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Abstract. We consider a framework for bi-objective network construction problems where
one objective is to be maximized while the other is to be minimized. Given a host graph G =
(V,E) with edge weights we ∈ Z and edge lengths `e ∈ N for e ∈ E we define the density of
a pattern subgraph H = (V ′, E′) ⊆ G as the ratio %(H) =

∑
e∈E′ we/

∑
e∈E′ `e. We consider

the problem of computing a maximum density pattern H with weight at least W and and
length at most L in a host G. We call this problem the bi-constrained density maximization
problem. In doing so, we compute a single Pareto-optimal solution with the best weight per
cost ratio subject to additional constraints further narrowing down feasible solutions for the
underlying bi-objective network construction problem. The problems expressible within this
framework include maximization of return on investment for network construction problems
in the presence of a limited budget and a target profit.
We consider this problem for different classes of hosts and patterns. We show that it is NP-
hard even if the host has treewidth 2 and the pattern is a path. However, it can be solved in
pseudo-polynomial linear time if the host has bounded treewidth and the pattern is a graph
from a given minor-closed family of graphs. Finally, we present an FPTAS for a relaxation
of the density maximization problem, in which we are allowed to violate the upper bound
on the length at the cost of some penalty.

1 Introduction

Many realistic network construction problems are characterized by complex constraints and muli-
ple, possibly conflicting, objectives. There are several ways to define optimality in the context of
more than one objective, among them Pareto-optimality and aggregate optimality. While Pareto-
optimality seems to capture the classical notion of optimality best, it is undesirable to confront
users with a possibly exponential number of Pareto-optimal solutions. Therefore it is common to
combine the objectives into a single new aggregate objective, which is then optimized as a single-
criterion objective. Typical aggregate functions include weighted sum or weighted minimum and
maximum. These weighted aggregate functions, however, must be guided in that the decision maker
has to supply a set of suitable weights at the risk of arbitrariness.

We consider a framework for bi-objective network construction problems, motivated from eco-
nomics, where one objective must be maximized (profit) while the other must be minimized (cost).
Additionally, we assume that we are given an upper bound on the objective to be minimized (lim-
ited budget) and a lower bound on the objective to be maximized (target profit). Bi-objective
optimization functions of this sort can be aggregated by the ratio of the two optimization goals
featuring two main advantages over other aggregate functions. First, we do not need to supply any
weights—if we did, it would not alter our notion of optimality. Second, any optimal solution with
respect to the ratio is Pareto-optimal. In economics, this ratio is termed return on investment.

Our framework is defined as folllows. Let G = (V,E) be a graph, which we will refer to as the
host. Given G, we write V (G) = V and E(G) = E. Throughout the paper we write n := |V (G)|
and m := |E(G)|.We assume that we are given a weight function w : E → Z and a length function
` : E → N on the edges, respectively. As a shorthand we will write we := w(e) and `e := `(e) and
for a subgraph H ⊆ G we define w(H) :=

∑
e∈E(H) we and `(H) :=

∑
e∈E(H) `e. We refer to a

subgraph of G as a pattern. Given W ∈ Z and L ∈ N a pattern H is called W -viable if w(H) ≥W
? Supported by NSC-DFG Projects NSC98-2221-E-001-007-MY3 and WA 654/18.
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and it is called (W,L)-viable if it is W -viable and `(H) ≤ L. Our goal is to find a (W,L)-viable
pattern H maximizing w(H) and minimizing `(H), which we formalize by maximizing the ratio
%(H) = w(H)/`(H), defined as the density of H. Given a tuple (G,w, `,W,L) the Bi-constrain-
ed Maximum Density Subgraph (BMDS) problem asks for a connected (W,L)-viable pattern
H ⊆ G with maximum density.

In realistic applications, it may be desirable to be able to violate the hard limitations of our
framework. For instance, it may be possible to exceed the budget by loaning additional money at
the cost of some interest. We model this by introducing the L-deviation of H, defined as ∆(H) :=
max{0, `(H) − L}, and the penalized density, defined as %̃(H) := w(H)/(`(H) + c ·∆(H)), where
c is some non-negative constant. Given a tuple (G,w, `,W,L) the Relaxed Maximum Density
Subgraph (RMDS) problem asks for a connected W -viable pattern H ⊆ G with maximum
penalized density. We will consider these problems for different classes of hosts and patterns.

Overview and Related Work An overview of recent developments in multi-objective optimization
is given in [3]. Bálint [1] proves inapproximability for bi-objective network optimization problems,
where the task is to minimize the diameter of a spanning subgraph with respect to a given length
on the edges, subject to a limited budget on the total cost of the edges. Marathe et al. [16] study
bi-objective network design problems with two minimization objectives. Given a limited budget on
the first, they provide a PTAS for minimizing the second objective among a set of feasible graphs.
The considered objectives include total edge weight, diameter and maximum degree.

The study of dense segments from in bi-weighted sequences arises from the investigation of
non-uniformity of nucleotide composition with genomic sequences [9,15] and has received consid-
erable attention in bio-informatics. Here, we are given a sequence of pairs (ai, bi) and we wish
to find a subsequence I with length bounded by A ≤ ∑i∈I bi ≤ B that maximizes the density∑
i∈I ai/

∑
i∈I bi. For uniform lengths, Lin et al. [13] give an O(n logA) algorithm, which is im-

proved to O(n) by Goldwasser et al. [6]. A linear time algorithm for the non-uniform case is given
by Chung and Lu [4]. Lee et al. [12] show how to select a subsequence whose density is closest
to a given density δ in O(n log2 n) time. Without the upper bound on the length B an optimal
O(n log n)-time algorithm is given.

Subsequently, this problem has been generalized to graphs. Hsieh et al. [8,7] show that a
maximum density path in a tree subject to lower and upper length bounds can be computed
in time O(Bn) and that it is NP-hard to find a maximum density subtree in a tree, for which
they also presented an O(B2n) time algorithm. Wu et al. [21,20] improve on this by presenting
an optimal algorithm for computing a maximum density path in a tree in time O(n log n) in the
presence of both a lower and upper length bounds. They also give an O(n log2 n) algorithm for
finding a heaviest path in a tree in the presence of length constraints [21], which is improved to
O(n log n) by Liu and Chao [14] .

Our Contribution In Section 2 we prove that the BMDS problem is NP-hard, even if the host has
treewidth 2 and the pattern is a path. Then we show how to compute a maximum density path in
a tree in Section 2.1 and extend this result to graphs that can be turned into a tree by removing k
edges, thus, showing that the problem is FPT with respect to k. In Section 2.2 we show how to solve
the BMDS and the RMDS problems in pseudo-polynomial linear time if the host has bounded
treewidth and the pattern must be contained in a given minor-closed family of graphs. Finally, we
present a general FPTAS that can be applied to all RMDS problems that admit algorithms whose
running time is pseudo-polynomial in the length in Section 3. We show that it can be used to
approximate the maximum penalized density if the host has bounded tree-width and the pattern
belongs to a minor-closed family of graphs.

2 Bi-constrained Maximum Density Subgraph

In this section we consider the Bi-constrained Maximum Density Subgraph (BMDS) prob-
lem. Given an instance I = (G,w, `,W,L) we wish to find a connected (W,L)-viable subgraph of G
with maximum density. Since the BMDS problem can be solved in time O(n2) when the host is a
tree and the pattern is a path by enumerating all possible paths, it is natural to ask if the BMDS
problem can be solved efficiently on more general hosts and patterns. However, we show that it is
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Fig. 1. Graph used in the reduction from Partition. Bold edges have density 4, all other edges
have density 1. Dashed edges have weight and length 1, solid non-bold edges incident to pi have
weight and length ci + 1.

NP-hard to find a maximum density path, even if the host is only slightly more complicated than
a tree.

Theorem 1. BMDS is NP-hard, even if the host simply connected outerplanar graph with treewidth
two, the pattern is a path and we drop the upper bound on the length of the pattern.

Proof. The proof is by reduction from Partition. Assume we are given an instance of Partition,
i.e., a set of positive integers C = {c1, c2, . . . , cm} with M =

∑m
i=1 ci and we ask whether there is

a subset I ′ ⊆ {1, . . . ,m} with
∑
ci∈I′ ci = M/2. We transform this into an instance of BMDS as

follows. The transformation is illustrated in Figure 1. First, we create a path v0, v1, . . . , v2m with
we = `e = 1 for each edge e on this path. Besides, we create additional m vertices, p1, p2, . . . , pm,
and connect pi to both v2i−2 and v2i with we = `e = ci + 1 for e ∈ {piv2i−2, piv2i}. Then we
create additional vertices q0 and q1, which we connect to v0 and v2m, respectively, such that
wq0v0 = wq1v2m = 4M and `q0v0 = `q1v2m = M . Furthermore, we set W = 9M + 2m. Since the
graph is outerplanar its treewidth is bounded by 2.

We claim that there is a path with length at least W and density at least d := W/(3M+2m) iff
the corresponding instance of Partition can be solved. Clearly, any partition can be transformed
into a path with density d and length W . Conversely, assume that P is such a path. Since the
weight of the path must be at least 9M it must end at q0 and q1, respectively. Let S be the set
of indices such that pi is on the path iff i ∈ S. Then the density of this path can be expressed
as (8M + 2m + 2

∑
i∈S ci)/(2M + 2m + 2

∑
i∈S ci), which is strictly decreasing as 2

∑
i∈S ci is

increasing. Hence we have 2
∑
i∈S ci ≤ M . On the other hand the weight of the path must be at

least W , which implies 2
∑
i∈S ci ≥M . Thus, the path induces a valid partition I ′ := {ci | i ∈ S}.

ut

When both the lower-bounded and upper-bounded constraints are imposed the problem be-
comes much harder. By setting L = 3M + 2m we can show that it is NP-hard to even compute
any feasible solution if we impose both the lower bound on the weight and the upper bound on the
length of the pattern. Hence, the problem is not likely to be approximable in polynomial time.

2.1 Density Maximization for Trees and Almost-Trees

In the previous section, we have shown that it is NP-hard to compute a maximum density path
even if the host graph has treewidth 2. Hence the problem is unlikely to be FPT with respect
to the parameter treewidth. In this section, however, we show that the problem of computing a
maximum density path is FPT with respect to the number of edges k that must be deleted from
a graph in order to obtain a tree. The treewidth of such a graph is bounded by k + 1. In this
section we consider instances of the density maximization problem where the pattern is a path.
First, we show how to compute a maximum density path when the host is a tree. The problem can
trivially be solved in O(n2) time by enumerating all possible paths, but we show how to solve it
in O(n log3 n) time. Our basic approach is similar to one described by Wu [20] and Lau et al. [11]
with respect to decomposing the problem into smaller sub-problems. However, we use completely
different techniques for the sub-problems to obtain our results, since the results by Wu and Lau et
al. are not applicable in our setting. Second, we use this result to show that finding a maximum
density path in a general graph is FPT with respect to the number of edges we have to remove in
order to obtain a tree.
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Fig. 2. Tangent query to find the best candidate for Q (left) and combination of two paths ex-
tending Q (right).

Throughout the section we will be using the key idea that the combined density of two
subpaths P and Q is equal to the slope between two points uP = (`(P ), w(P )) and −uQ =
(−`(Q),−w(Q)) in the Euclidean plane. This path is feasible iff w(P ) ≥ W − w(Q) and `(P ) ≤
L− `(Q). For a given query path Q this slope is maximized on the convex hull of the set of points
PQ representing the candidate subpaths for Q in the range (−∞, L − `(Q)] × [W − w(Q),∞).
Since we wish to maximize the density it suffices to perform tangent queries to the upper chain
of the convex hull of PQ, denoted by UH(PQ), which is more efficient than trying all possible
combinations (see Figure 2).

We use a dynamic data structure for the maintenance of the upper chain of the convex hull of a
set of points P [17] allowing point insertions in time O(log2 n). It maintains the upper chain of the
convex hull by a dynamically maintained ordered binary tree. Each leaf of this tree corresponds to
a point in the plane and each inner node v corresponds to the segment of the upper hull of the set of
points Pv that does not contribute to the upper hull of the set of points in the subtree of the father
of v. Each inner node additionally stores the number of points on its upper hull (head or tail) that
it inherits from its father. The segments of the upper hulls are represented by concatenable queues
which allow insertion, deletion, concatenation and split in O(log n) time. Lemma 1 shows how to
compute UH(PQ) from a given set of candidate paths P in time O(log2 n) given the dynamic data
structure.

Lemma 1. Given a point Q, a set of points P and a dynamic data structure for the maintenance
of UH(P) as described in [17] we can compute UH(PQ) in time O(log2 n).

Proof. If PQ is empty, there is nothing to do. Otherwise, let pmin be the leftmost point in PQ and
let pmax be the rightmost point in PQ. Let xmin and xmax be the respective x-coordinates of these
points. Let P ′ := {(x, y) ∈ P | xmin ≤ x ≤ xmax}. First, we prove that UH(PQ) ⊆ UH(P ′). Clearly,
P ′ = PQ ·∪P ′′ where P ′′ contains all the points (x, y) ∈ P with xmin ≤ x ≤ xmax and y < W . Thus,
all points in P ′′ are either in the interior of the convex hull of PQ or on a vertical line through xmin

or xmax, respectively. Hence, the claim holds and we can reduce the problem of computing UH(PQ)
to computing the upper hull of a set of points P ′ in a vertical strip of the plane, which is supported
by the dynamic data structure. Let T denote the tree used by the dynamic data structure for the
maintenance of the upper hull. In order to compute UH(P ′) we traverse the paths from the root
of T to pmin and pmax, respectively, in parallel. In each step we reconstruct the upper hull using the
concatenation and split operation of the concatenable queues stored in the nodes of the tree. We
split off branches of the tree that are to the left of the path from the root to pmin and to the right
of the path from the root to pmax. These branches contain only points whose x-coordinates are
either greater than xmax or smaller than xmin. Since T is balanced we have reconstructed UH(P ′)
after at most log n steps using time O(log n) per step and O(log2 n) time in total. Clearly, we can
reconstruct the original data structure with the same complexity. ut
Theorem 2. Given an instance (T,w, `,W,L) of the BMDS problem, where T = (V,E) is a tree,
we can compute a (W,L)-viable maximum density path in O(n log3 n) time.

Proof. Without loss of generality we may assume that T is a binary tree. Otherwise we can make
it binary by adding dummy edges with weight and length 0 in linear time. A centroid of a binary

4



tree is a vertex whose removal disconnects T into at most 3 subtrees with at most half of the
vertices of the original tree in each of the subtrees. We root T in one of its centroids r. Let v1, v2
be two children of r and let R be the path between v1 and v2 via r. Then we can compute the
maximum density path including R using tangent queries in time O(n log2 n) as follows: First,
we compute the set P1 of paths starting in v1. Each of those paths P ∈ P1 is mapped to a
point uP := (`(P ∪ R), w(P ∪ R)) in the plane and inserted into the dynamic datastructure for
the maintenance of the upper hull. This can be done in O(n log2 n). Then we compute the set of
paths P2 starting in v2. For each of these paths Q ∈ P2 we want to compute the best path P ∈ P1,
i.e., a path P such that the concatenation of Q and P ∪R has maximum density.

To this end, we map each Q ∈ P2 to a point −uQ := (−`(Q),−w(Q)). Since we have bounds on
both the weight and the length of a feasible solution, not all paths in P1 will be feasible partners
for a given Q ∈ P2. We require that the length of P ∈ P1 is bounded by w(P ) ≥W −w(Q)−w(R)
and `(P ) ≤ L − `(Q) − `(R). Using Lemma 1 we can compute the maximum density partner
for Q ∈ P2 in time O(log2 n). Then we can compute the maximum density path P ∗ through r in
time O(n log2 n). We do this for all combinations of children of r and store the path of maximum
density. Next, we recursively compute the best path through each of the children of r in the subtrees
rooted in the children. Let P̂ be the maximum density path over all the paths computed this way.
Then the maximum density path in the tree rooted in r is the maximum density path over P ∗

and P̂ . The recurrence relation for the computation is given by T (n) =
∑3
i=1 T (ni) +O(n log2 n),

where ni is the number of vertices in the tree rooted in vi. Hence, the running time of this approach
is O(n log3 n). ut

Next, we show that we can obtain a similar result if the host is a graph that can be turned
into a tree by deleting a fixed number of k edges. Roughly, the key idea consists of enumerating all
possible subsets of the k edges and computing, for each of those subsets, the maximum density path
containing all theses edges. The following lemma can be used to enumerate those paths efficiently.

Lemma 2. Given a graph G = (V,E ∪ F ) such that T = (V,E) is a tree and F ∩ E = ∅ as well
as F ′ ⊆ F and vertices s, t ∈ V incident to the edges in F ′, then there is at most one s-t-path in
G containing all edges in F ′. We can compute such a path or prove that no path exists in linear
time.

Proof. We prove the claim by contradiction. Suppose that there are two different paths P1 and P2

both containing all edges in F ′ and ending with s and t, respectively. Since the paths are different
and both contain all edges in F ′ the symmetric difference ∆ of E(P1) and E(P2) is non-empty
and contained in E. Since both paths end at s and t, all vertices of ∆ have even degree. Hence, ∆
contains a cycle contradicting the fact that ∆ is a subgraph of T .

We proceed by showing that the uniquely determined feasible path can be computed in linear
time, if it exists. We root T in some vertex r ∈ V (T ). By Tv we denote the tree rooted in v ∈ V (T ).
For a given F ′ ⊆ F we call v ∈ V (T ) \ {s, t} a loose end if it is incident to exactly one edge in F ′.
To compute P we traverse T in a bottom-up fashion constructing P by iteratively matching loose
ends. For each vertex v we store a reference to the unmatched loose end, if it exists. Let v be a
vertex with children w1, . . . , w`. Clearly, there can only be a valid path if at most two children, say,
w1 and w2, contain an unmatched loose end in their subtrees. Otherwise there is no feasible path.
If none of the children contains an unmatched loose end, then there is nothing to do. If exactly one
child contains an unmatched loose end in its subtree, we store a reference to this vertex in v. If
exactly two children of v contain unmatched loose ends `1 and `2 in their subtrees, then we update
the path by matching these loose ends and adding the unique path in T that connects `1 and `2.
We accept the resulting graph if it is a path, which can be checked in linear time. ut

Theorem 3. Given an instance (G,w, `,W,L) of the BMDS problem such that G is a tree with k
additional edges, we can compute a maximum density (W,L)-viable path in time O(2kk2n log2 n+
n log3 n).

Proof. Given a tree with k additional edges G = (V,E), we first compute an arbitrary spanning
tree T = (V,E′) of G. This leaves exactly k edges, denoted by F := E \E′, which may or may not
be used by the optimal path. For each F ′ ⊆ F we compute the maximum density path containing
all edges in F ′ and we return the maximum density path over all F ′ ⊆ F . At first we compute
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the maximum density path in T in O(n log3 n) time using Theorem 2. Any path containing some
non-empty subset of edges F ′ ⊆ F can be decomposed into three subpaths P,Q and R such that R
starts and ends with edges in F ′ and contains all edges in F ′. By Lemma 2 the possible paths R
are uniquely determined by choosing a set F ′ ⊆ F as well as two vertices incident to F ′ and R can
be computed in linear time from this information.

Hence, we iterate over all possible F ′ ⊆ F and all s, t ∈ V incident to F ′. In each of the 2kk2

iterations, we first compute both weight and length of R in linear time, resulting in O(2kk2n)
time. Then we find paths P and Q starting at s and t, respectively, such that the density of the
concatenation of P , R and Q has maximum density among all paths including R in time O(log2 n).
For the remainder of the proof we show how this can be accomplished and we thus assume that R, s
and t are fixed. Our approach is similar to the proof of Theorem 2. However, we must take care of
the disjointness of the paths.

Let s = v0, . . . , v` = t be the sequence of vertices on the path from s to t in T . For each of
these vertices vi 6= s, t, we define Ws(v) as the set of vertices in Tvi that are reachable from s in T
without crossing the path R. Each of the vertices w ∈ Ws(vi) defines a path Ps(w). Analogously,
we define the set of vertices Wt(vi) in Tvi that are reachable from t in T without crossing R. Each
of those vertices w ∈ Wt(vi) defines a path Pt(w) from t to w. Two paths in Ps(vi) and Pt(vj),
respectively, are disjoint, whenever vi is encountered before vj on the path from s to t, i.e., if i < j,
otherwise they will have at least one vertex in common. See Figure 2 for an illustration.

Now we describe how we insert the paths into the dynamic data structure for the maintenance
of the upper hull. As pointed out, paths may not be disjoint, hence, we must insert the paths
in a specific order. First, we insert all paths starting in s that do not include any vertex on the
path from s to t. Then, for each i = 1, . . . , ` − 1 we insert all paths Ps(w) for all w ∈ Ws(vi).
After inserting the paths for a specific i < ` − 2 we make tangent queries for all paths Pt(w)
for w ∈ Wt(vi+1). Note that at that point, we have included all paths starting in s except those
that would not be disjoint to the paths in Ps(w) for w ∈ Wt(vi+1). After we have inserted all
paths Ps(w) for all w ∈ Ws(v`−1) we have inserted all paths starting in s, which do not cross R.
Then we make tangent queries for all paths starting in t that do not use any vertex on the path
from s to t.

In order to compute the best path for F = ∅ we proposed an algorithm with running time
O(n log3 n). For each specific non-empty choice of F ′ ⊆ F and vertices s and t incident to F ′ we
thus insert at most n points into the data structure with a total running time of O(n log2 n) and
we perform at most n tangent queries, each with a running time of at most O(log2 n). Hence, the
overall running time is O(2kk2n log2 n+ n log3 n). ut

Remark 1. The Relaxed Maximum Density Subgraph problem can be solved within the same
asymptotic bounds by similar means if the pattern is a path and the host is a tree or a tree with
k additional edges, respectively.

2.2 Density Maximization in Graphs with Bounded Treewidth

In this section we show that a large class of problems can be solved in pseudo-polynomial FPT
time when parameterized by the treewidth k of the host, i.e., in time O(f(k)p(L, n)) where f is a
function depending only on k and p is a polynomial depending on the maximum length L of any
feasible pattern and the number of vertices n of the graph. In the light of the results on the hardness
of the problem this seems to be the best we can hope for. Given a graph G with treewidth k and
a finite set of graphs F , we wish to find some connected (W,L)-viable pattern H with maximum
density that does not contain any graph in F as a minor. Such a graph is called F-minor-free. This
includes trees, (outer-)planar graphs as well as graphs from various other minor-closed families of
graphs. We give an algorithm for the general case but note that the running time can be improved
by considering special classes of graphs. We assume that we are given a tree decomposition of the
host as an input; otherwise it can be computed in FPT time [2,10]. We note that the size of the
forbidden obstructions is small for many interesting examples, such as trees and (outer-)planar
graphs whose sets of forbidden minors include graphs with ≤ 6 vertices.

Our algorithm is based on dynamic programming on the tree decomposition of the graph and
is inspired by Eppstein’s work on subgraph isomorphism in planar graphs [5]. Based on Eppstein’s
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idea of enumerating partial isomorphisms for the bags of the tree decomposition, we enumerate
partial minors of the graphs induced by the bags. In the following we present the key ideas in more
detail. Let G = (V,E) be a graph. A tree decomposition of G is a pair (X , T ) where X = {Xi | i ∈ I}
is a collection of subsets of V which are called bags and T = (I, ET ) is a tree with the following
properties: (i)

⋃
i∈I Xi = V . (ii) For all e ∈ E there is an i ∈ I such that e ⊆ Xi. (iii) For all

v ∈ V , Xv = {i ∈ I | v ∈ Xi} induces a connected subtree of T . We will refer to the elements in
I as nodes—as opposed to vertices in the original graph. The treewidth of a tree decomposition
equals maxi∈I |Xi| − 1. The treewidth of a graph G = (V,E) is equal to the minimum treewidth
of a tree decomposition of G.

Theorem 4. Let (G,w, `,W,L) be an instance of the BMDS problem such that G has treewidth
at most k and let F be a non-empty finite set of graphs. Then the maximum density F-minor-free
(W,L)-viable pattern can be computed in time 2O(k2+k logN+N)|F|Ln where N = maxF∈F |V (F )|.

Proof. We describe the algorithm for the case that F consists of only one forbidden obstruction
F . The extension to a larger family of forbidden obstructions is straightforward. Our algorithm is
by dynamic programming on the tree decomposition of the graph. Robertson and Seymour have
proven the existence of an O(n3) graph minor test for any fixed minor F [18]. However, the proof is
non-constructive and involves huge constants. Therefore, we describe an explicit algorithm for the
graph minor test which relies on the enumeration of subgraphs instead. We note, however, that we
need some explicit representation of the minor mappings for the dynamic programming anyway,
thus, this does not change the asymptotic complexity of our approach.

For the proof we assume that we are given a nice tree decomposition. A tree decomposition is
called nice if T is a rooted binary tree where each node is of one of the following types: A leaf node
X contains only one vertex. An introduce node X has only one child Y such that X = Y ∪ {v} for
some v ∈ V . We say X introduces v. A forget node X has only one child Y such that X = Y \ {v}
for some v ∈ V . We say X forgets v. Finally, a join node X has two children Y1 and Y2 such that
X = Y1 = Y2. Given a graph with treewidth k we can always find a nice tree decomposition with
O(n) nodes in linear time [10].

Throughout the proof we assume that G = (V,E) is a graph with treewidth at most k and we
let (X , T ) be a nice tree decomposition of G with treewidth at most k, rooted in a node r ∈ I. For
i ∈ I we denote the graph induced by the union of the bags of all descendants of i (including i) by
Gi. Using standard notation, we denote the graph induced by Xi by G[Xi]. Let C := {V1, . . . , Vq}
be a disjoint collection of connected subsets of V . We denote the graph obtained by contracting the
vertices in each of the sets Vi into a single vertex by G/C and we refer to the sets Vi as branch sets
and to C as a contraction set. Then F is a minor of G iff there is a subgraph H and a contraction
set C such that H/C is isomorphic to F .

Let C be a contraction set and let H be some subgraph in G[Xi] for some i ∈ I. A partial
minor embedding of F into H with respect to C is a mapping ϕ : V (F ) → V (H/C) ∪ {⊥,>} such
that uv ∈ E(F )⇒ ϕ(u)ϕ(v) ∈ E(H/C) for all uv ∈ E(F ) with u, v /∈ ϕ−1(⊥) ∪ ϕ−1(>), hence, ϕ
maps a subgraph of F to a minor of H. The image ⊥ represents vertices in Gi−Xi and the image
> represents vertices in G which have not been considered yet, i.e., vertices in G − Gi. A partial
minor embedding ϕ is called proper if and only if ϕ−1(>) 6= ∅. Otherwise it represents a minor
embedding of F into some subgraph of Gi, and hence, H may disregarded as a partial solution.

For the algorithm we identify the vertices of F with the numbers 1, . . . , |V (F )|. The images of
these vertices under ϕ which are not contained in ϕ−1(⊥) ∪ ϕ−1(>) correspond to branch-sets of
H, i.e., a partition of the vertices of H. By considering all |V (F ) + 1|k+1 labelings of the vertex
set of H where each vertex is labeled with some number in 0, . . . , V (F ) we obtain a partition of
the vertices induced by the labeling. Such a partition is valid only if each set of vertices forms
a connected set. Further it defines an implicit mapping f of a subset of the vertices of F to the
partitions induced by the labeling. Vertices labeled 0 are considered not be images under f . We
further encode for each vertex in F which does not have an image under f whether it is mapped to
⊥ or >. A mapping to ⊥ means that the vertex can be mapped to some branch-set in the subgraph
induced by the descendants of node i whereas a mapping to > means that we will try to map the
vertex to some branch-set we have not encountered, yet. We can check in O(k2) time if such an
encoding represents a valid partial minor embedding of F into H. We check connectedness of the
partitions in time O(k). Further we check if each edge in F is represented by some edge between
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the corresponding branch-sets in H. This can be done in time O(k2) by iterating over all pairs
vertices in H, and hence, over all pairs of labels and checking corresponding edges in both F and
H. Using these conventions, we can encode a partial minor embedding ϕ. It is not hard to see that
there are at most |V (F )|k+12|V (F )| many partial minor embeddings using this kind of encoding.

By W (i,H, Φ, `) we denote the maximum weight of a subgraph G′ of Gi with length `, such
that G′[Xi] = H ⊆ G[Xi] and Φ represents all partial minor embeddings ϕ of F into G′. We call
the quadruple (i,H, Φ, `) an interface for i. An interface is called proper if and only if ϕ(>) 6= ∅
for all ϕ ∈ Φ.

By G∗i we denote the graph obtained by adding new vertices > and ⊥ to G[Xi] which are each
connected to all vertices in Xi. Both weight and length of the additional edges is equal to zero. We
then consider connected subgraphs in G∗i . Note that any connected subgraph G′ can be mapped
to a connected subgraph in G∗i .

The solution we are looking for will be the maximum over all interfaces (r,H, Φ, `) where r is the
root of the tree decomposition, such that H is connected and does not contain >, Φ is proper and
` is at most L. If the maximum weight is at least W , then we return this weight, otherwise there
is no feasible solution. We now describe how W (i,H, Φ, `) can be computed in T in a bottom-up
fashion by dynamic programming starting at the leaves of T .

Leaf node i with Xi = {v}: For each H in G∗i which does not include ⊥ we compute the set Φ of
partial minor embeddings of F into H and we set W (i,H, Φ, 0) = 0, since both the weight and
length of any subgraph of G∗i are equal to 0 by construction. Note that any vertex in F which is
not mapped to v must be mapped to >. Hence, the time complexity is asymptotically bounded by

O(1)︸ ︷︷ ︸
subgraphs H

· |V (F )|2 · |V (F )|︸ ︷︷ ︸
|Φ|

· O(1)︸ ︷︷ ︸
check mapping

·L .

Introduce node i introducing v: Let j be the only child of i and let (j,H ′, Φ′, `′) be an interface
for j such that Wj := W (j,H ′, Φ′, `′). We consider all connected subgraphs H of G∗i which can
be obtained from H ′ by adding v and some set of edges E+ incident to both v and some set of
vertices in H ′. For each fixed H obtained this way we further consider the set Φ of all partial
minor embeddings ϕ of F into H which can be obtained from some ϕ′ ∈ Φ′ by choosing some
vertex in ϕ′−1(>) to be mapped to v by φ. If all partial minor embeddings ϕ constructed this
way are proper and ` := `′ + `(E+) ≤ L the interface (i,H, Φ, `) is proper and we compute
W (i,H, Φ, `) = Wj + w(E+) and we set W (i,H ′, Φ′, `′) = Wj . Hence, the complexity for an
introduce node is asymptotically bounded by

2(k
2)︸︷︷︸

subgraphs H

· |V (F )|k+1 · 2|V (F )|︸ ︷︷ ︸
|Φ′|

· 2k︸︷︷︸
|E+|

· |V (F )|︸ ︷︷ ︸
new mappings to v

· k2︸︷︷︸
check mapping

·L

Forget node i forgetting v: Let j be the only child of i and let (j,H ′, Φ′, `′) be an interface for
j such that Wj := W (j,H ′, Φ′, `′). If H ′ does not contain v, then there is nothing to do and we
simply set W (i,H ′, Φ′, `′) = Wj . Otherwise, we consider the set Φ of all mappings ϕ which can
be obtained from mappings ϕ′ by removing v from its partition in the branch set. If v is the only
vertex in its partition, then the corresponding vertex in F must additionally be mapped to ⊥. We
set W (i,H, Φ, `′) = Wj where H is obtained from H ′ by removing v and mapping all edges from
v to any vertex in Xi by a corresponding edge with the end-vertex corresponding to v in ⊥. The
resulting complexity of a forget node is asymptotically bounded by

2(k
2)︸︷︷︸

subgraphs H

· |V (F )|k+1 · 2|V (F )|︸ ︷︷ ︸
|Φ′|

· O(1)︸ ︷︷ ︸
remapping

·L

Join node i joining j1 and j2: Let j1 and j2 be the two children of i and let (j1, H, Φ1, `1) and
(j2, H, Φ2, `2) be two interfaces. Two partial minor-embeddings ϕ1 ∈ Φ1 and ϕ2 ∈ Φ2 are compatible
if all vertices v ∈ Xj1 ∩Xj2 satisfy ϕ−11 (v) = ϕ−12 (v). If ϕ1 and ϕ2 are compatible, we can obtain a
new partial minor embedding by combining the two partial embeddings into a new partial minor
embedding ϕ12.

8



Let Φ12 be the set of partial minor embeddings combined in this manner from all pairs of com-
patible partial minor embeddings in Φ1×Φ2. Let W1 := W (j,H, Φ1, `1) and W2 := W (j′, H, Φ2, `2).
If ` := `1 = `2 and Φ := Φ1 = Φ2 we set W (i,H, Φ1, `) = max{W1,W2}. Otherwise, we set
W (i,H, Φ1, `1) = W1 and W (i,H, Φ2, `) = W2. Additionally, we set W (i,H, Φ1∪Φ2∪Φ12, `1 + `2−
`(H)) := W1 +W2 − w(H).

Since |Φ1 × Φ2| is bounded by |V (F )|k+1 × |V (F )|k+1, the resulting complexity in total is
asymptotically bounded by

2(k
2) · |V (F )|2k+2 · 22|V (F )| · 2k · |V (F )| · k2 ·M · n = 2O(k2+k log |V (F )|+|V (F )|)Mn .

If F contains more than one obstruction, the running time can be bounded by 2O(k2+k logN+N)|F|Ln
where N denotes the maximum number of vertices of any graph in F . ut

The following result can be obtained by a straightforward modification of the approach sketched
in this section. With the technique developed in the next section, this result will yield an FPTAS
for the Relaxed Maximum Density Subgraph problem.

Corollary 1. Let (G,w, `,W ) be an instance of the RMDS and let G and F be as in Theo-
rem 4. Then for any λ ∈ R a maximum penalized density F-minor-free (W,λ)-viable pattern can

be computed in time O(2O(k2+k logN+N)|F|λn) where N = maxF∈F |V (F )|.

3 An FPTAS for Relaxed Density Maximization

In this section we consider the Relaxed Maximum Density Subgraph (RMDS) problem,
where the upper bound on the length may be violated at the cost of some penalty. We assume that
the weight function is strictly positive. While it is NP-hard to decide whether a feasible solution
exists for the original problem, we show that this slight relaxation allows us to give an FPTAS
for penalized density. This can be applied to any problem that allows a quasi-polynomial-time
algorithm that computes an optimal solution with respect to the penalized density. Note that the
relaxed density maximization problem remains NP-hard as we can choose L very small such that
every subgraph is penalized and we have that %̃(H) ≈ (1/2)%(H) for any subgraph H. Then the
NP-hardness result of Theorem 1 naturally applies to this problem. For simplicity, we will assume
that the scaling constant c for the penalized density equals 1.

Let Π be a relaxed density maximization problem that admits an algorithm A that takes as
input an instance I of the relaxed density maximization problem and λ ∈ N and computes an
optimal (W,λ)-viable pattern H with respect to penalized density, %̃, in O(p(λ, n)) time, where
p(λ, n) is a function that is polynomial in λ and n. We show how to construct an FPTAS for
Π that uses A as a subroutine. We present our algorithm within the terminology introduced by
Schuurman and Woeginger for approximation schemes [19]. We first structure the output of our
algorithm to form exponentially growing buckets based on the length of the solutions. In order to
compute approximately optimal solutions in each of the buckets efficiently we structure the input
of algorithm A by exponentially compressing the lengths and weights in such a way that the error
resulting from the compression is proportional to the size of the solutions in each bucket.

Let k be a suitably chosen integer depending on ε, which will be defined later. We structure
the output in blogk Bc− 1 buckets, where B = `(G), such that bucket i with 0 ≤ i ≤ blogk Bc− 2
contains solutions with total length at most ki+2m, where m is the number of edges. For each
bucket we compute an approximately optimal solution and return the overall best solution as
output of our algorithm. To compute an approximately optimal solution for bucket i we structure
the input by considering instances Ii = (G, `i, wi,Wi, Li), where `i(e) =

⌈
`(e)/ki

⌉
, wi(e) = w(e)/ki

for e ∈ E(G) and Wi = W/ki as well as Li = L/ki. We apply algorithm A on instance Ii with
λ = k2m. A high-level description of this algorithm is listed as Algorithm 1.

When considering the i-th bucket, we refer to the deviation of H ⊆ G with respect to `i
and Li as ∆i(H) = max{0, `i(H) − Li}. Similarly the penalized density of H ⊆ G is defined as
%̃i(H) = wi(H)/(`i(H) +∆i(H)). Lemma 3 shows that our structuring scheme implies that %̃i(H)
is monotonically decreasing in i for each H ⊆ G. Corollary 2 establishes a length lower bound on
a certain set of subgraphs which will be used in Lemma 4 to show that for each subgraph H there
is a bucket i such that %̃i(H) ≈ %̃(H).
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Algorithm 1: FPTAS for Relaxed Density Maximization

Input: An instance (G,w, `,W,L) of Relaxed Maximum Density Subgraph, a real number
0 < ε < 1

Output: An (1− ε)-approximation of the maximum penalized density subgraph
k ← d 2

ε
e ;

for i← 0 to blogk Bc − 1 do
Hi ← result of A on instance Ii with λ = k2m

return max0≤i≤blogk Bc %̃i(Hi)

Lemma 3. For any subgraph H and each 1 ≤ i < blogk Bc, we have

`(H) ≤ ki · `i(H) ≤ `(H) + |E(H)| · ki, (1)

∆(H) ≤ ki ·∆i(H) ≤ ∆(H) + |E(H)| · ki, (2)

%̃i(H) ≤ %̃i−1(H) ≤ %̃(H), (3)

`i(H) ≤ k ·m implies that `i−1(H) ≤ k2 ·m. (4)

Proof. We will use the following equation, which holds for any real positive numbers r, s ∈ R.

r ≤ s ·
⌈r
s

⌉
≤ r + s (?)

We start out by proving Eq. (1), which relates the length of a graph to the length of the corre-
sponding subgraph in the compressed instance of iteration i. By the definition of ` and Eq. (?) we
have

`(H) =
∑

e∈E(H)

`e ≤ ki ·
∑

e∈E(H)

⌈
`e
ki

⌉
︸ ︷︷ ︸

=`i(H)

≤
∑

e∈E(H)

`e + |E(H)| · ki = `(H) + |E(H)| · ki .

For Eq. (2) note that the first part trivially holds if ∆(H) = 0. If ∆(H) > 0 holds, by applying
Eq. (1) we get ∆(H) = `(H) − L ≤ ki · `i(H) − L ≤ ki · ∆i(H). The second part of Eq. (2)
again trivially holds if ∆i(H) = 0. Similarly, if ∆i(H) > 0, we get ki∆i(H) = ki`i(H) − L ≤
`(H) + |E(H)| · ki − L = ∆(H) + |E(H)| · ki.

Note that the first part of Eq. (3) implies the second part since %̃0(H) = %̃(H) holds for any
subgraph H. Directly from Inequality (?) we get that k · `i(H) ≥ `i−1(H) for any subgraph H,
which immediately implies Eq. (4). Similarly, we also get k ·∆i(H) ≥ ∆i−1(H) since max{0, r} ≥
max{0, s} for r ≥ s. Therefore, we obtain

%̃i(H) =
wi−1(H)

k · (`i(H) +∆i(H))
≤ wi−1(H)

`i−1(H) +∆i−1(H)
= %̃i−1(H)

ut

using wi(H) = wi−1(H) and `i(H) + ∆i(H) = k · (`i(H) + ∆i(H)). Let Ω(H) be the smallest
integer such that `Ω(H)(H) ≤ k2m. In other words, Ω(H) denotes the smallest bucket for which H
will be considered by algorithm A. Equation (4) immediately implies a lower bound on the length
of H in this bucket.

Corollary 2. For any subgraph H, Ω(H) > 0 implies `Ω(H)(H) > km.

Now we are ready to bound the density of an instance H in bucket Ω(H) in terms of k and its
true penalized density %̃(H).

Lemma 4. For any subgraph H, we have %̃(H) ≤ k+1
k−1 · %̃Ω(H)(H).

Proof. Clearly, this inequality holds when Ω(H) = 0. For Ω(H) ≥ 1, by Lemma 3, Equation 1,
and |E(H)| ≤ m we immediately get `(H) ≥ kΩ(H) · (`Ω(H)(H) −m). Together with Corollary 2
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this implies kΩ(H)m ≤ 1/(k− 1) · `(H) ≤ 1/(k− 1) · (`(H) +∆(H)). We now compute the density
of H in Iteration ω := Ω(H) by using Equations (1) and (2).

%̃ω(H) =
wω(H)

`ω(H) +∆ω(H)
=

w(H)

kω · (`ω(H) +∆ω(H))

≥ wt(H)

`(H) +∆(H) + 2m · kω ≥
w(H)(

1 + 2
k−1

)
(`(H) +∆(H))

=
k − 1

k + 1
· %̃(H) .

ut

Theorem 5. Given 0 < ε < 1, we can compute a (1 − ε)-approximation for the relaxed density
maximization problem in O(p(m/ε2, n) logB) time, where G is the input graph and B is the max-
imum length of the edges, provided that an O(p(λ, n)) time algorithm for the penalized density
maximization as described above is available.

Proof. Clearly, the algorithm computes a W -viable solution if one exists due to the correctness of
algorithm A, the fact that we do not introduce any errors when scaling the weights, and since the
union of the buckets covers all feasible solutions.

Next we show that the algorithm indeed produces a (1 − ε) approximation of the optimal
penalized density. Let opt be an optimal solution and H∗ be the solution returned by our algorithm.
By the above lemmas and choosing k =

⌈
2
ε

⌉
, we have

%̃(H∗) ≥ max
i≥Ω(H∗)

%̃i(H
∗) ≥ max

i≥Ω(opt)
%̃i(opt) ≥ %̃Ω(opt)(opt)

≥
(
k − 1

k + 1

)
· %̃(opt) ≥

(
1− 2

k + 1

)
· %̃(opt) ≥ (1− ε) · %̃(opt).

The running time of this approach is clearly O(p(m/ε2, n) logB) since k =
⌈
2
ε

⌉
≥ 2, and logk B ≤

log2B = O(logB). ut

For reasons of simplicity, we assumed a scaling factor c = 1. By choosing k = dc+ 1/εe we can
accomplish the same result for any scaling factor c 6= 1. In our analysis, we further assumed that
we are given an algorithm A that computes a (W,λ)-viable pattern for a given value of λ. However,
our approach still works if A only computes a W -viable pattern with maximum penalized density.
In each iteration we pre-process the instance Ii by removing edges which are longer than k2m from
G. Then the maximum length of any W -viable pattern considered by A will naturally be bounded
by k2m2. The running time of the resulting FPTAS is bounded by O(p(m2/ε2, n) logB), assuming
that A has a running time bounded by O(p(`(G), n)). Finally, with the results from Corollary 1
we immediately obtain the following result as an application of the FPTAS to the problem of
maximizing the penalized density objective function.

Corollary 3. Let (G,w, `,W ) be an instance of the RMDS problem such that G has treewidth at
most k and let F be a finite set of graphs. Let B := `(G), 0 < ε < 1 and let opt be the optimal
penalized density of an F-minor-free W -viable pattern. Then a W -viable F-minor-free pattern with
penalized density at least (1− ε) · opt can be computed in time O(2O(k2+k logN+N)|F|m/ε2 logB).

4 Conclusion and Outlook

We have investigated bi-objective network design problems with one minimization and one max-
imization objective in the presence of additional constraints by studying the complexity of maxi-
mizing the ratio of the two objectives for different classes of graphs. Although the general problem
is NP-hard like many multi-objective optimization problems, we were able to efficiently solve some
special cases efficiently and give an FPTAS for the relaxed problem. We presented an efficient
algorithm for computing a maximum density path in a tree in sub-quadratic time and we showed
that the problem for general graphs is FPT with respect to the number of edges we must remove
in order to obtain a tree. Further, we proposed pseudo-polynomial-time algorithms for graphs with
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bounded treewidth and a framework for obtaining polynomial-time approximation schemes for the
relaxed density maximization problem, given a pseudo-polynomial-time algorithm.

Preliminary work on other structural constraints, such as Steiner-constraints requiring a subset
of the vertices to be included in any feasible solution, showed that the resulting problems are also
NP-hard, even if we drop the bounds and allow only a fixed number of Steiner-vertices.
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