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2 INTRODUCTION

1.1 Motivation

This report introduces the Palladio Component Model (PCM), a novel software component model for
business information systems, which is specifically tuned to enable model-driven quality-of-service
(QoS, i.e., performance and reliability) predictions (based on work previously published in [1, 2, 3,
4, 5]). The PCM’s goal is to assess the expected response times, throughput, and resource utilization
of component-based software architectures during early development stages. This shall avoid costly
redesigns, which might occur after a poorly designed architecture has been implemented. Software ar-
chitects should be enabled to analyse different architectural design alternatives and to support their design
decisions with quantitative results from performance or reliability analysis tools.

Component-based software engineering (CBSE) [6] promises many advantages over object-oriented
or procedural development approaches. Besides increased reusability, better preparation for evolution,
higher quality due to increased testing, and shorter time-to-market, CBSE potentially offers better pre-
dictability for the properties of architectures, because individual components should be provided with
more detailed specifications. A large number of component models has been designed for different pur-
poses. Component models used in the industry today (COM+/.NET, J2EE/EJB, CCM, etc.) do not offer
capabilities for predicting QoS attributes. Component models from academia [7] have been designed to
support purposes like runtime configuration, protocol checking, mobile device assessment etc. Some of
them deal with QoS predictions (e.g., ROBOCOP, KLAPER, CB-SPE, PACC, MARTE etc.), but often
have a different notion of software components.

Model-based QoS-prediction approaches for determining the performance and reliability of software
systems have been researched for decades, but are still hardly used in practice. A survey by [8] classifies
recent performance prediction approaches, and the overview by [9] includes a large number of reliability
models. These approaches mostly target monolithic systems and are usually not sufficiently tuned for
component-based systems. Specifying QoS properties of independently deployable software components
is difficult, because component developers cannot know on what kind of machine their code is used, what
parameters will be supplied to the component’s provided services, and how the components required
services will react.

Two key features of the PCM are i) the parameterised component QoS specification and ii) the de-
veloper role concept. Concerning i), the PCM is based on the component definition introduced by [6].
Software components are black box entities with contractually specified interfaces. They encapsulate
their contents and are a unit of independent deployment. Most importantly, components can be com-
posed with other components via their interfaces. The PCM offers a special QoS-specification for soft-
ware components, which is parameterised over environmental influences, which should be unknown to
component developers during design and implementation.

Concerning ii), the domain-specific language of the PCM is aligned to the different roles involved
in component based development. Component developers specify models of individual components,
which are composed by software architects to architectures. Deployers can model the hardware/VM/OS-
environment of the architecture, and domain experts are enabled to supply a description of the user’s
behaviour, which is necessary for QoS predictions. A QoS-driven development process model supports
the roles in combining their models.
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1.2 Overview

This report is structured as follows:

• Chapter 2: lays the foundation to understand the concepts of the PCM. First, the QoS-driven
development process model targeted by the PCM is introduced (2.1). Basic principles of in-
terfaces and composition are highlighted. (2.2). Parametric contracts enable adapting the pre-
/postconditions of components (2.3). As QoS of component depends on the context a component
is executed in, the PCM introduces a special context concept (2.4). To specify resource demands,
random variables can be used in the PCM (2.5).
• Chapter 3: presents the concepts of the PCM and is structured after the roles involved in mod-

eling. Component developers specify interfaces, services, components, and QoS properties (3.1).
Software architects use the specifications of component developers to build architectures (3.2).
Deployers model the resource environment of an architecture (3.3). Domain experts provide in-
formation about the user behaviour (3.4). QoS experts collect the information from the different
roles, use prediction tools and pre-interpret the results (3.5).
• Chapter 4: contains the generated technical reference of the PCM metamodel.
• Chapter 5: discusses the PCM, describes related work, open issues, as well as limitations and

assumptions present in the PCM.





Chapter 2
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2.1 Component-based Development Process

2.1.1 Motivation

Component-based software development follows a different process than classical procedural or object-
oriented development [6]. The task of developing software artefacts is split between the role of the
component developer, who develops individual components, and the software architect, who assembles
those components to form an application. Further roles are involved in specifying requirements and
defining the resource environment.

For using the PCM, a specific development process with specific developer roles is envisioned [2],
which builds on an existing component-based development process introduced by Cheeseman and Daniels
[10], which was in turn based on the Rational Unified Process (RUP).

Early QoS analyses of a component-based architectures depend on information about its usage profile
and resource environment. This information might not be available directly from software architects
or component developers. Thus, further developer roles, such as deployers, domain experts and QoS
analysts are needed for the specification and QoS analysis of a component-based architectures. These
developer roles and their tasks are described in Section 2.1.2. For the PCM, a domain specific modeling
language has been created for each of these roles. These modeling languages will be described in detail
in Chapter 3.

The PCM process model extends the process model by Cheeseman and Daniels (Section 2.1.3). Sec-
tion 2.1.4 elaborates on the specification workflow and illustrates the interdependencies between com-
ponent developer and software architect. The PCM process model additionally contains a workflow
”QoS-Analysis” (Section 2.1.5), in which all of the developer roles interact to predict the performance
or reliability of the architecture.

The development process introduced in the following is generic, so that it could be followed by other
model-based QoS prediction approaches for component systems [11] as well. It is furthermore not
restricted to a specific QoS property like performance, but can also be used for reliability, availability,
security, safety, etc. The process model reflects our vision of software development including early QoS
analyses. Its applicability in practice remains to be validated. Some discussion points about the process
model as well as related work are summed up in Section 2.1.6.

2.1.2 Roles in Component-based Development

Role TaskPerson 1..*1..*
assigned has

1..*1
performed by has

Figure 2.1: Concept of Roles.

Before introducing the individual roles of the component-based development process, we describe the
general concept of roles in software development. Figure 2.1 illustrates the relation of persons, roles,
and tasks. A role groups a set of tasks that have an overall purpose and each task is associated to exactly
one role. For example, the role component developer performs tasks like component implementation and
component specification. A role can be adopted by multiple persons, e.g. there can be multiple persons
who are component developers involved in the process. On the other hand, it is also possible for a person
to adopt multiple roles. For instance, some component developers might also play the role of software
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architects, who are responsible for designing the software architecture. The relation of persons and roles
is an important concept and has to be considered when reading the following descriptions of roles.

Usage Model
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Queueing Network Model
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Java Code Skeletons

Model-to-Model

Transformation
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Transformation

____
____
____

____
____
____

____
____
____

Figure 2.2: Developer Roles in the Palladio Process Model

Since we want to evaluate QoS attributes during early development stages, we need additional infor-
mation about the internal component structure, the usage model, and the execution environment. These
cannot be provided by a single person (e.g., the software architect) involved in the development process,
since the required knowledge is spread among different persons with different development roles. There-
fore, a QoS analyst requires support of component developers, software architects, domain experts, and
deployers to analyse the QoS attributes of a software architecture (cf. Fig. 2.2).

…
if (a>b)
c = a;

…

Component Code

External Services

Execution Environment

Usage Profile

Figure 2.3: Influences on the QoS properties of a Software Component

Component developers are responsible for the specification and implementation of components. They
develop components for a market as well as per request. To enable QoS analyses, they need to specify
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the QoS properties of their components without knowing a) to which other components they are con-
nected, b) on which hardware/software platform they are executed, and c) which parameters are used
when calling their services (cf. Figure 2.3). Only such a specification enables independent third party
analyses. In the PCM, component developers use service effect specifcations (SEFF, cf. Section 3.1.4)
to characterise the QoS properties of their components.

Software architects lead the development process for a complete component-based application. They
design the software architecture and delegate tasks to other involved roles. For the design, the planned
application specification is decomposed into component specifications. Existing component specifica-
tions can be selected from repositories to plan the integration of existing components into a software
architecture. If no existing specification matches the requirements for a planned component, a new
component has to be specified abstractly. The software architect can delegate this task to component
developers. Additionally, the software architect specifies component connections thereby creating an
assembly model (cf. Section 3.2.2). After finishing the design, software architects are responsible for
provisioning components (involving make-or-buy decisions), assembling component implementations,
and directing the tests of the complete application.

Deployers specify the resources, on which the planned application shall be deployed. Resources can
be hardware resources, such as CPUs, storage devices, network connections etc., as well as software
resources, such as thread pools, semaphores or database connection. The result of this task is a so-called
resource environment specification (cf. Section 3.3.4). With this information, the platform independent
resource demands from the component specifications can be converted into timing values, which are
needed for QoS analyes. For example, a component developer may have specified that a certain action
of a component service takes 1000 CPU cycles. The resource environment specification of the deployer
provides the information how many cycles the CPU executing the component processes per second. Both
information together yield the execution time of the action. Besides resource specification, deployers
allocate components to resources. In the PCM, this step can also be done during design by creating a
so-called allocation model (cf. Section 3.3.5). Later in the development process, during the deployment
stage, deployers can be responsible for the installation, configuration, and start up of the application.

Domain experts participate in requirement analysis, since they have special knowledge of the business
domain. They are familiar with the users’ work habits and are therefore responsible for analysing and
describing the user behaviour. This includes specifying workloads with user arrival rates or user popu-
lations and think times. In some cases, these values are already part of the requirement documents. If
method parameter values have an influence on the QoS of the system, the domain experts may charac-
terise these values. The outcome of the domain experts’ specification task is a so-called usage model (cf.
Section 3.4.2).

QoS analysts collect and integrate information from the other roles, extract QoS information from the
requirements (e.g., maximal response times for use cases), and perform QoS analyses by using mathe-
matical models or simulation. Furthermore, QoS analysts estimate missing values that are not provided
by the other roles. For example, in case of an incomplete component specification, the resource demand
of this component has to be estimated. Finally, they assist the software architects to interpret the results
of the QoS analyses.

2.1.3 Development Process Model

In the following, the roles described in the former section are integrated into a development process
model featuring QoS analysis. We focus on the development process that is concerned with creating a
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working system from requirements and neglect the concurrent management process that is concerned
with time planning and controlling. We base our model on the UML-centric development process model
described by Cheeseman and Daniels [10], which is itself based on the Rational Unified Process (RUP).

Requirements

Specification QoS-Analysis Provisioning Assembly

Test

Deployment

Business Concept
Model

Use Case
Models

QoS 
Results Component Specs & 

Architecture

Business
Requirements

Existing Assets
Technical Constraints Components

Use Case
Models

Applications

Tested
Applications

Deployment
Diagrams

Legend
Workflow
Change of Activity
Flow of Artifact

Figure 2.4: QoS Driven Process Model: Overview

The main process is illustrated in Figure 2.4. Each box represents a workflow. Thick arrows between
boxes represent a change of activity, while the thin arrows characterise the flow of artifacts between the
workflows. The workflows do not have to be traversed sequentially (i.e., no waterfall model). Backward
steps into former workflows are allowed. The model also allows an incremental or iterative development
based on prototypes.

The workflows requirements, provisioning, assembly, test, and deployment have mainly been inherited
from the original model and will briefly be described in the following. The workflow ”specification” has
been slightly modified to explicitly include the interaction between component developer and software
architect and the specification of extra-functional properties. The workflow ”QoS Analysis” has been
added to the model and will be described in detail below.

Requirements The business requirements coming from customers are formalised and analysed during
this workflow. It produces a business concept model and a use case model. The former is a conceptual
model of the business domain and creates a common vocabulary between customers and developers. It
is, however, not relevant for QoS Analysis. The latter describes the interaction between users (or other
external actors) with the system. It establishes the system boundaries and a set of use cases that define
the functional requirements.

Specification Business concept model and use case model are input from the requirements to this
workflow. Additionally, technical constraints, which might have been revealed during provisioning, and
QoS metrics from already performed QoS predictions can be input to the specification workflow after
initial iterations of the process model. During specification, the component-based software architecture
is designed. Components are identified, specified, and their interaction is defined. The software architect
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usually interacts with component developers during this workflow. More detail about this workflow is
provided in Section 2.1.4. The output artifacts of this workflow are complete component specifications
(in PCM also extra-functional specifications) and the component architecture (called assembly model in
the PCM).

QoS Analysis Component specifications, the architecture, and use case models are input to the QoS
analysis workflow. During this workflow, deployers provide models of the resource environment of
the architecture, which contain specifications of extra-functional properties (Section 3.3). The domain
expert takes the use case models, refines them, and adds QoS-relevant information, thereby creating a
PCM usage model (Section 3.4). Finally, the QoS-Analyst a) combines all of the models, b) estimates
missing values, c) checks the models’ validity, d) feeds them into QoS predictions tools, and e) prepares
a pre-evaluation of their predictions, which is targeted at supporting the design decisions of the software
architect. More detail about the QoS analysis workflow follows in Section 2.1.5. Outputs of the QoS
analysis are pre-evaluated results for QoS metrics, which can be used during specification to adjust the
architecture, and deployment diagrams that can be used during deployment.

Provisioning Compared to classical development processes the provisioning workflow resembles the
classical implementation workflow. However, one of the assets of component-based development is
reuse, i.e. the incorporation of components developed by third parties. During the provisioning work-
flow "make-or-buy" decisions are made for individual components. Components that cannot be pur-
chased from third-parties have to be implemented according to the specifications from the corresponding
workflow. Consequently, the provisioning workflow receives the component specifications and architec-
ture as well as technical constraints as inputs. The outputs of this workflow are implemented software
components.

Assembly Components from the provisioning workflow are used in the assembly workflow. Addition-
ally, this workflow builds up on the component architecture and the use case model. The components
are assembled according to the assembly model during this workflow. This might involve configuring
them for specific component containers or frameworks. Furthermore, for integrating legacy components
it might be necessary to write adapters to bridge unfitting interfaces. The assembled components and the
complete application code are the outputs of this workflow.

Test The complete component-based application is tested according to the use case models in this
workflow in a test environment. It also includes measuring the actual extra-functional properties of the
application and their comparison with the predicted values. Once the functional properties have been
tested and the extra-functional properties are satisfiable in the test environment the application is ready
for deployment in the actual customer environment.

Deployment During deployment, the tested application is installed in its actual customer environment.
The term deployment is also used to denote the process of putting components into component contain-
ers, but here the term refers to a broader task. Besides the installation, it might be necessary to adopt the
resource environment at the customer’s facilities or to instruct future users of the system. For the map-
ping of components to hardware resources, the deployment diagrams from the QoS analysis workflow
can be used.
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2.1.4 Specification Workflow

The specification workflow (see Figure 2.5, right column) is carried out by software architects. The work-
flows of the software architect and the component developers influence each other. Existing components
(e.g., from a repository) may have an impact on the inner component identification and component spec-
ification workflow, as the software architect can reuse existing interfaces and specifications. Vice versa,
components newly specified by the software architect serve as input for the component requirements
analysis of component developers, who design and implement new components.

Component Repository

Component Requirements 
Analysis

Functional Property 
Specification

Extra-Functional Property 
Specification

Component Implementation

Requirements

Interfaces
Internal Dependencies

QoS Relevant 
Information

Binary Component
and Specification

Component Identification

Component Interaction

Component Specification

Interoperability Check

Initial Component 
Specs & Architecture

Service Effect 
Specification

Optimised Component 
Specs & Architecture

Business 
Type 
Model

Business 
Concept Model

Use Case
Model

Initial Interfaces

Interface 
Signatures

Interface 
Protocols

Existing 
Interfaces

and Assets

Component 
Requirements & 

Interface Signatures

Service Effect 
Specifications & 

Interface 
Protocols

S
pe

ci
fic

at
io

n

Technical
Constraints

Results of QoS 
Metrics

Initial Component 
Specs & Architecture

Initial Component 
Specs & Architecture

Figure 2.5: Specification Workflow

The component developer’s workflow is only sketched here, since it is performed separately from
the software architect’s workflows. If a new component needs to be implemented, the workflow of the
component developer (see Figure 2.5) can be assumed to be part of the provisioning workflow according
to Cheesman and Daniels [10].

Any development process model can be used to construct new components as long as functional and
extra-functional properties are specified properly. First, a component requirements analysis has to be
conducted. It is succeeded by functional property specification and then extra-functional property speci-
fication. The functional properties consist of interface specifications (i.e., signatures, pre/postconditions,
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protocols), descriptions of internal dependencies between provided and required interfaces. We use ser-
vice effect specifications (Section 3.1.4) to describe such dependencies. Additionally, descriptions of
the functionality of component services have to be made. Extra-functional, QoS-relevant information
includes resource demands, reliability values, data flow, and transition probabilities for service effect
specifications. Finally, after component implementation according to the specifications, component de-
velopers have to put the binary implementations and the specifications into repositories, where they can
be retrieved and assessed by software architects.

The specification workflow of the software architect consists of four inner workflows. The first two
workflows (component identification and component interaction) are adapted from [10] except that we
explicitly model the influence on these workflows by existing components. For component identifi-
cation, so-called ProvidedComponentTypes can be used in the PCM (cf. Section 3.1.3.3). Com-
ponent interaction can be described in the PCM once the provided component types have evolved to
ImplementationComponentTypes (cf. Section 3.1.3.1). During the component specification, the soft-
ware architect additionally gets existing interface and service effect specifications as input. Both are
transferred to the new workflow interoperability check. In this workflow, interoperability problems are
solved and the architecture is optimised. For example, functional parametrised contracts [12], which
are modelled as service effect specifications, can be computed (cf. Section 2.3). The outputs of the
specification workflow are an architecture and component specifications with refined interfaces.

2.1.5 QoS Analysis Workflow

During QoS analysis, the software architecture is refined with information on the deployment context,
the usage model, and the internal structure of components. Figure 2.6 shows the process in detail.
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The deployer starts with the resource environment specification based on the software architecture and
use case models. Given this information, the required hardware and software resources and their inter-
connections are derived. As a result, this workflow yields a description of the resource environment, for
example, a deployment diagram without allocated components or an instance of the resource environ-
ment model (cf. Section 3.3.4). Instead of specifying a new resource environment, the deployer can also
use the descriptions of existing hardware and software resources. Moreover, a set of representative sys-
tem environments can be designed if the final resource environment is still unknown. For QoS analysis,
detailed information on the resources modelled in the environment are required.

During allocation, the deployer specifies the mapping of components to resources. The result of this
workflow can be a complete deployment diagram or a resource environment plus allocation contexts for
components as described in section 3.3.5. The resulting specifications are part of the inputs of the QoS
analysis models used later. The resulting fully specified resource environment and component allocation
are passed to the QoS analyst.

The domain expert refines the use case models based on the requirements during the use case analysis
workflow. A description of the scenarios for the users is created based on an external view of the current
software architecture. The scenarios describe how users interact with the system and which dependencies
exists in the process. For example, activity charts or usage models (cf. Section 3.4.2) can be used to
describe such scenarios. The scenario descriptions are input to the usage model refinement. The domain
expert annotates the descriptions with, for example, branching probabilities, expected size of different
user groups, expected workload, user think times, and parameter characterisations.

As the central role in QoS analysis, QoS analysts integrate relevant information, perform evaluations,
and deliver feedback to all involved parties. In the QoS requirement annotation workflow, the QoS
analyst maps QoS requirements to direct requirements of the software architecture. For example, the
maximum waiting time of a user becomes the upper limit of the response time of a component’s service.
While doing so, the QoS analyst selects metrics, like response time or probability of failure on demand,
that are evaluated during later workflows.

During QoS information integration, the QoS analyst collects the specifications provided by the com-
ponent developers, deployers, domain experts, and software architects, checks them for soundness, and
integrates them into an overall QoS model of the system. In case of missing specifications, the QoS
analyst is responsible for deriving the missing information by contacting the respective roles or by esti-
mation and measurement. The system specification is then automatically transformed into a prediction
model.

The QoS evaluation workflow either yields an analytical or simulation result. QoS evaluation aims, for
example, at testing the scalability of the architecture and at identifying bottlenecks. The QoS analyst per-
forms an interpretation of the results and comes up with possible design alternatives. Automated search
approaches can help the QoS analyst to improve the architecture, e.g. by optimising the deployment.
Finally, the QoS analyst delivers the results to the software architect. If the results show that the QoS
requirements cannot be fulfilled with the current architecture, the software architect has to modify the
specifications or renegotiate the QoS requirements.

2.1.6 Discussion

Related Work There are numerous publications on component-based development processes [6, 13,
14, 15, 16, 2]. However, most of these process descriptions do not deal with extra-functional properties.
Furthermore, there are many approaches for the performance prediction of component-based software
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systems [11], but only few describe the encompassing development process in detail or spread the needed
information for QoS analyses among the participating roles.

Role Names There are several synonyms for the role names we have chosen for the PCM process
model.

• Component Developer: Application Component Provider, Component Implementer, Component
Programmer
We chose ”component developer” because it is quite generic, should be known to most software
engineers, and describes the tasks of this role best.
• Software Architect: System Architect, Component Assembler, System Assembler, Architect, Ap-

plication Assembler
It might be argued that this role does not only deal with software, but also has an influence on
the hardware environment. Therefore the broader term ’system’ instead of ’software’ could be
used. However, the term software architect is quite established and the tasks involving the hard-
ware environment of the component-based system could be delegated to the deployer. The term
component assembler is sometimes used in the literature, it is, however, a too restricted term for
the tasks of this role.
• Deployer: System Allocator, Component Deployer, Assembly Allocator, System Administrator,

Resource Specifier, Execution Environment Modeller, Middleware Expert, Deployment Expert
In J2EE the term ’deployment’ is used for assembling components and allocating them on re-
sources. In the PCM, we explicitly separate between assembly and allocation, as the former is
conducted by the software architect and the latter by the deployer. We chose the most generic term
’deployer’ for the role, which is responsible for specifying the resource environment and allocating
component assemblies to resources.
• QoS Analyst: Performance Analyst, Reliability Specialist, QoS Expert, QoS Evaluator, QoS Man-

ager
As we do not want to restrict our model to performance or reliability analyses we chose the collec-
tive term ’QoS’ (Quality-of-Service), which covers performance, reliability, availability, etc. The
goal of this role is to come up with analyses of the QoS properties of an application, so we chose
the term ’QoS analyst’
• Domain Expert: Business Expert, Usage Modeller

We are not sure, if there are dedicated roles for specifying user behaviour in IT organisations.
Therefore we chose the term ’domain expert’, because this role might be involved into other tasks
related to requirements analyses in addition to the task of usage modelling.

Is there a QoS Analyst? As described in Section 2.1.2, the role of QoS analysts bundles the tasks of
1) deriving QoS information from the requirements, 2) integrating information from the other roles, 3)
estimating missing input parameters, 4) using QoS analysis tools such as queueing network solver, and
5) pre-interpreting the results of these tools.

It can be argued that this role is not really necessary, as most of the tasks could also be performed by
the software architect. In fact, task 2), 4), and 5), should even be encapsulated into user-friendly tools, so
that no special knowledge would be required to perform the QoS analysis. Task 3) might require special
knowledge of a QoS domain, but software architects should at least be able to provide rough estimation
for missing values, which might be sufficient for early QoS analysis.
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However, it can also be argued, that existing tools are not so far advanced to automate the tasks of
this role. The manual specification of additional input parameters for the prediction method might be
too time-consuming and thus expensive for software architects. Additionally, it remains questionable if
task 5) can be encapsulated into tools as it is sometimes difficult to map analysis or simulation results to
problems in the architecture. Furthermore, designing QoS-improving architectural alternatives requires
special knowledge (such as performance patterns or configuration options of component containers).

We have decided to keep the role in the model, because of role-based separation of concerns. We
suppose that today the QoS analysis task is often delegated to specialists.
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2.2 Interfaces and Composition

2.2.1 Interfaces as First-Class Entities

According to Parnas [17], an interface is an abstraction of piece of software (a software entity) which
should contain a sufficient amount of information for a caller to understand and finally request the realised
functionality from any entity claiming to offer the specified functionality. Note that this implies, that the
specification of the interface also has to contain a sufficient amount of information for the implementer to
actually implement the interface. Due to the inherent need of an interface to abstract the behaviour of the
software entity not in all cases there is sufficient information provided to use or implement an interface
in an unambiquious way.

This definition has several consequences. First of all, interfaces can exist on their own, i.e., without any
entity requesting or implementing the specified functionality. In industrial practice, this is actually often
used. For example, Sun defined for the Java programming language several sets of Java interfaces which
deal with a specific sets of generic functionality without actually providing an implementation. Part of
these domain-standards are the Java Messaging Standard dealing with different types of message-based
communication or the Java Persistence API concerned with persisting objects in relational databases.

Second, two roles can be identified a software entity can take relative to an interface. Any entity can
either claim to implement the functionality specified in an interface or to request that functionality. This
is reflected in the Palladio Component Model by a set of abstract meta-classes giving a conceptual view
on interfaces, entities and their relationships. The abstract meta-class InterfaceProvidingEntity is
inherited by all entities which can potentially offer interface implementations (Figure 2.7). Similarly,
the meta-class InterfaceRequieringEntity is inherited by all entities which are allowed to request
functionality offer by entities providing this functionality. Details follow in Section 3.1.

Figure 2.7: InterfaceProvidingRequiringEntity in the PCM metamodel
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2.2.2 Composed Structure

Clements Szyperski approaches the definition of a component in his book on component based software-
engineering with the statement “Components are for composition, much beyond is unclear” [6]. This
statement does not only point out how hard it is to find a common definition for the term “component”.
It also highlights the most common principle in the definitions of the term component in the literature: a
component can be composed with other components in order to get a more complex structure. We also
consider the ability to compose components into new structures as a primary feature of components. As a
consequence, our component model contains an abstract conceptual view of the concept of a Composed-
Structure, which is a structure build by composing components (Figure 2.8, details in Section 3.2).
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2.3 Parametric Contracts

2.3.1 Classical Contracts for Software Components

Before defining contracts for components, we briefly review B. Meyer’s design-by-contract principle
from an abstract point of view. According to [18, p. 342], a contract between the client and the supplier
consists of two obligations:

• The client has to satisfy the precondition of the supplier.
• The supplier has to fulfill its postcondition, if the precondition was met by the client.

Each of the above obligations can be seen as the benefit for the other party. (The client can count on the
postcondition if the precondition was fulfilled, while the supplier can count on the precondition). Putting
it in one sentence:

If the client fulfills the precondition of the supplier, the supplier will fulfil its postcondition.

The used component plays the role of a supplier. But to formulate contracts for components, we also
have to identify the pre- and postconditions and the user of a component. But what is to be consid-
ered a precondition, postcondition and user depends on whether the component is used at run-time or
configuration-time. Let’s first consider the component’s use at run-time. Using a component at run-time
is calling its services. Hence, the user of a component C is the set of all components connected to C’s
provides-interface(s).

The precondition for that kind of use is the precondition of the service, likewise the postcondition is
the postcondition of the service. Actually, that shows that this kind of use of a component is nothing
different as using a method. Therefore, the author considers this case as the use of a component service,
but not as the use of a component. Likewise, the contract to be fulfilled here from client and supplier is
a method contract as described by B. Meyer already in 1992. This is the contract for using a component
service, but not the contract for using the component!

The other case of component usage (usage at composition-time) is actually the relevant case when
talking about the contractual use of components. This is the important case when architecting systems
out of components or deploying components within existing systems for reconfigurations. Again, in this
case a component C is acting as a supplier and the component connected to the provides interface(s) as
a client. The component C offers services to the those components of the assembly context which are
connected to C’s provides-interface(s). According to the above discussion of contracts, these offered
services are the postcondition of the component, i.e., what the client can expect from a working compo-
nent. Also according to B. Meyer’s above mentioned description of contracts, the precondition is what
the component C expects from those components of the assembly context which are connected to C’s
requires-interface(s) to be provided by the assembly context, in order to enable C to offer its services (as
stated in its postcondition). Hence, the precondition of a component is stated in its requires-interfaces.
Analogously to the above single sentence formulation of a contract, we can state:

If the user of a component fulfills the component’s requires-interface (offers the right re-
quired components in the assembly context) the component will offer its services as de-
scribed in the provides-interface.

Let us denote with prec the precondition of a component c and with postc the postcondition of a compo-
nent c. For checking whether a component c can be replaced safely by a component c′, one has to ensure
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that the contract of c′ is a subcontract of c. The notion of a subcontract is described in [18, p. 573] like
contravariant typing for methods: A contract c′ is a subcontract of contract c iff

prec′ E prec∧ postc′ D postc (2.1)

(Where D means “stronger”, i.e., if prec and postc are predicates,D is the logical implication⇒. In the
set semantics of pre- and postcondition below, D is the inclusion ⊇.)

To check the interoperability between components c and c′ (see point (1) in figure 2.9), one has to
check whether

prec E postc′ (2.2)

Coming back to protocol-modelling interfaces, we can consider the precondition of a component as the
set of required method call sequences, while the postcondition is the set of offered call sequences. In this
case, the checks described in the above formulas (2.1) and (2.2) boiled down to checking the inclusion
relationship between the sets of call sequences, i.e., for the substitutability check we have:

prec′ ⊆ prec∧ postc′ ⊇ postc (2.3)

and for the interoperability check:
prec ⊆ postc′ (2.4)

For arbitrary sets A and B holds A ⊆ B⇐⇒ A∩B = A. Hence, the inclusion check we need for check-
ing interoperability and substitutability can be reduced to computing the intersection and equivalence of
sets of call sequences. One of the main reasons for choosing finite state machines (FSMs) as a model
to specify these sets of call sequences was the existence of efficient algorithms for computing the in-
tersection of two FSMs and checking their equivalence. Of course, more powerful models than FSMs
exist (in the sense that they can describe protocols which cannot be described by FSMs) but for many
of these models (like the various push-down automata) the equivalence is not decidable (see e.g., [19]).
Hence, one can use these models for specifying component interfaces, but that does not help to check
their interoperability or substitutability at configuration-time.

2.3.2 Parametric contracts as a generalisation of classical contracts

While interoperability tests check the requires-interface of a component against the provides-interface of
another component, parametric contracts link the provides-interface of one component to the requires-
interface of the same component (see figure 2.9).

The usefulness of parametric contracts is based on the observation that in practice often only a subset of
a component’s functionality is used. This is especially true for coarse-grained components. In this case,
also only a subset of the functionality described in the requires-interface is actually used. That means that
the component could be used without any problems in assembly contexts where not all dependencies,
as described in the requires interface, are fulfilled. Vice versa, if a component does not receive all (but
some) functionality it requires from the assembly context, it often can deliver a reasonable subset of its
functionality.

These facts can be modelled by a set of possible provides-interfaces P := {prov} and a set of possible
requires-interfaces R := {req} and a monotone total bijective mapping p between them p : P→ R.1 As
a result, each requires-interface req ∈ R is now a function of a provides-interface prov: req = p(prov)

1 p can be made total and surjective by defining P := dom(p) and R := im(p).
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Figure 2.9: Parametric Contracts

and (because p is bijective) each provides-interface prov∈ P can be modelled as a function of a requires-
interface req ∈ R: prov = p−1(req).

This mapping p is now called parametric contract, since it parameterises the precondition with the
postcondition of the component and vice versa. It can be considered as a generalisation of “classical
contract” which uses a fixed pre- and postcondition. The parametric contract is bundled with the compo-
nent and computes the interfaces of the components on demand.

For the following, assume component B uses component C and is used by component A. If component
A uses only a subset of the functionality offered by B we compute a new requires-interface of B with the
parametric contract pB:

pB(reqA∩ provB) =: req′B ⊆ reqB (2.5)

Note that the new requires-interface req′B requires possibly less than the original requires-interface
reqB := pB(provB) (but never more) since pB is monotone and reqA∩ provB ⊆ provB. When computing
the requires-interface out of a provides-interface (possibly intersected with an external requires-interface)
the parametric contract is called provides-parametric contract.

Likewise, if component C does not provide all the functionality required by B, one can compute a new
provides-interface prov′B with pB:

p−1
B (reqB∩ provC) =: prov′B ⊆ provB (2.6)

Since pB is monotone, p−1 is, too. With reqB∩ provC ⊆ reqB we have prov′B ⊆ provB := p−1(reqB). In
this case we use a requires-parametric contract.

Technically, the parametric contract is specified by the service effect specification. The actual way
what to specify to calculate the parametric contract depends on the interface model used. In case of
protocol modelling interfaces, the service effect specification can be given by FSMs [20]. In case of
quality of service modelling interfaces, only requires parametric contracts are used. This is because a
provides parametric contract evaluates not to a concrete interface with QoS requirements, but to con-
straints which describe a set of possible requires interfaces. Anyhow, for QoS modelling interfaces the
parametric contract is given by service effect specifications, as described in section 3.1.4.
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2.4 Context

2.4.1 Motivation

One of the most important arguments for component-based software development is the black-box reuse
of components. Components are developed by third party vendors, who sell their products to multiple
clients. Therefore, component developers cannot make assumptions on the underlying operating system
and hardware as well as the usage profile and connected components. In other words, the context the
component will be used in is unknown to component developers. Szyperski defines a software component
as “a unit of composition with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to a composition by third parties”
[6].

This definition emphasises the importance of context dependencies and their explicit definition. How-
ever, it remains vague what is actually part of the context beyond the relationships defined by the pro-
vided and required interfaces of a component. One of those undefined dependencies is the underlying
hardware that influences QoS attributes of a component, like performance and reliability. Especially for
QoS predictions, knowledge about such dependencies to the context is needed in addition to functional
specifications, like behavioural protocols [21] and service effect specifications [22].

…
if (a>b)
c = a;

…

Component Code

External Services

Execution Environment

Usage Profile

Figure 2.10: Influences on QoS properties of a software component.

Factors influencing the QoS attributes of a component can be classified into four main categories as
shown in figure 2.10:

1. The implementation of the component, e.g. the selection of an algorithm.
2. The quality of required services, e.g. calling a slow or a fast service will result in a different

performance for the provided service perceived by a user.
3. The runtime environment the component is deployed in. This includes the hardware and system

software like the operating system and middleware platforms.
4. The usage of the component, e.g. if the component has to serve many requests per time span it is

more likely to slow down.

With these four categories of influences we can define the quality of a provided service s of a concrete
component as a function of the varying influences. The implementation of the component’s service is
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considered as a constant as it does not depend on its context but is fixed by the component developer
at implementation time. Thus, the QoS of a component can be defined as a function of the remaining
parameters, which are determined during its allocation, assembly and usage:

qimpl : P(s)×DR×UP→ Q

where P(s) is the domain of the set of external services used by service s, DR specifies the deployment
relationship defining which component and connector is deployed on which part of the execution envi-
ronment and UP describes the usage profile. As a result, the function yields a value in the domain of the
investigated quality metric Q.

2.4.2 Context Influences

Since QoS attributes of a component are strongly influenced by the environment the component is used
in, the actual delivered QoS can only be determined knowing all influencing factors. We identified three
aspects defined during system design that determine the complete context of a component based on
the influences shown in figure 2.10: composition (connected components), usage, and allocation. For
understandability, we split the influence of composition into the parts hierarchy and system/assembly and
leave out the influence of the usage profile. All aspects are associated to different roles in the component-
based development process as described in section 2.1.

The structure of a system/assembly is defined by software architects who decide which components
are used and how they are connected. Similarly component developers may construct composite compo-
nents, which define the hierarchy of the system. Deployers define the execution environment and allocate
software components among different resources, like servers and desktop computers.

System/Assembly (Horizontal Composition) A system specifies which components are used within
an application and how they communicate. Within the system, the required interfaces of components are
connected to provided interfaces of other components. That way it is determined which concrete external
services are called by a component.

Figure 2.11: Component assembly.

A component can be used multiple times within a single system. Figure 2.11 illustrates this with a
simple example. Three different types of components exist in the system shown there. On the right
hand side, we have two I/O components that manage the access either to a file or network connection.
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Two different kinds of caching components that implement different caching strategies are shown in the
middle. The SyncCache component on the left-hand side allows multiple tasks to access the caches
concurrently without producing an incorrect state of the connected single-threaded caches.

The same component (SyncCache) is inserted at two different locations within the system. Both rep-
resentations of the component are connected differently. Thus, users or other components that call the
services provided by the different component representations will experience different QoS on the pro-
vided interfaces of the respective component representations. This is caused by the different caching
strategies and I/O devices used by the SyncCache components. Modelling the component context ex-
plicitly allows us to hold the information on the diverse connections and the resulting quality attributes
without changing the component specification.

Hierarchy (Vertical Composition) Related to the system, another important part of the context is the
hierarchy in which a component is used. In figure 2.12, a composite component (BillingManager) is
depicted which has been designed to create bills and store each one in a single PDF (Portable Document
Format) file. The component is additionally supposed to write a summary of all the created bills as
PDF file. Hence, the component PDFCreator is used in two different places. Notice however, that this
kind of usage is usually unknown to the creators of the outer composite component. For them, the inner
component (BillCreator) is a black box. They do not know the internal details and, hence, the usage
of the inner PDFCreator is hidden.

Figure 2.12: Component hierarchy.

In this case, the PDFCreator component is used in different contexts on different hierarchy levels.
Note, that this only makes sense if the underlying component model supports hierarchical components
at all. Considering parametric contracts, both components might offer different characteristics (QoS,
functions offered, etc.). Additionally, they are used differently in their contexts. The PDFCreator of
the inner component produces bills with less pages than the summary PDF file created by the outer
PDFCreator.

Allocation An explicit context model is especially advantageous to model the allocation of components
on hardware and software resources. Figure 2.13 depicts a system that uses replicated components to
fulfil requests. In our example, server I is assumed to be slow and server II is assumed to be fast. Hence,
the workload is not distributed equally, but 30% of the requests are directed to server I and 70% are
directed to server II.
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Figure 2.13: Component allocation.

Here, we see several context influences. We have two copies of the same component allocated on dif-
ferent machines and, thus, in different contexts. The workload of each replicated component is different
because of the distribution strategy. The processing power available to both replicated components is
varying with the underlying hardware systems. However, both components are connected with an iden-
tical logical link going from the required interface of the workload balancer to the provided service of
the replicated component. But again, each of these logical connections is most likely using a different
physical communication channel, i.e., different network links.

2.4.3 Context Model

The following section is taken from [23].
The PCM features a so-called context model, which includes information about a component’s bind-

ing, allocation, and usage. While component developers supply individual component specification,
further information about each component in an architecture is necessary for QoS predictions. This in-
formation is only available after component implementation and cannot be supplied by the component
developer. Therefore, the PCM allows separate creation of the context model by other developer roles or
tools.

Before describing the context-model’s implementation in the PCM, first the general concept shall be
explained. The context-model includes manually specifiable and computable parts (Tab. 2.1).

The assembly context refers to a component’s binding to other components. The manually specifiable
part includes both the connections to other components via provided and required interfaces and the
containment relationship between vertically composed components. The computable part refers to the
parametric contracts introduced by Reussner [12]. For example, they allow to restrict the set of required
services of a component if certain provided services are not needed. A BasicComponent can have
multiple assembly contexts in the same architecture. In this case, each assembly context refers to a copy
of the same component implementation.

The allocation context refers to a component’s binding to hardware/software resources. It requires
manual specifications of a component’s allocation and configuration options related to hardware and
software resources. Tools can compute allocation-dependent QoS characteristics of a component by
combining information from the component specification and the hardware environment. For example, a
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 Assembly Context Allocation Context Usage Context 

Specified  Horizontal Composition: 
Binding to other 
Components 

 Vertical Composition: 
Encapsulation in 
Composite Components 

 Allocation  
to Hardware Resources 

 Configuration 
o Component  
o Container  
o Concurrency 
o Communication 
o Security 
o … 

 Usage  
at System Boundaries 
o User Arrival Rate 
o Number of Users 
o Request Probabilities 
o Parameter Values 

 

Computed  Parametric Contracts 
o Provided/Required 

Services 
o Provided/Required 

Protocols 
o … 

 Allocation-dependent 
QoS Characteristics 
o Timing Values  

for Resource 
Demands 

o … 

 Usage 
inside Components 
o Branch Probabilities 
o Loop Iteration 

Numbers 
o Input/Output 

Parameters 

 

 

 Assembly Context Allocation Context Usage Context 

Specified  Specification by 
Software Architect 

 Section 3.2.3 

 Specification by  
System Deployer 

 Section 3.2.4 

 Specification by Domain 
Expert (Usage Model) 

 Section 4.2 

Computed  No Implementation 
Available 

 cf. [140] 

 Computed by 
Dependency Solver 

 Section 6.2 

 Computed by 
Dependency Solver 

 Section 6.2 

 

Table 2.1: Component Context relevant for QoS Prediction

resource demand provided by a component developer can be transformed into a timing value, if the speed
of the underlying hardware resource is known. A BasicComponent can have multiple allocation context
in the same architecture, in which case each allocation context refers to a copy of the same component
implementation running on different resources.

The usage context refers to a component instance’s usage by clients. For PCM instances, only the
user behaviour at the system boundaries needs to be specified. This includes the number of users, which
services they call, and what parameter values they supply. Tools can then propagate these values to each
component specification in the architecture and compute individual component usage including branch
probabilities, loop iteration numbers, and parameter values.
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2.5 Random Variables

2.5.1 Overview

In the Palladio Component Model, we use random variables in expressions which specify parametric
dependencies. The rationale behind this is that many aspects of larger software systems, especially
in the business information systems area, can not be modelled having complete information (see for a
classification of the information types for example [24]). Uncertainties can be found in many aspects
of the system model. Two main sources stem from the behaviour of users and time spans of method
executions (because we do not consider real-time environments). User behaviour can only be specified
in a stochastical manner. How long users think (aka think time) between requests to the system, what
parameter values they use in their requests can often only be characterized using probabilities. The
second source comes from the facts that the PCM is designed to support predictions on an architectural
level. On such a level, real-time constraints are usually not available. The reasons are also manifold.
First, the information is simply not available at early design stages. Second, environmental features as
garbage collectors, middle-ware services, etc. make it hard to predict timing time consumptions with
certainty.

In the following, the use of random variables in parametric dependencies is introduced. These types of
specifications are used in several places in the PCM. They are used especially in the ResourceDemand-
ingSEFF and the ResourcePackage to describe resource consumptions. A library in the implementation
of the PCM supports the use of random variables in different types. See 2.5.5 for technical details on this
library.

2.5.2 Definition

Mathematically, a random variable is defined as a measurable function from a probability space to some
measurable space. More detailed, a random variable is a function

X : Ω→ R

with Ω = the set of observable events and R being the set associated to the measurable space. Observable
events in the context of software models can be for example response times of a service call, the execution
of a branch, the number of loop iterations, or abstractions of the parameters, like their actual size or type.
Note, that often a random variable has a certain unit (like seconds or number of bytes, etc.). It is important
for the user of prediction methods to keep the units in the calculations and in the output to increase the
understandability of the results.

A random variable X is usually characterised by stochastical means. Besides statistical characterisa-
tions, like mean or standard deviation, a more detailed description is the probability distribution. A prob-
ability distribution yields the probability of X taking a certain value. It is often abbreviated by P(X = t).
For discrete random variables, it can be specified by a probability mass function (PMF). For continuous
variables, a probability density function (PDF) is needed. However, for non-standard PDFs it is hard
to find a closed form (a formula describing the PDF). Because of this and for reasons of computational
complexity, we use discretisized PDFs in our model.

For the event spaces Ω we support include integer values N, real values R, boolean values and enu-
meration types (like "sorted" and "unsorted") for discrete variables and R for continuous variables.
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2.5.3 PDF discretisation

A probability density function (PDF) represents a probability distribution in terms of integrals. The
probability of an interval [a,b] for a pdf f (x) is given by the integral

∫ b

a
f (x)dx

for any two number a and b, a < b. To fulfill this property, f (x) has to be a non-negative Lebesque-
integrable function R→ R. The total integral of f (x) has to be 1.

To create a discrete representation of a PDF, we use the fact that the probability of an interval is given
by its integral. Basically, there are two ways to approximate a PDF, which mainly differ in the way how
the intervals are determined. The first one uses a sampling rate and, therefore, a fixed interval size. The
second one uses arbitrary sizes for intervals. Both methods store the probabilities for the intervals, not
the probability density.

2.5.3.1 Sampling – Fixed intervals

To create an approximation of a PDF by a set of fixed intervals, the domain of the PDF is devided into
N intervals denoted by the set I, each of which has the same width specified by the value d. The ith
interval is then defined by [(i−1/2)d,(i+1/2)d[. For our purposes, we can assume that the domain of
a PDF is always greater or equal to zero. Thus, we set the first interval (i = 0) to [0,1/2d[. To minimize
computational errors, we associate the probability of the ith interval [(i−1/2)d,(i+1/2)d[ to its middle
value i ∗ d. So, we get a set of N probabilities, where the probability of interval i, pi is given by the
integral:

pi =
∫ b

(i−1/2)d
f (x)dx, limb→(i+1/2)d

for i > 0 and

pi =
∫ b

0
f (x)dx, limb→1/2d

for i = 0. The approximation of a PDF is completely described by the interval width d and the probabil-
ities pi for all intervals I.

Figure 2.14: The probability of the interval [2.5d,3.5d[ is the striped area under the graph.
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Example 2.1. Figure 2.14 illustrates how a pdf f (x) is approximated by deviding its domain into a set of
intervals. The X-axis shows the multiples of the interval width d (1d, 2d, 3d...). These values represent
the mean values of the intervals to which the probabilities will be associated. The figure shows how the
probability of the third interval is computed. The interval borders are given by [2.5d,3.5d[ and its mean
value is 3d. The probability p3 is the striped area under the graph. So, all values lying in this area are
associated to the value 3d.

2.5.3.2 Approximation by boxes – Variable intervals

For many PDFs, variable interval sizes allow a better approximation using less values compared to fixed
ones. This is especially useful if the function consists of large, almost constant parts and sharp peaks
on the other hand. Variable interval sizes allow the specification of almost constant areas by one large
interval and the use of multiple, fine grained intervals for sharp peaks, which need to be described in
more detail.

We have a set of intervals I so that for each two intervals J1,J2 ∈ I, J1 6= J2 the disjunction is the empty
set J1 ∩ J2 = /0 and the union of all intervals forms a new interval from zero to x ∈ R+, ∪J∈I = [0,x[.
Intuitively, this means that the intervals do not overlap and that there are no gaps between the intervals.

To ensure both properties mentioned above, the intervals are specified by their right hand value only.
Thus, we have a set IX whose values define the right hand sides of all intervalls. Suppose we can define
an order on the set such that x1 < x2 < .. . < xn−1 < xn. Then the ith interval is [xi−1,xi[ for i > 1 and
[0,x1[ for i = 1. This allows us to specify n intervals by n values only and to ensure that the intervals
neither do overlap nor have gaps inbetween. Now the probability pi for the ith interval is given by

pi =
∫ b

xi−1

f (x)dx, limb→xi

for i > 1 and

pi =
∫ b

0
f (x)dx, limb→x1

for i = 1.

2.5.4 Functional random variables

2.5.4.1 General

Additionally, it is often necessary to build new random variables using other random variables and math-
ematical expressions. For example, to denote that the response time is 5 times slower, we would like to
simply multiply a random variable for a response time by 5 and assign the result to a new random variable.
For this reason, our specification language supports some basic mathematical operations (∗,−,+,/,...) as
well as some logical operations for boolean type expressions (==,>,<,and,or,...).

To give an example, the distribution of a random variable N is depicted in figure 2.15. The variable
could model some characterisation of the size of a parameter of a component service.

To determine the time consumption of the method body which depends on the characterisation N it is
known that the amount of CPU instructions needed to execute the method is three times N. The resulting
distribution function is shown in figure 2.16.
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Figure 2.15: A Distribution of a Discrete Random Variable N

Figure 2.16: A Distribution of N * 3

2.5.4.2 Differences btw. discrete and continuous variables

As introduced above we support the use of discrete as well as continuous variables. However, in such a
case special care has to be taken when constructing expressions. Three times of a discrete variable can not
be determined in the same way as three times a continuous variable. The reason for this is that continuous
variables are also scaled continuously. To give an example, consider the continuous variable X which is
uniformly distributed in a range between 5 and 10 seconds. If the variable is now multiplied by three,
possible values of the resulting random variable can be in the interval between 15 and 30 seconds. The
resulting distribution is again uniformly distributed having a density function which is one-third of the
original density function.

An analogous example for a discrete random variable follows. Consider a discrete random variable
taking the value 5 in 30% of all cases, 7 in 20% of all cases and 10 in the remaining 50%. If this variable
is multiplied by 3, the result is a variable taking the value 15 in 30%, 21 in 20% and 30 in 50% of all
cases. The probabilities of the single events stay the same only the actual outcome changes.

The depicted difference is especially important in the case of discretisized PDFs. Any mathematical
operation in which such a variable is involved has to treat the discretisized PDF as a ’real’ PDF in order
to avoid calculation mistakes.
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2.5.5 Stochastic Expressions

We call the language in which functional random variables can be specified Stochastic Expressions.
As said before, the specifications of this kind of expressions is based on mathematical operations like
addition or multiplication. The complete grammar is given below.

The StoEx-framework includes a meta-model with a textual, concrete syntax to combine multiple ran-
dom variables with different operations (e.g., addition, multiplication) to define new random variables.
2.17 depicts the meta-model and thus illustrates the abstract syntax of the so-called “Stochastic Expres-
sion Language” implemented by the StoEx-framework. RandomVariables contain their specification
both as a string (attribute specification) and as a derived attribute, which yields an instance of the Ex-
pression meta-class possibly being a large object tree realising the abstract syntax tree of the stochastic
expression. Developers enter the string representation into tools, from which the lexer and parser of the
StoEx-framework create the object representation used for computations or model-transformations.

2.5.5.1 Parser (EBNF)

expression : compareExpr;
compareExpr : sumExpr( ( GREATER | LESS | EQUAL | NOTEQUAL | GREATEREQUAL | LESSEQUAL) sumExpr | );
sumExpr : prodExpr ( ( PLUS | MINUS ) prodExpr )*;
prodExpr : powExpr ( ( MUL | DIV | MOD ) powExpr )*;
powExpr : atom( POW atom|);
atom: ( NUMBER | scoped_id | definition | STRING_LITERAL | boolean_keywords | LPAREN compareExpr RPAREN);
scoped_id : ID ( DOT ( ID | "INNER") )*;

definition : "IntPMF" LPAREN ( unit ) RPAREN SQUARE_PAREN_L ( numeric_int_sample )+ SQUARE_PAREN_R
| "DoublePMF" LPAREN ( unit ) RPAREN SQUARE_PAREN_L ( numeric_real_sample )+ SQUARE_PAREN_R
| "EnumPMF" LPAREN ( unit )( SEMI ORDERED_DEF|)RPAREN SQUARE_PAREN_L ( stringsample )+ SQUARE_PAREN_R
| "DoublePDF" LPAREN ( unit ) RPAREN SQUARE_PAREN_L( real_pdf_sample )+ SQUARE_PAREN_R
| "BoolPMF" LPAREN ( bool_unit )( SEMI ORDERED_DEF|)RPAREN SQUARE_PAREN_L ( boolsample )+ SQUARE_PAREN_R;

boolean_keywords: ( "false"| "true");
unit: "unit" DEFINITION STRING_LITERAL;
numeric_int_sample: LPAREN NUMBER SEMI NUMBER RPAREN;
numeric_real_sample: LPAREN NUMBER SEMI NUMBER RPAREN;
stringsample: LPAREN STRING_LITERAL SEMI NUMBER RPAREN;
real_pdf_sample: LPAREN NUMBER SEMI NUMBER RPAREN;
bool_unit: "unit" EQUAL "\"bool\"";
boolsample: LPAREN boolean_keywords SEMI NUMBER RPAREN;
characterisation_keywords: ( "BYTESIZE" | "STRUCTURE" | "NUMBER_OF_ELEMENTS" | TYPE" | "VALUE");

2.5.5.2 Lexer (EBNF)

mPLUS | mMINUS | mMUL | mDIV | mMOD | mPOW | mLPAREN | mRPAREN | mSEMI | mDEFINITION | mEQUAL
| mSQUARE_PAREN_L | mSQUARE_PAREN_R | mNUMBER | mNOTEQUAL | mGREATER | mLESS | mGREATEREQUAL
| mLESSEQUAL | mSTRING_LITERAL | mDOT | mID | mWS

mPLUS:’+’; mMINUS:’-’; mMUL:’*’; mDIV:’/’; mMOD:’%’; mPOW:’^’; mLPAREN:’(’; mRPAREN:’)’;
mSEMI:’;’; DEFINITION:’=’; mEQUAL:’==’; mSQUARE_PAREN_L:’[’; mSQUARE_PAREN_R:’]’;

mDIGIT:’0’..’9’;
mNUMBER: ( mDIGIT )+( ’.’ ( mDIGIT )+ | );
mALPHA: ’a’..’z’| ’A’..’Z’;

mNOTEQUAL:"<>"; mGREATER:">"; mLESS:"<"; mGREATEREQUAL:">="; mLESSEQUAL:"<=";
mSTRING_LITERAL:"\""( mALPHA | ’_’ )+ "\"";
mDOT: ’.’;
mID:( mALPHA | ’_’)+; // variable ids
mWS: ( ’ ’| ’\t’| ’\r’| ’\n’); // whitespace
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Figure 2.17: Random Variable and Stochastic Expressions Grammar (meta-model)
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2.5.5.3 Examples

DoublePDF[(1.0;0.3)(1.5;0.2)(2.0;0.5)]

• Specifies a time interval as boxed probability density function
• the unit is seconds
• the probability of the time being between 0 and 1 second is 30 percent (0.3)
• the probability of the time being between 1 and 1.5 seconds is 20 percent (0.2)
• the probability of the time being between 1.5 and 2 seconds is 50 percent (0.5)
• the probabilty of the time being longer than 2 seconds is 0 percent.
• all probabilities sum up to 1.0

IntPMF[(27;0.1)(28;0.2)(29;0.6)(30;0.1)]

• Specifies the number of executing a loop as a probability mass function (PMF)
• the unit is iterations
• the probability of executing the loop exactly 27 times is 10 percent (0.1)

DoublePMF[(22.3;0.4)(24.8;0.6)]

• Specifies a floating point variable charcterisation as a probability mass function (PMF)
• unit is omitted
• the probability of the variable taking the value 22.3 is 40 percent (0.4)

EnumPMF[("circle";0.2) ("rectangle";0.3)("triangle";0.5)]

• Specifies a probability mass function over the domain of a parameter
• Graphics-Objects can either be circles, rectangles, or triangles with the respective probabilities

BoolPMF[(false;0.3)(true;0.7)]

• Specifies a probabilty mass function for a boolean guard on a branch transition
• The guard is false with a probability of 30 percent and true with a probablity of 70 percent.

23

• An integer constant
• Can be used for example for loop iteration numbers, variable characterisations or resource demands

42.5

• An floating point number constant
• Can be used for variable characterisations and resource demands (not for loop iterations)

"Hello World!"

• A string constant

number.VALUE
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• Characterises the value of the variable "number"
• You can assign a constant or probabilty function to a characterisation
• For example, number.VALUE = 762.3 or number.VALUE = DoublePMF[(22.3;0.4)(24.8;0.6)]

graphic.TYPE

• Characterises the type of the variable "graphic"
• For example: graphc.TYPE = "polygon"

file.BYTESIZE

• Characterises the size of variable "file" in bytes

array.NUMBER_OF_ELEMENTS

• Characterises the number of elements in the collection variable "array"
• For example:

array.NUMBER_OF_ELEMENTS = IntPMF [(15;0.1)(16;0.9)]

set.STRUCTURE

• Characterises the structure of the collection variable "set"
• For example: sorted, unsorted

2+4, 34.3-1, 88.2*1.2, 14/2, 60\%12
number.VALUE * 15, file.BYTESIZE / 2

• Arithmetric expressions can combine constants
• Allowed are + (addition), - (substraction), * (multiplication), / (division),
• Arithmetric expressions may include variable characterisations

DoublePDF[(1.0;0.3)(1.5;0.2)(2.0;0.5)] * 15

IntPMF[(1124.0;0.3)(1125.5;0.7)] + 2.5

DoublePDF[(12.0;0.9)(15;0.1)] -
DoublePDF[(128.0;0.3)(256;0.2)(512.0;0.5)]

• Arithmetric expressions can also combine probability functions

number.VALUE < 20, foo.NUMBER_OF_ELEMENT == 12,
blah.VALUE >= 108.3 AND fasel.TYPE == "mytype"

• Boolean expressions evalute to true or false
• You can use them on guarded branch transitions
• Valid operators are > (greater), < (less), == (equal), != (not equal), ≥ (greater equal), ≤ (less

equal), AND, OR
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3.1 Component Developer

3.1.1 Overview

Component developers are responsible for the implementation of software components. They take func-
tional and extra-functional requirements for components to be developed and turn them into component
specifications and executable software components. They may also receive specifications from other
parties and implement components against them.

Component developers deposit their specifications and implementations into repositories, where they
can be accessed by software architects to compose systems or by other component developers to cre-
ate composite components. To provide an overview of the following section, Figure 3.1 contains an
exemplary component repository, which contains most of the entities supported by the PCM.

Interfaces, components, and data types are first-class-entities in PCM repositories. They may exist
own their own and do not depend on other entities. For example, Figure 3.1 contains the interface My-
Interface (upper left), which is not bound to a component. The interface contains a list of service
signatures. Interfaces may also contains protocol specifications, which restrict the order of calling its
services, or QoS specifications, which describe their extra-functional properties. Section 3.1.2 describes
interfaces in detail.

Components may provide or require interfaces. The binding between a component and an interface
is called “provided role” or “required role” in the PCM. We distinguish provided and requires roles de-
pending on the meaning of an interface for a component. For example, figure 3.1 contains the component
A (top), which is bound to the interface YourInterface in a providing role. Section 3.1.3 details on the
relationship between components and interfaces.

Common data types are needed in repositories, so that the signatures of service specifications refer to
standardised types. In the PCM, data types can be primitive types, collection types, or composite types
to build complex data structure. Figure 3.1 contains a PrimitiveDataType “INT” and a Collection-
DataType “INT-Array”, which only contains “INTs” as inner elements. Section 3.1.2 contains more
information on data types.

Different types of components can be modelled in the PCM to a) reflect different development stages
and b) to differentiate between basic (atomic) components and composite components.

Concerning a), Figure 3.1 contains the components B, which has a ProvidedComponentType and
does not contain required interfaces, C, which has a CompleteComponentType and contains no in-
ner structure, and component D, which has an ImplementationComponentType and may contain an
inner structure. Components may be refined from ProvidedComponentTypes to Implementation-
ComponentTypes during design.

Concerning b), component E in Figure 3.1 is a composite component. The PCM is a hierarchical
component model, which allows composing new components from other components. From the outside,
composite components look like basic components, as they publish provided and required interfaces.
Within the composite component, they use delegation connectors to forward requests to inner compo-
nents and assembly connectors to bind inner components. Composite components may also include other
composite components (notice component G within component E).

For each provided service, basic components may include a mapping to required services, a so-called
ServiceEffectSpecification (SEFF). It models the order in which required services are called by
the provided service and may also include resource demands for computations of the service, which
are needed for performance predictions. SEFFs are an abstract behavioural description of a component
designed to preserve the black-box principle. Section 3.1.4 explains different types of SEFFs and their
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application.

3.1.2 Interfaces

Szyperski et al. emphasise the relation between components and interfaces: “Interfaces are the means by
which components connect [6, p. 50].” For components, interfaces are a key concept serving multiple
purposes. First, this section will describe the structure of PCM interfaces and then discuss the role of
interfaces as contracts as well as inheritance of interfaces.

An interface within the PCM consists of a list of sigatures (mandatory), a protocol specification (op-
tional). The following explains both concepts in more detail.

3.1.2.1 Signatures

A signature in the PCM is comparable to a method signature in programming languages like C# or Java.
It is widely compatible with the OMG’s IDL standard [25, p. 3-1 and following]. Each signature of an
interface is unique and contains:

• A type of the return value or void (no return value)
• An identifier naming the service
• An ordered set of parameters (0..*). Each parameter is a tuple of a datatype and an identifier

(which is unique across the parameters). Additionally, the modifiers in, out, and inout (with its
OMG IDL semantics, cf. [25, Chapter 3]) can be used for parameters.
• An unordered set of exceptions.

A signature has to be unique for an interface through the tuple (identifier, parameters). An interface has
a list of 1..* signatures and a signature is assigned to exactly one interface. However, different interfaces
can define equally named signatures, which are distinguished by their parameters. If, for example, void
doIt() is defined for interface A and B, void doIt() is not identical in both interfaces.

3.1.2.2 Protocols

A protocol is a set of call sequences to the services of a single interface and can be optionally added
to an interface specification. In general, a protocol defines the set of all possible call sequences of
the interface’s signatures. Depending on the role of the interface (cf. Section 3.1.2.5), protocols are
interpreted differently. Protocols of provided interfaces specify the order in which services have to be
called by clients. Protocols of required interfaces specify the set of all possible call sequences to required
services. However, the specification of a protocol is independent of its interface’s role.

Figure 3.2 shows an example of protocols visualised as finite state machine. Nodes represent states,
while edges represent calls to services and are labelled with signatures. The figure on the left hand side
shows the protocol for the interface IReaderWriter as a finite state machine. First, open(..) is called.
Then, read(..) and write(..) can be called in an arbitrary sequence. Finally, close() terminates
the protocol.

Besides finite state machines, different formalisms can be used to model protocols. For example, Petri
nets or stochastic process algebras could model interface protocols. However, the choice of a formalism
implies the possible analyses. For example, to check the interoperability of two components, language
inclusion has to be checked. The language inclusion is undecidable for Petri nets in the general case, so
protocols modelled with Petri nets cannot be checked for interoperability.
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Figure 3.1: Repository Example
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Figure 3.2: Example: Interfaces with Signature Lists and FSM protocols

3.1.2.3 Interfaces as Contracts

Interfaces are applied to specify the allowed communication between components. The contracts spec-
ified in the interface (method contracts, invariants) characterize the valid behaviour of these entities. In
object-oriented languages an object can act in two roles with respect to an interface: server or client.
In the server role, the object “implements” or “realizes” the operations specified in the interfaces and
observes the method pre- and postconditions. In the client role, the object calls services offered in a
given interface by fulfilling the precondition and expecting the postcondition. However, in both cases the
interface and its associated contracts serve both roles as contract on which they can rely.

As with legal contracts, interfaces can exist even if no one actually declared their commitment to them,
i.e., there is no specific client or server. For example, this is used to define a certain set of standardised
interfaces of a library to enable the construction of clients and servers of these libraries independently.
Thus, in our model the concept Interface exists as first class entity which can be specified independent
from other entities.

An interface protocol is a special case of the more general concept of arbitrary preconditions for
methods. Any kind of protocol can be expressed via preconditions. Thus, the protocol is an abstraction of
the set of all preconditions. The abstraction is often based on the expressiveness of the used specification
formalism.

3.1.2.4 Interface Inheritance

The subtype relationship of any two arbitrary interfaces I1, I2 can be specified as follows. Interface I1
is subtype of I2 if it is able to fulfil at least the contracts of I2. In detail, this means it has to be able to
handle all the (single) method calls which I2 can handle. Additionally, it must also at least support the
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call sequences which I2 supports. A common constraint for the hierarchy of interfaces is that any given
interface can not be supertype of itself, which gives us a acyclic subtype hierarchy.

This definition of interface inheritance is required to support contra-variance – cases in which not the
original interface is used, but a super- or sub-type. A sub-type can replace a super-type at the provided
side of a component, while a super-type can be used instead of a sub-type at the required side.

3.1.2.5 Roles

Components use interfaces to declare their provided and required functionality. These interfaces are
often referred to as provided and required interfaces. Since interfaces themselves can be considered as
contracts that do not make any statement about the participants of the contract (cf. Section 3.1.2), the
role of the component for the contract needs to be set elsewhere.

The PCM uses Roles for this purpose. A Role associates an interface to a component. The type of
the association determines whether the component offers or demands the interfaces. ProvidedRoles
reference the interfaces offered by a component. In this case the component takes the role of a server. It
implements the services defined in the interfaces. Furthermore, it can rely on the call sequences defined
in the interface’s protocol, because its clients will adhere to it. On the other hand, RequiredRoles
reference the interfaces requested by a component. The component uses the interfaces to implement its
functionality. It will only call the its services according to the interface’s protocol specification.
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3.1.3 Components

To create a software system, software architects can use existing components from repositories or specify
new ones. So, some of the components in an architecture are already specified while others are only
sketched. As a consequence, we cannot characterise component-based development processes into the
classical top-down (i.e., going from requirements to implementation) or bottom-up (i.e., assembling
existing component to create an application) categories. Instead, it is a mixture of both approaches.

This mixture needs to be reflected in the component model, since software architects must be able to
use fully specified components in combination with nearly unspecified ones in their architectural descrip-
tions. The PCM reflects this requirement by a so-called component type hierarchy. It distinguishes three
abstraction levels for software component specifications (from abstract to concrete): provided types,
complete types, and implementation types. On the most abstract level, provided types specify a com-
ponent’s provided interfaces leaving its requirements and implementation open. This allows software
architects to create ideas of components, leaving their realisation unspecified. On the middle level, com-
plete types fully specify a component’s required and provided interfaces, but do not make any statements
about its internal structure. This is more concrete than provided types as the component’s dependencies
have already been defined. However, the actual implementation (how provided services use required
ones) still remains open. Software architects can use complete types for substitution of one component
by another, if they have a selection of multiple components (e.g., different variants or versions) with the
same functionality but different extra-functional properties. Last but not least, implementation types ab-
stractly specify the internal behaviour of a software component. Their behavioural model describes how
the provided services of the actual component implementation call its required services. Behavioural de-
scriptions of software components are needed to evaluate extra-functional properties such as reliability
or performance of software architectures.

This section provides an overview on the different component types and their relationships. It first
introduces the ideas and concepts of the type hierarchy. Then, the realisation in the PCM and the meta
model of the type hierarchy are explained. The following describes the concepts of the three levels of
the type hierarchy. The explanation starts with the most concrete implementation type, since it conforms
to the intuitive understanding of a software component for most developers. Based on the concepts
introduced the more abstract concepts of complete and provided types are explained.

3.1.3.1 Implementation Component Type

Implementation (component) types include descriptions of a component’s provided and required inter-
faces as well as abstract specifications of its internal structure. The specification of the internal structure
depends on the way the component is realised. In general, components can either be implemented from
scratch or composed out of other components. In the first case, the implemented behaviour of each
provided service needs to be specified with a service effect specification (SEFF, cf. Section 3.1.4) to
describe the component’s abstract internal structure. We refer to such components as basic components,
since they form the basic building blocks of a software architecture. On the other hand, developers can
use existing components to assemble new, composite components. The internal structure of these com-
ponents is the structure of the assembly (i.e., the included components and their interconnections). The
following explains the concepts of basic and composite components in more detail

Basic Components Basic components are atomic building blocks of a software architecture. They
cannot be further subdivided into smaller components.
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<<ServiceEffectSpecification>>

<<ExternalCallAction>>
method1

<<InternalAction>>
doSomething

<<BasicComponent>>
I

Figure 3.3: Example of a Basic Component.

Basic components encapsulate their internal structure (black box view). For reasoning about a basic
component’s properties, it may contain SEFFs, which describe the dependency between provided and
required roles (cf. Figure 3.3). SEFFs abstract from the component’s internal behaviour and only reveal
necessary internals to reason on the component properties, such as protocol interoperability and QoS.
Section 3.1.4 describes SEFFs in detail.

Composite Components Composite components are created by assembling other, existing compo-
nents (cf. Figure 3.4). They base on composed structures (cf. Section 2.2.2), which contain a set of
assembly contexts, delegation connectors, and assembly connectors. Assembly contexts embed compo-
nents into the composite component. Assembly connectors bind required and provided roles of inner
components in different contexts. Delegation connectors bind provided (required) roles of the composite
component with provided (required) roles of its inner components.

<<CompositeComponent>>
E

<<Basic
Component>>

F

<<Composite
Component>>

G

<<Basic
Component>>

H

<<Delegation
Connector>>

<<Assembly
Connector>>

<<ProvidedRole>>

<<RequiredRole>>

<<Delegation
Connector>>

<<Provided
Interface>>

<<Required
Interface>>

Figure 3.4: Example of a Composite Component.

Composite components may contain other composite components, which again are composed of other
components. This enables building arbitrary hierarchies of nested components. Like basic components,
composite components may contain SEFFs. However, these SEFFs are not specified manually by the
component developer, but can be computed by combining the SEFFs of the inner components.

3.1.3.2 Complete Component Type

Complete (Component) types abstract from the realisation of components. They only have provided
and required roles omitting the components’ internal structure (i.e., the service effect specifications or
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encapsulated components). Thus, complete types represent a black box view on components.
Software architects can integrate complete types into their architectures, which are fully connected

with their provided and required roles. However, as their internal structures are not specified, they can
be substituted by basic or composite components in later development stages. This is especially useful if
the component is developed in a top down fashion. As described in Section 2.1.2, software architects can
use complete types as a requirement specifications handed over to third parties. Component developers
provide the actual implementations and specifications which complete the software architecture as soon
as they are available.

If a component’s implementation and specification does not exist, software architects can still model
and evaluate an architecture. However, they have to provide basic QoS estimates for the complete com-
ponent types in their architecture to evaluate its QoS attributes. Furthermore, the QoS results cannot be
expected to be as accurate as for implementation component types.

3.1.3.3 Provided Component Type

Provided (Component) types abstract a component to its provided interfaces, leaving its requirements and
implementation details open. So, provided types subsume components which offer the same function-
ality, but with different implementations and requirements. As different implementations might require
different services from the environment, provided types omit required interfaces. Provided types allow
software architects to focus on a component’s functionality.

Using provided types, software architects can draft ideas on how functionality can be partitioned
among different components without worrying about their implementation. In the initial phases of archi-
tectural design, it often does not make sense to arrange all details of a component, since most of them
depend on the actual implementation and thus need to be specified by component developers. As during
this phase the actual implementation is unknown, also the required interfaces of a component cannot be
stated. However, software architects can still pre-evaluate software architectures containing provided-
types by giving basic QoS estimates for them. This gives rough estimates about the quality of a software
system and defines QoS requirements for the component implementation.

3.1.3.4 Type Hierarchy

The provided, complete, and implementation component types can be organised in a hierarchy as shown
in Figure 3.5. Provided types are on the top, most abstract level, since they only specify provided roles.
The lower levels extend provided types with requirement and implementation specifications. On the
middle level, complete types extend provided types with required roles, but still abstract from the actual
implementation of a component. Implementation types on the lowest level of the hierarchy can either
be composite or basic components. Thus, they specify the provided and required roles as well as the
abstract internal structure of a component.

The different levels of the hierarchy are related to one another by the conforms and impl-conforms rela-
tionships. These relationships define under which conditions a component specification on a lower level
is of a higher level type. A complete type conforms to a provided type if it offers at least the function-
ality specified in the provided type. Furthermore, an implementation type impl-conforms to a complete
type if it offers at least the functionality of the complete type and requires at most the functionality of it
required interfaces. The following explains both relationships in more detail and introduces a notion of
substitutability based on their definition.
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<<ProvidedType>>

<<CompleteType>>

<<BasicComponent>>

<<CompositeComponent>>

<<impl-conforms>> <<impl-conforms>>

<<conforms>>

Figure 3.5: Component Type Hierarchy.

Conforms Relation The conforms relation is a subtype relation of provided and complete types. Ab-
stractly speaking, a complete type conforms to provided type if it provides at least the functionality
specified in the provided type. In order to concretise this statement, we need to define the provided
functionality of a component and its relation.

Provided roles of components define their offered functionality associating interfaces to components.
Thus, the conforms relation is defined on the provided interfaces of components 1.

+doSomeThing()

«interface»

ITop

+doSomeThingElse()

«interface»

IBottom

Figure 3.6: Example of interface inheritance.

Section 2.2 introduces the concepts of interfaces in the PCM. At this point, we only give a brief
overview on the fundamental concepts. Interfaces are organised in an inheritance hierarchy. So, an
interface can have multiple supertypes and subtypes. Basically, a supertype of an interface provides
less and the subtype provides more services. Figure 3.6 shows an example. There, interface ITop is a

1Another option would be the definition of the conforms relation on services provided by a component neglecting the cor-
responding interfaces. However, this is ambiguous, since two interfaces can provide syntactically equal services, but with
different semantics. Furthermore, the PCM allows the specification of protocols for interfaces, which have to be considered
in the conforms relation.
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supertype of interface IBottom while IBottom is a subtype of ITop.
In order to give a meaningful definition of the conforms relation, we have to consider the inheritance

hierarchy of interfaces. We can refine the definition of the conforms relation.
A complete type conforms to a provided type if it provides at least the interfaces or subtypes of the

interfaces specified in the provided type. More formally, let Prov be the set of provided interfaces of
a component type including all supertypes. Then a complete type C conforms to a provides type P if
ProvP ⊆ ProvC, the interfaces provided by P are a subset of the interfaces provided by C.

Implementation-Conforms Relation The impl-conforms relation is a subtype relation between im-
plementation types and complete types. Abstractly speaking, an implementation type (either a basic or
composite component) conforms to a complete type if it provides the same or more functionality and
requires the same or less functionality than the complete type.

With respect to the provided functionality, the impl-conforms relation is similar to the conforms re-
lation. In addition, the required functionality of an implementation type must be less or equal to the
required functionality of a complete type. Analogously to the provided functionality, the required func-
tionality is specified in the components’ required roles (i.e., the interfaces associated to the component
with its required roles). Considering the supertype and subtype relation of interfaces, we can define the
impl-conforms relation as follows.

An implementation type conforms to a complete type if it provides at least the interfaces or subtypes
of the interfaces provided by the complete type and if it requires at most the interfaces or supertypes of
the interfaces required by the complete type. More formally, let Prov be the set of provided interfaces of
a component type including all supertypes and Req be the set of required interfaces of a component type
including all subtypes. Then an implementation type I conforms to a complete type C if ProvC ⊆ ProvI

and ReqC ⊇ ReqI , the interfaces provided by C are a subset of the interfaces provided by I and the
interfaces required by C are a superset of the interfaces required by I.
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ComponentType>>

X

<<Complete

ComponentType>>

Y
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B

Ia Ib

Ic

Ia

Ib Ic

Ia

Ib Ic

Ia Ib

Ic

<<impl-conforms>> <<impl-conforms>> <<impl-conforms>>

Figure 3.7: Example for Component Type Conformance.

Figure 3.7 shows an example for conforms relations of implementation and complete components.
Complete component X provides interface Ia and requires Ib and Ic while complete component Y pro-
vides Ia and Ib and requires Ic. Basic component A provides and requires the same interfaces as
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complete type X and thus impl-conforms to X as indicated by the dashed arrow with the stereotype
«impl-conforms». However, A does not conform to Y since it does not provide interface Ib and addi-
tionally requires it. Composite component B impl-conforms to both types X and Y as it provides interfaces
Ia and Ib and only requires Ic.

Cardinality of the Conforms Relations The conforms as well as the impl-conforms relations are
many-to-many relations between two levels of the component type hierarchy. Each implementation type
can conform to multiple complete types and each complete type can be implemented multiple times.
Figure 3.7 illustrates this. Composite component B impl-conforms to complete types X and Y and com-
plete type X is implemented by basic component A and composite component B. The same holds for the
conforms relation as well. Each provided type can abstract multiple complete types and each complete
type can conform to multiple provided types.

Substitutability The main application of both conforms relations is the definition of substitutability
for software components in the PCM. A component can substitute another component if it conforms to
its type. Depending on the type of conforms relation, the substitution of a software component can have
different effects. The following discusses this in more detail.

Assume we have a software architecture where an implementation type A is used. If a component B
shall substitute A and B conforms to the provided type of A, but not impl-conforms to its complete type,
B provides at least the interfaces offered by A, but requires additional interfaces. Thus, replacing A by
B in the given architectures can lead to problems since not all of its requirements are fulfilled. On the
other hand, a component B’ that impl-conforms to A can easily replace A, since it provides the necessary
interfaces and all its requirements can be fulfilled by the surrounding architecture.

3.1.3.5 Type Hierarchy Meta Model

A part of the meta model describing the component type hierarchy is analogous to the structure of the
type-hierarchy itself (cf. Figure 3.8). Each type level is a specialisation of the upper levels. So, lower
levels in the hierarchy only add information to the component specification, e.g. the complete type adds
mandatory required roles. Thus, lower type levels inherit the attributes of the upper levels.

However, the inheritance between the different type levels is only partially connected to the conforms
relations. As a consequence of the inheritance, an instance of a basic component is as well an implemen-
tation, complete, and provides type. Due to the definition of the conforms relation, it certainly conforms
to itself. However, the conforms relation is not restricted to itself, it can conform to other component
types as well.
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Figure 3.8: Meta Model of the Component Type Hierarchy.

3.1.4 Service Effect Specification

3.1.4.1 Motivation

The goal of the PCM is to provide modeling capabilities that enable QoS analyses of component-based
software architectures. As clients perceive different QoS characteristics of a provided service in a
component-based architecture depending on a particular context, component developers have to pro-
vide parameterised specifications of the QoS attributes of their components. Such context dependencies
for a specific component service may originate from (a) input parameters (including the current compo-
nent internal state), (b) resource usage, and (c) usage of required services. These influences have to be
made explicit in the service’s specification.

To achieve accurate QoS analyses, a description of the usage of required services (influence (c)) for
each provided service of a component is useful, because the QoS characteristics perceived at the pro-
vided interface can depend on QoS characteristics of calls to required services. For example, consider a
provided service calling a slow required service. In this case, the response time of the provided service
will be perceived as slow by its clients, because the execution time of the slow required service has to be
included in its own execution time (details can be found in [26]). Software architects cannot know how
requests to a provided service of a component are propagated to required services if no dependencies
between them are specified. Thus, component developers have to enhance their component specifica-
tions with a description of such intra-component dependencies to enable accurate specification-based
QoS analyses by third parties.

In the following, service effect specifications (SEFFs) are discussed focussing on influence (b) and (c).
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The influence of input parameters (influence (a)) is discussed separately in Section 3.1.5.

3.1.4.2 Resource Demanding Service Effect Specification

A resource demanding service effect specification (RDSEFF) [1] is a special type of SEFF designed for
performance and reliability predictions. Besides dependencies between provided and required services of
a component, it additionally includes notions of resource usage, data flow, and parametric dependencies
for more accurate predictions. Its control flow is hierarchically structured and can be enhanced with
transition probabilities on branches and numbers of iterations on loops. In the following, the meta model
of the RDSEFF will be illustrated, and its design rationale will be explained. For understanding and
clarity, the illustration of the meta model and the concept descriptions are spread over several paragraphs.

ServiceEffectSpecification

seffTypeID : EString

ResourceDemandingSEFF

ResourceDemandingBehaviour

AbstractActionSignature

serviceName : String

BasicComponent

*

11

*
1

*

Figure 3.9: Overview of the RDSEFF

Overview Figure 3.9 shows how RDSEFFs are connected to the PCM and contains their main parts.
Each BasicComponent can contain a number of ServiceEffectSpecifications, each of which ref-
erences a signature of a provided service of the component. Each provided service can be described with
different types of SEFFs.

A ResourceDemandingSEFF is a ServiceEffectSpecification and a ResourceDemanding-
Behaviour at the same time inheriting from both classes. The reason for this construct lies in the
fact, that ResourceDemandingBehaviours can be used recursively inside themselves to describe loop
bodies or branched behaviours (explained later), and these inner behaviours should not be RDSEFFs
themselves.

The ResourceDemandingBehaviour is designed to reflect different influence factors on the perfor-
mance and reliability of a component service. It contains a set of AbstractActions to model

• calls to required services,
• resource usage by internal activities, and the
• corresponding control flow between required service calls and resource usage.

Resource Demand To conduct QoS analyses, component specifications must contain information on
how system resources, such as hardware devices or middleware entities are used by components. Ideally,
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Figure 3.10: Resource Usage in RDSEFFs

component developers would specify a timing value for the execution time of each provided service of
a component. However, these timing values would be useless for third party users of the component,
because they would depend on the specific usage profile, hardware environment, software platform, and
attached required services the component developer had used while measuring them.

Thus, component developers have to specify the demand each provided service places on resources
instead of a timing value. Other than a timing value, the demand is independent from concrete resources.
For example, a component developer could specify the number of CPU cycles of a specific operation
within a service or the number of bytes read from or written to an I/O device. These demands have
to be specified against abstract resource types, because the component developer does not know all
possible resources the component could be deployed on. Only software architects and deployers know
the concrete resources the component shall be used on and can define a specific deployment context (i.e.,
a resource environment model, Section 3.3.4). With this concrete context, for example, the execution
time of one CPU cycle or the time to read one byte from an I/O device is specified. Then, actual timing
values can be derived from the resource demands.

These considerations have been mapped to the meta model of the RDSEFF (see Figure 3.10). Ab-
stractActions can either be external calls (ExternalCallAction), which reference required ser-
vices and do not produce resource demands themselves, or internal computations actions (Abstract-
ResourceDemandingActions), which actually place demands on resources. These Parameteric-
ResourceDemands contain a demand (e.g., “127”) and a unit (e.g., “bytes”). The demand can also be
specified in dependency to the service’s input parameters (cf. Section 3.1.5.1).

Resource demands reference ProcessingResourceTypes from the ResourceType package of the
PCM (Section 3.3.3). Once the concrete processing resource, such as a CPU or network device, is
specified, the actual resource demands can be placed on them to calculate timing values.

Besides active resources, such as CPUs, I/O devices, storage devices, memory etc., component ser-
vice may also acquire or release passive resources, such as semaphores, threads, monitors, etc. These
resources usually exist in a limited number, and a service can only continue its execution if at least
one of them is available. Passive resource are themselves not able to process requests and do not allow
to place demands on them. They can only be acquired and released, which can be modelled with the
AquireAction and ReleaseAction (see Figure 3.10). These actions reference PassiveResource-
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Types from the resource type package of the PCM.

AbstractAction

ExternalCallAction
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Figure 3.11: External Service Calls and Parameter Usage in RDSEFFs

External Calls and Parameter Usage RDSEFFs allow the specification of calls to required services
with ExternalCallActions, which are themselves AbstractActions (see Figure 3.11), but produce
no resource demands directly. The resource demand produced by executing a required service has to be
specified in the RDSEFF of that service. ExternalCallActions reference the signature of a required
service.

AbstractResourceDemandingAction

AbstractAction

BranchAction

ExternalCallAction

InternalAction

failureProbability : String

StartAction

StopAction

AbstractLoopAction

ForkAction

transition0..1

+ successor_AbstractAction

0..1

+ predecessor_AbstractAction

Figure 3.12: Control Flow in RDSEFFs

Control Flow RDSEFFs contain additional constructs for modeling control flow of the dependencies
between provided and required interfaces (Figure 3.12). All control flow constructs are aligned in a
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hierarchical fashion that avoids ambiguities and eases analyses (an example will follow). A Resource-
DemandingBehaviour contains a chain of AbstractActions, which each reference at most a single
predecessor and successor. The first element of the chain is a StartAction, which has no predecessor,
while the last element of the chain is a StopAction, which has no successor.
InternalActions should be used to reference ParametricResourceDemands for activities inside

the described service, between calls to required services. In the future, they could be used to characterise
the inner resource demand of basic components more detailed.

AbstractBranchTransition

BranchAction

BranchCondition

GuardedBranchTransitionProbabilisticBranchTransition

branchProbability : EDouble

ResourceDemandingBehaviour

RandomVariable

specification : String

1

1

1

*

1

1

Figure 3.13: Branches in RDSEFFs

BranchActions split the control flow with an XOR-semantic: Exactly one of the attached Abstract-
BranchTransitions is taken when such an action is executed. Branches may result from if/ then/
else or case statement of the underlying source code.

Branch transitions can be either guarded or probabilistic (Fig. 3.13). GuardedBranchTransitions,
contain a branch condition as a random variable. For example, a branch condition could be connected to
the value of an input parameter (“x < 1”), in which case a branching probability could be computed once
the value of the input parameter is known (cf. Section 3.1.5.1). ProbabilisticBranchTransitions
directly contain a probability and not a branch condition. They can be used in case a component developer
cannot specify a guard related to input parameters or just to ease the analyses.

Additionally, each type of branch transition contains a ResourceDemandingBehaviour to model
the inner actions of the branch. Using inner behaviours avoids the need to have a merge action to join
branches. Furthermore, it prevents problems, which might arise when a nested “else”-branch cannot be
associated unambigiously with an according “if”-branch.
ForkActions split the control flow with an AND-semantic: Each of the inner forked Resource-

DemandingBehaviours has to be executed (possibly concurrently) before the control flow continues
with the successor of the corresponding ForkAction. Forks may for example result from the invocations
of threads. Inner forked behaviours can be specified directly, or within a SynchronizationPoint. For
behaviours specified inside a SynchronizationPoint, the control flow waits until the inner behaviours
are completed. This allows to model synchronization barriers of concurrent control flows.
AbstractLoopActions, similar to BranchTransitions and ForkActions, contain inner Resource-
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Figure 3.14: Loops in RDSEFFs

DemandingBehaviour, which include actions carried out in the loop body (Fig. 3.14). Loops can origi-
nate from for or while statements of the underlying source code.

Concrete loop action can be modelled either with LoopActions or CollectionIteratorActions.
The former contains the number of iterations, the latter enables modelling the special but common case
of iterating over a collection. See Section 3.1.5.1 for more details on specifying that the number of
iterations depends on input parameters.

Modelling loops with inner behaviours instead of allowing cyclic references in the chain of Ab-
stractActions has several advantages [27]. In Markov models, loops are specified with cycles, so
that there is an entrance probability for each loop and an exit probability. The probability of entering the
loop decreases if the number of loop iterations is increased. For example, entering a loop with a entrance
probability of 0.9, leads to a probability of 0.81 for two loop iterations, and a probability of 0.729 for
three loop iterations. Thus, the number of loop iterations is always limited to a geometrical distribution,
which does not resemble practical situations well. Fixed number of loop iterations can only be specified
by unrolling the loop to a number of states in Markov models. With the approach described above, it is
possible to attach an arbitrary distribution function for the number of iterations to each loop.

Figure 3.15 shows a simplified example instance of an RDSEFF, which highlights the control flow
concepts introduced before. Note that the constructs are hierarchically structured. Analysis algorithms
can easily traverse the abstract syntax tree to make model transformations or QoS predictions.

Passive and Processing Resources Resources are divided into processing and passive resources,
whose concepts are elaborated in the following.

Active resources are those which perform tasks on their own and thus can actively execute a task. This
includes CPUs, hard disks, and network connections. As these resources always do some kind of job
processing, we call them processing resources.

Passive resources on the other hand can be owned by a process or thread for a certain period of time.
A passive resource has to be acquired to be accessed. Since passive resources can be limited, processes
or threads might have to wait until a resource becomes available. Typical examples of passive resources
are connection pools and thread pools. The acquisition and the release of a passive resource has to be
represented in the SEFFs, which describe the control flow of a component (see page 48). If a component
requires access to a limited resource, it first has to acquire it using the AcquireAction. After it has
finished its operation, it has to release the resource using the ReleaseAction. The semantics of a passive
resource with its AcquireActions and ReleaseActions is based on the semantics of semaphores.



COMPONENT DEVELOPER 53

:ResourceDeman
dingBehaviour

:StartAction :StopAction:InternalAction :ExternalAction:BranchAction :LoopAction

:ResourceDeman
dingBehaviour

:Guarded
BranchTransition

:ResourceDeman
dingBehaviour

:Guarded
BranchTransition

:ResourceDeman
dingBehaviour :StartAction :StopAction:ExternalAction

:StartAction :StopAction:ExternalAction:StartAction :StopAction:ExternalAction

:BranchCondition
specification = 
„x.VALUE <10"

:BranchCondition
specification = 

„x.VALUE >=10"

:IterationCount
specification = „20"

Figure 3.15: Example Instance RDSEFF highlighting control flow concepts

Figure 3.16: Example of a SEFF using a passive resource.

Example 3.1 (Passive Resource). Figure 3.16 shows a simple SEFF that uses a passive resource. First,
the SEFF performs some initialising actions that are captured in the InternalAction initialise.
Next, an AcquireAction is invoked to get a connection to the database. The capacity attribute of the
DBConnectionPool indicates that there are 15 connections to the database available. If no connection
is left, the AcquireAction blocks the current thread until a database connection is returned to the pool.
The DBConnection object is then passed by the AcquireAction to the InternalAction readData,
which reads some entries from the database. Finally, the ReleaseAction returns the connection object
to the DBConnectionPool allowing other processes to use it.

Example 3.1 shows how a passive resource is used by a SEFF. The object received from the DB-
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ConnectionPool is passed from one action to another. Within the actions, the object can be used. So,
a passive resource can be owned and used by a process or thread for a certain period. Opposed to that,
active resources cannot be owned. A scheduler decides which thread or process will be handled next by
a processing resource.

3.1.4.3 Modeling SEFFs as Finite State Machines

A service effect specification (SEFF) describes how a provided service of a component calls its required
services and is thus an abstraction of the control flow through the component. In the simplest case, a
SEFF of a provided service is a list of signatures of the services in the component’s required interfaces.
For more sophisticated analyses, a SEFF can be modelled as a finite state machine (FSM), which captures
sequences, branches, and loops. In any case, a SEFF captures the externally visible behaviour of a
provided service while hiding its internal computations.

logger.writeLog()

cache.read()

logger.writeLog()

logger.writeLog()

read()

(a)

ILogging logger;
ICache cache;

[…]

public void read(Handle h){
  if (h==null){
    h = new Handle(FILENAME);
  }

  logger.writeLog(„start reading cache“);

  while(h.hasNext()){
    cache.read(h.Current());
    logger.writeLog(„accessing cache“);
  }

  logger.writeLog(„end reading cache“);
}

(b)

Figure 3.17: Example SEFF as FSM and corresponding source code

Example 3.2 (FSM-SEFF). In figure 3.17(a), a SEFF is modeled as a FSM for the provided service read,
whose source code is shown in Figure 3.17(b)). This service first initialises a file handle, writes to a log
file, and then reads from a cache within a loop. After completing the file access, another entry is added to
the log. In the FSM, edges represent calls to required services and are annotated with the name of these
services. The states abstractly represent the internal computations of a service after or before executing
a required service. Notice, that the SEFF only contains the sequence of calls to the required services,
while the component internal activity of initialising the file handle is abstracted.

Although SEFFs reveal the inner dependencies between provided and required interfaces of a com-
ponent, they do not violate the black box principle. First, these specifications are only used by tools
performing analyses, and do not have to be understood by humans. Second, they do not reveal the intel-
lectual property of component developers encoded in the service’s algorithms, because they are a strong
abstraction of the component’s source code. Third, in many cases, these specification can be generated
out of byte code components, which are generally considered black box components.
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SEFFs can be specified for basic components by the component developers and computed for com-
posite components out of the SEFFs specified for the inner components [12]. For existing legacy basic
components with available source code, the SEFFs have to be specified manually so far. However, in the
future it is planned to implement analysis tools for component source code to assist component develop-
ers in the SEFF specification of legacy components by semi-automatically generating them.

3.1.4.4 Alternative types of Service Effect Specifications

Different types of SEFFs besides simple service lists and FSMs can be modelled to support different
kinds of analysis (e.g., protocol checking, QoS analysis, etc.). If different SEFF types are defined for the
same provided service, a mapping should exist between the FSM SEFF and the other types of SEFFs,
which ensures the same names for provided and required services and the same order of calls to required
interfaces.

SEFFs have been introduced by Reussner [12], who has used them in the context of parameterised
contracts for protocol adaptation (Section 2.3). In that work, counter-constraint automata are used to
model SEFFs restricting the number of calls to specific required services. Furthermore, using Petri nets
to model SEFFs is envisioned to support concurrent component behaviour. However, assuring proto-
col interoperability is not possible if the component behaviour is modeled with Petri nets, because the
language inclusion problem is undecidable for them in the general case.

While plain FSMs are well-suited for restricted protocol checking, they are generally insufficient for
QoS analyses, because additional stochastic information and QoS characteristics (such as execution times
or reliability values) are needed. Thus, several other forms of SEFFs have been proposed. For reliability
prediction, Reussner and Schmidt [20] enhance SEFF FSMs with transition probabilities, so that they
become Markov models. Similar Markov models enhanced with distribution functions for execution
times have been used for performance predictions by Firus et. al. [4]. Happe et. al. [28] propose
modeling SEFFs as stochastic Petri nets to enable QoS analyses involving concurrency. Koziolek et.
al. [27] use stochastic regular expressions as SEFFs to make component-based performance predictions.
These expressions are similar to Markov models, but are hierarchically structured and contain special
constructs to model loops. Koziolek et. al. [3] use annotated UML 2.0 activities as SEFF models in the
context of performance analysis. In [1] so-called resource demanding SEFFs have been introduced for
QoS analysis, which have become part of the PCM and are described in Section 3.1.4.2.

In the PCM, a basic component can contain any number of SEFFs for each provided service, but
at most one SEFF of each type, such as FSM or Petri net. A restriction on a particular SEFF type is
deliberately avoided to enable different kinds of analyses. At the point of writing, the only SEFF type
explicitly included in the PCM is the resource demanding SEFF. However, other types can be included in
the PCM by inheriting from the class ServiceEffectSpecification. Consistency between different
SEFF types has to be ensured by component developers, as it is not checked by the component model. If
component developers implement a component based on a SEFF, it has to be ensured that the language
of the SEFF is a superset of the language of the implementation.

3.1.5 Parametric Dependencies

Parameters of component services may have a significant impact on the perceived performance and
reliability of a component-based systems. A major problem for component developers is that during
component specification it is unknown how the component will be used by third parties. Thus, in case
of varying resource demands or branch probabilities depending on user inputs, component developers
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cannot specify fixed values. However, to help the software architects in QoS predictions, the component
developer can specify the dependencies between input parameters and resource demands, branch prob-
abilities, or loop iteration numbers in SEFFs. If an usage model of the component has been specified
by business domain experts or if the usage of the component by other components is known, the actual
resource demands and branch probabilities can be determined by the software architect by solving the
dependencies.

It can be distinguished between

• Input Parameters: which are passed to a component service by its clients (users or other com-
ponents). Possible input parameters are specified in the signature of the interface described by a
SEFF.
• Output Parameters: return values, which are sent back to clients by a service after finishing its

execution. Possible output parameters are specified as return parameters in the signature of the
interface described by a SEFF.
• Configuration Parameters: which can be global variables or configuration options of a compo-

nent. Component developers specify configuration parameters for a component, and can refer to
them in all SEFFs of that component.

All of these forms of parameters can cause different influences on the QoS properties of a system:

• Resource Usage: Parameters can influence the usage of the resources present in the system exe-
cuting the component. For example, the time for the execution of a service that allows uploading
files to a server depends on the size of the files that are passed as input parameters. In this case, the
parameter alters the usage of the storage device. Another example would be a service for sorting
items within an array. The duration of executing the sort service would mainly depend on the size
of the array passed to it. Thus, the parameter would alter CPU usage.
• Control Flow: SEFFs (see Section 3.1.4) describe how requests to provided services are propa-

gated to other components. The transition probabilities or number of loop iterations in SEFFs can
depend on the parameters passed to a service. For example, a component service might provide
clients access to a number of databases, thus communicating with several database interfaces as
required services. This service would call different required services depending on the input pa-
rameter passed to it. Thus, the transition probabilities in the SEFF modelling the alternative to
communicate with different databases would directly be linked to the input parameter. Another
example could be a component service having a collection parameter, which would call another
component’s service subsequently for each item in the array. Such a situation would be expressed
as a loop in a SEFF, and the number of iterations would directly be linked to the size of the array.
• Internal State: Input parameters can influence the internal state of the component. The compo-

nent state in turn may influence resource usage or control flow between components. Imagine a
component allowing users to log in to a system, which stores user sessions as global variables.
The later behaviour of other services of this component in terms of control flow propagation and
resource usage could depend on which user is currently logged in. Thus the QoS properties of the
component would be related to the internal parameter, which was created when the user logged in
to the system. Although the influence of the internal state has been recognised by us, it is so far
not modelled in the PCM and remains future work.
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3.1.5.1 Using Parametrisation in an RDSEFF

Actions in an RDSEFF can be parametrised in dependency on the RDSEFFs input parameters, on output
parameters of called services, or on configuration parameters of the component containing the RDSEFF.
For configuration parameters, component developers can specify default values.

The following actions in an RDSEFF can be parametrised:

Resource Demands Resource demands of a component service may vary depending on how the ser-
vice is used. For example, the hard disk demand of a component service, which offers downloading
different files from a server, strongly depends on the size of the file that is requested via a parameter.
Another example would be the CPU demand of a component that allows sorting collections. Its CPU
demand for the sort operation would depend on the number of elements in the collection. Thus, it could
not be specified as a fixed value by the component developers, because they cannot forsee how the com-
ponent will eventually be used by third parties. Therefore, it is necessary to specify resource demands in
dependency of parameters.

To do so, the ParametericResourceDemands can also contain a demand in dependency to the
SEFF’s parameters (e.g., demand=“x.BYTESIZE * 200”, where “x” is an input parameter of the service).
Once “x.BYTESIZE” is specified by third party users, the actual resource demand can be computed.

Control Flow The control flow may also vary depending on how the service is used. For example, the
number of order items might determine how often a loop to check the item’s availability is executed.

For branches, GuardedBranchTransitions contain a branch condition as a random variable. For
example, a branch condition could be connected to the value of an parameter (“x.VALUE < 1”), in
which case a branching probability could be computed once the value of the parameter is known (cf.
Section 3.1.5.1).

Both types of loops (LoopActions and CollectionIteratorActions) can also depend on param-
eters. For a LoopActions, the number of iterations is a random variable, and this random variable can
include dependencies on parameters. For example, the number of loop iterations might be specified as
(“5+x.VALUE”). Note that x.VALUE must have integer values in this case, because fractions of loop
iterations are undefined.
CollectionIteratorActions enables modelling the special but common case of iterating over a

collection. Because of this, CollectionIteratorActions have to reference an parameter of the cur-
rent component service. This parameter must be a collection parameter and the number of elements in
this collection has to be characterised with a random variable. Then the loop gets executed for each
element in the collection.

Notice, that for LoopActions, it is assumed that the parameters characterisations used in the loop
body are stochastically independent, whereas for CollectionIteratorActions it is assumed that the
characterisations are not independent. For example, if the characterisation of a parameter value is spec-
ified by a random variable and is used by two external call actions within a loop body, the analyses
algorithms have to assure, that the second action uses the same characterisation as the first action and
that the random variable does not get evaluated a second time.

External Calls It is possible that input parameters passed to a required service do not receive fixed or
constant values within the calling component service. They might in turn depend on parameters of the
calling service. These parameters are however unknown to the component developers. Therefore, in such
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a case, the component developers have to specify a dependency (instead of a constant characterisation)
between parameters of the calling service and input parameter passed to required services.

In the PCM, VariableUsages can be used to specify the needed dependencies between parameters
(Figure 3.11), which abstractly characterise the data flow through a component service. These variable
usages are aligned to the parameter model described in Section 3.1.5.2. With them, it is possible to
characterise the value, byte size, or type of primitive parameters as well as the number of elements or the
structure of collections. The characterisations can be expressed as random variables (for details refer to
Section 3.1.5.2).

Example In the following, examples for the specification of parametric dependencies in the PCM will
be illustrated. Note that as a concrete syntax a more easily readible UML-based notation is used for the
examples instead of the abstract syntax.

As the first example (Figure 3.18), the ResourceDemandingSEFF of the service HandleShipping from
an online-store component is depicted. It has been specified by a component developer in a parametrised
form. The service calls required services shipping a customer’s order with different charges depending
on its costs, which it gets passed as an input parameter. If the order’s total amount is below 100 Euros, the
service calls a service preparing a shipment with full charges (ShipFullCharges). If the costs are between
100 and 200 Euros, the online store grants a discount, so ShipReducedCharges is called. Orders priced
more than 200 Euros are shipped for free with the ShipWithoutCharges service.

Figure 3.18: Branch Condition Example

Once a domain expert specifies the value of the parameter costs, it can be derived which of the
services will be called.

The second example (Figure 3.19) illustrates assigning a number of iterations to a loop in a parameter-
isable way. The illustration shows the ResourceDemandingSEFF of the service UploadFiles. It gets an
array of files as input parameter and calls the external service HandleUpload within a loop for each file.
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Figure 3.19: Loop Example

With the specified dependency to the number of elements in the input collection, the probability distri-
bution of random variable Xiter for the number of loop iterations in the ResourceDemandingBehaviour
can be determined once the number of elements are known. If the dependency had not been specified, it
would not have been known from the interfaces how often the required service would have been called.
Thus, with the specified PMF, a more refined prediction can be made for varying usage contexts.

3.1.5.2 Structure

The PCM parameter model (Figure 3.20) allows characterising actual parameters of a component ser-
vice by associating a VariableUsage with a formal Parameter. The formal Parameter is part of
an interface from the repository model (see Section 3.1.2) and referenced from the parameter model
using an AbstractNamedReference. This may be a NamespaceReference or a concrete Variable-
Reference, which contains the name of the parameter to be characterised. With NamespaceReferences
more complex data structures such as composite data types or the inner elements of collections can be
referenced. For example, an object ‘customer’ containing two strings ‘name’ and ‘address’, can be char-
acterised by providing characterisations for both ‘customer.name’ and ‘customer.address’.

Figure 3.20: Parameter Model
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Note, that it is only necessary to characterise parameters if they indeed influence performance or
reliability. Many parameters do not change resource usage or alter the control flow between components,
and their characterisation can be omitted. Characterising every parameter of the services in a complex
component-based architecture would require too much effort and not support performance analysis.

Many parameters can be characterised by simply providing a constant value for them. However,
as motivated in the example above, in some situations it is useful to characterise parameters not only
with constant values but with probability distributions to allow more fine-grained predictions. Thus the
attributes of parameters are characterised with VariableCharacterisation in the PCM, which inherit
from RandomVariables (see Section 2.5).

Different attributes of parameters can be characterised in the PCM parameter model. Primitive data
types can be characterised with their value, byte size, or data type. To demonstrate the modelling ca-
pabilities, consider the examples for primitive parameters in Figure 3.21. Note, that these examples are
illustrated with class diagrams instead of the annotated activities used before.

Example 3.3. In Figure 3.21(a), a probability distribution for the value of the integer parameter named
“id” has been specified. The parameter receives the values 1, 2, or 3 with probabilities of 70%, 20%,
and 10% respectively. Figure 3.21(b) shows a parameter named “inputFile”, whose size in bytes has be
specified as a constant value (20). Via inheritance, extensions of certain parameters may be passed to a
component service, thus the concrete data type may additionally be characterised by a domain experts.
In the example in Figure 3.21(c), the parameter “shape” of type GraphicObject may become a circle,
triangle, or rectangle, which may alter the response time of the service that is supposed to draw these
graphics. It is also possible to specify multiple characterisations of a single parameters, for example to
specify the value and byte size.

:Parameter
parameterName = „id“

:VariableUsage

:VariableCharacterisation
type = VALUE

specification = IntPMF[(1;0.7)(2;0.2)(3;0.1)]

:DataType
type = INT

:VariableReference
referenceName = „id“

(a)

:Parameter
parameterName = „inputFile“

:VariableUsage

:VariableCharacterisation
type = BYTESIZE
specification = 20

:DataType
type = FILE

:VariableReference
referenceName = „inputFile“

(b)

:Parameter
parameterName = „shape“

:VariableUsage

:VariableCharacterisation
type: DATATYPE

specification = EnumPMF[(Circle;0.3)
(Triangle;0.4)(Rectangle;0.3)]

:DataType
type = GraphicObject

:VariableReference
referenceName = „shape“

(c)

Figure 3.21: Primitive Parameter Characterisation Examples

Example 3.4. For collection parameters, it is more difficult to characterise the value domain. The
performance-influence of collections like array, tree, or hash can sometimes be characterised simply
by the number of elements. Thus, it may be appropriate for such parameters to specify probability distri-
butions over the number of elements. Consider the example in Figure 3.22(a): the number of elements
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in the collection “niceTree” of type RedBlackTree has been specified with a probability distribution, i.e.,
the tree contains 10, 100, or 1000 nodes with probabilities of 10%, 30%, and 60%. The value, byte size
or data type of a collection can be characterised as explained above. In Figure 3.22(a), the size of the
collection has additionally been specified.

:Parameter
parameterName = „niceTree“

:VariableUsage

:VariableCharacterisation
type = NUMBER_OF_ELEMENTS

specification = IntPMF[(10;0.1)
(100;0.3)(1000;0.6)]

:DataType
type = RedBlackTree

:VariableReference
referenceName = „niceTree“

:VariableCharacterisation
type = BYTESIZE

specification = IntPMF[(30;0.1)
(300;0.3)(3000;0.6)]

(a)

:Parameter
parameterName = „luckyNumbers“

:VariableUsage

:VariableCharacterisation
type = STRUCTURE

specification = 
EnumPMF[(sorted;0.1)(unsorted;0.9)]

:DataType
type = ArrayList

:VariableReference
referenceName = „luckyNumbers“

:VariableCharacterisation
type = NUMBER_OF_ELEMENTS

specification = 100

(b)

:Parameter
parameterName = „interestingFiles“

:VariableUsage

:VariableCharacterisation
type = NUMBER_OF_ELEMENTS

specification = IntPMF[(10;0.1)
(100;0.3)(1000;0.6)]

:DataType
type = ArrayList

:VariableReference
referenceName = „interestingFiles“

:VariableUsage

:VariableCharacterisation
type = BYTESIZE

specification = IntPMF[(10;0.01)(20;0.05)
(30;0.44)(40;0.5)]

:NamespaceReference
referenceName = „interestingFiles“

:VariableReference
referenceName = „INNER“

(c)

Figure 3.22: Collection Parameter Characterisation Examples

Besides the number of elements, it is sometimes useful to specify the structure of a collection, if it
influences QoS properties of a component service. For example presorted arrays may by sorted quicker
than unsorted arrays or the deletion duration of an element in a tree may depend on the balance of the
tree. In Figure 3.22(b), the structure of the array list “luckyNumbers” has been characterised as sorted
with a probability of 10% and unsorted with a probability of 90%. Additionally, the number of elements
in the array list has been characterised with the constant value of 10.

To ease modelling, collection contain may contain one inner VariableUsage, which shall repre-
sentatively model the inner elements of a collection. In the example in Figure 3.22(c), the collection
“interestingFiles” is characterised with its number of elements. Additionally, the inner parameter usage
representatively characterises a single file within the collection. Here, the files in the collection have a
size in bytes between 10 and 40 bytes.

3.1.5.3 Related Work

Many performance prediction approaches or performance related meta models neglect the influence of
parameters values to the above described properties. The UML SPT profile [29] as well as the CSM
[30] do not include notions of parameters. Methods that build on these modelling approaches such as
CB-SPE [31] thus also cannot express the influence of parameters to QoS properties.

KLAPER [32] allows characterising parameters values, but does not include a formal way of creating
abstractions for parameters, because the kind of parameter specification is left open for developers. This
limits the use of tools evaluating KLAPER instances, because they can not foresee all possible ways
of abstracting parameters. Thus, manual work is required with KLAPER to complete the performance
prediction process if parameters are involved.

The ROBOCOP component model [33] also allows characterising parameter values. However, as
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ROBOCOP aims at embedded systems, it is assumed that the domain for parameter values is very limited.
It is possible to model parameters with constant values only, stochastical characterisation for parameter
abstractions are not in the scope of that work.

The performance prediction approach by Hamlet et. al. [26] models components as functions and
divides their input space into several subdomains. For each subdomain, which can be conceived as a
parameter abstraction, different execution times can be determined. However, subdomains are always
built for the values of parameters in this approach, other attributes of parameters are neglected.
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3.2 Software Architect

3.2.1 Overview

The tasks of the software architect are to retrieve components from existing repositories and connect
them to build an assembly which is an essential part of the complete system. Connections are specified
by using system assembly connectors to connect required roles of components with provided roles of
other components. After connecting all components, the software architect puts the components into a
system and defines the system provided and system required roles as well as the respective delegation
connectors. The definition of a system and its boundaries is comparable to the definition of composite
components. However, the difference is that composite components are built with the aim to use them in
other composite components or assemblies. On contrary, systems are built to interact with other systems
only. An overview of a system and its subconcepts is shown in figure 3.23.

<<System>>

A

<<SystemProvidedRole>> <<SystemRequiredRole>>

B

C

<<AssemblyContext>>

A
D

<<SystemDelegationConnector>>

<<SystemAssemblyConnector>> <<SystemDelegationConnector>>

<<AssemblyContext>>

<<AssemblyContext>>
<<AssemblyContext>>

<<AssemblyContext>>

Figure 3.23: A system and its assembly

Components can only be used in contexts as introduced in section 2.4. Hence, the software architect
is responsible to introduce system assembly contexts in which a component is put. When a component
is put into a context its roles also become part of the context. Such roles which are part of a context can
be connected. For this, a required role in a specific context is connected to a compatible provided role
in an other context. A single component can be put into several different contexts and can be connected
differently in each of them. As mentioned in section 2.4, the introduction of multiple assembly contexts
is important as they capture the different influence of component external calls in different contexts.

The defined assembly model is finally passed on the the system deployer who specifies the allocation
of the components to middle- and hardware environments. The assembly model is the second essential
part of a system and is described in detail in section 3.3.
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3.2.2 Assembly

An assembly is a set of assembly contexts containing component types from several repositories and a
set of system assembly connectors connecting the components in their context. Conceptually, every sys-
tem has exactly one assembly. An assembly is different from a composite component in its visibility for
the system deployer. The inner structure of a composite component is hidden from the system deployer.
Only the outer aspects of the component are visible for the system deployer which is mainly the com-
ponent and its roles. Opposed to this, the system deployer has full access to the assembly contexts and
the system assembly connectors. The rationale behind this difference in modelling is that a composite
component should always look like any other component (besides for the developer of that component).
The decision, whether a component’s inner structure is build from scratch (i.e., as basic component) or
by connecting existing components (i.e., using a composite component), is considered as an implemen-
tation detail. As a consequence the inner structure of any component is only visible to the component
developer. Neither the assembler nor the deployer know about the inner structure. To be consequent this
means that a composite component can not be allocated on more than a single runtime environment as
this would mean that the system deployer has access to the composite components inner structure. This
is different for an assembly. The component and their contexts as well as the system assembly connectors
are visible and can be distributed in arbitrary ways by the system deployer on execution environments.

3.2.3 Assembly Context

As introduced above, the software architect uses assembly contexts to put components into a component
assembly. Contexts support the multiple use of the same component type in several environments in an
assembly.

27

Context A

Component A Component A

Context B

Figure 3.24: Component Assembly Context

The assembly context refers to exactly one component from an arbitrary available repository for which
the context is applied. The component and its provided and required roles are affected by the context in
which it is used. This can be indicated by deriving from the provided and required roles the corresponding
provided and required context roles.

According to the principles of parametric contracts (see section 2.3, context roles represent the con-
textual influenced interfaces of the component in a given assembly context.

At the level of assembly contexts, software architects may also set configuration parameters of the
included component and thus override the default values specified by the component developer.
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3.2.4 System Assembly Connectors

After putting components into assembly contexts (from which provided and required context roles can
be derived) they can be connected by using system assembly connectors. A system assembly connector
connects a required role in of a component in a given assembly context with the provided role of a
component in a different assembly context 2. The meaning of the connector is that any call of the client
component using the required role involved will be routed to the provided role of the server component.

Connectors are important entities when it comes to checking of interoperability classes. The minimum
requirement a connector has to fulfil is that the interface of the provided role is a supertype of the required
role. This automatically implies semantic conformance of the interfaces (compare section 3.1.2).

3.2.5 System

As mentioned in the overview, an assembly forms on of the important aspects of a system. A system
consists of an assembly and an allocation as described in section 3.3.5. The first specifies how the com-
ponents are connected with other components, the latter specifies how the components and connectors
are mapped to hardware and middleware environments. Systems can be seen as special kind of compos-
ite components - with the visibility differences mentioned above and the fact that an allocation is also
provided. Systems are not supposed to be reused as components are. The are assumed to be coupled by
using special techniques for system integration.

3.2.6 Subsystem

A system may contain subsystems. A subsystem shares the same conceptional elements of a composite
component, and thus contains encapsulated components. Compared to composite components, the en-
capsulated components of a subsystem can be allocated on different hardware or middleware resources.
A composite component and all its encapsulated components can only be allocated on the same hardware
or middleware resources.

3.2.7 System Roles

As components, also systems can specify that the offer the functionality of a specific interface or that
they require functionality of a specific interface. Analogous to the component roles, the PCM defines
system provided and system required roles. The semantics corresponds to the semantics of the roles of
a complete component type. The system offers the functionality specified in the provided interfaces if
all requirements of the system are met. If they are not met, only a subset will be offered. The semantics
of the required interfaces is that a system may call other systems using a required role. It can not
call other services than those defined in the system required roles. Using parametric contracts (see
section 2.3) for functional dependencies, the actuall demand or the actual provided functionally can be
derived (which would result in a system context role, but as it can be fully derived, it is not part of the
PCM specifications).

2Using the derived context roles as concept, we can say, a system assembly connector connects a required context role and a
provided context role
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3.2.8 System Delegation Connectors

Systems can have delegation connectors, just like composite components. The delegation connectors are
used to route calls to the system interfaces to the desired destination. As composite component delegation
connectors there are also two types of system delegation connectors: provided and required. Provided
system delegation connectors route calls to system interfaces to components in the assembly which are
responsible to process the requests. System required delegation connectors route calls of components in
the assembly, which are not processed in the current system, to system required roles. Hence, they can
be used to model calls to other systems.
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3.3 System Deployer

3.3.1 Motivation

To execute an application specified by a component assembly, components and connectors have to be al-
located to different hardware and software resources, which provide the required infrastructure. Servers,
clients, or any other kind of systems are set up with the required operating system and middleware. Com-
ponents are installed on the systems and configured so that they can run in this environment. Computers
are connected by networks enabling the communication needed by the components. The whole process
of setting up the infrastructure, allocating components, and configuring the system is handled by the
deployer as introduced in section 2.1.

For QoS analyses, it is required that the deployment of the software architecture is specified in advance,
since it has a major influence on QoS attributes, such as performance and reliability. For example,
the response times of a component’s services will be shorter when it is deployed on a machine with a
3GHz processor instead of a machine with a 1GHz processor. With the specification of the execution
environment with its hardware and software resources and connections, and the component allocation,
several QoS attributes can be predicted. So, deployers are able to try different deployment scenarios to
find the optimal configuration for a software architecture. In many cases, such a procedure can save a lot
of work and cost, since bottlenecks can be discovered early and hardware will not be oversized.

In the context of the PCM, we currently provide a basic model for the description of resource envi-
ronments and allocation of components. In the following, we describe how these concepts can be used
to specify new resource types that form an execution environment. Furthermore, we introduce alloca-
tion contexts that allow us to allocate components to multiple hard and software nodes. For the future,
it is most likely that the model described here will be extended to allow a higher accuracy in terms of
modelling as well as prediction results.

Section 3.3.2 describes the responsibilities and duties of deployers. In section 3.3.3, we describe what
kinds of resource types we model and how they can be used. Section 3.3.4 shows how the PCM in
combination with a fixed set of resource types can model an execution environment. In section 3.3.5,
we describe how components are allocated on resource containers and how they can access the available
resources. Finally, section 3.3.6 sums up open issues and assumptions of our model.

3.3.2 Responsibilities of the Deployer

Mainly, the resource environment is in the deployer’s responsibility. This includes the specification of
resource environments as well as the installation of a component-based application or the setup of a new
environment. Deployers are assumed to be experts in the area of component deployment (allocating
software components to different hard- and software nodes) and the configuration or creation of an en-
vironment, that enables the system to fulfil its extra-functional requirements. Deployers are responsible
for:

• Definition and description of the resource environment. This includes the specification of hard-
and software resources, their properties, and their interconnections.
• Allocation of components to different resources.

Deployers are not only concerned with the specification of the resource environment and component
allocation, but also with the realisation of the actual system setup. However, as these are two different
tasks, they might not be performed by a single person only. For example, an application for the mass
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market might have a set of typical deployment scenarios defined by members of the development team,
but the setup will be accomplished by the customers themselves.

To specify the resource environment in the PCM, deployers use resource containers. A resource con-
tainer represents a part of the real world that can host components, for example an application server or
client computer. It holds a set of different resources, such as processors, hard disks, or thread pools. Each
resource conforms to a certain resource type that discribes a class of resources with common properties.
If a component is allocated on a resource container, it has access to all resources the container provides.

3.3.3 Resource Types

A resource type describes the common properties of a class of resources. For example, a processor type
could be used to describe different CPUs, e.g. with a different clock speed or a different architecture.
The concept of resource types allows a flexible specification of different kinds of resources that might
occur in a real world scenario. Component developers and deployers agree on a common set of resource
types that is specified within a so-called resource repository.

We distinguish passive and processing resources. Passive resources can only be owned by a process
or thread, while processing resources do some work by themselves and offer processing services. A
scheduler might decide, which process is handled next by the processing resource. CPUs and hard disks
are typical processing resources, while connections to a database or a block of memory are passive re-
sources. Communication links are a special kind of processing resource type used to describe connections
between different resource containers.

Resource pools manage a limited set of resources of the same type. Typical examples are database
connection pools and thread pools. A process or thread can fetch one database connection, use it to
read or update some of the database entries and then return it to the pool. If no database connection is
available, the process will block until one is available in the pool.

Semaphores are the most basic kind of passive resources. They can be used for synchronisation and
limiting access to a resource. Basically, a semaphore is an integer value with an acquire (or p) and release
(or v) operation. Intuitively, the value of a semaphore indicates how many instances of a resource are
available. If the semaphore is greater than zero, the acquire operation reduces the semaphore counter by
one and continues the execution. Otherwise, it waits until the counter is greater than zero. The testing and
setting of a semaphore’s value has to be atomic (i.e., it must not be interrupted). The release operation
increases the counter by one, which must be atomic as well, and awakes the waiting threads or processes.

Acquire and release actions are used for semaphores as well as for resource pools and can be directly
modelled in the service effect specification (see section 3.1.4).

For communication resources, we consider any kind of network connection. The rate or throughput
of a connection is specified in megabytes per second. This resource type can be used to model most of
the common networks. For example, a wireless connection between two nodes can be described as an
ethernet connection with a throughput of 11 MB/s.

The resource types described here can be considered as a basic set, which has to be extended and
refined in future. Next, we describe how these resource types can be used to specify an execution envi-
ronment.

3.3.4 Resource Environment

In the PCM, resource environments are described by a set of resource containers and connections between
them. A resource container provides a set of processing and passive resources to the components it hosts.
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It represents a physical entity such as a server, a desktop computer or an element on a higher level like
application servers or web browsers.

<<component>>

WebServiceProvider

<<ResourceContainer>>
Server

<<component>>

WebServiceClient

<<ResourceContainer>>
Client

<<LinkingResource>>

+ processor: cycles/s = 2*10^9 
+ disk: Mb/s = 31

+ processor: cycles/s = 3*10^9 
+ disk: Mb/s = 15.5

Figure 3.25: Simplified example of a resource environment.

Example 3.5 (Resource Environment). Figure 3.25 shows a simplified view on a resource environment.
The depicted system consists of two resource containers, a server and a client, and a linking resource
between them. The figure also shows the allocation of two components, a WebServiceProvider and a
WebServiceClient. Figure 3.25 is a structural view of the resource environment. For each container, a
processor and a disk are specified. Both have different performance values for the resources they provide.
For instance, the processor of the server has a clock frequency of 3 GHz, while the client has a clock
frequency of 2 GHz.

A container also allows for specifying the container’s operating system. If specified, the performance
simulation makes use of more detailed scheduler model. In the example, the server resource container is
specified to run Linux 2.6, whereas the client is specified to be a Windows XP machine. Specifying an
operating system is not necessary. If omitted, a more abstract scheduler model is used.

Processor

Unit: cycles/s                                    

<<ProcessingResourceType>>

CPU

processingRate: 3 * 10^9                        

<<ProcessingResourceSpecification>>

<<ResourceContainer>>
Server

ResourcePool

                                                   

<<PassiveResourceType>>

ThreadPool

capacity: 8                                          

<<PassiveResourceSpecification>>

<<instance>> <<instance>>

Figure 3.26: Specification of Resources of a Container.

Figure 3.26 shows the resource specification in more detail. The server contains a CPU and a ThreadPool.
Both are described by ProcessingResourceSpecifications, which characterise the QoS relevant at-
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tributes of a resource and relate it to a resource type. There is a dual-core CPU with a processing rate of
3GHz and a thread pool that limits the degree of concurrency within the system. The CPU is a processing
resource of the type Processor. The thread pool is a passive resource with a capacity of eight threads.
The thread pool is of the type ResourcePool, which is depicted by an association to the type instance.
For sake of simplicity, we omitted the modelling of any kind of data storage and hard disks at this point.

3.3.5 Allocation Context

<<component>>

WebServiceProvider

<<ResourceContainer>>
Server

<<component>>

WebServiceClient

<<ResourceContainer>>
Client

<<LinkingResource>>

<<component>>

WebServiceClient

<<ResourceContainer>>
Client

<<LinkingResource>>

+ processor: cycles/s = 3*10^9 
+ disk: Mb/s = 15.5

+ processor: cycles/s = 2*10^9 
+ disk: Mb/s = 31

+ processor: cycles/s = 2*10^9 
+ disk: Mb/s = 31

Figure 3.27: Alternative allocation for figure 3.25.

After introducing different resource types and means to specify execution environments, which pro-
vide the infrastructure to an application, components have to be allocated on the available resource
containers. For this purpose, the PCM uses the allocation context. In section 3.2.3, we described how a
component is integrated in a system assembly using assembly contexts. The idea of allocation contexts
is similar. Each component integrated in an assembly might be allocated on multiple resource envi-
ronments. Thus, for each component in an assembly context, there can be multiple allocation contexts
that place the component on different resource containers. For example, a possible alternative of the
allocation in figure 3.25 is shown in figure 3.27.

Figure 3.28 shows a simplified instance of the PCM that realises the allocation shown in figure 3.27.
The allocation context is an association class that links a component to a resource environment. The
allocation context allows to specify the placement of the same component on multiple resource envi-
ronments. In reality, a copy of the component is created for each machine. Furthermore, the allocation
context stores QoS related information that depends on the resources used by a component. For example,
if an internal action of a component uses 5000 cycles on a Processor resource, this can be transformed
to an execution time of 1.6µs for a processor with 3GHz ( 1/(3 ∗ 109s−1) ∗ 5000 ). As the execution
time of internal actions depends on the resources the component is allocated on, these information are
handled by the allocation context.



SYSTEM DEPLOYER 71

Figure 3.28: Allocation of a component on multiple resource environments (simplified).

At the level of allocation contexts, system deployers may also set configuration parameters of the
included component and thus override the default values specified by the component developer or the
values specified by the software architect.

In the PCM, resource environments are described using resource containers holding an arbitrary num-
ber of processing and passive resources. Linking resources connect resource containers with each other
and provide a communication resource for sending data from one container to another. Resource types
can be used to specify which kinds of passive, processing and communication resources exist. Com-
ponents that are integrated into an assembly can be allocated on resource containers using allocation
contexts. These allow to allocate one component on multiple resource containers and store QoS relevant
information, which depends on the container, independent of the component. So, the PCM provides a
complete infrastructure to specify the environment of an application and its allocation. However, there
are a lot of open issues that need to be addressed in the future. We will discuss some of them in the
following.

3.3.6 Open Issues and Future Work

So far, the PCM does not support the modelling of hierarchical resource containers. This is a major
limitation for deployers, since they cannot model different software layers running on the same machine.
For example, virtualisation of operating systems cannot be specified. Furthermore, it is not possible
to describe systems that contain multiple components that are placed on different software layers, e.g.
operating system and application server, but on the same machine.

Another limitation stems from the modelling of linking resources. At the moment, we only allow
a single linking resource between two resource environments with one specification. Thus, scenarios
in which two hardware nodes are connected by multiple links, e.g. LAN and wireless LAN connection
cannot be modelled. Furthermore, it is not possible to explicitly allocate connectors between components
to linking resources. With only one connection between two containers, this can be done automatically
using direct links only. However, if multiple connections are allowed the allocation of connectors must
be modelled explicitly. The same problem arises when indirect communication between containers is
allowed. In this case, the communication path between components is ambiguous even with only one
connection between two containers.

In section 3.3.3, we described how to specify new resource types. Even though this provides a high
flexibility, it requires component developers and deployers to agree on a common set of resource types.
For scientific purposes, this is feasible. However, we need to integrate a standardised set of resources into
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our model so that there are no mismatches between the specifications of different parties. As the mod-
elling of execution environments is not as elaborated as other parts of the PCM, we left the specification
of resources open for the time being. For the future, we plan to fix the available set of resources.

Also, the specifiable properties of the resource types are limited. So, if a new resource type has
additional attributes that have to be specified, this cannot be described. For example, queues could be
introduced as a passive resource. Usually, queues are used for asynchronous communication between
multiple processes and threads. One process puts a message or any data into the queue while another
process reads it. A producer-consumer system is a common example for such a scenario. A special
application for queues can be found in combination with active objects [34]. Instead of calling a method
of an active object directly, the call with its parameters is placed in a message queue. The scheduler of
the active object fetches the messages from the queue and processes them. Queues do not only have a
capacity as all passive resources do, but also require an attribute which specifies the order in which its
items are processed, like LIFO or FIFO. This is not possible so far.
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3.4 Domain Expert

3.4.1 Overview

Business domain experts participate in the development of any larger software system. This role has
special knowledge and experience in the business domain (e.g., automobile, banking, etc.) of the sys-
tem being developed. However, domain experts usually have no or only a limited technical background.
They mainly participate in the development process during feasibility studies and requirements analy-
ses and help in specifying the functionality and business logic of the system. Therefore, they have to
interact closely with the system architects, who have a technical background and are able to tailor their
requirements to a component-based software architecture.

For early QoS analyses, domain experts assist system architects in specifying the user interaction with
the system. As they are familiar with the business domain and the targeted end-users, they should best
be able to specify the anticipated usage scenarios and workloads of the system. The usage specifications
may be based on experiences with similar legacy systems or on market analyses of the business domain.
In the PCM, the usage specification consists of usage models (see Section 3.4.2), which are similar to
UML use cases with attached UML activities. They additionally contain stochastical information (e.g.,
probabilities of choosing a branch in an alternative) and the notion of workload to characterise the number
of users in the system, which is especially relevant for performance predictions. Usage models may be
refined with a parameter model (explained in Section 3.4.2.3) to characterise the data values passed to
component services by users.

3.4.2 Usage Model

An instance of the PCM usage model specifies user interactions with a system. It describes which
services are directly invoked by users in specific use cases and models the possible sequences of calling
them.

3.4.2.1 Example

Purchase Item

(a) Example UML Use Case

Login

Search

Browse

BuyItemLogout

Purchase Item

(b) Example UML Activity

Figure 3.29: Example UML diagrams for using an Online Shop

Example 3.6 (Usage Model). For a first overview, Figure 3.29 shows a UML use case diagram and
corresponding UML acitivity for using an online shop. Users log in to the shop, either search or browse
in the shop’s catalog, then buy items, and finally log out. Figure 3.30 shows the corresponding PCM
usage model instance of this scenario. In this example figure, the concepts were illustrated with UML
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activities, where the stereotypes (denoted by «stereotype») refer to classes in the PCM. This simple
usage model instance serves as a running example for the rest of this section.

<<ScenarioBehaviour>>
<<LoopAction>>

<<ScenarioBehaviour>>

<<SystemCallAction>>
Login

<<ScenarioBehaviour>>

<<ClosedWorkload>>
population=100

<<ThinkTime>>
specification = „5" 

<<SystemCallAction>>
Search

<<SystemCallAction>>
BuyItem

<<StopAction>>

<<SystemCallAction>>
Logout

<<ScenarioBehaviour>>

<<SystemCallAction>>
Browse

<<StartAction>>

<<IterationCount>>
specification = „3"

<<UsageScenario>>

<<BranchAction>>

<<BranchTransition>>

<<BranchTransition>>
branchProbability = 0.4

branchProbability = 0.6

<<UsageModel>>

Figure 3.30: Example Usage Model for an Online Shop

An usage scenario consists of i) a workload to model the frequency of user interactions and ii) a
scenario behaviour to model the steps of service invocations by users. In this example, the workload is
a closed workload (upper right corner of Figure 3.30) and specifies that 100 users (population) execute
the scenario behaviour. Each user executes the actions specified in the behaviour from the start action to
the end action. After reaching the end action, the user reenters the behaviour at the start action after 5
seconds (think time). The number of users in the system is fixed to 100 in this scenario.

The actions inside the behaviour either model flow constructs (start, stop, branch, loop) or user invo-
cations of services available in system provided roles (Login, Search, Browse, BuyItem, Logout) (also
see Section 3.2.7). Like in the UML diagrams before, users first log in to the online shop and then either
search directly for an item via a search interface or browse the shop’s catalog to find an item to buy. This
alternative is modelled with a branch action and the probabilities of search and browsing are specified
as 40% and 60% respectively. Browsing the catalog is modelled as a loop with three iterations, as it is
assumed that users need three clicks to find the item they want to buy. After browsing or searching is
finished, the user continues with buying the selected item, and finally the logging out from the shop.

Note, that usage models are completely decoupled from the inner contents of a system (see Sec-
tion 3.2.5), which consists of an assembly (see Section 3.2.2) and a connected resource environment (see
Section 3.3.4). The usage model only refers to services of system provided roles. It regards the com-
ponent architecture (i.e., the assembly) as well as used resources (i.e., hardware devices such as CPUs
and harddisks or software entities such as threads, semaphores) as hidden in the system. Thus, the usage
model only captures information that is available to domain experts and can be changed by them. Re-
source environment and component architecture may be changed independently from the usage model
by system architects, if the system provided roles remain unchanged.
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3.4.2.2 Structure

The meta model for usage modelling in the PCM is described with more detail in the following (see
Figure 3.31). A usage model consists of a number of usage scenarios. Each usage scenario is intended
to model a use case of the system and the frequency of executing it. Thus, a usage scenario contains a
Workload to model execution frequency and a ScenarioBehaviour to model a use case.

UsageModel

UsageScenario Workload

OpenWorkload

ClosedWorkload

population : EInt

ThinkTime

InterArrivalTimeScenarioBehaviour

RandomVariable

specification : String

1

*

1 1
1

1

1 1

1 1

Figure 3.31: Usage Model: Scenario and Workload

Modelling workloads in the PCM is aligned with performance models such as queueing networks [35]
or stochastic process algebras [36], the UML SPT profile [29] and MARTE [37]. Therefore, open and
closed workloads can be specified. An open workload models an unbounded (thus open) number of users
entering the system with a specific inter-arrival time as a random variable (e.g., a new customer arrives
each 0.5 seconds) and leaving the system after executing their scenario. A closed workload models a
bounded (thus closed) number of users entering the system, executing their scenario, and then re-entering
the system after a given think time, which can be specified as a random variable (see Section 2.5).

Modelling scenario behaviours in the PCM (Figure 3.32) is similar to modelling resource demanding
behaviours in SEFFs (see Section 3.1.4). However, SEFFs contain notions of resource usage, while the
language for usage scenarios is reduced to concepts familiar to domain experts, and does not refer to
resources.
ScenarioBehaviours contain a number of user actions. Within a scenario behaviour, the flow of

actions can be described as follows: Each AbstractUserActions references at most one predecessor
and one successor. StartActions initiate a scenario behaviour and contain only a successor, while
StopActions end a scenario behaviour and contain only a predecessor. Notice, that the start and stop
actions in the example above (Figure 3.30) follow this pattern.

Loops can be modelled to describe user actions that are repeated multiple times (e.g., searching for
an item in a online store by repeatedly entering search terms, or repeatedly checking the latest status
of an online auction). Loops over user service invocations are modelled with LoopActions, which are
attributed with the number of iterations and contain inner ScenarioBehaviours to model loop bodies.
These loop bodies may consist of multiple actions or even nested loops themselves. In the example
(Figure 3.30), the browse action is called within a loop three times. It is additionally possible to specify
the number of loop iterations with a probabilty distribution instead of a constant value to allow more
fine-grained modelling (see Section 2.5).

Notice that the chain of user actions in a scenario behaviour must not contain cycles to model loops,
i.e., an action referencing another action as its successor and predecessor. Instead, loops always have to
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ScenarioBehaviour

AbstractUserActionBranch

BranchTransition

branchProbability : EDouble

Loop

LoopIterations
Start

Stop

EntryLevelSystemCall

VariableUsage
RandomVariable

specification : String

1

*

1 1

1

1

0..1

+ predecessor

0..1
+ successor

1

*

1

*

1

*

Figure 3.32: Usage Model: Scenario Behaviour

be modelled explicitly with loop actions. This explicit modelling eases the later analyses, as it arranges
actions hierarchically in a tree structure, which can be analysed by standard tree traversal algorithms.

Most often, users have multiple choices to continue their interaction with the system. For such cases,
the usage model offers branch actions, which are able to split the user control flow with an XOR-semantic
and allow different successors to a single user action. A probability of executing each branch transition
can be specified. In the example (Figure 3.30), users first log in to the system and then have the choice
to either search the shop with a probability of 40% or browse in the shop’s catalog with a probability
of 60%. BranchTransitions contain inner ScenarioBehaviours to model the content of a branch.
With this kind of modelling, additional merge actions for reconnecting two branches are not needed,
as the control flow continues with the successor of the branch actions once the end action of the the
branched behaviour is reached. Forks of user behaviour (i.e., splitting the flow with an AND-semantic)
are not allowed so far, as it is assumed that a single user only executes the services of the same system
subsequently but not concurrently.

Besides these control flow constructs, actual service invocations to the architecture are modelled by
EntryLevelSystemCalls. They refer to services in system provided roles (see Section 3.2.7), which
are connected to component services directly visible to the users. Inner component services, which are
only called by other components cannot be referenced from the usage model.

3.4.2.3 Parametrisation

In addition to modelling the sequence of user actions, the domain experts also need to provide the values
for performance-relevant parameters of the system. Component developers may have specified their
component’s service effect specification depending on external parameters (cf. Section 3.1.5). The
domain experts need to specify the input parameter values that are used by users of the system (e.g.
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the distribution of number of items bough in an online shop), and they need to specify domain-specific
configuration parameters (e.g. the number of articles available in the database of this online shop).

Two short examples for specifying input parameters are shown in Figure 3.33. These examples extend
certain actions from the usage model example in Figure 3.30 with parameter characterisations.

<<ScenarioBehaviour>>

<<SystemCallAction>>
Search

<<Parameter>>
parameterName = 

„searchTerm“

<<VariableUsage>>
<<VariableCharacterisation>>

type = VALUE
specification = „EnumPMF[(item1-10; 0.2) 

(item11-20; 0.4)(item21-30; 0.3)(item31-40; 0.1)]“

(a)

<<SystemCallAction>>
BuyItems

<<SystemCallAction>>
Logout

<<Parameter>>
parameterName = 

„listOfItems“

<<VariableUsage>>
<<VariableCharacterisation>>

type=NUMBER_OF_ELEMENTS
specification= „IntPMF[(1; 0.4)(2; 0.5)(3; 0.1]“

(b)

Figure 3.33: Parameter Characterisation Examples

Example 3.7. In Figure 3.33(a), a parameter ‘searchTerm’ has been introduced to the ‘Search’ action.
The Parameter class of the PCM enables specifying a name and a data type (not shown here) for a
parameter. Thus, it includes only information about the formal parameter. The actual parameter, i.e., the
value a parameter takes when the service is actually called, can be characterised with a VariableUsage.
In this case, the parameter is a string, which is the name of the item to be searched for. The database
is assumed to contain 40 items. The domain expert has characterised the value of the input parameter
and has specified a probability distribution for the search terms users pass to the service. Therefore, the
domain expert has divided the input domain of the service into four subdomains (item1-10, item11-20,
item21-30, item31-40) to reduce the modelling effort, and has provided probabilities for each of these
subdomains. If the behaviour of the component service changes depending on which item is searched for
(e.g., because of calling different databases), this can be included in the performance prediction, because
the parameter has been characterised.

Example 3.8. In Figure 3.33(b), an array ‘listOfItems’ is passed to the ‘BuyItems’ action. The domain
expert has not characterised the value of this array, but just the number of elements it contains. It is a
suitable abstraction of the parameter in this case, because the value of the array is not relevant in this
example. The service ‘Buy Items’ calls required services for each item in the array (not shown here
because this is part of the service’s SEFF and not the usage model), so that the number of elements in the
array is sufficient for the performance predictions, as it is directly related to the number of loop iterations
in the SEFF of this service. The number of elements is specified as a probability distribution, so that the
loop is iterated with the same probability distribution.

Configuration parameters are specified in the usage model as UserData. They refer to an assembly
context and contain a VariableUsage that overwrites configuration parameters with the same name that
have been specified by component developers, software architects and system deployers.
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3.4.2.4 Related Work

The PCM usage model has been designed based on meta models such as the performance domain model
of the UML SPT profile [29], the Core Scenario Model (CSM) [30], KLAPER [32] and UML MARTE
[37]. It is furthermore related to usage models used in statistical testing [38]. Although the concepts
included in the PCM usage model are quite similar to the modelling capabilities of the UML SPT profile,
there are some subtle differences:

• The usage model is aligned with the role of the domain expert, and uses only concepts known to
this role. It is a domain specific language, whereas the UML SPT performance domain model is
a general purpose language that includes information, which is usually spread over multiple de-
veloper roles such as the component assembler and the system deployer, so that a domain expert
without a technical background could not specify an instance of it. Nevertheless, domain experts
should be able to create PCM usage models with appropriate tools independently from other de-
veloper roles, because such models only contain concepts known to them.
• The number of loop iterations is not bound to a constant value, but can be specified as a random

variable.
• The control flow constructs are arranged in a hierarchical fashion to enable easy analyses.
• Users are restricted to non-concurrent behaviour, as it is assumed, that users only execute the

services of a system one at a time.
• System service invocations can be enhanced with characterisations of parameters values, as de-

scribed in Section 3.4.2.3.
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3.5 QoS Analyst

QoS analysts collect and integrate information from the other roles, extract QoS information from the
requirements (e.g., maximal response times for use cases), and perform QoS analyses by using mathe-
matical models or simulation. Furthermore, QoS analysts estimate missing values that are not provided
by the other roles. For example, in case of an incomplete component specification, the resource demand
of this component has to be estimated. Finally, they interpret the results of the QoS analyses and devise
design alternatives, or they assist the software architects to do so. The roles of QoS analyst and software
architect are also suitable to be incorporated by a single person.

The PCM supports QoS analysts and software archietcts to find better design alternatives by the auto-
mated architecture improvement approach PerOpteryx.

3.5.1 Automated Improvement of Architectures with PerOpteryx

Due to the large design space for non-trivial systems and many degrees of freedom, improving the ar-
chitecture manually is an error-prone and tedious task. Isolated improvements of a single non-functional
property, such as performance, can result in unexpected degradation for other quality properties, such
as reliability, which are hard to determine and quantify by software architects manually. Also the im-
provement of quality properties might incur high cost. Thus, software architects and QoS analysts have
to consider trade-offs between conflicting quality properties when designing a system.

Due to the trade-offs, it is difficult to specify non-functional requirements in advance. For example,
even though it seems desirable at first to achieve a mean response time of three seconds for web-based
system, this requirements may be sacrificed if the cost to achieve 3.3 seconds are considerably lower
(for example because one server less is needed). Thus, the goal of an automated improvement approach
cannot just be to find design alternatives that satisfy requirements, but it needs to improve several quality
properties at once and provide the optimal trade-offs to the QoS analyst and software architect for deci-
sion making. Of course, if technical restrictions of the domain imply strict non-functional requirements,
e.g. that airbags must open within fractions a of second, these are not subject to trade-offs.

While a completely synthesised design is certainly infeasible, many degrees of freedom remain in the
software architecture after functional design and influence quality properties. For example, the compo-
nent deployment, hardware sizing and possibly further configuration options can be adjusted. PerOpteryx
manipulates instances of the PCM along these degrees of freedom and evaluates the resulting candidates
for performance, reliability and cost. It uses the multi-objective evolutionary algorithm NSGA-II [39]
internally.

With this approach, software architects do not have to search for alternative solutions manually. In-
stead, they can focus on good solutions automatically determined by our approach for trade-off decisions
between multiple quality criteria. As the approach works on the architectural model level (as opposed to
the performance model), architects can directly understand and use the automatically found solutions.

More details on PerOpteryx can be found in [40] and at 3.

3.5.1.1 Example Results

Example results of the automated improvements are shown in the following. The so-called business
reporting system (BRS) has been optimised for performance, reliability and cost. The example system is
described in detail in [40].

3https://sdqweb.ipd.kit.edu/wiki/PerOpteryx
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Figure 3.34: BRS system: 3D-Pareto front Performance vs. Reliability vs. Cost

The degrees of freedom that PerOpteryx explored were component selection, server processing rates,
and component allocation:

Component selection is possible in this system as it contains several replaceable standard components.
The Web Server as well as the Database can be realised using third party components. The software
architect can choose among multiple functional equivalent components with different non-functional
properties and cost. For the BRS, we have modelled two additional web servers and one additional
database which have different performance and reliability properties, but also higher or lower cost than
the components in the initial system.

Server processing rates can be adjusted at multiple locations in the model as it contains 8 servers.
It is expected that the overall performance of the system increases most significantly when using faster
processing rates for highly utilised components. We assume here that the bounds for the processing
rate are 1/2 of the initial rate (lower bound) and 2 times the initial rate (upper bound). Currently, the
processing rate is modelled as a continuous variable.

Component allocation can be crucial for the non-functional properties and cost of the system. It could
be possible to allocate multiple components on the same server without affecting the performance or
reliability significantly. This could allow to remove some servers to save cost.

Figure 3.34 visualizes the three dimensional Pareto front for performance, reliability, and cost. Fig-
ure 3.35(a) shows the response time in seconds over the cost per candidate, while Figure 3.35(b) shows
the probability of failure on demand over the cost per candidate. The software architect can use these
results to make an informed trade-off decision among the different quality criteria.

In Figures 3.35(a) to 3.35(b), the 58 Pareto-optimal points are highlighted as thick squared marks.
These points are not located at the borders of the candidate sets, as it would be the case for a two-
dimensional set. Pareto-optimal points located within the set are superior to others in the third quality
criterion not shown in the respective diagram (i.e., reliability in the first case and performance in the
second case). For example, the highlighted candidate in Figure 3.35(a) has a higher response time and
higher cost than some other candidates, but its reliability is superior to these other points.

We describe one of the found Pareto-optimal solutions in more detail. It is highlighted in Fig. 3.35(a)
and Fig. 3.35(b) using circles. The response time of this solution is 1.34 seconds (initial candidate: 2.2
seconds), its POFOD is 0.0526 percent (initial candidate: 0.0605), and its cost are 69.83 units (initial
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Figure 3.35: BRS system results

candidate: 98 units). Therefore it is superior to the initial candidate in all quality criteria.

3.5.1.2 Related Work

Rule-based approaches [41, 42, 43, 44, 45] translate known patterns, such as bottleneck removal or
design diversity, into processable rules for manipulating architectural models. Applying these possibly
contradicting rules can however easily lead to solutions locally but not globally optimal for a single
quality property. Metaheuristic approaches [46, 47, 48, 49] encode the architecture model improvement
as an optimisation problem and apply evolutionary algorithms, hill climbing, or simulated annealing [50].
Existing approaches in this direction either severely restrict expressiveness and degrees of freedom of the
architectural model or are time-consuming, because of undirected search. See [40] for a more detailed
discussion.

3.5.2 Future Work

We have planned several metamodel extensions to support QoS analysts. They should support adding re-
quired QoS values to model entities and also store the result of QoS predictions attached to corresponding
model constructs. For example, the response time of an use case can be attached to a UsageScenario
or the throughput of a resource to a ProcessingResourceSpecification. However, these modelling
constructs have not been finalised and are subject to future work. So far, the QoS analyst is not explicitly
supported by the PCM.
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4.1 Package identifier

4.1.1 Package Overview

Provides a package for uniquely identifiable elements

4.1.2 Detailed Class Documentation

4.1.2.1 Class Identifier

Overview Inherit from this entity to make an element uniquely identifiable. Identifiers are not fixed
to one realization. GUIDs are recommend. GUIDs are described in their own model. See GUIDModel
(GUID.emx). Identifier implementations can be found in external projects only.

Class Properties Class Identifier has the following properties:

id : EString
Identifier attribute, in the default PCM implementation, this field is filled with a randomly generated

UUID value

Constraints

idHasToBeUnique:

self.allInstances()->isUnique(p | p.id)

4.2 Package pcm

4.2.1 Package Overview

This package is the root package of all packages of the Palladio Component Model (PCM).
Note: This package does not contain any classes. Please see the contained sub-packages for classes.

4.3 Package pcm::allocation

4.3.1 Package Overview

All PCM entities related to model allocation

4.3.2 Package Diagrams

Figure Allocation Description Provides an overview on the relation between AllocationContext, re-
sources and allocated entities (see Figure 4.1)
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Figure 4.1: Allocation

4.3.3 Detailed Class Documentation

4.3.3.1 Class Allocation

Overview The allocation repository holding all available allocation contexts of a model.

Class Properties Class Allocation has the following properties:

allocationContexts_Allocation : AllocationContext [0..∗]

system_Allocation : System

targetResourceEnvironment_Allocation : ResourceEnvironment [0..1]

Constraints

EachAssemblyContextWithinSystemHasToBeAllocatedExactlyOnce:

Each Assembly of BasicComponents and CompositeComponents used in the referenced System↘
→ must be allocated.

Things are complicated by the introduction of SubSystems. Here, the Assembly of the ↘

→SubSystem itself does not have to be allocated. If it is not allocated, all ↘

→BasicComponents and CompositeComponents contained in this SubSystem (also ↘

→transitively over several nested and not-allocated SubSystems) need to be ↘

→allocated.

The constraint is realised wth a closure over the AssemblyContext contained in a ↘

→ComposedStructure.
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Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.3.3.2 Class AllocationContext

Overview Mapping between AssemblyContext and Resource. Sometimes referred to as "Deploy-
ment".

Class Properties Class AllocationContext has the following properties:

allocation_AllocationContext : Allocation

assemblyContext_AllocationContext : AssemblyContext

resourceContainer_AllocationContext : ResourceContainer

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.4 Package pcm::core

4.4.1 Package Overview

This package contains the PCM Core meta-classes used throughout the PCM: entities carrying a globally
unique ID (GUID), an abstract model for entities which provide and require interfaces, and an abstract
model to describe entities composed from other entities.

4.4.2 Package Diagrams

Figure Entities Description Each entity is an Identifier and a NamedElement (see Figure 4.10)

Figure 4.2: Entities
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Figure 4.3: ProvidingRequiringEntities

Figure ProvidingRequiringEntities Description Overview on the core interface providing and re-
quiring entities and their relation to ComposedStructure (see Figure 4.11)

Figure Composition Description The central element of this diagram is ComposedStructure. It holds
n inner AssemblyContexts and n inner AssemblyConnectors. (see Figure 4.7)

Figure AssemblyConnector Description Overview on AssemblyConnector and AssemblyContext.
An AssemblyConnector is a bidirectional link of two assembly contexts. (see Figure 4.8)

Figure Delegation Description <p> (see Figure 4.9)

4.4.3 Detailed Class Documentation

4.4.3.1 Class PCMRandomVariable

Overview Random variables are used to describe user and component behaviour. They allow not
only constant values (e.g., 3 loop iterations), but also probabilistic values (e.g., 2 loop iterations with
a probability of 0.4 and 3 loop iterations with a probability of 0.6). They are well-suited for capturing
uncertainty when modelling systems during early development stages. Examples where developers may
use random variables are: - Characterisations of Input Parameters: Describes the QoS relevant charac-
teristics of parameters of component services. - Inter-Arrival Time: Describes how much time passes
between the arrival of two subsequent users. - Think Time: Describes how much time passes between
the execution of a user scenario and the start of the next execution of this scenario. - Loop Iteration
Count: Describes the number of repetitions of a loop. - Guarded Branch Transitions: Used to determine
whether to conditionally execute a certain behaviour.
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Figure 4.4: Composition

Figure 4.5: AssemblyConnector

Figure 4.6: Delegation
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PCMRandomVariable extends RandomVariable in a way, that the only type of variables available in the
PCMRandomVariable are references to variable characterisations like a.NUMBER_OF_ELEMENTS.
The corresponding editors ensure that the user can enter only valid expressions.

Class Properties Class PCMRandomVariable has the following properties:

closedWorkload_PCMRandomVariable : ClosedWorkload [0..1]

communicationLinkResourceSpecifcation_throughput_PCMRandomVariable : CommunicationLinkResource-
Specification [0..1]

communicationLinkResourceSpecification_latency_PCMRandomVariable : CommunicationLinkResource-
Specification [0..1]

delay_TimeSpecification : Delay [0..1]

guardedBranchTransition_PCMRandomVariable : GuardedBranchTransition [0..1]

loopAction_PCMRandomVariable : LoopAction [0..1]

loop_LoopIteration : Loop [0..1]

openWorkload_PCMRandomVariable : OpenWorkload [0..1]

parametricResourceDemand_PCMRandomVariable : ParametricResourceDemand [0..1]

passiveResource_capacity_PCMRandomVariable : PassiveResource [0..1]

processingResourceSpecification_processingRate_PCMRandomVariable : ProcessingResourceSpecifi-
cation [0..1]

specifiedQoSAnnotation_SpecifiedExecutionTime : SpecifiedQoSAnnotation [0..1]

variableCharacterisation_Specification : VariableCharacterisation [0..1]

Constraints

SpecificationMustNotBeNULL:

not self.specification.oclIsUndefined() and self.specification <> ’’
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4.5 Package pcm::core::composition

4.5.1 Package Overview

A package holding all composable entities

4.5.2 Package Diagrams

Figure Composition Description The central element of this diagram is ComposedStructure. It holds
n inner AssemblyContexts and n inner AssemblyConnectors. (see Figure 4.7)

Figure 4.7: Composition

Figure AssemblyConnector Description Overview on AssemblyConnector and AssemblyContext.
An AssemblyConnector is a bidirectional link of two assembly contexts. (see Figure 4.8)

Figure 4.8: AssemblyConnector
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Figure Delegation Description <p> (see Figure 4.9)

Figure 4.9: Delegation

4.5.3 Detailed Class Documentation

4.5.3.1 Class AssemblyConnector

Overview An AssemblyConnector is a bidirectional link of two assembly contexts. Intuitively, an As-
semblyConnector connects a provided and a required interface of two different components. Assembly-
Context must refer to the tuple (Role, AssemblyContext) in order to uniquely identify which component
roles communicate with each other.

Class Properties Class AssemblyConnector has the following properties:

parentStructure_AssemblyConnector : ComposedStructure

providedRole_AssemblyConnector : ProvidedRole

providingAssemblyContext_AssemblyConnector : AssemblyContext

requiredRole_AssemblyConnector : RequiredRole

requiringAssemblyContext_AssemblyConnector : AssemblyContext

Constraints

AssemblyConnectorsReferencedProvidedRolesAndChildContextMustMatch:

An AssemblyConnector references an assembly context and a provided role on the ↘

→provider side. This constraint ensures that the referenced provided role is really↘
→ available in the referenced assembly context.
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AssemblyConnectorsReferencedRequiredRoleAndChildContextMustMatch:

An AssemblyConnector references an assembly context and a required role on the client ↘

→side. This constraint ensures that the referenced required role is really ↘

→available in the referenced assembly context.

AssemblyConnectorsReferencedInterfacesMustMatch:

The Interfaces references by this Connector must match. This means that either
1) the referenced providedRole and the referenced requiredRole refer to the same ↘

→Interface (first part of the expression) or 2) the Interface A referenced by the ↘

→providedRole is a subtype of the Interface B referenced by the requiredRole as ↘

→transitively defined by the parentInterface__Interface property. That means that ↘

→either Interface A is the parentInterface__Interface of Interface B, or there is a↘
→ set of Interfaces

Parent Classes

• Connector (see section 4.6.2.1 on page 95) ,
• Entity (see section 4.7.3.2 on page 97)

4.5.3.2 Class AssemblyContext

Overview An AssemblyContext uniquely identifies an assembly instance of an AssemblyContext.

Class Properties Class AssemblyContext has the following properties:

configParameterUsages_AssemblyContext : SetVariable [0..∗]

encapsulatedComponent_AssemblyContext : RepositoryComponent

parentStructure_AssemblyContext : ComposedStructure

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.5.3.3 Class ComposedStructure

Overview

Class Properties Class ComposedStructure has the following properties:

assemblyConnectors_ComposedStructure : AssemblyConnector [0..∗]
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assemblyContexts_ComposedStructure : AssemblyContext [0..∗]

providedDelegationConnectors_ComposedStructure : ProvidedDelegationConnector [0..∗]

requiredDelegationConnectors_ComposedStructure : RequiredDelegationConnector [0..∗]

resourceRequiredDelegationConnectors_ComposedStructure : ResourceRequiredDelegationConnector
[0..∗]

Constraints

MultipleConnectorsConstraint:

self.providedDelegationConnectors_ComposedStructure->forAll( c1, c2 | c1 <> c2 implies↘
→ c1.outerProvidedRole_ProvidedDelegationConnector <> c2.↘
→outerProvidedRole_ProvidedDelegationConnector)

MultipleConnectorConstraintForAssembyConnectors:

self.assemblyConnectors_ComposedStructure->forAll( c1, c2 | c1 <> c2 implies c1.↘
→requiredRole_AssemblyConnector <> c2.requiredRole_AssemblyConnector)

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.5.3.4 Class ProvidedDelegationConnector

Overview A ProvidedDelegationConnector delegates incoming calls of provided roles to inner pro-
vided roles of encapsulated assembly contexts.

Class Properties Class ProvidedDelegationConnector has the following properties:

assemblyContext_ProvidedDelegationConnector : AssemblyContext

innerProvidedRole_ProvidedDelegationConnector : ProvidedRole

outerProvidedRole_ProvidedDelegationConnector : ProvidedRole

parentStructure_ProvidedDelegationConnector : ComposedStructure
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Constraints

ProvidedDelegationConnector and the connected Component must be part of the same composite struc-
ture:

self.parentStructure_ProvidedDelegationConnector = self.↘
→assemblyContext_ProvidedDelegationConnector.parentStructure_AssemblyContext

ComponentOfAssemblyContextAndInnerRoleProvidingComponentNeedToBeTheSame:

self.innerProvidedRole_ProvidedDelegationConnector.providingEntity_ProvidedRole = self↘
→.assemblyContext_ProvidedDelegationConnector.encapsulatedComponent_AssemblyContext

Parent Classes

• DelegationConnector (see section 4.13.3.9 on page 119)

4.5.3.5 Class RequiredDelegationConnector

Overview A RequiredDelegationConnector delegates required roles of encapsulated assembly contexts
to outer required roles .

Class Properties Class RequiredDelegationConnector has the following properties:

assemblyContext_RequiredDelegationConnector : AssemblyContext

innerRequiredRole_RequiredDelegationConnector : RequiredRole

outerRequiredRole_RequiredDelegationConnector : RequiredRole

parentStructure_RequiredDelegationConnector : ComposedStructure

Constraints

RequiredDelegationConnector and the connected Component must be part of the same composite struc-
ture:

self.parentStructure_RequiredDelegationConnector = self.↘
→assemblyContext_RequiredDelegationConnector.parentStructure_AssemblyContext
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ComponentOfAssemblyContextAndInnerRoleRequiringComponentNeedToBeTheSame:

self.innerRequiredRole_RequiredDelegationConnector.requiringEntity_RequiredRole = self↘
→.assemblyContext_RequiredDelegationConnector.encapsulatedComponent_AssemblyContext

RequiringEntityOfOuterRequiredRoleMustBeTheSameAsTheParentOfTheRequiredDelegationConnector:

self.outerRequiredRole_RequiredDelegationConnector.requiringEntity_RequiredRole=self.↘
→parentStructure_RequiredDelegationConnector

Parent Classes

• DelegationConnector (see section 4.13.3.9 on page 119)

4.5.3.6 Class ResourceRequiredDelegationConnector

Overview

Class Properties Class ResourceRequiredDelegationConnector has the following properties:

innerResourceRequiredRole_ResourceRequiredDelegationConnector : ResourceRequiredRole

outerResourceRequiredRole_ResourceRequiredDelegationConnector : ResourceRequiredRole

parentStructure_ResourceRequiredDelegationConnector : ComposedStructure

4.6 Package pcm::core::connectors

4.6.1 Package Overview

Package containing the abstract connector entity

4.6.2 Detailed Class Documentation

4.6.2.1 Class Connector

Overview Abstract superclass for all connectors.

Parent Classes

• Entity (see section 4.7.3.2 on page 97)
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4.7 Package pcm::core::entity

4.7.1 Package Overview

This set of abstract meta-classes gives a conceptual view on interfaces, entities and their relationships:
Two roles can be identified a software entity can take relative to an interface. Any entity can claim to
implement the functionality specified in an interface as well as to request that functionality.

Base of the inheritance hierarchy are Identifier and NamedElement, both of which Entity and all
inheriting classes are derived from.

The relationship of Entities and Interfaces is described with the three meta classes InterfaceProvidin-
gEntity, InterfaceRequiringEntity, and InterfaceProvidingRequiringEntity. The abstract meta-class In-
terfaceProvidingEntity is inherited by all entities which can potentially offer interface implementations.
Similarly, the meta-class InterfaceRequiringEntity is inherited by all entities which are allowed to request
functionality offer by entities providing this functionality. InterfaceProvidingRequiringEntity inherits
from both of them and thus combines their properties.

4.7.2 Package Diagrams

Figure Entities Description Each entity is an Identifier and a NamedElement (see Figure 4.10)

Figure 4.10: Entities

Figure ProvidingRequiringEntities Description Overview on the core interface providing and re-
quiring entities and their relation to ComposedStructure (see Figure 4.11)

4.7.3 Detailed Class Documentation

4.7.3.1 Class ComposedProvidingRequiringEntity

Overview The ComposedProvidingRequiringEntity combines the properties of an InterfaceProvidin-
gRequiringEntity and a ComposedStructure. It is inherited by all classes that, on the one hand, claim to
implement the functionality specified in an interface as well as to request that functionality, and, on the
other hand, are composed out of some inner entities.

Valid ComposedProvidingRequiringEntities need to have their ProvidedRoles bound to ProvidedRoles
of the contained entities.

Prominent examples are System, SubSystem, and CompositeComponents
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Figure 4.11: ProvidingRequiringEntities

Constraints

ProvidedRolesMustBeBound:

This constraint ensures that all outer provided roles of a system have a provided ↘

→delegation conector that binds them to something. It does not check whether the ↘

→binding is correct (inner role not null and matching interfaces).

Parent Classes

• ComposedStructure (see section 4.5.3.3 on page 92) ,
• InterfaceProvidingRequiringEntity (see section 4.7.3.4 on page 98)

4.7.3.2 Class Entity

Overview Entity is a meta class high up the PCM meta class hierarchy and represents all entities of the
PCM that have both an id (see meta class Identifier) and a name (see meta class NamedEntity).

Parent Classes

• NamedElement (see section 4.7.3.6 on page 99)
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4.7.3.3 Class InterfaceProvidingEntity

Overview All Entities that provide an Interface are represented by this class. Prominent inheriting
classes are all component types, for example.

Two roles can be identified a software entity can take relative to an interface. Any entity can claim
to implement the functionality specified in an interface as well as to request that functionality. This is
reflected in the Palladio Component Model by a set of abstract meta-classes giving a conceptual view on
interfaces, entities and their relationships. The abstract meta-class InterfaceProvidingEntity is inherited
by all entities which can potentially offer interface implementations. Similarly, the meta-class Interfac-
eRequiringEntity is inherited by all entities which are allowed to request functionality offered by entities
providing this functionality.

See also: Interface, ProvidedRole

Class Properties Class InterfaceProvidingEntity has the following properties:

providedRoles_InterfaceProvidingEntity : ProvidedRole [0..∗]

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.7.3.4 Class InterfaceProvidingRequiringEntity

Overview This meta-class is inherited by classes that both require and provide an Interface. It thus
combines the properties of InterfaceProvidingEntity and InterfaceRequiringEntity. Prominent inheriting
classes are all component types, for example.

See also: Interface, ProvidedRole, RequiredRole, InterfaceProvidingEntity, InterfaceRequiringEntity

Parent Classes

• InterfaceProvidingEntity (see section 4.7.3.3 on page 98) ,
• InterfaceRequiringEntity (see section 4.7.3.5 on page 98) ,
• ResourceInterfaceRequiringEntity (see section 4.7.3.7 on page 99)

4.7.3.5 Class InterfaceRequiringEntity

Overview All Entities that require an Interface are represented by this class. Prominent inheriting
classes are all component types, for example.

Two roles can be identified a software entity can take relative to an interface. Any entity can claim
to implement the functionality specified in an interface as well as to request that functionality. This is
reflected in the Palladio Component Model by a set of abstract meta-classes giving a conceptual view on
interfaces, entities and their relationships. The abstract meta-class InterfaceRequiringEntity is inherited
by all entities which are allowed to request functionality offered by entities providing this functionality.
Similarly, the meta-classInterfaceProvidingEntity is inherited by all entities which can potentially offer
interface implementations.

See also: Interface, RequiredRole
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Class Properties Class InterfaceRequiringEntity has the following properties:

requiredRoles_InterfaceRequiringEntity : RequiredRole [0..∗]

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.7.3.6 Class NamedElement

Overview The NamedElement meta class is inherited by all PCM classes whose instances bear a name.
Thus, the semantic of "bearing a name" is given to all inheriting classes, so that the name can be used in
visualisations, for example.

Class Properties Class NamedElement has the following properties:

entityName : String

4.7.3.7 Class ResourceInterfaceRequiringEntity

Overview

Class Properties Class ResourceInterfaceRequiringEntity has the following properties:

resourceRequiredRoles_ResourceInterfaceRequiringEntity : ResourceRequiredRole [0..∗]

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.8 Package pcm::parameter

4.8.1 Package Overview

The parameter package allows to model data dependent performance characteristics of software systems.
It is mainly used to specify performance dependencies on input and output parameters of single service
calls. It can also be used to describe dependencies on the state of components by the use of component
parameters. The latter describe stochastically a component state which does not change over time.

Parameters are described by the use of variable usages which on the one side contain a performance
abstraction of the variable’s value and on the other side the name of the variable for refering to the
variable. Characterisations available include Structure (information on the data’s internal structure like
"sorted" or "unsorted" for an array), Number of Elements (size of a collection), Value (the actuall variable
value), Bytesize (the variable’s memory footprint), or type (the type of the variable in polymorphic cases).

Example for variable usages may be a.NUMBER_OF_ELEMENTS = 10 (array "a" contains 10 ele-
ments), tree.STRUCTURE = "balanced" (tree "tree" is a balanced tree), and so on.
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4.8.2 Package Diagrams

Figure Parameter Package Overview Description The parameter package is used to model perfor-
mance impacts of different types of data flow. It contains Named References to identify variables and
characterisations to describe performance relevant meta-information on variables. (see Figure 4.12)

Figure 4.12: Parameter Package Overview

4.8.3 Detailed Class Documentation

4.8.3.1 Class CharacterisedVariable

Overview A characterised variable is a special variable which contains a performance abstraction of
a data type. It can be transformed in a named reference and a variable characterisation. It has to end
always with a variable characterisation type. Examples are "a.NUMBER_OF_ELEMENTS" or "ar-
ray.STRUCTURE".

Class Properties Class CharacterisedVariable has the following properties:

characterisationDefinition : CharacterisationDefinition
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variable : Variable

4.8.3.2 Class SetVariable

Overview SetVariable is used to set the characterisations of a Variable to certain values. Each of the
set characterisations and the values are referenced via VariableCharacterisation. The deprecated name of
this element was VariableUsage.

Class Properties Class SetVariable has the following properties:

assemblyContext_VariableUsage : AssemblyContext [0..1]

callAction_in_VariableUsage : CallAction [0..1]

callAction_out_VariableUsage : CallAction [0..1]

entryLevelSystemCall_InputParameterUsage : EntryLevelSystemCall [0..1]

entryLevelSystemCall_OutputParameterUsage : EntryLevelSystemCall [0..1]

setVariableAction_VariableUsage : SetVariableAction [0..1]

specifiedOutputParameterAbstraction_expectedExternalOutputs_VariableUsage : SpecifiedOutputParam-
eterAbstraction [0..1]

synchronisationPoint_VariableUsage : SynchronisationPoint [0..1]

userData_VariableUsage : UserData [0..1]

variableCharacterisation_VariableUsage : VariableCharacterisation [0..∗]
This association contains the information which abstract information on a specific variable is available.

For example, whether we know something on the variable’s value, its structure or memory footprint.
There can be multiple characterisations of the same variable if more than one type of information is
available.

variable_VariableUsage : Variable

4.8.3.3 Class Variable

Overview A named variable, e.g. a component, call, or return parameter.

Class Properties Class Variable has the following properties:



102 TECHNICAL REFERENCE

compositeDataType_Variable : CompositeDataType [0..1]

dataType_Variable : DataType

implementationComponentType_Variable : ImplementationComponentType [0..1]

signature_Parameter : Signature
This property navigates to the signature this parameter is a part of.

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.8.3.4 Class VariableCharacterisation

Overview Variable characterisations store performance critical meta-information on a variable. The
value of a characterisation is stored in the reference to the PCMRandomVariable.

For example, if a variable’s value is used in a long running loop, the value of the variable is perfor-
mance critical. For example, in "a.NUMBER_OF_ELEMENTS=10" the a is the name of the variable,
NUMBER_OF_ELEMENTS is the name of the characterisation type and "10" would be the specification
(as PCMRandomVariable) of the characterisation’s value.

Class Properties Class VariableCharacterisation has the following properties:

specification_VariableCharacterisation : PCMRandomVariable
The specification contains the value of a variable characterisation. It is a stoachastic expression which

may also contain references to other variable characterisations (that is the reason why it is a PCMRan-
domVariable).

type : CharacterisationDefinition
The type specifies the kind of the variable characterisation. There are 5 types available: STRUCTURE,

NUMBER_OF_ELEMENTS, VALUE, BYTESIZE, and TYPE.

variableUsage_VariableCharacterisation : SetVariable

4.9 Package pcm::protocol

4.9.1 Package Overview

The PCM is prepared to support interface protocols. This package contains a protocol stub. Multiple
protocols following different formalisms are supported by the PCM and distinguished by a protocol ID.
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4.9.2 Detailed Class Documentation

4.9.2.1 Class Protocol

Overview A protocol is a set of calling sequences and can be optionally added to an interface. Protocols
of provided interfaces specify the order in which services have to be called by clients. Protocols of
required interfaces specify the actual order in which the component calls required services.

Besides finite state machines, different formalisms can be used to model protocols. The PCM does not
restrict the protocol modelling formalisms. For example, Petri nets or regular expressions could model
interface protocols. However, the choice of a formalism does influence possible analyses. For example,
to check the interoperability of two components A and B, the language inclusion of the required protocol
of A within the provided protocol of B has to be tested. The language inclusion is undecidable for Petri
nets in the general case, so protocols modelled with Petri nets cannot be checked for interoperability.
Notice, that although protocols are able to express the state of a component, interfaces themselves are
stateless. The protocol state only depends on the component that implements the interface and is only
present during component runtime. Components can provide/require multiple interfaces, but the PCM
does not support protocols ranging over multiple interfaces (neither for provided nor required protocols).
The complete state of a components consists of all its interface states. Restrictions on the complete state
cannot be expressed in the PCM, as protocols can only be specified for single interfaces.

Class Properties Class Protocol has the following properties:

protocolTypeID : EString
Multiple protocols following different formalisms are supported by the PCM and distinguished by a

protocol ID.

4.10 Package pcm::qosannotations

4.10.1 Package Overview

This package contains elements to specify fixed QoS attributes of system-external services.

4.10.2 Package Diagrams

Figure QosSpecification Description Overview on QoS specifications. (see Figure 4.13)

Figure Performance Description Performance QoS can either be specified execution times at the
component level or system level. (see Figure 4.15)

4.10.3 Detailed Class Documentation

4.10.3.1 Class QoSAnnotations

Overview QoSAnnotations allow software architects and performance analysts to annotate Quality
of Service (QoS) attributes to services (i.e., signatures of an interface). It is important to note that
these annotations are specified and not derived. Usually the PCM uses the internal specification of a
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Figure 4.13: QosSpecification

Figure 4.14: Performance
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components behaviour (i.e., its RD-SEFFs) to determine its QoS. However, in a mixed top down and
bottom up approach as favoured by the PCM, software architects have to combine components whose
internals are not yet known with fully specified components. QoSAnnotations provide a first perforamnce
(or reliability) abstraction of the services offered by a component using the SpecifiedQoSAnnotation.
They furthermore define the output parameters of the services without describing its internal behviour.

Notes: - Should the association of QoSAnnotations to services not be in the class QoSAnnotation
instead of SpecifiedQoSAnnotation and SpecifiedOutputParameterAbstraction separately?

Class Properties Class QoSAnnotations has the following properties:

specifiedOutputParameterAbstractions_QoSAnnotations : SpecifiedOutputParameterAbstraction [0..∗]

specifiedQoSAnnotations_QoSAnnotations : SpecifiedQoSAnnotation [0..∗]

system_QoSAnnotations : System

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.10.3.2 Class SpecifiedOutputParameterAbstraction

Overview To specify the output parameters of a service (without associated RD-SEFF), software ar-
chitects can associate a SpecifiedOutputParameterAbstraction to services (signature + role). Specified-
OutputParameterAbstractions assign a single VariableUsage to that service that determines the output
parameters in depency of its input parameters. Software architects can use stochastic expressions (pack-
age StoEx) to define the dependencies.

Note: - Is it actually possible to define the output in dependency on the input parameters?

Class Properties Class SpecifiedOutputParameterAbstraction has the following properties:

expectedExternalOutputs_SpecifiedOutputParameterAbstraction : SetVariable [0..∗]

qosAnnotations_SpecifiedOutputParameterAbstraction : QoSAnnotations

role_SpecifiedOutputParameterAbstraction : Role

signature_SpecifiedOutputParameterAbstraction : Signature
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4.10.3.3 Class SpecifiedQoSAnnotation

Overview SpecifiedQoSAnnotations (as an abstract class) associate specified (see QoSAnnotation)
QoS properties to services of components. A service is thereby determined by a Signature and a Role
(i.e., an interface bound to a component). Whatever concrete QoS characteristic is specified, it has to be
given in terms of a PCMRandomVariable which may depend on component or input parameters of the
service.

Notes: - Is it correct that the PCMRandomvariable can depend on parameters? - How is the relation
of the specified QoS to the input parameters established?

Class Properties Class SpecifiedQoSAnnotation has the following properties:

qosAnnotations_SpecifiedQoSAnnotation : QoSAnnotations

role_SpecifiedQoSAnnotation : Role

signature_SpecifiedQoSAnnation : Signature

specification_SpecifiedExecutionTime : PCMRandomVariable

4.11 Package pcm::qosannotations::performance

4.11.1 Package Overview

Performance aspects of QoS annotations.

4.11.2 Package Diagrams

Figure Performance Description Performance QoS can either be specified execution times at the
component level or system level. (see Figure 4.15)

Figure 4.15: Performance
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4.11.3 Detailed Class Documentation

4.11.3.1 Class ComponentSpecifiedExecutionTime

Overview The ComponentSpecifiedExecutionTime allows software architects (and performance ana-
lysts) to specify the response time of a service (signature + role) of a component. However, the response
time is not given for the considered component in general, but the component in a specific context (i.e.,
in a specific hardware environment with specific external components connected) determined by the
AssemblyContext. This allows software architects to include Provided- and CompleteComponentTypes
into their software architecuture that still miss a description of their internals. Even though the internals
are missing, performance predictions are still possible.

Note: - Is it actually the response time or total service demand specified here? -> I guess it should
be response time. Otherwise, we would require also an assignment to resources. - I guess it’s necessary
to replace the association to the AssemblyContext by an association to an AllocationContext, since the
Response time is heavily determined by the underlying hardware...

Class Properties Class ComponentSpecifiedExecutionTime has the following properties:

assemblyContext_ComponentSpecifiedExecutionTime : AssemblyContext

Parent Classes

• SpecifiedQoSAnnotation (see section 4.10.3.3 on page 106)

4.11.3.2 Class SystemSpecifiedExecutionTime

Overview The SystemSpecifiedExecutionTime allows software architect and performance analysts to
specify the response time (distribution) of services called at the system boundaries. This allows abstract-
ing from the system externals and restricts the focus to the software architecture under consideration.

Note: - That’s the starting point for Performance-Kennlinien I guess...

Parent Classes

• SpecifiedQoSAnnotation (see section 4.10.3.3 on page 106)

4.12 Package pcm::qosannotations::reliability

4.12.1 Package Overview

Reliability aspects of QoS annotations.

4.12.2 Detailed Class Documentation

4.12.2.1 Class SpecifiedFailureProbability

Overview A SpecifiedFailureProbability of a service resembles its "Probability of Failure on Demand"
(POFOD). Whenever the service is called, this values states the probability that it returns successfully.
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For reliability prediction, the PCMRandomVariable specified in its superclass SpecifiedQoSAnnotation
must evaluate to a real number between 0 and 1.

Class Properties Class SpecifiedFailureProbability has the following properties:

failureProbability : EDouble

Constraints

EnsureValidParameterRange:

self.failureProbability.oclAsType(Real) >= 0 and self.failureProbability.oclAsType(↘
→Real) <= 1

Parent Classes

• SpecifiedQoSAnnotation (see section 4.10.3.3 on page 106)

4.13 Package pcm::repository

4.13.1 Package Overview

The main package contributing component types and interfaces.

4.13.2 Package Diagrams

Figure RepositoryTypeHierachy Description ComponentType hierarchy (see Figure 4.16)

Figure CompositeComponent Description Inheritance relation of CompositeComponent (see Fig-
ure 4.17)

Figure Interface Description Overview on the Interface structure (see Figure 4.18)

Figure Datatype Description Overview on the structure of DataTypes (see Figure 4.19)

Figure RepositoryContainments Description Overview on repository containments (see Figure 4.20)

Figure PassiveResources Description BasicComponents can carry PassiveResources (see Figure 4.21)

Figure RepositoryComponent Description <p> (see Figure 4.22)
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Figure 4.16: RepositoryTypeHierachy

Figure 4.17: CompositeComponent
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Figure 4.18: Interface

Figure 4.19: Datatype
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Figure 4.20: RepositoryContainments

Figure 4.21: PassiveResources

Figure 4.22: RepositoryComponent
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Figure 4.23: FailureTypes

Figure FailureTypes Description <p> (see Figure 4.23)

Figure 4.24: InterfaceFailureSpecifications

Figure InterfaceFailureSpecifications Description

Figure DatatypeCharacterisation Description

4.13.3 Detailed Class Documentation

4.13.3.1 Class ApplicationFailureType

Overview Application failures originate in the application itself. InteralActions may specify applica-
tion failures.

Parent Classes

• StopFailureType (see section 4.13.3.25 on page 129)
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Figure 4.25: DatatypeCharacterisation

4.13.3.2 Class BasicComponent

Overview This entity represents a black-box component implementation. Basic components are atomic
building blocks of a software architecture. They cannot be further subdivided into smaller components
and are built from scratch, i.e, not by assembling other components. Component developers specify basic
components by associating interfaces to them in a providing or requiring role.

Class Properties Class BasicComponent has the following properties:

passiveResource_BasicComponent : PassiveResource [0..∗]
This property represents the passive resources, e.g., semaphores, that are owned by this basic compo-

nent.

serviceEffectSpecifications__BasicComponent : ServiceEffectSpecification [0..∗]
This property contains the service effect specification for services provided by this basic component.

Constraints

NoSeffTypeUsedTwice:

self.serviceEffectSpecifications__BasicComponent->forAll(p1, p2 |
p1 <> p2 implies (p1.describedService__SEFF = p2.describedService__SEFF implies p1.↘
→seffTypeID <> p2.seffTypeID))
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ProvideSameInterfaces As Implementation Type:

-- BC has to provide the same interfaces like the implementationComponentType (if set)↘
→ #

if
-- apply constraint only for non-empty ImplementationComponentTypes of a BC #

self.parentCompleteComponentTypes->notEmpty()
then

--own interface IDs:
self.providedRoles_InterfaceProvidingEntity->collect(pr : ProvidedRole | pr.↘
→providedInterface__ProvidedRole.id)->asSet()

=
--complete type interface IDs:
self.parentCompleteComponentTypes->collect(pr | pr.↘
→providedRoles_InterfaceProvidingEntity.providedInterface__ProvidedRole.id)->↘
→asSet()

else
true

endif

Require Same Interfaces As Implementation Type:

-- BC has to require the same interfaces like the implementationComponentType (if set)↘
→ #

if
-- apply constraint only for non-empty ImplementationComponentTypes of a BC #

self.parentCompleteComponentTypes->notEmpty()
then

--own interface IDs:
self.requiredRoles_InterfaceRequiringEntity->collect(rr : RequiredRole | rr.↘
→requiredInterface__RequiredRole.id)->asSet()

=
--complete type interface IDs:
self.parentCompleteComponentTypes->collect(rr | rr.↘
→requiredRoles_InterfaceRequiringEntity.requiredInterface__RequiredRole.id)->↘
→asSet()

else
true

endif

Parent Classes

• ImplementationComponentType (see section 4.13.3.13 on page 120)
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4.13.3.3 Class CharacterisationDefinition

Overview Defines a characterisation. An exemplary characterisation is: name BYTESIZE, description
’Size of the data type in memory in bytes’, and value type LONG.

Class Properties Class CharacterisationDefinition has the following properties:

description : EString

repository_ChracterisationDefinition : Repository

valueType : PrimitiveTypeEnum

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.4 Class CollectionDataType

Overview This entity represents a collection data type, e.g.,. a list, array, set, of items of the referenced
type.

Class Properties Class CollectionDataType has the following properties:

dataType_InnerCollectionDataType : DataType

Parent Classes

• DataType (see section 4.13.3.8 on page 118)

4.13.3.5 Class CompleteComponentType

Overview Complete (Component) types abstract from the realisation of components. They only con-
tain provided and required roles omitting the components? internal structure, i.e., the service effect
specifications or assemblies. Thus, complete types represent a black box view on components. Leaving
the implementation open allows for a higher flexibility of software architects and defines substitutability
in the PCM.

Class Properties Class CompleteComponentType has the following properties:

parentProvidesComponentTypes : ProvidesComponentType [0..∗]

Constraints
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AtLeastOneInterfaceHasToBeProvidedOrRequiredByAUsefullCompleteComponentType:

(
self.oclIsTypeOf(CompleteComponentType)
or
self.oclIsTypeOf(ImplementationComponentType)
or
self.oclIsTypeOf(CompositeComponent)
or
self.oclIsTypeOf(BasicComponent)

)
implies
(

self.providedRoles_InterfaceProvidingEntity->size() >= 1
or
self.requiredRoles_InterfaceRequiringEntity->size() >= 1

)

providedInterfacesHaveToConformToProvidedType2:

-- CompleteTypes provided Interfaces have to be a superset
-- of ProvidesComponentType provided Interfaces #
--
-- ACCx are used to accumulate Sets/Bags; usually only the very inner ACCx is used at ↘

→all.
--
-- Recursive Query for parent Interface IDs
-- see "lpar2005.pdf" (Second-order principles in specification languages for Object-↘
→Oriented Programs; Beckert, Tretelman) pp. 11 #

--let parentInterfaces : Bag(Interface) =
-- self.providedRoles->iterate(r : ProvidedRole; acc2 : Bag(Interface) = Bag{} |
-- acc2->union(r.providedInterface.parentInterface->asBag()) -- asBag ↘

→required to allow Set operations #
-- ) in
--let anchestorInterfaces : Bag(Interface) =
-- self.providedRoles->iterate(r : ProvidedRole; acc4 : Bag(Interface) = Bag{} |
-- acc4->union(r.providedInterface.parentInterface->asBag()) -- asBag ↘

→required to allow Set operations #
-- )->union( -- union with anchestors found in former recursion #
-- self.providedRoles->iterate(r : ProvidedRole; acc6 : Bag(Interface) = ↘

→Bag{} |
-- acc6->union(r.providedInterface.parentInterface.↘
→anchestorInterfaces) --already Set/Bag

-- )
-- ) in
-- -- Directly provided anchestorInterfaces need to be a superset of provided ↘

→interfaces of Supertype #
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-- anchestorInterfaces.identifier.id->includesAll(
-- self.parentProvidesComponentTypes->iterate(pt : ProvidesComponentType;↘
→ acc1 : Bag(String) = Bag{} |

-- pt.providedRoles->iterate(r : ProvidedRole; acc2 : Bag(String)↘
→ = Bag{} |

-- acc2->union(r.providedInterface.identifier.id->asBag()↘
→) -- asBag required to allow Set operations #

-- )
-- )
-- )
true

Parent Classes

• RepositoryComponent (see section 4.13.3.20 on page 126)

4.13.3.6 Class CompositeComponent

Overview Composite components are special implementation component types, which are composed
from inner components. Component developers compose inner components within composite compo-
nents with assembly connectors. An assembly connector binds a provided role with a required role. To
access the inner components, composite components themselves provide or require interfaces. A dele-
gation connector binds a provided (required) role of the composite component with an inner component
provided (required) role. A composite component may contain other composite components, which are
also themselves composed out of inner components. This enables building arbitrary hierarchies of nested
components. Like a basic component, a composite component may contain a SEFF. However, this SEFF
is not specified manually by the composite component developer, but can be computed by combining the
SEFFs of the inner components.

Constraints

ProvideSameInterfaces:

-- CC has to provide the same interfaces like the implementationComponentType (if set)↘
→ (same OCL code like BC)#

if
-- apply constraint only for non-empty ImplementationComponentTypes of a BC #

self.parentCompleteComponentTypes->notEmpty()
then

--own interface IDs:
self.providedRoles_InterfaceProvidingEntity->collect(pr : ProvidedRole | pr.↘
→providedInterface__ProvidedRole.id)->asSet()

=
--complete type interface IDs:
self.parentCompleteComponentTypes->collect(pr | pr.↘
→providedRoles_InterfaceProvidingEntity.providedInterface__ProvidedRole.id)->↘
→asSet()
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else
true

endif

RequireSameInterfaces:

-- CC has to require the same interfaces like the implementationComponentType (if set)↘
→ (same OCL code like BC) #

if
-- apply constraint only for non-empty ImplementationComponentTypes of a BC #

self.parentCompleteComponentTypes->notEmpty()
then

--own interface IDs:
self.requiredRoles_InterfaceRequiringEntity->collect(rr : RequiredRole | rr.↘
→requiredInterface__RequiredRole.id)->asSet()

=
--complete type interface IDs:
self.parentCompleteComponentTypes->collect(rr | rr.↘
→requiredRoles_InterfaceRequiringEntity.requiredInterface__RequiredRole.id)->↘
→asSet()

else
true

endif

Parent Classes

• ComposedProvidingRequiringEntity (see section 4.7.3.1 on page 96) ,
• ImplementationComponentType (see section 4.13.3.13 on page 120)

4.13.3.7 Class CompositeDataType

Overview This entity represents a complex data type containing which is composed by Variables. This
construct is common in higher programming languages as record, struct, or class.

Class Properties Class CompositeDataType has the following properties:

members_CompositeDataType : Variable [1..∗]

Parent Classes

• DataType (see section 4.13.3.8 on page 118)

4.13.3.8 Class DataType

Overview This entity represents a data type that can be stored in a repository and used for specification
and modeling of interface signatures or component parameters. All valid characterisations of a data type
a referenced.
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Class Properties Class DataType has the following properties:

characterisationDefinitions_Datatype : CharacterisationDefinition [0..∗]

repository_DataType : Repository
This property specifies the repository to which this data type belongs.

Constraints

DataTypeMustNotHaveAvailableCharacterisationsWithIdenticalNameToBeParsableAsCode:

self.availableCharacterisationDefinitions_Datatype.name->asSet()->size() = self.↘
→availableCharacterisationDefinitions_Datatype->size()

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.9 Class DelegationConnector

Overview This entity represents a delegation connector, i.e., connector used for connecting a provid-
ed/required role of a component woth provided/reqiured port of its subcomponent.

Parent Classes

• Connector (see section 4.6.2.1 on page 95)

4.13.3.10 Class EnvironmentFailureType

Overview Environment failure are caused by unavailable or malfunctioning resources. The Environ-
mentFailureType represents a failure of a specific resource type.

Class Properties Class EnvironmentFailureType has the following properties:

processingresourcetype : ProcessingResourceType

Constraints

Exactly One Resource:

self.processingresourcetype <> null
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Parent Classes

• StopFailureType (see section 4.13.3.25 on page 129)

4.13.3.11 Class ExceptionType

Overview This entity represents a type of an exception.

Class Properties Class ExceptionType has the following properties:

exceptionMessage : EString
This property holds the text message of the exception.

exceptionName : EString
This property denotes the name of the exception. In addition to the exception message, this is another

piece of information that can be used for identification of the exception that has appeared.

4.13.3.12 Class FailureType

Overview Represents failures that can occur in a software system.

Class Properties Class FailureType has the following properties:

repository_FailureType : Repository

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.13 Class ImplementationComponentType

Overview This entity represents an abstraction of a component, where both sets of provided and re-
quired interfaces as well as the implementation is visible. It fully specifies the component type. The
specification of the internal structure depends on the way the component is realised. In general, compo-
nents can either be implemented from the scratch or composed out of other components. In the first case,
the implemented behaviour of each provided service needs to be specified with a service effect speci-
fication (SEFF) to describe the component?s abstract internal structure. We refer to such components
as basic components, since they form the basic building blocks of a software architecture. On the other
hand, developers can use existing components to assemble new, composite components.

Class Properties Class ImplementationComponentType has the following properties:

componentParameter_ImplementationComponentType : Variable [0..∗]

parentCompleteComponentTypes : CompleteComponentType [0..∗]
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Constraints

RequiredInterfacesHaveToConformToCompleteType:

-- ImplementationTypes required Interfaces have to be a subset
-- of CompleteComponentType required Interfaces #
--
-- ACCx are used to accumulate Sets/Bags; usually only the very inner ACCx is used at ↘

→all.
--
-- Recursive Query for parent Interface IDs
-- see "lpar2005.pdf" (Second-order principles in specification languages for Object-↘
→Oriented Programs; Beckert, Tretelman) pp. 11 #

--let parentInterfaces : Bag(Interface) =
-- self.parentCompleteComponentTypes->iterate(pt : CompleteComponentType; acc1 : ↘

→Bag(Interface) = Bag{} |
-- acc1->union(pt.requiredRoles->iterate(r : RequiredRole; acc2 : Bag(↘
→Interface) = Bag{} |

-- acc2->union(r.requiredInterface.parentInterface->asBag()) -- ↘

→asBag required to allow Set operations #
-- ))
-- ) in
--let anchestorInterfaces : Bag(Interface) =
-- self.parentCompleteComponentTypes->iterate(pt : CompleteComponentType; acc3 : ↘

→Bag(Interface) = Bag{} |
-- acc3->union(pt.requiredRoles->iterate(r : RequiredRole; acc4 : Bag(↘
→Interface) = Bag{} |

-- acc4->union(r.requiredInterface.parentInterface->asBag()) -- ↘

→asBag required to allow Set operations #
-- ))
-- )->union( -- union with anchestors found in former recursion #
-- self.parentCompleteComponentTypes->iterate(pt : CompleteComponentType;↘
→ acc5 : Bag(Interface) = Bag{} |

-- acc5->union(pt.requiredRoles->iterate(r : RequiredRole; acc6 :↘
→ Bag(Interface) = Bag{} |

-- acc6->union(r.requiredInterface.parentInterface.↘
→anchestorInterfaces) --already Set/Bag

-- ))
-- )
-- ) in
-- Directly required interfaces need to be a subset of required anchestorInterfaces of↘
→ Supertype #

--anchestorInterfaces.identifier.id->includesAll(
-- self.requiredRoles->iterate(p : RequiredRole; acc7 : Bag(String) = Bag{} |
-- acc7->union(p.requiredInterface.identifier.id->asBag())
-- )
--)
true
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providedInterfacesHaveToConformToCompleteType:

-- ### EXACT COPY FROM ABOVE ###
-- ImplementationComponentTypes provided Interfaces have to be a superset
-- of CompleteComponentType provided Interfaces #
--
-- ACCx are used to accumulate Sets/Bags; usually only the very inner ACCx is used at ↘

→all.
--
-- Recursive Query for parent Interface IDs
-- see "lpar2005.pdf" (Second-order principles in specification languages for Object-↘
→Oriented Programs; Beckert, Tretelman) pp. 11 #

--let parentInterfaces : Bag(Interface) =
-- self.providedRoles->iterate(r : ProvidedRole; acc2 : Bag(Interface) = Bag{} |
-- acc2->union(r.providedInterface.parentInterface->asBag()) -- asBag ↘

→required to allow Set operations #
-- ) in
--let anchestorInterfaces : Bag(Interface) =
-- self.providedRoles->iterate(r : ProvidedRole; acc4 : Bag(Interface) = Bag{} |
-- acc4->union(r.providedInterface.parentInterface->asBag()) -- asBag ↘

→required to allow Set operations #
-- )->union( -- union with anchestors found in former recursion #
-- self.providedRoles->iterate(r : ProvidedRole; acc6 : Bag(Interface) = ↘

→Bag{} |
-- acc6->union(r.providedInterface.parentInterface.↘
→anchestorInterfaces) --already Set/Bag

-- )
-- ) in

-- Directly provided anchestorInterfaces need to be a superset of provided ↘

→interfaces of Supertype #
-- anchestorInterfaces.identifier.id->includesAll(
-- self.parentProvidesComponentTypes->iterate(pt : ProvidesComponentType;↘
→ acc1 : Bag(String) = Bag{} |

-- pt.providedRoles->iterate(r : ProvidedRole; acc2 : Bag(String)↘
→ = Bag{} |

-- acc2->union(r.providedInterface.identifier.id->asBag()↘
→) -- asBag required to allow Set operations #

-- )
-- )
-- )
true

Parent Classes

• RepositoryComponent (see section 4.13.3.20 on page 126)
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4.13.3.14 Class Interface

Overview This entity models the interface as a set of signatures representing services provided or
required by a component. An interface is an abstraction of piece of software (a software entity) which
should contain a sufficient amount of information for a caller to understand and finally request the realised
functionality from any entity claiming to offer the specified functionality. Note that this implies, that the
specification of the interface also has to contain a sufficient amount of information for the implementer to
actually implement the interface. Due to the inherent need of an interface to abstract the behaviour of the
software entity not in all cases there is sufficient information provided to use or implement an interface
in an unambiquious way.

Interfaces can exist on their own, i.e., without any entity requesting or implementing the specified
functionality. Two roles can be identified a software entity can take relative to an interface. Any entity
can either claim to implement the functionality specified in an interface or to request that functionality.
This is reflected in the Palladio Component Model by a set of abstract meta-classes giving a conceptual
view on interfaces, entities, and their relationships.

Class Properties Class Interface has the following properties:

ancestorInterfaces_Interface : Interface [0..∗]
This property represents the set of all parent interfaces, from which this interface inherits. All means

not just the direct one.

parentInterface__Interface : Interface [0..∗]
This property represents the interfaces from which this interface directly inherits.

protocols__Interface : Protocol [0..∗]
This property represents the protocol bound to this interfaces, i.e., the way, in the sense of the order,

the services of this interfaces are allowed to be called.

repository_Interface : Repository
This property represents the repository where this interface is stored.

signatures__Interface : Signature [0..∗]
This property represents the set of signatures of which the interface consists.

Constraints

NoProtocolTypeIDUsedTwice:

self.protocols__Interface->forAll(p1, p2 |
p1.protocolTypeID <> p2.protocolTypeID)
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SignaturesHaveToBeUniqueForAnInterface:

-- full signature has to be unique
-- (use of ocl-tupels) #
let sigs : Bag(

-- parameters: Sequence of DataType, NOT name #
-- exceptions have not to be considered #
Tuple(returnType : DataType, serviceName : String, parameters : Sequence(↘
→DataType) )

) =
self.signatures__Interface->collect(sig : Signature |

Tuple{
returnType : DataType = sig.returntype__Signature,
serviceName : String = sig.serviceName,
parameters : Sequence(DataType) = sig.parameters__Signature.↘
→datatype__Parameter

}
)
in
sigs->isUnique(s|s)

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.15 Class PassiveResource

Overview This entity represents a passive resource, e.g., a semaphore.

Class Properties Class PassiveResource has the following properties:

basicComponent_PassiveResource : BasicComponent

capacity_PassiveResource : PCMRandomVariable
This property holds the capacity of this passive resource.

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.16 Class PrimitiveDataType

Overview This entity represents a primitive data type. Examples are integer, string, double, or any java
class.
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Parent Classes

• DataType (see section 4.13.3.8 on page 118)

4.13.3.17 Class ProvidedRole

Overview This entity represents the provided interfaces. The PCM uses the association of an interface
to a component to determine its role. Provided roles list the interfaces offered by a component.

Class Properties Class ProvidedRole has the following properties:

providedInterface__ProvidedRole : Interface
This property represents the corresponding interface that is provided by this role.

providingEntity_ProvidedRole : InterfaceProvidingEntity
This property represents the providing entity that is providing the interface associated with this role.

Parent Classes

• Role (see section 4.13.3.23 on page 127)

4.13.3.18 Class ProvidesComponentType

Overview Provided (Component) Types abstract a component to its provided interfaces, leaving its
requirements and implementation details open. So, provided types subsume components which offer
the same functionality, but with different implementations. As different implementations might require
different services from the environment, provided types omit required interfaces. Provided types allow
software architects to focus on a component?s functionality and introduce weak substitutability to the
PCM. Using provided types, software architects can draft ideas on how functionality can be partitioned
among different components without worrying about their implementation. In the initial phases of ar-
chitectural design, it often does not make sense to arrange all details of a component, since most of
them depend on the actual implementation and thus need to be specified by component developers. As
during this phase the actual implementation is unknown, also the required interfaces of a component
cannot be stated. However, software architects can still pre-evaluate a software architecture containing
provided-types. This gives rough estimates about the quality of the build software system and defines
QoS requirements for the component implementation.

Constraints

AtLeastOneInterfaceHasToBeProvidedByAUsefullProvidesComponentType:

self.oclIsTypeOf(ProvidesComponentType)
implies
self.providedRoles_InterfaceProvidingEntity->size() >= 1
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Parent Classes

• RepositoryComponent (see section 4.13.3.20 on page 126)

4.13.3.19 Class Repository

Overview The repository entity allows storing components, data types, and interfaces to be fetched
and reused for construction of component instances as well as new component types.

Class Properties Class Repository has the following properties:

characterisationDefinitions : CharacterisationDefinition [0..∗]

components__Repository : RepositoryComponent [0..∗]
This property represents the provides component types stored in the repository.

datatypes_Repository : DataType [0..∗]
This property represents the data types stored in the repository.

failureTypes : FailureType [0..∗]

interfaces__Repository : Interface [0..∗]
This property represents the interfaces stored in the repository.

repositoryDescription : String [0..1]
This property represents a description of the repository.

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.20 Class RepositoryComponent

Overview Abstract superclass of all component types which can be part of a component repository

Class Properties Class RepositoryComponent has the following properties:

repository_RepositoryComponent : Repository
This property represents the repository where this entity is stored.

Parent Classes

• InterfaceProvidingRequiringEntity (see section 4.7.3.4 on page 98)
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4.13.3.21 Class RequiredRole

Overview This entity represents a required interface.

Class Properties Class RequiredRole has the following properties:

requiredInterface__RequiredRole : Interface
This property represents the interfaces that is required by this role.

requiringEntity_RequiredRole : InterfaceRequiringEntity
This property represents the interface requiring entity that requires this interface.

Parent Classes

• Role (see section 4.13.3.23 on page 127)

4.13.3.22 Class ResourceRequiredRole

Overview Required role for resource interface access of a component

Class Properties Class ResourceRequiredRole has the following properties:

requiredInterface_ResourceRequiredRole : Interface

resourceRequiringEntity_ResourceRequiredRole : ResourceInterfaceRequiringEntity

Parent Classes

• Role (see section 4.13.3.23 on page 127)

4.13.3.23 Class Role

Overview This entity represents an abstraction of an interface role.

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.13.3.24 Class Signature

Overview This entity represents the signature of a method, i.e., its parameters, exception declarations,
return type, etc.

Every service of an interface has a unique signature, like void doSomething(int a). A PCM signature
is comparable to a method signature in programming languages like C#, Java or the OMG IDL.

It contains:
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* A type of the return value or void (no return value),
* an identifier naming the service,
* an ordered set of parameters (0..*).Each parameter is a tuple of a datatype and an identifier (which is

unique across the parameters). Additionally, the modifiers in, out, and inout (with its OMG IDL seman-
tics) can be used for parameters, and

* an unordered set of exceptions.
A signature has to be unique for an interface through the tupel (identifier, order of parameters). An

interface has a list of 1..* signatures (interfaces associate 1..* signatures, not the other way around). A
signature is assigned to exactly one interface. However, different interfaces can define equally named
signatures. If, for example, void doIt() is defined for interface A and B, void doIt() is not identical in both
interfaces.

Failure that may occur inside external services must be specified at the service signatures. This way
components that use this services may implement failure handling without knowing the internal be-
haviour of the connected component.

Class Properties Class Signature has the following properties:

exceptions__Signature : ExceptionType [0..∗]
This property represents the list of exceptions declared by this signature.

failureType : FailureType [0..∗]

interface_Signature : Interface
This property represents the interface that contains the method with this signature.

parameters__Signature : Variable [0..∗]
This property represents the list of parameters of the corresponding method.

returntype__Signature : DataType [0..1]
This property represents the return type of the corresponding method.

serviceName : String
This property represents the service name realized by this method.

Constraints

Parameter Names Have To Be Unique For A Signature:

self.parameters__Signature->isUnique(p : Parameter |
p.parameterName

)



PACKAGE PCM::RESOURCEENVIRONMENT 129

4.13.3.25 Class StopFailureType

Overview Represents failures with stop semantics. Such failures lead to direct interuption of the cur-
rent control flow and passing the failure information up the calling hierarchy.

Parent Classes

• FailureType (see section 4.13.3.12 on page 120)

4.14 Package pcm::resourceenvironment

4.14.1 Package Overview

Package of entities representing the execution environment of a component based software system

4.14.2 Package Diagrams

Figure ResourceEnvironment Description Overview on all elements of the resource environment
(see Figure 4.26)

Figure RandomVariableSpecifications Description Overview on usages of the PCM random vari-
able (see Figure 4.27)

4.14.3 Detailed Class Documentation

4.14.3.1 Class CommunicationLinkResourceSpecification

Overview Throughput and performance specification of linking resources

Class Properties Class CommunicationLinkResourceSpecification has the following properties:

communicationLinkResourceType_CommunicationLinkResourceSpecification : CommunicationLinkRe-
sourceType

failureProbability : EDouble
Specifies the probability that a service call over this communication link fails. The failure could be

due to message loss or overload, for example.

latency_CommunicationLinkResourceSpecification : PCMRandomVariable

linkingResource_CommunicationLinkResourceSpecification : LinkingResource

throughput_CommunicationLinkResourceSpecification : PCMRandomVariable
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Figure 4.26: ResourceEnvironment

Figure 4.27: RandomVariableSpecifications
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4.14.3.2 Class LinkingResource

Overview Model element representing communication links like LAN, WAN, WiFi etc.

Class Properties Class LinkingResource has the following properties:

communicationLinkResourceSpecifications_LinkingResource : CommunicationLinkResourceSpecifica-
tion

connectedResourceContainers_LinkingResource : ResourceContainer [0..∗]

resourceEnvironment_LinkingResource : ResourceEnvironment

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.14.3.3 Class ProcessingResourceSpecification

Overview Performance specification of processing resources (e.g. processing rate, scheduling policy)

Class Properties Class ProcessingResourceSpecification has the following properties:

MTTF : EDouble
The Mean Time To Failure (MTTF) of a physical resource is the expected timespan from the start of

its usage until breakdown.

MTTR : EDouble
The Mean Time To Repair (MTTR) of a physical resource is the expected timespan from breakdown

of this physical resource to its repair or replacement.

activeResourceType_ActiveResourceSpecification : ProcessingResourceType

numberOfReplicas : EInt
Specifies the actual number of processors of the processing resource.
In terms of the queueing theory, the number of processors corresponds to the number of servers of a

service center. Thus, the attribute allows to specify a multi-server queue, i.e., one queue with multiple
servers.

processingRate_ProcessingResourceSpecification : PCMRandomVariable

resourceContainer_ProcessingResourceSpecification : ResourceContainer

schedulingPolicy : SchedulingPolicy
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4.14.3.4 Class ResourceContainer

Overview UML-like container of a number of processing resources (e.g. hardware server)

Class Properties Class ResourceContainer has the following properties:

activeResourceSpecifications_ResourceContainer : ProcessingResourceSpecification [0..∗]

operatingSystem_ResourceContainer : ContainerOperatingSystem

resourceEnvironment_ResourceContainer : ResourceEnvironment

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.14.3.5 Class ResourceEnvironment

Overview Repository element of the resource environment

Class Properties Class ResourceEnvironment has the following properties:

linkingResources__ResourceEnvironment : LinkingResource [0..∗]

resourceContainer_ResourceEnvironment : ResourceContainer [0..∗]

Parent Classes

• NamedElement (see section 4.7.3.6 on page 99)

4.15 Package pcm::resourcetype

4.15.1 Package Overview

Package containing all resource types supported by the PCM

4.15.2 Package Diagrams

Figure Resources Description Overview on resource demands and processing resource type rela-
tions (see Figure 4.28)

Figure Units Description ResourceTypes are UnitCarryingElements (see Figure 4.29)
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Figure 4.28: Resources

Figure 4.29: Units

4.15.3 Detailed Class Documentation

4.15.3.1 Class CommunicationLinkResourceType

Overview ResourceType representing communication links like, LAN, WAN, WiFi etc.

Parent Classes

• ProcessingResourceType (see section 4.15.3.2 on page 133)

4.15.3.2 Class ProcessingResourceType

Overview ResourceType representation of CPU.

Parent Classes

• ResourceType (see section 4.15.3.4 on page 133)

4.15.3.3 Class ResourceRepository

Overview Extendable repository of resource types of the PCM. The resource type repository is inten-
tionally left open to support arbitrary resources in the future

Class Properties Class ResourceRepository has the following properties:

availableResourceTypes_ResourceRepository : ResourceType [0..∗]

4.15.3.4 Class ResourceType

Overview Abstract superclass of any resource
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Class Properties Class ResourceType has the following properties:

resourceRepository_ResourceType : ResourceRepository

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.16 Package pcm::seff

4.16.1 Package Overview

Package containing the abstract behaviour model of components

4.16.2 Package Diagrams

Figure Resource Demand Description <p> (see Figure 4.30)

Figure 4.30: Resource Demand

Figure Actions Description ExternalCallAction and InternalCallAction in the PCM (see Figure 4.31)

Figure SEFF Description Relations between ServiceEffectSpecification, BasicComponent and Re-
sourceDemandingBehaviour (see Figure 4.32)

Figure Loop Behaviour Description Overview on loop behaviour (see Figure 4.33)

Figure Parameter Usage Description <p> (see Figure 4.34)

Figure Branch Description Overview on the abstract branch transition (see Figure 4.35)
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Figure 4.31: Actions

Figure 4.32: SEFF
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Figure 4.33: Loop Behaviour

Figure 4.34: Parameter Usage

Figure 4.35: Branch
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Figure BehaviourOverview Description Overview on the embedding of RDSEFFs into component
specifications (see Figure 4.36)

Figure 4.36: BehaviourOverview

Figure Fork Description Overview on fork behaviour elements (see Figure 4.37)

Figure 4.37: Fork

Figure ExternalCall Description Overview on the ExternalCallAction (see Figure 4.38)

Figure PassiveResources Description Overview on passive resources and actions (see Figure 4.39)
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Figure 4.38: ExternalCall

Figure 4.39: PassiveResources

Figure 4.40: InternalCall
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Figure InternalCall Description

Figure ActionHierarchy Description Overview on the hierarchy of actions in the PCM SEFF (see
Figure 4.41)

Figure 4.41: ActionHierarchy

Figure 4.42: FailureHandlingEntity

Figure FailureHandlingEntity Description

Figure 4.43: RecoveryBlocks

Figure RecoveryBlocks Description

Figure FailureOccurrenceDescription Description
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Figure 4.44: FailureOccurrenceDescription

Figure Performance Description Relation between ParametricResourceDemand and AbstractInter-
nalControlFlowAction (see Figure 4.46)

Figure 4.45: Performance

4.16.3 Detailed Class Documentation

4.16.3.1 Class AbstractAction

Overview AbstractActions model either a service?s internal computations or calls to external (i.e., re-
quired) services, or describe some form of control flow alteration (i.e., branching, loop, or fork). The
following first clarifies the notions of internal and external actions, whose meta-classes both inherit from
AbstractAction. The RDSEFF defines the control flow between internal and external actions with the pre-
decessor/successor relationship between AbstractActions to model sequential executions. Additionally,
special actions for branching, loops, and forks allow other kinds of control flow. Other than flowcharts
or UML activity diagrams, the RDSEFF language (as well as the usage model language) requires devel-
opers to make the branching, loop, fork bodies explicit using nested ResourceDemandingBehaviours. It
disallows backward references in the chain of AbstractActions, which are basically goto statements and
can lead to ambiguities and difficult maintainability. For example, this might lead to intertwined control
flows as in the example in Fig. 4.9(a), where both the sequences ?abcabcdbcd? and ?abcdbcabcd? could
be occur if each backward reference is executed once, which might lead to different execution times.
Backward references also allow the specification of loops with multiple entry points as in Fig. 4.9(b).
This is not desirable, as the number of loop iterations cannot be specified directly in these cases, which is
however necessary for accurate performance prediction. If a developer would specify that each backward



PACKAGE PCM::SEFF 141

link in Fig. 4.9(b) is executed only once, both sequences ?ababc? and ?abcababc? would be possible
although they would have different execution times, as ?a? is executed three times in the latter case. To
avoid such ambiguities, control flow in the PCM RDSEFF and usage model must be specified without
backward references in the chain of AbstractActions. Branches, loops, forks, and their respective bodies
have to be made explicit in the specification using nested ResourceDemandingBehaviours.

Class Properties Class AbstractAction has the following properties:

predecessor_AbstractAction : AbstractAction [0..1]

resourceDemandingBehaviour_AbstractAction : ResourceDemandingBehaviour [0..1]

successor_AbstractAction : AbstractAction [0..1]

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.16.3.2 Class AbstractBranchTransition

Overview Two types of branch transitions exist which correspond to the two types of branches. The
types cannot be mixed. Either all branch transitions of one BranchAction are probabilistic or guarded.

Class Properties Class AbstractBranchTransition has the following properties:

branchAction_AbstractBranchTransition : BranchAction

branchBehaviour_BranchTransition : ResourceDemandingBehaviour

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.16.3.3 Class AbstractInternalControlFlowAction

Overview Abstract parent class of any internal control flow (e.g. InternalAction)

Class Properties Class AbstractInternalControlFlowAction has the following properties:

resourceDemand_Action : ParametricResourceDemand [0..∗]

Parent Classes

• AbstractAction (see section 4.16.3.1 on page 140)
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4.16.3.4 Class AbstractLoopAction

Overview Abstract parent class of any loop (e.g. LoopAction)

Class Properties Class AbstractLoopAction has the following properties:

bodyBehaviour_Loop : ResourceDemandingBehaviour

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.5 Class AcquireAction

Overview In an RDSEFF, component developers can specify an AcquireAction, which references a
passive resource types. Once analysis tools execute this action, they decrease the amount of items avail-
able from the referenced passive resource type by one, if at least one item is available. If none item is
available, because other, concurrently executed requests have acquired all of them, analysis tools enqueue
the current request (first-come first-serve scheduling policy) and block it?s further execution. Acquisition
and release of passive resources happen instantaneously and do not consume any time except for waiting
delays before actual acquisition. Resource locking may introduce deadlocks when simulating the model,
however, for performance analysis with the PCM it is assumed that no deadlocks occur. Otherwise, the
model first needs to be fixed accordingly before carrying out the performance prediction.

Class Properties Class AcquireAction has the following properties:

passiveresource_AcquireAction : PassiveResource

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.6 Class BranchAction

Overview The BranchAction splits the RDSEFF control flow with an XOR-semantic, meaning that the
control flow continues on exactly one of its attached AbstractBranchTransitions. The RDSEFF supports
two different kinds of branch transitions, GuardedBranchTransitions, and ProbabilisticBranchTransi-
tions. RDSEFFs do not allow to use both kinds of transitions on a single BranchAction. Analysis or
simulation tools must select exactly one transition based on the included guard or probability, before
continuing at a BranchAction.

Class Properties Class BranchAction has the following properties:

branches_Branch : AbstractBranchTransition [0..∗]
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Constraints

EitherGuardedBranchesOrProbabilisiticBranchTransitions:

self.branches_Branch->forAll(bt|bt.oclIsTypeOf(ProbabilisticBranchTransition))
or self.branches_Branch->forAll(bt|bt.oclIsTypeOf(GuardedBranchTransition))

AllProbabilisticBranchProbabilitiesMustSumUpTo1:

if self.branches_Branch->forAll(oclIsTypeOf(ProbabilisticBranchTransition)) then
self.branches_Branch->select(pbt|pbt.oclIsTypeOf(ProbabilisticBranchTransition↘
→))->collect(pbt|pbt.oclAsType(ProbabilisticBranchTransition).↘
→branchProbability)->sum() > 0.999

and self.branches_Branch->select(pbt|pbt.oclIsTypeOf(↘
→ProbabilisticBranchTransition))->collect(pbt|pbt.oclAsType(↘
→ProbabilisticBranchTransition).branchProbability)->sum() < 1.001

else true
endif

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.7 Class CallAction

Overview Generic class realising call relations between behaviours (e.g. method call).

Class Properties Class CallAction has the following properties:

inputParameterUsages_ExternalCallAction : SetVariable [0..∗]

outputVariableUsages_ExternalCallAction : SetVariable [0..∗]

4.16.3.8 Class CollectionIteratorAction

Overview Collection Iterator Action Models the repeated execution of its inner ResourceDemand-
ingBehaviour for each element of a collection data type. Therefore it contains a reference to an input
parameter of the service?s signature, which must be of type CollectionDataType. The NUMBER OF
ELEMENTS must be specified from the outside of the component, either by another RDSEFF or by an
usage model calling this service. It can be of type integer or IntPMF. Besides the source of the number
of iterations, CollectionIteratorActions differ from LoopAction only in their allowed stochastic depen-
dence of random variables inside the loop body?s ResourceDemandingBehaviour. If the same random
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variable occurs twice in such a loop body, analysis tools must evaluate the second occurrence in stochas-
tic dependence to the first occurrence. This complicates the involved calculation and might lead to the
intractability of the model, therefore component developers should use CollectionIteratorActions with
care and only include them if they expect that the prediction results would be vastly inaccurate without
it.

Parent Classes

• AbstractLoopAction (see section 4.16.3.4 on page 142)

4.16.3.9 Class ExternalCallAction

Overview ExternalCallAction models the invocation of a service specified in a required interface.
Therefore, it references a Role, from which the providing component can be derived, and a Signature
to specify the called service. ExternalCallActions model synchronous calls to required services, i.e., the
caller waits until the called service finishes execution before continuing execution itself. The PCM allows
modelling asynchronous calls to required services by using an ExternalCallAction inside a ForkedBe-
haviour. ExternalCallActions do not have resource demands by themselves. Component developers
need to specify the resource demand of the called service in the RDSEFF of that service. The resource
demand can also be calculated by analysing the providing component. This keeps the RDSEFF specifi-
cation of different component developers independent from each other and makes them replaceable in an
architectural model. ExternalCallActions may contain two sets of VariableUsages specifying input pa-
rameter characterisations and output parameter characterisations respectively. VariableUsages for input
parameters may only reference IN or INOUT parameters of the call?s referenced signature. The random
variable characterisation inside such a VariableUsage may be constants, probability distribution func-
tions, or include a stochastic expression involving for example arithmetic operations. The latter models a
dependency between the current service?s own input parameters and the input parameters of the required
service.

Class Properties Class ExternalCallAction has the following properties:

calledService_ExternalService : Signature

retryCount : Integer
Specifies the number of retries this ExternalCallAction shoul be re-executed in case of failure oc-

curence.

role_ExternalService : RequiredRole

Constraints

SignatureBelongsToRole:

<pre id="comment_text_0" class="bz_comment_text">
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check if the signature
(declared in calledService_ExternalService attribute) belongs to the role
(declared in role_ExternalService attribute)
</pre>

Parent Classes

• AbstractAction (see section 4.16.3.1 on page 140) ,
• CallAction (see section 4.16.3.7 on page 143) ,
• FailureHandlingEntity (see section 4.16.3.10 on page 145)

4.16.3.10 Class FailureHandlingEntity

Overview Failure handling entities are any program constructs that can handle failures. Instances of
failure handling entities specify any number of failure types that can be handled.

Class Properties Class FailureHandlingEntity has the following properties:

failuretype : FailureType [0..∗]

4.16.3.11 Class FailureOccurrenceDescription

Overview Describes the occurrence probability of failures of a specified type. In one InternalAction
the sum of all failure probabilities must be less than or equal 1.0. Internal actions may only have one
failure occurrence descripton for a failure type. (see constraints)

Class Properties Class FailureOccurrenceDescription has the following properties:

failureProbability : EDouble

failureType : FailureType

internalAction_FailureOccurenceDescription : InternalAction

4.16.3.12 Class ForkAction

Overview Fork Action Splits the RDSEFF control flow with an AND-semantic, meaning that it invokes
several ForkedBehaviours concurrently. ForkActions allow both asynchronously and synchronously
forked behaviours. Synchronously ForkedBehaviours execute concurrently and the control flow waits
for each of these behaviours to terminate before continuing. Each ForkedBehaviour can be considered
as a program thread. All parameter characterisations from the surrounding RDSEFF are also valid inside
the ForkedBehaviours and can be used to parameterise resource demands or control flow constructs. The
parameter characterisations are the same in each ForkedBehaviour. Component developers can use a
SynchronisationPoint to join synchronously ForkedBehaviours and specify a result of the computations
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with its attached VariableUsages. Asynchronously ForkedBehaviours also execute concurrently, but the
control flow does not wait for them to terminate and continues immediately after their invocation with
the successor action of the ForkAction. Therefore, there is no need for a SynchronisationPoint in this
case. It is furthermore not possible to refer to results or output parameters of asynchronously ForkedBe-
haviours in the rest of the RDSEFF, as it is unclear when these results will be available. The same Fork
Action can contain asynchronous and synchronousForkedbehaviours at the same time. In that case, all
forked behaviours are started. The control flow waits for all synchronous behaviours to finish execution
and only then continues.

Class Properties Class ForkAction has the following properties:

asynchronousForkedBehaviours_ForkAction : ForkedBehaviour [0..∗]

synchronisingBehaviours_ForkAction : SynchronisationPoint [0..1]

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.13 Class ForkedBehaviour

Overview A ForkedBehaviour can be considered as a program thread. All parameter characterisations
from the surrounding RDSEFF are also valid inside the ForkedBehaviours and can be used to parame-
terise resource demands or control flow constructs. The parameter characterisations are the same in each
ForkedBehaviour.

Class Properties Class ForkedBehaviour has the following properties:

forkAction_ForkedBehaivour : ForkAction [0..1]

synchronisationPoint_ForkedBehaviour : SynchronisationPoint [0..1]

Parent Classes

• ResourceDemandingBehaviour (see section 4.16.3.22 on page 151)

4.16.3.14 Class GuardedBranchTransition

Overview Guarded Branch Transition Provides a link between a BranchAction and a nested ResourceDe-
mandingBehaviour, which includes the actions executed inside the branch. It uses a guard, i.e. a boolean
expression specified by a RandomVariable, to determine whether the transition is chosen. If the guard
evaluates to true, the branch is chosen, otherwise if the guard evaluates to false another branch transition
must be chosen. The guard may contain references to the service?s input parameters or component pa-
rameters. A component developer can specify complex boolean expressions by using the AND, OR, and
NOT operations provided by the StoEx framework. As the domain expert may have characterised the
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parameters used in a guard with probability distributions, it might happen that a guard does not evaluate
to true or false with a probability of 1.0. For example, the specification can express that a guard evaluates
to true with a probability of 0.3, and to false with a probability of 0.7. In any case, the probabilities of
the individual guards attached to all GuardedBranchTransitions contained in a BranchAction must sum
up to 1.0. There is no predefined order in evaluating the guards attached to a BranchAction. This dif-
fers from programming languages such as C or Java, where the conditions on if/then/else statements are
evaluated in the order of their appearance in the code. Such programming languages allow overlapping
branching conditions (for example, if (X <10) //... else if (X <20) // ...), which are not allowed for the
guards in GuardedBranchTransitions, because the missing order specification would lead to ambiguous
boolean expressions and enable more than one guard to become true. If X would have the value 5, both
conditions would evaluate to true if they would be used directly as guards in GuardedBranchTransitions.
The correct specification of the guards in this case would be X.VALUE 10 and X.VALUE 10 AND
X.VALUE 20. Guards might lead to stochastic dependencies when evaluating variable characterisations
inside a branched behaviour. For example, if the guard X.VALUE 10 had formerly evaluated to true,
and the RDSEFF uses X.VALUE inside the branched behaviour, the sample space of the random vari-
able specifying the characterisation must be restricted, as the event that X takes a values greater than 10
cannot occur anymore. Therefore its probability is zero. Any variable characterisation always needs to
be evaluated under the condition that all guards in the usage scenario?s path to it have evaluated to true.

Class Properties Class GuardedBranchTransition has the following properties:

branchCondition_GuardedBranchTransition : PCMRandomVariable

Parent Classes

• AbstractBranchTransition (see section 4.16.3.2 on page 141)

4.16.3.15 Class InternalAction

Overview Internal Action Combines the execution of a number of internal computations by a compo-
nent service in a single model entity. It models calculations inside a component service, which do not
include calls to required services. For a desired high abstraction level, an RDSEFF has only one Inter-
nalAction for all instructions between two calls to required services. A high abstraction level is needed
to keep the model tractable for mathematical analysis methods. However, in principle it is also possible
to use multiple InternalActions in direct succession to model on a lower abstraction level and enable
more accurate predictions. InternalActions provide an abstraction from the complete behaviour (i.e.,
control and data flow) of a component service, as they can hide different possible control and data flows
not affecting external service calls and express their resource demands as a single stochastic expression.
This abstraction underlies the assumption that the resource demands of a number of instruction can be
captured sufficiently accurate enough in one such expression

Class Properties Class InternalAction has the following properties:

failureOccurrenceDescriptions : FailureOccurrenceDescription [0..∗]
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Constraints

Multiple usages of same failure type are not allowed:

self.failureOccurrenceDescriptions->forAll(x : FailureOccurrenceDescription,y:↘
→FailureOccurrenceDescription | x<>y implies x.failureType <> y.failureType )

Sum of failure occurrence probabilities must not exceed 1.0:

self.failureOccurrenceDescriptions.failureProbability.oclAsType(Real)->sum()<=1

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.16 Class InternalCallAction

Overview A "SubSEFF"-Action: Realises an internal method call within a SEFF.

Class Properties Class InternalCallAction has the following properties:

calledResourceDemandingInternalBehaviour : ResourceDemandingInternalBehaviour

Parent Classes

• CallAction (see section 4.16.3.7 on page 143) ,
• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.17 Class LoopAction

Overview Models the repeated execution of its inner ResourceDemandingBehaviour for the loop body.
The number of repetitions is specified by a random variable evaluating to integer or an IntPMF. The num-
ber of iterations specified by the random variable always needs to be bounded, i.e., the probabilities in
an IntPMF for iteration numbers above a certain threshold must be zero. Otherwise, it would be possible
that certain requests do not terminate, which would complicate performance analyses. The stochastic
expression defining the iteration random variable may include references to input or component param-
eters to model dependencies between the usage profile and the number of loop iterations. Notice, that
loop actions should only be modelled if the loop body contains either external service calls or resource
demands directed at special resources. Otherwise, control flow loops in component behaviour should be
abstracted by subsuming them in InternalAction, which combine a number of instructions. The influence
of different iterations length of such internal loops need to be reflected stochastically by the random
variable specifying the ParametricResource-Demand of that InternalAction. Other than Markov chains,
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RDSEFFs do not specify control flow loops with an reentrance and exit probability on each iteration.
Such a specification binds the number of loop iterations to a geometrical distribution, which reflects re-
ality only in very seldom cases. But in many practical cases, the number of iterations is a constant, or
the probability for higher iteration numbers is higher than for lower ones. This cannot be expressed di-
rectly via a Markov chain (also see [DG00]). Inside the ResourceDemandingBehaviour of LoopActions,
it is assumed that random variables are stochastically independent. This is not true in reality, and for
example leads to wrong predictions if the same random variable is used twice in succession inside a loop
body. In this case, the second occurrence is stochastically dependent to the first occurrence, as the value
does not change between two occurrences. Therefore, component developers should be aware of such
inaccuracies when using random variables twice inside the body behaviour of a LoopAction.

Class Properties Class LoopAction has the following properties:

iterationCount_LoopAction : PCMRandomVariable

Parent Classes

• AbstractLoopAction (see section 4.16.3.4 on page 142)

4.16.3.18 Class ProbabilisticBranchTransition

Overview a GuardedBranchTransition, this transition provides a link between a BranchAction and a
nested ResourceDemandingBehaviour, which includes the actions executed inside the branch. But in-
stead of using a guard, it specifies a branching probability without parameter dependencies. Analysis
tools may directly use it to determine the transition where the control flow continues. The probabilities
of all ProbabilisticBranchTransitions belonging to a single BranchAction must sum up to 1.0. Although
a probabilistic choice at a branch usually does not happen in a computer program, ProbabilisticBranch-
Transitions provide a convenient way of modelling in case the actual parameter dependency is too hard to
determine or too complex to integrate into a guard. It can also be useful for newly designed components,
where the parameter dependency on the control flow guard is still be unknown. However, this construct
potentially introduces inaccuracies into the performance model, because it does not reflect the influence
of input parameters. Therefore, predictions based on this model can be misleading, if the used input
parameters would result in different branching probabilities. The component developer cannot foresee
this, when specifying the RDSEFF using ProbabilisticBranchTransitions.

Class Properties Class ProbabilisticBranchTransition has the following properties:

branchProbability : EDouble

Parent Classes

• AbstractBranchTransition (see section 4.16.3.2 on page 141)
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4.16.3.19 Class RecoveryBlockAction

Overview Recover block actions are a generic failure handling technique. A recovery block consists of
a a primary algorithm and one or more alternatives that can be used in case of failure. If the primary al-
gorithm fails, the next alternative is chosen. Here the alternatives also support failure types. Alternatives
may specify which kind of failures they can handle.

Class Properties Class RecoveryBlockAction has the following properties:

recoveryBlockalternativeBehaviours : RecoveryBlockAlternativeBehaviour [2..∗]

Constraints

Alternatives form a chain:

self.recoveryBlockalternativeBehaviours->isUnique(s: RecoveryBlockAlternativeBehaviour↘
→ | s.nextAlternative) and

self.recoveryBlockalternativeBehaviours->forAll(x:RecoveryBlockAlternativeBehaviour| x↘
→ <> x.nextAlternative)

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.20 Class RecoveryBlockAlternativeBehaviour

Overview Recovery block alternative haviours represent alternatives of recovery blocks. They are
resource demanding behaviours, thus any behaviour can be defined as an alternative.

The alternatives of a recovery block form a chain. They are failure handling entities, i.e. they can
handle failures that occur in previous alternatives. If one alternative fails, the next alternative is executed
that can handle the failure type.

Class Properties Class RecoveryBlockAlternativeBehaviour has the following properties:

nextAlternative : RecoveryBlockAlternativeBehaviour [0..1]

recoveryBlockAction_RecoveryBlockAlternativeBehaviour : RecoveryBlockAction

Parent Classes

• FailureHandlingEntity (see section 4.16.3.10 on page 145) ,
• ResourceDemandingBehaviour (see section 4.16.3.22 on page 151)
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4.16.3.21 Class ReleaseAction

Overview The ReleaseAction increases the number of available item for the given passive resource
type, before the current request can continue. It should be to execute by one of the other concurrent
requests. Acquisition and release of passive resources happen instantaneously and do not consume any
time except for waiting delays before actual acquisition. Resource locking may introduce deadlocks
when simulating the model, however, for performance analysis with the PCM it is assumed that no dead-
locks occur. Otherwise, the model first needs to be fixed accordingly before carrying out the performance
prediction.

Class Properties Class ReleaseAction has the following properties:

passiveResource_ReleaseAction : PassiveResource

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.22 Class ResourceDemandingBehaviour

Overview Models the behaviour of a component service as a sequence of internal actions with re-
source demands, control flow constructs, and external calls. Therefore, the class contains a chain of
AbstractActions. The emphasis in this type of behaviour is on the resource demands attached to internal
actions, which mainly influence performance analysis. Each action in a ResourceDemandingBehaviour
references a predecessor and a successor action. Exceptions are the first and last action, which do not
reference a predecessor and a successor respectively. A behaviour is valid, if there is a continuous path
from the first to last action, which includes all actions. The chain must not include cycles. To specify
control flow branches, loops, or forks, component developers need to use special types of actions, which
contain nested inner ResourceDemandingBehaviours to specify the behaviour inside branches or loop
bodies. Any ResourceDemandingBehaviour can have at most one starting and one finishing action.

Class Properties Class ResourceDemandingBehaviour has the following properties:

abstractBranchTransition_ResourceDemandingBehaviour : AbstractBranchTransition [0..1]

abstractLoopAction_ResourceDemandingBehaviour : AbstractLoopAction [0..1]

steps_Behaviour : AbstractAction [0..∗]

Constraints

ExactlyOneStopAction:

self.steps_Behaviour->select(s|s.oclIsTypeOf(StopAction))->size() = 1
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ExactlyOneStartAction:

self.steps_Behaviour->select(s|s.oclIsTypeOf(StartAction))->size() = 1

EachActionExceptStartActionandStopActionMustHhaveAPredecessorAndSuccessor:

not self.steps_Behaviour->select(s|not s.oclIsTypeOf(StartAction) and not s.↘
→oclIsTypeOf(StopAction))->exists(a|a.oclAsType(AbstractAction).↘
→predecessor_AbstractAction.oclIsUndefined()) and not self.steps_Behaviour->select(↘
→s|not s.oclIsTypeOf(StartAction) and not s.oclIsTypeOf(StopAction))->exists(a|a.↘
→oclAsType(AbstractAction).successor_AbstractAction.oclIsUndefined())

4.16.3.23 Class ResourceDemandingInternalBehaviour

Overview Class representing component-internal behaviour not accessible from the component’s in-
terface. Comparable to internal method in object-oriented programming. This behaviour can be called
from within a resource demanding behaviour using an InternalCallAction.

Class Properties Class ResourceDemandingInternalBehaviour has the following properties:

resourceDemandingSEFF_ResourceDemandingInternalBehaviour : ResourceDemandingSEFF

Parent Classes

• ResourceDemandingBehaviour (see section 4.16.3.22 on page 151)

4.16.3.24 Class ResourceDemandingSEFF

Overview A resource demanding service effect specification (RDSEFF) is a special type of SEFF de-
signed for performance and reliability predictions. Besides dependencies between provided and required
services of a component, it additionally includes notions of resource usage, data flow, and paramet-
ric dependencies for more accurate predictions. Its control flow is hierarchically structured and can be
enhanced with transition probabilities on branches and numbers of iterations on loops. A ResourceDe-
mandingSEFF is a ServiceEffectSpecification and a Resource-DemandingBehaviour at the same time
inheriting from both classes. The reason for this construct lies in the fact, that ResourceDemanding-
Behaviours can be used recursively inside themselves to describe loop bodies or branched behaviours
(explained later), and these inner behaviours should not be RDSEFFs themselves

Class Properties Class ResourceDemandingSEFF has the following properties:

resourceDemandingInternalBehaviours : ResourceDemandingInternalBehaviour [0..∗]
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Parent Classes

• ServiceEffectSpecification (see section 4.16.3.25 on page 153) ,
• ResourceDemandingBehaviour (see section 4.16.3.22 on page 151)

4.16.3.25 Class ServiceEffectSpecification

Overview Service Effect Specification Models the effect of invoking a specific service of a basic com-
ponent. Therefore, it references a Signature from an Interface, for which the component takes a Provid-
edRole, to identify the described service. This class is abstract and SEFFs for specific analysis purposes
need to inherit from this class. A BasicComponent may have an arbitrary number of SEFFs. It can have
multiple SEFFs of a different type for a single provided service. For example, one SEFF can express
all external service calls with no particular order, while another one includes a restricted order, or still
another one expresses resource demands of the service. While different SEFF types have been proposed,
the only type currently included in the meta-model is the ResourceDemandingSEFF for performance
prediction. Different types of SEFFs should not contradict each other if the languages are equally pow-
erful. For example, the order of allowed external service calls should be the same for each SEFF type
modelling sequences of such calls if the modelling languages have the same expressiveness. SEFFs are
part of a component and not part of an interface, because they are implementation dependent. The SEFFs
of a CompositeComponent are not represented in the meta-model and can be derived automatically by
connecting the SEFFs of the encapsulated components of its nested AssemblyContexts. Different SEFFs
of a single component access the same component parameter specifications. That means that parameter
dependencies to the same component parameters in different SEFF types refer also to the same charac-
terisations.

Class Properties Class ServiceEffectSpecification has the following properties:

basicComponent_ServiceEffectSpecification : BasicComponent

describedService__SEFF : Signature

seffTypeID : EString

4.16.3.26 Class SetVariableAction

Overview Set Variable Action Assigns a variable characterisation to an OUT parameter, INOUT pa-
rameter, or return value of the service. It ensures that performance-relevant output parameter charac-
terisations of a component service are specified to use them to parameterise the calling RDSEFF. A
SetVariableAction must only use output parameters on the left hand side of the assignment and must
not use input parameter or local variable names, because input parameters cannot be returned and local
names should not be exposed to adhere the black box principle. The action is only intended to allow
proper data flow modelling (i.e., output parameter passing) between different component services, but
not to reveal additional internals of the service the current RDSEFF models. Thus, the assigned char-
acterisation is not accessible in subsequent actions of the current RDSEFF. Notice, that the stochastic
expression used in this assignment must characterise the result of the whole computation of the current
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service. For non-trivial components, this requires a substantial stochastic approximation based on man-
ual abstraction. However, recall that not the actual result of a component service needs to be specified,
but only its performance-relevant attributes. For example, to model the return value of a component ser-
vice compressing a file, using its file size divided by the compression factor as the stochastic expression
is usually sufficient, while the value of the compressed file is not of interest in a performance model.
Multiple SetVariableActions assigning to the same output parameter might occur at different locations of
the control flow in an RDSEFF. In the case of sequences, loops, and fork, the last assignment overwrites
the former assignments and gets transferred back to the calling RDSEFF. Therefore, analysis tools may
ignore the former assignments. In the case of using a SetVariableAction in two different branches of a
BranchAction, only the assignment in the chosen branch is valid and gets transferred back to the caller.

Class Properties Class SetVariableAction has the following properties:

localVariableUsages_SetVariableAction : SetVariable [0..∗]

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.27 Class StartAction

Overview StartActions initiate a scenario behaviour and contain only a successor.

Constraints

StartActionPredecessorMustNotBeDefined:

self.predecessor_AbstractAction.oclIsUndefined()

Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.28 Class StopAction

Overview StopActions end a scenario behaviour and contain only a predecessor.

Constraints

StopActionSuccessorMustNotBeDefined:

self.successor_AbstractAction.oclIsUndefined()
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Parent Classes

• AbstractInternalControlFlowAction (see section 4.16.3.3 on page 141)

4.16.3.29 Class SynchronisationPoint

Overview Component developers can use a SynchronisationPoint to join synchronously ForkedBe-
haviours and specify a result of the computations with its attached VariableUsages.

Class Properties Class SynchronisationPoint has the following properties:

forkAction_SynchronisationPoint : ForkAction

outputParameterUsage_SynchronisationPoint : SetVariable [0..∗]

synchronousForkedBehaviours_SynchronisationPoint : ForkedBehaviour [1..∗]

4.17 Package pcm::seff::performance

4.17.1 Package Overview

Package capturing performance aspects of an RDSEFF

4.17.2 Package Diagrams

Figure Performance Description Relation between ParametricResourceDemand and AbstractInter-
nalControlFlowAction (see Figure 4.46)

Figure 4.46: Performance

4.17.3 Detailed Class Documentation

4.17.3.1 Class ParametricResourceDemand

Overview Parametric Resource Demand Specifies the amount of processing requested from a certain
type of resource in a parametrised way. It assigns the demand specified as a Random-Variable to an
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abstract ProcessingResourceType (e.g., CPU, hard disk) instead of a concrete ProcessingResourceSpec-
ification (e.g., 5 Ghz CPU, 20 MByte/s hard disk). This keeps the RDSEFF independent from a specific
resource environment, and makes the concrete resources replaceable to answer sizing questions. The
demand?s unit is equal for all ProcessingResourceSpecifications referencing the same ProcessingRe-
sourceType. It can for example be ?WorkUnits? for CPUs [Smi02] or ?BytesRead? for hard disks. Each
ProcessingResource- Specification contains a processing rate for demands (e.g., 1000 WorkUnits/s, 20
MB/s), which analysis tools use to compute an actual timing value in seconds. They use this timing value
for example as the service demand on a service center in a queueing network or the firing delay of a transi-
tion in a Petri net. As multiple component services might request processing on the same resource, these
analytical or simulation models allow determining the waiting delay induced by this contention effect.
Besides this parameterisation over different resource environments, Parametric- ResourceDemands also
parameterise over the usage profile. For this, the stochastic expression specifying the resource demand
can contain references to the service?s input parameters or the component parameters. Upon evaluating
the resource demand, analysis tools use the current characterisation of the referenced input or component
parameter and substitute the reference with this characterisation in the stochastic expression. Solving the
stochastic expression, which can be a function involving arithmetic operators (Chapter 3.3.6), then yields
a constant or probability function for the resource demand. As an example for solving the parameterisa-
tion over resource environment and usage profile, consider an RDSEFF for a service implementing the
bubblesort algorithm. It might include a CPU demand specification of n2?2000WorkUnits derived from
complexity theory (n2) and empirical measurements (2000). In this case n refers to the length of the list
the algorithm shall sort, which is an input parameter of the service. If the current characterisation of the
list?s length is 100 (as the modelled usage profile), analysis tools derive 1002 ? 2000 12000 WorkUnits
from the specification, thus resolving the usage profile dependency. If the CPU ProcessingResource-
Specification the service?s 126 4.3. Resource Demanding Service Effect Specification component is
allocated on then contains a processing rate of 10000WorkUnits/s, analysis tools derive an execution
time of 12000 WorkUnits 10000 WorkUnits/s = 1:2 s from the specification, thus resolving the resource
environment dependency. The stochastic expression for a ParametricResourceDemand depends on the
implementation of the service. Component developers can specify it using complexity theory, estima-
tions, or measurements. However, how to get data to define such expressions accurately is beyond of the
scope of this thesis. Woodside et al. [WVCB01] and Krogmann [Kro07] present approaches for mea-
suring resource demands in dependency to input parameters. Meyerhoefer et al. [ML05] and Kuperberg
et al. [KB07] propose methods to establish resource demands independent from concrete resources. For
the scope of this thesis, it is assumed that these methods have been applied and an accurate specification
of the ParametricResourceDemand is available.

Class Properties Class ParametricResourceDemand has the following properties:

action_ParametricResourceDemand : AbstractInternalControlFlowAction

requiredResource_ParametricResourceDemand : ProcessingResourceType

specification_ParametericResourceDemand : PCMRandomVariable
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4.18 Package pcm::subsystem

4.18.1 Package Overview

Package capturing the subsystem entity

4.18.2 Package Diagrams

Figure SubSystem Description A SubSystem is a ComposedProvidingRequiringEntity and a Repos-
itoryComponent (see Figure 4.47)

Figure 4.47: SubSystem

4.18.3 Detailed Class Documentation

4.18.3.1 Class SubSystem

Overview A SubSystem is structually comparable to a CompositeComponent. The major difference is
the white-blox property it preserves for System Deployers. While Component Developer have a white-
box view for their CompositeComponents, a System Deployer perceives a CompositeComponent like
any other component as a black-box entity, which thus cannot be allocated onto different nodes in the
resource environment (a CompositeComponent cannot be split up at allocation time). Opposed to that,
SubSystems are white-box entities for System Deployers, meaning that they can be allocated to different
nodes of the resource environment, if required. They are pure logical groupings of components, which
can be reused by Component Developers and System Architects like usual components.

Remark 1: If a SubSystem is part of a CompositeComponent (inner component) is looses its white-
box property, as there is a outer black-box component hiding the its and consequently the SubSytem’s
internals.

Remark 2: Structurally, SubSytem can be converted into CompositeComponents and vice versa.
Example: To model a layered architecture, of which each layer is potentially split up to run on multiple

machines (in the resource environment), each layer can be represented by a subsystem, allowing to
allocated each layer’s components individually.

Parent Classes

• ComposedProvidingRequiringEntity (see section 4.7.3.1 on page 96) ,
• RepositoryComponent (see section 4.13.3.20 on page 126)
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4.19 Package pcm::system

4.19.1 Package Overview

The system package holds only the System meta class. A system is the most high-level and out-most
compositional entity of the PCM. It defines the boundaries of a modelled application. Only systems
(more precisely provided services of a system) can be accessed from usage profile. Systems also can
carry QoS-Annotations, a special means to express fixed QoS properties of services that are required at
the system boundary.

4.19.2 Package Diagrams

Figure System Internals Description Overview on the System and its relation to allocation. Exactly
one system is subject to allocation. (see Figure 4.48)

Figure 4.48: System Internals

4.19.3 Detailed Class Documentation

4.19.3.1 Class System

Overview A System is the out-most entity of a PCM’s assembly of components. It captures the model-
ing decision to which extend a system under investigation is modelled within the PCM. A System is not
composable (part of another composition) because it has QoS annotations which are only allowed in the
"outer" composition thing. And a UsageModel must only access ProvidedRoles of a System and not of
inner components. The System is inheriting from ComposedProvidingRequiringEntity to have a unique
means for expressing the inner composition of an entity (here: System). Also it allows using the same
editor etc. being applied to ComposedProvidingRequiringEntity and thus also being useful for System.

A system consists of an assembly and is itself referenced by an allocation (only a System can be allo-
cated). The first specifies how the components are connected with other components, the latter specifies
how the components and connectors are mapped to the resource environment (hardware and middle-
ware). From a structural point of view, Systems can be seen as special kind of CompositeComponents.
Systems are not supposed to be reused as components are. The are assumed to be coupled by using
special techniques for system integration.

A System has provided and required roles like a composite component. Only a system’s provided role
can be accessed from the usage profile. Only a system’s required roles can have QOS annotations.

Like SubSystems, Systems are white-box entities for the Software Architect and also for the System
Deployer. Thus, a System Deployer can and must allocate inner components of a System individually.
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Class Properties Class System has the following properties:

qosAnnotations_System : QoSAnnotations [0..∗]
QoS Annotations allow for specifing fixed (non-parameterised) QoS properties at the system boundary

level for required services. For example, for a required service it can be specified that its response time
is fixed "3 ms". See the QoS Annotations package for more details.

Constraints

SystemMustHaveAtLeastOneProvidedRole:

not self.providedRoles_InterfaceProvidingEntity->isEmpty()

Parent Classes

• Entity (see section 4.7.3.2 on page 97) ,
• ComposedProvidingRequiringEntity (see section 4.7.3.1 on page 96)

4.20 Package pcm::usagemodel

4.20.1 Package Overview

The usage of a software system by external clients has to be captured in models to enable model-driven
performance predictions. Here, the term usage refers to workload (i.e., the number of users concurrently
present in the system), usage scenarios (i.e., possible sequences of invoking services at system provided
roles), waiting delays between service invocations, and values for parameters and component configura-
tions.

This package contains the usage specification language, which (i) provides more expressiveness for
characterising parameter instances than previous models, but (ii) at the same time is restricted to concepts
familiar to domain experts to create a domain specific language. The language is called PCM usage
model.

The UsageModel specifies the whole user interaction with a system from a performance viewpoint. It
consists of a number of concurrently executed UsageScenarios and a set of global UserData specifica-
tions. Each UsageScenario includes a workload and a scenario behaviour. The concepts are explained for
the single meta classes included in this package.

Note that UsageModels are completely decoupled from the inner contents of a system, which consists
of an assembly and a connected resource environment. The UsageModel only refers to services of system
provided roles. It regards the component architecture (i.e., the assembly) as well as used resources (i.e.,
hardware devices such as CPUs and harddisks or software entities such as threads, semaphores) as hid-
den in the system. Thus, the UsageModel only captures information that is available to domain experts
and can be changed by them. Resource environment and component architecture may be changed inde-
pendently from the UsageModel by system architects, if the system’s ProvidedRoles remain unchanged.

Discussion: Notice, that unlike other behavioural description languages for performance prediction
(e.g., [162, 187, 78]), the PCM usage model specifically models user behaviour and for example does
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not refer to resources. Other performance meta-models mix up the specification of user behaviour, com-
ponent behaviour, and resources, so that a single developer role (i.e., a performance analyst) needs to
specify the performance model. Opposed to this, the PCM targets a division of work for multiple devel-
oper roles (cf. Section 3.1 of Heiko Koziolek’s dissertation).

Furthermore, none of the other performance meta-models support explicit service parameter mod-
elling. While CSM [162] includes a meta-class Message to specify the amount of data transferred be-
tween two steps in the performance model, and KLAPER [78] allows the specification of parameter
values in principle, none of these language uses the information to parameterise resource demands or
component behaviour. Additionally, they do not provide the information readily analysable by MDSD
tools.

The PCM usage model has been designed based on meta models such as the performance domain
model of the UML SPT profile [31], the Core Scenario Model (CSM) [162], and KLAPER [78]. It is
furthermore related to usage models used in statistical testing [34]. Although the concepts included in
the PCM usage model are quite similar to the modelling capabilities of the UML SPT profile, there
are some subtle differences: - The usage model is aligned with the role of the domain expert, and uses
only concepts known to this role. It is a domain specific language, whereas the UML SPT performance
domain model is a general purpose language that includes information, which is usually spread over
multiple developer roles such as the component assembler and the system deployer, so that a domain
expert without a technical background could not specify an instance of it. Nevertheless, domain experts
should be able to create PCM usage models with appropriate tools independently from other developer
roles, because such models only contain concepts known to them. - The number of loop iterations is
not bound to a constant value, but can be specified as a random variable. - The control flow constructs
are arranged in a hierarchical fashion to enable easy analyses. - Users are restricted to non-concurrent
behaviour, as it is assumed, that users only execute the services of a system one at a time. - System
service invocations can be enhanced with characterisations of parameters values.

[31] Object Management Group (OMG), ?UML Profile for Schedulability, Performance and Time,?
http://www.omg.org/cgi-bin/doc?formal/2005-01-02, January 2005.

[34] James A. Whittaker and Michael G. Thomason, ?A Markov chain model for statistical software
testing,? IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 812?824, Oct. 1994.

[78] V. Grassi, R. Mirandola, and A. Sabetta, ?From design to analysis models: a kernel language for
performance and reliability analysis of component-based systems,? in Proc. 5th International Workshop
on Software and Performance (WOSP ?05). New York, NY, USA: ACM Press, 2005, pp. 25?36.

[162] D. B. Petriu and M. Woodside, ?A metamodel for generating performance models from UML
designs,? in UML 2004 - The Unified Modeling Language. Model Languages and Applications. 7th
International Conference, Lisbon, Portugal, October 11-15, 2004, Proceedings, ser. LNCS, T. Baar, A.
Strohmeier, A. Moreira, and S. J. Mellor, Eds., vol. 3273. Springer, 2004, pp. 41?53.

[187] C. U. Smith, C. M. Llado, V. Cortellessa, A. D. Marco, and L. G. Williams, ?From UML models
to software performance results: an SPE process based on XML interchange formats,? in Proc. 5th inter-
national workshop on Software and performance (WOSP?05). New York, NY, USA: ACM Press, 2005,
pp. 87?98.

4.20.2 Package Diagrams

Figure Usage Model Description Overview on the UsageModel (see Figure 4.49)
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Figure 4.49: Usage Model

Figure EntryLevelSystemCall Description Overview on the EntryLevelSystemCall (see Figure 4.50)

Figure 4.50: EntryLevelSystemCall

Figure UsageModel_UsageScenario_ScenarioBehaviour Description Overview on UsageModel,
UsageScenario and Workload (see Figure 4.51)

Figure ScenarioBehaviour Description Overview on ScenarioBehaviour (see Figure 4.52)



162 TECHNICAL REFERENCE

Figure 4.51: UsageModel_UsageScenario_ScenarioBehaviour

Figure 4.52: ScenarioBehaviour
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4.20.3 Detailed Class Documentation

4.20.3.1 Class AbstractUserAction

Overview See the AbstractAction documentation for why it is advantageous to model control flow in
this way, as the same principle is used in the RDSEFF language.

Concrete user actions of the usage model are: - Branch - Loop - EntryLevelSystemCall - Delay

Class Properties Class AbstractUserAction has the following properties:

predecessor : AbstractUserAction [0..1]

scenarioBehaviour_AbstractUserAction : ScenarioBehaviour

successor : AbstractUserAction [0..1]

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.20.3.2 Class Branch

Overview A Branch splits the user flow with a XOR-semantic: one of the included BranchTransi-
tions is taken depending on the specified branch probabilities. Each BranchTransition contains a nested
ScenarioBehaviour, which a user executes once this branch transition is chosen. After execution of the
complete nested ScenarioBehaviour, the next action in the user flow after the Branch is its successor
action.

A constraint ensures that all branchProbabilities of the included BranchTransitions sum up to 1.

Class Properties Class Branch has the following properties:

branchTransitions_Branch : BranchTransition [0..∗]

Constraints

AllBranchProbabilitiesMustSumUpTo1:

self->collect(branchTransitions_Branch.branchProbability)->sum() > 0.999 and self->↘
→collect(branchTransitions_Branch.branchProbability)->sum() <1.001

Parent Classes

• AbstractUserAction (see section 4.20.3.1 on page 163)
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4.20.3.3 Class BranchTransition

Overview The BranchTransition is an association class that realises the containment of ScenarioBe-
haviours in in the branches of a Branch action. It is a separate meta class because it has the additional
attribute branchProbability that specifies how probably it is that the references ScenarioBehaviour is
executed in the Branch action.

See also Branch.

Class Properties Class BranchTransition has the following properties:

branchProbability : EDouble

branch_BranchTransition : Branch

branchedBehaviour_BranchTransition : ScenarioBehaviour

4.20.3.4 Class ClosedWorkload

Overview ClosedWorkload specifies directly the (constant) user population and a think time. It models
that a fixed number of users execute their scenario, then wait (or think) for the specified amount of think
time as a RandomVariable, and then reenter the system executing their scenario again. Performance
analysts use closed workloads to model scenarios, where the number of users is known (e.g., a fixed
number of users in a company).

Class Properties Class ClosedWorkload has the following properties:

population : EInt

thinkTime_ClosedWorkload : PCMRandomVariable

Constraints

PopulationInClosedWorkloadNeedsToBeSpecified:

not self.population.oclIsUndefined() and self.population <> ’’

ThinkTimeInClosedWorkloadNeedsToBeSpecified:

not self.thinkTime_ClosedWorkload.oclIsUndefined() and self.thinkTime_ClosedWorkload.↘
→specification <> ’’
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Parent Classes

• Workload (see section 4.20.3.15 on page 170)

4.20.3.5 Class Delay

Overview A Delay represents a timing delay as a RandomVariable between two user actions. The
Delay is included into the usage model to express that users do not call system services in direct succes-
sions, but usually need some time to determine their next action. User delays are for example useful, if
a performance analyst wants to determine the execution time for a complete scenario behaviour (instead
of a single service), which needs to include user delays.

Class Properties Class Delay has the following properties:

timeSpecification_Delay : PCMRandomVariable

Parent Classes

• AbstractUserAction (see section 4.20.3.1 on page 163)

4.20.3.6 Class EntryLevelSystemCall

Overview An EntryLevelSystemCall models the call to a service provided by a system. Therefore, an
EntryLevelSystemCall references a ProvidedRole of a PCM System, from which the called interface and
the providing component within the system can be derived, and a Signature specifying the called service.
Notice, that the usage model does not permit the domain expert to model calls directly to components,
but only to system roles. (TODO: Add such a constraint.) This decouples the System structure (i.e., the
component-based software architecture model and its allocation) from the UsageModel and the software
architect can change the System (e.g., include new components, remove existing components, or change
their wiring or allocation) independently from the domain expert, if the system provided roles are not
affected. EntryLevelSystemCalls may include a set of input parameter characterisations and a set of
output parameter characterisations (as described in the pcm::parameters package). However, the random
variables characterising the input parameters like NUMBER_OF_ELEMENTS can not depend on other
variables in the usage model. They have to be composed from literals only including literals describing
random variables having a certain fixed distribution.

Class Properties Class EntryLevelSystemCall has the following properties:

inputParameterUsages_EntryLevelSystemCall : SetVariable [0..∗]

outputParameterUsages_EntryLevelSystemCall : SetVariable [0..∗]

providedRole_EntryLevelSystemCall : ProvidedRole

signature_EntryLevelSystemCall : Signature
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Parent Classes

• AbstractUserAction (see section 4.20.3.1 on page 163)

4.20.3.7 Class Loop

Overview A Loop models a repeated sequence of actions in the user flow. It contains a nested Scenar-
ioBehaviour specifying the loop body, and a RandomVariable specifying the number of iterations.

Class Properties Class Loop has the following properties:

bodyBehaviour_Loop : ScenarioBehaviour

loopIteration_Loop : PCMRandomVariable

Parent Classes

• AbstractUserAction (see section 4.20.3.1 on page 163)

4.20.3.8 Class OpenWorkload

Overview OpenWorkload specifies usage intensity with an inter-arrival time (i.e., the time between
two user arrivals at the system) as a RandomVariable with an arbitrary probability distribution. It models
that an infinite stream of users arrives at a system. The users execute their scenario, and then leave the
system. The user population (i.e., the number of users concurrently present in a system) is not fixed in
an OpenWorkload.

Class Properties Class OpenWorkload has the following properties:

interArrivalTime_OpenWorkload : PCMRandomVariable

Constraints

InterArrivalTimeInOpenWorkloadNeedsToBeSpecified:

not self.interArrivalTime_OpenWorkload.oclIsUndefined() and self.↘
→interArrivalTime_OpenWorkload.specification <> ’’

Parent Classes

• Workload (see section 4.20.3.15 on page 170)
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4.20.3.9 Class ScenarioBehaviour

Overview A ScenarioBehaviour specifies possible sequences of executing services provided by the
system. It contains a set of AbstractUserActions, each referencing a predecessor and successor (except
the first and last action), thereby forming a sequence of actions.

See the AbstractAction documentation for why it is advantageous to model control flow in this way,
as the same principle is used in the RDSEFF language.

Concrete user actions of the usage model are: - Branch - Loop - EntryLevelSystemCall - Delay - Start
- Stop

So far, ScenarioBehaviours do not include forks in the user flow (i.e., splitting the flow with an AND
semantic), as it is assumed that users always act sequentially.

As there are no random variables depending on other variables in the usage model, there are no equiv-
alent actions to GuardedBranchTransitions or CollectionIteratorActions.

Class Properties Class ScenarioBehaviour has the following properties:

actions_ScenarioBehaviour : AbstractUserAction [0..∗]

branchTransition_ScenarioBehaviour : BranchTransition [0..1]

loop_ScenarioBehaviour : Loop [0..1]

usageScenario_SenarioBehaviour : UsageScenario [0..1]

Constraints

Exactly one start:

self.actions_ScenarioBehaviour->select(s|s.oclIsTypeOf(Start))->size() = 1

Exactly one stop:

self.actions_ScenarioBehaviour->select(s|s.oclIsTypeOf(Stop))->size() = 1

Each user action except Start and Stop must have a predecessor and successor:

not self.actions_ScenarioBehaviour->select(s|not s.oclIsTypeOf(Start) and not s.↘
→oclIsTypeOf(Stop))->exists(a|a.oclAsType(AbstractUserAction).predecessor.↘
→oclIsUndefined()) and not self.actions_ScenarioBehaviour->select(s|not s.↘
→oclIsTypeOf(Start) and not s.oclIsTypeOf(Stop))->exists(a|a.oclAsType(↘
→AbstractUserAction).successor.oclIsUndefined())
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Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.20.3.10 Class Start

Overview Each ScenarioBehaviour has exactly one Start action which marks the action where the
control flows begins. Start actions have no predecessor.

Constraints

StartHasNoPredecessor:

self.predecessor.oclIsUndefined()

Parent Classes

• AbstractUserAction (see section 4.20.3.1 on page 163)

4.20.3.11 Class Stop

Overview Each ScenarioBehaviour has exactly one Stop action which marks the action where the
control flows ends. Stop actions have no successor.

Constraints

StopHasNoSuccessor:

self.successor.oclIsUndefined()

Parent Classes

• AbstractUserAction (see section 4.20.3.1 on page 163)

4.20.3.12 Class UsageModel

Overview The UsageModel specifies the whole user interaction with a system from a performance
viewpoint. It consists of a number of concurrently executed UsageScenarios and a set of global UserData
specifications. Each UsageScenario includes a workload and a scenario behaviour.

Class Properties Class UsageModel has the following properties:
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usageScenario_UsageModel : UsageScenario [0..∗]

userData_UsageModel : UserData [0..∗]

4.20.3.13 Class UsageScenario

Overview UsageScenarios are concurrently executed behaviours of users within one UsageModel. It
describes which services are directly invoked by users in one specific use case and models the possible
sequences of calling them. Each UsageScenario includes a workload and a scenario behaviour.

Class Properties Class UsageScenario has the following properties:

scenarioBehaviour_UsageScenario : ScenarioBehaviour

usageModel_UsageScenario : UsageModel

workload_UsageScenario : Workload

Parent Classes

• Entity (see section 4.7.3.2 on page 97)

4.20.3.14 Class UserData

Overview UserData characterises data used in specific assembly contexts in the system. This data is
the same for all UsageScenarios, i.e., multiple users accessing the same components access the same data.
This UserData refers to component parameters of the system publicized by the software architect (see
pcm::parameters package). The domain expert characterises the values of component parameters related
to business concepts (e.g., user specific data, data specific for a business domain), whereas the software
architect characterises the values of component parameters related to technical concepts (e.g., size of
caches, size of a thread pool, configuration data, etc.). One UserData instance includes all parameter
characterisation for the annotated entity.

Class Properties Class UserData has the following properties:

assemblyContext_userData : AssemblyContext

usageModel_UserData : UsageModel

userDataParameterUsages_UserData : SetVariable [0..∗]
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4.20.3.15 Class Workload

Overview A Workload specifies the usage intensity of a system, which relates to the number of users
concurrently present in the system. The PCM usage model adopts this concept from classical queueing
theory [123]. The specified workloads can directly be used in queueing networks or easily be mapped to
markings in stochastic Petri nets. Workloads can either be open or closed.

The algorithms used to analyse queueing networks differ depending on whether open or closed work-
loads are modelled [123]. Some special queueing networks can only be analysed given a particular
workload type (open or closed). Notice, that it is possible to specify a usage model with open workload
usage scenarios and closed workload usage scenarios at the same time. Open and closed workloads can
be executed in parallel when analysing the model.

[123] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quantitative System Performance. Pren-
tice Hall, 1984.

Class Properties Class Workload has the following properties:

usageScenario_Workload : UsageScenario

4.21 Package stoex

4.21.1 Package Overview

4.21.2 Detailed Class Documentation

4.21.2.1 Class AbstractNamedReference

Overview

Class Properties Class AbstractNamedReference has the following properties:

referenceName : String

4.21.2.2 Class Atom

Overview

Parent Classes

• Unary (see section 4.21.2.28 on page 177)

4.21.2.3 Class BoolLiteral

Overview

Class Properties Class BoolLiteral has the following properties:
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value : Boolean

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.4 Class BooleanExpression

Overview

Parent Classes

• IfElse (see section 4.21.2.11 on page 172)

4.21.2.5 Class BooleanOperatorExpression

Overview

Class Properties Class BooleanOperatorExpression has the following properties:

left : BooleanExpression

operation : BooleanOperations

right : BooleanExpression

Parent Classes

• BooleanExpression (see section 4.21.2.4 on page 171)

4.21.2.6 Class CompareExpression

Overview

Class Properties Class CompareExpression has the following properties:

left : Term

operation : CompareOperations

right : Term

Parent Classes

• Comparison (see section 4.21.2.7 on page 172)
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4.21.2.7 Class Comparison

Overview

Parent Classes

• BooleanExpression (see section 4.21.2.4 on page 171)

4.21.2.8 Class DoubleLiteral

Overview

Class Properties Class DoubleLiteral has the following properties:

value : EDouble

Parent Classes

• NumericLiteral (see section 4.21.2.17 on page 174)

4.21.2.9 Class Expression

Overview

4.21.2.10 Class FunctionLiteral

Overview

Class Properties Class FunctionLiteral has the following properties:

id : String

parameters_FunctionLiteral : Expression [0..∗]

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.11 Class IfElse

Overview

Parent Classes

• Expression (see section 4.21.2.9 on page 172)
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4.21.2.12 Class IfElseExpression

Overview

Class Properties Class IfElseExpression has the following properties:

conditionExpression : BooleanExpression

elseExpression : BooleanExpression

ifExpression : BooleanExpression

Parent Classes

• IfElse (see section 4.21.2.11 on page 172)

4.21.2.13 Class IntLiteral

Overview

Class Properties Class IntLiteral has the following properties:

value : Integer

Parent Classes

• NumericLiteral (see section 4.21.2.17 on page 174)

4.21.2.14 Class NamespaceReference

Overview

Class Properties Class NamespaceReference has the following properties:

innerReference_NamespaceReference : AbstractNamedReference

Parent Classes

• AbstractNamedReference (see section 4.21.2.1 on page 170)

4.21.2.15 Class NegativeExpression

Overview

Class Properties Class NegativeExpression has the following properties:
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inner : Unary

Parent Classes

• Unary (see section 4.21.2.28 on page 177)

4.21.2.16 Class NotExpression

Overview

Class Properties Class NotExpression has the following properties:

inner : Unary

Parent Classes

• Unary (see section 4.21.2.28 on page 177)

4.21.2.17 Class NumericLiteral

Overview

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.18 Class Parenthesis

Overview

Class Properties Class Parenthesis has the following properties:

innerExpression : Expression

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.19 Class Power

Overview

Parent Classes

• Product (see section 4.21.2.22 on page 175)
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4.21.2.20 Class PowerExpression

Overview

Class Properties Class PowerExpression has the following properties:

base : Power

exponent : Unary

Parent Classes

• Power (see section 4.21.2.19 on page 174)

4.21.2.21 Class ProbabilityFunctionLiteral

Overview

Class Properties Class ProbabilityFunctionLiteral has the following properties:

function_ProbabilityFunctionLiteral : null

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.22 Class Product

Overview

Parent Classes

• Term (see section 4.21.2.26 on page 176)

4.21.2.23 Class ProductExpression

Overview

Class Properties Class ProductExpression has the following properties:

left : Product

operation : ProductOperations

right : Power
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Parent Classes

• Product (see section 4.21.2.22 on page 175)

4.21.2.24 Class RandomVariable

Overview

Class Properties Class RandomVariable has the following properties:

expression : Expression

specification : String

4.21.2.25 Class StringLiteral

Overview

Class Properties Class StringLiteral has the following properties:

value : String

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.26 Class Term

Overview

Parent Classes

• Comparison (see section 4.21.2.7 on page 172)

4.21.2.27 Class TermExpression

Overview

Class Properties Class TermExpression has the following properties:

left : Term

operation : TermOperations

right : Product



PACKAGE PROBFUNCTION 177

Parent Classes

• Term (see section 4.21.2.26 on page 176)

4.21.2.28 Class Unary

Overview

Parent Classes

• Power (see section 4.21.2.19 on page 174)

4.21.2.29 Class Variable

Overview

Class Properties Class Variable has the following properties:

id_Variable : AbstractNamedReference

Parent Classes

• Atom (see section 4.21.2.2 on page 170)

4.21.2.30 Class VariableReference

Overview

Parent Classes

• AbstractNamedReference (see section 4.21.2.1 on page 170)

4.22 Package probfunction

4.22.1 Package Overview

4.22.2 Detailed Class Documentation

4.22.2.1 Class BoxedPDF

Overview

Class Properties Class BoxedPDF has the following properties:

samples : ContinuousSample [0..∗]
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Parent Classes

• ProbabilityDensityFunction (see section 4.22.2.9 on page 179)

4.22.2.2 Class Complex

Overview

Class Properties Class Complex has the following properties:

imaginary : EDouble

real : EDouble

4.22.2.3 Class ContinuousPDF

Overview

Parent Classes

• ProbabilityDensityFunction (see section 4.22.2.9 on page 179)

4.22.2.4 Class ContinuousSample

Overview

Class Properties Class ContinuousSample has the following properties:

probability : EDouble [0..1]

value : EDouble [0..1]

4.22.2.5 Class ExponentialDistribution

Overview

Class Properties Class ExponentialDistribution has the following properties:

rate : EDouble

Parent Classes

• ContinuousPDF (see section 4.22.2.3 on page 178)



PACKAGE PROBFUNCTION 179

4.22.2.6 Class GammaDistribution

Overview

Class Properties Class GammaDistribution has the following properties:

alpha : EDouble

beta : EDouble

Parent Classes

• ContinuousPDF (see section 4.22.2.3 on page 178)

4.22.2.7 Class LognormalDistribution

Overview

Class Properties Class LognormalDistribution has the following properties:

mu : EDouble

sigma : EDouble

Parent Classes

• ContinuousPDF (see section 4.22.2.3 on page 178)

4.22.2.8 Class NormalDistribution

Overview

Class Properties Class NormalDistribution has the following properties:

mu : EDouble

sigma : EDouble

Parent Classes

• ContinuousPDF (see section 4.22.2.3 on page 178)

4.22.2.9 Class ProbabilityDensityFunction

Overview
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Parent Classes

• ProbabilityFunction (see section 4.22.2.10 on page 180)

4.22.2.10 Class ProbabilityFunction

Overview

4.22.2.11 Class ProbabilityMassFunction

Overview

Class Properties Class ProbabilityMassFunction has the following properties:

orderedDomain : EBoolean

samples : Sample [0..∗]

Parent Classes

• ProbabilityFunction (see section 4.22.2.10 on page 180)

4.22.2.12 Class Sample

Overview

Class Properties Class Sample has the following properties:

probability : EDouble [0..1]

value : T

4.22.2.13 Class SamplePDF

Overview

Class Properties Class SamplePDF has the following properties:

distance : EDouble [0..1]

values : Complex [0..∗]

Parent Classes

• ProbabilityDensityFunction (see section 4.22.2.9 on page 179)
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4.23 Package units

4.23.1 Package Overview

4.23.2 Detailed Class Documentation

4.23.2.1 Class BaseUnit

Overview

Class Properties Class BaseUnit has the following properties:

name : String

4.23.2.2 Class Unit

Overview

4.23.2.3 Class UnitCarryingElement

Overview

Class Properties Class UnitCarryingElement has the following properties:

unit : Unit [0..1]

unitSpecification : String

4.23.2.4 Class UnitLiteral

Overview

Class Properties Class UnitLiteral has the following properties:

baseUnit : BaseUnit

Parent Classes

• Unit (see section 4.23.2.2 on page 181)

4.23.2.5 Class UnitMultiplication

Overview

Class Properties Class UnitMultiplication has the following properties:
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units : Unit [1..∗]

Parent Classes

• Unit (see section 4.23.2.2 on page 181)

4.23.2.6 Class UnitPower

Overview

Class Properties Class UnitPower has the following properties:

exponent : Integer

unit : Unit

Parent Classes

• Unit (see section 4.23.2.2 on page 181)

4.23.2.7 Class UnitRepository

Overview

Class Properties Class UnitRepository has the following properties:

units : BaseUnit [0..∗]



Chapter 5

Discussion
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5.1 PCM versus UML2

Despite the fact that several concepts in the PCM have counterparts in the UML2 meta-model, the PCM’s
design is intentionally not based on the UML2 meta-model. We argue against commonly used arguments
for using UML2 and highlight its additional problems which hinder an approach as described in this
paper.

Common arguments for using UML2 as foundation of performance prediction models are the wide-
spread use and familiarity of the developers with UML2, the availability of model-instances and the reuse
of existing concepts.

We agree that using a notation familiar to developers is necessary to increase the willingness to accept
and use a new technique. As a consequence we reused the UML2 graphical notation whenever it appeared
adequate. However, as we use model-driven techniques to transform the model instances into prediction
models, the source model should be unambiguous in a way which ideally only has one concept to model
a certain fact. In UML2 many constructs exist which allow modelling a single fact in many different
ways. Take for example a loop modelled in an UML2 activity diagram. Either an iterator node or a
control flow going backwards may be used to express it. Facing such ambiguities, transformations turn
out to be overly complex as they have to identify all these different options.

The same argument also holds for the reuse of existing UML2 models for performance predictions.
Industrial style UML2 models have mostly been designed for human communication. Hence, they use
models which need further explanations, UML2 notes, or additional documentation which renders them
unsuited for automated, machine interpreted model transformations. Besides the effort of addition per-
formance annotations using a UML profile, such models would need significant effort to prepare them
for automated predictions aligning the model with the concepts as expected by the transformation (for
further discussions on using UML2 in model-driven approaches see [51]).

Using UML2 tools and profiles for performance annotations raises an additional issue. Performance
annotations like those defined in the UML-SPT profile are rather complex and their attachment to model
elements is error-prone. Support for this task by means of modern UIs, like on the fly error correction,
syntax highlighting, etc. is crucial. However, the UML stereotype mechanism allows only for editing ba-
sic datatypes like strings or numbers with very basic editing capabilities. As a way out, some UML tools
offer extension mechanisms to customise the tool’s editing capabilities. However, such extensions need
special coding for every UML2 tool available. In addition to the issues with specifying the annotations,
additional problems arise when implementing model transformations using standard transformation ap-
proaches like QVT. In present state, support for stereotypes is limited as they do not offer any means to
parse tagged values. For SPT based annotations this means transforming the annotations using for exam-
ple ad-hoc Java transformations which means loosing the advantage of the standardised transformation
engine again.

Reusing UML2 concepts sounds good on first sight as well. In our PCM, several concepts like in-
terface, signature, etc. have their counterparts in UML2. However, as UML2 is a large and complex
meta-model respecting all kinds of concepts available is difficult - especially, when defining the con-
cept’s meaning wrt. a performance prediction model. Therefore, the PCM is restricted to concepts for
which we know how to map them onto the performance domain and how to predict their performance
impact.

Finally, UML2 is not designed specifically for the aim of doing performance predictions which can
be seen by the need of profiles for model annotations. Opposed to that, the PCM includes advanced
concepts coming from the CBSE as well as from the performance domain. Examples of the additional
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concepts are service effect specifications, a component type hierarchy, inherent support for performance
annotations and an explicit component context model for expressing a components QoS in dependence
of its environment [52]. In this paper, we focus on QoS-relevant modelling elements, a specification of
the other concepts can be found on the PCM’s website [53].

With all that said, it becomes clear that using the PCM for legacy projects includes migrating existing
UML2 model into the PCM. If the models have been designed for human communication, this might not
be a problem as the models need checking anyhow. For models which have already been designed for
model driven approaches, writing a transformation to initially transform the UML2 model into the PCM
becomes necessary.
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5.2 Related Work

Component Models In recent years, many component models have been developed for many different
purposes. A taxonomy of these models can be found in [7].

• ROBOCOP: [54] allows performance predictions, aims at embedded systems.
• PACC: [55] allows performance predictions, aims at embedded systems.
• Koala: [56] no QoS, aims at embedded systems
• SOFA: [21] allows protocol checking.
• Fractal: allows runtime reconfigurations of architectures
• UML: [57] limited component concept
• CCM: no QoS
• EJB: no QoS
• COM+: no QoS

Performance Meta-Models To describe the performance properties of software systems, several meta-
models have been introduced (Survey by [58]).

• SPE-Metamodel: [59] designed for object-oriented software systems.
• UML+SPT profile: [29] offers capabilities to extend UML models with performance properties.

Is not suited for parametric dependencies, which are needed for component specifications.
• CSM: [30] is closely aligned with the UML-SPT approach and does not target component-based

systems.
• KLAPER: [32] is designed for component-based architectures and reduces modelling complexity

by treating components and resources in a unified way.
• UML MARTE: [37] UML profile with performance annotations for real-time and embedded sys-

tems. Includes a hardware model and allocation notations.
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5.3 Open Issues and Limitations

Parts of this section are taken from [23].

• Resource Model: The PCM’s resource model is still very limited and supports only a few types of
abstract resource types on the hardware layer. QoS influencing factors from the middleware, the
virtual machine, and operating system are still missing in the PCM’s resource model. We plan to
introduce a layered resource model, where different system levels (such as middleware, operating
system, hardware) can be modelled independently and then composed vertically, just as software
components are composed horizontally. We also plan to enhance the PCM modelling and analysis
capabilities w.r.t. virtualized environments.
• Dynamic Architecture: The PCM supports analysing static, component-based architectures with

fixed connectors and fixed component allocations to resources. However, some systems (e.g., in-
volving local mobility or web services) have a dynamic architecture, where component connectors
can change, components can be allocated to different resources, and components can be replicated
at runtime. Methods from Grassi et al. [60] and Caporuscio et al. [61] allow performance pre-
diction and analysis for dynamically reconfigurable architectures. Extending the PCM into this
direction would increase the number of analysable systems.
• Manual Prediction Result Interpretation and Feedback: The PCM’s feedback after running

model solvers that deliver performance metrics is limited. Although the automated improvement
(cf. Section 3.5) can explore the design space, it does not provide support for manual inspection
of the performance characteristics of a single architecture candidate. There are various possibili-
ties for improvement: Tools could graphically highlight bottlenecks in a PCM model instance and
annotate the predicted passage times for individuals actions into System (combined) and RDSEFF
instances. Analysis tools could also be prepared for important recurring questions about the per-
formance of a system, such as ”what is the maximum throughput?”, ”what is the bottleneck re-
source?”, etc., for which they would provide specialised visualisations. Performance solvers could
also be adapted to allow an automatic multi-variable sensitivity analysis of the performance of a
PCM instance.
• Internal State: The internal state of a software component can influence its QoS characteristics

in the same manner as input parameter [26]. In the PCM, only a static abstraction of internal state
is modelled with component parameters (Chapter 3.4.2.3), which cannot change during runtime.
This abstraction avoid state space explosion, because a component-based system can have a huge
number of user-dependent internal states. However, future extensions to the PCM could experi-
ment with less high abstractions for the internal state and make it user-dependent and changeable
in specific scenarios. For example, state machines could be used to model possible internal states
and transitions between them. Component parameter could provide default values capturing the
initial state of a component. It remains to be validated in which cases such a model is still solvable.
• Identification of the Relevant QoS Parameters: To achieve accurate QoS predictions, the pa-

rameters influencing the attributes of interest need to be identified. A lot of work has already been
done in this context, in UML for example by the definition of the UML SPT profile [62]. How-
ever, the existing work needs to be reviewed, to be extended and the identified parameters needed
to be specified within our component model. Furthermore, means to analyse and derive the desired
performance metrics from the input values have to be found and/or developed.
• High-level concurrency modelling constructs: We plan to add special modelling constructs for

concurrent control flow into the PCM. This shall relieve the burden from developers to specify
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concurrent behaviour with basic constructs, such as forks or semaphores for synchronisation. The
concurrency modelling constructs shall be aligned with known concurrency patterns and be con-
figurable via feature diagrams. Model-transformations shall transform the high-level modelling
constructs to the performance domain of analytical and simulation models.
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