4

6

8

10

12

14

16

18

20

22

P1
+(15°)

P1
+(0°)

P1
+(45°)

P1
+(30°)

P1
-(30°)

P1
-(0°)

P1
-(15°)

DW

P2
+(45°)

P2
+(0°)

P2
+(30°)

P2
+(15°)

 

 

do
m

ai
n 

fra
ct

io
n 

[%
]

applied electric field E2 [V/m]

P1
-(45°)

0.0 5.0x107 1.0x108 1.5x108 2.0x108 2.5x108
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

 

 

po
la

riz
at

io
n 

[C
/m

²]

applied electric field E
2
 [V/m]

 P1

 P2

1

2

3

4

5 6

x1

x2

x3

1 2

3 4

5 6

Figure 5.23.: Investigating the large-signal behavior of polycrystalline PTO multidomain configurations:
The same configuration as analyzed in Figure 5.22 is now loaded electrically in x2-direction.
Along with the development of the polarization components, the domain fractions under
electric loading are shown. Irreversible switching occurs in steps (2→3) and (4→5).

switching process is initiated (4→5), now poling the domain configuration in the direction of
the applied electric field. When analyzing the large-signal behavior of various polycrystalline
multidomain configurations, a strong anisotropy has been found regarding the direction of the
applied field and the net polarization of the domain pattern: When the electric field was applied
in the direction of the net polarization, irreversible switching was initiated for higher electric
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fields compared to the case of a net polarization orientation opposite or perpendicular to the
applied field. Coercive switching fields, i.e. electric fields that initiate irreversible reorienta-
tions of the ferroelectric domain pattern were found in the range from approximately 0.005 to
0.2EC180 for both PTO and PZT.
As for the monocrystalline multidomain configurations, several polycrystalline configurations
have been computed and subsequently analyzed regarding the small-signal and large-signal
behavior. The domain effective small-signal parameters as well as the development of the do-
main fractions under electromechanical loading provided input parameters for micromechanical
modeling methods. A detailed analysis of the investigated polycrystalline multidomain config-
urations can be found in [50].

5.5. Discussion

In order to bridge the gap between phase-field modeling and micromechanical modeling meth-
ods in the multi-scale simulation chain, a phase-field model based on atomistic input parameters
has been implemented into the FE-platform COMSOL Multiphysics. Miscellaneous ferroelec-
tric domain structures on the meso-scale have been considered and investigated under electrical
and mechanical loadings with the objective of gaining input parameters for micromechanical
modeling methods. Therefore, numeric tools have been developed in order to evaluate small-
signal and large-signal properties from the computed domain structures. Governing mecha-
nisms taking place within the ferroelectric domain structure have been identified that strongly
influence the electromechanical small-signal and large-signal behavior of ferroelectric ceramics
on the meso-scale. In the following, the investigated domain configurations will be assessed
and the results of the small-signal and large-signal analysis will be discussed in the context of
a multi-scale simulation chain. Furthermore, possible enhancements of the phase-field model
concerning point defects, temperature-dependence and the maximum possible configuration
size will be presented in an outlook.

Assessment of investigated typical domain structures

As motivated in section 5.1, various domain configurations of increasing complexity have been
investigated separately with respect to their behavior under electromechanical loading. Now,
these typical domain structures shall be assessed with respect to their significance regarding
real polycrystalline ferroelectric ceramics:

• The monodomain state represents regions of perfect structure in the material without any
domain walls or imperfections. It shows the purely intrinsic behavior under electrome-
chanical loading and therefore enables a verification of the FE-implementation, since the
phase-field model itself has been adjusted to intrinsic input parameters from atomistic
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calculations in the first place. More important, the coercive fields obtained from the
monodomain state represent an upper limit, since no domain walls or imperfections are
present that could initiate switching or the nucleation of new domains.

• The 90◦ domain stack represents a two-domain configuration found in wide regions on
the meso-scale of ferroelectric ceramics. Although the idealized model considered in
section 5.4.3 exhibits artificial characteristics like a completely soft response when loaded
by a shear strain ε12, it represents the perfect model for investigating reversible domain
wall motion as well as for providing upper limits of this extrinsic effect on the small-signal
parameters. Properties of the 90◦ domain stack can directly be used as input parameters
for micromechanical models describing configurations that mainly consist of this domain
pattern: For instance, the small-signal parameters of the 90◦ domain stack obtained for
PTO and PZT served as input parameters for a micromechanical model describing 〈111〉 -
oriented ferroelectric thin-films [75].

• Monocrystalline multidomain configurations exhibit an increased complexity of the do-
main structure when compared to the ideal 90◦ domain stack. Due to their monocrys-
talline character, the resulting domain patterns, mostly consisting of at least three differ-
ent domain types, are highly symmetric. Though these domain patterns are artificial, the
monocrystalline multidomain configurations are well-suited for investigating interactions
between different domain walls as well as different domain systems.

• Polycrystalline multidomain configurations represent the most complex and inhomoge-
neous domain structures considered in this work. They allow for studying the effect of
the crystallographic mismatch at grain boundaries on the domain configuration, espe-
cially the interaction between domain walls and grain boundaries. Polycrystalline mul-
tidomain configurations take all mentioned effects on the meso-scale into account, thus
representing the most realistic domain structure considered. Note that the differently ori-
ented regions are not to be understood as grains of a real ceramic, since their dimensions
(the biggest diameter considered was 17nm) are much smaller than experimentally found
grain diameters that are in the order of micrometers. Nevertheless, as will be shown
below, polycrystalline multidomain configurations exhibit the most realistic large-signal
behavior, therefore providing both small-signal and large-signal parameters for microme-
chanical modeling methods [50].

Small-signal analysis

In the course of the small-signal analysis of the domain configurations mentioned above, the
effects of reversible domain wall motion and bending were identified as the governing mech-
anisms occurring in the ferroelectric domain structure under small applied external loadings.
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Both effects, also denoted domain wall oscillation and domain wall bowing in literature, have
been observed experimentally [16, 33, 83, 84] and represent extrinsic contributions to the piezo-
electric, elastic and dielectric small-signal parameters. Being able to take the effects of re-
versible domain wall motion and bending into account represents one of the most striking
benefits when using phase-field modeling in a multi-scale simulation chain for ferroelectric
ceramics, since these effects, taking place on the meso-scale, exhibit a significant impact on the
electromechanical behavior of ferroelectric materials.

Figure 5.24 illustrates a summary of both effects: For a 90◦ domain stack as discussed in Fig-
ure 5.12, three conditions for the domain walls under electrical loading are considered: For
completely fixed domain walls, the ferroelectric material shows only the purely intrinsic behav-
ior. If the domain walls are allowed to move ideally freely instead, the extrinsic contribution of
the reversible domain wall motion becomes clearly visible, resulting in a dielectric response of
the material that can exceed the intrinsic contribution up to a factor of 15-20. In the last con-
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Figure 5.24.: A 90◦ domain stack is electrically loaded for three different conditions applied to the do-
main walls. The extrinsic contributions of reversible domain wall motion and bending
become clearly visible from the different dielectric response behavior.

sidered case, the domain wall is pinned by electrically charged defects: Until a certain electric
field is reached, the domain wall bends, exhibiting an extrinsic contribution that outranges the
intrinsic contribution by a factor of up to 1-3. For higher applied electric fields, the domain wall
tears off the charged defect and shows the behavior of the completely free domain wall. In real
ferroelectric materials, extrinsic contributions of reversible domain wall motion and bending
to the piezoelectric and dielectric small-signal properties have been observed that are at least
in the order of the intrinsic effect caused by the lattice [17]. This indicates that domain wall
bending is the dominant effect in real ferroelectric ceramics, corresponding to the fact that they
nearly always contain electrical and mechanical effects that interfere with domain walls: By
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mechanisms of clamping and pinning, the domain walls are inhibited from moving freely.

The effect of reversible domain wall motion can also be demonstrated by electrically loading a
90◦ domain stack as shown in Figure 5.12 under different angles in the x1-x2-plane. Figure 5.25
illustrates the change of the dielectric displacements ∆D1 and ∆D2 for electric fields applied
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Figure 5.25.: In order to demonstrate the effect of reversible domain wall motion, a 90◦ domain stack is
electrically loaded at different angles in the x1-x2-plane for the cases of completely fixed
and completely free domain walls. An angle of zero degrees corresponds to the x1-direction.

at different angles. Due to the symmetry of the considered 90◦ domain stack, only a domain
wall motion in x1-direction is permitted. The two cases of artificially fixed and completely
free domain walls are considered. While ∆D1 shows the same behavior in both cases, the
extrinsic contribution of the reversible domain wall motion becomes apparent from the change
of the dielectric displacement ∆D2 (Fig. 5.25b): As expected for a shift of the domain walls
in x1-direction, ∆D2 of the free domain walls exhibits a strongly amplified sensitivity when
compared to the case of the fixed domain walls. Furthermore, the maxima of ∆D2 appear at
angles of 90◦ and 270◦, corresponding to the directions that are most sensitive for initiating a
reversible domain wall motion in x1-direction.

Large-signal analysis

In the course of investigating typical ferroelectric domain structures, also their large-signal be-
havior has been taken into account. In this process, the coercive field strengths EC180 for 180◦

switching of a monodomain state have been determined from phase-field models that were
adjusted to atomistic input parameters for PTO and PZT. In both cases, these coercive field
strengths EC180 are in the order of 108V/m (cf. Table 5.2), which is about two orders of magni-
tude higher than experimentally measured coercive fields of polycrystalline ferroelectric ceram-
ics [45]. Furthermore, when comparing the coercive fields (i.e. applied electric fields necessary
for initiating irreversible switching processes) of the other investigated domain structures to
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experimentally found coercive fields, the values obtained from the phase-field models are sys-
tematically too high. This deviation has several reasons: On the one hand, the coercive field
strengths EC180 and EC90 are directly encoded in the free energy function of the phase field
model. Figure 5.26 illustrates a hysteresis curve as well as contour plots of the electric enthalpy
density h of 90◦ and 180◦ switching of a stress-free monodomain state. In this case, only the
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Figure 5.26.: Hysteresis curve for a PZT monodomain state. For certain loading steps, contour plots
of the electric enthalpy function are depicted, and the state of the system in the energy
landscape is indicated, respectively. The diagram on the lower right side illustrates the
equilibrium state (E=0) of the electric enthalpy in 〈100〉 -direction as well as the impact of
applied electric fields on the electric enthalpy. Switching does not occur until the elevated
minimum becomes instable (E=EC180).

Landau energy term and the electric field energy have to be taken into account, whereas the
elastic energy term and the electromechanical coupling term compensate each other. The en-
ergy landscape of the electric enthalpy is tilted in the respective direction of the applied electric
field, and switching occurs not until the local minimum, in which the system is located, be-
comes extincted. For 90◦ switching the system only has to overcome the energy barrier directly
separating two minima. On the contrary, for 180◦ switching in a completely uniform and undis-
turbed monodomain state, the system takes the direct path for reaching the (global) minimum
on the opposite side instead of switching two times by 90◦. This behavior takes place due to the
high symmetry of the perfect monodomain state and explains the fact that EC180 exceeds EC90.
However, once the symmetry is broken, for instance by a small disturbance in the form of an
electrically charged defect, the 180◦ switching process becomes separated in two 90◦ switching
processes, as already discussed in section 5.4.2. From the described switching behavior, it be-
comes apparent that the coercive fields of the monodomain state are encoded in the free energy
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as the height of the energy wells to be overcome for the respective switching process. As illus-
trated in Figure 5.26 for a PZT energy function, Ψ0 denotes the height of the 180◦ switching
barrier in equilibrium, and therefore the coercive field strength EC180 can be roughly estimated
as

EC180 ≈
Ψ0

P0
=

1.833×108J/m3

0.58C/m2 = 3.16×108V/m, (5.42)

being close to EC180=5.02×108V/m determined in the respective simulation. The height of
the energy barrier Ψ0 cannot be adjusted directly in the free energy function. Instead, Ψ0 is
predefined in the adjustment process as described in chapter 2 by the spontaneous polarization
P0, the 180◦ domain wall energy as well as the dielectric permittivity component κ33, which
describes the curvature of the free energy function at the spontaneous polarization state and
therefore exhibits the main impact on Ψ0. Hence, the dielectric permittivity component κ33 and
the coercive field strength EC180 cannot be adjusted independently.

On the other hand, it is reasonable that the coercive field strength of the monodomain state ex-
ceeds coercive fields that are measured experimentally for polycrystalline ferroelectric ceram-
ics: While the simulated domain configurations always represent idealized and mostly highly
symmetric systems, real ferroelectric ceramics contain numerous domain systems, imperfec-
tions as well as a complicated domain and grain structure. All these mechanisms have an impact
on the coercive field strength, as illustrated in Figure 5.27: For various domain configurations
of increasing complexity and inhomogeneity, the respective coercive field strengths are plotted.
Both PTO and PZT domain configurations are presented in the diagram, and the coercive fields
are normalized with respect to the particular EC180. A clear trend becomes apparent from Fig-
ure 5.27: As the complexity of the investigated domain structures is increased by taking defects,
multiple domain systems and grain boundaries into account, the configurations become more
realistic, and the electric fields necessary for initiating irreversible switching processes in the
configurations are decreased.

From the large-signal analysis it becomes apparent that phase-field simulations will not yield a
specific coercive field strength EC valid for a particular ferroelectric material, which then can
be directly compared to experiments. However, trends can be shown regarding the influence of
charged defects, domain systems and grain boundaries on the resulting coercive field strength
in a specific material. The most realistic domain structure considered in this work, regard-
ing the configuration size and mechanisms taken into account, are polycrystalline multidomain
configurations as shown in Figure 5.21, containing multiple domain systems as well as grain
boundaries. For such domain configurations, the phase-field model yields coercive fields in the
order of experimental values, and for larger configurations containing also imperfections or less
symmetric grain boundaries, a further drop of the coercive fields can be expected.
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Figure 5.27.: Coercive fields EC obtained from various domain structures of increasing complexity. For
both PTO and PZT configurations, EC has been normalized with respect of to the coer-
cive field strength for 180◦ switching of a monodomain state (MD180). Furthermore, 90◦

switching of a monodomain state is considered (MD90), as well as 180◦ and 90◦ switching
of monodomains containing differently charged defects (CMD180, CMD90). In addition,
coercive fields of various monocrystalline domain configurations (MCDC) as well as poly-
crystalline domain configurations (PCDC) are presented. Since the coercive field strength
is influenced by various parameters, such as the size of the configuration, boundary con-
ditions, initial conditions and the direction of the applied electric field, the beams in the
diagram indicate approximation intervals for possible coercive fields strengths of the re-
spective domain configurations. A clear correlation between the complexity of the domain
configuration and the resulting coercive field strength becomes visible.

Role of electrically charged defects

Defects in ferroelectric materials are of special interest since they are supposed to play an im-
portant role in ferroelectric fatigue [17]. Within a multi-scale approach, interactions between
defects and the ferroelectric domain system can be taken into account and investigated by means
of phase-field modeling. Electrically charged defects emerging in real ferroelectric ceramics are
for instance dopants, interstitial defects or vacancy defects. The most commonly encountered
vacancy defect is the oxygen vacancy which is doubly positively charged [55]. This concurs
to the highest charge density considered in this work, corresponding to two elementary charges
per unit cell.

By phase-field simulations, several effects of electrically charged defects on the ferroelectric
domain structure have been identified in the course of this work. A strong interaction between
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charged defects and domain walls was observed: Domain walls were pinned and clamped,
showing a significant impact on the small-signal behavior. Furthermore, charged defects were
found serving as nucleation sites for domain walls in monodomains when exposed to a high
electric field, therefore alleviating switching processes and influencing the large-signal behav-
ior. When considering multidomain configurations, phase-field simulation results showed evi-
dence that coinciding with charged defects is energetically favorable for domain walls, which
then become pinned.

Experimentally, the agglomeration of charged defects in domain walls has been identified as an
important mechanism of ferroelectric fatigue [64], while the charged defects in all calculations
of this work were considered stationary. A possible approach for taking the ferroelectric fatigue
mechanism of defect agglomeration into account in a multi-scale simulation chain would be ex-
panding the phase-field model to allow for defect migration. However, such efforts are beyond
the scope of this work.

Temperature dependence

In the utilized phase-field model, all calculations were performed under isothermal conditions,
i.e. for a constant temperature. This is due to the input parameters used for adjusting the free
energy function of the phase-field model which were obtained from first-principles calculations
and atomistic simulations, both performed at T=0K. In general, a temperature-dependence of
the phase-field model can be taken into account by allowing the Landau energy coefficient
α1 to depend on temperature [18], as discussed in section 1.3.3. When additionally allowing
all Landau free energy coefficients to depend on the mole fraction of titanate and zirconate, the
complete system of PZT solid solutions can be represented by a single free energy function. Fig-
ure 5.28 illustrates a computed PZT phase diagram based on input parameters experimentally
obtained by Amin et. al. [3]. If such temperature-dependent input parameters were available
from atomistic calculations, they could directly be considered in the present phase-field model
by using them for adjusting the free energy and adding the temperature as a degree of freedom
in the FE-implementation as described by Su and Landis [71].

Influence of configuration size

The last issue to be discussed is the influence of the configuration dimensions on the small-
signal and large-signal results obtained from the phase-field model. Figure 5.29 illustrates the
dependence of the dielectric permittivity tensor component κ22 on the configuration size L in
x1-direction for a perfect 90◦ domain stack as investigated in section 5.4.3. Configuration di-
mensions from 10nm to 240nm are considered, corresponding to domain widths from 5nm to
120nm. A slight size-dependence of κ22 can only be found for L<80nm, whereas for larger
configurations a saturation value for κ22 is reached. This can be explained by the fact that the
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Figure 5.28.: PZT phase diagram computed from a free energy function based on experimental input
parameters [3]. In order to encode the information of the phase diagram into the free
energy function, all Landau coefficients depend on the zirconate/titanate mole fraction, and
the coefficient α1 additionally depends on the temperature.

volume fraction of material in domain walls in the system increases when the configuration
size is reduced: The region within domain walls itself cannot contribute to intrinsic or extrinsic
effects since the polarization is constrained within the domain wall. Therefore, the dielectric re-
sponse is decreased once the fraction of domain walls in the configuration reaches a noticeable
level. However, this size-effect is relatively small: Even for a domain width of 5nm, corre-
sponding to a domain wall fraction of 10% in the configuration, κ22 only deviates by 3.5%. A
comparable trend of the size-dependence on the small-signal parameters has been observed for
all considered mechanically stabilized domain configurations.

On the contrary, a clear influence of the configuration size on the large-signal behavior has been
found, as becomes apparent from Figure 5.27: For the considered PZT polycrystalline mul-
tidomain configuration, an increase of the basic configuration dimension a0 from 5nm to 10nm
induces a significant decrease of the coercive field strength. This is due to the more complex
domain structure resulting for the scaled-up configuration. However, several difficulties arise
once the configuration size is further increased. On the one hand, the numerical solution pro-
cess becomes increasingly challenging because of a manifoldness of possible solutions for a
specific model size: A variety of resulting domain patterns with approximately the same total
energy is available, so that convergence problems can arise. On the other hand, by increasing
the configuration size also the number of finite elements of the system and therefore the compu-
tational effort is raised significantly. A possible approach to solve this problem is using adaptive
meshing techniques: Inhomogeneous regions in the domain configuration, e.g. domain walls,
are meshed with the required mesh density in order to avoid mesh artefacts (cf. section 4.6),
whereas homogeneous regions of the domain configuration are meshed coarsely, thereby sig-
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Figure 5.29.: Dependence of the dielectric permittivity tensor component κ22 on the configuration size L
of an ideal 90◦ domain stack as discussed in section 5.4.3.

nificantly reducing the required number of finite elements. Furthermore, adaptive meshing
techniques might also render the possibility of computing and investigating three-dimensional
ferroelectric domain configurations of reasonable size.

145



5. Interface between phase-field and micromechanical methods - Investigation of domain structures

146



6. Summary

The primary objective of this thesis was applying phase-field modeling in a knowledge based
multi-scale approach for the ferroelectric polycrystalline ceramics PTO and PZT. Within this
virtual material development approach, phase-field modeling bridges the gap between predic-
tive atomistic methods on one side and micromechanical modeling methods on the other side.
Therefore, two interfaces in this multi-scale simulation chain have been developed and estab-
lished in this work.
In order to link the atomic level to the meso-scale, the thermodynamical free energy func-
tion of the phase-field model has been adjusted to results from first-principles calculations and
atomistic shell-model simulations [76]. Such "ab-initio" input parameters exhibit a high pre-
dictive power when compared to empirical input parameters, since they are solely based on
quantum-mechanical theories. In a first step, a standard free energy function of 6th order in
polarization was taken from literature [9, 52], and the sensitivity of all energy coefficients was
analyzed. On that basis, an adjustment method for the energy coefficients was developed: For
the first time, a phase-field model describing ferroelectric materials has been adjusted to in-
put parameters from atomistic calculations using a completely knowledge based approach, in
contrast to the common Devonshire approach [18, 19, 20], which needs experimental input. Es-
pecially the direct and simultaneous adjustment of the phase-field model to both the thickness
and energy of 180◦ and 90◦ domain walls represents an innovation when compared to previous
approaches [3, 20, 38, 71].
Furthermore, an extension of the phase-field model’s free energy has been presented in this
work. The standard free energy function of 6th order in polarization is subject to certain restric-
tions and exhibits not enough degrees of freedom for an independent adjustment of the elastic
properties in the cubic and the tetragonal phase. Also, the spontaneous strains are coupled to the
piezoelectric coefficients, inhibiting a separate tuning. An expansion of a free energy function
for barium titanate published by Su and Landis [71] in order to remedy this deficiencies cannot
be applied to PTO and PZT as demonstrated in this work. Instead, the free energy function has
been further developed by introducting a novel elastic energy term. The benefit of this higher-
order term is that it allows for a separate adjustment of the cubic and tetragonal elastic properties
for PTO and PZT, as well as an independent fitting of the spontaneous strains and the piezo-
electric coefficients. Though developed for PTO and PZT, the new approach is general enough
to also describe the simpler case of barium titanate. Subsequently, the adjustment method of
the free energy coefficients has been improved to take the new energy term into account, and
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energy coefficients for PTO and PZT have been presented.

The second part of this work regards the definition and development of the interface between
phase-field modeling and micromechanical modeling methods in the multi-scale approach, i.e.
linking the meso-scale to the micro-scale. Therefore, ferroelectric domain configurations have
been investigated under electromechanical loading, yielding domain effective small-signal and
large-signal parameters that served as input parameters for micromechanical modeling meth-
ods [50, 75]. In order to prepare this approach, the phase-field theory has been implemented
into the finite-element platform COMSOL Multiphysics. Since the focus of this work is investi-
gating ferroelectric bulk behavior, periodic boundary conditions for the phase-field model have
been developed as well as techniques for mechanically stabilizing the periodically continued
domain configurations. One-, two-, and three-dimensional finite-element implementations of
the phase-field model have been presented to which arbitrary electromechanical far fields can
be applied, and the FE implementation has been verified. Due to the massive computational
effort necessary for a three-dimensional FE implementation, a two-dimensional FE-model has
been used throughout this work, containing seven degrees of freedom per node: three com-
ponents of the polarization, three components of the mechanical displacement as well as the
electric potential. Furthermore, a FE-mesh study has been performed, yielding a required mesh
density of 7 nodes per nanometer (or 2-3 nodes within a domain wall, respectively) in order
to eliminate mesh artefacts in a small-signal analysis, such as the artificial pinning of domain
walls by the FE-mesh.

In the scope of the project COMFEM, piezoresponse force microscopy studies on PZT were
conducted that identified typical ferroelectric domain configurations on the meso-scale. In this
work, these domain structures have been investigated separately regarding their small-signal
and large-signal behavior under electromechanical loading: the monodomain state, the (ideal)
90◦ domain stack as well as monocrystalline multidomain configurations. Additionally, the
interactions of electrically charged point defects on these domain configurations have been con-
sidered, as well as the impact of grain boundaries on the ferroelectric domain structure. For
the latter, a FE-model consisting of crystallographically differently oriented regions has been
employed, yielding a polycrystalline multidomain configuration.

The small-signal analysis provides a profound understanding of mechanisms and processes tak-
ing place on the meso-scale in ferroelectric domain patterns. Using methods and tools that were
developed for evaluating small-signal parameters as well as domain fractions under electrome-
chanical loading, a significant difference has been demonstrated between intrinsic (lattice) and
extrinsic (non-lattice) contributions to the piezoelectric, dielectric and elastic small-signal pa-
rameters. Two extrinsic effects in the small-signal regime have been identified and investigated
in detail: reversible domain wall motion as well as bending of domain walls, which are pinned
by electrically charged point defects. Although pinned domain walls are hindered from moving
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freely under an applied electric field, they can still bend and therefore show extrinsic contribu-
tions. Being able to take the effects of reversible domain wall motion and bending into account
represents one of the most striking benefits when using phase-field modeling in a multi-scale
simulation chain for ferroelectric ceramics, since these effects, taking place on the meso-scale,
show a significant impact on the small-signal parameters of ferroelectric materials. Since the
initial configuration is restored upon unloading the configuration, they are not to be confused
with irreversible switching processes.
Phase-field simulations of domain configurations that contain electrically charged defects and
therefore pinned domain walls indicate that domain wall bending is the dominant effect in real
ferroelectric ceramics: The extrinsic contributions found in such simulations are comparable to
experimentally observed extrinsic contributions of reversible domain wall motion and bending
to the piezoelectric and dielectric small-signal properties in ferroelectric ceramics [17]. This
corresponds to the fact that real ferroelectric materials almost always contain electrical and
mechanical effects that interfere with domain walls: By mechanisms of clamping and pinning,
the domain walls are inhibited from moving freely.
From the large-signal analysis, a correlation of the complexity of the domain configuration and
the coercive field, i.e. the electric field necessary for initiating irreversible switching processes,
has become obvious: As the complexity and inhomogeneity of the domain configuration is
increased, for instance by taking electrically charged point defects, multiple domain systems or
grain boundaries into account, the coercive field strength is reduced. Charged point defects play
an especially important role, since they can act as nucleation centers for new domains under
electric loading, thereby significantly reducing the coercive field strength.
Finally, possible improvements and expansions of the phase-field model have been illustrated
which allow for taking ferroelectric fatigue and temperature-dependence in a multi-scale sim-
ulation chain for ferroelectrics into account. Moreover, by employing adaptive meshing tech-
niques, the configuration size of the FE-model could be increased in the future.
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A. Appendix

A.1. Structure of compliance tensors

Cubic symmetry

For the symmetry point group m3m, the compliance tensors take the following form:

κi j =

κ11 0 0
0 κ11 0
0 0 κ11

 (A.1)

di j =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (A.2)

ci j =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


(A.3)

Tetragonal symmetry

For the symmetry point group 4mm and a polar axis in x3-direction, the compliance tensors take
the following form:

κi j =

κ11 0 0
0 κ11 0
0 0 κ33

 (A.4)
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di j =

 0 0 0 0 d15

0 0 0 d15 0
d31 d31 d33 0 0

 (A.5)

ci j =



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66


(A.6)
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A.2. Expanded form of the free energy

Considering the additional energy terms introduced and discussed in chapter 3, the expanded
free energy takes the following form:

Ψ =
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Applying the adjustment process developed in section 3.3 yields the coefficients of the expanded
form of the free energy, which are depicted in Table A.1.

Table A.1.: Adjusted coefficients of the Helmholtz free energy based on input parameters from atomistic
calculations. PTO and PZT. Expanded form of the free energy.

coefficient PTO PZT

a1 −5.549×108JmC−2 −4.440×108JmC−2

a2 4.012×109Jm5C−4 1.4×109Jm5C−4

a3 −5.000×109Jm5C−4 −8.0×109Jm5C−4

a4 −1.136×1010Jm9C−6 −2.377×1010Jm9C−6

a5 1.250×1011Jm13C−8 2.395×1012Jm13C−8

a6 2.609×1010Jm9C−6 8.976×1010Jm9C−6

a7 3.200×1010Jm9C−6 9.2×1010Jm9C−6

a8 2.500×109Jm13C−8 1.9×1010Jm13C−8

b1 7.577×109JmC−2 1.372×109JmC−2

b2 1.326×1010JmC−2 7.733×1010JmC−2

b3 1.520×109JmC−2 1.52×108JmC−2

c1 342×109Jm−3 361×109Jm−3

c2 131×109Jm−3 115×109Jm−3

c3 108×109Jm−3 91×109Jm−3

f1 −6.482×1011JmC−2 −1.088×1012JmC−2

f2 −1.472×1011JmC−2 −2.021×1011JmC−2

f3 −1.112×1011JmC−2 1.189×1010JmC−2

f4 −3.100×1010JmC−2 −5.945×109JmC−2

f5 −1.112×1011JmC−2 −1.070×1011JmC−2

f6 −2.583×109JmC−2 2.973×109JmC−2

g1 2.695×109Jm5C−4 −5.249×1010Jm5C−4

g2 2.946×1010Jm5C−4 2.331×1010Jm5C−4

g3 1.021×109Jm5C−4 1.1×108Jm5C−4

h1 4.185×1011Jm5C−4 1.617×1012Jm5C−4

h2 9.505×1010Jm5C−4 3.004×1011Jm5C−4

h3 7.170×1010Jm5C−4 0
h4 2.001×1010Jm5C−4 8.837×109Jm5C−4

h5 7.170×1010Jm5C−4 1.591×1011Jm5C−4

h6 1.668×109Jm5C−4 0
G11 11×10−11Jm3C−2 15×10−11Jm3C−2

G12 6×10−11Jm3C−2 3×10−11Jm3C−2

G44 3×10−11Jm3C−2 6.4×10−11Jm3C−2
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A.3. Monocrystalline multidomain configurations

In the following, a selection of typical monocrystalline multidomain configurations for PZT is
shown along with the applied global strain in order to mechanically stabilize the configurations:

24nm

14nm

24nm

14nm

30nm

20nm

40nm

25nm

40nm

25nm

56nm

32nm

domain orientation:

P1+ P1- P2+ P2-DW P3+ P3-
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