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Fully-Dynamic Hierarchical Graph Clustering
Using Cut Trees

Christof Doll, Tanja Hartmann, and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)?

christof@doll.de.com, {t.hartmann,dorothea.wagner}@kit.edu

Abstract. Algorithms or target functions for graph clustering rarely admit qual-
ity guarantees or optimal results in general. However, a hierarchical clustering
algorithm by Flake et al., which is based on minimum s-t-cuts whose sink sides
are of minimum size, yields such a provable guarantee. We introduce a new de-
gree of freedom to this method by allowing arbitrary minimum s-t-cuts and show
that this unrestricted algorithm is complete, i.e., any clustering hierarchy based
on minimum s-t-cuts can be found by choosing the right cuts. This allows for
a more comprehensive analysis of a graph’s structure. Additionally, we present
a dynamic version of the unrestricted approach which employs this new degree
of freedom to maintain a hierarchy of clusterings fulfilling this quality guarantee
and effectively avoid changing the clusterings.

1 Introduction

Graph clustering has become a central tool for the analysis of networks in general,
with applications ranging from the field of social sciences to biology and to the grow-
ing field of complex systems. The general aim of graph clustering is to identify dense
subgraphs (clusters) that are sparsely connected in networks, i.e., a good clustering con-
forms to the paradigm of intra-cluster density and inter-cluster sparsity. Countless for-
malizations thereof exist, however, the overwhelming majority of algorithms for graph
clustering relies on heuristics and do not allow for any structural guarantee on their out-
puts [1, 2]. Inspired by the work of Kannan et al. [6], Flake et al. [3] recently presented
a hierarchical clustering algorithm that does guarantee a very reasonable bottleneck-
property based on an input parameter and returns clusterings at different levels of gran-
ularity. Their elegant approach exploits properties of cut trees, pioneered by Gomory
and Hu [4]. It partially constructs those trees using minimum s-t-cuts whose sink sides
are of minimum size. Due to this restriction the returned clusterings are unique. How-
ever, the algorithm possibly misses convenient clusterings in graphs where minimum
s-t-cuts and cut trees are not unique.

We show that a restriction to specific cuts is not necessary, i.e., permitting arbitrary
minimum s-t-cuts is a feasible degree of freedom. This makes the method more power-
ful since construction may actually use the most appropriate cut, depending on the ap-
plication (cp. Fig. 1). We further prove that the unrestricted approach is even complete,
i.e., any clustering hierarchy based on minimum s-t-cuts can be returned by choosing
the right cuts. Additionally, we develop the first update algorithm that efficiently and
? This work was partially supported by the DFG under grant WA 654/15-2.
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Fig. 1. Edge {a,b} changes, unrestricted approach
allows to retain old clustering and avoids singletons.

dynamically maintains a whole hier-
archy of clusterings, as found by our
unrestricted method, for a dynami-
cally changing graph. This algorithm
allows arbitrary atomic changes, and
employs the new degree of freedom
to save costs and keep consecutive
clusterings on the same level similar
(what we call temporal smoothness).

We briefly give our notational conventions and two fundamental insights in Sec. 2.
Then, in Sec. 3, we revisit the static hierarchical algorithm by Flake et al. [3] and prove
correctness and completeness of this approach when using arbitrary minimum cuts. In
Sec. 4 we present our new update algorithm and its analysis, concluding in Sec. 5.

2 Preliminaries and Notation
Throughout this work we consider an undirected, weighted graph G = (V,E,c) with
vertex set V , edge set E and a non-negative edge weight function c. We write c(u,v) as a
shorthand for c({u,v}) with u∼ v, i.e., {u,v} ∈ E. We reserve the term node (or super-
node) for compound vertices of abstracted graphs, which may contain several basic
vertices; however, we identify singleton nodes with the contained vertex without further
notice. Dynamic modifications of G will solely concern edges as vertex insertions and
deletions are trivial for a disconnected vertex. Thus, a modification of G always involves
an edge {b,d}, yielding G⊕ if {b,d} is newly inserted into G, and G	 if it is deleted
from G. We write G⊕	 as a shorthand for G⊕ or G	. Decreasing edge weights can be
handled by the same method as deletions, the techniques for edge insertions also apply
for increasing weights. We further assume G to be connected; otherwise one can work
on each connected component independently and the results still apply.

An edge eT = {u,v} of a tree T (G) = (V,ET ,cT ) on V induces a cut in G by de-
composing T (G) into two connected components. A weighted tree T (G) is called a
cut tree [4, 5] if edge weights correspond to cut weights and if for any vertex pair
{u,v} ∈

(V
2

)
the cheapest edge on the unique path between u and v induces a minimum

u-v-cut in G. Neither must this edge be unique, nor T (G). Note that we sometimes
identify eT with the cut it induces in G.

A contraction of G by N ⊆ V means replacing the set N in G by a single node,
denoted by [N], and leaving this node adjacent to all former adjacencies u of vertices of
N, with edge weight equal to the sum of all former edges between N and u.

Our understanding of a clustering C(G) of G is a partition of V into subsets C, which
define vertex-induced subgraphs, called clusters. In the context of dynamic graphs and
edge modifications of {b,d} we particularly designate Cb, Cd and Cb,d containing b
and d, respectively. A hierarchy of clusterings is a sequence C1(G) ≤ ·· · ≤ Cr(G) of
clusterings such that Ci(G) ≤ C j(G) implies that each cluster in Ci(G) is a subset of a
cluster in C j(G). We say Ci(G)≤ C j(G) are hierarchically nested.

We start by giving two fundamental insights about cuts in static and dynamic graphs.
Lemma 1 results from the basic properties of cut trees and is proven in App. B. We will
use Observation 2 without further notice.



Lemma 1. Let (U,V \U) denote a minimum u-v-cut in G, u ∈U and x ∈U. Then there
exists a minimum x-v-cut (X ,V \X) in G, x ∈ X, such that X ⊆U.

Observation 2. Suppose edge {b,d} changes in G yielding G⊕	. Let θ denote a min-
imum u-v-cut in G⊕	 and θ̂ a min-u-v-cut in G, both not separating b and d. Then
c⊕	(θ) = c(θ) = c(θ̂) = c⊕	(θ̂), i.e., θ̂ is a minimum u-v-cut in G⊕	.

3 The Static Hierarchical Clustering Algorithm

Flake et al. [3] propose and evaluate a hierarchical algorithm, which clusters instances in
a way that yields a certain guarantee on the quality of the clusters. This quality guarantee
is inherited from a basic clustering procedure, which computes one clustering. Applying
this procedure iteratively to instances obtained by contracting foregoing clusters yields
a clustering hierarchy.

The Basic Clustering Procedure. Inspired by a bicriterial approach for good cluster-
ings by Kannan et al. [6], Flake et al. [3] design a basic clustering procedure that, given
parameter α , asserts: 1

c(C,V \C)

|V \C|︸ ︷︷ ︸
inter-cluster cut

≤ α ≤ c(P,Q)

min{|P|, |Q|}︸ ︷︷ ︸
expansion of intra-cluster cut (P,Q)

∀C ∈ C(G) ∀P,Q 6= /0 P ·∪Q =C

This quality guarantee is due to special properties of cut trees, which are used by the
procedure: Given a graph G and parameter α > 0, augment G by inserting an artificial
vertex t and connecting t to each vertex in G by an edge of weight α . Then compute a
cut tree T (Gα) of the resulting graph Gα . Finally, remove t from T (Gα), which decom-
poses T (Gα) into connected components, which are returned as clusters in C(G). In the
following we call a clustering that can be computed by this procedure a cut-clustering,
and we denote by G	α and G⊕α the augmented and modified graphs.

Flake et al. further point out that, instead of constructing a whole cut tree, only
knowing the edges of T (Gα) incident to t would suffice. According to Lemma 3, which
directly follows from a lemma introduced by Gusfield [5], Alg. 1 (LCC), with S = /0,
returns a cut-clustering by constructing such a partial cut tree, which is in fact a star
with center t. The parameter S will be used later for the dynamic approach. The number
of cuts calculated in LCC depends on the sequence of chosen sinks and the shape of the
returned cuts. Already known cuts might be covered by later cuts in line 7, i.e., possibly
computed without need.

Lemma 3 (Gusfield [5], Lemma 1). Let (Ci,Vα \Ci) be a min-t-r(Ci)-cut in G, with
r(Ci) ∈Ci. Let (H,Vα \H) be a min-t-u-cut, with t,u ∈Vα \Ci and r(Ci) ∈H. Then the
cut (Ci∪H,(Vα \Ci)∩ (Vα \H)) is also a min-t-u-cut.

Line 3 in LCC represents the new degree of freedom. Whenever used in a hierarchi-
cal context, Flake et al. restricted this to minimum t-u-cuts whose sink sides are of

1 The disjoint union A∪B with A∩B = /0 is denoted by A ·∪B.



Algorithm 1: LEVEL CUT-CLUSTERING (LCC as a shorthand)
Input: Graph Gα = (Vα ,Eα ,cα ), set S
C(G)← S; V ←Vα \ ({t}∪

⋃
C∈S C)1

while ∃ u ∈V do2
(U,Vα \U)← min-t-u-cut in Gα , t /∈U // new degree of freedom3
Cu←U ; r(Cu)← u4

forall Ci ∈ C(G) do5
if r(Ci) ∈Cu then // Cu =: H covers Ci6

Cu←Cu∪Ci; C(G)← C(G)\{Ci} // reshaping by Lem.37

else Cu←Cu \Ci // reshaping by Lem.3, Cu =: Vα \H8

C(G)← C(G)∪{Cu}; V ←V \Cu9

minimum size and called the minimum sink side the community of u and u a represen-
tative of its community. Analogously, we call U a cut side with representative r(U) if
(U,Vα \U) is a minimum t-u-cut in Gα , with u∈U . We assume, that the final clustering
C(G) found by LCC stores at least one representative per cluster. In the following we
identify t-u-cuts (U,Vα \U) with vertex sets U , u ∈U and t /∈U .

Algorithm 2: HIERARCHICAL CC
Input: G = (V,E,c), α1 > · · ·> αr
C0(G)←{{v} | v ∈V}; r({v})← v1

for i = 1, . . . ,r do2

forall C ∈ Ci−1(G) do3

contract C in Gαi4

associate [C] with r(C)5

Ci(G)← LCC(Gαi , /0)6

The Hierarchical Algorithm. Flake et
al. developed a hierarchical clustering ap-
proach (HCC), which uses LCC itera-
tively (see Alg. 2). On each level the re-
turned hierarchy provides a cut-clustering
Ci(G) of G with respect to a particular αi,
i.e., Ci(G) holds the quality guarantee. We
call such a hierarchy a cut-clustering hi-
erarchy. Iterating a cut-clustering hierar-
chy bottom-up the αi-values decrease, i.e.,
αi > α j for i < j. For the proof of correctness of Alg. 2 Flake et al. employed special
nesting properties of communities. These properties guarantee that communities do not
change in line 7 and 8 of Alg. 1 and that communities in the contracted graph (Alg. 2,
line 4) correspond to communities in the original graph. Thus, the restricted LCC ap-
plied to the contracted graph also returns a valid cut-clustering for G, and the resulting
hierarchy is a cut-clustering hierarchy.

Correctness and Completeness of Unrestricted HCC. In the following we show
that HCC remains correct if we apply LCC with arbitrary minimum t-u-cuts, and that
this unrestricted approach is complete. We further characterize the set of cut-clustering
hierarchies.

Theorem 4. Unrestricted HCC is correct and complete.

In order to prove the correctness of HCC independently from special nesting properties
of communities, we state the following lemma and show that arbitrary minimum t-u-



cuts in the contracted graph are also cut sides in the original graph. Otherwise, LCC
applied to the contracted graph would possibly not return a valid cut-clustering for G.

Lemma 5. Let (U,Vα j \U) denote a min-t-u-cut in Gα j with u ∈U, and for αi > α j
let (X ,Vαi \X) denote a minimum t-x-cut in Gαi with x ∈ X. Then it holds (a) X ⊆U if
x ∈U and (b) X ∩U = /0 if x /∈U and u /∈ X.

t

x
X

U

∅

X\U

(a) It is X ⊆ U if
x ∈U .

t

u

X

U X∩U

x∅

(b) X∩U = /0 if x /∈
U and u /∈ X .

Fig. 2. Sketch to proof of Lem. 5.

Figure 2 sketches X and U and the con-
clusions (dashed cuts) proven by contradic-
tion in App. C. Note that for our purpose the
case x /∈U but u ∈ X is irrelevant. Lemma 5
tells us the following: Consider a minimum
t-r(C)-cut θ in the original graph Gα j with
r(C) a representative of a designated node
[C] in the contracted graph, and let [C′] de-
note an arbitrary node in the contracted graph. If r(C′) is in θ then θ also contains [C′];
in particular, θ contains [C]. If r(C′) is not in θ then θ ∩C′ = /0. Thus, θ is a proper
cut in the contracted graph and contains [C]. Conversely, each minimum t-[C]-cut in the
contracted graph is a proper cut in Gα j and contains r(C). Consequently, there exists a
1-1-correspondence between minimum t-r(C)-cuts in the original graph and minimum
t-[C]-cuts in the contracted graph, and LCC applied to the contracted graph returns a
valid cut-clustering for G.

According to the proof of correctness, by choosing the right cuts HCC is capable to
return any cut-clustering hierarchy where the representatives of clusters on one level are
a subset of the representatives on the level below. The following lemma shows that this
property holds for any cut-clustering hierarchy. Thus, Lemma 5 and Lemma 6 together
witness the completeness of HCC. The proof of Lemma 6 is in App. C.

Lemma 6. Let Ci(G) and C j(G) denote two cut-clusterings with respect to αi > α j and
let C′ ∈ Ci(G) and C ∈ C j(G) denote two clusters with r(C′) 6= r(C) but r(C) ∈C′. Then
it holds C′ ⊆C and r(C′) is a representative of C in C j(G).

We further give the following simple characterization of all cut-clustering hierar-
chies and present Corollary 8, which we will apply later to prove temporal smoothness
and the feasibility of certain vertex contractions. For a proof of Theorem 7 see App. C.

Theorem 7. Given a sequence α1 > · · · > αr of parameter values each set of cut-
clusterings C1(G), . . . ,Cr(G) forms a hierarchy.

Corollary 8. A cluster C ∈ C j(G) separates G into C and V \C such that both parts
are clustered independently with respect to αi > α j, i.e., minimum cuts in Gαi with
representatives in C do not cover any vertex in V \C and vice versa.

Otherwise there would exist a cut-clustering Ci(G) that is not hierarchically nested in
C j(G) contradicting Theorem 7.



4 Update Algorithm for Dynamic Clustering Hierarchies

The second part of this work addresses a dynamic version of HCC. We give a method
that employs the new degree of freedom for consecutively updating cut-clustering hier-
archies with respect to a given sequence of α’s. Based on Theorem 7 this can be already
done by simply updating each level independently using a dynamic version of the basic
clustering procedure LCC given by Hartmann et al. [8] (which corrects an approach pro-
posed by Saha and Mitra [7]). Since the static LCC, as introduced by Flake et al. [3],
is not restricted to communities, the dynamic version by Hartmann et al. also allows
for the use of arbitrary cuts, and thus, already achieves good temporal smoothness and
some cost savings. However, in the following we present a more efficient algorithm,
which also exploits the hierarchical structure to save costs and to provide high temporal
smoothness.

The Basic Clustering Procedure in a Dynamic Scenario. Hartmann et al. [8] devel-
oped an algorithm for dynamically updating single cut-clusterings. We will refer to this
algorithm by LU (for level update). Given a cut-clustering C(G), we distinguish four
cases of edge modification: inter-cluster deletion (inter-del), where the deleted edge is
incident to vertices in different clusters, intra-cluster deletion (intra-del), i.e., an edge
within a cluster is removed, and analogously, inter- and intra-cluster insertion (inter-ins,
intra-ins). LU reshapes cuts in order to prevent previous clusters from splitting. In this
way some clusters are guaranteed to remain clusters or at least subsets of clusters after
a change. Regarding different modification cases the following facts hold [8]:

a) all clusters in C(G)\{Cb,Cd} (for inter-ins) and in {Cb,Cd} (for inter-del) are still
cut sides in G⊕	α with respect to their previous representatives.

b) if Cb,d (for intra-del) or Cb and Cd (for inter-ins) are still cut sides with respect to
any representative after the change, C(G) is still a cut-clustering for G⊕	. We call
this the copy-property of C(G). However, the previous representatives of Cb,d or
Cb, Cd possibly become invalid.

c) for intra-ins, C(G) fulfills the copy-property retaining all representatives.
d) for inter-del, LU computes at most |C(G)|− 2 minimum cuts, and updating C(G)

by LU yields C(G) = C(G	) with valid representatives if C(G) fulfills the copy-
property.

e) for any deletion, consider C ∈ C(G) with b,d /∈C. There exists a minimum t-r(C)-
cut X in G	α with C ⊆ X .

An Intelligent Hierarchical Approach from Scratch. The naive way to compute a
new hierarchy after a change in G is to apply HCC from scratch. In Sec. 3 we showed
that HCC allows for the use of arbitrary cuts, i.e., the construction may use the most
appropriate cut, depending on the application. Given an appropriate initial hierarchy
we present a hierarchical approach that still calculates a new hierarchy from scratch but
adopts appropriate cuts applied before. To this end we modify HCC by improving LCC:
When computing a new min-t-u-cut θ (u may be a node) let C denote the cluster that
contains r(u) in the old clustering on the same level. If c⊕	(θ) = c⊕	(C) in G⊕	α , LCC
takes C as new minimum t-u-cut.



Lemma 9. In the situation described above it is u⊆C and C is a minimum t-u-cut in the
contracted graph (Alg. 2, line 4) resulting from G⊕	α . Thus, the intelligent hierarchical
approach is correct.

For a proof see App. D. In the following we will refer to the improved LCC by intel-
ligent LCC (or ILCC). We will further express the costs of our new update algorithm
in terms of costs of the intelligent hierarchical approach: Given a hierarchy for G and a
new hierarchy from level 1 to level i−1 we denote the costs for extending the hierarchy
to level j by T ([i, j],G⊕	).

For one level, T ([i, i],G⊕	) consists of the costs for contracting the clusters on level
i− 1 and the costs of ILCC applied to the contracted graph. The latter depend on the
size of the contracted graph, which influences the runtime of the cut computations, and
the number of calculated cuts.

Reusable Parts of the Hierarchy in a Dynamic Scenario. Given an edge modifica-
tion a cut-clustering hierarchy decomposes into two parts. Levels where the modifica-
tion induces an inter-cluster event form the lower part, intra-cluster event levels build
the upper part. The first idea in this paragraph considers levels of intra-cluster events.
According to Fact c) each intra-ins level can be copied to a new hierarchy. An intra-del
level can be copied if Cb,d remains a cut side, cf. Fact b). The following lemma gives a
further indicator for an intra-del level fulfilling the copy property. We sketch the proof
in App. D.

Lemma 10. Let C(G) denote an intra-del cut-clustering with b,d ∈ Cb,d . If no cut-
clustering C(G	) exists with b,d in different clusters, C(G) fulfills the copy-property.
If there exists a cut-clustering Ci(G	) with b,d ∈Cb,d

i , each cut-clustering C j(G) with
αi > α j fulfills the copy-property.

According to Lemma 10 and Fact c) we get the following:

Theorem 11. Given a cut-clustering hierarchy, let k denote the lowest intra-del level
that fulfills the copy-property (deletion) or just the lowest intra-ins level (insertion).
Then all levels i ≥ k can be reused as part of a new hierarchy (however, in case of
deletion some representatives possibly become invalid, cf. Fact b)).

A second idea is to consider subtrees of clusters. A subtree of a cluster C on level i
consists of C and all clusters on lower levels in the hierarchy that are nested in C.
Lemma 12 (proof in App. D) and Theorem 13 attest that in some cases we can preserve
the whole subtree of a cluster after a change in G.

Lemma 12. Let C 63 b,d denote a cluster in C j(G) that remains a cut side for r(C)
(which is equivalent to any representative) in G⊕	α j

. Let further denote C′ ⊆C a cluster
in Ci(G), i < j. Then C′ remains a cut side for r(C′) in G⊕	αi

.

If C in Lemma 12 even remains a cluster in a new cut-clustering C j(G⊕	), according to
Corollary 8 the following holds:

Theorem 13. In a cut-clustering hierarchy let C 63 b,d denote a cluster in C j(G) that
is also a cluster in a cut-clustering C j(G⊕	). Then the whole subtree of C can be used
as part of a new hierarchy (representatives remain valid).

We define the root of a (inclusion-) maximal reusable subtree as a highest root.



Algorithm 3: UPDATE INTRA-DEL LEVEL

Input: Graph D	α , cut-clustering C(G) 3Cb,d

if ∃C ∈ C(G) that is not a proper union of nodes in V then // V :=V (D	α )1
C(G	)← ILCC(D	α , /0) // ILCC takes nodes containing...2
return (C(G	), false) // ...representatives in C(G) first3

while ∃ u ∈V with u⊆Cb,d do // start with u 3 r(Cb,d)4
U ← community of u in D	α5

if ∃ x ∈U with x 6⊆Cb,d then apply line 4 to 9 of Algo 1; goto line 96

if c	(U) = c(Cb,d) then C(G	)← C(G); r(Cb,d)← u; return (C(G	), true)7
apply line 4 to 9 of Algo 1 (ILCC)8

while ∃ u ∈V do // ILCC takes nodes containing rep. in C(G) first9
apply line 3 to 9 of Algo 1 (ILCC)10

return (C(G	), false)11

Our New Update Approach. Our new update approach treats the two parts of inter-
and intra-cluster event levels of the hierarchy differently. We start by applying Theo-
rem 11 and Theorem 13 to intra-cluster event levels and estimate the costs in terms of
costs of the intelligent HCC.

In case of insertion, Theorem 11 tells us that we can just copy each intra-ins level
to a new hierarchy without further costs (cf. upper shaded area in Fig. 3).

In case of deletion, we search for the lowest intra-del level k that fulfills the copy
property. To this end, beginning at the lowest intra-del level ` we iteratively apply Alg. 3
until the first copy-property level k is found. Alg. 3 takes an intra-del clustering Ci(G)
and a graph D	αi

obtained from G	αi
by contracting clusters on level i−1. Line 2 catches

a case where Ci(G) obviously does not fulfill the copy-property and applies ILCC in
this case. If Ci(G) fulfills the copy-property, according to Fact b) it suffices to find a
valid representative for Cb,d

i . Thus, lines 4 ff. search for such a representative and return
Ci(G) together with the representative if one is found and continue ILCC otherwise.
Lemma 17 in App. D shows that Alg. 3 finds a valid representative of Cb,d

i if there is
one. The costs for updating level ` to k− 1 are about T ([`,k− 1],G	) since Alg. 3 is
just a modified LCC (see Fig. 3, area (1)).

After we found level k we can actually copy all levels i> k according to Theorem 11,
apart from the representatives of Cb,d

i , i = k+1, . . . ,r. Hence, we apply the while-loop
in line 4 of Alg. 3 instead of copying the levels, since this additionally returns valid
representatives. This costs about ∑

r
i=k T ([i, i],Cb,d

i ) also including the costs for level k
(see area (2), Fig.3).

However, in order to apply Alg. 3 the first time on level ` we need to compute a
clustering C`−1(G	) on the highest inter-del level acting as a base for contracting the
initial instance. To this end, we contract Cb

`−1 and Cd
`−1 in G	α`−1

and associate the nodes
with r(Cb) and r(Cd). Then we apply LU to the obtained graph, which is feasible and
costs about T ([l−1, l−1],G	); see App. E.

In both cases, insertion and deletion, we can further reuse the subtrees of all clusters
C ∈ Ck(G) \ {Cb,d

k } by Theorem 13 (see lower shaded area in Fig. 3). This already
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Fig. 3. Sketch of costs for updating a hierarchy using our first update approach. Shaded areas
represent saved costs compared to a hierarchical construction from scratch.

updates parts of inter-cluster event levels. In case of deletion, the clusters of subtrees
overlapping levels `−1 to k−1 already exist in C`−1(G	), . . . ,Ck−1(G	) since Alg. 3
and LU construct reusable subtrees, apart from highest roots, by default according to
Corollary 8 (see also Lemma 18 and Lemma 19 in App. D).

Observation 14. Each level i ≥ ` (intra-del) or i ≥ k (intra-ins) that fulfills the copy-
property and each reusable subtree that is rooted on level i ≥ k is part of the new hier-
archy (with valid representatives) resulting from our update approach.

By updating the intra-cluster event levels with this approach, we reduce the problem of
updating a cut-clustering hierarchy of r levels to an update of k− 1 levels (insertion)
or `− 2 levels (deletion), regarding an instance just as big as Cb,d

k (cf. boxed question
mark in Fig. 3).

Strategies for Completing the Hierarchy on Inter-Cluster Event Levels. After our
first update step we still need to fill in the question marks in Fig. 3, i.e., construct a
hierarchy based on the vertices in Cb,d

k . According to Corollary 8, Cb,d
k and V \Cb,d

k
in G are clustered independently on the missing levels. Thus, when updating level i in
the following, we consider G⊕	αi

with V \Cb,d
k contracted into a node representing the

subtrees already used.
In case of insertion, we iterate the missing levels bottom-up contracting G⊕αi

as the
hierarchical approach does. On each level we apply Alg. 4, which is a modified LCC.
It takes an inter-ins clustering Ci(G) and a graph G⊕αi

contracted as described above.
Line 1 further contracts G⊕αi

, which, together with line 2, enables the algorithm to save
the costs for explicitly constructing reusable trees, as we will see later. The contraction
is as follows:Contract each C ∈ Ci(G) \ {Cb,Cd} that is a proper union of nodes in
the current instance G⊕αi

. Associate a new node [C] with r(X), where X ∈ Ci−1(G⊕)
contains r(C). In Lemma 21, found in App. E, we prove that applying ILCC to the
obtained graph D⊕αi

is correct, i.e., returns a cut-clustering for G⊕. Line 3 catches a
case where Ci(G) obviously does not fulfill the copy-property and applies ILCC in
this case. If Ci(G) fulfills the copy-property according to Fact b) it suffices to find a
valid representative for Cb

i and Cd
i . Thus, lines 6 ff. search for those representatives and

return the part of Ci(G) that is nested in Cb,d
k together with the representatives if some

are found or continue ILCC otherwise. The proof that Alg. 4 finds valid representatives
of Cb

i and Cd
i if some exist is analog to Alg. 3. Although Alg. 4 detects each level



Algorithm 4: UPDATE INTER-INS LEVEL

Input: Graph G⊕α , partial clustering P := {C ∈ C(G) |C ⊆Cb,d
k } ⊇ {Cb,Cd}

D⊕α ←contract some C ∈ P\{Cb,Cd} in G⊕α according to text description1

S←{C ∈ P | [C] in D⊕α formed in line 1} //identify V :=V (G⊕α ) with Cb,d
k2

if ∃C ∈ P that is not a proper union of nodes in V then3
C(G⊕)← ILCC(D⊕α , S); return (C(G⊕),false)4

C(G⊕)← S; V ←V \⋃C∈S C; b← false; d← false // V =Cb∪Cd5

while ∃ u ∈V do // start with ub 3 r(Cb) and ud 3 r(Cd)6
U ← community of u in D⊕α7

if ∃ x ∈U with x 6⊆Cb or x 6⊆Cd then skip line 3 in later iterations8

if c⊕(U) = c(Cb) or c⊕(U) = c(Cd) then9

b←true; r(Cb)← u; U ←Cb (if currently u⊆Cb =: Z)10

d←true; r(Cd)← u; U ←Cd (if currently u⊆Cd =: Z)11
in later iterations only consider u 6⊆ Z, in line 612
if b and d then C(G⊕)← P; return (C(G⊕), true)13

apply line 4 to 9 of Algo 1 (ILCC)14

return (C(G⊕),false)15

that fulfills the copy-property, when updating inter-ins levels we cannot directly benefit
from their copy-property. Thus, applying Alg. 4 to k− 1 inter-ins levels costs about
T ([1,k−1],Cb,d

k ); see App. E.
Furthermore, the bottom-up iteration makes the reuse of subtrees impossible. How-

ever, Alg. 4 counterbalances the missing subtree conservation. Using the same tech-
niques as Alg. 3, Alg. 4 returns all reusable subtrees by default, apart from highest
roots. It even saves the costs for explicitly constructing such trees, due to lines 1 and 2
as follows: By Corollary 8 each cluster of a reusable subtree is contracted in line 1 and
added to S in line 2. Due to Fact a) the nodes in S are considered as cut sides that are
already known, and thus, omitted when choosing sinks for cut computations in ILCC.
Particularly, Alg. 4 avoids cut computations for clusters in reusable subtrees. Hence, we
deduct the costs T for explicitly constructing reusable subtrees (see Fig. 4(a)).

In case of deletion, a bottom-up approach would not allow the reuse of subtrees.
Thus, we iterate the old hierarchy top-down updating each level in the same way as
level `− 1 in the first update step, but using a smaller instance due to already known
subtrees. As we have seen before, this method detects each reusable subtree, possi-
bly apart from highest roots. Thus, we copy those subtrees to the new hierarchy and
merge the found roots with the node in G	αi

that represents previously found subtrees in
order to save costs. Hence, completing the hierarchy in case of deletion costs about
T ([1, `− 2],Cb,d

k )− T (see Fig. 4(a)). Since for inter-cluster deletions LU bases on
ILCC, it further respects the copy-property (cf. Fact d)).

Observation 15. Each level i≤ `−1 (inter-del) or i≤ k−1 (inter-ins) that fulfills the
copy-property and each reusable subtree that is rooted on level i ≤ k− 1 is part of the
new hierarchy (with valid representatives), possibly apart from highest roots.



arbitrary hierarchy hierarchy remains valid
general costs lowest possible costs

insertion T ([1,k−1],Cb,d
k )−T 2(k−1) cpc

deletion ∑
r
i=k T ([i, i],Cb,d

i ) +T ([l−1,k−1],G	)
+T ([1, l−2],Cb,d

k )−T
(r− k+1) +∑

k−1
i=1 |C∗i (G)| cpc

Table 1. Sketch of costs, cpc = costs per cut. C∗i (G) := {C ∈ Ci(G) |C⊆C∗i+1} with C∗i+1 :=Cb,d
i+1

or C∗i+1 :=Cb
i+1∪Cd

i+1.

copy-property

subtrees

edge insertion

Cb,d

T

k

subtrees

property

1

edge deletion

l

Cb,d
Cb,d

Cb,d

2 copy-

T

(a) Costs regarding an arbitrary hierarchy.

k

copy-property

subtrees subtrees

copy-property

edge insertion edge deletion

Cb,dCb,d

2cuts
per
level

1cut
per
level

(b) Lower bounds if hierarchy still valid.

Fig. 4. Sketch of costs for updating a hierarchy applying our new update approach. Shaded areas
represent saved costs compared to a hierarchical approach from scratch.

Performance. In the following we just sum up the costs and the observations regarding
temporal smoothness already given with the description of our new update approach.
The latter—which we left unformalized— in parts synergizes with cost saving, an ob-
servation foremost reflected in the first update step.

Theorem 16. Each level fulfilling the copy-property and each reusable subtree (possi-
bly apart from highest roots) is part of the new hierarchy (with valid representatives)
build by our update algorithm. In particular, our algorithm returns the previous hierar-
chy if this is still a cut-clustering hierarchy after the change.

We sketch the general costs for updating an arbitrary hierarchy in Table 1 and visualize
them in Fig. 4(a). Furthermore, we consider the—possibly rather common—case that
the old hierarchy is still valid after some graph modification. For this case we list the
lowest possible costs in Table 1, which occur if on each inter-ins level Alg. 4 in line 6
chooses valid representatives for Cb and Cd as first nodes, or if on each intra-del level
Alg. 3 in line 4 hits a representative for Cb,d at the beginning (see Fig. 4(b)).

5 Conclusion

The hierarchical clustering algorithm by Flake et al. [3] returns a set of clusterings
at different levels of granularity. The striking feature of graph clusterings computed
by this method is that they are guaranteed to yield a certain expansion—a bottleneck
measure—within and between clusters, tunable by an input parameter α . However, their
method, which is based on minimum s-t-cuts, was restricted to the use of communities,
and hence, was not complete. We have proven that the hierarchical approach by Flake
et al. [3] remains correct if we introduce a new degree of freedom by permitting the use
of arbitrary minimum s-t-cuts instead of communities. This makes the method more



powerful since construction may actually use the most appropriate cut, depending on the
application. We have further given a simple characterization of the set of all clustering
hierarchies based on minimum s-t-cuts and have shown that the unrestricted approach
is complete, i.e., any clustering hierarchy in this set can be found by choosing the right
cuts. This allows for a more detailed analysis of a graph’s structure.

Furthermore, we have presented an algorithm that efficiently and fully-dynamically
maintains an entire hierarchy of clusterings, as computed by the unrestricted method.
Clusterings in the updated hierarchy fulfill the same quality guarantee regarding expan-
sion and, as a secondary criterion, we encourage temporal smoothness, i.e., changes
to the clustering hierarchies are kept at a minimum, whenever possible. Thereby, our
update algorithm employs the new degree of freedom which allows to reuse clusters
independently of their special shape, and thus, saves computational costs and increases
temporal smoothness (cp. Fig. 1). We also conjecture our new update algorithm, by im-
plementing some small modifications, to be a correct dynamic version of the restricted
hierarchical clustering algorithm by Flake et al., i.e., when restricted to maintaining
clusters that are communities (see [9] for a first study).

Future work includes the proof of the conjecture, a systematic comparison of our
algorithm to other dynamic clustering techniques and the analysis of batch updates.

Acknowledgements. We thank Ignaz Rutter and Sascha Meinert for their helpful sug-
gestions regarding the structure of this paper and Robert Görke who improved many a
formulation. We further thank the anonymous reviewers for their thoughtful comments.
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Appendix

A Discussion on Incompleteness of the Restricted Approach
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Fig. 5. Cut-clustering hierarchy of one level showing the incompleteness and the missing smooth-
ness of the restricted approach (cp. also Fig. 1).

The left side of Fig. 5 shows graph Gα together with the (unique) cut-clustering C(G) =
{{a,b},{c,d}} (shaded). Now assume that the weight on edge {a,b} decreases, as
shown on the right side. The modified graph G	α allows for two valid cut-clusterings:
The previous clustering C(G) = C(G	) = {{a,b},{c,d}} is still valid, since the dashed
cut is still a minimum t-a-cut in G	α ; but this cut is no community. Thus, this clustering
will never be returned by the restricted clustering approach, i.e., the restricted clustering
approach is incomplete. In contrast, the shaded clustering C′(G	) = {{a},{b},{c,d}}
is a valid cut-clustering whose clusters are communities. The restricted approach would
return C′(G	) although C(G	) = C(G) would be the better choice with respect to tem-
poral smoothness.

B Omitted Proofs in Section 2

Lemma 1. Let (U,V \U) denote a minimum u-v-cut in G, u ∈U and x ∈U. Then there
exists a minimum x-v-cut (X ,V \X) in G, x ∈ X, such that X ⊆U.

Proof. Consider a cut tree T (G) that represents eu := (U,V \U). Note, that for any
minimum u-v-cut in G there exists such a cut tree. Let further denote ex an edge repre-
senting a minimum x-v-cut in T (G). With x∈U it is c(ex)≤ c(eu). If c(ex) = c(eu) then
(U,V \U) is also a minimum x-v-cut. Otherwise, consider the path from v to x, which
is segmented by eu. If ex was in the segment between v and eu it would separate v and u
and eu would not represent a minimum u-v-cut. Thus, ex is in the segment between eu
and x and induces a cut (X ,V \X) with X ⊂U . ut

C Omitted Proofs in Section 3

Lemma 5. Let (U,Vα j \U) denote a min-t-u-cut in Gα j with u ∈U, and for αi > α j
let (X ,Vαi \X) denote a minimum t-x-cut in Gαi with x ∈ X. Then it holds (a) X ⊆U if
x ∈U and (b) X ∩U = /0 if x /∈U and u /∈ X.
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Fig. 2. Sketch to Lem. 5

Proof. Consider θi := (X ,Vαi \ X) and θ j := (U,Vα j \U). We distinguish two cases
depending on the shape of θ j. Case (a) is characterized by x ∈U , case (b) by x ∈ X \U
and u ∈U \X (see also Fig. 2).

(a): We assume X \U 6= /0 and show that in this case (U ∪X ,Vα j \ (U ∪X)) in Gα j is
cheaper than θ j. This contradicts θ j being a minimum t-u-cut in Gα j and we conclude
X \U = /0, i.e., θ j does not cut through X (dashed). In the following we compare differ-
ent costs expressing them in terms of costs in G and an addend depending on α . For θi
and (U ∩X ,Vαi \ (U ∩X)) we get:

cαi(θi) = cαi(X ,Vαi \X) = c(X \U,V \ (U ∪X)) + c(U ∩X ,V \ (U ∪X))
+ c(X \U,U \X) + c(U ∩X ,U \X)
+ αi|X |

cαi(U ∩X ,Vαi \ (U ∩X)) = c(X \U,U ∩X) + c(U ∩X ,V \ (U ∪X))
+ αi|U ∩X | + c(U ∩X ,U \X)

Since θi is a minimum t-x-cut in Gαi it holds cαi(U ∩X ,Vαi \ (U ∩X)) ≥ cαi(θi) and
we get c(X \U,U ∩ X) ≥ c(X \U,V \ (U ∪ X)) + c(X \U,U \ X) + αi|X \U |. With
c(X \U,U \X)≥ 0 it holds in particular

(i) c(X \U,U ∩X) + c(X \U,U \X) ≥ c(X \U,V \ (U ∪X)) + αi|X \U |

For θ j and (U ∪X ,Vα j \ (U ∪X)) we get

cα j(θ j) = cα j(U,Vα j \U) = c(U \X ,V \ (U ∪X)) + c(U ∩X ,V \ (U ∪X))

+ c(X \U,U ∩X) + c(X \U,U \X)
+ α j|U |

cα j(U ∪X ,V \ (U ∪X)) = c(U \X ,V \ (U ∪X)) + c(U ∩X ,V \ (U ∪X))

+ c(X \U,V \ (U ∪X)) + α j|U ∪X |
and finally

cα j(U ∪X ,V \ (U ∪X))− cα j(θ j) = [c(X \U,V \ (U ∪X))+α j|X \U |]
− [c(X \U,U ∩X)+ c(X \U,U \X)]

< 0

since c(X \U,V \(U∪X))+α j|X \U |< c(X \U,U∩X)+c(X \U,U \X) with α j <αi
applied to (i) and the assumption that X \U 6= /0.

(b): We assume X ∩U 6= /0 and show that in this case (U \X ,Vα j \ (U \X)) in Gα j is
cheaper than θ j. This contradicts θ j being a minimum t-u-cut in Gα j and we conclude
X ∩U = /0, i.e., θ j does not cut through X (dashed). In the following we compare dif-
ferent costs expressing them in terms of costs in G and an addend depending on α . For
θi and (X \U,Vαi \ (X \U)) we get:



cαi(θi) = cαi(X ,Vαi \X) = c(X ∩U,U \X) + c(X \U,U \X)
+ c(X ∩U,V \ (U ∪X)) + c(X \U,V \ (U ∪X))
+ αi|X |

cαi(X \U,Vαi \ (X \U)) = c(X ∩U,X \U) + c(X \U,U \X)
+ αi|X \U | + c(X \U,V \ (U ∪X))

Since θi is a minimum t-x-cut in Gαi it holds cαi(X \U,Vαi \ (X \U))≥ cαi(θi) and we
get c(X∩U,X \U)≥ c(X∩U,U \X)+c(X∩U,V \(U∪X))+αi|X∩U |. With αi > α j
and the assumption that X ∩U 6= /0 it further holds c(X ∩U,X \U)> c(X ∩U,U \X)+
c(X ∩U,V \ (U ∪X))+α j|X ∩U |; and with c(X ∩U,V \ (U ∪X))+α j|X ∩U | > 0 it
holds in particular

(ii) c(X ∩U,X \U) + c(X ∩U,V \ (U ∪X)) + α j|X ∩U | > c(X ∩U,U \X)

For θ j and (U \X ,Vα j \ (U \X)) we get

cα j(θ j) = cα j(U,Vα j \U) = c(U \X ,V \ (U ∪X)) + c(X ∩U,V \ (U ∪X))

+ c(U \X ,X \U) + c(X ∩U,X \U)
+ α j|U |

cα j(U \X ,Vα j \ (U \X)) = c(U \X ,V \ (U ∪X)) + c(X ∩U,U \X)

+ c(U \X ,X \U) + α j|U \X |
and finally, due to (ii)

cα j(U \X ,Vα j \ (U \X))− cα j(θ j) = c(X ∩U,U \X)

− c(X ∩U,V \ (U ∪X))

− c(X ∩U,X \U)−α j|X ∩U |
< 0

ut
Lemma 6. Let Ci(G) and C j(G) denote two cut-clusterings with respect to αi > α j and
let C′ ∈ Ci(G) and C ∈ C j(G) denote two clusters with r(C′) 6= r(C) but r(C) ∈C′. Then
it holds C′ ⊆C and r(C′) is a representative of C in C j(G).

Proof. If r(C′) ∈C then C′ ⊆C holds by Lemma 5(a). Now assume r(C′) ∈C′ \C and
let Ĉ denote the cluster in C j(G) containing r(C′). By Lemma 1 there exists a minimum
t-r(C′)-cut (X ,Vα j \X) in Gα j with r(C′) ∈ X and X ⊆ Ĉ. This contradicts Lemma 5(a)
(applied to r(C′) and X and C′) since r(C) ∈C′ \X , and thus, C′ 6⊆ X . Hence, r(C′) ∈C
and C′ ⊆C must hold.

By Lemma 5(a) any minimum t-r(C′)-cut in Gα j contains C′ 3 r(C), and thus, sep-
arates t and r(C). On the other hand, C 3 r(C′) separates t and r(C′). Consequently, C
is also a minimum t-r(C′)-cut in Gα j . ut
Theorem 7. Given a sequence α1 > · · · > αr of parameter values each set of cut-
clusterings C1(G), . . . ,Cr(G) forms a hierarchy.

Proof. Consider two cut-clusterings Ci(G) and C j(G) with respect to αi > α j. Let fur-
ther denote C ∈ C j(G) a cluster with representative r(C). By Lemma 5 C does not cut
through any cluster C′ ∈ Ci(G) with r(C) 6∈C′. By Lemma 6 C covers Ĉ ∈ Ci(G) with
r(C) ∈ Ĉ. Thus, Ci(G)≤ C j(G). ut



D Omitted Proofs in Section 4

Lemma 9. In the situation described above it is u⊆C and C is a minimum t-u-cut in the
contracted graph (Alg. 2, line 4) resulting from G⊕	α . Thus, the intelligent hierarchical
approach is correct.

Proof. Let C j(G) and Ci(G⊕	) denote two cut-clusterings with αi > α j. Let D⊕	α j
de-

note the graph resulting from G⊕	α j
by contracting each cluster C′ ∈ Ci(G⊕	) into a node

[C′] and associating [C′] with r(C′). In this situation the improved SCC is applied in
order to compute a new cut-clustering C j(G⊕	). Hence, u is a node in D⊕	α j

, θ is a min-
imum t-u-cut in D⊕	α j

and C ∈ C j(G) contains r(u). Now assume that c⊕	(θ) = c⊕	(C)

in G⊕	α j
.

By Lemma 5 (and the deduced 1-1-correspondence of minimum t-u-cuts in D⊕	α j

and t-r(u)-cuts in G⊕	α j
) θ is a minimum t-r(u)-cut in G⊕	α j

, and C is also a minimum
t-r(u)-cut in G⊕	α j

due to r(u) ∈C and the assumption above. Thus, again by Lemma 5,
C is a minimum t-u-cut in D⊕	α j

with u⊆C. ut

Lemma 10. Let C(G) denote an intra-del cut-clustering with b,d ∈ Cb,d . If no cut-
clustering C(G	) exists with b,d in different clusters, C(G) fulfills the copy-property.
If there exists a cut-clustering Ci(G	) with b,d ∈Cb,d

i , each cut-clustering C j(G) with
αi > α j fulfills the copy-property.

Proof. Consider M := C(G)\{Cb,d}. We decompose M into a set A of clusters C that are
still minimum t-r(C)-cuts in G	α and into a set B of clusters C for which a new minimum
t-r(C)-cut θ exists that is cheaper than C. Note that θ separates b and d. Conserning
the clusters in B, by a result in [8] all corresponding cuts θ can be adjusted such that
they do neither cross each other nor the clusters in A and such that each θ contains its
cluster C (for the latter cf. Fact e)). Thus, there exists a run of SCC that reaches a set
X ⊆ (V \⋃C∈M C) =Cb,d in line 2 while in the intermediate clustering C(G	) b and d
are still in different clusters C1 and C2 which cover all vertices in Cb,d \X . Note that
the vertices in X are not clustered yet. Since in all cut-clusterings C(G	) b,d share a
cluster by precondition, there must exist a vertex x ∈ X with a minimum t-x-cut θ ′ in
G	α containing b and d, i.e., containing C1∪C2. This is, r(Cb,d) is either in θ ′ or in the
remaining set of free vertices not clustered yet. Since θ ′ is also a minimum t-x-cut in
Gα , in the first case it follows that θ ′ is at most as cheap as Cb,d (as r(Cb,d) ∈ θ ′) and
with x ∈Cb,d we get c	(Cb,d) = c(Cb,d) = c(θ ′) = c	(θ ′), and thus, Cb,d is a minimum
t-x-cut in G	α . Otherwise, r(Cb,d) is still free and there exists a minimum t-r(Cb,d)-cut
in G	α that does not separate b and d since θ ′ covers these vertices. Thus, Cb,d is still a
minimum t-r(Cb,d)-cut in G	α .

The second assertion follows directly since there exits no cut-clustering C j(G	)
with b and d in diffrerent clusters if b,d share a cluster in Ci(G	), by Theorem 7. ut

Lemma 12. Let C 63 b,d denote a cluster in C j(G) that remains a cut side for r(C)
(which is equivalent to any representative) in G⊕	α j

. Let further denote C′ ⊆C a cluster
in Ci(G), i < j. Then C′ remains a cut side for r(C′) in G⊕	αi

.



Proof. Since C induces a minimum t-r(C)-cut in G⊕	α j
with r(C′) ∈ C, by Lemma 1

there exists a minimum t-r(C′)-cut θ in G⊕	α j
nested in C. Thus, θ does not separate

b and d and all minimum t-r(C′)-cuts θ ′ in G⊕	αi
do also not separate b and d since

they are nested in θ by Lemma 5(a) (consider u = x). This is, each θ ′ has the same
weight as C′ in Gαi and G⊕	αi

, and thus, C′ induces a minimum t-r(C′)-cut in G⊕	αi
by

Observation 2.
We can even show that C remains a cut side in G⊕	α j

with respect to r(C) iff C
remains a cut side in G⊕	α j

with respect to any representative x in C j(G).
(⇒): Since C does not separate b and d it has the same weight in both graphs G⊕	α j

and Gα j . According to Lemma 1 there exists a minimum t-x-cut in G⊕	α j
that is nested

in C and thus, does not separate b and d. As a result C is still a cut side in G⊕	α j
with

respect to x.
(⇐): Assume x being the representative designated in C j(G). Apply (⇒). Finally,

the representatives of C in Gα j and G⊕	α j
are the same. ut

Lemma 17. Let C(G) be an intra-del clustering fulfilling the copy-property and let
D	α result from G	α by contracting clusters of a cut-clustering for G	 with respect to
a parameter value bigger than α . Then Algorithm 3 returns C(G) with an updated
representative for Cb,d (the other representatives are still valid, cf. Fact b)).

Proof. Clustering C(G) is valid for G	 on level α and D	α represents a cut-clustering
for G	 on a lower level. Hence, each cluster in C(G) is a proper union of nodes in D	α
according to Theorem 7. Thus, Algorithm 3 reaches the while-loop in line 4.

For each u in D	α with u ⊆ Cb,d there exists a minimum t-r(u)-cut in G	α that is
nested in Cb,d , by Lemma 5 (1-1-correspondence of t-u-cuts in D	α and t-r(u)-cuts in
G	α ) and Lemma 1. In particular, the community U of u in D	α equals the community of
r(u) in G	α and is nested in Cb,d . Consequently, Algorithm 3 skips line 6. Furthermore,
it is c	(U)≤ c	(Cb,d) = c(Cb,d).

Let y denote a node in D	α containing a representative of Cb,d regarding G	. If
y ∈U (regarding the current u in line 4) it is c	(U) = c	(Cb,d) = c(Cb,d). Thus, Cb,d

is a minimum t-u-cut in D	α and a minimum t-r(u)-cut in G	α . In this case, Algorithm 3
returns C(G) with u as representative of Cb,d .

Otherwise, if y /∈U , y is still a free node in D	α not clustered yet in the next iteration
of the while-loop. By induction we finally conclude that there exists an iteration step
where y is covered by the current community U and the former case applies.

Due to the above arguments we further see that, given a cut-clustering C(G) fulfill-
ing the copy-property, the while-loop by itself copies C(G) and updates the representa-
tive of Cb,d . ut
Lemma 18. Let Ci(G) denote an intra-del clustering on level i, and let further denote
Ĉ ∈ C j(G) a cluster on a higher level j inducing a reusable subtree according to Theo-
rem 13. Consider cluster C ∈Ci(G)\Cb,d being part of this subtree. Then Algorithm 3
returns a new cut-clustering Ci(G	) that contains C as cluster.

Proof. If Ci(G) fulfills the copy-property the assertion holds by Lemma 17. Otherwise,
Algorithm 3 reaches the second while-loop in line 9 or it applies line 2 or line 6. Ac-
cording to Theorem 7 Ĉ and C are proper unions of nodes in D	αi

, and the nodes in Ĉ



are clustered independently by Corollary 8. Thus, in all tree cases mentioned above the
nodes in Ĉ are still free nodes not clustered yet when Algorithm 3 turns into ISCC. For
each node in Ĉ considered as a sink in intilligent SCC the new cut is a subset of Ĉ,
and thus, does not separate b and d and has the same weight as the previous minimum
cut. Since ISCC is supposed to take the nodes containing the representatives of clusters
in Ci(G) first the intelligent version finds and reconstructs all clusters in Ci(G) covered
by Ĉ. ut

Lemma 19. Let Ci(G) denote an inter-del clustering on level i, and let further denote
Ĉ ∈ C j(G) a cluster on a higher level j inducing a reusable subtree according to Theo-
rem 13. Consider cluster C ∈Ci(G) \Cb,d being part of this subtree. Then LU applied
to D	αi

resulting from G	αi
by contraction strategy 1 returns a new cut-clustering Ci(G	)

that contains C as cluster.

Proof. We expect the reader to have [8] at hand since we omit a renewed description of
LU in the case of inter-cluster deletion.

According to strategy 1 applied in an inter-del case Ĉ and C are proper unions of
nodes in D	αi

, and the nodes in Ĉ are clustered independently by Corollary 8. For each
node in Ĉ considered as a sink by LU the new cut is a subset of Ĉ, and thus, does
not separate b and d and has the same weight as the previous minimum cut. Since LU
to take the nodes containing the representatives of clusters in Ci(G) first LU finds and
reconstructs all clusters in Ci(G) covered by Ĉ. ut

E Discussion on Different Contraction Strategies

When constructing a cut-clustering on level i HSCC contracts clusters on the level be-
low in order to speed up the computation: contractions shrink the instance for cut com-
putations in SCC and reduce the risk of computing unnecessary cuts. Our new update
approach also contracts clusters in G⊕	αi

, however, depending on properties of the differ-
ent modification cases and the parts of a new hierarchy known so far. The two strategies
we describe in the following provide about the same speed up as traditional contractions
and do not change costs compared to an intelligent hierarchical approach. However, we
prefer those in order to afford temporal smoothness. Lemma 20 confirms that LU ap-
plied with strategy 1 returns a valid cut-clustering. The correctness of (intelligent) SCC
applied with strategy 2 is given by Lemma 21.

If no clustering is known on the level below, we contract each cluster in C ∈ Ci(G)
that remains a cut side according to Fact a) and associate [C] with r(C) (strategy 1).
We will use this strategy only for inter-del levels, which we update by applying LU.
According to Fact d) this needs at most |Ci(G)|−2 cut computations.

The instances constructed by this strategy, without any knowledge about the level
below, differ from the corresponding instances in a hierarchical approach in size and
structure of nodes; in particular the representatives in both instances are not compa-
rable. However, the number of cuts used for an inter-del update also develops hierar-
chically regarding several levels, and the considered representatives already induced
clusters before the change. In all likelyhood, they are again a good choice such that
we expect only a low risk of computing cuts without need. Thus, we estimate the costs



for constructing inter-del level i using this strategy together with LU by T ([i, i],G	),
ignoring the missing speed-up for cut computations due to a bigger instance.

If we already know a new clustering Ci−1(G⊕	), we contract the clusters X ∈
Ci−1(G⊕	) as the hierarchical approach does. Additionally, we contract each cluster
in C ∈ Ci(G) that corresponds to a proper union of nodes in the graph contracted so far
and withal remains a cut side according to Fact a). We associate [C] with r(X), where
X ∈ Ci−1(G⊕	) contains r(C) (strategy 2). The final graph is at most as big as a tradi-
tionally contracted instance and uses a subset of its representatives. Thus, we estimate
the costs of (intelligent) SCC using the new instance by T ([i, i],G⊕	), ignoring the
additional cost for contracting the cut sides.

Lemma 20. Let Ci(G) denote an inter-del clustering and let D	αi
denote the graph re-

sulting from G	αi
by contracting vertices according to strategy 1. Then LU applyed to

D	αi
still returns a cut-clustering for G	.

Proof. We expect the reader to have [8] at hand since we omit a renewed description of
LU in the case of inter-cluster deletion. We show that LU applied to D	αi

does exactly
the same as LU applied to G	αi

.
The only difference between D	αi

and G	αi
is that Cb and Cd form nodes in D	αi

. For
inter-cluster deletion, LU applied to G	αi

considers Cb and Cd as cut sides of r(Cb) and
r(Cd) that are included in a tentative clustering from beginning until they are covered
by another cut. Thus, for the run of LU it is irrelevant whether Cb and Cd are contracted
or not. Vice versa, in D	αi

the nodes [Cb] and [Cd ] are associated with r(Cb) and r(Cd).
ut

Lemma 21. Let D⊕	αi
denote the graph resulting from G⊕	αi

by contracting vertices
according to strategy 2. Then (intelligent) SCC applyed to D⊕	αi

still returns a cut-
clustering for G⊕	.

Proof. Let u denote a node in D⊕	αi
. We show that there exists a minimum t-r(u)-cut in

G⊕	αi
that contains u and respects all nodes in D⊕	αi

, i.e., does not cut through any node
in D⊕	αi

. Then each minimum t-u-cut in D⊕	αi
is also a minimum t-r(u)-cut in G⊕	αi

and it
holds that applying SCC is feasible. Finally we confirm that also ISCC works correctly
on D⊕	αi

. Let A denote the set of nodes in D⊕	αi
that correspond to a cut sides in Ci(G)

and B the set of nodes that correspond to clusters in Ci−1(G⊕	) and are not in A.
– If u is a cut side C ∈ A define θ := u which is a minimum t-r(C)-cut in G⊕	αi

. Since
r(u) = r(X) with r(C)∈ X ∈ Ci−1(G⊕	) θ is also a minimum t-r(u)-cut. Obviously
θ contains u and respects the nodes in D⊕	αi

.
– If u is a cluster X ∈ B there exists a minimum t-r(X)-cut θ in G⊕	αi

that contains X
and respects the clusters in Ci−1(G⊕	), according to Lemma 5. If θ cuts through a
cut side C ∈ A, we can reshape θ according to Lemma 3 since r(X) /∈C. This yields
a minimum t-r(X)-cut that further respects all nodes in A since the reshaping does
not cause any new conflicts. With X = u and r(X) = r(u) θ is a minimum t-r(u)-cut
that contains u.

Finally, consider a minimum t-u-cut in D⊕	αi
and let C′ ∈ Ci(G) denote the cluster

containing r(u). If u ∈ B the proof is analog to Lemma 9. If u ∈ A we know from above
that u =C′ is a minimum t-u-cut in D⊕	αi

. Thus, also ISCC works correctly on D⊕	αi
. ut
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