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Abstract

The large amount of data in the Karlsruhe 3D Ultrasound Computed

Tomography (USCT) of about 20 GBytes per 3D dataset has to be re-

duced considerably to accelerate the data acquisition and analysis,

and to reduce the necessary storage space. Ultrasound signals in-

stead of images were compressed. The state-of-the-art and newly

proposed compression methods were analyzed and implemented.

A software system was designed to support the development of data

compression methods. A new lossless data compression, i.e. a

cascade bit-wise run length method, was developed and compared

with the state-of-the-art lossless data compression methods. Lossy

compression methods were recommended for a higher compression

ratio. The parameters of discrete wavelet transform, multi-fractal

analysis, continuous wavelet transform, discrete cosine transform

and spiking deconvolution based methods as well as a peak detec-

tion method and its modified version were adapted for data com-

pression with a reduction of noise. Their computational complexi-

ties were compared.

A new evaluation scheme for comparison of compression methods

was proposed. A comparison of reconstructed images instead of

compressed signals was used to evaluate compression methods of

ultrasound signals. As objective image quality estimators non refer-

ence and reference based estimators were investigated and com-

pared. The original image achieved with the uncompressed datasets

and an ideal reference image achieved with simulated datasets were

constructed as reference image. Optical flow based and a commit-

tee model based image quality estimator were newly designed. The

limitations of the optical flow based estimator were discussed. The

committee model based estimator combines the advantages of dif-

ferent state-of-the-art image quality scores.

Finally, a discrete wavelet based data compression method at a

compression ratio 15 was suggested for compression of USCT data-

sets.
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Chapter 1

Introduction

1.1 Background

Ultrasound computed tomography (USCT) is developed at KIT aim-

ing at a new medical imaging system for early detection of breast

cancer which is the most common cause of cancer death among

women in Europe [1]. Compared with the commonly used modali-

ties, such as breast self-exam, X-ray mammography, magnetic res-

onance imaging (MRI) and conventional ultrasound imaging, USCT

is a low cost and non-invasive instrument with low speckle noise

and high resolution for breast cancer diagnosis [2, 3, 4, 5].

An experimental result with a specially designed phantom repre-

sents the high resolution of images in USCT [6, 7]. This phantom

is constructed with a plastic cylinder in which 15 nylon threads are

mounted parallel to the axel of the cylinder. The diameter of each

nylon thread is 0.1 mm. These nylon threads can be seen clearly in

the reconstructed image in Fig. 1.1. Encouraged by the high reso-

lution of this reconstructed image, a 3D USCT was developed. The

used results are from a subset in 2D.

1.2 Motivation and aim

More than 20 GBytes of raw data are necessary in 3D USCT to re-

construct a 3D USCT image [8]. Such a large amount of data is

costly to be stored, transported and processed. E.g. it takes about

one week with one PC (Pentium 4, 3.2 GHz, 2.0 GB RAM) for recon-

struction of a 3D image with a binning of 225 × 225 × 392. The large

amount of data limits the utilization of USCT.
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Figure 1.1: The scheme for the cross section of nylon threads which

has a diameter of 0.1 mm, is represented with the black point on

the left side of the image. The reconstructed image with the USCT

system is shown on the right side.

According to the storage capacity and the reconstruction time, it is

highly desirable to reduce the amount of data considerably. The

ultrasound signal includes contents about tissues, noise and re-

dundancies. The possible reduction rate is based on the content of

tissues in the ultrasound signals.

A suitable method of data compression has to be found for reducing

the amount of data. The compression method should be used for

ultrasound signals in USCT with considerably reducing the amount

of data without losing the information of imaging objects, i.e. only

the irrelevant data should be removed. The second challenge is to

find an estimator for the quality of images comparing the different

methods and stages of data compression.

1.3 Contributions of the thesis

Ultrasound signals instead of images were compressed in this work.

Millions of ultrasound signals from the same dataset had to be

compressed. The state-of-the-art and newly proposed compression

methods were analyzed and implemented based on the characte-

ristics of ultrasound signals in 3D USCT. A new evaluation scheme

for comparison of compressed signals was proposed. The evaluation

results were used to evaluate the compression methods. The esti-

mators used in the evaluation scheme were discussed and analyzed.

The definition of the data compression and an overview of the state-

of-the-art data compression methods were given in section 2.1. The

USCT setup was introduced in section 2.2 in which the reconstruc-

tion method and the characteristics of reconstructed images were

1



explained.

A software system was designed to support the development of data

compression methods. This system made the implementation and

evaluation of data compression independent of the formats of data-

sets which were changed with the version of USCT instruments.

In this system the implemented compression methods, parameters

and estimators in the evaluation scheme were replaced flexibly by

the users to optimize data compression in USCT.

A new lossless data compression was developed and compared with

the state-of-the-art lossless data compression methods. The distri-

butions of least and most significant bits of datasets were analyzed.

The property of this distribution was utilized to design a cascade

bit-wise run length method.

Lossy compression methods were recommended because they re-

sulted in a higher compression ratio relative to lossless methods.

The parameters of discrete wavelet transform, multi-fractal trans-

form, continuous wavelet transform, discrete cosine transform and

spiking deconvolution based methods were adapted for the data in

USCT and were tested with a large range of compression ratios. In

addition, a peak detection method and its modified version were

implemented for data compression to preserve more useful infor-

mation at a high compression ratio.

The ultrasound signals in USCT were analyzed in section 2.3. Based

on this analysis the newly developed lossless compression method

was explained in section 2.4. The parameter optimization of state-

of-the-art lossy compression methods to USCT datasets were de-

scribed in section 2.5.

Noise as irrelevant component of ultrasound signals was reduced

during data compression. The computational complexity of differ-

ent compression methods was analyzed and compared. The com-

putational complexity and the denoising ability of the adapted lossy

compression methods were discussed in section 2.6.

Evaluation methods for the compressed signals instead of images

were reviewed. A comparison of reconstructed images instead of

compressed signals was used to evaluate compression methods of

ultrasound signals. The basic ideas of image quality based assess-

ment method for data compression were proposed in section 3.1.
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Additionally, the difficulties and the hypotheses of designing this

assessment system were explained at the end of this section.

The state-of-the-art and newly designed image quality estimators

for scoring image quality were analyzed. As objective image quality

estimators non-reference and reference based estimators were re-

searched. The performance of non-reference and reference based

estimators was discussed by comparison with the subjective image

quality estimator.

Firstly, non-reference estimators for evaluation of the image quality

were considered to avoid designing a reference image. The theoret-

ical and experimental analyses were carried out to find a suitable

non-reference method.

Secondly, reference based image quality estimators were analyzed

in this work. The original image of USCT achieved with the uncom-

pressed datasets was reconstructed and filtered as reference image

for evalution of compressed datasets.

An ideal reference image was achieved with simulated datasets of

3D USCT for implementation of reference based image quality esti-

mators. The imaged objects in the ideal reference images were de-

signed with a-priori defined positions and acoustic properties. Th-

ese simulated datasets were also used to analyze the compression

methods as well as the imaging properties of whole USCT system.

Two reference based image quality estimators were newly designed

to overcome the disadvantages of state-of-the-art image quality es-

timators. The first designed image estimator was the optical flow

based estimator. This estimator was tested in the evaluation system

of image quality. The limitations of this estimator were discussed;

The second designed estimator was the committee model based es-

timator. The advantages of different state-of-the-art image quality

scores were combined to construct a generalized committee and im-

plemented for USCT.

An overview of the state-of-the-art subjective and objective image

quality estimators was given in section 3.2. The disadvantages

of no-reference image quality estimators were analyzed in section

3.3. The selected and newly designed reference based estimators

for comparison of the compression methods were introduced in sec-

tion 3.4. The reference images were designed in section 3.5.

3



Finally, a discrete wavelet based data compression method was sug-

gested which is based on the experimental results with simulated

and real datasets. The experimental results for simulated and real

USCT datasets were described in chapter 4. These results com-

bined with the methods introduced in this thesis were summarized

in chapter 5.
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Chapter 2

Search for suitable
compression algorithms

2.1 Signal compression in literature

2.1.1 Definition

In this thesis data compression is used to reduce data amounts

without loss of relevant contents. The procedure of data compres-

sion is a transfer of the information into another description format

with less storage and considerable lower load by data transmission

[9]. The consequence of data compression is removing the redun-

dancy or the irrelevant information in the data [10]. The irrele-

vant and interesting contents are given by users according to the

characteristics of data and to the concrete implementation of data

compression.

The definition of compression ratio (CR) used in this work is the ra-

tio between the amount of data before and after compression [11].

CR =
Amount of input data

Amount of output data
. (2.1)

2.1.2 State-of-the-art

After the first data compression method developed by Samuel Morse

in the 1830s for transmitting information with short code-words in

telegraphy, many compression algorithms were developed during

the past hundred years [12, 13].

Compression methods are classified into lossless and lossy com-
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pression. Compression is defined as lossless if the whole data can

be reproduced after decompression, whereas lossy compression elim-

inates some parts of information in the data permanently [14, 15].

The lossless compression methods are commonly used for text com-

pression to retrieve the complete information from the compressed

dataset. Lossy compressions are mostly employed for visual or au-

dio data tolerating some level of quality degradation.

Run Length Encoding (RLE) is the simplest lossless compression

method for reduction of the redundancy. One of the most commonly

used lossless compressions is the Lempel-Ziv-Welch (LZW) method.

Thedata are analyzed based on the probability of the content. A

table is constructed for replacing the repeated content of data by

a code. This table is pre-generated and dynamically updated by

changing the length of the code for a high compression ratio [16].

The theoretical optimal compression ratio of lossless methods is cal-

culated with the entropy of datasets H which is defined as follows:

H = −
m

∑

i=1

pi log2 pi [bits/symbol] (2.2)

where pi is the probability for the appearance of the ith symbol. m is

the number of possible symbols in the whole dataset [17]. In case

L bits are used to save each sample of the dataset, the theoretical

highest compression ratio CRh is calculated as follows [18]:

CRh =
L

H
(2.3)

The advantage of a lossless method is the perfect recovery of the

original data. However, the lossless methods have a low compres-

sion ratio. The compression ratio of lossless compression is usually

smaller than 3. The low compression ratio limits the application of

lossless compression methods [19, 20].

In order to reach a high compression ratio, lossy compression is de-

veloped. The state-of-the-art standard for lossy data compression

of images is JPEG2000 which is based on a wavelet transform. The

JPEG2000 is an improved version of the standard JPEG using the

discrete cosine transform. The images compressed with JPEG2000

are proved to have a higher compression ratio and a lower quality

6



degradation than with JPEG [21, 22]. The most commonly used

standard for video data is MPEG [23] which employs JPEG to com-

press a frame in video and utilizes prediction between neighboring

frames to achieve a higher compression ratio than JPEG.

Lossy compression methods are based on the assumption that there

are irrelevant or redundant contents in data. The irrelevant con-

tents are expected to be removed and the rest contents are stored

with the most compact data format. The compression ratios of the

lossy methods depend upon the ratio of removed contents and the

compact data format.

In case irrelevant content in the data is reduced during the data

compression, the quality of the compressed data may be better than

the original data [24]. Therefore it is important to remove the irrel-

evant content during lossy compression. The irrelevant contents of

the data can be removed in the time/space domain directly, e.g. by

a peak detection method, or in the frequency domain after a trans-

formation, e.g. by discrete cosine transform based data compres-

sion. The state-of-the-art transformation used for data compression

is the wavelet transform which can be used to represent the infor-

mation of data in both time/space and frequency domains [25, 26].

In order to utilize the available characteristics of data, e.g. the pulse

shape information in a signal, the selected mother wavelet is ex-

pected to have similar characteristics as the pulse shape. Another

method to use the information of the pulse shape is deconvolution

based compression, whose performance is influenced strongly by

pulse deformation and noise in datasets [27].

The new theory of compressive sampling [28] is based on the as-

sumption that the information in a signal can be represented by

undersampled datasets. But to apply this theory to data compres-

sion suitable sensing waveforms have to be found.

There are no standard compression methods specially designed for

ultrasound data which are employed widely for different applica-

tions with different data characteristics [29]. The state-of-the-art

data compression methods are reviewed to find a suitable data com-

pression method for USCT. Based on the properties of these com-

pression methods, some of them will be selected and adapted for

USCT based on the characteristics of ultrasound signals.

A further question is at which stage compression should be applied

7



to USCT. USCT data include measured data and reconstructed im-

ages. The measured data consist of ultrasound signals termed as

A-scans. Compression methods are used for A-scans instead of re-

constructed images, because the amount of measured data is larger

than that of reconstructed images depending on the chosen resolu-

tion of images.

2.2 Characteristics of 3D USCT

2.2.1 Experimental setup

The Karlsruhe USCT setup is designed to image human breasts by

ultrasound signals which are emitted and received by ultrasound

transducers and propagated through breast tissues. The schematic

drawing of the imaging process with the USCT setup is shown in

Fig. 2.1. One breast of a patient is immersed into a rotatable cylin-

dric container which is filled with water as the coupling medium

with a diameter of 18.3 cm and a height of 15 cm.

Figure 2.1: Schematic drawing of imaging with USCT.

The ultrasound signals are emitted and received by 48 transducer

arrays which are mounted on the wall of the container and grouped

into three horizontal layers with 16 arrays per layer. Each trans-

ducer array includes 8 emitting and 32 receiving transducers (see

Fig. 2.2). The cylindric container is rotated to 6 positions with 3.75
degree per rotation step. The rotation of the cylinder results in more

positions of transducers, thus to increase the number of ultrasound

signals and the image quality.

2.2.2 Data acquisition

The transducers emit ultrasound pulses one by one with a time

difference of 600 µs. One pulse is emitted and all of the receivers

start to acquire the ultrasound signals, so-called A-scans, simulta-

neously. Thus the number of received A-scans is the combination

8



(a) (b)

Figure 2.2: Schematic drawing (a) and real device (b) for 3D USCT.

of possible emitter and receiver positions, i.e. 3.5 Million. Each A-

scan is saved with 6000 Bytes, therefore one dataset has a size of 21
GBytes.

The received A-scans are denoised with an analog filter and sam-

pled with a frequency of 10 MHz. Each sample of the A-scans is

registered with a width of 12 bits. 192 channels are digitized and

transferred word-wise to a PC. In order to reduce noise, each A-

scan is measured n times and the averaged A-scan is saved [30].

2.2.3 Image reconstruction

The original data in the PC is reconstructed to a 3D image with the

method of synthetic aperture focusing technique (SAFT). A scheme

of the reconstruction method is represented in Fig. 2.3. The cir-

cle stands for a cross section of the rotatable cylindrical container.

The blue area is the water. Each sample of the reflected pulses in

A-scans is projected to an ellipsoid in the reconstructed image. Th-

ese ellipsoids are accumulated to construct one 3D image. The red

ellipse with the solid line corresponds to the cross section of the

reconstructed ellipsoid in the 3D USCT image. The ellipsoids of the

same A-scan have the same foci which are the positions of corre-

sponding emitter and receiver. The yellow blocks at the boundary

of the circle represent emitters and receivers. The geometrical pa-

rameters of the ellipsoid are calculated with the time position of the

sample multiplied by the speed of ultrasound of the propagation

9
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Figure 2.3: Scheme for image reconstruction ellipsoid (red) and in-

formation of corresponding ultrasound pulse. Horizontal and verti-

cal axes stand for time and pressure amplitude, respectively.

medium and the position of the involved emitter and receiver. The

green lines are the propagation paths of the ultrasound pulse re-

flected by two points on the ellipse. The gray value of each pixel on

the ellipsoids corresponds to the pressure amplitude of the sample

in the A-scans.

The image reconstructed with the SAFT method has low speckle

noise because the scattered ultrasound signals from many differ-

ent directions are considered. US imaging is coherent imaging by

the use of interfering signals. The interference of scattered ultra-

sound signals results in speckle noise [31, 32, 33]. Speckle noise

is considered as a negative impact for ultrasound images. Lots of

research work has been done to remove speckle noise by utilizing

its deterministic and multiplicative characteristics [34, 35].

In USCT images speckle noise is reduced significantly. USCT has

the characteristics of coherent imaging. I.e. the media used to

transfer signals contain many sub-resolution scatters [36]. How-

ever the speckle noise is invisible in the original images, due to a

large amount of non-coherent overlapping ellipsoids resulting from

different combined transducers [37]. Technical expression is spa-

cial compounding [37]. The speckle noise in images reconstructed

with compressed datasets may emerge due to the reduced number

of ellipsoids, i.e. A-scans.
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The image is reconstructed with a PC. The time used to reconstruct

a 3D image depends on the characteristics of the used PC, the res-

olution of reconstructed images and the number of applied A-scans

per image part. The image with a high resolution needs about a

week using the 2006 version of the reconstruction method.

Characteristics and limitations of the reconstruction method

The image reconstruction methods are based on the following as-

sumptions:

1. Sound speed assumption: The basic assumption of the recon-

struction method SAFT is that the ultrasound wave propagates

through the breast with a constant speed. However the breast

consists of media with various acoustic properties which re-

sults in an inhomogeneous sound speed distribution. Without

individual correction of the speed of sound the imaged objects

may not be precisely reconstructed, thus the quality of recon-

structed images is influenced. The resulting images become

blurred or show unforeseen positions of imaged objects. In or-

der to overcome these shortcomings, the transmission pulse in

A-scans is used to measure the ultrasound speed distribution

in media and include the measured values into the analysis.

The information about the ultrasound speed is now used to

improve the quality of reconstructed images [38].

2. Overlapping ellipsoids: According to the reconstruction method

SAFT, each sample of A-scans is used to draw an ellipsoid in

the reconstructed image. I.e. for each combination of emitter

and receiver positions one point of imaged objects is recon-

structed as an ellipsoid. Only one point on this ellipsoid is

relevant for the image of the object. By overlapping ellipsoids

from different combinations of emitter and receiver positions

the contrast of imaged objects increases; the irrelevant points

of ellipsoids are going to be the background of reconstructed

images. With increasing number of ellipsoids or measuring

points the background is getting smaller and the contrast of

the USCT images increases.
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2.3 Analysis of ultrasound signals in USCT

2.3.1 Introduction

The center frequency of the used ultrasound wave is larger than

the highest frequency of human hearing which is 20, 000 Hz [39].

USCT uses an ultrasound pulse with a center frequency of approxi-

mately 2.3 MHz and the used transducer has a resonance frequency

of 2.7 MHz. The advantages of ultrasound are low cost and non-

invasiveness [40].

Ultrasound is widely used in medicine to image the internal organs

of bodies with reflected ultrasound waves from the boundaries be-

tween tissues [41]. Besides the diagnosis of early breast cancer in

USCT, the aims of using ultrasound as a medical imaging modality

include observation of the condition and the behavior of fetus, locat-

ing tumors and the observation of human organs. Conventional ul-

trasound uses a focused wave front, however the ultrasound trans-

ducer in USCT has an open aperture for post beam forming [7].

In the following both simulated and real ultrasound signals are an-

alyzed. Simulated signals are achieved based on the code Wave3000

which belongs to the software for simulation of the ultrasound sig-

nals in USCT [42]. These simulated ultrasound signals are used

for studying compression methods. Real ultrasound signals are

employed to understand the acoustic phenomena in USCT exper-

iments.

2.3.2 Wave equation in tissue

An ultrasound wave propagates mechanical energy through media,

thus the wave equation is based on a mechanical model [43]. In this

work the wave equations are used as the mathematical tools to de-

scribe the variation of ultrasound signals in USCT. The simulation

of the ultrasound wave propagation in 3D USCT is based on these

equations.

In the elastic mechanical model the media, i.e. breast tissues, are

modeled as many ideal points with small mass, i.e. small volume

elements of breast tissue, termed as “particles”. These particles vi-

brate near its equilibrium position by a displacement u. In case of

wave propagation through the breast, these particles are displaced
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and thus have a strain relative to their displacement u. According

to Hooke’s law, the strain of particle is linearly proportional to the

stress on the particles. The stress is related to the displacement

u by Newton’s Second Law of Motion. Finally, the displacement

is used to describe the spatial variation of particles with time by

wave equation. The displacement of one dimensional wave equa-

tion is represented with the scalar field u and then the achieved

one dimensional wave equation is a hyperbolic partial differential

equation:
∂2u

∂t2
= c2∇2u, (2.4)

where t is time and ∇2 is the Laplace-operator.

In equation 2.4 c is a constant and depends on the properties of the

breast. The physical meaning of c is the speed of the ultrasound

propagation in the media [39], i.e. between neighboring particles. c
is also called group velocity.

In the above discussion, the acoustic properties of the breast are

represented with a parameter c by assuming the breast tissues are

isotropic. The constant c depends on two independent elastic con-

stants, i.e. Lame constants δ and µ, and the mass density ρ of the

breast tissues. The relationship between them is:

1

c2
=

ρ

δ + 2 · µ, (2.5)

where δ is the 1st Lame constant and µ is the 2nd Lame constant

(also called rigidity modulus). If the properties of the breast tissues

are considered as anisotropic, 36 elastic stiffness constants are nec-

essary to represent the spatial variation of the particles in the wave

equation 2.4 [44]. To simplify the analysis process of ultrasound

signals in this work an isotropic model is employed.

Three dimensional elastic wave equation was used for simulation

of wave propagation in medium in software Wave3000 [45]. The

displacement in three dimensional equation is represented with the

vector field u. In the equation 2.4 the breast tissues are assumed

to be lossless, whereas the real breast tissue in USCT is lossy and

attenuates a part of ultrasound energy during the wave propaga-

tion. This attenuated energy is transformed into heat [46]. In order

to show the attenuation properties of the breast tissues, a viscous-

elastic instead of elastic mechanical model is used to construct the

wave equation. With the viscosity of the tissues the wave equation
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is rewritten to

ρ
∂2

u

∂t2
= (µ + η

∂

∂t
)∇2

u + (δ + µ + φ
∂

∂t
+

1

3
η

∂

∂t
)∇(∇ · u), (2.6)

where φ and η are bulk and shear viscosity modulus and ∇2 is the

vector Laplace-operator. ∇ and ∇· stand for the gradient and diver-

gence operators, respectively [45].

The equation 2.6 is then solved with the finite difference method.

The solutions are used to simulate the variation of ultrasound sig-

nals in breast tissues. To solve this wave equation needs lots of

computing time. The strength of scattered ultrasound pulses is

unobvious to be observed in this equation. Therefore a model for

A-scans has to be designed for analysis of scattered ultrasound

pulses.

2.3.3 Model for A-scans

Each A-scan in USCT is obtained for a certain combination of ul-

trasound transducers. It is not easy to quantify the differences be-

tween different A-scans with a mathematic method. A simplified

method for analysis of the ultrasound pulses in A-scans is to con-

struct a model instead of solving a wave equation [47].

2.3.3.1 Coded excitation

Coded excitation is a designed pulse shape of emitted ultrasound

pulses. The center frequency and the band-width of the coded exci-

tation in USCT are limited by the properties of the transducer and of

breast tissue. Emitted pulses with high frequency content and wide

band-width are strongly absorbed by the tissue, i.e. much energy

will be damped during propagation [46]. Low frequency and narrow

band-width result in a low resolution of USCT images. The selection

of coded excitation is a trade-off between the image resolution and

the acoustic attenuation of ultrasound waves.

The envelope of the used coded excitation is Gaussian with a cen-

ter frequency of 2.3 MHz. The band-width is approx. 2 MHz. The

coded excitation is simulated and plotted in Fig. 2.4 with a sam-

pling frequency of 50 MHz. In the following complete simulations of

the process are used. As emitter pulse shape a coded excitation is
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shown in Fig. 2.4 to construct a model of an A-scan.
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Figure 2.4: Coded excitation for a real dataset with a sampling fre-

quency of 50 MHz and a center frequency of 2.3 MHz.

2.3.3.2 Construction of model

An A-scan records the time development at the receiver position.

The length of an A-scan is 300 µs which is decided by the sound

speed and size of the USCT instrument. Not only the ultrasound

pulse transfers directly from the emitter position to the receiver

position, termed as the transmission pulse, but also the reflected

pulses by different objects in USCT, called reflected pulses, are

recorded in the A-scan. In case more reflected pulses reach the

receiver position at the same time, these pulses are superimposed.

Fig. 2.5 shows a part of two real A-scans with the transmission

and the reflected pulses. Both A-scans are recorded with the same

emitter transducer but with different receivers. The system re-

sponse characterized by the transmission signal is not identical to

the coded excitation due to the frequency dependent attenuation of

ultrasound waves and angular characteristics of transducers. The

reflected pulses are superimposed with parts of the transmission

pulses.

The reflected pulses in A-scans represent the scattered ultrasonic

pulses arising from the boundaries between different tissues of the

breast, e.g. between cancer and glandular tissue. The amplitude

of scattered ultrasound pulse depends on the acoustic impedance

difference between these tissues [29]. The positions of scattered

15



470 480 490 500 510

−0.2

−0.1

0

0.1

0.2

Time/1E−07s

A
m

pl
itu

de
/v

(a)

760 770 780 790
−0.6

−0.4

−0.2

0

0.2

0.4

Time/1E−07s

A
m

pl
itu

de
/v

(b)

Figure 2.5: The transmission pulses from two real A-scans. Th-

ese two A-scans are recorded with the same emitter and different

receivers.

ultrasound pulses in the A-scans depend on the positions, where

these boundaries occur.

Based on the above analysis a simplified model is constructed to

simulate an A-scan, which is a superposition of many ultrasound

pulses Pk with different amplitudes and time delays τ :

Pk(t) = Ak · f̂k(t) ⊗ δ(t − τk) (2.7)

where k is the index of the ultrasound pulses in an A-scan and t
stands for time. Ak and f̂k(t) are the corresponding amplitude and

pulse shape function, respectively. δ(t − τk) denotes the time delay

function at the time of arrival τk (TOA).

The measured pulse shape described by equation (2.7) is strongly

correlated to the applied coded excitation f (in section 2.3.3.1). The

difference between the recorded ultrasound pulsef̂ and coded ex-

citation f is the pulse deformation. One of the most important

reasons for the pulse deformation is the acoustic attenuation in

tissues. Other reasons include angular dependent characteristics

of the impulse response for emitters and receivers, refraction and

diffraction.

An A-scan consists usually not only of transmitted and reflected
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Figure 2.6: Scheme for the multiple scattering of an ultrasound

wave within an object.

pulses but also of stationary noise n:

S(t) =

N
∑

k=1

Pk(t) + n(t), (2.8)

where N is the number of the ultrasound pulses. The noise n arises

from different sources, e.g. environment, electronic devices, etc..

2.3.4 Multiple scattering

It is important to analyze the reflected pulses in USCT, because

these pulses represent the positions and acoustic properties of dif-

ferent tissues within the breast. It is assumed that the objects are

homogeneous and have a certain thickness. The ultrasound waves

are partly reflected on the boundary of objects as shown in Fig. 2.6

due to a different sound impedance of the coupling medium and

the object [48, 49]. Another part is refracted into the object. The

deflected wave is then reflected and deflected again as it encounters

the inner surface of the object. I.e. parts of the ultrasound wave

are reflected back and forth within the object by the inner and outer

surfaces of the object and encounter more reflection processes. This

phenomena is called multiple scattering. Multiple scattering is used

specially to describe the process that an ultrasound signal are re-

flected by more objects one by one before reaching receivers.
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In order to analyze the multiple scattering in USCT, B-scans of ul-

trasound waves are measured. The B-scan is a 2D image comprised

of a set of parallel straight lines each of which corresponds to one

A-scan. These A-scans are measured with one emitter and a set

of receivers on the same height in the USCT. The gray values of

pixels on the B-scans represent the amplitudes of corresponding

samples in A-scans. the Y-axis of B-scans represents the sequence

of samples in A-scans; The X-axis displays the sequence of receiver

positions for corresponding A-scans [50].

Three simple phantoms are employed to analyze the effect of multi-

ple scattering. The first phantom is a metal rod with a diameter of

1.5 mm. The other two phantoms have the same shape as the first

phantom, but with the material PVC and diameters of 4 mm and

8 mm, respectively. For the measurement these phantoms are lo-

cated perpendicularly to the sensors in the center of the transducer

layer. The sampling rate was 10 MHz and 100 receivers with equal

distance to each other are used.

The measured B-scans are plotted in Fig. 2.7. In the B-scan of the

empty vessel (only filled with water) (Fig. 2.7(a)) the line with a shape

of parabola represents the transmitted pulses. The parabola shape

is due to the different distances between the emitter and receiver

positions. The quasi-horizontal line in Fig. 2.7(b) consists of the

reflected pulses from the metal rod. Since the USCT setup is cir-

cularly symmetric and the metal rod is placed near to the center of

the cylinder container, the lengths of the path from the emitter posi-

tion through the metal rod to receiver position are almost identical.

Thus the reflected ultrasound pulses by the metal rod construct a

quasi-horizontal line.

The positions of the additional quasi-horizontal lines in Fig. 2.7(c)

and Fig. 2.7(d) correspond to the reflected ultrasound pulses. Di-

ameters of the PVC rods, the speed of ultrasound and the sampling

frequency are used to calculate the position of transmitted and re-

flected ultrasound pulses. The length of the path that the reflected

pulse propagates is the distance between the surface of PVC rod

and ultrasound transducers and adding several times of the diam-

eter of PVC rod. These additional quasi-horizontal lines show the

multiple scattering in USCT.

Compared to the metal rod the PVC rods have a relative large diam-

eter and a lower sound speed, thus the different orders of multiple
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(d) PVC rod: 8 mm diameter

Figure 2.7: B-scans for empty measurement with transmission

pulses in Fig. 2.7(a); for a metal rod with reflected pulses in Fig.

2.7(b); for PVC rods with multiple scattering in Fig. 2.7(c) and Fig.

2.7(d). X- and Y-axis stand for the receiver position and the sample

number of A-scans, respectively. The gray values of pixels represent

the amplitudes of corresponding samples in A-scans.
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scattering are distinguished. For the metal rod the multiple scat-

tering is not resolved in the achieved B-scan.

The multiple scattering shown in the above experiments is not con-

sidered in USCT, because the reflection factor of breast is much

smaller than that of PVC and metal. The reflection factors are cal-

culated with the ultrasound impedances, which are 1.42 MRayls and

1.63 MRayls for fat and muscle [41] as well as 11.2 MRayls and 45.7
MRayls for PVC and steel [51], respectively.

2.3.5 Attenuation and dispersion

Transmission in A-scans is strongly influenced by the absorption

when transmitted signals propagate in the breast tissue. The scat-

tered pulse may lose a part of energy during passing through the

absorbed media. The loss of energy in the media is termed as damp-

ing [46].

The influence of damping on A-scans is modeled with attenuation

and dispersion. The attenuation describes the geometrical decrease

and physical attenuation of the ultrasound amplitude in the breast

tissue with increasing distance to the emitter position. The disper-

sion designates the dependency of the propagation speed on the fre-

quency. Both attenuation and dispersion are frequency dependent,

i.e. each frequency component of ultrasound pulses has individual

attenuation and dispersion factors.

The mathematical description of damping with attenuation and dis-

persion may be expressed with a power law dependent on frequency

[52]. The system response for the damping properties of tissues

H(f) is described as follows:

H(f) = e(−α(f)−iβ(f))d , (2.9)

where d is the distance between emitter and receiver positions, α(f)
is the attenuation factor which is a function of frequency. β(f) is

the propagation factor of the media at the frequency f [53]. The

function of the attenuation factor α(f) is defined as:

α(f) = α1 |f |y , (2.10)

where α1 and y are attenuation constants and depend on attenu-

ation property of the involved tissues [54]. The propagation factor
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β(f) is correlated to the phase variation of each frequency compo-

nent [55]:

β(f) = 2πf/c0 + βE(f). (2.11)

Where c0 is the sound speed at the center frequency of a pulse. βE

is the dispersion factor which is calculated with the KramersKronig

relation [46]. If the y is an even integer or non integer,

βE(f) = α1 tan(πy/2)f |f |y−1 , (2.12)

and if y is an odd integer [46]

βE(f) = −(2/π)α1f
y ln |f | . (2.13)

With the available attenuation constants of breast tissues and the

parameters of ultrasound pulses, the damping is calculated with

above functions, thus the decreasing amplitude and the shape de-

formation of the received ultrasound pulses are simulated for USCT

[49].

The used parameter values for equation 2.12 are y = 1.67, c0 = 1500
m/s, α1 = 0.81dB/(cm MHz) taken from the experiential results in

[54].

2.4 New lossless compressions

The state-of-the-art lossless methods were tested and achieved the

low compression ratios for A-scans. New methods have to be found

for increasing the compression ratio. The design of new lossless

methods is based on the characteristics of A-scans.

2.4.1 Compression based on neighboring A-scans

The basic idea of this lossless compression is to reduce the redun-

dancy in similar A-scans. The relationship between these A-scans

are analyzed and expected to be used for a high compression ratio.

The A-scans obtained by the same emitting transducer and received

by adjacent receivers in USCT are called neighboring A-scans. The

neighboring A-scans have high similarity since the corresponding

ultrasound waves propagate along similar paths.

21



The amplitude differences between neighboring A-scans are calcu-

lated and saved. Neighboring A-scans differ only by small amplitude

values and the noise. If the neighboring pulses have an identical

pulse shape, the amplitude differences between these neighboring

pulses are given by their time difference. The basic shape of the

transmission pulse in USCT is a periodic sine function of 2.3 MHz

with a Gaussian envelope. In case the time difference is smaller

than one sixth of the sine period, i.e. 0.07 µs, the dynamic range

of the neighboring pulses is smaller than the dynamic range of the

individual original A-scan.

One emitter position S1 and two pairs of receiver positions R1-R2

and R3-R4 are used to get two couples of neighboring A-scans in

Fig. 2.8. The couple of receiver positions R1-R2 stands for the case

which has the largest time differences of neighboring receivers in

USCT, whereas the positions R3-R4 have the smallest time differ-

ence.

Figure 2.8: Scheme for demonstrating neighboring A-scans in the

same horizontal layer of USCT. S1 stands for an emitter position;

R1, R2, R3 and R4 for four extreme receiver positions.

The wave propagation paths for the receiver positions R1 and R2 are

‖S1R1‖ and ‖S1R2‖ respectively. The time difference of neighboring

pulses is the length difference of the propagation paths divided by
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the sound speed: (‖S1R1‖ − ‖S1R2‖) / sound speed. In the current

version of 3D USCT setup there are 96 receivers at each receiver

layer. The arc length between neighboring receivers is 2π/96 ≈ 0.065
radians. The diameter of the cylindrical vessel is 183 mm. The

sound speed is 1500 m/s. Thus the time difference is 4 µs. For the

receiver position R3 and R4, the lengths of the wave propagation

paths ‖S1R3‖ and ‖S1R4‖ are equal, thus the time difference of the

neighboring pulses is zero.

The relationship between ‖S1R1‖ and ‖S1R2‖ is very different from

that between ‖S1R3‖ and ‖S1R4‖. They are used to calculate the

possible range of the time difference of neighboring pulses. Based

on the above analysis the possible range is between zero and 4 µs.
This range is significantly larger than the expected time difference,

i.e. 0.07 µs. I.e. the dynamic range of the amplitude differences for

neighboring A-scans may be as large as the dynamic ranges of the

A-scans. Therefore the amplitude differences between neighboring

A-scan are not suitable for lossless compression of USCT datasets.

Additionally noise plays only a minimum role for this argument.

2.4.2 Compression based on neighboring samples

In order to reduce the dynamic range of the amplitude in A-scans,

the differences between neighboring samples in the same A-scan

are analyzed. In case the variance of these differences is smaller

than that of the A-scan, these differences are saved with fewer bits

than A-scan, thus to compress the amount of the whole datasets.

The distance between two neighboring samples within the same A-

scan can be represented by the phase distance of two neighboring

samples on this A-scan. For simplicity a pulse with unit amplitude

and the shape of the periodic sine function is employed.

The center frequency of ultrasound pulses in USCT is approx. 2.3
MHz. The sampling frequency of A-scans is 10 MHz. An antialias-

ing filter confines the experimental spectrum to frequencies be-

low 4 MHz (3 dB). Assuming that the sine function is sin(2πf)t,
where f is center frequency, t is the time. the time difference be-

tween two neighboring samples corresponds to the phase difference
1

10000000(Hz) ∗ 2300000(Hz) ∗ 2 ∗ π = 0.46π.

The trigonometric function for the difference of two sin functions is
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as follows:

sin(θ) − sin(φ) = 2 cos(
θ + φ

2
) sin(

θ − φ

2
) (2.14)

Putting the sine function sin(2πf)t and the phase difference 0.46π
into the function 2.14 thus:

sin(2πft) − sin(2πft − 0.46π) = 2 cos(2πft − 0.23π) sin(0.23π) (2.15)

≈ 1.3 cos(2πft − 0.23π). (2.16)

The distance between neighboring samples can be represented by

the function in 2.15 which has an amplitude of 1.3. The ampli-

tude of the original pulse is unit, thus the differences of neighboring

samples have a larger variance as the original amplitude of A-scans

(1.3 > 1). Therefore the difference of neighboring samples can not be

used to reduce the dynamic range of A-scans and is unfeasible for

lossless compression of USCT datasets.

2.4.3 Cascading bitwise run length encoding

The histograms of the sample amplitudes in A-scans show that 90%

of the data has a small dynamic range. The over several A-scans av-

eraged data has 16 bits. The values of most samples may be saved

with the eight least significant bits of the 16 bits. Based on this

analysis of A-scans, a bitwise lossless compression method is de-

signed.

If successive samples of an A-scan have the same small dynamic

range of amplitudes, the data amount for saving these samples may

be reduced. The reason is that only a few bits are necessary for th-

ese amplitudes. In order to find these bits, each sample of A-scan is

represented in a binary form. The least and the most significant bits

of the samples are separated to utilize the bitwise relationship be-

tween successive samples of A-scans. The successive samples with

a small dynamic range of amplitudes result in a repetition of values

in some significant bits. E.g. if these amplitudes have small values,

there is a repetition of 0 in the most significant bits. This repetition

has a redundancy which can be compressed with run length encod-

ing (RLE).

For example m successive samples of an A-scan are described with

s1; s2;...sm. The n-th sample is represented with 16 bits as bn −
1,bn − 2, bn − 16 shown in Table 2.1. The bit-stream for the above

example is: b1-1, b2-1,..., bn-1, ..., bm-1, b1-2, b2-2 , ..., bn-2, ...
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s1 s2 ... sn ... sm

b1-1 b2-1 ... bn-1 ... bm-1

b1-2 b2-2 ... bn-2 ... bm-2

... ... ... ... ... ...

b1-16 b2-16 ... bn-16 ... bm-16

Table 2.1: Demonstration of cascaded RLE. Representing samples

in A-scans in a binary form.

, bm-2, ..., b1-16, b2-16,..., bn-16, ... , bm-16. For demonstration

a simple example with m = 3, s1 = 1, s2 = 2, s3 = 3 is represented

in a binary form s1 = 0000000000000001, s2 = 0000000000000010, s3 =
0000000000000011. The achieved bit-stream is:

000000000000000000000000000000000000000000011101. There are lots of

successive 0 and optimal for RLE method. That means the samples

of A-scans are replaced word-by-word by or column-by-column by

a horizontal bit stream.

The first step of this method represents the A-scans in a binary

form. The binary A-scans are then rearranged to bit-stream-blocks

based on the significance of these bits. E.g. the most significant bits

of the neighboring samples are connected as a bit-stream-block.

These achieved bit-stream-blocks are used as the componential bit-

stream-block and connected to a big bit-stream-block as a cascade

of bit-stream-blocks. The cascaded bit-stream-block is compressed

with RLE. The repeat time of a bit is represented by a word. The

word length is optimized by testing the possible lengths with an

iteration process. The optimized word length is selected for each

componential bit-stream-block in the cascading bit-stream-block

for an increasing compression performance. After that, the op-

timized word length is used to save the repeat times of the bits.

Finally, only the first bit and the repeat times of every bit in the

cascaded bit-stream-block are saved.

In this method the optimization process of the parameters increases

the computational complexity. In order to overcome this shortcom-

ing a hardware implementation is suggested for decreasing the com-

puting time of this algorithm.
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Figure 2.9: Fourier transform of an A-scan.

2.4.4 Lossless compression in frequency domain

The ultrasound transducers used in USCT have a high sensitivity to

signals in the frequency range between 1.5 and 4 MHz. However the

data of USCT are used to keep the information of signals in the fre-

quency range between 0 and 5 MHz. A method to reduce the amount

of data is to remove the content of data in the range between 0 and

1.5 MHz as well as between 4 and 5 MHz. As an example the Fourier

transform of an A-scan is shown in Fig. 2.9. The useful contents of

the A-scan are in the range of 1.5 to 4 MHz.

Since useful contents of data are not lost, this method is called

frequency domain based lossless compression. Based on characte-

ristics of used ultrasound transducers in USCT and above analysis

the compression ratio for the frequency domain based lossless com-

pression is 2.

The assumption of this method is that the useful contents of data

is concentrated in a certain range of frequencies. This assumption

is valid due to the measured sensitivity of the transducers in USCT.

2.4.5 Validation of adjacent A-scans and samples

For validation real A-scans are selected from datasets which are

measured with the USCT. The selection of A-scans is based on the
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Position: 00, 01

Position: 48, 49

Position: 60, 61

Position: 96, 97

USCT cylindrical container

Figure 2.10: Used relative positions of emitters and receivers in the

cylindrical USCT container.

position of the emitter and receiver ultrasound transducers. The

selected A-scans are analyzed to understand the characteristics of

USCT datasets.

For this purpose, the amplitudes of A-scans are normalized to the

dynamic range of [−65535,+65535]. These A-scans are measured

with one emitter and different receivers which are located on the

same horizontal layer of the USCT cylindrical container. In the 3D

USCT setup the indexes of emitter and receiver layers are 8 and 16,

respectively. The selected neighboring A-scans are emitted at the

position 00 and received at the positions 00, 01; 48, 49; 60, 61; 96,

97, as shown in Fig. 2.10.

The standard deviation of the amplitude for each selected A-scan is

calculated to get the fluctuation of the original A-scan as shown in

column 2 of Table 2.2. Additionally, the standard deviation of the

difference between neighboring samples in the same A-scan as well

as between neighboring A-scans are calculated as shown in column

3 and 4, respectively.
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A-scan

Standard Std of Std of

Deviation (Std) neighbouring neighbouring

of Signal samples A-scan

A00 3588 5410
2718

A01 3360 5050

A48 172 137
205

A49 155 155

A60 170 140
185

A61 138 109

A96 822 1080
363

A97 748 1040

Table 2.2: Difference between neighbouring A-scans as well as be-

tween samples in one A-scan by comparing their standard devia-

tions with that of measured A-scans.

The standard deviations of the differences between neighboring A-

scans or samples in the same A-scan are not significant smaller

than that of the original A-scans. These results are consistent with

the theoretical analysis in section 2.4.1 and 2.4.2.

2.4.6 Validation of bitwise run length encoding

Further experiments are carried out to evaluate the performance of

the new lossless compression method introduced in section 2.4.3.

The selected A-scans in section 2.4.5 are used in this experiment.

The entropy of original A-scans is calculated to represent the infor-

mation in the A-scans. The theoretical optimal compression ratios

are based on this entropy, see 2.1.2. The commonly used compres-

sion software WinZip Version 14.0 uses the state-of-the-art lossless

compression methods, e.g. LZW [56]. WinZip has a better perfor-

mance than standard RLE method and it is used in this work to be

compared with the cascading bitwise RLE. The original A-scans are

compressed with WinZip V14.0. The achieved compression ratios

are compared in Table 2.3 to demonstrate the performance of the

cascading bitwise RLE.

The compression ratios by cascading bitwise RLE yield 80 % of the

theoretical optimal compression ratios and are better than the com-

pression ratios achieved with WinZip V14.0.

In Table 2.4 are the optimal lengths of the words for saving the
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A-scan Information Theoretical Compression WinZip

name entropy of optimal ratio with V14.0

original compression cascading

A-scan ratio bitwise RLE

A00 8.81 1.82 1.53 1.31

A01 8.90 1.80 1.52 1.31

A48 9.16 1.75 1.60 1.30

A49 8.91 1.80 1.66 1.32

A60 9.19 1.74 1.60 1.30

A61 8.94 1.79 1.66 1.33

A96 9.37 1.71 1.53 1.28

A97 9.07 1.76 1.60 1.31

Table 2.3: Comparison of the theoretical optimal compression ratios

of real A-scans and the obtained compression ratios with cascading

bitwise RLE and WinZip.

run length of the componential bit-stream-blocks in this experi-

ment. The sequence of the componential bit-stream-blocks is from

the most to the least significant bits.

In order to evaluate the correctness of the implemented method, the

compressed A-scans are decompressed and compared to the origi-

nal A-scans. Since the compression method is lossless, the decom-

pressed A-scans were identical to the orignial A-scans as expected.

2.5 Lossy compression methods

To overcome the low compression ratios of lossless compression,

lossy compressions are considered in the following. Irrelevant con-

tent in the datasets may be removed by lossy compression; therefore

it is important to separate the irrelevant and relevant parts in the

datasets.

The preprocessing of lossy compression is to separate the informa-

tion of ultrasound pulses from other information of A-scans. After

that the separated information is encoded in a compact form by

using a lossless compression method, e.g. RLE [57]. In order to re-

construct images with the original data format of A-scans, the com-

pressed datasets have to be decompressed with the inverse process,

i.e. the decoding and the post processing as shown in Fig 2.11.
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Sequence of A00 A01 A48 A49 A60 A61 A96 A97

componential

bit-stream-

blocks

1 10 10 12 12 12 12 12 12

2 10 10 12 12 12 12 12 12

3 10 10 12 12 12 12 12 12

4 9 9 12 12 12 12 10 10

5 9 9 12 12 12 12 10 10

6 8 9 12 10 12 12 10 10

7 8 8 10 10 10 12 8 10

8 6 5 4 6 4 5 3 5

9 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1

Table 2.4: Optimal word length for each componential bit-stream-

block in the A-scan which is compressed with the cascading bitwise

RLE. The sequence of the componential bit-stream-blocks is from

the most to the least significant bits.

Based on the characteristics of preprocessing, the selected lossy

compression methods for USCT are classified into three domains,

i.e. time, frequency and time-frequency domains. In time domain

A-scans are compressed by threshold, peak detection and spiking

deconvolution methods. The ultrasound pulses are separated from

noise without transform. The discrete cosine transform is used to

analyze A-scans in frequency domain. The methods used to trans-

form A-scans into both time and frequency domains are discrete

wavelet transform, multi-fractal transform and continuous wavelet

transform which can be optimized by selection of suitable mother

wavelets. The performances of the implemented compression meth-

ods are compared.
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Figure 2.11: Compression algorithm.

2.5.1 Time domain based methods

The variation of the amplitudes with time in A-scans is considered

to get the ultrasound pulses. The values of the amplitude for a sin-

gle sample as well as the relationship between neighboring samples

in A-scans are used to select the compression parameters.

2.5.1.1 Threshold

The simplest method of data compression is rejecting all data below

a threshold value and set these values to zero [58]. The basic idea

is that ultrasound pulses have higher amplitudes than the noise.

The achieved compression ratio for the A-scan is decided by the

threshold value. If the amplitudes of ultrasound pulses are not sig-

nificantly larger than the noise, the choice of a suitable threshold

value becomes difficult.

Different threshold values are tested to achieve an optimal compres-

sion ratio for USCT datasets, since the optimal threshold value is
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unknown. The input A-scans are normalized to get a unified thresh-

old value for different A-scans in a dataset. The optimal threshold

value k · σ is searched step by step with a step length σ, where k
stands for the number of steps. The preprocessed datasets are then

encoded by RLE to get compressed datasets at different compres-

sion ratios. The threshold value ralative to the maximum amplitude

of each A-scan is used instead of the signal to noise ratio, since the

signal to noise ratio for each A-scan is difficult to be achieved in

USCT.

2.5.1.2 IK peak detection

The standard IK peak detection method (IKstd) was developed for

pipeline inspection with ultrasound signals in industry [59]. A given

threshold value is used to remove the influence of the noise. Then

the local neighborhood of sample amplitudes is considered [60].

The properties of ultrasound pulses are strongly influenced by the

use of coded excitation, whose envelope has a similar shape as a

Gauss function. The position of the peak sample in the ultrasound

pulse is related to the neighboring samples which have lower am-

plitude values.

The I and K values are used to represent the number of used sam-

ples before and after the peak sample within an ultrasound pulse.

If the values of I and K are too small, noise might be selected. In

case the amplitude of a sample is larger than the threshold for I
samples before and K samples after the peak, the time position and

the amplitude of this sample is saved. Otherwise the amplitude

of this sample is saved as zero. The I and K values in this work

are adapted to the shape of the implemented ultrasound pulses. A

pulse length of 3 or 4 samples was chosen. In this condition, I = 1
and K = 2 give the best detection and reconstruction results. If two

pulses are very near to each other, the pulse with the lower ampli-

tude might be lost for large values of I and K.

The IKstd is implemented in hardware easily and achieves a high

computation speed due to its low computational complexity. If the

amplitudes of reflected pulses are lower than the noise level, these

pulses can not be detected by IKstd. Due to the unknown properties

of noise in USCT, the performance of IKstd has to be validated with

different threshold values at experimental datasets.
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2.5.1.3 Modified IK algorithm

The modified IK algorithm (IK) is a newly designed lossy compres-

sion method in this work. The motivation is to increase the per-

formance of the standard IK peak detection method which uses the

fixed values of I and K. The optimal I and K values should be

selected based on the relationship between the peak and the neigh-

boring samples which vary due to the pulse deformation.

In the IK method the deformation of the ultrasound pulses is con-

sidered. The values of I and K in a range between one sample and

the width of the deformed pulse are tested. The compressed data-

sets are reconstructed to images. The optimal values of I and K are

selected based on the quality of these reconstructed images.

The performance of IK is evaluated by comparing with the other

compression methods used in this work. The images are recon-

structed with the datasets which are compressed with IK and the

other compression methods. The quality of these reconstructed im-

ages is scored to compare the different compression methods.

2.5.1.4 Spiking deconvolution

Ultrasound pulses might be located very near to each other in an

A-scan. These pulses overlap partly and makes the detection of the

ultrasound pulses by comparison to sample amplitudes difficult.

The deconvolution method is implemented to extract each single

pulse by using the information of coded excitation.

The basic idea of spiking deconvolution (DCV) is to convolute the

A-scan with a deconvolution filter. In the convoluted A-scan the

ultrasound pulse is replaced by the time stamp plus amplitude of

this pulse. The deconvolution filter is achieved by calculating the

inverse of the coded excitation function [27].

After the convolution process with a fixed threshold the samples

with larger amplitude than others are selected. The selected sam-

ples are saved to represent the information of ultrasound pulses,

thus a reduced amount of data is saved.
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It is assumed in DCV that the ultrasound pulses in an A-scan have

an identical or similar pulse shape as the coded excitation function.

The DCV has the advantages to separate the ultrasound pulses

which are located very near to each other. If the pulses have a de-

formation due to the absorption of breast tissues, the performance

of this method is reduced. In the experiments with USCT datasets,

the threshold values are adapted for an optimal compression per-

formance of DCV.

2.5.2 Frequency domain based methods

In order to utilize the properties of A-scans in frequency domain for

data compression, A-scans are transformed into frequency domain

or analyzed by discrete cosine transform. First the range from 0MHz

to 1.5MHz and from 4MHz to 5 MHz were neglected, since the trans-

ducer has no sensitivity in these ranges. In the range from 1.5MHz

to 4MHz there are various patterns depending on the type of object

and the A-scan, therefore there is no further handle for compression

in the frequency range. We do not expect any large compression ra-

tios beyond what is given by frequency cuts(see section 2.4.4). The

A-scans in the frequency domain are quantized by a threshold and

are transformed back into the time domain.

In frequency domain the information of ultrasound pulses is ex-

pected to be represented with a higher magnitude than other infor-

mations. Thus the other informations are removed with a threshold

to achieve a high compression ratio.

2.5.2.1 Discrete cosine transform

The discrete cosine transform based compression method (DCT) us-

ing the real part of the Fourier transform has the advantage of rep-

resenting the information in a compact form. Due to the even sym-

metry of the cosine function the continuity on the boundary of the

original signal is remained by DCT [61], the rate of convergence of

frequency spectrum increases, thus the signal can be represented

in the frequency domain in a more compacter form [62].

The performance of DCT is influenced by the frequency distribu-

tion of ultrasound pulses in A-scan. The pulse deformation results

in reduced values of coefficients which cannot be kept during data
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compression. Therefore some useful information of the deformed

pulses may be lost after data compression. E.g. the information

about the time position of pulses cannot be detected precisely after

the decompression.

2.5.3 Time and frequency domain based methods

2.5.3.1 Discrete wavelet transform

The discrete wavelet transform is used for compression of A-scans

due to its time-frequency representation of information in datasets

[24]. A-scans are represented with wavelet coefficients after pre-

processing using discrete wavelet transform [63]. The basic idea

of using discrete wavelet transform based compression (DWT) for

A-scans is their shape-similarity to the pulse shape of coded exci-

tation. By this fact it can be expected, that the number of wavelet-

coefficients may be small against the number of samples. The

wavelet-coefficients are saved instead of samples of A-scans and

the resulting compression may be high.

A-scans are convoluted with a family of basis functions, i.e. mother

and father wavelets, to achieve the wavelet coefficients. The father

wavelet also called scaling function can be derived from the mother

wavelet. The mother and the father wavelets are orthogonal func-

tions. The time information of the ultrasound pulses corresponds

to the time position of the convoluted basis functions. In order to

get the frequency information, the basis functions are convoluted

in different scales with the A-scans. The original A-scans can be

reconstructed perfectly with the uncompressed wavelet coefficients

using the inverse discrete wavelet transform [25, 26].

It is not easy to find a basis function that can be used as the mother

wavelet. The simplest mother wavelet is Haar, whose definition is

shown with following function:

WHaar(x) =











1 0 ≤ x < 1/2,

−1 1/2 < x ≤ 1,

0 otherwise.

The standard mother wavelets [64] for DWT are collected to con-

struct the wavelet filter bank. The contents of the filter bank are

the coefficients of mother and father wavelets. The selection of the
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standard mother wavelets influences the performances of the dis-

crete wavelet transform in data compression.

With DWT the wavelet coefficients are achieved with the selected

mother wavelets at a large range of scales. The achieved wavelet

coefficients are quantized and saved as compressed datasets for

USCT. The performance of different standard mother wavelets are

tested experimentally.

2.5.3.2 Multi-fractal analysis

A-scans are considered to have the fractal features, since the noise

in ultrasound signal may show singular behavior. I.e. some points

of signal in time cannot be approximated with a Taylor series using

a finite number of terms [65]. The fractals in A-scans are analyzed

with the DWT method, since the properties of fractals are related to

the wavelet coefficients [66]. The method introducted in [67] uses

the multifractal analysis by processing wavelet coefficients to re-

duce noise in signals. This method (called MultiFractal in this work)

is used to reduce the noise in A-scans and increase the performance

of data compression in USCT.

The main process of the MultiFractal method used in this work is

as follows: In the first step the wavelet coefficients are registered

with DWT to represent the A-scans. Then these wavelet coefficients

are damped with factors which are power law related to the cor-

responding frequencies of the wavelet coefficients. High frequency

components are reduced strongly. Finally the processed wavelet co-

efficients are quantized and compressed.

The wavelet coefficients corresponding to the high frequencies are

considered to have more information about noise. Thus these wavelet

coefficients are decreased more strongly.

The damping factor can be selected by users and has a large value

for the original dataset with a high noise level. The performance of

MultiFractal with the selected damping factor has to be evaluated

with USCT datasets in experiments due to the unknown characte-

ristics of noise.
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2.5.3.3 Continuous wavelet transform

The continuous wavelet (CWT) is used mostly for research of sig-

nal properties instead of implementation of data compression. The

local characteristics of signals are represented with the achieved

coefficients. In this work CWT is combined with a statistic peak de-

tection method [68] and used for the compression of USCT datasets

(WavePDT). The name WavePDT method is an abbreviation of the

continuous wavelet based peak detection method.

The wavelet coefficients Fw for a function f(x) with a mother wavelet

W are calculated as follows:

Fw(a, b) =
1√
a

∫

∞

−∞

f(x)W ∗

(

t − b

a

)

dx

where ∗ stands for the operation of complex conjugate. a and b are

scale and translational parameters respectively.

In the WavePDT method the A-scans are represented with the wavelet

coefficients by using the CWT. The mother wavelet used in CWT is

the Morlet mother wavelet defined in [69]. Wavelet coefficients of

real experimental signals are measured to construct a decision tree.

This decision tree is based on the values of wavelet coefficients of

the available ultrasound pulse. The wavelet coefficients of A-scans,

which corresponds to an ultrasound pulse in decision tree, are se-

lected. The selected wavelet coefficients represent the information

of the ultrasound pulses in A-scans.

The information included in the selected wavelet coefficients is rep-

resented by the time-of-arrival, center frequency, phase, bandwidth

and amplitude of detected ultrasound pulses [69]. These parame-

ters are saved as the compressed data for A-scans.

CWT in WavePDT method uses mother wavelets which are designed

under different conditions as for the discrete wavelet transform.

The generally used mother wavelets for CWT are Morlet, Meyer and

Mexican Hat [64]. The statistic peak detection method in WavePDT

method uses an iteration process, until every ultrasound pulse in

A-scans is detected. Details can be found in [68].

The WavePDT method uses the advantages of CWT and a peak de-

tection method with a decision tree to represent the information in

A-scans. The number of wavelet coefficients is smaller than the

number of samples to achieve a high compression ratio. However
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the iteration process results in a high computational complexity for

implementation of these compression methods.

2.5.4 Comparison of different compression methods

A brief comparison of the compression methods used in this work

ordered by their compression process is given in Table 2.5. The en-

coding method, e.g. RLE, is implemented for Threshold, DCV, DCT,

DWT and MultiFractal method, since there are successively zeros

after quantization with a threshold.

Based on preprocessing the used compression methods are classi-

fied into transform necessary or unnecessary methods. The trans-

form based compression methods have the advantage to represent

the information of reflected pulses with only a small amount of data.

In order to get the original data format, the inverse transform has

to be implemented during the decompression methods. The trans-

form and inverse transform processes increase the computational

complexity of compression methods. Some compression methods

as threshold, IKstd and IK do not have any complete inverse trans-

form.

Based on the selection of compression parameters the used com-

pression methods are classified into pulse shape dependent or in-

dependent compression methods. For the pulse shape dependent

methods the information of coded excitation is considered during

the selection of parameters. Pulse shape based compression is

based on the assumption that the measured ultrasound pulses in

A-scans are similar to the emitted pulse of coded excitation. In case

that the pulses are strongly deformed, the performance of pulse

shape based compression decreases significantly.

Threshold and DCT methods are the pulse shape independent com-

pression methods, because the pulse shape of coded excitation is

not considered during the compression process. The DWT, Multi-

Fractal and WavePDT by selection of the mother wavelets as well

as the DCV by design of the deconvolution filter are based on the

shape of coded excitation. For IK and IKstd the I and K values are

based on not only the shape but also the sample frequency of coded

excitation.

The DWT and MultiFratal compression methods use the standard
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Compression RLE Transform Pulse shape

methods necessary necessary dependent

(Yes/No) (Yes/No) (Yes/No)

Threshold Yes No No

IKstd No No Yes

IK No No Yes

DCV Yes Yes Yes

DCT Yes Yes No

DWT Yes Yes Yes

MultiFractal Yes Yes Yes

WavePDT No Yes Yes

Table 2.5: Comparison of state-of-the-art compression methods.

Haar mother wavelet, the simplest standard mother wavelet. Other

used standard mother wavelets include Symmlet, Daubechies, Beyl-

kin, Coiflet and Vaidyanathan mother wavelets.

The standard mother wavelets are implemented and compared for

USCT datasets to achieve an optimal performance of data compres-

sion [70]. The pulse shape of these mother wavelets are shown in

Fig. 2.12, Fig. 2.13 and Fig. 2.14.
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Figure 2.12: Tested wavelets: Beylkin (a, b), Coiflet 5-tap (c, d),

Daubechies 20-tap (e, f) corresponding father (a, c, e) and mother

(b, d, f) wavelet.
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Figure 2.13: Tested wavelets: Haar (a, b), Symmlet 4-tap (c, d),

Symmlet 10-tap (e, f) corresponding father (a, c, e) and mother (b,

d, f) wavelet.
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The mother wavelets are convoluted with the A-scans for detection

of ultrasound pulses, therefore the similarity between the mother

wavelets and the pulse shapes influences the performance of the

discrete wavelet transform. The standard mother wavelets and their

similarity to coded excitation in USCT are listed in table 2.6 [10].

The flexible selection of the standard mother wavelets makes it pos-

sible to optimize the performance of data compression with DWT.

If the ultrasound pulses have an identical shape as the mother

wavelet, the corresponding wavelet coefficients have large values.

The mother wavelet with similar pulse shape as coded excitation

is expected to have a high performance of data compression. The

mother wavelet Symmlet 10-tap is used in experiments for USCT

datasets, since it has a similar shape as the coded excitation.

2.6 Properties of adapted lossy compression

2.6.1 Computational complexity

2.6.1.1 Theoretical analysis

The computing time of the data compression depends not only on

the amount of the raw data but also on the computational complex-

ity of the compression methods. In case that the speed of the data

compression process is slower than that of the data acquisition pro-

cess, the received data have to be buffered. In order to reduce the

time costs, the computational complexity of the data compression

process is discussed.

The computing time of different compression methods are compared

for the same dataset. This computing time includes the time for

compression and decompression. The computational complexities

of compression and decompression depends on the used computer

and characteristics of compression methods.

The computational complexity of implemented compression meth-

ods is shown in Table 2.7. The number of necessary arithmetic

operations is calculated as a function of data length. ’O’ denotes

the order of the function and ’N ’ is the length of A-scans in USCT,

i.e. the sample number.

Main operations include multiplying, adding and comparison oper-

42



0 5 10 15 20 25
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Sequence

N
or

m
al

iz
ed

 v
al

ue

(a)

0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sequence

N
or

m
al

iz
ed

 v
al

ue

(b)

Figure 2.14: Tested wavelets: Vaidyanathan corresponding father

(a) and mother (b) wavelet.

Name Number of Similarity to

coefficient coded

excitation

Haar 2 Low

Symmlet 8 Low

4-tap

Symmlet 20 High

10-tap

Daubechies 20 High

20-tap

Coiflet 30 High

5-tap

Beylkin 18 Middle

Vaidyanathan 24 Middle

Table 2.6: Comparison of standard mother wavelets.
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ations that use most of the computing time. IKstd method needs

3 × N comparison operations. The number of operation depends

on the selected I = 1 and K = 2 values. The Length of the decon-

volution filter FL in the DCV compression method influences the

number of needed operations. The computation complexity of DCV

is a function of order N .

The operation of DCT corresponds to the discrete Fourier transform

(DFT). For DFT each frequency component involves N operations.

To compute all N values of the DFT requires N2 operations. The

fast Fourier transform utilizing the symmetry and periodicity prop-

erties of the DFT, the number of operations is reduced to Nlog2N
[71]. Compared to other compression methods in Table 2.5 DCT

does not consider the shape of coded excitation. Therefore the com-

putational complexity of DCT will be not discussed further.

For DWT 2n operations are necessary for convolution of the A-scan

with the smallest scale of the mother wavelet, if the length of an

A-scan is N = 2n. For increasing scales, the number of operations

are 2(n−1), 2(n−2), ... 21. Thus, the total number of operations is
∑n−1

i=1 2i =
∑n−1

i=0 2i − 1 = 1−2n

1−2 − 1 = 2n − 2 = N − 2. Thus the DWT of

N data items is performed with N − 2 operations and its complexity

is O(N)[24].

The computational complexity of the WavePDT method is based on

the CWT. Each wavelet coefficient needs N operations for the convo-

lution process. For N wavelet coefficients the operation number of

CWT is N2. Besides the operations for CWT, the iteration process in

WavePDT method spends lots of operations for an optimal selection

of wavelet coefficients. The computing time increases significantly

due to this iteration process.

2.6.1.2 Computing time

The capacity of the computer used in this work is Pentium(R) 4 CPU

3.2GHz with 2.0 GB RAM and 1024 KBytes cache. The compression

methods are designed and implemented with the signal processing

toolboxes of Matlab software. The function to measure the comput-

ing time is the PROFILE function in Matlab.

The computing time for each compression method shown in Ta-

ble 2.7 means the time range from loading an A-scan to saving the
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Method Main operation Computational Computing time

(time) complexity (second/A-Scan)

IKstd 3N O(N) 0.08

IK (i + k) ∗ N O(N) 0.08

DCV N ∗ FL O(N) ≈ 0

DWT N − 2 O(N) 0.016

WavePDT > N2 > O(N2) 4.500

MultiFractal 2(N + 1) + N O(N) 0.016

Threshold N O(N) ≈ 0

Table 2.7: Computational complexity of compression methods. (FL:

Length of the deconvolution filter.)

compressed A-scan into the memory with available compression pa-

rameters. For this compression a simulated A-scan with the length

N = 1355 samples is used. Each sample is saved with two bytes.

The computing time is calculated with one A-scan because it does

not depend on the content of an A-scan.

The computing speed for IKstd is slower than expected due to the

low performance of the software implementation. The used values

for I and K in IKstd method are 1 and 2, respectively. The comput-

ing time of the IK method is slightly different from IKstd due to the

changed I and K values.

The theoretical analysis O(logN) < O(N) < O(N2) and the experi-

mental results show that DWT and DCV have lower computational

complexity than WavePDT. DWT uses the mother wavelet Symmlet

20. It is assumed that for these methods the optimal implementa-

tion was chosen.

45



2.6.2 Denoising ability of compression methods

The denoising ability of the selected compression methods was tested.

To get an unambiguous quality check, simulated noise for the test

of the denosing ability of the compression methods is used. These

noisy datasets are compressed with different compression methods.

The quality of the compression methods is compared.

2.6.2.1 Simulation of noisy datasets

The simulated noisy datasets are made to be similar to experimental

datasets in USCT after preprocessing (see section 2.2.2). The noise

is simulated by a distribution of white noise with a given amplitude.

This noise is added to the simulated datasets of USCT to create the

noisy datasets.

The noisy datasets are filtered before the compression process. The

frequency response of the used 8th order low- and 4th order high

pass Bessel filter is plotted in fig 2.15 and fig 2.16 . The filter has

similar properties as the analog anti-aliasing filter used in USCT.

A Bessel filter has almost constant group delay across the entire

band-pass [72], thus can preserve the shape of the filtered pulses.

The cut-off frequencies of the low- and high pass Bessel filters are

1.4 MHz and 3.6 MHz, respectively.

2.6.2.2 Compression of noisy datasets

The filtered noisy datasets are compressed with the selected com-

pression methods for USCT. The compression ratios vary corre-

sponding to the selected quantization parameters. At low compres-

sion ratios, only the noise is expected to be reduced during the data

compression. But the important information of ultrasound pulses

in A-scans may be removed together with the noise if unsuitable

compression parameters are selected.

To evaluate the denoising ability of implemented compression meth-

ods, the images are reconstructed with these compressed datasets.

The quality of these reconstructed images is compared.

The optimal compression ratio which depends on a threshold value,
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Figure 2.15: Frequency response of designed 8th order Bessel low

pass filter.

is also influenced by the noise grade in the datasets. In order to

find the optimal threshold value for each dataset, the quality of the

compressed datasets for different compression ratios are compared.
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Figure 2.16: Frequency response of designed 4th order Bessel high

pass filter.
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Chapter 3

Evaluation of signal
compression methods

3.1 Introduction

Although hundreds of data compression methods exist, an unsolved

problem is how to measure the effect of these compression methods

on the quality of datasets for the end user [73], e.g. radiologists. A

reasonable scoring system has to be developed to select a suitable

compression method for USCT.

Parts of the contents in the A-scans are removed during the lossy

compression process. I.e. the decompressed A-scans are not iden-

tical to the original signals. Contents in the removed parts of A-

scans are lost. Furthermore, the contents in the remaining parts

of A-scans may be changed during compression. In either case the

quality of A-scans may be changed by the variation of useful or use-

less contents.

The first challenge for evaluation of compressed A-scans is to find a

reference. In order to construct a reasonable reference for A-scans,

it is important to understand the useful contents in A-scans. As

discussed in section 2.3, the ultrasound pulses include the infor-

mation for reconstructed objects in USCT images. The ultrasound

pulses include not only the information about the amplitude and

time of arrival (TOA) of ultrasound pulses which is relevant for im-

age reconstruction, but also the information of the pulse shape, the

pulse deformation, multiple scattering, etc. which is expected to

be partly removed during data compression. Due to the complex

process of acoustic propagation in breast tissue, these contents of
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ultrasound pulses cannot be distinguished clearly from each other

[49]. The inseparable information in ultrasound pulses of A-scans

makes it hard to construct a reference based on the useful con-

tent of original A-scans. In addition, the noise in original A-scans

is irrelevant for imaged objects and make the job of separation of

useful contents more complicated. Therefore, it is hard to construct

a reference on the useful content of original image.

The second challenge is to evaluate the relative variations of useful

to useless contents in compressed A-scans. The optimal compres-

sion method maintains useful contents and decreases irrelevances

of ultrasound signals. If the useful contents are removed during

lossy compression, the images reconstructed with the compressed

signals have a decreased quality. Otherwise if the irrelevances are

reduced by a suitable compression method, the quality of an im-

age increases and might be of even higher image quality than the

image reconstructed with original signals. Furthermore the image

quality will improve with increasing compression ratio. The image

quality of compressed datasets varies with an unexpected tendency,

when the useful and useless contents are reduced by compression

simultaneously. The unknown relative variation of useful to useless

contents makes it difficult to evaluate the compressed A-scans.

The third challenge comes from the large amount of A-scans in

USCT datasets. It is very time-consuming to evaluate the 3.5 Million

compressed A-scans within one dataset.

Based on above discussion the A-scan is insufficient to be used

directly in the evaluation methodology for evaluation of the com-

pression artifacts in A-scans which may be only identified in the

reconstructed image. Since USCT is an imaging system, an image

quality based evaluation method is proposed. I.e. the quality of

reconstructed images which can be used to represent the compres-

sion artifacts in A-scans, is estimated.

3.1.1 An image quality based evaluation method

Hypotheses The design of an image quality based evaluation sys-

tem for compressed signals in USCT is based on following hypothe-

ses:

1. There is redundancy in A-scans, therefore the lossy compres-

sion methods may be used. Removing these irrelevances in

A-scans with lossy data compression methods may improve
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the quality of reconstructed image.

2. The images instead of A-scans are interesting for USCT projects.

The content of a whole USCT dataset is transferred to the final

user only in the form of the reconstructed images. The eval-

uation of compressed datasets is equivalent to evaluate the

quality of the reconstructed images.

3. A sufficient stage of preprocessing is necessary for a good re-

construction. Especially a filter on the data between 1.5 to 4
MHz and a shift of the data in the Fourier space to 0 to 2.5 MHz

gives alone a reduction of data by a factor 2 and reduces noise

and artifacts.

Assumptions According to the characteristics of an USCT sys-

tem, following assumptions are necessary for the design of an image

quality based evaluation method.

1. The contours instead of the whole areas of the imaged tissues

are represented in images. The shape, position and contrast

of imaged tissues are shown because this work concentrates

on tomography of scattering waves. Transmission pulses of A-

scans are also kept in compressed A-scans to achieve a velocity

map of ultrasound for optimization of reconstructed images.

2. The reconstruction algorithm and parameters are fixed for the

images of compressed datasets using different methods and at

different compression ratios. The reason is that the quality of

the reconstructed image is influenced not only by the contents

of A-scans but also by the reconstruction method. During

the course of this work for data compression the reconstruc-

tion method has very much improved, but to have comparable

compression quality it was necessary to fix the reconstruction

method in the early stage of this work.

3. The information about the emitted ultrasound pulses, i.e. coded

excitation, is available.

3.1.2 Influences of signal compression on reconstructed
images

The quality of reconstructed images with compressed A-scans is

influenced by the compression in A-scans. This influence has to
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be analyzed to understand the proposed evaluation system in this

work.

Terminologies Some terminologies for the relationship between

reconstructed images and compressed A-scans are often used in the

following chapter of this thesis, therefore they have to be explained

first. The figure 3.1 shows the terminologies: original image, image

of compressed dataset, ideal reconstructed image and ideal refer-

ence, and their relationship.

Image of
compressed

dataset

Original
image

Ideal
reconstructed

image

Ideal
reference

Imaged
object

Original
dataset

Simulated
dataset

Compressed
dataset

Figure 3.1: Used terminologies in this thesis.
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The image of compressed dataset refers to the images reconstructed

with compressed datasets using lossy compression methods at dif-

ferent compression ratios.

The image reconstructed with uncompressed real or simulated data-

set is called “original image”. The real A-scans are measured with

the ultrasound transducers and filtered with an analog filter before

saving in PC.

The A-scan which consists of ultrasound pulses without the irrele-

vant part is termed as “ideal A-scan”. The image reconstructed with

the ideal A-scans is named as “ideal reconstructed image”. The

ideal reconstructed image is the theoretical best image which can

be achieved by USCT. The aperture of transducers, the center fre-

quency and bandwidth of the coded excitation and the reconstruc-

tion method decide on the quality of the ideal reconstructed images.

The quality of the ideal reconstructed image is not perfect because

of the characteristics of the reconstruction algorithms and parame-

ters. The degradation of the ideal reconstructed image due to these

reasons are termed as “reconstruction artifacts” or “system noise”.

The perfect image which has merely the information of imaged ob-

jects is termed as “ideal reference”. The contents of the ideal refer-

ence are the ground truth of imaged objects. In USCT images the

ground truth is the echogenicity [74, 75] of objects, since the re-

flectivity, i.e. the first order deviation of sound impedance, of the

objects are imaged qualitatively. The ideal reference image includes

the object contours and has no background noise.

Analysis The image quality of compressed datasets is influenced

by A-scan properties, compression methods, limited number of A-

scans and characteristics of reconstruction method.

Based on the analysis in section 2.3, real A-scans are influenced by

following sources:

1. Electronic and environment noises.

2. Digitizing noise during quantization of sample amplitudes.

3. Reflected ultrasound pulses by the wall of cylindrical container

in USCT setup.

4. Multiple scattering.
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5. Time position of the ultrasound pulse which is affected by the

sound speed in media.

Compression may change the contents of A-scans. E.g. the noise

is expected to be partly removed. If the implemented compression

methods are improperly selected for keeping the useful content and

removing the irrelevances in A-scans, the quality of image is de-

creasing with the order of compression; the compression methods

are usually optimized on certain properties of A-scans, e.g. shape of

ultrasound pulse. However the ultrasound pulses in A-scans may

have various deformations, thus performances of the compression

methods change with these deformations. The deformation of ultra-

sound pulses and the effect of compression on A-scans cannot be

predicted (see section 2.3.5).

Characteristics of the reconstruction method results in the recon-

struction artifacts in USCT images as discussed in section 2.2.3.

Ideal reference of USCT image which is defined in above terminolo-

gies, is designed to show the image contents independent of recon-

struction methods. The contents of an ideal reference of an USCT

image are affected merely by the useful information of A-scans, i.e.

amplitude and time of arrival of ultrasound pulses. Compared to

the ideal reference the additional contents of images are the re-

construction artifacts which are reconstructed with the amplitude

and TOA of ultrasound pulses. The reconstruction artifacts may

increase with the compression order. E.g. the background noise

of the images reconstructed with the compressed datasets may in-

crease due to the reduced number of overlapping ellipsoids during

image reconstruction.

3.1.3 Requirements and difficulties

Objective instead of subjective results are necessary for evaluation

of USCT images. The evaluation results should be reproducible.

These results of image quality evaluations should not be dependent

on subjective decision. The objective evaluations are used for com-

paring the image quality of compressed datasets.

The second requirement is the high consistency with human per-

ception. The final users of USCT images are experts in diagnosis,

who analyze the symptoms of patients using the useful contents in

the USCT images. The useful contents are the imaged objects. The

quality of objects represented in images is scored with the evalua-
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tion method. These scores of evaluated images should be similar to

the perceived results by the experts.

The third requirement is to represent properly the variation of image

quality due to compression artifacts, since the purpose of develop-

ing an image quality estimator is to determine the optimal compres-

sion algorithm for 3D USCT. The images of compressed datsets with

the high quality are expected to have relatively high scores.

Difficulties An image quality based evaluation method for assess-

ment of signal compression is based on assessing image quality of

compressed datasets. There are generally two difficulties for selec-

tion of the method for the suitable image quality assessment: the

definition of a suitable reference image and of an efficient image

quality estimator.

The quasi original image reconstructed from an uncompressed data-

set cannot be used as the reference image. The original A-scans

contain not only the information for image reconstruction, i.e. am-

plitude and time of arrival (TOA) of ultrasound pulses [69], but also

irrelevances, e.g. noises. Therefore, the contents of the image re-

constructed with these original A-scans include not only the imaged

objects but also irrelevances which affect evaluating the image of

compressed datsets. Due to the reduction of distortions in the ultra-

sound signals the images reconstructed with compressed datasets

may have even higher image quality than the images reconstructed

with uncompressed data. With a low quality image as reference, the

evaluation results of compression methods might not give proper

evaluation results.

Design of a reference image is difficult. The precise positions of im-

aged tissues in breasts are difficult to be measured. The acoustic

properties of these tissues are usually unknown. Therefore the de-

sign of a reference image based on geometry and acoustic properties

of breast is not feasible.

Based on above discussion about a suitable reference image it is

better to have the ground truth of imaged objects, i.e. ideal refer-

ence, from a simulation. Another possibility is to design the ground

truth by human experts. This is always the method of choise in

clinical solutions where it is not possible to get the ground truth

with objective measurements.
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The objective image quality estimators are often defined based on

the distribution of pixel values in images [21]. E.g. such estimators

are often based on the differences of gray values in images. The

image quality estimators in USCT are expected to be efficient for the

breast images.

The significant artifacts in images due to compression reduce the

performance of the available image quality estimators. The imaged

objects in images of compressed datasets may vanish with a high

compression ratio. The great variation of image contents due to

strong artifacts is difficult to be scored properly with the image qual-

ity estimators which are sensitive to a small distortion in images.

3.1.4 Summary

The compressed datasets are scored to compare the performances

of compression methods. The suitable compression method is then

selected based on these scores. The image quality based evalua-

tion method is capable of scoring not only the compression artifacts

but also the different reconstruction methods. A suitable compres-

sion method is selected for a fixed reconstructed method. Addi-

tionally different reconstruction methods in USCT can be compared

by reconstruction with an identical dataset. It is expected that an

optimal image quality is achieved from different compression and

reconstruction methods.

3.2 Image quality estimators in literature

The state-of-the-art image quality estimators are reviewed to find a

suitable one for evaluation of compression methods in USCT. The

image quality estimators are classified into subjective and objective

estimators. Within the objective estimators the estimators are clas-

sified into no-reference or reference based estimators according to

the use of a reference.

3.2.1 Subjective estimators

The subjective estimator uses the humans as observers. These es-

timators are mostly used for clinical evaluations of medical images.
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The significant advantage of subjective estimators is the high con-

sistency with the human perception.

Traditional subjective image quality evaluation for ultrasound im-

ages is the receiver operating characteristics curves method (ROC)

based on psycho-visual studies [76, 77]. The ROC analysis provides

tools to select optimal models for diagnostic decision making [78].

Mean vote score (MVS) is a commonly used subjective estimator for

research of image processing. A number of observers view an image

and score its quality. The mean value of these achieved scores is

then used as mean vote score [79].

Subjective methods have disadvantages to be time consuming, add-

ing workload for the physician, expensive [80], knowledge depen-

dent, and often irreproducible. Thus objective estimators are devel-

oped for evaluation of image quality.

3.2.2 Objective estimators

Objective image quality estimators evaluate the image quality with

mathematical tools which are developed to get reproducible results.

The objective estimators are implemented in recent years for the de-

velopment of ultrasound imaging technologies [81].

The significant disadvantage of the state-of-the-art objective image

quality estimators is their low consistency with human perception.

These estimators are designed for special implementations of image

processing aiming at an increased consistency with the human per-

ception. The characteristics of the processed images are changed

by noise and consequently the performance of the estimators de-

creases. Due to this non-robust behaviour the state-of-the-art esti-

mators are not suitable for evaluation of images of the USCT.

A couple of concepts have been proposed particularly for evaluating

the quality of the whole ultrasound imaging system. The compu-

tational observation [82], resolution integral [83] and contrast res-

olution [84] are proposed by using specific characteristics of ultra-

sound [83] or special phantoms [82, 84] for conventional diagnostic

ultrasound scanners. The assumptions are that the acoustic prop-

erties and position of imaged objects are available, i.e. the exist of

an objective reference image which is not the case in US imaging of
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living objects.

The state-of-the-art objective estimators are classified into reference

and no-reference based image quality estimators. No-reference es-

timators evaluate the image quality without the dependency on the

reference image. No-reference estimators are based on Human Vi-

sual System (HVS) [85, 86]. The HVS was analyzed to construct

a human vision model [87] in order to improve the consistency of

objective estimators with the human perception. The parameters

in the human vision model come from practical experiences cor-

responding to the psychophysical features of HVS [88]. Because of

the difficulty to validate and generalize these experiential values and

the limited understanding of the HVS, the human vision model is

difficult to be implemented as an objective image quality estimator.

Until now no-reference estimators have not been often used [80].

Reference based image quality estimators are widely implemented

[88, 86, 89, 81]. The quality of images is scored by comparing the

reference and distorted images. The comparison process is usu-

ally defined as a function of pixel values in reference and distorted

images. It is hard to get a function which correlates the image dis-

tortions with the human perception. Therefore these scores often

lead to evaluation results which are not consistent with the human

perception [80, 90]. Peak-signal-to-noise-ratio (PSNR) and mean

square error (MSE) are the commonly used reference based estima-

tors.

The state-of-the-art reference based image quality estimators are

usually sensitive to a certain type of distortions in images [80]. For

example, the most commonly used estimator to calculate the differ-

ence between two images is the peak signal to noise ratio (PSNR)

which is defined in [91]. PSNR is sensitive to the variation of con-

trast in distorted images. An other example is the average mutual

information (AMI) which has the advantage to compare the distorted

images with similar homogenous regions of tissues, i.e. similar gray

value distributions [92]. But AMI is not suitable for evaluation of

images with purely defined contours of objects or strongly blurred

objects. Therefore AMI is used for experimental images with slight

distortions and may give insufficient results with strong distortions

in images.

The evaluation results [81, 90, 93, 94] show, that the performance

of these estimators changes with the distortion types and the ob-
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jects in the images. None of these estimators is satisfying at a con-

fidence level of 95 % for arbitrarily distorted datasets [90, 93] or

provide a performance which is strongly correlated with the human

perception [94].

3.3 Assessment of no-reference image quality

estimators

Due to the difficulties to achieve a suitable reference image for eval-

uating images of compressed datasets in USCT, in this work no-

reference image quality estimators were evaluated at first. Three

no-reference objective image quality estimators are tested with arti-

ficial images where four types of distortions are added.

3.3.1 Selected no-reference estimators

• Global contrast: Various definition of image contrast were pro-

posed to simulate the human perception for the image con-

trast [95, 96]. The difficulty is that the human perception is

influenced by different factors, e.g. experiences, psychology,

environment, etc. These factors are difficult to be simulated

by a mathematical score of an image.

The widely used definition of global contrast is the dynamic

range of pixel values in an image.

Global contrast = V ar(X)

V ar(X) = E[(X − µ)2] = E(X2) − µ2

The mean of the pixel gray values in the image X is defined

as µ = E(X). In order to test the performance of the global

contrast, images with different types and grades of artificial

distortions are scored with this no-reference estimator.

• Modulation transfer function (MTF) is used as a metric for im-

age quality, lens performance, feasibility of sub- or all photo-

graphic system. It represents the transfer ability of an imaging

system from an object to the image [97].

MTF is used to describe how the details of an images change

with the spatial resolution. The detail of images is represented
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with the difference between the maximum and the minimum

gray values (contrast). The spatial resolution is calculated with

the spatial frequency. MTF is usually plotted as a function

of the spatial frequency for evaluation of the imaging system.

MTF curve decreases if the details of the picture with increas-

ing spatial resolution are getting smaller. The maximum value

of MTF at the spatial frequency of 0 is normalized to 1 [98].

The MTF curve with a faster decreasing tendency represents a

lower performance of the imaging system.

MTF can be calculated with the absolute value of the two di-

mensional Fourier transform of point spread function for an

imaging system [99]. The difficulty to calculate MTF with this

method is to design an object for testing arbitrary resolutions

of the imaging system, e.g. the arbitrary small size of a point

as an object [100].

The general method for measurement of MTF is based on the

contrast of original and distorted images at a certain frequency

[101]. The contrast here is defined as the difference between

the maximum and the minimum gray values of an image. The

MTF at the frequency f is defined as:

MTF (f) =
Contrast of distorted image at frequency f

Contrast of original image at frequency f

In order to analyze the performance of MTF for image distor-

tions, the values of MTF for different distortion grades are mea-

sured to achieve the MTF curve for the corresponding distor-

tion type. The tendencies of these curves are compared with

the human perception for these distortions.

• Entropy: The entropy of an image X is used to estimate the in-

formation content which is represented by the value of pixels

in an image [18]. The entropy H(X) is defined as follows:

H(X) = −
∑

i

P (ai) · log2 P (ai)

where ai is the ith possible gray value of image X with a prob-

ability of P (ai). ai is in the range from 0 to 255.

The entropy values of images with different distortions repre-

sent the variation of the image quality. The relationship be-
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Figure 3.2: Artificial image with (a) a small point in the center (b)

Lena. For this picture the size of the small point in the image (a) is

larger than one pixel.

tween the calculated entropy values and designed distortion

grades is analyzed to get the performance of the entropy as a

no-reference estimator.

3.3.2 Artificial images and distortions

A couple of images are used to analyze the properties of no-reference

estimators. These simulated images are designed with the structure

of different complicacies. Two of them are shown as examples. In

the center of the first artificial image there is only one pixel with a

gray value of one, the gray values of other pixels are zero. The pixel

in the center is used to simulate an ideal point. The size of this

image is 256 × 256.

The second image called Lena is a commonly used example for im-

age processing. This image has a relative complex structure in com-

parison to the first image. The size of this image is 512×512 as shown

in Fig. 3.2.

These artificial images are superimposed with general distortions in

compressed ultrasound images [76]. Four types of these distortions

as example are simulated at different grades. The basic ideas for

design of these distortions are shown as follows:

• Offset changed: The offset means the average value of the pix-

61



els. Offset change of an image is simulated by adding a con-

stant to each pixel value of the image. This distortion is used

because pixels of the image may be changed during data com-

pression.

• Blurred: The image is filtered with the Gaussian low-pass im-

age filter. The distortion grades are changed by using various

bandwidths.

• Noise: White noise with a normal distribution is added onto

the image. The white noise is generated by random numbers.

The variances of the random numbers are changed to vary the

distortion grades.

• Quantization noise: The pixel values of images are quantized.

The residues which are removed by rounding the pixel values

represent the quantization noise. The grades of quantization

noise are changed with the positions of rounded significant

digits in the gray values of image pixels.

3.3.3 Analysis results

The different distortion types are analyzed individually. Each dis-

tortion type is designed with linearly increasing grades. The distor-

tion at a certain distortion grade is added into the artificial images

to produce the distorted images. These distorted images are scored

with the selected no-reference image quality estimators. The ten-

dency of the achieved scores for each distortion type is observed

and plotted as the function of the distortion grades.

The experimental results are plotted schematically in Fig. 3.3. Th-

ese schematic plots are based on the quantitative analysis of the

real results with many artificial images. The horizontal and vertical

axes represent the increasing distortion grades and values of im-

age scores, respectively. The lines show the tendency of the scores

changed with the distortion grades.

The zigzag shape of the lines means that the performance of the

estimator is unstable to various grades of the corresponding distor-

tion type. These results show that none of the estimators is able

to represent coherently the variation of distortion grades for all four

distortion types.

The experimental results are consistent with the theoretical analy-

sis. The calculated output of the estimators is based on the gray
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Figure 3.3: Tendency of no-reference objective image quality

changed with different types of distortion effects in artificial im-

ages. Horizontally the grade of distortion and vertically the change

of score of the estimator is schematically shown.

value of each pixel in the image. The pixel values vary with the def-

inition of distortion types and grade of distortion. By definition all

three used estimators have a very different behaviour. Especially

unsatisfactory is the different normalization and sensitivity of the

estimators at small distortions. A similar behaviour of all estima-

tors would be expected as reasonable limiting value for distortions

approaching zero. None of these estimators may handle all of these

distortions at the same time due to the Fig. 3.3.

3.4 Quality estimators with a reference

A reference is necessary for the reference based estimators. These

image quality estimators are suggested for USCT to overcome the
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shortcomings of the no-reference estimators discussed in section

3.3. The process to use the reference based estimators for evalua-

tion of signal compression is shown in the flowchart of Fig. 3.4. The

distorted image is the image reconstructed with the compressed and

distorted A-scans. The difference between reference and distorted

images are scored with the proposed estimators. The compression

method with high values of scores has a good performance for signal

compression in USCT. I.e. here the quality of compressed signals

is defined by the quality of reconstructed images. The compressed

A-scans are not compared directly due to the reasons discussed in

section 3.1.

Object of imaging

A−Scans

Data compression

Reconstructed image

Reference image

Image quality score

Figure 3.4: Basic process for evaluation of signal compression.

The standard reference based estimators are introduced at first.

The advantages and disadvantages of these estimators are analyzed.

New estimators are designed to improve the performance of these

standard estimators. The evaluation method of estimators is ex-
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plained at the end of this section.

3.4.1 Selected reference based estimators

There are lots of reference based estimators designed for evaluation

of image quality. In this work seven standard reference based esti-

mators are selected, since they are defined for representing different

characteristics of image performances. For simplicity these estima-

tors are tested with 2D images instead of 3D images. I.e. two axes

are used to describe the positions of pixels.

Before the mathematical definitions of these estimators and the

meaning of the symbols used in the definitions have to be explained.

X stands for the reference image. The gray value of the pixel at the

row i and the column j is represented with x(i, j). Y is the distorted

image which has to be scored with the estimators. The correspond-

ing gray value for the pixel at the row i and the column j is y(i, j).
The indexes of the row and the column are at the range from 1 to m
and from 1 to n respectively. Some variables used in the definitions

of estimators are explained at first, i.e. mean values, variances, and

covariance:

x̄ =
1

m · n

m
∑

i=1

n
∑

j=1

x(i, j)

ȳ =
1

m · n

m
∑

i=1

n
∑

j=1

y(i, j)

σ2
x =

1

m · n − 1

m
∑

i=1

n
∑

j=1

(x(i, j) − x̄)2

σ2
y =

1

m · n − 1

m
∑

i=1

n
∑

j=1

(y(i, j) − ȳ)2

σxy =
1

m · n − 1

m
∑

i=1

n
∑

j=1

(x(i, j) − x̄) · (y(i, j) − ȳ)

Each pixel of the reference and distorted images are considered to

score the relative changes between the distorted and the reference

images. Thus the definitions of these estimators are based on the
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gray values of the pixels. The mathematical definitions of these se-

lected estimators are described by the following formulas.

1. Peak signal to noise ratio (PSNR) is the mostly used image

quality estimator. The distance of gray values between two

images is defined as the normalized mean square error with

the maximum value of the reference image [24].

PSNR = 10 log10
Maximum(X)

MSE

MSE =
1

m · n

m
∑

i=1

n
∑

j=1

‖(x(i, j) − y(i, j)‖2

2. Structure similarity measure (SSIM) is an estimator pro-

posed for evaluating the structure variation of the imaged ob-

jects [85]. SSIM is proven to be efficient for scoring images

compressed with JPEG or JPEG2000 [86]. The definition of

the SSIM is a product of three simple estimators which are

used to represent the variations of the luminance, contrast

and structure in distorted images.

SSIM =
σxy

σxσy + c
· 2x̄ȳ

x̄2 + ȳ2 + c
· 2σxσy

σ2
x + σ2

y + c

where c is a constant.

3. Average mutual information (AMI) is widely used for image

registration [92, 102]. The entropies of pixel values in refer-

ence and distorted images are calculated to show the quality

of distorted images.

AMI = H(X) + H(Y ) − H(X,Y )

H(X) = −
∑

m

P (xm) · log2 P (xm)

H(Y ) = −
∑

n

P (yn) · log2 P (yn)

H(X,Y ) = −
∑

k

P (Ck) · log2 P (Ck)
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H(X) and H(Y ) are the Shannon entropies of image X and

Y , respectively. m and n are numbers of possible gray values

in image X and Y , respectively. H(X,Y ) is the Shannon en-

tropy of the joint histogram, i.e. two-dimensional histogram of

the gray level combinations occurring at same image positions.

The gray values at the same pixel position of the reference and

the distorted images make a pair of gray values. Each pair

represents a gray level combination of two images and is de-

noted by Ck, where k is the index of this combination. P (Ck)
describes the probability of Ck within all possible gray level

combinations.

4. Normalized mutual information (NMI) is similar to AMI. The

sum of the image entropies is normalized to the joint entropy

H(X,Y ). The NMI is more sensitive to the variation of joint

entropy than AMI [92].

NMI =
H(X) + H(Y )

H(X,Y )

5. Homogeneity based measure (Homog) was designed to ob-

serve the variation of image homogeneity [103]. The images are

filtered with the high pass image filter F = [−1 2 − 1] in hori-

zontal, vertical and diagonal directions. The local homogeneity

of images is calculated with filtered images by setting the gray

values of the non-zero pixels to 1. The relative variations of the

local homogeneity and the luminance between reference and

distorted images are combined to defined the estimator Homog

[103].

Homog =
2FxFy

F 2
x + F 2

y

· 2x̄ȳ

x̄2 + ȳ2

where Fx and Fy are the filtered images X and Y .

6. Gradient Vector Flow (GVF) and AMI (GVFMI) combines the

advantages of the GVF and the AMI methods [104]. GVF is

defined as a field of an image. This field reprents the influence

of imaged objects on the image. The gradient of the edge map

is calculated at first. Each pixel value of GVF corresponds

to the spatial diffusibility of the calculated gradient field, so

called Gradient Vector Flow (GVF) [105]. The average mutual

information of GVF of the reference image is compared with

the direct distorted image. The GVF is used to increase the

influence areas of the imaged objects in the reference image.

GV FMI = AMI(GV F (X), Y )
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7. Normalized gradient vector (NormGrdt) was proposed for

registration of magnetic resonance images of the brain [106].

The gradient vectors ( Gth, Gtv) at the same position (i,j) and

horizontal (h) and vertical (v) directions of reference (X) and

distorted images (Y) are calculated. t denotes the reference or

the distorted image. The inner product between these vectors

is calculated to deduce the angle between them. The cosine

value of the angle at each pixel is combined to calculate the

NormGrdt. A large value of the NormGrdt represents a signifi-

cant difference between reference and distorted images.

Gt(i, j)h = t(i, j) − t(i + 1, j)

Gt(i, j)v = t(i, j) − t(i, j + 1)

|Gt(i, j)| = 2

√

Gt2(i, j)h + Gt2(i, j)v

Gx · Gy =
1

m · n

m
∑

i=1

n
∑

j=1

Gx(i, j)hGy(i, j)h + Gx(i, j)vGy(i, j)v
|Gx(i, j)| · |Gy(i, j)|

NormGrdt = Gx · Gy

A comparison of the sensitivity for selected reference based estima-

tors is listed in Table 3.1. Each estimator is sensitive or insensitive

to different features in the image. These estimators test only special

features of the images.

3.4.2 An optical flow based estimator

3.4.2.1 Optical flow

Optical flow was mostly used for pattern recognition, imaging pro-

cessing, motion estimation, etc. The optical flow is a vector field

used to represent the relative motion of the object between a se-

quence of images within a movie or due to the position changes of

observers. Each vector corresponds to the relative variation of the

gray values at the same pixel positions in the neighboring images

[107].
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Abbreviation Sensitive Insensitive

PSNR Gray value changes Structure changes

SSIM Gray value and Insignificant structure

significant structure changes changes

AMI Gray value changes Significant structure

changes

NMI Gray value changes Significant structure

changes

Homog Homogeneity changes Various grades of blurs

GVFMI Insignificant structure and Significant structure

gray value changes changes

NormGrdt Structure changes Gray value changes

Table 3.1: Sensitivity of used image quality estimators, for defini-

tions of the abbreviations see section 3.4.1.

The optical flow is calculated based on the motion constraint equa-

tion [108]:

∇I · ~n = It

where ∇I is a spatial intensity gradient of image I, ~n is optical flow.

It is the partial differentiation of image intensity with respect to

time. In this case I is the reference image X and It is the inten-

sity difference between reference and distorted images ‖X −Y ‖. The

unknow ~n in motion constraint equation is solved by using a pair

of additional partial differential equations proposed by Horn and

Schunck [109]. These equations are built with the minimization of

the brightness variation and smoothness difference between neigh-

boring images. The finite difference method is used to get the itera-

tive solution of these partial differential equations. The assumption

of optical flow based methods is that the objects in neighboring im-

ages have a similar structure and the gray value of noise is small

relative to the gray value of objects in images [110].

3.4.2.2 Design of estimator

The idea to score the image of compressed datasets with the opti-

cal flow based estimator is to calculate the included compression

artifacts with a vector field. The differences between the reference

and the image of compressed datasets are represented by an op-

tical flow. Each vector component in the vector field stands for a

relative variation of gray values from the reference to the image of

compressed dataset at the same position.
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Reference and image of compressed dataset −→ Optical flow image

The entropy of the vector magnitudes is calculated as the entropy of

the optical flow. The inverse of this entropy value is used to repre-

sent the image score of compressed datasets and is named optical

flow based estimator (OFintenEtpy).

OFintenEntpy =
1

Entropy Magnitude Optical Flow

A large difference between the reference and the image of com-

pressed dataset results in a large entropy of the optical flow from the

reference to the image of compressed dataset. Thus it corresponds

to a low image quality of the image, i.e. a low value of OFintenEtpy.

The images with a high similarity to the reference image are scored

with large values of OFintenEtpy.

3.4.2.3 Assessment of performance

In order to calculate the performance of the OFintenEtpy, the refer-

ence and distorted images have to be designed. The images with

different distortion grades are scored with the OFintenEtpy. The

scores are analyzed based on the given grades of distortions.

The reference image is designed in fig. 3.5(a). One of the distorted

images as an example is shown in fig 3.5(b). The optical flow be-

tween the reference and the distorted image is shown in fig 3.5(c).

Each arrow in the optical flow represents a vector of optical flow at

the corresponding position.

The achieved optical flow is analyzed based on the characteristics

of reference and distorted images. For example, the white block in

distorted image has a smaller size than that in the reference image,

therefore the vectors of the optical flow on the edge of the block sh-

own in the fig. 3.5 point to the center of the image.

3.4.3 Committee model based estimators

3.4.3.1 Motivation

The basic idea to design a new image quality estimator is to com-

bine the very different qualities of state-of-the-art estimators. It was

shown in the chapter before that the presented different estimators
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Figure 3.5: (a) Artificial image with a block shape object in the cen-

ter as the reference image. (b) The distorted image. (c) The optical

flow between reference and distorted images represented with a 2D

image.
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are sensitive to different qualities of the images. The images of com-

pressed datasets are significantly different from the ideal reference

which consists of merely the ground truth of imaged objects. To

overcome the possible weakness of individual estimators a commit-

tee model is proposed. The committee model combines the estima-

tors in section 3.4.1 to a new image quality estimator.

3.4.3.2 Structure of committee model

A committee model is defined here as a method to improve estimates

[111, 112, 113]. The committee model is regarded as a combination

of several predictors to form a single and better predictor [114]. The

predictors are termed as the members of the committee. The mem-

bers of the committee in this research are selected image quality

estimators described in section 3.4.1. A committee model combines

the scores of these scores to arrive at an overall estimate of image

quality which is supposed to have a better performance than any of

them alone [115].

A generalized committee model is defined as a weighted combina-

tion of scores. I.e. some scores make better predictions than others

[116] and get therefore a higher weight. The prediction error of the

generalized committee model is not larger than that of the averaging

committee which considers each score as equally important. In this

work the generalized committee is used to construct the committee

model based estimator (CMM).

3.4.3.3 Training process

The goal of the training process is to achieve the weights of the esti-

mators in CMM. The inputs are the expected scores defined by the

observers and depend on the characteristics of the training cases.

The responses are the achieved scores of the training case estimated

with the different estimators. The differences between the inputs

and the responses are called the errors. The weights of the es-

timators are calculated by minimizing the sum-of-squares of these

errors [117, 118]. The sum of the achieved weights for each commit-

tee model is defined as one to avoid the zero solution of the weights

[116].

The achieved weights are used to construct the CMM. The weighted
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image scores of compressed datasets estimated by the estimators

are summed up to construct the score of the CMM. Then the scores

of CMM for different images of compressed datasets are compared

to evaluate the compression artifacts in USCT.

The error εi,j for a single estimator is defined as follows:

Estimatorj(i) = Score(i) + εi,j. (3.1)

where “ Score ” is the expected score by the observers for the train-

ing case with the index i. Estimator is the calculated score of an

estimator with the index j. ε stands for the error of estimate calcu-

lated by Estimatorj(i) − Score(i) .

In case the averaging committee model is used the error is shown

as follows:

Estimatoraveraging(i) = 1
Number of all estimators

∑

j Estimatorj(i)(3.2)

= Score(i) + εi. (3.3)

In order to minimize the error for the single estimator, the single

estimator is optimized with the least squares method by adding the

coefficients α and β. The error for the least square solution sat-

isfies the Gauss-Markov theorem. According to the Gauss-Markov

assumptions, the expected value of the error is zero [119, 120, 121].

Estimatoroptimal,j(i) = αj(i) + βjEstimatorj(i) = Score(i) + εi,j. (3.4)

For the generalized committee model the weights of the optimized

estimators are calculated with the least squares method for a re-

duced error further [116].

Estimatoroptimal(i) =
∑

j

wj(αj(i) + βjEstimatorj(i)) = Score(i) + εi.

(3.5)

where w is the weight of the estimators and
∑

j

wj = 1 (3.6)

The number of training cases i corresponds to the product of the

number of distortion types multiplied with the distortion grades.

The Score of training cases are based on the distortion grades and

normalized from one to ten in this work. The least squares method

and the comparison of the different errors are implemented in Mat-

lab [58].
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3.4.3.4 Training cases

Training cases are used to learn the input-response of the commit-

tee model. Simulated distortions are used as training cases. The

selected distortions added in the training cases are based on the

empirical observations of degraded images caused by data compres-

sion.

For this purpose the original image is reconstructed with an uncom-

pressed dataset, and the various simulated distortions are added to

this original image. Each simulated distortion type and grade cor-

responds to a training case.

CMM is constructed based on differences between training cases.

These differences vary with the simulated distortions. Thus CMM is

designed for scoring distortion instead of the reconstruction artifact.

The reconstruction artifacts are considered as the constant compo-

nents for the designed training cases. However the reconstruction

artifacts vary with the implemented data compression type and size

of compression. These variations of the reconstruction artifacts are

neglected for images of compressed datasets in the range of small

compression ratios if the reconstruction method is not changed.

3.4.3.5 Simulated distortions in USCT images

Various distortion types and grades are simulated for different ar-

tifacts in images of compressed datasets. The distortion type are

selected based on the observation of image quality. The analysis of

data compression on A-scans is helpful to find the distortion type

but this analysis is not decisive, since the quantitive relationship

between the A-scans and the reconstructed image is unknown. The

distortion types are evaluated by the performance of the achieved

committee model.

The following distortion types are achieved by comparison of the

compressed and original images. Each type is simulated at 10 lin-

ear distributed grades with the image processing toolbox in MATLAB

[58]. The recipes for design of these distortions in experiments are

based on the following processes, functions and parameters.

• Quantization: In lossy compression, the amplitudes of the A-
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scans are quantized with some threshold value. The quantized

A-scans are used to reconstruct 3D images. The quantization

error in signal may be transferred to the image of compressed

dataset and degrades the quality of reconstructed images. E.g.

if the quantization size equals the maximum value of the am-

plitude in A-scans, the gray values of all pixels in the image

will be set to zero.

The quantization error is simulated with the following steps:

save the gray values of the pixels in images with the double or

float format; normalize the saved gray values to the range from

0 to 1; remove the fraction parts in the normalized values with

the function round in Matlab.

• Uniform noise: The noise in images of compressed datasets are

due to noise in the A-scan. The noise in A-scans was approx-

imated by the white noise. This noise may be superimposed

to the gray values of the image in USCT and yields the back-

ground noise.

The variation of the background noise due to the compression

process is simulated in this work with uniformly distributed

white noise. The gray values of images are normalized to the

range from 0 to 1; the uniform noise is added to the normal-

ized images. The uniform noise is created using the function

“rand” in Matlab with the grades from −40 dB to −20 dB com-

pared to the maximum gray value in the images.

• Decreased contrast: e.g. blurred or eroded images. The com-

pression of A-scans decreases contrast between objects and

background. The blurred image is used to simulate the re-

duced contrast of images. The image is blurred by filtering

with a circular averaging filter. The eroded images are filtered

using function “imerode” in Matlab.

The selection of the size of the filter is based on the image

resolution in the experiments. Due to the theory of spatial res-

olution [122], the image resolution of USCT is affected by the

used ultrasound pulse length and the aperture of ultrasound

transducers. E.g. the spatial resolution of USCT is 0.1mm for

some simulated datasets, the maximum size of the filter is set

to 0.5mm.
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• Deformation of the object: e.g. resized or dilated object. The

contours of imaged objects represent the size of objects. An

imprecise mapping of the information in ultrasound pulse, e.g.

time of arrival, due to data compression may change the con-

tour positions of reconstructed objects. The object with en-

larged or diminished size is simulated as resized or dilated ob-

ject in distorted images.

For resized object the pixel number of gray value correspond-

ing to the object in images is changed by using function “im-

resize”. The size of the object is changed maximally by about

5% of the original size of the image to vary the grades of these

distortions.

• Overlapping distortions: e.g. overlapping resized objects: more

than one distortion type might occur at the same image with

different impacts. E.g. to simulate the interaction of the re-

sized object and the unchanged background noise in an im-

age, the overlapping resized object is simulated. The resized

objects for different resizing grades are added in each case to

the original image.

3.4.4 Evaluation of reference based estimators

The basic strategy for the evaluation of proposed reference based

image quality estimators is to compare the achieved scores of the

distorted images. The influences of the compression ratios, the im-

aged objects and the selected reference images are considered. The

comparison results are analyzed to achieve an estimator with a high

performance for data compression in USCT.

The comparison of scores is carried out with different ranges of com-

pression ratios. Low and high compression ratios are the range of

smaller than 20 and of larger than 100, respectively. At high com-

pression ratios the imaged objects become fuzzy or no longer recog-

nizable. However the variation of image quality at low compression

ratios is usually not significant. An estimator may have different

performances at ranges of low and high compression ratios. In this

work the estimator with a high performance at low compression

ratios is selected. At the same time, for the estimators a suitable

reference image has to be found as discussed in the next chapter.
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3.5 Achieving a reference for evaluation

The reference images are achieved from the information of imaged

objects. The difference between the reference image and images of

compressed datasets is used to show the influences of data com-

pression on the quality of image.

3.5.1 Original image based reference

3.5.1.1 Analysis of original images

The advantage of using the original image as reference image is that

the original image is simple to be achieved for USCT. In this work

the original image is not used as the reference image for evaluat-

ing images of compressed datasets. The original image may have a

lower image quality than an image of compressed dataset.

It is expected that the original image is pre-processed properly to

improve its quality. The environment noise in A-scans and the sys-

tem noise due to the reconstruction method are sources of noise

in the original image. This noise has to be reduced in the original

image.

3.5.1.2 Filtered original images

The idea to filter original images for an improved image quality is

to select an image processing method based on characteristics of

original images. The background noise in the original images has to

be reduced to improve the contrast of images. The imaged objects

change due to the background noise. The change has to be consid-

ered during the design of the image processing methods.

To enhance the edge detection of objects in vertical and horizontal

directions, Sobel-filters are used. The implemented Sobel operators

in experiments are: FY =





1 2 1

0 0 0

-1 -2 -1



 and FX =





1 0 -1

2 0 -2

1 0 -1





The contours of the imaged objects are important areas in the USCT

images. After the enhancement of the object edges, the quality of the

original image is improved as there is no noise. The filtered original

image is saved as the reference image for evaluating images of com-

pressed datasets.
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3.5.1.3 Assumptions

In order to get a reasonable reference image, the design of the field

of interest is based on the following assumptions about the original

reconstructed images:

1. In the original image the tissues, i.e. the contours of the ob-

jects within the breast are on the right positions. These con-

tours can be distinguished from background noise.

2. The structure of the object contours have significant different

patterns than the background noise.

3. The gray values of the background noise have a random distri-

bution in the original image.

3.5.2 Simulated reference

A reference image with the ground truth, i.e. the ideal reference,

is designed using a simulated dataset. The method to construct

the imaged objects as ideal reference is based on the imaging cha-

racteristics of USCT, i.e. ultrasonic reflectivity tomography. The

reflectivity of imaged objects depends on the acoustic properties of

neighboring media.

The simulated datasets of A-scans are produced by an ultrasound

simulation software Wave3000 [45] and then converted to the data

format used in Matlab with a user friendly interface [123]. With

the simulation software the 3D USCT setup is constructed. The

achieved datasets are compressed and reconstructed to get the im-

ages. The images are compared to the ideal reference image.

The acoustic parameters and the position of objects are set precisely

in Wave3000 to construct an ideal reference image. Additionally,

the objects with complex acoustic properties which are difficult to

be obtained by real designs are simulated. The wave propagation in

the 3D USCT is simulated by solving the wave equation with finite

difference methods in Wave3000 [124, 45].

There was a strong limitation in this simulation, i.e. the simulated

3D USCT setup is about 10 % of the real USCT setup due to the

limitation of the computing time and memory size. In the future
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also the size of the simulated objects is scaled down to 10 % of a

real breast (approx. 10cm ). For example, the simulation processes

take approx. ten days and 40 days on one PC (Pentium 4, 3.2 GHz,

2.0 GB RAM) for the dataset with the center frequency of the coded

excitation of 1MHz and 3MHz, respectively.

3.5.2.1 Imaged objects

Geometry information The characteristics and the geometry in-

formation of imaged objects for simulated datasets are introduced

as follows:

1. bloodbone: The imaged object is used to simulate the breast

tissues with micro-calc deposits [125]. In this experiment, a

simplified structure of the object is modeled consisting of a

blood cylinder and a bone sphere. Blood and bone with sim-

ilar acoustic properties as breast tissue and micro-calc are

adopted for the simulation. The diameter of the cylinder is

approximately ten millimeters and the diameter of the bone

ball is 0.2 mm.

2. 6fatRand: The tissue in a breast is usually not evenly dis-

tributed. In order to test the influence of this property on the

images of USCT, randomly distributed fat balls with different

acoustic properties are designed in the datasets 6fatRand.

The imaged object has a cross section of a cylinder with a di-

ameter of ten millimeters. Within the cylinder are six types

of randomly distributed fat balls with a diameter of 0.2 mm

each. These fat balls have the acoustic properties which are

designed within the range similar to real fat material: [-5%,

+5%] of the impedance of fat, i.e. 1.33 MRayL to simulate the

natural divergence of tissues [43].

3. 6fatRand1bn: Here a bone sphere with a diameter of 0.2 mm

is placed in the center of the cylinder with a diameter of ten

millimeters. This cylinder is filled by randomly distributed fat

balls. The properties of the fat balls are similar to the simu-

lated object 6fatRand.

4. 6fatXian: The simulated object consists of six coaxial cylinders

with increasing diameters and equal thickness. The maximum

diameter is ten millimeters. Each cylinder is filled with one
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type of fat balls in the object 6fatRand. In each cylinder the

fat balls are homogeneous. The acoustic impedances of the

fat vary with the different cylinders. The acoustic impedance

increases linearly from inside to outside of the cylinders.

Acoustic properties The design of the simulated objects is based

on the acoustic properties of real breasts. The breast tissues consist

mainly of water, blood, fat, gland tissue, etc. Cancer has a smaller

elastic modulus than gland tissue. The early stage of breast cancer

is considered to be related to micro-calc in breast tissues, which

is known to be calcium hydroxyapatite [126, 127]. Calcium is the

most important material in bone tissue. Thus the calcium hydrox-

yapatite is simulated with the material bone in this work.

The parameters for acoustic properties of real breast tissues which

consist of the materials water, blood, breast, fat, and bone, are listed

in Table 3.2 [43].

Material Temperature Attenuation
◦ C (dB cm-1)

1 MHz / 3 MHz

Water 30 1.7E-3 / 1.49E-2

Blood 37 9.07E-2 / 8.16E-1

Breast 37 2.25E-1 / 2.02

Fat,tissue 37 7.5E-1 / 6.75

Bone,skull

human,infant 37 6.1 / 17

Table 3.2: Parameters of acoustic properties [43].

In order to simulate real breast tissue, the parameters in equation

2.6 for the materials bone, blood and water used in dataset blood-

bone are listed in Table 3.3. The acoustic properties of water are

influenced by the temperature. For dataset bloodbone the water

temperature is 30◦ C.

The corresponding parameters for datasets 6fatRand, 6fatRand1bn

and 6fatXian are listed in Table 3.4 and Table 3.5. Six types of

fat balls are used in these three simulated datasets with different

geometry distributions.
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Parameter Bone, skull Blood Water

human, infant whole fresh 30 ◦ C

cortical

ρ
(kg m -3) 1850 1055 1000

µ
(Mpa) 3127 0 0

δ
(MPa) 9306 2634 2280

η
(Pa*s) 37 2.0000E-1 2.300E-3

φ
(Pa*s) 1E-1 1E-3 1.2420E-4

VL

(m/s) 2901 1580 1510

α
(dB/cm) 1.8777 1.1027E-1 1.5891E-3

d(α)/df
(dB/cm/MHz) 3.7567 2.2067E-1 3.1800E-3

Wave length

(mm) at 1 MHz 2.900 1.5801 1.5100

Table 3.3: Parameters in equation 2.6 for simulated dataset blood-

bone. VL is the group velocity.
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Parameter Water Fat balls Fat balls Fat balls

23 ◦ C type 1 type 2 type 3

ρ
(kg m -3) 1000 920 920 920

µ
(Mpa) 0 0 0 0

δ
(MPa) 2191 1738 1795 1861

η
(Pa*s) 2.5E-3 7E-2 7E-1 7E-1

φ
(Pa*s) 1E-6 3.3E-1 3.3E-1 3.3E-1

V L
(m/s) 1480.2 1374.5 1396.8 1422.6

α
(dB/cm) 1.76E-3 9.09E-1 8.66E-1 8.20E-1

d(α)/df
(dB/cm/MHz) 3.50E-3 1.82 1.73 1.64

Wave length

(mm) at 1 MHz 1.48 1.37 1.40 1.42

Table 3.4: Parameters in equation 2.6 for simulated datasets 6fa-

tRand, 6fatRand1bn and 6fatXian. VL is the group velocity.

82



Parameter Fat balls Fat balls Fat balls Bone, skull

type 4 type 5 type 6 human, infant

cortical

ρ
(kg m -3) 920 920 920 1850

µ
(Mpa) 0 0 0 3127

δ
(MPa) 1925 1990 2055 9306

η
(Pa*s) 7E-1 7E-1 7E-1 37

φ
(Pa*s) 3.3E-1 3.3E-1 3.3E-1 1.0E-1

V L
(m/s) 1446.5 1470.7 1494.6 2901

α
(dB/cm) 7.799E-1 7.420E-1 7.070E-1 1.8777

d(α)/df
(dB/cm/MHz) 1.56067 1.4847 1.4150 3.7567

Wave length

(mm) at 1 MHz 1.45 1.47 1.49 2.90

Table 3.5: Parameters in equation 2.6 for simulated datasets 6fa-

tRand, 6fatRand1bn and 6fatXian. VL is the group velocity.

3.5.2.2 Design of an ideal reference

The design of an ideal reference for simulated datasets is based on

the geometry and acoustic properties of the imaged objects. The

constructed reference images have an identical resolution as the

reconstructed images in order to compare the reference and recon-

structed images pixel by pixel. With the geometry information of

the object, the contours of objects in reference images are drawn by

the Bresenham algorithm [128]. The gray values of these contours

are derived from the reflectivity coefficient of objects, the first order

derivative of the acoustic impedances of media. The achieved gray

values of object contours are then normalized in the reference im-

age.

The reference images and their profiles for the simulated datasets

bloodbone, 6fatRand, 6fatRand1bn and 6fatXian are plotted in Fig.

3.6, Fig. 3.7, Fig. 3.8 and Fig. 3.9, respectively.
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Figure 3.6: Simulated dataset bloodbone, (a) reference image, (b)

profile of reference image at position shown with the dashed line.

For demonstration the border of the blood cylinder is enhanced in

the reference image.

In the Fig. 3.6 the contour of the blood cylinder with a circular shape

is visible. The peak in the center of the profile image corresponds to

the bone sphere which has a high gray value in the reference image

due to the significantly higher acoustic impedance than that of the

blood cylinder. The gray values in the reference image are normal-

ized with the maximum value.

In the dataset 6fatRand the random distribution of the fat balls can

be seen in the profile image Fig. 3.7. The border between the fat and

water areas is imaged with high gray values due to high impedance

differences between them.

In the reference image for dataset 6fatRand1bn the gray values of

the fat balls are significantly smaller than the values of the bone

sphere due to the high acoustic impedance of the bone, see Fig. 3.8.

The high contrast of the reference image is shown in the profile im-

age.

In the reference image for the dataset 6fatXian in Fig. 3.9(a) the

gray values of the borders between different fat areas are identical.

The identical gray values are due to the linear increasing acoustic

impedances of the fat materials. The gray value of the border be-
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Figure 3.7: Simulated dataset 6fatRand, (a) reference image, (b)

profile of reference image at position shown with the dashed line.

tween the water and fat areas is higher than that between the fat

areas, see Fig. 3.9(b).
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Figure 3.8: Simulated dataset 6fatRand1bn, (a) reference image, (b)

profile of reference image at position shown with the dashed line.

3.5.2.3 Simulated USCT datasets

Coded excitation The pulse shape and the center frequency of the

coded excitation for simulated datasets replicate the chosen value

in the real 3D USCT setup. The center frequency and bandwidth are

3 MHz and 2 MHz, respectively. The shape of used coded excitation

is plotted in fig. 3.10 with a sampling frequency of 50 MHz.

Simulation process The computing time for simulation of one

dataset of used 3D USCT setup depends on the size of imaged ob-

jects, the difference between acoustic impedances of the different

materials, the center frequency of the coded excitation and the num-

ber of A-scans. If the imaged object is modeled with a large number

of grids, the computing time increases for solving the wave equa-

tions with the finite difference method in Wave3000, considerably

[124].

Image reconstruction The simulated datasets of A-scans are used

to reconstruct the images. The parameters for reconstruction of im-

ages are listed in Table 3.6. The dataset bloodbone uses a coded

excitation with a smaller center frequency (1 MHz) than that of other

datasets (3 MHz) to save the time of simulation process. The time of

the simlation process for the dataset bloodbone is about one week
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Figure 3.9: Simulated dataset 6fatXian, (a) reference image, (b) pro-

file of reference image at position shown with the dashed line.

and for other datasets is about 40 days.

Dataset Image Number Emitter/ Center

name size of pixels receiver frequency

(mm) per edge layer (MHz)

bloodbone 18 1024 1/2 1

6fatRand 18 183 1/2 3

6fatRand1bn 18 183 1/2 3

6fatXian 18 183 1/2 3

Table 3.6: Parameters for reconstruction of simulated datasets.

The reconstructed images with the simulated datasets bloodbone,

6fatRand, 6fatRand1bn, 6fatXian are plotted in Fig. 3.11(a), Fig.

3.11(b), Fig. 3.11(c) and Fig. 3.11(d), respectively. In the recon-

structed image for dataset bloodbone in Fig. 3.11(a) the bone sphere

and the blood cylinder are surrounded by high light circles due to

their high sound impedance relative to that of water. The randomly

distributed fat balls have higher contrast in Fig. 3.11(b) for dataset

6fatRand than in Fig. 3.11(c) for dataset 6fatRand1bn. The coaxial

circles in Fig. 3.11(d) are corresponding to the six coaxial cylinders

in dataset 6fatXian.

The maxima of gray values in the reconstructed images are very
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Figure 3.10: Coded excitation for simulated datasets with sampling

frequency of 50 MHz and the center frequency of 3 MHz. The Gaus-

sian envelope of the coded excitation has a bandwidth of 2 MHz.

different. The amplitude of scattered ultrasound pulses, which is

related to the gray value of images, is decided by the difference of

acoustic impedance within imaged objects. The difference of acous-

tic impedance between bone and blood is much larger than that

between fat and water, thus the corresponding gray values are very

different in the reconstructed images.

3.5.2.4 Evaluation process

The design of the object geometry can be validated directly by us-

ing the visualization program in Wave3000. The different acoustic

properties of materials in the designed objects are represented with

different colors correspondingly. The positions of the areas with the

same color are used to evaluate the geometry of the objects.
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Figure 3.11: Reconstructed image for simulated dataset bloodbone

[a],6fatRand [b], 6fatRand1bn [c] and 6fatXian [d].
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Chapter 4

Results

In parallel to the sequence of previous chapters the experimental

results are shown in this chapter step by step. The properties of

A-scans are analyzed in chapter 2, therefore the compression re-

sults for A-scans are evaluated at first. Then the results for image

quality based evaluation methods are explained with objective and

subjective scores. Finally these dataset based results are used to

show the denoising ability of compression methods.

4.1 Evaluation of data compression by compar-

ing A-scans

A-scans with or without noise are tested in experiments. The origi-

nal and the compressed A-scans are compared by PSNR, which has

the advantage to show the sample difference of A-scans.

4.1.1 Compression of synthetic A-scans without noise

The adapted lossy compression methods (in section 2.5) are eval-

uated with the synthetic A-scan without noise (see Fig. 4.1). This

synthetic A-scans are based on the model of A-scans introduced in

section 2.3.3 and used as the reference, i.e. original A-scan, for

evaluation of compressed A-scans. The A-scan consists of only one

ultrasound pulse, which has a similar shape as the coded excita-

tion. The ultrasound pulse extends to three wavelengths with a

Gaussian envelope. The center and sampling frequency of the ul-

trasound pulse are 3 MHz and 10 MHz, respectively. Its bandwidth

is 2 MHz.
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Figure 4.1: Artificial reference signal.

With changed values of threshold the achieved compression ratios

for each A-scan are calculated. The compressed A-scans are com-

pared with original A-scans.

The PSNR values are calculated to score compressed A-scans with

different compression methods at different compression ratios. Th-

ese scores are plotted as dots in Fig. 4.2. The reason to use an

A-scan without noise is to test the influence of compression on the

pulse shape of ultrasound signals. The value of threshold is rela-

tive to the maximum value of the ultrasound pulse and increasing

linearly. The compression ratios increase monotonously but not lin-

early with the increasing threshold values.

The main tendency of PSNR for compression methods Threshold,

MultiFractal and DWT is decreasing due to the increasing differ-

ence between the original and the compressed A-scans.

In Fig. 4.2 it can be observed that a different number of dots has

been calculated for different compression methods. For the result

of IKstd in Fig. 4.2(f) only one compression ratio, i.e. the maximum

compression ratio, is achieved with used parameters of IKstd. There

are many samples with zero value in the original A-scan. Only few
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samples are detected with IKstd, therefore a high compression ratio

is achieved.

For spiking deconvolution the A-scan convoluted with a deconvo-

lution filter has its maximum at the beginning of the ultrasound

pulse. At the compression ratio 500 only this maximum survive the

convolution. This maximum is convoluted with coded excitation to

create the decompressed A-scan. Therefore the decompressed A-

scan at a compression ratio 500 has a similar pulse shape as the

original ultrasound pulse and the value of PSNR is significant lar-

ger than that of other methods.

The dashed line in Fig. 4.2(e) for IK is not connected between the

compression ratio 819 and the maximum compression ratio. The

reason is that the PSNR has the infinite large value for the decom-

pressed A-scan with the compression ratio between this range. This

case happens when the decompressed A-scan is identical to the

original A-scan.

4.1.2 Compression of noisy A-scans

The noise in original USCT A-scans has been reduced by an ana-

log and averaging filter, as discussed in section 2.2.2. The realistic

range of noise in an A-scan depends on the experimental environ-

ment and the used USCT setup. As example a real dataset with the

A-scans from emitter position 0 and receiver positions 72, 73, 84, 85,

96, 97, 108, 109, 120, 121 are used to test the noise level. The sam-

ples before the transmission signal in A-scans are considered to be

related to noise. The noise level is defined as the derivation of these

sample values. Results for these selected A-scans show that the

realistic values of noise level are smaller than 200 if the maximum

value of samples in datasets is 65535 (16 bits), i.e. the noise level is

maller than 0.3 %.

In a real dataset the signal to noise ratio (SNR) is defined as a con-

stant for all A-scans. The maxima of different A-scans may be dif-

ferent in a dataset. Therefore the relative values between SNR to the

maxima of different A-scans vary significantly in a dataset, i.e. the

relationship between noise and the maximum of ultrasound pulse

varies with the selected A-scan. This relationship may influence the

performance of compression methods. Thus the noise level is simu-

lated with a large range of grades for validating the denoising ability

92



0 500 1000 1500
0

100

200

300

400

Compression ratio

P
S

N
R

(a)

0 500 1000 1500
0

100

200

300

400

Compression ratio

P
S

N
R

(b)

0 500 1000 1500
0

100

200

300

400

Compression ratio

P
S

N
R

(c)

0 500 1000 1500
0

100

200

300

400

Compression ratio

P
S

N
R

(d)

0 500 1000 1500
0

100

200

300

400

Compression ratio

P
S

N
R

(e)

0 500 1000 1500
0

100

200

300

400

Compression ratio

P
S

N
R

(f)

Figure 4.2: Evaluation of compression methods with PSNR (a)

Threshold, (b) DCV, (c) MultiFractal, (d) DWT, (e) IK and (f) IKstd

for synthetic A-scans without noise.
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of compression methods.

The original A-scan in Fig. 4.3(a) is added with noise at different

grades to make the noisy A-scans. The original A-scan is identical

to the synthetic A-scan in Fig. 4.1. The noisy A-scans in Fig. 4.3(b),

Fig. 4.3(c) and Fig. 4.3(d) are created by adding normal distributed

random numbers as noise with standard deviations of -34 dB, -20

dB and -14 dB of the maximum value of the reference A-scan.

These noisy A-scans are filtered and then compressed to analyze

the denoising ability of the compression method relative to that of a

filter. The designed filter is a band pass 6th order Butterworth filter.

The significant advantage of Butterworth filter is the maximally flat

magnitude response in the pass band [129, 130].

The frequency response of the implemented Butterworth filter is sh-

own in Fig. 4.4. The phase and frequency relationship is not linear.

Therefore the pulse shape may be changed after being processed

with this filter.

The compression results with the noisy A-scans are scored with the

PSNR. The scores are shown as an example in Fig. 4.5 for Fig. 4.3(c).

The denoising abilities of these compression methods are analyzed

with achieved PSNR values. The increasing tendency can be seen in

Fig. 4.5(d) at small compression ratios. For comparison Fig. 4.2(d)

has only decreasing values of PSNR. Similar results can be found

in Fig. 4.2(a) and 4.5(a). At small compression ratios the noise is

reduced with increasing threshold values and PSNR increases with

reduced noise.

With further increasing threshold not only the noise but also parts

of the ultrasound signal are removed. Therefore the decrease of

PSNR can be seen at compression ratios larger than 500.

The maximum of PSNR at the compression ratio 500 is similar to the

noiseless case in Fig. 4.2(b) due to the simple structure of designed

A-scan which has only one ultrasound pulse. At this compression

ratio the information of the ultrasound pulse is kept in the com-

pressed A-scan and the noise is reduced mostly.
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Figure 4.3: Artificial reference signal (a) and noisy signals which

are designed by adding the normally distributed random noise with

standard deviations (b) -34 dB, (c) -20 dB and (d) -14 dB of the

maximum value of the reference A-scan.
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Figure 4.4: The magnitude and phase dependently on frequency of

used filter for synthetic A-scans.
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Figure 4.5: Evaluation of compression methods with PSNR(a)

Threshold, (b) DCV, (c) MultiFractal, (d) DWT, (e) IK and (f) IKstd

for synthetic A-scans adding the normally distributed random noise

with standard deviation -20 dB of the maximum value of the refer-

ence A-scan.
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4.2 Evaluation of data compression by compar-

ing images

Comparison of images is the approach which human perception or

doctors would perform, therefore now the comparison of simulated

or real imaged datasets with their compressed counterparts is per-

formed to give a visual impression of the effect of data compression.

Furthermore It is shown how the selected estimators interpret the

compression.

4.2.1 Simulated datasets

The design of the simulated datasets was introduced in section

3.5.2.3. The designed ideal reference images with the available in-

formation of the imaged objects are employed to evaluate the com-

pressed datasets with the standard estimators introducted in sec-

tion 3.4.1, the optical flow based estimator in section 3.4.2 and

CMM in section 3.4.3. At the end of this section, the images of com-

pressed datasets are scored with the original image as reference.

4.2.1.1 Compressed datasets

The adapted lossy compression methods introduced in section 2.5

are applied to the simulated datasets. The compression ratio for

a dataset is the mean value of compression ratios for all A-scans

belonging to the dataset. With the changed values of the corre-

sponding parameter, e.g. threshold value, compression ratios can

be adjusted.

For each dataset more than 20 linear distributed values of the thresh-

old values are selected at the range from 0 to 100 % of the maximum

possible value of the A-scans. Thus the dataset is compressed at

20 different compression ratios with an increasing tendency. The

compressed datasets are reconstructed.

The image for simulated dataset bloodbone compressed at the com-

pression ratios 10, 20 and 60 are displayed in Fig. 4.6-4.12. At low

compression ratios (< 20) the images with DWT, IK, IKstd and Mul-

tiFractal show clearer contours of the imaged objects than that with

Threshold, DCV and DCT.
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All compression results in Fig. 4.8 show low image quality in con-

trast to the other compression methods. DCV shows in comparison

to all other used compression methods a low image quality. That

gets still more pronounce if the comparison of the image quality at

the same compression ratio 10 is carried out as to be seen in Fig.

4.13 for dataset 6fatRand.
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Figure 4.6: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with DWT at the compres-

sion ratios of (b) 10, (c) 20, and (d) 60.
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Figure 4.7: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with DCT at the compres-

sion ratios of (b) 10, (c) 20, and (d) 60.
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Figure 4.8: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with DCV at the compres-

sion ratios of (b) 10, (c) 20, and (d) 60.
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Figure 4.9: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with IK at the compression

ratios of (b) 10, (c) 20, and (d) 60.
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Figure 4.10: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with IKstd at the compres-

sion ratios of (b) 10, (c) 20, and (d) 60.
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Figure 4.11: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with Threshold at the com-

pression ratios of (b) 10, (c) 20, and (d) 60.
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Figure 4.12: Original image for simulated dataset bloodbone (a) and

the same slice of image for compression with MultiFractal at the

compression ratios of (b) 10, (c) 20, and (d) 60.

105



Pixel number

P
ix

e
l n

u
m

b
e
r

50 100 150

50

100

150

(a)

Pixel number

P
ix

e
l n

u
m

b
e
r

50 100 150

50

100

150

(b)

Pixel number

P
ix

e
l n

u
m

b
e
r

50 100 150

50

100

150

(c)

Pixel number

P
ix

e
l n

u
m

b
e
r

50 100 150

50

100

150

(d)

Pixel number

P
ix

e
l n

u
m

b
e
r

50 100 150

50

100

150

(e)

Pixel number

P
ix

e
l n

u
m

b
e
r

50 100 150

50

100

150

(f)

Figure 4.13: Images for the simulated dataset 6fatRand compressed

with (a) DWT, (b) MultiFractal, (c) IKstd, (d) DCT, (e) Threshold and

(f) DCV at a compression ratio of 10.
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The images for the simulated dataset 6fatRand with different com-

pression methods at a compression ratio 10 and 20 are shown in Fig.

4.13 and Fig. 4.14. The images compressed with DWT, IKstd and

MultiFractal have higher quality than that with Threshold, DCT and

DCV.

At compression ratio 20 or larger the reconstructed images have low

quality. The contour of imaged objects is more degraded at high

compression ratios than at low compression ratios, especially the

reconstructed object is strongly degraded.

Due to human perception the images for the simulated dataset 6fa-

tRand have relative high quality with DWT, IKstd and MultiFractal

for compression ratios smaller than 20 compared to other methods.

But the differences between these images are not significant. In or-

der to compare the quality of these images objective image quality

scores are tested.

4.2.1.2 Scores of standard estimators

The images for compressed dataset bloodbone are scored with AMI

by using the ideal reference shown in Fig. 3.6(a). The scores are

shown in Fig. 4.15.

The main tendency of the AMI values decreases with increasing

compression ratios. In the range of compression ratios from 0 to

30, IKstd, Wavelet, MultiFractal, and IK methods have larger AMI

values than Threshold and DCV methods. DCT has a relative large

AMI at low compression ratios, i.e. < 20. At high compression ra-

tios, the AMI curve fluctuates for images of datasets compressed

with DCT method. In either case compression ratios beyond 20 give

to human perception irregular results.

At small thresholds run length encoding delivers only low compres-

sion ratios. The low compression ratios, which are smaller than

one, are coming from the low performance of the run length encod-

ing method for the compressed datasets with low threshold values.

In this case the compression ratio should be set automatically to

one, since there is no compression for datasets.

The standard image quality estimators introduced in section 3.4.1

are now compared to different simulated datasets. The scores for
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Figure 4.14: Images for the simulated dataset 6fatRand compressed

with (a) DWT, (b) MultiFractal, (c) IKstd, (d) DCT, (e) Threshold and

(f) DCV at a compression ratio of 20.
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Figure 4.15: Scores obtained with AMI for dataset bloodbone com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV (-×),

DCT (-�) and Threshold (-�).
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compression of dataset 6fatRand with different compression meth-

ods and compression ratios are shown in Fig. 4.16-Fig. 4.22. The

reference is the ideal reference image designed in section 3.5.2.2.

6fatRand was used instead of bloodbone for the comparison of stan-

dard estimators, because 6fatRand is acoustically more similar to

breast tissue than bloodbone. Breast tissues are not homogenous.
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Figure 4.16: Scores obtained with AMI for dataset 6fatRand com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV

(-×), DCT (-�) and Threshold (-�).

The scores resulting from standard image quality estimators (see

Fig. 4.16-4.23 are not very similar to the results obtained in section

4.2.1.1. According to the analysis images for compressed dataset

6fatRand with DCV have lower quality than that with other meth-

ods. However these images have higher scores with AMI, GVFMI

and NMI. The scores of AMI are analyzed as follows.
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Figure 4.17: Scores obtained with GVFMI for dataset 6fatRand com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV (-×),

DCT (-�) and Threshold (-�).

The high scores of AMI after compression with DCV are based on the

characteristics of the image distortions. The regions of similar tis-

sues have similar gray values in the original image. The gray values

of these regions may have different values in images of compressed

datasets. However the distributions of these regions in the original

and of compressed datasets are assumed to be similar. Based on

this assumption the AMI has a high performance for evaluation of

image quality [92, 94]. Obviously the AMI is unsuitable for the cor-

responding image distortions.
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Figure 4.18: Scores obtained with Homog for dataset 6fatRand com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV (-×),

DCT (-�) and Threshold (-�).

To understand this interpretation, following example is constructed:

X = [0000; 1111] (4.1)

Y 1 = [0000; 1111] (4.2)

Y 2 = [0101; 0101] (4.3)

Y 3 = [1234; 5678] (4.4)

(4.5)

The values of AMI are:

AMI(X,Y 1) = H(X) + H(Y 1) − H(X,Y 1) = 1 + 1 − 1 = 1 (4.6)

AMI(X,Y 2) = H(X) + H(Y 2) − H(X,Y 2) = 1 + 1 − 2 = 0 (4.7)

AMI(X,Y 3) = H(X) + H(Y 3) − H(X,Y 3) = 1 + 3 − 3 = 1 (4.8)

(4.9)
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where matrices X, Y1, Y2, Y3 represent distributions of pixel values

for four different images as shown in Fig. 4.19. H(X) is Shannon

entropy for the image X. H(X, Y) is the joint entropy between image

X and Y. The cluster which is used to calculate the entropy for each

image is so designed that each gray value is grouped to an individ-

ual cluster.
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Figure 4.19: Example images for X (a), Y1 (b), Y2 (c) and Y3 (d).

Since the reference image X has large homogeneous areas with val-

ues of 0 and 1, it is totally different from the image Y3 which has the

pixel-wise changed gray values. According to the values of AMI the

perfect image Y1 has the same score of image quality as the image

Y3 which is degraded significantly. The reason is that the entropy of

distorted image H(Y3) increases as fast as the joint entropy H(X,Y3).

The achieved AMI values are not reduced due to the increased en-

tropy of the image Y3. Therefore AMI is unsuitable for image with

significant distortions.
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The images of datasets compressed at compression ratios larger

than 20 have decreasing tendency of quality with increasing com-

pression ratios due to human perception. Nevertheless this ten-

dency is not shown by the scores for Homog, NormGrdt, PSNR and

SSIM. None of these scores after compression have similar behavior

to the human perception as the images of the compressed dataset

6fatRand. The reason is that the imaged objects in dataset 6fatRand

have a complex structure. At high compression ratios the distorted

objects in images of compressed datasets are significantly different

from that in the reference. Thus these scores are not capable for

evaluation of these significant image distortions.
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Figure 4.20: Scores obtained with NMI for dataset 6fatRand com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV (-×),

DCT (-�) and Threshold (-�).
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Figure 4.21: Scores obtained with NormGrdt for dataset 6fatRand

compressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV

(-×), DCT (-�) and Threshold (-�).
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Figure 4.22: Scores obtained with PSNR for dataset 6fatRand com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV (-×),

DCT (-�) and Threshold (-�).
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Figure 4.23: Scores obtained with SSIM for dataset 6fatRand com-

pressed with DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCV (-×),

DCT (-�) and Threshold (-�).
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4.2.1.3 Scores of optical flow based estimator

The optical flow based estimator was tested using the dataset 6fa-

tRand compressed with different compression methods and com-

pression ratios. The reconstructions are scored with the estimator

OFintenEntrpy using the ideal reference image.

The experimental results are shown in Fig. 4.24. The scores of all

compression methods have the fluctuating tendency. The maxi-

mum value of the scores is at the highest compression ratio. At the

compression range from 20 to 100 the scores for images of datasets

compressed with DCV have higher values than with all other com-

pression methods. The rest of lines in Fig. 4.24 also fluctuate. This

result is inconsistent with the human perception.
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Figure 4.24: Scores obtained with OFintenEntpy for dataset of 6fa-

tRand compressed with the methods such as DWT (-+), MultiFractal

(-/), IK (-.), IKstd (-◦), DCV (-×), DCT (-�) and Threshold (-�).
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The reason to get the maximum score of the OFintenEntpy at the

highest compression ratio is the small entropy of the image of com-

pressed datasets at the highest compression ratio. In this image

the imaged object has vanished. According to the definition of the

OFintenEntpy in section 3.4.2.2, the values of scores increase with

decreasing entropy of the optical flow image which is the image of

compressed dataset.

A similar argument may be used to explain the high scores of the

images compressed with DCV. The strong distortions in these im-

ages result in a significantly decreasing entropy of images. Thus

the scores of OFintenEntpy have the highest values for unreason-

able high compressions.

4.2.1.4 Scores of the committee model based estimator

The images of the compressed dataset 6fatRand are scored with

CMM introduced in section 3.4.3. The training cases are designed

by adding to the original image distortions defined in section 3.4.3.5

blurred image, dilated object, eroded image, and uniform noise. The

other designed distortion types introduced in section 3.4.3.5 are not

selected, since these distortions are not observed in images of data-

sets compressed at low compression ratios.

The selection of these distortion types for CMM depends on the eval-

uated images and the used different compression methods. The

implemented compression methods influence the compression ar-

tifacts in images. The selected distortion type is used to simulated

these artifacts. E.g. the resized or overlapping resized objects are

only considered with the DCV method, because the pulse informa-

tion is degraded in decompressed A-scans so strong that the size of

the reconstructed object is changed.

The distortion grades are defined in section 3.4.3.5. To get an ap-

proximately linear relation between scores and distortion grade only

small distortions are allowed to simulate compression artifacts. The

chosen small range of the image distortions corresponds to the com-

pression artifacts at compression ratios smaller than 20. E.g. the

uniform noise from first to tenth grade is created in the range from

1 % to 10 % compared to the maximum gray value of images. The

distorted images at the fifth distortion grade for the selected dis-

tortion types are shown in Fig. 4.25. The contours of the imaged
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objects become unclear in Fig. 4.25(b) to 4.25(c) and 4.25(d). The

background noise increases significantly in Fig. 4.25(e) and 4.25(f).

These training cases are evaluated at first with the selected image

quality estimators introduced in section 3.4.1. The selected esti-

mator has the ability to show the variation of grades for one or

more selected distortion type. The achieved scores are then used

to calculate the weight of each estimator in CMM with the method

introduced in section 3.4.3.3.

The achieved CMM is used to score images of compressed data-

sets. The compression methods DWT, MultiFractal and IKstd are

selected and compared here, since they have a relatively higher per-

formances than other compression methods as discussed in section

4.2.1. The maximum compression ratio is limited to approx. 100,

since the images of datasets compressed with a compression ratio

of 100 have finally lost the most important information of the USCT

image.

The achieved scores with CMM are shown in Fig. 4.26. The CMM

values are decreasing until at a compression ratio of approx. 60 to

70 the score vanishes. The scores of CMM for DWT and MultiFractal

methods are higher than for IKstd.

The results with CMM for dataset bloodbone are shown in Fig. 4.27.

The local maximum values of scores for these three compression

methods are at the range of compression ratios from 10 to 20. The

CMM scores are decreasing at compression ratios larger than 20.

In all these cases compression ratios of about 10 to 20 seem to be

obtainable with no unacceptable losses in image quality. This result

agrees with human perception as it was shown in the sequence of

figures in section 4.2.1.1.

4.2.1.5 Filtered original images as reference

According to the methodology proposed in section 3.5.1.2, the edge

enhanced original image is used as the reference for the simulated

dataset 6fatRand. The designed reference is shown in Fig. 4.28.

The reconstruction artifacts and parts of the noise in the A-scans

affect the quality of the filtered original images. These artifacts and

the noise cannot be removed completely by the edge enhancement
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Figure 4.25: The original image(a) for dataset 6fatRand is degraded

by adding simulated distortions at the fifth grade (b) blurred image,

(c) dilated object, (d) eroded image, (e) uniform noise and (f) speckle

noise.
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Figure 4.26: Scores obtained for dataset 6fatRand with CMM for

compression methods DWT (-+), MultiFractal (-/) and IKstd (-◦).

filters.

The corresponding evaluation results for AMI are shown in Fig.

4.29. The compared compression methods are DWT, MultiFractal,

IK, IKstd, DCT and Threshold. The compression method DCV and

the images with Threshold at compression ratios larger than 20 are

not considered due to the observed distortions in images in Fig.

4.14.

The AMI curves decrease for all compression methods. The scores

for DWT and MultiFractal are higher than for other compression

methods. The DCT method has smallest values of scores at a large

range of compression ratios.

Compared to the results with the ideal reference image in the sec-

tion 4.2.1.2, there are no local maximum values for the scores with

the filtered original image as references. The scores are mono-
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Figure 4.27: Scores obtained for dataset bloodbone with CMM for

compression methods DWT (-+), MultiFractal (-/) and IKstd (-◦).

tonously decreasing. I.e. the differences between reference and

images of compressed datasets are increasing with increasing com-

pression ratios. One reason is that the compression artifacts in

images of compressed datasets increase with increasing compres-

sion ratios. Another reason is that the artifacts and real content of

the original image are reduced in the image of compressed dataset.

4.2.1.6 Different mother wavelets

The different mother wavelets discussed in section 2.5.4 are ana-

lyzed with the simulated dataset 6fatRand to find the best wavelet

for DWT. The standard image quality estimator AMI is employed

with the filtered original image as the reference image.

The results are shown in Fig. 4.30. In the range of compression ra-
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Figure 4.28: Edge enhanced image for simulated dataset 6fatRand.

tios from 1 to 100 the AMI values for Haar wavelet are smaller than

for the others. All other tested mother wavelets have a very similar

good behaviour.
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Figure 4.29: Scores obtained for simulated dataset 6fatRand with

AMI and filtered original images as reference for compression meth-

ods DWT (-+), MultiFractal (-/), IK (-.), IKstd (-◦), DCT (-�) and

Threshold (-�).
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Figure 4.30: Scores with AMI using filtered original image as refer-

ence for comparison of different standard mother wavelets Beylkin

(-+), Coiflet 5-tap (-/), Daubechies 20-tap (-.), Haar (-◦), Symmlet

4-tap (-×), Vaidyanathan (-�) and Symmlet 10-tap (-�).
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4.2.2 Real datasets

The real datasets are measured with real USCT setups. The real

USCT setups include 2D and 3D versions. The structure of 3D

USCT is introduced in section 2.2.1. The 2D USCT setup is the

previous version of 3D USCT and consists of one layer of emitters

and receivers which are in the same horizontal plane. Compared to

the 3D USCT setup there are 100 emitter and receiver positions of

transducers in the 2D USCT setup. In this work only the dataset for

the image object phantom2 is measured with the 2D USCT setup;

other datasets are obtained with 3D USCT. For simplicity only one

slice of these 3D images are shown.

In order to get the “real datasets”, phantoms are employed as im-

aged objects. The precise geometry and the relative positions of

imaged objects in USCT setups are in most cases unknown for the

real datasets. The acoustic properties of components in imaged ob-

jects are also unknown. Thus the ideal reference images are not

available.

Compared to the simulated datasets which do not contain noise,

the noise in the real datasets arises from the experimental environ-

ment (electronics etc.). The influences of the noise in the image of

compressed dataset have to be considered during the evaluation of

the compression.

4.2.2.1 Imaged objects and compressed datasets

The characteristics of each imaged object are listed blow:

1. Phantom2 : Several nylon threads and PVC rods are sur-

rounded by a plastic tube of 9 cm in diameter filled with water.

These objects are located near the center of the 2D USCT cylin-

der vertically. The diameter of the nylon thread is 0.15 mm.

2. NylonGelatin: A nylon thread with a diameter of 0.2 mm is

placed approx. in the center of the USCT setup vertically and

surrounded by a gelatin cylinder with a diameter of 6.4 cm [38].

3. EggSkinned: The imaged object is a cooked egg without shell.

4. Breastphantom1: The imaged object is a clinical breast phan-

tom (triple biopsy breast phantom, CIRS, Inc., Norfolk, USA).

This phantom is breast shaped and contains cancer and cyst
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mimicking masses of 2 to 10 mm in diameter. Its physical cha-

racteristics resemble approx. a 50% glandular breast. One

cross section of the Breastphantom1 imaged with X-ray is sh-

own in Fig. 4.31

5. Breastphantom2: This phantom is the second version of breast

phantom with similar characteristics as Breastphantom1. Parts

of the phantom are imaged.

6. Breastphantom3: This phantom is the third version of breast

phantom with similar characteristics as Breastphantom1. Parts

of the phantom are imaged.

Figure 4.31: X-ray image of one cross section of Breastphantom1.

The smallest objects in the phantom2 are reconstructed in the orig-

inal image in Fig 4.32. The cross section of the nylon threads with

a diameter of 0.15 mm is visible in the image.

These contents of phantom2 in images of compressed datasets vary

with increasing compression ratios 10, 20, and 60 shown in Fig.

4.33(b), Fig. 4.33(c) and Fig. 4.33(d), respectively. Compared to the

original image shown in Fig. 4.33(a) details of nylon threads are

visible in images of datasets compressed at compression ratios 10
and 20. I.e. The smallest details of the imaged objects are kept in

the image reconstructed with the compressed dataset, which cor-

responds to 4.5% of the original data amount. Most details of the

nylon threads are lost at the compression ratio of 60.
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Figure 4.32: Position of the cross section of nylon threads (right)

and the original image reconstructed with the uncompressed data-

set (left).
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Figure 4.33: The original image (top left) and images of datasets

compressed with DWT at compression ratios: 10 (top right), 20 (bot-

tom left), 60 (bottom right).

The images for dataset Breastphantom1 compressed with different

methods at the compression ratio 15 are shown in Fig. 4.34. The

low quality of the original image is due to the low performance of the

reconstruction method used in the year of 2006. With the improved

version of reconstruction methods, the quality of original image is

increasing. The main contours of breast phantom1 are visible in

the images with DWT, MultiFractal and IKstd. In the images for

DCT, Threshold and DCV the basic structures of imaged objects are

invisible.
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4.2.2.2 Filtered original images as reference

The filtered original image is used as reference to evaluate the im-

ages of compressed real datasets. The imaged Breastphantom1 is

employed as an example. According to the methodology proposed

in section 3.5.1.2, the original image is filtered to achieve the edge

enhanced objects for evaluation of the compressed datasets.

The evaluation results with AMI are shown Fig. 4.35. A local maxi-

mum of AMI at compression ratios between 10 and 20 for DWT and

MultiFractal compression is visible. Optimal images are obtained

for DWT and MultiFractal at compression ratios of about 12. For

larger compression ratios the scores decrease.

4.2.2.3 Designed ideal reference

The ideal reference images are designed for evaluation of the im-

age of compressed dataset. The precise information of the position

and geometry as well as acoustic properties of imaged objects is un-

known for the real datasets. The contours of imaged objects in the

original images are used to deduce the ideal reference images.

A software tool in Matlab is designed to extract the contour infor-

mation of imaged objects. The pixels of the contours in the original

images are selected manually for the reference image. The gray val-

ues of selected pixels are used as gray values in the reference image.

The original and reference images for the imaged object NylonGe-

latin are plotted in Fig. 4.36. The nylon thread has a high gray value

in the ideal reference image due to its high acoustic impedance rel-

ative to the gelatin cylinder. The contour of gelatin cylinder corre-

sponds to a circle in the center with a low pixel value in the reference

image.

The original and reference images for the imaged object EggSkinned

are plotted in Fig 4.37. The main shape of the egg is an ellipse.

Parts of details in the egg is drawn with a dotted line in the ideal

reference image, since these details are not reconstructed clearly in

the original image.

The original and reference images for the imaged object Breastphan-

tom1 are plotted in Fig. 4.38. The contours of the Breastphantom1
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are drawn with solid and dotted lines in the ideal reference image,

respectively. The dotted lines within the contours of the Breast-

phantom1 accentuate the cysts.

The original and reference images for the imaged objects Breast-

phantom2 and Breastphantom3 are plotted in Fig. 4.39 and Fig.

4.40, respectively. The cysts of these phantoms are shown with

small circles in the ideal reference images.

The evaluation of the achieved reference image for the imaged object

NylonGelatin is based on the measured geometric information and

acoustic properties of the materials which are used to construct the

phantom. The ideal reference image designed for the imaged object

EggSkinned is evaluated by using the shape of the egg. The refer-

ence images for imaged objects Breastphantom1, Breastphantom2

and Breastphantom3 are evaluated with the corresponding X-ray

images.

In original images for imaged objects NylonGelatin, EggSkinned and

Breastphantom1 are shown in Fig. 4.36(a), Fig. 4.37(a) and Fig.

4.38(a). The main contours of imaged objects gelatin cylinder, egg

and breast phantom1 are visible. The details in the images are dis-

torted significantly by the background noise. For the imaged objects

Breastphantom2 and Breastphantom3 in the original images shown

in Fig. 4.39(a) and Fig. 4.40(a) parts of cysts are reconstructed and

visible. The shape of some cysts can be distinguished. The other

cysts are not clearly reconstructed in the original image due to their

relative positions to the observers.

4.2.2.4 Scores with CMM

The CMM is implemented for the evaluation of the compression

methods with real datasets. The imaged objects Breastphantom1,

Breastphantom2 and Breastphantom3 are used as examples. There

are fewer objects in the reconstructed images for Breastphantom2

and Breastphantom3 than in Breastphantom1. The designed refer-

ence images in section 4.2.2.3 are used for comparison with the

images of compressed datasets.

The evaluation results are shown in Fig. 4.41, Fig. 4.42 and Fig.

4.43, respectively. The used compression methods are DWT, Mul-

tiFractal and IKstd. Based on the analysis in section 4.2.1 these
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compression methods have higher performance than other adapted

lossy compression methods.

The scores in Fig. 4.41 are increasing for Breastphantom1 with

compression methods DWT and IKstd at compression ratios smaller

than 50. For compression method MultiFractal the increasing ten-

dency continuous until the compression ratio 100 is reached. The

high values of CMM at the compression ratios above 50 is possible

due to the simplified structure of imaged objects in the reference

image. The main structures of imaged objects are kept in the im-

ages of datasets compressed also at high compression ratios.

The scores in Fig. 4.42 for Breastphantom2 are decreasing for com-

pression methods DWT and MultiFractal at compression ratios lar-

ger than 15. The local maximum values of CMM are within the range

of compression ratios from 10 to 20. The values of CMM for compres-

sion method IKstd are not stable and have smaller values than the

other methods.

The results in Fig. 4.43 for Breastphantom3 have unstable behaviour

for all three compression methods at compression ratios larger than

15. These results may be related to the low quality of the original

image as well as the reference image. In the meantime 3D-USCT

has a very much improved reconstruction method which was not

available at the time of this work.

4.3 Evaluation of data compression with hu-

man perception

The image of compressed dataset in USCT are also scored by sub-

jective estimators by using 16 students. The scores of the stan-

dard image quality estimators selected in section 3.4.1 and CMM

are compared with the subjective scores.

The mean vote score (MVS) is employed as the subject image quality

estimator. The MVS are achieved with 16 observers, who are edu-

cated people in image processing. Images of compressed datasets

are scored by these observers. The scores are averaged to achieve a

high quality of the score.

The consistency of the objective estimators with the MVS is evalu-
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Fig. 4.14(a) Fig. 4.14(b) Fig. 4.14(c) Fig. 4.14(d) Fig. 4.14(e) Fig. 4.14(f) CC MVS

AMI 0.44 0.45 0.30 0.17 0.21 0.70 0.00

NMI 1.07 1.07 1.04 1.02 1.03 1.09 0.06

PSNR 6.16 6.51 7.13 6.33 6.58 2.02 0.30

SSIM 0.01 0.01 0.01 0.01 0.01 0.02 0.11

Homog 0.07 0.07 0.07 0.07 0.07 0.07 0.05

NormGrdt 0.14 0.14 0.14 0.14 0.14 0.14 0.17

GVFMI 0.73 0.73 0.46 0.22 0.25 0.68 0.31

CMM 11.62 10.77 4.66 0.47 1.00 10.14 0.81

MVS 4.63 5.25 4.06 1.50 1.75 1.00 1.00

Table 4.1: Images of dataset 6fatRand compressed with imple-

mented compression methods at compression ratio 20 is scored with

standard image quality scores, CMM and MVS. CC MVS is the cor-

relation coefficient between objective scores and MVSs.

ated with the correlation coefficients between the scores estimated

with MVS and objective estimators. The objective estimator with a

high correlation coefficient has a high consistency with human per-

ception [81].

4.3.1 Simulated datasets

The images of compressed simulated datasets 6fatRand in Fig. 4.14

are used here as examples to show the correlation coefficients CC MVS

between the objective estimators and MVS. The results are tabu-

lated in Table. 4.1.

The correlation coefficient between CMM and MVS is approx. two

times larger than that for other objective image quality estimators.

The CMM shows a higher consistent with human perception than

the state-of-the-art image quality estimators.

4.3.2 Real datasets

The images of the compressed real dataset Breastphantom1 are sh-

own in Fig. 4.34. The experimental results with objective and sub-

jective estimators are shown in Table 4.2.

The correlation coefficient between CMM and MVS is larger than

that for other objective image quality estimators. These results are

similar to that with the simulated dataset 6fatRand and showed the
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Fig. 4.34(a) Fig. 4.34(b) Fig. 4.34(c) Fig. 4.34(d) Fig. 4.34(e) Fig. 4.34(f) CC MVS

AMI 0.01 0.01 0.01 0.01 0.00 0.21 0.26

NMI 1.00 1.00 1.00 1.00 1.00 1.02 0.24

PSNR 16.34 17.21 15.77 13.50 11.00 19.08 0.10

SSIM 0.01 0.01 0.01 0.00 0.00 0.25 0.27

Homog 0.00 0.00 0.00 0.00 0.00 0.52 0.28

NormGrdt 0.00 0.00 0.00 0.00 0.00 0.51 0.27

GVFMI 0.02 0.02 0.02 0.02 0.01 0.05 0.04

CMM 1.24 0.92 1.07 0.72 0.62 0.52 0.74

MVS 4.43 4.92 4.64 3.02 1.00 1.34 1.00

Table 4.2: Images of dataset Breastphantom1 compressed with im-

plemented compression methods at compression ratio 15 is scored

with standard image quality estimators, CMM and MVS. CC MVS is

the correlation coefficient between objective scores and MVSs.

large superiority of CMM over the standard estimators.

4.4 Validation of denoising ability

4.4.1 Noisy datasets

In order to test the denoising ability of adapted compressed meth-

ods, the simulated dataset 6fatRand is employed. The quality of

denosing images is scored with AMI using the processed original

images as the reference images. The denoising ability of the com-

pression method DWT is validated as an example, since it has a

high performance for compression of USCT datasets as shown with

the experimental results in section 4.2.1.

The artificial noise is simulated with the methods introduced in sec-

tion 2.6.2.1. The simulated noise has the size of −40dB, −26dB and

−20dB compared to the maximum value of A-scans. These noises

are added into the A-scans of the dataset 6fatRand to construct

the noisy datasets . The images reconstructed with noisy datasets

are termed as noisy images . The noisy images are shown in Fig.

4.44(a), Fig. 4.44(c) and Fig. 4.44(e).

4.4.2 Compression of noisy datasets

The noisy datasets are filtered and compressed with DWT and re-

constructed, as shown in Fig. 4.44(b), Fig. 4.44(d), and Fig. 4.44(f).
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Images of compressed datasets are compared against noisy images.

The noise in the image of dataset compressed with DWT is reduced

in the background for the simulated dataset 6fatRand. Thus the

contours of the objects in the images of the compressed datasets

are again recognizable.

4.4.3 Scores of denoising datasets

The denoising ability of the compression method DWT is evaluated

with AMI. The corresponding scores of AMI are shown in Fig. 4.45.

There are local maxima of AMI for the noisy datasets at all noise

grades with the increasing compression ratios. These local maxi-

mum values are at the compression ratio approx. 20. These results

are consistent with the subjectively obtained results shown in Fig.

4.44.
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Figure 4.34: (a) Images of the real dataset Breastphantom1 com-

pressed with (a) DWT, (b) MultiFractal, (c) Threshold, (d) IKstd (e)

DCT and (f) DCV at a compression ratio of 15.
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Figure 4.35: Scores obtained for real dataset Breastphantom1 with

edge enhanced reference for DWT (-+), MultiFractal (-/), IK (-.), IK-

std (-◦), DCV (-×), DCT (-�), Threshold (-�) and WavePDT(-O).
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Figure 4.36: Real dataset NylonGelatin. (a) Original and (b) refer-

ence images (with enhanced edges for demonstration).
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Figure 4.37: Real dataset EggSkinned. (a) Original and (b) reference

images (with enhanced edges for demonstration).
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Figure 4.38: Real dataset Breastphantom1 for imaging CIRS breast

phantom. (a) Original and (b) reference images (with enhanced

edges for demonstration).

139



Pixel number

P
ix

el
 n

um
be

r

 

 

50 100 150 200 250

50

100

150

200

250

2

2.5

3

3.5

4

4.5

(a)

Pixel number

P
ix

el
 n

um
be

r

 

 

50 100 150 200 250

50

100

150

200

250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 4.39: Real dataset Breastphantom2 for imaging CIRS breast

phantom. (a) Original and (b) reference images (with enhanced

edges for demonstration).
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Figure 4.40: Real dataset Breastphantom3 for imaging CIRS breast

phantom. (a) Original and (b) reference images (with enhanced

edges for demonstration).
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Figure 4.41: Scores of CMM for images of datasets Breastphantom1

compressed with DWT (-+), MultiFractal (-/) and IKstd (-◦).
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Figure 4.42: Scores with CMM for images of dataset Breastphan-

tom2 compressed with DWT (-+), MultiFractal (-/) and IKstd (-◦).
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Figure 4.43: Scores obtained for dataset Breastphantom3 with

CMM for compression methods DWT (-+), MultiFractal (-/) and IK-

std (-◦).
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Figure 4.44: Noisy images with different noise grades (the size of

noise is (a) −40dB (b) −26dB, (c) −20dB compared to the maximum

amplitude in the A-scans) and the corresponding reconstructed im-

ages (b), (d) and (f) of the with DWT compressed datasets at a com-

pression ratio of 20.
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Figure 4.45: Scores with AMI for images of datasets compressed

with DWT to evaluate denoising ability of compression method.

Noise with a size of −40dB (-+),−26dB (-.) and −20dB (-/) compared

to the maximum amplitude of A-scans are added to A-scans before

the compression process. Best imaging quality in respect to the AMI

estimator is obtained at compression ratios between 10 to 20.
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Chapter 5

Discussion and conclusion

In this work a data compression system for USCT was developed.

The state-of-the-art and new tailored compression methods were

implemented and evaluated systematically. A part of the system is

an image quality based evaluation system for comparison and op-

timization of data compression methods. Based on the experimen-

tal results with real and simulated datasets a suitable compression

method was selected for USCT.

The introduced methods combined with the corresponding experi-

mental results are analyzed and discussed in the first part of this

chapter. In the second part a quantitive comparison of different

compression methods will be given. Finally the proposed image

quality estimator and the acceptable compression ratios are con-

cluded.

5.1 Discussion

5.1.1 Multiple scattering and dispersion

The experimental results for multiple scattering in USCT are shown

in section 2.3.4. Based on the analysis of distances between emit-

ters and receivers, diameter of scattering objects and the speed of

ultrasound, the structure of B-scans can be explained.

Multiple scattering may affect the image quality but depends str-

ongly on considered magnitude of reflectivity. A large reflection in-

tensity happens for large differences of acoustic impedances and

that is not to be expected in the breast in USCT.
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The simulations about the attenuation and dispersion of ultrasound

pulses in section 2.3.5 show that the ultrasound pulse is deformed

due to frequency dependent attenuation and dispersion. Ultra-

sound pulse is deformed stronger in human tissues than in water.

This complicates the correct reconstructon of the images.

5.1.2 Image quality estimators

A reasonable image quality evaluation system was the necessary

basis for the search of the best possible data compression in USCT.

The performance of standard and newly designed image quality esti-

mators are analyzed with subjective and objective estimations. The

advantages and disadvantages of these estimators are compared.

5.1.2.1 No-reference estimators

The results for no-reference image quality estimators in section 3.3

show that all image quality estimators are insensitive to changed

offset values in images, but they have different sensitivities to dif-

ferent distortion types. None of these image quality metrics show

reasonable sensitivity to all of the designed distortion types. There-

fore the reference based image quality estimators were investigated

for the case that a suitable reference image could be found.

5.1.2.2 Standard reference based estimators

The standard reference based estimators have a low performance

for objects with a complex structure as the dataset 6fatRand. Thus

the curves of these estimators have a low performance for the data-

set 6fatRand as shown in figures from Fig. 4.16 - Fig. 4.22. The

values of the scores do not correlate with human perception.

A comparison of the sensitivity for selected reference based esti-

mators (see Table 3.1) shows that AMI and NMI have similar per-

formance. The changes of structure in images cannot be scored

efficiently by PSNR.

As shown in section 4.2.1.2, AMI is not suitable for measurement

of significant structure changes in images of compressed datasets
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compared to the reference image. Thus it is unsuitable for estimat-

ing the image quality of datasets compressed at high compression

ratios, i.e. > 100. All standard estimators have disadvantages for

scoring some distortions in images of compressed datasets. There-

fore a new image quality estimator was searched in this work.

5.1.2.3 New image quality estimators

An estimator which correlates well with human perception was sear-

ched. Two possible solutions were proposed. First, the design of a

new image quality estimator which can overcome the shortcomings

of the state-of-the-art image quality estimators. Second, the use of

subjective measure as additional measure to get rid of the signifi-

cantly distorted images of artificial datasets.

Optical flow The scores obtained with simulated datasets in Fig.

4.24 with OFintenEtpy do not show the quality of the images as the

human perception.

According to the introduction about the optical flow in section 3.4.2,

the assumption of optical flow based methods is that the structures

of the imaged objects in reference and distorted images are similar.

The objects in images of compressed datasets are significantly dif-

ferent from those in the reference image; therefore the optical flow

based image quality estimator has a low performance and is not

further considered.

CMM The committee model based estimator (CMM) combines the

sensitivity of the underlying estimators. The performance has been

measured as described in section 4.2.1.4 and section 4.2.2.4 for

simulated and real datasets, respectively.

An ideal reference was used for CMM. For real datasets the ideal

reference is not available. If the ideal reference was designed with

the original image and had a high similarity to the imaged objects,

the CMM is robust. Unreasonable results were achieved as shown

in the experiment with the real dataset for imaged object Breast-

phantom3 in section 4.2.2.4, if the ideal reference could not be de-

signed properly in all details of the objects, e.g. a part of the imaged
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object was not depicted well in the original image.

The applied distortions are based on empirical observations. To

select a suitable set of types and grades of distortions, the charac-

teristics of reconstruction artifacts and compression artifacts have

to be considered. The flexible selection of the simulated distor-

tion types and grades makes the CMM capable to score arbitrary

distortions, thus it can be used to evaluate very different imaging

systems. The compression artifacts vary significantly with the com-

plexity of imaged objects. The image objects with similar structure

and acoustic properties have comparable compression artifacts in

images of compressed datasets. The optimal estimator in USCT

may be obtained for an imaged object with similar structure and

acoustic properties as the human breast.

According to human perception the image quality decreases from

Fig. 4.14(a) to 4.14(f) for the simulated dataset and from Fig. 4.34(a)

to 4.34(e) for the real dataset, respectively. The scores listed in Table

4.1 and Table 4.2 show the performance of different image quality

estimators used in CMM. Most of these estimators are inefficient

for scoring the images of datasets compressed with DCV, which are

serious distortions. The correlation coefficients between CMM and

the subjective estimator (i.e. MVS) are two times larger than that

for other estimators, thus it has the best consistency with human

perception. Based on the high consistency with human perception

CMM is used to score the similarity between ideal reference and the

image of compressed dataset.

5.1.3 Comparison of results with different types of refer-
ences

The influences of the implemented reference images on the perfor-

mances of the image quality estimators are discussed below.

5.1.3.1 Original image as reference

The theoretical analysis in section 3.5.1 shows that the useful con-

tents in the original image are the contours of the imaged objects,

since USCT uses the information of reflected ultrasound signals.

These contours are affected by the background noise and the origi-

nal image has to be improved to be used as a reference image.
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5.1.3.2 Ideal reference

The ideal reference has no background noise. The simulated noise

is added in the ideal reference to evaluate the denoising ability of

the compression methods.

For real datasets the design of an ideal reference is different from

that for simulated datasets. The methods for simulated and real

datasets were explained in section 3.5.2.3 and 4.2.2.3, respec-

tively. The design of an ideal reference for a real dataset has to

be done manually and depends on the experience of the designer.

5.1.3.3 Filtered original image as reference

The abstraction of the contours of the imaged objects in the origi-

nal image is the basic idea to apply the filtered original images as

reference for real datasets. The significant advantages of using the

filtered original image are the availability of the original images and

the reproducibility of the results. The size and structure for the im-

age filter are selected by the user.

With the filtered original image as reference the experimental re-

sults are shown in section 4.2.1.5 for the simulated dataset 6fa-

tRand and in section 4.2.2.2 for the real dataset Breastphantom1.

The main tendencies of all curves in Fig. 4.29 and Fig. 4.35 are

decreasing with increasing compression ratios. Results show that

DWT and Multifractal based method have better performance, in

terms of AMI, than the others within a large range of compression

ratios. The local maximum of AMI for the Breastphantom1 is lo-

cated at compression values of 10 to 20. This result is consistent

with the human perception.

The results with the filtered original image as reference are com-

pared to that with ideal reference using the standard image quality

estimators. The differences between filtered original images and

images of compressed datasets are significantly smaller than that

between ideal reference and images of compressed datasets. This

reduced differences increase the performance of AMI. Therefore the

performance obtained with the filtered original image as reference

are more similar to the human perception than what is obtained
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with an ideal reference.

Based on the advantages of the filtered original image as reference

different mother wavelets and the denoising ability of the compres-

sion methods were evaluated. The experimental results are shown

in section 4.2.1.6 and section 4.4.3, respectively. For noisy data-

sets local maxima of AMI in Fig. 4.45 are 50% higher than that for

images reconstructed with uncompressed datasets. Local maxima

are at compression ratios from 10 to 30 depending on different noise

levels. These evaluation results have a high consistency with the

human perception.

5.1.4 Lossless compression

Lossless compression methods avoid the loss of information in orig-

inal datasets.

A new lossless method was developed based on the characteristics

of A-scans for higher compression ratios than state-of-the-art loss-

less methods. The data from real A-scans were used to verify the

method. The compression ratio achieved with the proposed cas-

cading bitwise RLE method is about 1.6 for A-scans in experiments.

That is about 80 % of the theoretical optimal compression ratio ob-

tained by Shannon theory. The compression ratio with the cascad-

ing bitwise RLE is about 10 % larger than that with WinZip V14.0.

Other methods of lossless compression could be theoretically re-

jected because of poor results, see section 2.4.1 and 2.4.2.

5.1.5 Lossy compression

Lossy compression was investigated to achieve higher compression

ratios than for lossless methods. Most of the tested lossy compres-

sion methods in this work contain at the final end run length encod-

ing. The reduction of data may result in a degradation of the USCT

images. The process to find a suitable lossy compression method

for USCT is as follows:

In the first step the adapted lossy compression methods intro-

duced in section 2.5 were tested with synthetic A-scans. These re-
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sults have no pulse deformation but different noise grades were ap-

plied (see section 4.1.1). The performance of the compression meth-

ods were scored with PSNR which shows the distance between orig-

inal and compressed A-scans. DCV shows higher performance than

DWT and IKstd compression methods, since the synthetic A-scans

contain no deformation of the ultrasound pulses. Breast tissues

have a higher attenuation factor than water as shown in section

2.3.5. Ultrasound wave propagation in breast tissues is frequency

dependent, therefore pulse deformation occurs. Compression meth-

ods as DWT, which are strongly dependent on pulse deformation,

had to be analyzed due to the frequency dependent attenuation for

breast tissue.

In the second step simulated and real datasets were employed.

An ideal reference image can be precisely designed for the simulated

dataset to evaluate the image quality. Although there is no noise in

the simulated dataset as in the real dataset, the evaluation results

for simulated and real datasets are expected to be similar.

In the third step the results of subjective evaluation was used.

DWT and MultiFractal method have the highest performance due

to their time-frequency representation of data. The useful contents

in A-scans are separated well from irrelevant parts and are main-

tained during compression processes with these methods, because

the imaged objects become clear in images reconstructed with cor-

responding compressed datasets.

The IKstd method has a better performance for the dataset blood-

bone than for 6fatRand. The imaged objects in dataset bloodbone

have a simpler structure than that of 6fataRand. Reflected pulses

are not interfered strongly with each other in the A-scans for the

dataset bloodbone. For a dataset with a simple structure of the

imaged objects and a low level of noise, IK and IKstd are recom-

mended for a high performance of lossy compressions, since the

IKstd method is suitable to identify peaks of well separated pulses

in A-scans.

DCV has a low performance for compression of USCT datasets. The

high sensitivity to pulse deformation limits the utilization of DCV

for USCT datasets. Similar results were achieved for both simulated

and real datasets. Thus the DCV method was not further consid-
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ered for USCT data compression.

In the fourth step the objective evaluation of the adapted com-

pression methods were carried out by comparing the obtained scores

of the used image quality estimators. The estimator AMI is used for

dataset bloodbone in section 4.2.1.2, which has a simple structure.

The IKstd method shows a higher AMI than the other methods be-

cause of the simple structure of the dataset bloodbone. At low com-

pression ratios, e.g. < 30 the scores of AMI are consistent with the

subjective perception.

The starting points of the AMI curves at the lowest compression

ratio (shown in Fig. 4.15) are not identical for different compres-

sion methods because the decompressed A-scans at the smallest

compression ratio are not identical to the original A-scans. Thus

images reconstructed with original and compressed datasets are at

very small compression ratios not identical. The reason is that the

compression and decompression processes of different compression

methods results in different quantization errors. The lowest com-

pression ratio should correspond to the case of uncompressed data-

set as explained in section 4.2.1.2. This is not correctly handled in

conventional algorithm of compression methods in this work.

The local maximum of the AMI curve at low compression ratios in-

dicates that the compression process improves the image quality

(see section 4.4.2). This local maximum appears for noisy datasets,

since a suitable compression method is capable to keep the useful

contents and to reduce the noise. The optimal compression ratio is

based on the position of this maximum.

For a more objective evaluation of the compressed datasets with a

complex structure, CMM with an ideal reference and AMI with fil-

tered original image as reference were employed. The results for

the simulated dataset 6fatRand were shown in section 4.2.1.4 and

section 4.2.1.5. DWT and MultiFractal methods have higher perfor-

mances than other methods. Similar results are achieved with real

datasets as Breastphantom2 in section 4.2.2.4 and Breastphan-

tom1 in section 4.2.2.2. The local maximum value of the scores

is at a compression ratio of approx. 20.
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Finally different mother wavelets as a parameter used in DWT

were selected. Performance of standard mother wavelets for DWT is

compared using the simulated dataset 6fatRand in section 4.2.1.6.

The images of compressed datasets have different qualities for dif-

ferent mother wavelets, but all wavelets except Haar showed similar

results.

The mother wavelet which is smooth and similar to the coded exci-

tation of the ultrasound pulses has the best performance. Thus the

design of a new mother wavelet with high smoothness and similarity

to the coded excitation is suggested for improving the performance

of data compression DWT in USCT.

5.2 Conclusion

5.2.1 Compression

5.2.1.1 De-noising ability and computational complexity

The de-noising ability for synthetic A-scans was shown in section

4.1.1. The local maxima of the PSNR curves represent the de-

noising abilities of different compression methods. The DCV method

show its significant high de-noising ability since there are no pulse

deformations in the synthetic A-scans.

The high denoising ability of the DWT method is estimated not only

by human perception but also by image quality estimators. The ex-

perimental results are shown in section 4.4.1. The maximum value

in Fig. 4.45 shows that the DWT method has higher de-noising abil-

ity than a band-pass de-noising filter which is applied for prepro-

cessing of A-scans in USCT. As expected, the values and positions

of local maxima in Fig. 4.45 are changed with the noise level. For

a dataset with a higher noise level the maximum value of AMI can

be found at a higher compression ratio. In this case an increasing

threshold value is used to remove noise.

The adapted compression methods for datasets are compared based

on the denoising ability and the computational complexity. The

comparison results are shown in Table 5.1. The computational

complexity is defined as low when the number of operation is < N2

(with N the length of A-scans), otherwise high. The DWT, MultiFrac-

tal and IKstd have similar good performance, therefore the proper-

ties and the performance of these methods are compared further.
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Name Computational Denoising

complexity ability

relative relative

(High/Low) (High/Low)

DWT Low High

MultiFractal Low High

DCV Low Low

DCT High High

IKstd Low High

IK Low Low

WavePDT High High

Threshold Low Low

Table 5.1: Comparsion of state-of-the-art compression methods.

5.2.1.2 Property and performance

Based on the experimental results of adapted compression meth-

ods, their performance for USCT is analyzed. A comparison of their

characteristics as well as advantages and disadvantages are listed

in Table 5.2.

The DWT and MultiFractal methods have a better performance than

all other compression methods, because the discrete wavelet trans-

formation has the ability to represent the information in the time

and frequency domain and is suitable for analysis of the non sta-

tionary signals. IKstd and IK methods have a low computational

complexity, but the precise position of ultrasound pulses may not

be found. Although the DCV method achieves a high compression

ratio for synthetic A-scans (in section 4.1.1), this method is sensitive

to pulse deformation. WavePDT is used for achievement of a high

compression ratio, but it has a significantly higher computational

complexity than other compression methods. The DCT method has

a low performance because of neglecting the pulse shape informa-
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Name Short introduction Advantages Disadvantages

DWT Quantize coefficients Fast; Low

from discrete sensitivity to -

wavelet noise and

transform pulse deformation

MultiFractal Adjust Low

coefficients from sensitivity to -

discrete wavelet noise

transform

IKstd Peak detection with Low sensitivity High sensitivity to

fixed neighborhood to pulse shape noise

relation deformation

IK Peak detection with High Hard to control

various neighborhood compression ratio compression ratio

relation for simple

objects

DCV Convolute with Fastest; pulse High sensitivity to

based deconvolution filter shape dependent noise and

from coded pulse deformation

excitation

DCT Quantize and Keep frequency Influenced by

code coefficients component distorted frequency

from DCT with high component with

value high value

WavePDT Search local Pulse detection High computational

maximum of wavelet possible complexity; pulse

coefficients parameter sensitive

from CWT

Threshold Quantization with Simplest Low performance

hard threshold for signal smaller

method and than noise

coding

Table 5.2: Comparison of compression methods.
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tion in A-scans. Threshold is simple to be implemented, but useful

contents with smaller amplitudes than the threshold are lost.

Based on the analysis in Table 5.1 and Table 5.2, the DWT and Mul-

tiFractal methods are more feasible than all other used methods for

compression of USCT datasets.

5.2.2 Image quality estimators

An ideal reference is expected to have a better performance than

that of original images for using as a reference image. But it is

difficult to achieve an ideal reference for real datasets. The man-

ually designed ideal reference for real datasets is not reproducible

and limits the implementation of an ideal reference based estimator.

The standard no-reference estimators are not suitable for evaluat-

ing images of compressed datasets in USCT. CMM has better per-

formance than standard reference and optical flow based estimators

for evaluation of USCT images. The advantage of CMM is the flexi-

bility of selecting underlying estimators for evaluated images.

In conclusion, a new image quality estimator CMM is proposed

for comparison of images influenced by data compression in USCT.

The CMM utilizes the advantages of state-of-the-art image quality

estimators by combining them to a generalized committee model

and parameterizes the model with simulated distortions. Based on

the experimental results from 1200 images of compressed simulated

and real datasets, the CMM has the ability to score the distortion

types in images caused by data compression in USCT and has a

higher correlation with human perception than all other state-of-

the-art image quality estimators.

5.2.3 Acceptable data compression in USCT

A new lossless compression method based on the characteristics

of ultrasound signals in USCT was designed for improvement of

compression ratios up to 80 % of the theoretical limit yielding a

compression of factor 1.6.

The discrete wavelet transform based compression method among

the state-of-the-art compression methods proves to be optimal for

data compression in USCT with a low computational complexity, a
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significant reduction of data, a high quality of reconstructed images

and a high denoising ability. A compression ratio of 10 to 15 is fea-

sible for real ultrasound imaging of the breast with the version of

the USCT 2006.
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